# Objective
- Currently we have the `ColorRange` trait to interpolate linearly
between two colors
- It would be cool to have:
1. linear interpolation between n colors where `n >= 1`
2. other kinds of interpolation
## Solution
1. Implement `ColorGradient` which takes `n >= 1` colors and linearly
interpolates between consecutive pairs of them
2. Implement `Curve` intergration for this `ColorGradient` which yields
a curve struct. After that we can apply all of the cool curve adaptors
like `.reparametrize()` and `.map()` to the gradient
## Testing
- Added doc tests
- Added tests
## Showcase
```rust
// let gradient = ColorGradient::new(vec![]).unwrap(); // panic! 💥
let gradient = ColorGradient::new([basic::RED, basic::LIME, basic::BLUE]).expect("non-empty");
let curve = gradient.to_curve();
let brighter_curve = curve.map(|c| c.mix(&basic::WHITE, 0.5));
```
---
Kind of related to
https://github.com/bevyengine/bevy/pull/14971#discussion_r1736337631
---------
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
Co-authored-by: Matty <weatherleymatthew@gmail.com>
# Objective
Fixes https://github.com/bevyengine/bevy/issues/14183
## Solution
Reimplement the UI texture atlas slicer using a shader.
The problems with #14183 could be fixed more simply by hacking around
with the coordinates and scaling but that way is very fragile and might
get broken again the next time we make changes to the layout
calculations. A shader based solution is more robust, it's impossible
for gaps to appear between the image slices with these changes as we're
only drawing a single quad.
I've not tried any benchmarks yet but it should much more efficient as
well, in the worst cases even hundreds or thousands of times faster.
Maybe could have used the UiMaterialPipeline. I wrote the shader first
and used fat vertices and then realised it wouldn't work that way with a
UiMaterial. If it's rewritten it so it puts all the slice geometry in
uniform buffer, then it might work? Adding the uniform buffer would
probably make the shader more complicated though, so don't know if it's
even worth it. Instancing is another alternative.
## Testing
The examples are working and it seems to match the old API correctly but
I've not used the texture atlas slicing API for anything before, I
reviewed the PR but that was back in January.
Needs a review by someone who knows the rendering pipeline and wgsl
really well because I don't really have any idea what I'm doing.
# Objective
The `BorderRadius` component shouldn't be required to draw borders for
nodes with sharp corners.
## Solution
Make `BorderRadius` optional in `extract_uinode_borders`'s UI node
query.
# Objective
The `Parent` component holds a reference to the parent entity of the
entity it is inserted onto. The `with_child` function erroneously
forgets to insert this component onto the child entity that it spawns,
causing buggy behaviour when the function is used instead of the other
child-spawning functions.
## Solution
Ensure `with_child` inserts the `Parent` component, the same as all the
other child-spawning functions.
## Testing
Checked before/after with a bevy_ui layout where this patch fixed buggy
behaviour I was seeing in parent/child UI nodes.
# Objective
- Fixes#14969
## Solution
- Added `Deserialize` to the list of reflected traits for `SmolStr`
## Testing
- CI passed locally.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
This commit adds support for *masks* to the animation graph. A mask is a
set of animation targets (bones) that neither a node nor its descendants
are allowed to animate. Animation targets can be assigned one or more
*mask group*s, which are specific to a single graph. If a node masks out
any mask group that an animation target belongs to, animation curves for
that target will be ignored during evaluation.
The canonical use case for masks is to support characters holding
objects. Typically, character animations will contain hand animations in
the case that the character's hand is empty. (For example, running
animations may close a character's fingers into a fist.) However, when
the character is holding an object, the animation must be altered so
that the hand grips the object.
Bevy currently has no convenient way to handle this. The only workaround
that I can see is to have entirely separate animation clips for
characters' hands and bodies and keep them in sync, which is burdensome
and doesn't match artists' expectations from other engines, which all
effectively have support for masks. However, with mask group support,
this task is simple. We assign each hand to a mask group and parent all
character animations to a node. When a character grasps an object in
hand, we position the fingers as appropriate and then enable the mask
group for that hand in that node. This allows the character's animations
to run normally, while the object remains correctly attached to the
hand.
Note that even with this PR, we won't have support for running separate
animations for a character's hand and the rest of the character. This is
because we're missing additive blending: there's no way to combine the
two masked animations together properly. I intend that to be a follow-up
PR.
The major engines all have support for masks, though the workflow varies
from engine to engine:
* Unity has support for masks [essentially as implemented here], though
with layers instead of a tree. However, when using the Mecanim
("Humanoid") feature, precise control over bones is lost in favor of
predefined muscle groups.
* Unreal has a feature named [*layered blend per bone*]. This allows for
separate blend weights for different bones, effectively achieving masks.
I believe that the combination of blend nodes and masks make Bevy's
animation graph as expressible as that of Unreal, once we have support
for additive blending, though you may have to use more nodes than you
would in Unreal. Moreover, separating out the concepts of "blend weight"
and "which bones this node applies to" seems like a cleaner design than
what Unreal has.
* Godot's `AnimationTree` has the notion of [*blend filters*], which are
essentially the same as masks as implemented in this PR.
Additionally, this patch fixes a bug with weight evaluation whereby
weights weren't properly propagated down to grandchildren, because the
weight evaluation for a node only checked its parent's weight, not its
evaluated weight. I considered submitting this as a separate PR, but
given that this PR refactors that code entirely to support masks and
weights under a unified "evaluated node" concept, I simply included the
fix here.
A new example, `animation_masks`, has been added. It demonstrates how to
toggle masks on and off for specific portions of a skin.
This is part of #14395, but I'm going to defer closing that issue until
we have additive blending.
[essentially as implemented here]:
https://docs.unity3d.com/560/Documentation/Manual/class-AvatarMask.html
[*layered blend per bone*]:
https://dev.epicgames.com/documentation/en-us/unreal-engine/using-layered-animations-in-unreal-engine
[*blend filters*]:
https://docs.godotengine.org/en/stable/tutorials/animation/animation_tree.html
## Migration Guide
* The serialized format of animation graphs has changed with the
addition of animation masks. To upgrade animation graph RON files, add
`mask` and `mask_groups` fields as appropriate. (They can be safely set
to zero.)
# Objective
`resolve_outlines_system` wasn't updated when multi-window support was
added and it always uses the size of the primary window when resolving
viewport coords, regardless of the layout's camera target.
Fixes#14945
## Solution
It's awkward to get the viewport size of the target for an individual
node without walking the tree or adding extra fields to `Node`, so I
removed `resolve_outlines_system` and instead the outline values are
updated in `ui_layout_system`.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Make the documentation for `SystemParamBuilder` nicer by combining the
tuple implementations into a single line of documentation.
## Solution
Use `#[doc(fake_variadic)]` for `SystemParamBuilder` tuple impls.
![image](https://github.com/user-attachments/assets/b4665861-c405-467f-b30b-82b4b1d99bf7)
(This got missed originally because #14050 and #14703 were open at the
same time.)
Adds a new `Handle<Storage>` asset type that can be used as a render
asset, particularly for use with `AsBindGroup`.
Closes: #13658
# Objective
Allow users to create storage buffers in the main world without having
to access the `RenderDevice`. While this resource is technically
available, it's bad form to use in the main world and requires mixing
rendering details with main world code. Additionally, this makes storage
buffers easier to use with `AsBindGroup`, particularly in the following
scenarios:
- Sharing the same buffers between a compute stage and material shader.
We already have examples of this for storage textures (see game of life
example) and these changes allow a similar pattern to be used with
storage buffers.
- Preventing repeated gpu upload (see the previous easier to use `Vec`
`AsBindGroup` option).
- Allow initializing custom materials using `Default`. Previously, the
lack of a `Default` implement for the raw `wgpu::Buffer` type made
implementing a `AsBindGroup + Default` bound difficult in the presence
of buffers.
## Solution
Adds a new `Handle<Storage>` asset type that is prepared into a
`GpuStorageBuffer` render asset. This asset can either be initialized
with a `Vec<u8>` of properly aligned data or with a size hint. Users can
modify the underlying `wgpu::BufferDescriptor` to provide additional
usage flags.
## Migration Guide
The `AsBindGroup` `storage` attribute has been modified to reference the
new `Handle<Storage>` asset instead. Usages of Vec` should be converted
into assets instead.
---------
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
# Objective
- Avoid cloning the `CosmicBuffer` every time you create a new text
measurement.
## Solution
- Inject a buffer query when calculating layout so existing buffers can
be reused.
## Testing
- I tested the `text`, `text_debug`, and `text_wrap_debug` examples.
- I did not do a performance test.
Fixes#14993 (maybe). Adds a system ordering constraint that was missed
in the refactor in #14833. The theory here is that the single threaded
forces a topology that causes the prepare system to run before
`prepare_windows` in a way that causes issues. For whatever reason, this
appears to be unlikely when multi-threading is enabled.
# Objective
* Fixes https://github.com/bevyengine/bevy/issues/14889
## Solution
Exposes `bevy_animation::{animatable, graph, transition}` to the world.
## Testing
- Did you test these changes? If so, how?
- These changes do not need testing, as they do not modify/add/remove
any functionality.
- ~~Are there any parts that need more testing?~~
- ~~How can other people (reviewers) test your changes? Is there
anything specific they need to know?~~
- ~~If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?~~
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
The `reflect` module in `bevy_state` is gated behind the `bevy_reflect`
feature, but the type exports from that module in the crate prelude are
erroneously gated behind the `bevy_app` feature, causing a compile error
when the `bevy_reflect` feature is disabled, but the `bevy_app` feature
is enabled.
## Solution
Change the feature gate to `bevy_reflect`.
## Testing
- Discovered by depending on `bevy_state` with `default-features =
false, features = ["bevy_app"]`
- Tested by running `cargo check -p bevy_state --no-default-features
--features bevy_app`
# Objective
- Fixes#14974
## Solution
- Replace all* instances of `NonZero*` with `NonZero<*>`
## Testing
- CI passed locally.
---
## Notes
Within the `bevy_reflect` implementations for `std` types,
`impl_reflect_value!()` will continue to use the type aliases instead,
as it inappropriately parses the concrete type parameter as a generic
argument. If the `ZeroablePrimitive` trait was stable, or the macro
could be modified to accept a finite list of types, then we could fully
migrate.
# Objective
`bevy_animation` imports a lot of items - and it uses a very
inconsistent code style to do so.
## Solution
Changes the offending `use` statements to be more consistent across the
crate.
## Testing
- Did you test these changes? If so, how?
- No testing is needed beyond lint checks, and those finished
successfully.
- ~~Are there any parts that need more testing?~~
- ~~How can other people (reviewers) test your changes? Is there
anything specific they need to know?~~
- ~~If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?~~
# Objective
- There's one occurence of `CowArc::Borrow` that wraps '&'static str`
## Solution
- Replaces it with `CowArc::Static`. I don't think this change is
important but I can't unsee it:)
## Testing
- `cargo check` compiles fine
# Objective
- Fixes https://github.com/bevyengine/bevy/issues/14961
## Solution
- Check that the archetypes don't contain any other observed components
before unsetting their flags
## Testing
- I added a regression test: `observer_despawn_archetype_flags`
# Objective
- Fixes https://github.com/bevyengine/bevy/issues/14975
## Solution
- Replace usages of `bevy_utils::CowArc` with `atomicow::CowArc`
- Remove bevy_utils::CowArc
## Testing
- `bevy_asset` test suite continues to pass.
---
## Migration Guide
`bevy_utils::CowArc` has moved to a new crate called
[atomicow](https://crates.io/crates/atomicow).
# Objective
- Add gizmos integration for the new `Curve` things in the math lib
## Solution
- Add the following methods
- `curve_2d(curve, sample_times, color)`
- `curve_3d(curve, sample_times, color)`
- `curve_gradient_2d(curve, sample_times_with_colors)`
- `curve_gradient_3d(curve, sample_times_with_colors)`
## Testing
- I added examples of the 2D and 3D variants of the gradient curve
gizmos to the gizmos examples.
## Showcase
### 2D
![image](https://github.com/user-attachments/assets/01a75706-a7b4-4fc5-98d5-18018185c877)
```rust
let domain = Interval::EVERYWHERE;
let curve = function_curve(domain, |t| Vec2::new(t, (t / 25.0).sin() * 100.0));
let resolution = ((time.elapsed_seconds().sin() + 1.0) * 50.0) as usize;
let times_and_colors = (0..=resolution)
.map(|n| n as f32 / resolution as f32)
.map(|t| (t - 0.5) * 600.0)
.map(|t| (t, TEAL.mix(&HOT_PINK, (t + 300.0) / 600.0)));
gizmos.curve_gradient_2d(curve, times_and_colors);
```
### 3D
![image](https://github.com/user-attachments/assets/3fd23983-1ec9-46cd-baed-5b5e2dc935d0)
```rust
let domain = Interval::EVERYWHERE;
let curve = function_curve(domain, |t| {
(Vec2::from((t * 10.0).sin_cos())).extend(t - 6.0)
});
let resolution = ((time.elapsed_seconds().sin() + 1.0) * 100.0) as usize;
let times_and_colors = (0..=resolution)
.map(|n| n as f32 / resolution as f32)
.map(|t| t * 5.0)
.map(|t| (t, TEAL.mix(&HOT_PINK, t / 5.0)));
gizmos.curve_gradient_3d(curve, times_and_colors);
```
# Objective
With the current implementation of `Plane3d` gizmos, it's really hard to
get a good feeling for big planes. Usually I tend to add more axes as a
user but that doesn't scale well and is pretty wasteful. It's hard to
recognize the plane in the distance here. Especially if there would've
been other rendered objects in the scene
![image](https://github.com/user-attachments/assets/b65b7015-c08c-46d7-aa27-c7c0d49b2021)
## Solution
- Since we got grid gizmos in the mean time, I went ahead and just
reused them here.
## Testing
I added an instance of the new `Plane3D` to the `3d_gizmos.rs` example.
If you want to look at it you need to look around a bit. I didn't
position it in the center since that was too crowded already.
---
## Showcase
![image](https://github.com/user-attachments/assets/e4982afe-7296-416c-9801-7dd85cd975c1)
## Migration Guide
The optional builder methods on
```rust
gizmos.primitive_3d(&Plane3d { }, ...);
```
changed from
- `segment_length`
- `segment_count`
- `axis_count`
to
- `cell_count`
- `spacing`
# Objective
This moves the default `LogPlugin` filter to be a public constant so
that it can be updated and referenced from outside code without changes
across releases:
```
fn main() {
App::new().add_plugins(
DefaultPlugins
.set(bevy::log::LogPlugin {
filter: format!("{},mylogs=error", bevy::log::LogPlugin::DEFAULT_FILTER),
..default()
})).run();
}
```
## Testing
Tested with `cargo run -p ci`
# Objective
Allow `SystemParamBuilder` implementations for custom system parameters
created using `#[derive(SystemParam)]`.
## Solution
Extend the derive macro to accept a `#[system_param(builder)]`
attribute. When present, emit a builder type with a field corresponding
to each field of the param.
## Example
```rust
#[derive(SystemParam)]
#[system_param(builder)]
struct CustomParam<'w, 's> {
query: Query<'w, 's, ()>,
local: Local<'s, usize>,
}
let system = (CustomParamBuilder {
local: LocalBuilder(100),
query: QueryParamBuilder::new(|builder| {
builder.with::<A>();
}),
},)
.build_state(&mut world)
.build_system(|param: CustomParam| *param.local + param.query.iter().count());
```
# Objective
- Fixes#14841
## Solution
- Compute BufferSlice size manually and use it for comparison in
`TrackedRenderPass`
## Testing
- Gizmo example does not crash with #14721 (without system ordering),
and `slice` computes correct size there
---
## Migration Guide
- `TrackedRenderPass::set_vertex_buffer` function has been modified to
update vertex buffers when the same buffer with the same offset is
provided, but its size has changed. Some existing code may rely on the
previous behavior, which did not update the vertex buffer in this
scenario.
---------
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
- Fixes#14860
## Solution
- Added a line of documentation to `FromWorld`'s trait definition
mention the `Default` blanket implementation.
- Added custom documentation to the `from_world` method for the
`Default` blanket implementation. This ensures when inspecting the
`from_world` function within an IDE, the tooltip will explicitly state
the `default()` method will be used for any `Default` types.
## Testing
- CI passes.
# Objective
Since https://github.com/bevyengine/bevy/pull/14731 is merged, it
unblocked a few utility methods for 2D arcs. In 2D the pendant to
`long_arc_3d_between` and `short_arc_3d_between` are missing. Since
`arc_2d` can be a bit hard to use, this PR is trying to plug some holes
in the `arcs` API.
## Solution
Implement
- `long_arc_2d_between(center, from, tp, color)`
- `short_arc_2d_between(center, from, tp, color)`
## Testing
- There are new doc tests
- The `2d_gizmos` example has been extended a bit to include a few more
arcs which can easily be checked with respect to the grid
---
## Showcase
![image](https://github.com/user-attachments/assets/b90ad8b1-86c2-4304-a481-4f9a5246c457)
Code related to the screenshot (from outer = first line to inner = last
line)
```rust
my_gizmos.arc_2d(Isometry2d::IDENTITY, FRAC_PI_2, 80.0, ORANGE_RED);
my_gizmos.short_arc_2d_between(Vec2::ZERO, Vec2::X * 40.0, Vec2::Y * 40.0, ORANGE_RED);
my_gizmos.long_arc_2d_between(Vec2::ZERO, Vec2::X * 20.0, Vec2::Y * 20.0, ORANGE_RED);
```
# Objective
When building a system from `SystemParamBuilder`s and defining the
system as a closure, the compiler should be able to infer the parameter
types from the builder types.
## Solution
Create methods for each arity that take an argument that implements both
`SystemParamFunction` as well as `FnMut(SystemParamItem<P>,...)`. The
explicit `FnMut` constraint will allow the compiler to infer the
necessary higher-ranked lifetimes along with the parameter types.
I wanted to show that this was possible, but I can't tell whether it's
worth the complexity. It requires a separate method for each arity,
which pollutes the docs a bit:
![SystemState build_system
docs](https://github.com/user-attachments/assets/5069b749-7ec7-47e3-a5e4-1a4c78129f78)
## Example
```rust
let system = (LocalBuilder(0u64), ParamBuilder::local::<u64>())
.build_state(&mut world)
.build_system(|a, b| *a + *b + 1);
```
# Objective
- Solves the last bullet in and closes#14319
- Make better use of the `Isometry` types
- Prevent issues like #14655
- Probably simplify and clean up a lot of code through the use of Gizmos
as well (i.e. the 3D gizmos for cylinders circles & lines don't connect
well, probably due to wrong rotations)
## Solution
- go through the `bevy_gizmos` crate and give all methods a slight
workover
## Testing
- For all the changed examples I run `git switch main && cargo rr
--example <X> && git switch <BRANCH> && cargo rr --example <X>` and
compare the visual results
- Check if all doc tests are still compiling
- Check the docs in general and update them !!!
---
## Migration Guide
The gizmos methods function signature changes as follows:
- 2D
- if it took `position` & `rotation_angle` before ->
`Isometry2d::new(position, Rot2::radians(rotation_angle))`
- if it just took `position` before ->
`Isometry2d::from_translation(position)`
- 3D
- if it took `position` & `rotation` before ->
`Isometry3d::new(position, rotation)`
- if it just took `position` before ->
`Isometry3d::from_translation(position)`
# Objective
sending events tends to be low-frequency so ergonomics can be
prioritized over efficiency.
add `Commands::send_event` to send any type of event without needing a
writer in hand.
i don't know how we feel about these kind of ergonomic things, i add
this to all my projects and find it useful. adding `mut
this_particular_event_writer: EventWriter<ThisParticularEvent>` every
time i want to send something is unnecessarily cumbersome.
it also simplifies the "send and receive in the same system" pattern
significantly.
basic example before:
```rs
fn my_func(
q: Query<(Entity, &State)>,
mut damage_event_writer: EventWriter<DamageEvent>,
mut heal_event_writer: EventWriter<HealEvent>,
) {
for (entity, state) in q.iter() {
if let Some(damage) = state.get_damage() {
damage_event_writer.send(DamageEvent { entity, damage });
}
if let Some(heal) = state.get_heal() {
heal_event_writer.send(HealEvent { entity, heal });
}
}
}
```
basic example after:
```rs
import bevy::ecs::event::SendEventEx;
fn my_func(
mut commands: Commands,
q: Query<(Entity, &State)>,
) {
for (entity, state) in q.iter() {
if let Some(damage) = state.get_damage() {
commands.send_event(DamageEvent { entity, damage });
}
if let Some(heal) = state.get_heal() {
commands.send_event(HealEvent { entity, heal });
}
}
}
```
send/receive in the same system before:
```rs
fn send_and_receive_param_set(
mut param_set: ParamSet<(EventReader<DebugEvent>, EventWriter<DebugEvent>)>,
) {
// We must collect the events to resend, because we can't access the writer while we're iterating over the reader.
let mut events_to_resend = Vec::new();
// This is p0, as the first parameter in the `ParamSet` is the reader.
for event in param_set.p0().read() {
if event.resend_from_param_set {
events_to_resend.push(event.clone());
}
}
// This is p1, as the second parameter in the `ParamSet` is the writer.
for mut event in events_to_resend {
event.times_sent += 1;
param_set.p1().send(event);
}
}
```
after:
```rs
use bevy::ecs::event::SendEventEx;
fn send_via_commands_and_receive(
mut reader: EventReader<DebugEvent>,
mut commands: Commands,
) {
for event in reader.read() {
if event.resend_via_commands {
commands.send_event(DebugEvent {
times_sent: event.times_sent + 1,
..event.clone()
});
}
}
}
```
---------
Co-authored-by: Jan Hohenheim <jan@hohenheim.ch>
## Introduction
This is the first step in my [Next Generation Scene / UI
Proposal](https://github.com/bevyengine/bevy/discussions/14437).
Fixes https://github.com/bevyengine/bevy/issues/7272#14800.
Bevy's current Bundles as the "unit of construction" hamstring the UI
user experience and have been a pain point in the Bevy ecosystem
generally when composing scenes:
* They are an additional _object defining_ concept, which must be
learned separately from components. Notably, Bundles _are not present at
runtime_, which is confusing and limiting.
* They can completely erase the _defining component_ during Bundle init.
For example, `ButtonBundle { style: Style::default(), ..default() }`
_makes no mention_ of the `Button` component symbol, which is what makes
the Entity a "button"!
* They are not capable of representing "dependency inheritance" without
completely non-viable / ergonomically crushing nested bundles. This
limitation is especially painful in UI scenarios, but it applies to
everything across the board.
* They introduce a bunch of additional nesting when defining scenes,
making them ugly to look at
* They introduce component name "stutter": `SomeBundle { component_name:
ComponentName::new() }`
* They require copious sprinklings of `..default()` when spawning them
in Rust code, due to the additional layer of nesting
**Required Components** solve this by allowing you to define which
components a given component needs, and how to construct those
components when they aren't explicitly provided.
This is what a `ButtonBundle` looks like with Bundles (the current
approach):
```rust
#[derive(Component, Default)]
struct Button;
#[derive(Bundle, Default)]
struct ButtonBundle {
pub button: Button,
pub node: Node,
pub style: Style,
pub interaction: Interaction,
pub focus_policy: FocusPolicy,
pub border_color: BorderColor,
pub border_radius: BorderRadius,
pub image: UiImage,
pub transform: Transform,
pub global_transform: GlobalTransform,
pub visibility: Visibility,
pub inherited_visibility: InheritedVisibility,
pub view_visibility: ViewVisibility,
pub z_index: ZIndex,
}
commands.spawn(ButtonBundle {
style: Style {
width: Val::Px(100.0),
height: Val::Px(50.0),
..default()
},
focus_policy: FocusPolicy::Block,
..default()
})
```
And this is what it looks like with Required Components:
```rust
#[derive(Component)]
#[require(Node, UiImage)]
struct Button;
commands.spawn((
Button,
Style {
width: Val::Px(100.0),
height: Val::Px(50.0),
..default()
},
FocusPolicy::Block,
));
```
With Required Components, we mention only the most relevant components.
Every component required by `Node` (ex: `Style`, `FocusPolicy`, etc) is
automatically brought in!
### Efficiency
1. At insertion/spawn time, Required Components (including recursive
required components) are initialized and inserted _as if they were
manually inserted alongside the given components_. This means that this
is maximally efficient: there are no archetype or table moves.
2. Required components are only initialized and inserted if they were
not manually provided by the developer. For the code example in the
previous section, because `Style` and `FocusPolicy` are inserted
manually, they _will not_ be initialized and inserted as part of the
required components system. Efficient!
3. The "missing required components _and_ constructors needed for an
insertion" are cached in the "archetype graph edge", meaning they aren't
computed per-insertion. When a component is inserted, the "missing
required components" list is iterated (and that graph edge (AddBundle)
is actually already looked up for us during insertion, because we need
that for "normal" insert logic too).
### IDE Integration
The `#[require(SomeComponent)]` macro has been written in such a way
that Rust Analyzer can provide type-inspection-on-hover and `F12` /
go-to-definition for required components.
### Custom Constructors
The `require` syntax expects a `Default` constructor by default, but it
can be overridden with a custom constructor:
```rust
#[derive(Component)]
#[require(
Node,
Style(button_style),
UiImage
)]
struct Button;
fn button_style() -> Style {
Style {
width: Val::Px(100.0),
..default()
}
}
```
### Multiple Inheritance
You may have noticed by now that this behaves a bit like "multiple
inheritance". One of the problems that this presents is that it is
possible to have duplicate requires for a given type at different levels
of the inheritance tree:
```rust
#[derive(Component)
struct X(usize);
#[derive(Component)]
#[require(X(x1))
struct Y;
fn x1() -> X {
X(1)
}
#[derive(Component)]
#[require(
Y,
X(x2),
)]
struct Z;
fn x2() -> X {
X(2)
}
// What version of X is inserted for Z?
commands.spawn(Z);
```
This is allowed (and encouraged), although this doesn't appear to occur
much in practice. First: only one version of `X` is initialized and
inserted for `Z`. In the case above, I think we can all probably agree
that it makes the most sense to use the `x2` constructor for `X`,
because `Y`'s `x1` constructor exists "beneath" `Z` in the inheritance
hierarchy; `Z`'s constructor is "more specific".
The algorithm is simple and predictable:
1. Use all of the constructors (including default constructors) directly
defined in the spawned component's require list
2. In the order the requires are defined in `#[require()]`, recursively
visit the require list of each of the components in the list (this is a
depth Depth First Search). When a constructor is found, it will only be
used if one has not already been found.
From a user perspective, just think about this as the following:
1. Specifying a required component constructor for `Foo` directly on a
spawned component `Bar` will result in that constructor being used (and
overriding existing constructors lower in the inheritance tree). This is
the classic "inheritance override" behavior people expect.
2. For cases where "multiple inheritance" results in constructor
clashes, Components should be listed in "importance order". List a
component earlier in the requirement list to initialize its inheritance
tree earlier.
Required Components _does_ generally result in a model where component
values are decoupled from each other at construction time. Notably, some
existing Bundle patterns use bundle constructors to initialize multiple
components with shared state. I think (in general) moving away from this
is necessary:
1. It allows Required Components (and the Scene system more generally)
to operate according to simple rules
2. The "do arbitrary init value sharing in Bundle constructors" approach
_already_ causes data consistency problems, and those problems would be
exacerbated in the context of a Scene/UI system. For cases where shared
state is truly necessary, I think we are better served by observers /
hooks.
3. If a situation _truly_ needs shared state constructors (which should
be rare / generally discouraged), Bundles are still there if they are
needed.
## Next Steps
* **Require Construct-ed Components**: I have already implemented this
(as defined in the [Next Generation Scene / UI
Proposal](https://github.com/bevyengine/bevy/discussions/14437). However
I've removed `Construct` support from this PR, as that has not landed
yet. Adding this back in requires relatively minimal changes to the
current impl, and can be done as part of a future Construct pr.
* **Port Built-in Bundles to Required Components**: This isn't something
we should do right away. It will require rethinking our public
interfaces, which IMO should be done holistically after the rest of Next
Generation Scene / UI lands. I think we should merge this PR first and
let people experiment _inside their own code with their own Components_
while we wait for the rest of the new scene system to land.
* **_Consider_ Automatic Required Component Removal**: We should
evaluate _if_ automatic Required Component removal should be done. Ex:
if all components that explicitly require a component are removed,
automatically remove that component. This issue has been explicitly
deferred in this PR, as I consider the insertion behavior to be
desirable on its own (and viable on its own). I am also doubtful that we
can find a design that has behavior we actually want. Aka: can we
_really_ distinguish between a component that is "only there because it
was automatically inserted" and "a component that was necessary / should
be kept". See my [discussion response
here](https://github.com/bevyengine/bevy/discussions/14437#discussioncomment-10268668)
for more details.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
Co-authored-by: Pascal Hertleif <killercup@gmail.com>
# Objective
The Android example on Adreno 642L currently crashes on startup.
Previous PRs #14176 and #13323 have adressed this specific crash
occurring on some Adreno GPUs, that fix works as it should but isn't
applied when to the GPU name contains a suffix like in the case of
`642L`.
## Solution
- Amending the logic to filter out any parts of the GPU name not
containing digits thus enabling the fix on `642L`.
## Testing
- Ran the Android example on a Nothing Phone 1. Before this change it
crashed, after it works as intended.
---------
Co-authored-by: Sam Pettersson <sam.pettersson@geoguessr.com>
# Objective
- `Curve<T>` was meant to be object safe, but one of the latest commits
made it not object safe.
- When trying to use `Curve<T>` as `&dyn Curve<T>` this compile error is
raised:
```
error[E0038]: the trait `curve::Curve` cannot be made into an object
--> crates/bevy_math/src/curve/mod.rs:1025:20
note: for a trait to be "object safe" it needs to allow building a vtable to allow the call to be resolvable dynamically; for more information visit <https://doc.rust-lang.org/reference/items/traits.html#object-safety>
--> crates/bevy_math/src/curve/mod.rs:60:8
|
23 | pub trait Curve<T> {
| ----- this trait cannot be made into an object...
...
60 | fn sample_iter(&self, iter: impl IntoIterator<Item = f32>) -> impl Iterator<Item = Option<T>> {
| ^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ...because method `sample_iter` references an `impl Trait` type in its return type
| |
| ...because method `sample_iter` has generic type parameters
...
```
## Solution
- Making `Curve<T>` object safe again by adding `Self: Sized` to newly
added methods.
## Testing
- Added new test that ensures the `Curve<T>` trait can be made into an
objet.
# Objective
- Fixes#14348
- Fixes#14528
- Less complex (but also likely less performant) alternative to #14611
## Solution
- Add a `is_dense` field flag to `QueryIter` indicating whether it is
dense or not, that is whether it can perform dense iteration or not;
- Check this flag any time iteration over a query is performed.
---
It would be nice if someone could try benching this change to see if it
actually matters.
~Note that this not 100% ready for mergin, since there are a bunch of
safety comments on the use of the various `IS_DENSE` for checks that
still need to be updated.~ This is ready modulo benchmarks
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
when handles for loading assets are dropped, we currently wait until
load is completed before dropping the handle. drop asset-load tasks
immediately
## Solution
- track tasks for loading assets and drop them immediately when all
handles are dropped.
~~- use `join_all` in `gltf_loader.rs` to allow it to yield and be
dropped.~~
doesn't cover all the load apis - for those it doesn't cover the task
will still be detached and will still complete before the result is
discarded.
separated out from #13170
# Objective
Allow dynamic systems to take lists of system parameters whose length is
not known at compile time.
This can be used for building a system that runs a script defined at
runtime, where the script needs a variable number of query parameters.
It can also be used for building a system that collects a list of
plugins at runtime, and provides a parameter to each one.
This is most useful today with `Vec<Query<FilteredEntityMut>>`. It will
be even more useful with `Vec<DynSystemParam>` if #14817 is merged,
since the parameters in the list can then be of different types.
## Solution
Implement `SystemParam` and `SystemParamBuilder` for `Vec` and
`ParamSet<Vec>`.
## Example
```rust
let system = (vec![
QueryParamBuilder::new_box(|builder| {
builder.with::<B>().without::<C>();
}),
QueryParamBuilder::new_box(|builder| {
builder.with::<C>().without::<B>();
}),
],)
.build_state(&mut world)
.build_system(|params: Vec<Query<&mut A>>| {
let mut count: usize = 0;
params
.into_iter()
.for_each(|mut query| count += query.iter_mut().count());
count
});
```
# Objective
- Fixes#14902
- > #14686 Introduced a name clash when using use bevy::prelude::*;
## Solution
- renamed `bevy::picking::events::Drop`
`bevy::picking::events::DragDrop`
## Testing
- Not being used in tests or examples, so I just compiled.
---
</details>
## Migration Guide
- Rename `Drop` to `DragDrop`
- `bevy::picking::events::Drop` is now `bevy::picking::events::DragDrop`
# Objective
This is a value that is and will be used as a domain of curves pretty
often. By adding it as a dedicated constant we can get rid of some
`unwraps` and function calls.
## Solution
added `Interval::UNIT`
## Testing
I replaced all occurrences of `interval(0.0, 1.0).unwrap()` with the new
`Interval::UNIT` constant in tests and doc tests.
# Objective
- I needed to run a system whenever a specific condition became true
after being previously false.
- Other users might also need to run a system when a condition changes,
regardless of if it became true or false.
## Solution
- This adds two systems to common_conditions:
- `condition_changed` that changes whenever the inner condition changes
- `condition_became_true` that returns true whenever the inner condition
becomes true after previously being false
## Testing
- I added a doctest for each function
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Jan Hohenheim <jan@hohenheim.ch>
# Objective
- Allow not only inserting `Data` into `EmbeddedAssetRegistry` and `Dir`
in turn but now also removing it again.
- This way when used to embed asset data from *somewhere* but not load
it using the conventional means via `AssetServer` (which I observed
takes ownership of the `Data`) the `Data` does not need to stay in
memory of the `EmbeddedAssetRegistry` throughout the lifetime of the
application.
## Solution
- added the `remove_asset` functions in `EmbeddedAssetRegistry` and
`Dir`
## Testing
- added a module unittest
- does this require changes if build with feature `embedded_watcher`?
# Objective
Fixes#14883
## Solution
Pretty simple update to `EntityCommands` methods to consume `self` and
return it rather than taking `&mut self`. The things probably worth
noting:
* I added `#[allow(clippy::should_implement_trait)]` to the `add` method
because it causes a linting conflict with `std::ops::Add`.
* `despawn` and `log_components` now return `Self`. I'm not sure if
that's exactly the desired behavior so I'm happy to adjust if that seems
wrong.
## Testing
Tested with `cargo run -p ci`. I think that should be sufficient to call
things good.
## Migration Guide
The most likely migration needed is changing code from this:
```
let mut entity = commands.get_or_spawn(entity);
if depth_prepass {
entity.insert(DepthPrepass);
}
if normal_prepass {
entity.insert(NormalPrepass);
}
if motion_vector_prepass {
entity.insert(MotionVectorPrepass);
}
if deferred_prepass {
entity.insert(DeferredPrepass);
}
```
to this:
```
let mut entity = commands.get_or_spawn(entity);
if depth_prepass {
entity = entity.insert(DepthPrepass);
}
if normal_prepass {
entity = entity.insert(NormalPrepass);
}
if motion_vector_prepass {
entity = entity.insert(MotionVectorPrepass);
}
if deferred_prepass {
entity.insert(DeferredPrepass);
}
```
as can be seen in several of the example code updates here. There will
probably also be instances where mutable `EntityCommands` vars no longer
need to be mutable.
# Objective
Based on the discussion in #14864, I wanted to experiment with the core
`GenericTypeCell` type, whose `get_or_insert` method accounted for 2% of
the final binary size of the `3d_scene` example. The reason for this
large percentage is likely because the type is fundamental to the rest
of Bevy while having 3 generic parameters (the type stored `T`, the type
to retrieve `G`, and the function used to insert a new value `F`).
- Acts on #14864
## Solution
- Split `get_or_insert` into smaller functions with minimised
parameterisation. These new functions are private as to preserve the
public facing API, but could be exposed if desired.
## Testing
- Ran CI locally.
- Used `cargo bloat --release --example 3d_scene -n 100000
--message-format json > out.json` and @cart's [bloat
analyzer](https://gist.github.com/cart/722756ba3da0e983d207633e0a48a8ab)
to measure a 428KiB reduction in binary size when compiling on Windows
10.
- ~I have _not_ benchmarked to determine if this improves/hurts
performance.~ See
[below](https://github.com/bevyengine/bevy/pull/14865#issuecomment-2306083606).
## Notes
In my opinion this seems like a good test-case for the concept of
debloating generics within the Bevy codebase. I believe the performance
impact here is negligible in either direction (at runtime and compile
time), but the binary reduction is measurable and quite significant for
a relatively minor change in code.
---------
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
Citing @mweatherley
> As mentioned before, a multi-sampling function in the API which takes
an iterator is probably something we want (e.g. `sample_iter(iter: impl
IntoIterator<Item = f32>) -> impl IntoIterator<Item = T> { //... }`, but
there are some design choices to be made on the details (e.g. does this
filter out points that aren't in the domain? does it do sorting? etc.)
## Solution
I think the most flexible solution for end users is to expose all the
`sample_...` functions with an `iter` equivalent, so we'll have
- `sample_iter`
- `sample_iter_unchecked`
- `sample_iter_clamped`
Answering some questions from the original idea:
> does this filter out points that aren't in the domain?
With the methods the user has the choice to just sample or if they want
to filter out invalid types us `sample_iter` and then apply `filter_map`
to the iterator returned themselves.
> does it do sorting?
I think it's the same thing. If the user wants it, they need to do it
themselves by either collecting and sorting a `Vec` or using
`itertools`. I think there is a legit use case for "please sample me
this collection of points that are unordered" and we would destroy it if
we take away to much agency from users by sorting for them
## Testing
- Added a test which covers all three methods
# Objective
Add `bevy_picking` sprite backend as part of the `bevy_mod_picking`
upstreamening (#12365).
## Solution
More or less a copy/paste from `bevy_mod_picking`, with the changes
[here](https://github.com/aevyrie/bevy_mod_picking/pull/354). I'm
putting that link here since those changes haven't yet made it through
review, so should probably be reviewed on their own.
## Testing
I couldn't find any sprite-backend-specific tests in `bevy_mod_picking`
and unfortunately I'm not familiar enough with Bevy's testing patterns
to write tests for code that relies on windowing and input. I'm willing
to break the pointer hit system into testable blocks and add some more
modular tests if that's deemed important enough to block, otherwise I
can open an issue for adding tests as follow-up.
## Follow-up work
- More docs/tests
- Ignore pick events on transparent sprite pixels with potential opt-out
---------
Co-authored-by: Aevyrie <aevyrie@gmail.com>
# Objective
`arc_2d` wasn't actually doing what the docs were saying. The arc wasn't
offset by what was previously `direction_angle` but by `direction_angle
- arc_angle / 2.0`. This meant that the arcs center was laying on the
`Vec2::Y` axis and then it was offset. This was probably done to fit the
behavior of the `Arc2D` primitive. I would argue that this isn't
desirable for the plain `arc_2d` gizmo method since
- a) the docs get longer to explain the weird centering
- b) the mental model the user has to know gets bigger with more
implicit assumptions
given the code
```rust
my_gizmos.arc_2d(Vec2::ZERO, 0.0, FRAC_PI_2, 75.0, ORANGE_RED);
```
we get
![image](https://github.com/user-attachments/assets/84894c6d-42e4-451b-b3e2-811266486ede)
where after the fix with
```rust
my_gizmos.arc_2d(Isometry2d::IDENTITY, FRAC_PI_2, 75.0, ORANGE_RED);
```
we get
![image](https://github.com/user-attachments/assets/16b0aba0-f7b5-4600-ac49-a22be0315c40)
To get the same result with the previous implementation you would have
to randomly add `arc_angle / 2.0` to the `direction_angle`.
```rust
my_gizmos.arc_2d(Vec2::ZERO, FRAC_PI_4, FRAC_PI_2, 75.0, ORANGE_RED);
```
This makes constructing similar helping functions as they already exist
in 3D like
- `long_arc_2d_between`
- `short_arc_2d_between`
much harder.
## Solution
- Make the arc really start at `Vec2::Y * radius` in counter-clockwise
direction + offset by an angle as the docs state it
- Use `Isometry2d` instead of `position : Vec2` and `direction_angle :
f32` to reduce the chance of messing up rotation/translation
- Adjust the docs for the changes above
- Adjust the gizmo rendering of some primitives
## Testing
- check `2d_gizmos.rs` and `render_primitives.rs` examples
## Migration Guide
- users have to adjust their usages of `arc_2d`:
- before:
```rust
arc_2d(
pos,
angle,
arc_angle,
radius,
color
)
```
- after:
```rust
arc_2d(
// this `+ arc_angle * 0.5` quirk is only if you want to preserve the
previous behavior
// with the new API.
// feel free to try to fix this though since your current calls to this
function most likely
// involve some computations to counter-act that quirk in the first
place
Isometry2d::new(pos, Rot2::radians(angle + arc_angle * 0.5),
arc_angle,
radius,
color
)
```
# Objective
- Faster meshlet rasterization path for small triangles
- Avoid having to allocate and write out a triangle buffer
- Refactor gpu_scene.rs
## Solution
- Replace the 32bit visbuffer texture with a 64bit visbuffer buffer,
where the left 32 bits encode depth, and the right 32 bits encode the
existing cluster + triangle IDs. Can't use 64bit textures, wgpu/naga
doesn't support atomic ops on textures yet.
- Instead of writing out a buffer of packed cluster + triangle IDs (per
triangle) to raster, the culling pass now writes out a buffer of just
cluster IDs (per cluster, so less memory allocated, cheaper to write
out).
- Clusters for software raster are allocated from the left side
- Clusters for hardware raster are allocated in the same buffer, from
the right side
- The buffer size is fixed at MeshletPlugin build time, and should be
set to a reasonable value for your scene (no warning on overflow, and no
good way to determine what value you need outside of renderdoc - I plan
to fix this in a future PR adding a meshlet stats overlay)
- Currently I don't have a heuristic for software vs hardware raster
selection for each cluster. The existing code is just a placeholder. I
need to profile on a release scene and come up with a heuristic,
probably in a future PR.
- The culling shader is getting pretty hard to follow at this point, but
I don't want to spend time improving it as the entire shader/pass is
getting rewritten/replaced in the near future.
- Software raster is a compute workgroup per-cluster. Each workgroup
loads and transforms the <=64 vertices of the cluster, and then
rasterizes the <=64 triangles of the cluster.
- Two variants are implemented: Scanline for clusters with any larger
triangles (still smaller than hardware is good at), and brute-force for
very very tiny triangles
- Once the shader determines that a pixel should be filled in, it does
an atomicMax() on the visbuffer to store the results, copying how Nanite
works
- On devices with a low max workgroups per dispatch limit, an extra
compute pass is inserted before software raster to convert from a 1d to
2d dispatch (I don't think 3d would ever be necessary).
- I haven't implemented the top-left rule or subpixel precision yet, I'm
leaving that for a future PR since I get usable results without it for
now
- Resources used:
https://kristoffer-dyrkorn.github.io/triangle-rasterizer and chapters
6-8 of
https://fgiesen.wordpress.com/2013/02/17/optimizing-sw-occlusion-culling-index
- Hardware raster now spawns 64*3 vertex invocations per meshlet,
instead of the actual meshlet vertex count. Extra invocations just
early-exit.
- While this is slower than the existing system, hardware draws should
be rare now that software raster is usable, and it saves a ton of memory
using the unified cluster ID buffer. This would be fixed if wgpu had
support for mesh shaders.
- Instead of writing to a color+depth attachment, the hardware raster
pass also does the same atomic visbuffer writes that software raster
uses.
- We have to bind a dummy render target anyways, as wgpu doesn't
currently support render passes without any attachments
- Material IDs are no longer written out during the main rasterization
passes.
- If we had async compute queues, we could overlap the software and
hardware raster passes.
- New material and depth resolve passes run at the end of the visbuffer
node, and write out view depth and material ID depth textures
### Misc changes
- Fixed cluster culling importing, but never actually using the previous
view uniforms when doing occlusion culling
- Fixed incorrectly adding the LOD error twice when building the meshlet
mesh
- Splitup gpu_scene module into meshlet_mesh_manager, instance_manager,
and resource_manager
- resource_manager is still too complex and inefficient (extract and
prepare are way too expensive). I plan on improving this in a future PR,
but for now ResourceManager is mostly a 1:1 port of the leftover
MeshletGpuScene bits.
- Material draw passes have been renamed to the more accurate material
shade pass, as well as some other misc renaming (in the future, these
will be compute shaders even, and not actual draw calls)
---
## Migration Guide
- TBD (ask me at the end of the release for meshlet changes as a whole)
---------
Co-authored-by: vero <email@atlasdostal.com>
# Objective
When using instancing, 2 `VertexBufferLayout`s are needed, one for
per-vertex and one for per-instance data. Shader locations of all
attributes must not overlap, so one of the layouts needs to start its
locations at an offset. However,
`VertexBufferLayout::from_vertex_formats` will always start locations at
0, requiring manual adjustment, which is currently pretty verbose.
## Solution
Add `VertexBufferLayout::offset_locations`, which adds an offset to all
attribute locations.
Code using this method looks like this:
```rust
VertexState {
shader: BACKBUFFER_SHADER_HANDLE.typed(),
shader_defs: Vec::new(),
entry_point: "vertex".into(),
buffers: vec![
VertexBufferLayout::from_vertex_formats(
VertexStepMode::Vertex,
[VertexFormat::Float32x2],
),
VertexBufferLayout::from_vertex_formats(
VertexStepMode::Instance,
[VertexFormat::Float32x2, VertexFormat::Float32x3],
)
.offset_locations(1),
],
}
```
Alternative solutions include:
- Pass the starting location to `from_vertex_formats` – this is a bit
simpler than my solution here, but most calls don't need an offset, so
they'd always pass 0 there.
- Do nothing and make the user hand-write this.
---
## Changelog
- Add `VertexBufferLayout::offset_locations` to simplify buffer layout
construction when using instancing.
---------
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Adding more features to `AsBindGroup` proc macro means making the trait
arguments uglier. Downstream implementors of the trait without the proc
macro might want to do different things than our default arguments.
## Solution
Make `AsBindGroup` take an associated `Param` type.
## Migration Guide
`AsBindGroup` now allows the user to specify a `SystemParam` to be used
for creating bind groups.
# Objective
Closes#7622.
I was working on adding support for reflecting generic functions and
found that I wanted to use an argument's `TypeId` for hashing and
comparison, but its `TypePath` for debugging and error messaging.
While I could just keep them separate, place them in a tuple or a local
struct or something, I think I see an opportunity to make a dedicate
type for this.
Additionally, we can use this type to clean up some duplication amongst
the type info structs in a manner similar to #7622.
## Solution
Added the `Type` type. This should be seen as the most basic
representation of a type apart from `TypeId`. It stores both the
`TypeId` of the type as well as its `TypePathTable`.
The `Hash` and `PartialEq` implementations rely on the `TypeId`, while
the `Debug` implementation relies on the `TypePath`.
This makes it especially useful as a key in a `HashMap` since we get the
speed of the `TypeId` hashing/comparisons with the readability of
`TypePath`.
With this type, we're able to reduce the duplication across the type
info structs by removing individual fields for `TypeId` and
`TypePathTable`, replacing them with a single `Type` field. Similarly,
we can remove many duplicate methods and replace it with a macro that
delegates to the stored `Type`.
### Caveats
It should be noted that this type is currently 3x larger than `TypeId`.
On my machine, it's 48 bytes compared to `TypeId`'s 16. While this
doesn't matter for `TypeInfo` since it would contain that data
regardless, it is something to keep in mind when using elsewhere.
## Testing
All tests should pass as normal:
```
cargo test --package bevy_reflect
```
---
## Showcase
`bevy_reflect` now exports a `Type` struct. This type contains both the
`TypeId` and the `TypePathTable` of the given type, allowing it to be
used like `TypeId` but have the debuggability of `TypePath`.
```rust
// We can create this for any type implementing `TypePath`:
let ty = Type::of::<String>();
// It has `Hash` and `Eq` impls powered by `TypeId`, making it useful for maps:
let mut map = HashMap::<Type, i32>::new();
map.insert(ty, 25);
// And it has a human-readable `Debug` representation:
let debug = format!("{:?}", map);
assert_eq!(debug, "{alloc::string::String: 25}");
```
## Migration Guide
Certain type info structs now only return their item types as `Type`
instead of exposing direct methods on them.
The following methods have been removed:
- `ArrayInfo::item_type_path_table`
- `ArrayInfo::item_type_id`
- `ArrayInfo::item_is`
- `ListInfo::item_type_path_table`
- `ListInfo::item_type_id`
- `ListInfo::item_is`
- `SetInfo::value_type_path_table`
- `SetInfo::value_type_id`
- `SetInfo::value_is`
- `MapInfo::key_type_path_table`
- `MapInfo::key_type_id`
- `MapInfo::key_is`
- `MapInfo::value_type_path_table`
- `MapInfo::value_type_id`
- `MapInfo::value_is`
Instead, access the `Type` directly using one of the new methods:
- `ArrayInfo::item_ty`
- `ListInfo::item_ty`
- `SetInfo::value_ty`
- `MapInfo::key_ty`
- `MapInfo::value_ty`
For example:
```rust
// BEFORE
let type_id = array_info.item_type_id();
// AFTER
let type_id = array_info.item_ty().id();
```
# Objective
I tried writing something like this in my project
```rust
.observe(|e: Trigger<OnAdd, Skeleton>| {
panic!("Skeletoned! {e:?}");
});
```
and it didn't compile.
Having `Debug` trait defined on `Trigger` event will ease debugging the
observers a little bit.
## Solution
Add a bespoke `Debug` implementation when both the bundle and the event
have `Debug` implemented for them.
## Testing
I've added `println!("{trigger:#?}");` to the [observers
example](938d810766/examples/ecs/observers.rs (L124))
and it compiled!
Caveats with this PR are:
- removing this implementation if for any reason we will need it, will
be a breaking change
- the implementation is manually generated, which adds potential toil
when changing the `Trigger` structure
## Showcase
Log output:
```rust
on_add_mine: Trigger {
event: OnAdd,
propagate: false,
trigger: ObserverTrigger {
observer: 2v1#4294967298,
event_type: ComponentId(
0,
),
entity: 454v1#4294967750,
},
_marker: PhantomData<observers::Mine>,
}
```
Thank you for maintaining this engine! 🧡
# Objective
- Gizmo rendering on WebGPU has been fixed by #14653, but gizmo joints
still cause error
(https://github.com/bevyengine/bevy/issues/14696#issuecomment-2283689669)
when enabled.
## Solution
- Applies the same fix as #14653 to Gizmo joints.
I'm noob and just copied their solution, please correct me if I did
something wrong.
## Testing
- Tested 2d-gizmos and 3d-gizmos examples in WebGPU on Chrome. No
rendering errors, and the gizmo joints are apparently rendered ok.
# Objective
Support building systems with parameters whose types can be determined
at runtime.
## Solution
Create a `DynSystemParam` type that can be built using a
`SystemParamBuilder` of any type and then downcast to the appropriate
type dynamically.
## Example
```rust
let system = (
DynParamBuilder::new(LocalBuilder(3_usize)),
DynParamBuilder:🆕:<Query<()>>(QueryParamBuilder::new(|builder| {
builder.with::<A>();
})),
DynParamBuilder:🆕:<&Entities>(ParamBuilder),
)
.build_state(&mut world)
.build_system(
|mut p0: DynSystemParam, mut p1: DynSystemParam, mut p2: DynSystemParam| {
let local = p0.downcast_mut::<Local<usize>>().unwrap();
let query_count = p1.downcast_mut::<Query<()>>().unwrap();
let entities = p2.downcast_mut::<&Entities>().unwrap();
},
);
```
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Periwink <charlesbour@gmail.com>
# Objective
- Remove the `wgpu_trace` feature while still making it easy/possible to
record wgpu traces for debugging.
- Close#14725.
- Get a taste of the bevy codebase. :P
## Solution
This PR performs the above objective by removing the `wgpu_trace`
feature from all `Cargo.toml` files.
However, wgpu traces are still useful for debugging - but to record
them, you need to pass in a directory path to store the traces in. To
avoid forcing users into manually creating the renderer,
`bevy_render::settings::WgpuSettings` now has a `trace_path` field, so
that all of Bevy's automatic initialization can happen while still
allowing for tracing.
## Testing
- Did you test these changes? If so, how?
- I have tested these changes, but only via running `cargo run -p ci`. I
am hoping the Github Actions workflows will catch anything I missed.
- Are there any parts that need more testing?
- I do not believe so.
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- If you want to test these changes, I have updated the debugging guide
(`docs/debugging.md`) section on WGPU Tracing.
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
- I ran the above command on a Windows 10 64-bit (x64) machine, using
the `stable-x86_64-pc-windows-msvc` toolchain. I do not have anything
set up for other platforms or targets (though I can't imagine this needs
testing on other platforms).
---
## Migration Guide
1. The `bevy/wgpu_trace`, `bevy_render/wgpu_trace`, and
`bevy_internal/wgpu_trace` features no longer exist. Remove them from
your `Cargo.toml`, CI, tooling, and what-not.
2. Follow the instructions in the updated `docs/debugging.md` file in
the repository, under the WGPU Tracing section.
Because of the changes made, you can now generate traces to any path,
rather than the hardcoded `%WorkspaceRoot%/wgpu_trace` (where
`%WorkspaceRoot%` is... the root of your crate's workspace) folder.
(If WGPU hasn't restored tracing functionality...) Do note that WGPU has
not yet restored tracing functionality. However, once it does, the above
should be sufficient to generate new traces.
---------
Co-authored-by: TrialDragon <31419708+TrialDragon@users.noreply.github.com>
# Objective
Add a convenience constructor to make simple animation graphs easier to
build.
I've had some notes about attempting this since #11989 that I just
remembered after seeing #14852.
This partially addresses #14852, but I don't really know animation well
enough to write all of the documentation it's asking for.
## Solution
Add `AnimationGraph::from_clips` and use it to simplify `animated_fox`.
Do some other little bits of incidental cleanup and documentation .
## Testing
I ran `cargo run --example animated_fox`.
# Objective
- Fixes#14658.
## Solution
- Added `on_unimplemented` Diagnostic for `IntoObserverSystem` calling
out argument ordering in a `note`
- Added an example to the documentation on `App::observe` to provide
some explanation to users.
## Testing
- Ran CI locally
- Deliberately introduced a parameter order error in the
`ecs/observers.rs` example as a test.
---
## Showcase
<details>
<summary>Error Before</summary>
```
error[E0277]: the trait bound `{closure@examples/ecs/observers.rs:19:13: 22:37}: IntoObserverSystem<_, _, _>` is not satisfied
--> examples/ecs/observers.rs:19:13
|
18 | .observe(
| ------- required by a bound introduced by this call
19 | / |mines: Query<&Mine>,
20 | | trigger: Trigger<ExplodeMines>,
21 | | index: Res<SpatialIndex>,
22 | | mut commands: Commands| {
... |
34 | | }
35 | | },
| |_____________^ the trait `bevy::prelude::IntoSystem<bevy::prelude::Trigger<'static, _, _>, (), _>` is not implemented for closure `{closure@examples/ecs/observers.rs:19:13: 22:37}`, which is required by `{closure@examples/ecs/observers.rs:19:13: 22:37}: IntoObserverSystem<_, _, _>`
|
= note: required for `{closure@examples/ecs/observers.rs:19:13: 22:37}` to implement `IntoObserverSystem<_, _, _>`
note: required by a bound in `bevy::prelude::App::observe`
--> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_app\src\app.rs:995:24
|
993 | pub fn observe<E: Event, B: Bundle, M>(
| ------- required by a bound in this associated function
994 | &mut self,
995 | observer: impl IntoObserverSystem<E, B, M>,
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^ required by this bound in `App::observe`
For more information about this error, try `rustc --explain E0277`.
error: could not compile `bevy` (example "observers") due to 1 previous error
```
</details>
<details>
<summary>Error After</summary>
```
error[E0277]: `{closure@examples/ecs/observers.rs:19:13: 22:37}` cannot become an `ObserverSystem`
--> examples/ecs/observers.rs:19:13
|
18 | .observe(
| ------- required by a bound introduced by this call
19 | / |mines: Query<&Mine>,
20 | | trigger: Trigger<ExplodeMines>,
21 | | index: Res<SpatialIndex>,
22 | | mut commands: Commands| {
... |
34 | | }
35 | | },
| |_____________^ the trait `IntoObserverSystem` is not implemented
|
= help: the trait `bevy::prelude::IntoSystem<bevy::prelude::Trigger<'static, _, _>, (), _>` is not implemented for closure `{closure@examples/ecs/observers.rs:19:13: 22:37}`, which is required by `{closure@examples/ecs/observers.rs:19:13: 22:37}: IntoObserverSystem<_, _, _>`
= note: for function `ObserverSystem`s, ensure the first argument is a `Trigger<T>` and any subsequent ones are `SystemParam`
= note: required for `{closure@examples/ecs/observers.rs:19:13: 22:37}` to implement `IntoObserverSystem<_, _, _>`
note: required by a bound in `bevy::prelude::App::observe`
--> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_app\src\app.rs:1025:24
|
1023 | pub fn observe<E: Event, B: Bundle, M>(
| ------- required by a bound in this associated function
1024 | &mut self,
1025 | observer: impl IntoObserverSystem<E, B, M>,
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^ required by this bound in `App::observe`
For more information about this error, try `rustc --explain E0277`.
error: could not compile `bevy` (example "observers") due to 1 previous error
```
</details>
# Objective
Rewrite screenshotting to be able to accept any `RenderTarget`.
Closes#12478
## Solution
Previously, screenshotting relied on setting a variety of state on the
requested window. When extracted, the window's `swap_chain_texture_view`
property would be swapped out with a texture_view created that frame for
the screenshot pipeline to write back to the cpu.
Besides being tightly coupled to window in a way that prevented
screenshotting other render targets, this approach had the drawback of
relying on the implicit state of `swap_chain_texture_view` being
returned from a `NormalizedRenderTarget` when view targets were
prepared. Because property is set every frame for windows, that wasn't a
problem, but poses a problem for render target images. Namely, to do the
equivalent trick, we'd have to replace the `GpuImage`'s texture view,
and somehow restore it later.
As such, this PR creates a new `prepare_view_textures` system which runs
before `prepare_view_targets` that allows a new `prepare_screenshots`
system to be sandwiched between and overwrite the render targets texture
view if a screenshot has been requested that frame for the given target.
Additionally, screenshotting itself has been changed to use a component
+ observer pattern. We now spawn a `Screenshot` component into the
world, whose lifetime is tracked with a series of marker components.
When the screenshot is read back to the CPU, we send the image over a
channel back to the main world where an observer fires on the screenshot
entity before being despawned the next frame. This allows the user to
access resources in their save callback that might be useful (e.g.
uploading the screenshot over the network, etc.).
## Testing
![image](https://github.com/user-attachments/assets/48f19aed-d9e1-4058-bb17-82b37f992b7b)
TODO:
- [x] Web
- [ ] Manual texture view
---
## Showcase
render to texture example:
<img
src="https://github.com/user-attachments/assets/612ac47b-8a24-4287-a745-3051837963b0"
width=200/>
web saving still works:
<img
src="https://github.com/user-attachments/assets/e2a15b17-1ff5-4006-ab2a-e5cc74888b9c"
width=200/>
## Migration Guide
`ScreenshotManager` has been removed. To take a screenshot, spawn a
`Screenshot` entity with the specified render target and provide an
observer targeting the `ScreenshotCaptured` event. See the
`window/screenshot` example to see an example.
---------
Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com>
# Objective
`ParamSetBuilder` is supposed to be used as a tuple constructor, but the
field was not marked `pub` so it's not actually usable outside of its
module.
## Solution
Mark the field `pub`.
Realize one advantage of doc tests over unit tests is that they test the
public API.
Add a doc test example that uses the field so that this would have been
caught.
# Objective
There is a tiny seam at the top of the annulus caused by normal
floating-point error in calculating the coordinates. When generating the
last pair of triangles, given `n == i` then `(TAU / n) * i` does not
equal `TAU` exactly.
Fixes https://github.com/komadori/bevy_mod_outline/issues/42
## Solution
This can be fixed by changing the calculation so that `(TAU / n) * (i %
n) == 0.0`, which is equivalent for trigonometric purposes.
## Testing
Added the unit test
`bevy_render::mesh::primitives::dim2::tests::test_annulus`.
Fixes#14825
Edit: After feedback, these are the updated methods:
- `toggle_inherited_visible(&mut self)`
- Toggles between `Visibility::Inherited` and `Visibility::Visible`. If
the value is `Visibility::Hidden`, it remains unaffected.
- `toggle_inherited_hidden(&mut self)`
- Toggles between `Visibility::Inherited` and `Visibility::Hidden`. If
the value is `Visibility::Visible`, it remains unaffected.
- `toggle_visible_hidden(&mut self)`
- Toggles between `Visibility::Visible` and `Visibility::Hidden`. If the
value is `Visibility::Inherited`, it remains unaffected.
---------
Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
# Objective
- There is a flaw in the implementation of `FogVolume`'s
`density_texture_offset` from #14868. Because of the way I am wrapping
the UVW coordinates in the volumetric fog shader, a seam is visible when
the 3d texture is wrapping around from one side to the other:
![density_texture_offset_seam](https://github.com/user-attachments/assets/89527ef2-5e1b-4b90-8e73-7a3e607697d4)
## Solution
- This PR fixes the issue by removing the wrapping from the shader and
instead leaving it to the user to configure the 3d noise texture to use
`ImageAddressMode::Repeat` if they want it to repeat. Using
`ImageAddressMode::Repeat` is the proper solution to avoid the obvious
seam:
![density_texture_seam_fixed](https://github.com/user-attachments/assets/06e871a6-2db1-4501-b425-4141605f9b26)
- The sampler cannot be implicitly configured to use
`ImageAddressMode::Repeat` because that's not always desirable. For
example, the `fog_volumes` example wouldn't work properly because the
texture from the edges of the volume would overflow to the other sides,
which would be bad in this instance (but it's good in the case of the
`scrolling_fog` example). So leaving it to the user to decide on their
own whether they want the density texture to repeat seems to be the best
solution.
## Testing
- The `scrolling_fog` example still looks the same, it was just changed
to explicitly declare that the density texture should be repeating when
loading the asset. The `fog_volumes` example is unaffected.
<details>
<summary>Minimal reproduction example on current main</summary>
<pre>
use bevy::core_pipeline::experimental::taa::{TemporalAntiAliasBundle,
TemporalAntiAliasPlugin};
use bevy::pbr::{FogVolume, VolumetricFogSettings, VolumetricLight};
use bevy::prelude::*;<br>
fn main() {
App::new()
.add_plugins((DefaultPlugins, TemporalAntiAliasPlugin))
.add_systems(Startup, setup)
.run();
}<br>
fn setup(mut commands: Commands, assets: Res<AssetServer>) {
commands.spawn((
Camera3dBundle {
transform: Transform::from_xyz(3.5, -1.0, 0.4)
.looking_at(Vec3::new(0.0, 0.0, 0.4), Vec3::Y),
msaa: Msaa::Off,
..default()
},
TemporalAntiAliasBundle::default(),
VolumetricFogSettings {
ambient_intensity: 0.0,
jitter: 0.5,
..default()
},
));<br>
commands.spawn((
DirectionalLightBundle {
transform: Transform::from_xyz(-6.0, 5.0, -9.0)
.looking_at(Vec3::new(0.0, 0.0, 0.0), Vec3::Y),
directional_light: DirectionalLight {
illuminance: 32_000.0,
shadows_enabled: true,
..default()
},
..default()
},
VolumetricLight,
));<br>
commands.spawn((
SpatialBundle {
visibility: Visibility::Visible,
transform: Transform::from_xyz(0.0, 0.0,
0.0).with_scale(Vec3::splat(3.0)),
..default()
},
FogVolume {
density_texture: Some(assets.load("volumes/fog_noise.ktx2")),
density_texture_offset: Vec3::new(0.0, 0.0, 0.4),
scattering: 1.0,
..default()
},
));
}
</pre>
</details>
# Objective
- Fixes#14873, see that issue for a whole lot of context
## Solution
- Add a blessed system set for this stuff. See [this Discord
discussion](https://discord.com/channels/691052431525675048/749335865876021248/1276262931327094908).
Note that the gizmo systems,
[LWIM](https://github.com/Leafwing-Studios/leafwing-input-manager/pull/522/files#diff-9b59ee4899ad0a5d008889ea89a124a7291316532e42f9f3d6ae842b906fb095R154)
and now a new plugin I'm working on are all already ordering against
`run_fixed_main_schedule`, so having a dedicated system set should be
more robust and hopefully also more discoverable.
---
## ~~Showcase~~
~~I can add a little video of a smooth camera later if this gets merged
:)~~
Apparently a release note is not needed, so I'll leave it out. See the
changes in the fixed timestep example for usage showcase and the video
in #14873 for a more or less accurate video of the effect (it does not
use the same solution though, so it is not quite the same)
## Migration Guide
[run_fixed_main_schedule](https://docs.rs/bevy/latest/bevy/time/fn.run_fixed_main_schedule.html)
is no longer public. If you used to order against it, use the new
dedicated `RunFixedMainLoopSystem` system set instead. You can replace
your usage of `run_fixed_main_schedule` one for one by
`RunFixedMainLoopSystem::FixedMainLoop`, but it is now more idiomatic to
place your systems in either
`RunFixedMainLoopSystem::BeforeFixedMainLoop` or
`RunFixedMainLoopSystem::AfterFixedMainLoop`
Old:
```rust
app.add_systems(
RunFixedMainLoop,
some_system.before(run_fixed_main_schedule)
);
```
New:
```rust
app.add_systems(
RunFixedMainLoop,
some_system.in_set(RunFixedMainLoopSystem::BeforeFixedMainLoop)
);
```
---------
Co-authored-by: Tau Gärtli <git@tau.garden>
# Objective
When trying to test a gizmos change I ran `cargo test -p bevy_gizmos`
and the output had a lot of noise from warnings and failed doc errors.
This was because I didn't have all of the features enabled.
## Solution
I admit this might be pedantic, and am happy if the concensus is to
reject it. Although it does reduce the lines of code, testing noise, and
the amount of code compiled. I don't think it affects the complexity of
public code, and it doesn't change much to the complexity of internal
code.
I've removed un-needed `bevy_render` imports in all of the gizmos docs
examples, there's probably other unnecessary ones there too, but I
haven't looked exhaustively. It isn't needed for those docs, and isn't
available except in a subset of `cfg` combinations.
I've also made several of the `use` statements slightly more specific. I
shouldn't have changed the public interfaces, except that
`GizmoMeshConfig` requires either `bevy_sprite` or `bevy_pbr`, as it
does nothing without them.
I've also avoided adding some systems and plugins in situations where
they can't work. An example of this is where the `light` module depends
on `all(feature = "bevy_pbr", feature = "bevy_render")`, but it has
`use` statements that only require `bevy_render`.
## Testing
During development I ran:
```
cargo check -p bevy_gizmos && cargo check -p bevy_gizmos --features=bevy_pbr && cargo check -p bevy_gizmos --features=bevy_sprite && cargo check -p bevy_gizmos --features=bevy_render
```
Afterwards I ran this just to be sure:
```
cargo check && cargo check --features=bevy_pbr && cargo check --features=bevy_sprite && cargo check --features=bevy_render
```
Finally I ran:
```
cargo test -p bevy_gizmos && cargo test -p bevy_gizmos --features=bevy_pbr && test check -p bevy_gizmos --features=bevy_sprite && cargo test -p bevy_gizmos --features=bevy_render
```
## Migration Guide
There shouldn't be any reason to migrate, although if for some reason
you use `GizmoMeshConfig` and `bevy_render` but not `bevy_pbr` or
`bevy_sprite` (such that it does nothing), then you will get an error
that it no longer exists.
# Objective
It looks like `Gizmos::grid*` was missed in the colour migration.
## Solution
This updates the `grid` methods and implementation to use `Color`
instead of `LinearRgba`.
It looks like `ExtractedPointLight` and `ExtractedDirectionalLight` also
use `LinearRgba`, although I think in extracted structures it's probably
fine to make more assumptions about what you want?
## Testing
I ran `cargo test --all -- bevy_gizmos` and it passed.
## Migration Guide
This shouldn't be adding anything that isn't already in a migration
guide? I assume as it uses `impl Into<...>` in the public interfaces
that any users of these APIs shouldn't have to make any code changes.
# Objective
- Fixes#14844
## Solution
- implement reflect using the `impl_reflect_value` macro
## Testing
- I wrote a test locally to understand and learn how reflection worked
on a basic level and to confirm that yes indeed the bound struct could
use the reflection traits that have been implemented for it.
note: I did remove a line that asked for bound to not have reflect
implemented in a test, since that's the point of this PR and the test
worked without the line so I am not sure what that was about, not sure
if that uncovers a deeper issue or not.
# Objective
- The goal of this PR is to make it possible to move the density texture
of a `FogVolume` over time in order to create dynamic effects like fog
moving in the wind.
- You could theoretically move the `FogVolume` itself, but this is not
ideal, because the `FogVolume` AABB would eventually leave the area. If
you want an area to remain foggy while also creating the impression that
the fog is moving in the wind, a scrolling density texture is a better
solution.
## Solution
- The PR adds a `density_texture_offset` field to the `FogVolume`
component. This offset is in the UVW coordinates of the density texture,
meaning that a value of `(0.5, 0.0, 0.0)` moves the 3d texture by half
along the x-axis.
- Values above 1.0 are wrapped, a 1.5 offset is the same as a 0.5
offset. This makes it so that the density texture wraps around on the
other side, meaning that a repeating 3d noise texture can seamlessly
scroll forever. It also makes it easy to move the density texture over
time by simply increasing the offset every frame.
## Testing
- A `scrolling_fog` example has been added to demonstrate the feature.
It uses the offset to scroll a repeating 3d noise density texture to
create the impression of fog moving in the wind.
- The camera is looking at a pillar with the sun peaking behind it. This
highlights the effect the changing density has on the volumetric
lighting interactions.
- Temporal anti-aliasing combined with the `jitter` option of
`VolumetricFogSettings` is used to improve the quality of the effect.
---
## Showcase
https://github.com/user-attachments/assets/3aa50ebd-771c-4c99-ab5d-255c0c3be1a8
Closes#14836.
`filter_map_unchanged` optionally maps to an inner value by applying a
function to the contained reference. This is useful in a situation where
you need to convert a `Mut<T>` to a `Mut<U>`, but only if `T` contains
`U`.
---------
Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
# Objective
- Fixes#14796
## Solution
- Copy docs for wrapper methods, make sure they are consistent with the
original docs except for the section on precision.
# Objective
`RenderLayers` was marketed as being unlimited in the Bevy 0.14 release
notes, but the most obvious constructor doesn't actually support
unlimited layers.
We should explicitly document this.
## Solution
Add some docs mentioning the limit and pointing the user to `with` or
`from_layers` if they need an arbitrary number of layers.
# Objective
Fixes#14782
## Solution
Enable the lint and fix all upcoming hints (`--fix`). Also tried to
figure out the false-positive (see review comment). Maybe split this PR
up into multiple parts where only the last one enables the lint, so some
can already be merged resulting in less many files touched / less
potential for merge conflicts?
Currently, there are some cases where it might be easier to read the
code with the qualifier, so perhaps remove the import of it and adapt
its cases? In the current stage it's just a plain adoption of the
suggestions in order to have a base to discuss.
## Testing
`cargo clippy` and `cargo run -p ci` are happy.
# Objective
add a quick shorthand for creating a sprite with an custom size. This is
often desired when working with custom units or scaled sprites and
allows for a cleaner syntax in those cases/
## Solution
Implemented a `sized` function on the Sprite struct which creates a
Sprite, sets the custom size and leaves the rest at their default values
---
## Changelog
- Added `Sprite::sized(custom_size: Vec2)`
# Objective
currently if we use an image with the wrong sampler type in a material,
wgpu panics with an invalid texture format. turn this into a warning and
fail more gracefully.
## Solution
the expected sampler type is specified in the AsBindGroup derive, so we
can just check the image sampler is what it should be.
i am not totally sure about the mapping of image sampler type to
#[sampler(type)], i assumed:
```
"filtering" => [ TextureSampleType::Float { filterable: true } ],
"non_filtering" => [
TextureSampleType::Float { filterable: false },
TextureSampleType::Sint,
TextureSampleType::Uint,
],
"comparison" => [ TextureSampleType::Depth ],
```
# Objective
- Fixes#14684
## Solution
- Added documentation to `all_tuples_with_size` based on existing
`all_tuples` documentation.
- Updated `all_tuples` documentation to match formatting of and link
back to `all_tuples_with_size`
## Testing
- Doctests ran locally.
## Notes
Formatting changes I have proposed make the documentation a little
cleaner in my opinion, but I am open to reverting them and amending
`all_tuples_with_size` to match if there are any reasonable objections.
This reverts commit e37bf18e2b, added in
#14784.
# Objective
The PR was fine, but the work was very poorly motivated and the
resulting API is not actually very nice. The actual user need is likely
better addressed by #14825.
## Solution
Revert the offending PR.
# Objective
- Fixes#10478
## Solution
Generalised `From/Into` implementations over `&str` and `Option<&str>`
for `AssetSourceId` and `AssetPath` across all lifetimes, not just
static. To maintain access to the `'static`-only specialisation, these
types (and `CowArc`) now include an `as_static` method which will apply
the specialisation.
```rust
// Snipped from `AssetApp`
fn register_asset_source(
&mut self,
id: impl Into<AssetSourceId<'static>>,
// ^^^^^^^
// | as_static is only available for 'static lifetimes
source: AssetSourceBuilder,
) -> &mut Self {
let id = id.into().as_static();
// ^^^^^^ ^^^^^^^^^
// | | Specialized (internally storing CowArc::Static)
// | Generic Into (internally storing CowArc::Borrowed)
// ...
}
```
This post-fix specialisation is available here because the actual
specialisation performed is only a marker for if/when modification or
ownership is required, making the transform a very cheap operation. For
cleanliness, I've also added `from_static`, which wraps this behaviour
in a clean shorthand designed to replace `from` calls.
---
## Changelog
- Generalised the following implementations over a generic lifetime:
- `From<&'static str> for AssetSourceId<'static>`
- `From<Option<&'static str>> for AssetSourceId<'static>`
- `From<&'static str> for AssetPath<'static>`
- `From<&'static Path> for AssetPath<'static>`
- Added `as_static` specialisation to:
- `CowArc`
- `AssetSourceId`
- `AssetPath`
- Added `from_static` specialised constructor to:
- `AssetSourceId`
- `AssetPath`
## Migration Guide
In areas where these implementations where being used, you can now add
`from_static` in order to get the original specialised implementation
which avoids creating an `Arc` internally.
```rust
// Before
let asset_path = AssetPath::from("my/path/to/an/asset.ext");
// After
let asset_path = AssetPath::from_static("my/path/to/an/asset.ext");
```
To be clear, this is only required if you wish to maintain the
performance benefit that came with the specialisation. Existing code is
_not_ broken by this change.
# Objective
One of the changes in #14704 made `DynamicFunction` effectively the same
as `DynamicClosure<'static>`. This change meant that the de facto
function type would likely be `DynamicClosure<'static>` instead of the
intended `DynamicFunction`, since the former is much more flexible.
We _could_ explore ways of making `DynamicFunction` implement `Copy`
using some unsafe code, but it likely wouldn't be worth it. And users
would likely still reach for the convenience of
`DynamicClosure<'static>` over the copy-ability of `DynamicFunction`.
The goal of this PR is to fix this confusion between the two types.
## Solution
Firstly, the `DynamicFunction` type was removed. Again, it was no
different than `DynamicClosure<'static>` so it wasn't a huge deal to
remove.
Secondly, `DynamicClosure<'env>` and `DynamicClosureMut<'env>` were
renamed to `DynamicFunction<'env>` and `DynamicFunctionMut<'env>`,
respectively.
Yes, we still ultimately kept the naming of `DynamicFunction`, but
changed its behavior to that of `DynamicClosure<'env>`. We need a term
to refer to both functions and closures, and "function" was the best
option.
[Originally](https://discord.com/channels/691052431525675048/1002362493634629796/1274091992162242710),
I was going to go with "callable" as the replacement term to encompass
both functions and closures (e.g. `DynamciCallable<'env>`). However, it
was
[suggested](https://discord.com/channels/691052431525675048/1002362493634629796/1274653581777047625)
by @SkiFire13 that the simpler "function" term could be used instead.
While "callable" is perhaps the better umbrella term—being truly
ambiguous over functions and closures— "function" is more familiar, used
more often, easier to discover, and is subjectively just
"better-sounding".
## Testing
Most changes are purely swapping type names or updating documentation,
but you can verify everything still works by running the following
command:
```
cargo test --package bevy_reflect
```
# Objective
currently if an asset loader panics, the asset is left in a perpetual
`Loading` state. this can occur with external crates (eg the image crate
panics on bad data). catch this panic and resolve the asset to `Failed`
## Solution
`AssertUnwindSafe(loader.load).catch_unwind()` and map the panic to an
`AssetLoadError`
separated out from #13170
# Objective
Delete some code that isn't actually doing anything. This was actually
discovered way back in this obsolete PR: #5513.
Also Fixes#6286
## Solution
Delete it
## Alternatives
Make `Direction` do things. But it's not totally clear to me if it's
possible to override cosmic-text's unicode bidi stuff.
## Migration Guide
`Style` no longer has a `direction` field, and `Direction` has been
deleted. They didn't do anything, so you can delete any references to
them as well.
# Objective
Fixes#14521.
## Solution
Added to methods to the VIsibility.
```rs
is_visible() -> Result<bool, String>
```
and
```rs
visbility_from_bool(bool) -> Visibility
```
## Testing
Ran
* `cargo run -p ci -- lints`
* `cargo run -p ci -- test`
* `cargo run -p ci -- compile`
it seems to be working.
However I got few error messages :`ERROR bevy_log: could not set global
logger and tracing subscriber as they are already set. Consider
disabling LogPlugin` in `cargo run -p ci -- test`, even though all test
passed. I'm not sure if that's expected behaviour
Ps. I'm new to contributing, please correct me if anything is wrong
# Objective
Some algorithms don't really work well or are not efficient in 3D space.
When we know we have points on an `InfinitePlane3d` it would be helpful
to have some utility methods to reversibly transform points on the plane
to 2D space to apply some algorithms there.
## Solution
This PR adds a few of methods to project 3D points on a plane to 2D
points and inject them back. Additionally there are some other small
common helper methods.
## Testing
- added some tests that cover the new methods
---------
Co-authored-by: Matty <weatherleymatthew@gmail.com>
# Objective
When reading the ECS code it is sometimes confusing to understand why we
have 2 accesses, one of ComponentId and one of ArchetypeComponentId
## Solution
Make the usage of these 2 accesses more explicit
---------
Co-authored-by: Pascal Hertleif <killercup@gmail.com>
# Objective
Fixes Commands not being `Send` or `Sync` anymore in 0.14 by
implementing `Send` and `Sync` for `RawCommandQueue`.
## Solution
Reference discussion in
[discord](https://discord.com/channels/691052431525675048/691052431974465548/1259464518539411570).
It seems that in https://github.com/bevyengine/bevy/pull/13249, when
adding a `RawCommandQueue` variant to the `InternalQueue`, the `Send /
Sync` traits were not implemented for it, which bubbled up all the way
to `Commands` not being `Send / Sync` anymore.
I am not very familiar with the ECS internals so I can't say whether the
`RawCommandQueue` is safe to be shared between threads, but I know for
sure that before the linked PR `Commands` were indeed `Send` and `Sync`
so that PR broke "some workflows" (mandatory
[xkcd](https://xkcd.com/1172/)).
## Testing
This PR itself includes a compile test to make sure `Commands` will
implement `Send` and `Sync`. The test itself fails without the
implementation and succeeds with it.
Furthermore, if I cherry pick the test to a previous release (i.e. 0.13)
it indeed succeeds, showing that this is a regression specific to 0.14.
---------
Signed-off-by: Luca Della Vedova <lucadv@intrinsic.ai>
# Objective
`MeshVertexAttributeId` is currently a wrapper type around a `usize`.
Application developers are exposed to the `usize` whenever they need to
define a new custom vertex attribute, which requires them to generate a
random `usize` ID to avoid clashes with any other custom vertex
attributes in the same application. As the range of a `usize` is
platform dependent, developers on 64-bit machines may inadvertently
generate random values which will fail to compile for a 32-bit target.
The use of a `usize` here encourages non-portable behaviour and should
be replaced with a fixed width type.
## Solution
In this PR I have changed the ID type from `usize` to `u64`, but equally
a `u32` could be used at the risk of breaking some extant non-portable
programs and increasing the chance of an ID collision.
# Objective
#14098 added the `FunctionRegistry` for registering functions such that
they can be retrieved by name and used dynamically. One thing we chose
to leave out in that initial PR is support for closures.
Why support closures? Mainly, we don't want to prohibit users from
injecting environmental data into their registered functions. This
allows these functions to not leak their internals to the public API.
For example, let's say we're writing a library crate that allows users
to register callbacks for certain actions. We want to perform some
actions before invoking the user's callback so we can't just call it
directly. We need a closure for this:
```rust
registry.register("my_lib::onclick", move |event: ClickEvent| {
// ...other work...
user_onclick.call(event); // <-- Captured variable
});
```
We could have made our callback take a reference to the user's callback.
This would remove the need for the closure, but it would change our
desired API to place the burden of fetching the correct callback on the
caller.
## Solution
Modify the `FunctionRegistry` to store registered functions as
`DynamicClosure<'static>` instead of `DynamicFunction` (now using
`IntoClosure` instead of `IntoFunction`).
Due to limitations in Rust and how function reflection works,
`DynamicClosure<'static>` is functionally equivalent to
`DynamicFunction`. And a normal function is considered a subset of
closures (it's a closure that doesn't capture anything), so there
shouldn't be any difference in usage: all functions that satisfy
`IntoFunction` should satisfy `IntoClosure`.
This means that the registration API introduced in #14098 should require
little-to-no changes on anyone following `main`.
### Closures vs Functions
One consideration here is whether we should keep closures and functions
separate.
This PR unifies them into `DynamicClosure<'static>`, but we can consider
splitting them up. The reasons we might want to do so are:
- Simplifies mental model and terminology (users don't have to
understand that functions turn into closures)
- If Rust ever improves its function model, we may be able to add
additional guarantees to `DynamicFunction` that make it useful to
separate the two
- Adding support for generic functions may be less confusing for users
since closures in Rust technically can't be generic
The reasons behind this PR's unification approach are:
- Reduces the number of methods needed on `FunctionRegistry`
- Reduces the number of lookups a user may have to perform (i.e.
"`get_function` or else `get_closure`")
- Establishes `DynamicClosure<'static>` as the de facto dynamic callable
(similar to how most APIs in Rust code tend to prefer `impl Fn() ->
String` over `fn() -> String`)
I'd love to hear feedback on this matter, and whether we should continue
with this PR's approach or switch to a split model.
## Testing
You can test locally by running:
```
cargo test --package bevy_reflect
```
---
## Showcase
Closures can now be registered into the `FunctionRegistry`:
```rust
let punct = String::from("!!!");
registry.register_with_name("my_crate::punctuate", move |text: String| {
format!("{}{}", text, punct)
});
```
# Objective
The `prepare_view_upscaling_pipelines` system has dozens of ambiguities,
which makes it harder to spot and prevent new ambiguities.
Closes https://github.com/bevyengine/bevy/issues/14770.
## Solution
Just exclude the system from ambiguity detection. See the linked issue
for more context on why this resolution was chosen.
## Testing
Running the `ambiguity_detection` example now reports dozens fewer
`Render` app ambiguities.
# Objective
- Add "Available on crate feature <image format> only." for docs of
image format related types/functions
- Add warning "WARN bevy_render::texture::image: feature "<image
format>" is not enabled" on load attempt
- Fixes#13468 .
## Solution
- Added #[cfg(feature = "<image format>")] for types and warn!("feature
\"<image format>\" is not enabled"); for ImageFormat enum conversions
## Testing
ran reproducing example from issue #13468 and saw in logs
`WARN bevy_render::texture::image: feature "exr" is not enabled`
generated docs with command `RUSTDOCFLAGS="-Zunstable-options
--cfg=docsrs" cargo +nightly doc --workspace --all-features --no-deps
--document-private-items --open` and saw
![image](https://github.com/bevyengine/bevy/assets/17225606/820262bb-b4e6-4a5e-a306-bddbe9c40852)
that docs contain `Available on crate feature <image format> only.`
marks
![image](https://github.com/bevyengine/bevy/assets/17225606/57463440-a2ea-435f-a2c2-50d34f7f55a9)
## Migration Guide
Image format related entities are feature gated, if there are
compilation errors about unknown names there are some of features in
list (`exr`, `hdr`, `basis-universal`, `png`, `dds`, `tga`, `jpeg`,
`bmp`, `ktx2`, `webp` and `pnm`) should be added.
# Objective
- Fixes#14655
## Solution
Rotation should happen first as this is more easier to conceptualize in
the mind: We rotate around the coordinate origin `Vec3::ZERO` and then
we just shift the geometry so that its center is exactly on the
specified position
## Testing && Showcase
Code:
```rust
gizmos.grid(
Vec3::ONE * 10.0,
Quat::from_rotation_x(PI / 3. * 2.),
UVec2::splat(20),
Vec2::new(2., 2.),
PURPLE,
);
gizmos.sphere(Vec3::ONE * 10.0, Quat::default(), 1.0, PURPLE);
```
Before picture:
![image](https://github.com/user-attachments/assets/7fea2e71-e62b-4763-9f9f-7a1ecd630ada)
After picture:
![image](https://github.com/user-attachments/assets/899dad64-010a-4e4b-86ae-53b85fef0bbc)
## Migration Guide
- Users might have to double check their already existing calls to all
the `grid` methods. It should be more intuitive now though.
# Objective
Fix#14771 by adding a `try_insert_if_new` method to the
`EntityCommands`
## Solution
This simply calls the `try_insert` function with `InsertMode::Keep`
## Testing
I did not add any test because `EntityCommands::try_insert` does not
seem to be tested either. I can add some if needed.
# Objective
Fixes#14736
## Solution
Enables feature `bevy_render` for dependency `bevy_gizmos` in
`bevy_dev_tools` cargo.
`bevy_dev_tools` has `bevy_render` as a required dependency, whereas it
is optional for `bevy_gizmos`. When building with no default features,
this causes gizmos to not compile with `bevy_render` features, meaning
some fields and code are not available. Since these features are
required in dev tools, it makes sense to ensure they are enabled. Making
`bevy_render` optional would introduce additional and potentially
unwanted change wake. in dev tools.
## Testing
Reproed and tested on Windows 10, issue originally reported on Ubuntu
and MacOS.
- Original issue command completed without error: `cargo c -p bevy
--no-default-features -F bevy_dev_tools`
- Ran full ci validations with `cargo run -p ci`
# Objective
Finish what we started in #14630. The Curve RFC is
[here](https://github.com/bevyengine/rfcs/blob/main/rfcs/80-curve-trait.md).
## Solution
This contains the rest of the library from my branch. The main things
added here are:
- Bulk sampling / resampling methods on `Curve` itself
- Data structures supporting the above
- The `cores` submodule that those data structures use to encapsulate
sample interpolation
The weirdest thing in here is probably `ChunkedUnevenCore` in `cores`,
which is not used by anything in the Curve library itself but which is
required for efficient storage of glTF animation curves. (See #13105.)
We can move it into a different PR if we want to; I don't have strong
feelings either way.
## Testing
New tests related to resampling are included. As I write this, I realize
we could use some tests in `cores` itself, so I will add some on this
branch before too long.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Robert Walter <26892280+RobWalt@users.noreply.github.com>
# Objective
This `apply_deferred` doesn't seem to have any effect, pointlessly
restricts parallelism and is responsible for a large number of system
order ambiguities. Spotted as part of #7386.
## Solution
Remove it.
This is the *only* manual apply_deferred in the code base currently.
## Testing
I've checked various UI examples and `split_screen`, and couldn't
discern any difference.
This looks like a remnant of a `(a, apply_deferred, b).chain()` pattern
where `b` got removed, leaving us with a weird vestige.
# Objective
Often there are reasons to insert some components (e.g. Transform)
separately from the rest of a bundle (e.g. PbrBundle). However `insert`
overwrites existing components, making this difficult.
See also issue #14397Fixes#2054.
## Solution
This PR adds the method `insert_if_new` to EntityMut and Commands, which
is the same as `insert` except that the old component is kept in case of
conflicts.
It also renames some internal enums (from `ComponentStatus::Mutated` to
`Existing`), to reflect the possible change in meaning.
## Testing
*Did you test these changes? If so, how?*
Added basic unit tests; used the new behavior in my project.
*Are there any parts that need more testing?*
There should be a test that the change time isn't set if a component is
not overwritten; I wasn't sure how to write a test for that case.
*How can other people (reviewers) test your changes? Is there anything
specific they need to know?*
`cargo test` in the bevy_ecs project.
*If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?*
Only tested on Windows, but it doesn't touch anything platform-specific.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Giacomo Stevanato <giaco.stevanato@gmail.com>
# Objective
`World::clear_entities` is ambiguous with all of the other systems in
`RenderSet::Cleanup` because it access `&mut World`.
## Solution
I've added another system set variant, and made sure that this runs
after everything else.
## Testing
The `ambiguity_detection` example
## Migration Guide
`World::clear_entities` is now part of `RenderSet::PostCleanup` rather
than `RenderSet::Cleanup`. Your cleanup systems should likely stay in
`RenderSet::Cleanup`.
## Additional context
Spotted when working on #7386: this was responsible for a large number
of ambiguities.
This should be removed if / when #14449 is merged: there's no need to
call `clear_entities` at all if the rendering world is retained!
# Objective
When an item in the transparent 2d phase fails to render, bevy crashes
with _"PassSpanScope::end was never called"_ instead of outputting the
actual error to the console. This PR fixes this so that phase errors are
output to the console. It also makes bevy not crash.
```
thread '<unnamed>' panicked at /Users/brianreavis/Repositories/project/bevy/crates/bevy_render/src/diagnostic/mod.rs:157:9:
PassSpanScope::end was never called
stack backtrace:
0: rust_begin_unwind
at /rustc/129f3b9964af4d4a709d1383930ade12dfe7c081/library/std/src/panicking.rs:652:5
1: core::panicking::panic_fmt
at /rustc/129f3b9964af4d4a709d1383930ade12dfe7c081/library/core/src/panicking.rs:72:14
2: <bevy_render::diagnostic::PassSpanGuard<R,P> as core::ops::drop::Drop>::drop
at /Users/brianreavis/Repositories/project/bevy/crates/bevy_render/src/diagnostic/mod.rs:157:9
3: core::ptr::drop_in_place<bevy_render::diagnostic::PassSpanGuard<core::option::Option<alloc::sync::Arc<bevy_render::diagnostic::internal::DiagnosticsRecorder>>,bevy_render::render_phase::draw_state::TrackedRenderPass>>
at /rustc/129f3b9964af4d4a709d1383930ade12dfe7c081/library/core/src/ptr/mod.rs:514:1
4: <bevy_core_pipeline::core_2d::main_transparent_pass_2d_node::MainTransparentPass2dNode as bevy_render::render_graph::node::ViewNode>::run
at /Users/brianreavis/Repositories/project/bevy/crates/bevy_core_pipeline/src/core_2d/main_transparent_pass_2d_node.rs:75:9
5: <bevy_render::render_graph::node::ViewNodeRunner<T> as bevy_render::render_graph::node::Node>::run
at /Users/brianreavis/Repositories/project/bevy/crates/bevy_render/src/render_graph/node.rs:406:9
6: bevy_render::renderer::graph_runner::RenderGraphRunner::run_graph
at /Users/brianreavis/Repositories/project/bevy/crates/bevy_render/src/renderer/graph_runner.rs:226:21
7: bevy_render::renderer::graph_runner::RenderGraphRunner::run_graph
at /Users/brianreavis/Repositories/project/bevy/crates/bevy_render/src/renderer/graph_runner.rs:233:21
8: bevy_render::renderer::graph_runner::RenderGraphRunner::run
at /Users/brianreavis/Repositories/project/bevy/crates/bevy_render/src/renderer/graph_runner.rs:81:9
9: bevy_render::renderer::render_system
at /Users/brianreavis/Repositories/project/bevy/crates/bevy_render/src/renderer/mod.rs:40:15
10: core::ops::function::FnMut::call_mut
at /rustc/129f3b9964af4d4a709d1383930ade12dfe7c081/library/core/src/ops/function.rs:166:5
11: core::ops::function::impls::<impl core::ops::function::FnMut<A> for &mut F>::call_mut
at /rustc/129f3b9964af4d4a709d1383930ade12dfe7c081/library/core/src/ops/function.rs:294:13
12: <Func as bevy_ecs::system::exclusive_function_system::ExclusiveSystemParamFunction<fn(F0) .> Out>>::run::call_inner
at /Users/brianreavis/Repositories/project/bevy/crates/bevy_ecs/src/system/exclusive_function_system.rs:229:21
13: <Func as bevy_ecs::system::exclusive_function_system::ExclusiveSystemParamFunction<fn(F0) .> Out>>::run
at /Users/brianreavis/Repositories/project/bevy/crates/bevy_ecs/src/system/exclusive_function_system.rs:232:17
14: <bevy_ecs::system::exclusive_function_system::ExclusiveFunctionSystem<Marker,F> as bevy_ecs::system::system::System>::run::{{closure}}
at /Users/brianreavis/Repositories/project/bevy/crates/bevy_ecs/src/system/exclusive_function_system.rs:124:23
15: bevy_ecs::world::World::last_change_tick_scope
at /Users/brianreavis/Repositories/project/bevy/crates/bevy_ecs/src/world/mod.rs:2383:9
16: <bevy_ecs::system::exclusive_function_system::ExclusiveFunctionSystem<Marker,F> as bevy_ecs::system::system::System>::run
at /Users/brianreavis/Repositories/project/bevy/crates/bevy_ecs/src/system/exclusive_function_system.rs:116:9
note: Some details are omitted, run with `RUST_BACKTRACE=full` for a verbose backtrace.
```
## Solution
Matched the behavior of the other render phases ([like
here](9ca5540b75/crates/bevy_core_pipeline/src/core_3d/main_opaque_pass_3d_node.rs (L98-L101)))
# Objective
- Sometimes some method or function takes an owned `Query`, but we don't
want to give up ours;
- transmuting it technically a solution, but it more costly than
necessary.
- Make query iterators more flexible
- this would allow the equivalent of
`slice::split_first`/`slice::split_first_mut` for query iterators
- helps with requests like #14685
## Solution
- Add a way for reborrowing queries, that is going from a `&'a mut
Query<'w, 's, D, F>` to a `Query<'a, 's, D, F>`:
- this is safe because the original query will be borrowed while the new
query exists and thus no aliased access can happen;
- it's basically the equivalent of going from `&'short mut &'long mut T`
to `&'short mut T` the the compiler automatically implements.
- Add a way for getting the remainder of a query iterator:
- this is interesting also because the original iterator keeps its
position, which was not possible before;
- this in turn requires a way to reborrow query fetches, which I had to
add to `WorldQuery`.
## Showcase
- You can now reborrow a `Query`, getting an equivalent `Query` with a
shorter lifetime. Previously this was possible for read-only queries by
using `Query::to_readonly`, now it's possible for mutable queries too;
- You can now separately iterate over the remainder of `QueryIter`.
## Migration Guide
- `WorldQuery` now has an additional `shrink_fetch` method you have to
implement if you were implementing `WorldQuery` manually.
# Objective
`Res` and `ResMut` perform redundant lookups of the resource storage,
first to initialize the `ArchetypeComponentId` and then to retrieve it.
## Solution
Use the `archetype_component_id` returned from
`initialize_resource_internal` to avoid an extra lookup and `unwrap()`.
# Objective
fix#14742
## Solution
the issue arises because "finished" animations (where current time >=
last keyframe time) are not applied at all.
when transitioning from a finished animation to another later-indexed
anim, the transition kind-of works because the finished anim is skipped,
then the new anim is applied with a lower weight (weight / total_weight)
when transitioning from a finished animation to another earlier-indexed
anim, the transition is instant as the new anim is applied with 1.0 (as
weight == total_weight for the first applied), then the finished
animation is skipped.
to fix this we can always apply every animation based on the nearest 2
keyframes, and clamp the interpolation between them to [0,1].
pros:
- finished animations can be transitioned out of correctly
- blended animations where some curves have a last-keyframe before the
end of the animation will blend properly
- animations will actually finish on their last keyframe, rather than a
fraction of a render-frame before the end
cons:
- we have to re-apply finished animations every frame whether it's
necessary or not. i can't see a way to avoid this.
Makes the newly merged picking usable for UI elements.
currently it both triggers the events, as well as sends them as throught
commands.trigger_targets. We should probably figure out if this is
needed for them all.
# Objective
Hooks up obserers and picking for a very simple example
## Solution
upstreamed the UI picking backend from bevy_mod_picking
## Testing
tested with the new example picking/simple_picking.rs
---
---------
Co-authored-by: Lixou <82600264+DasLixou@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com>
# Objective
The code to create `ReflectComponent` and `ReflectResource` instances
manually constructs a `Mut<dyn Reflect>` by copying everything but
`value`. That can be done more concisely and better respecting
encapsulation by calling the `map_unchanged()` method.
## Solution
Use `map_unchanged` instead of creating a `Mut` manually.
---------
Co-authored-by: radiish <cb.setho@gmail.com>
# Objective
- Right now `DynamicEnum::is_dynamic()` is returning `false`. I don't
think this was expected, since the rest of `Dynamic*` types return
`true`.
## Solution
- Making `DynamicEnum::is_dynamic()` return true
## Testing
- Added an extra unit test to verify that `.is_dynamic()` returns
`true`.
# Objective
- Bevy now supports an opaque phase for mesh2d, but it's very common for
2d textures to have a transparent alpha channel.
## Solution
- Add an alpha mask phase identical to the one in 3d. It will do the
alpha masking in the shader before drawing the mesh.
- Uses the BinnedRenderPhase
- Since it's an opaque draw it also correctly writes to depth
## Testing
- Tested the mes2d_alpha_mode example and the bevymark example with
alpha mask mode enabled
---
## Showcase
![image](https://github.com/user-attachments/assets/9e5e4561-d0a7-4aa3-b049-d4b1247d5ed4)
The white logo on the right is rendered with alpha mask enabled.
Running the bevymark example I can get 65fps for 120k mesh2d all using
alpha mask.
## Notes
This is one more step for mesh2d improvements
https://github.com/bevyengine/bevy/issues/13265
---------
Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com>
# Objective
As is, calling
[`DeferredWorld::query`](https://docs.rs/bevy/latest/bevy/ecs/world/struct.DeferredWorld.html#method.query)
requires you to first `reborrow()` the world in order to use it at all.
Simple reproduction:
```rust
fn test<'w>(mut world: DeferredWorld<'w>, mut state: QueryState<(), ()>) {
let query = world.query(&mut state);
// let query = world.reborrow().query(&mut state); // << Required
}
```
Error message:
```
error[E0597]: `world` does not live long enough
|
444 | fn test<'w>(mut world: DeferredWorld<'w>, mut state: QueryState<(), ()>) {
| -- --------- binding `world` declared here
| |
| lifetime `'w` defined here
445 | let query = world.query(&mut state);
| ^^^^^------------------
| |
| borrowed value does not live long enough
| argument requires that `world` is borrowed for `'w`
446 | }
| - `world` dropped here while still borrowed
```
## Solution
Fix the world borrow lifetime on the `query` method, which now correctly
allows the above usage.
# Objective
- Wireframe plugins have inconsistencies between 3D and 2D versions.
This PR addresses the following
- 2d version uses `Srgba` for colors, 3d version uses `Color`.
## Solution
- This PR brings consistency by doing the following change
- `Wireframe2d` now uses `Color` instead of `Srgba`
## Testing
- `wireframe_2d` and `wireframe` examples were verified and they work as
before.
---
## Migration Guide
- `Wireframe2dConfig`.`default_color` type is now `Color` instead of
`Srgba`. Use `.into()` to convert between them.
- `Wireframe2dColor`.`color` type is now `Color` instead of `Srgba`. Use
`.into()` to convert between them.
# Objective
By default, Bevy's bloom effect shows square artifacts on small bright
particles due to a low max mip resolution. This PR makes this
configurable via BloomSettings so users can customize these parameters
instead of having them in private module constants.
## Solution
Expose max_mip_dimension and uv_offset in BloomSettings.
## Testing
I tested these changes by running the Bloom 2D / 3D examples.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
The goal with this PR is to allow the use of types that don't implement
`Reflect` within the reflection API.
Rust's [orphan
rule](https://doc.rust-lang.org/book/ch10-02-traits.html#implementing-a-trait-on-a-type)
prevents implementing a trait on an external type when neither type nor
trait are owned by the implementor. This means that if a crate,
`cool_rust_lib`, defines a type, `Foo`, then a user cannot use it with
reflection. What this means is that we have to ignore it most of the
time:
```rust
#[derive(Reflect)]
struct SomeStruct {
#[reflect(ignore)]
data: cool_rust_lib::Foo
}
```
Obviously, it's impossible to implement `Reflect` on `Foo`. But does it
*have* to be?
Most of reflection doesn't deal with concrete types— it's almost all
using `dyn Reflect`. And being very metadata-driven, it should
theoretically be possible. I mean,
[`serde`](https://serde.rs/remote-derive.html) does it.
## Solution
> Special thanks to @danielhenrymantilla for their help reviewing this
PR and offering wisdom wrt safety.
Taking a page out of `serde`'s book, this PR adds the ability to easily
use "remote types" with reflection. In this context, a "remote type" is
the external type for which we have no ability to implement `Reflect`.
This adds the `#[reflect_remote(...)]` attribute macro, which is used to
generate "remote type wrappers". All you have to do is define the
wrapper exactly the same as the remote type's definition:
```rust
// Pretend this is our external crate
mod cool_rust_lib {
#[derive(Default)]
struct Foo {
pub value: String
}
}
#[reflect_remote(cool_rust_lib::Foo)]
struct FooWrapper {
pub value: String
}
```
> **Note:** All fields in the external type *must* be public. This could
be addressed with a separate getter/setter attribute either in this PR
or in another one.
The macro takes this user-defined item and transforms it into a newtype
wrapper around the external type, marking it as `#[repr(transparent)]`.
The fields/variants defined by the user are simply used to build out the
reflection impls.
Additionally, it generates an implementation of the new trait,
`ReflectRemote`, which helps prevent accidental misuses of this API.
Therefore, the output generated by the macro would look something like:
```rust
#[repr(transparent)]
struct FooWrapper(pub cool_rust_lib::Foo);
impl ReflectRemote for FooWrapper {
type Remote = cool_rust_lib::Foo;
// transmutation methods...
}
// reflection impls...
// these will acknowledge and make use of the `value` field
```
Internally, the reflection API will pass around the `FooWrapper` and
[transmute](https://doc.rust-lang.org/std/mem/fn.transmute.html) it
where necessary. All we have to do is then tell `Reflect` to do that. So
rather than ignoring the field, we tell `Reflect` to use our wrapper
using the `#[reflect(remote = ...)]` field attribute:
```rust
#[derive(Reflect)]
struct SomeStruct {
#[reflect(remote = FooWrapper)]
data: cool_rust_lib::Foo
}
```
#### Other Macros & Type Data
Because this macro consumes the defined item and generates a new one, we
can't just put our macros anywhere. All macros that should be passed to
the generated struct need to come *below* this macro. For example, to
derive `Default` and register its associated type data:
```rust
// ✅ GOOD
#[reflect_remote(cool_rust_lib::Foo)]
#[derive(Default)]
#[reflect(Default)]
struct FooWrapper {
pub value: String
}
// ❌ BAD
#[derive(Default)]
#[reflect_remote(cool_rust_lib::Foo)]
#[reflect(Default)]
struct FooWrapper {
pub value: String
}
```
#### Generics
Generics are forwarded to the generated struct as well. They should also
be defined in the same order:
```rust
#[reflect_remote(RemoteGeneric<'a, T1, T2>)]
struct GenericWrapper<'a, T1, T2> {
pub foo: &'a T1,
pub bar: &'a T2,
}
```
> Naming does *not* need to match the original definition's. Only order
matters here.
> Also note that the code above is just a demonstration and doesn't
actually compile since we'd need to enforce certain bounds (e.g. `T1:
Reflect`, `'a: 'static`, etc.)
#### Nesting
And, yes, you can nest remote types:
```rust
#[reflect_remote(RemoteOuter)]
struct OuterWrapper {
#[reflect(remote = InnerWrapper)]
pub inner: RemoteInner
}
#[reflect_remote(RemoteInner)]
struct InnerWrapper(usize);
```
#### Assertions
This macro will also generate some compile-time assertions to ensure
that the correct types are used. It's important we catch this early so
users don't have to wait for something to panic. And it also helps keep
our `unsafe` a little safer.
For example, a wrapper definition that does not match its corresponding
remote type will result in an error:
```rust
mod external_crate {
pub struct TheirStruct(pub u32);
}
#[reflect_remote(external_crate::TheirStruct)]
struct MyStruct(pub String); // ERROR: expected type `u32` but found `String`
```
<details>
<summary>Generated Assertion</summary>
```rust
const _: () = {
#[allow(non_snake_case)]
#[allow(unused_variables)]
#[allow(unused_assignments)]
#[allow(unreachable_patterns)]
#[allow(clippy::multiple_bound_locations)]
fn assert_wrapper_definition_matches_remote_type(
mut __remote__: external_crate::TheirStruct,
) {
__remote__.0 = (|| -> ::core::option::Option<String> { None })().unwrap();
}
};
```
</details>
Additionally, using the incorrect type in a `#[reflect(remote = ...)]`
attribute should result in an error:
```rust
mod external_crate {
pub struct TheirFoo(pub u32);
pub struct TheirBar(pub i32);
}
#[reflect_remote(external_crate::TheirFoo)]
struct MyFoo(pub u32);
#[reflect_remote(external_crate::TheirBar)]
struct MyBar(pub i32);
#[derive(Reflect)]
struct MyStruct {
#[reflect(remote = MyBar)] // ERROR: expected type `TheirFoo` but found struct `TheirBar`
foo: external_crate::TheirFoo
}
```
<details>
<summary>Generated Assertion</summary>
```rust
const _: () = {
struct RemoteFieldAssertions;
impl RemoteFieldAssertions {
#[allow(non_snake_case)]
#[allow(clippy::multiple_bound_locations)]
fn assert__foo__is_valid_remote() {
let _: <MyBar as bevy_reflect::ReflectRemote>::Remote = (|| -> ::core::option::Option<external_crate::TheirFoo> {
None
})().unwrap();
}
}
};
```
</details>
### Discussion
There are a couple points that I think still need discussion or
validation.
- [x] 1. `Any` shenanigans
~~If we wanted to downcast our remote type from a `dyn Reflect`, we'd
have to first downcast to the wrapper then extract the inner type. This
PR has a [commit](b840db9f74cb6d357f951cb11b150d46bac89ee2) that
addresses this by making all the `Reflect::*any` methods return the
inner type rather than the wrapper type. This allows us to downcast
directly to our remote type.~~
~~However, I'm not sure if this is something we want to do. For
unknowing users, it could be confusing and seemingly inconsistent. Is it
worth keeping? Or should this behavior be removed?~~
I think this should be fine. The remote wrapper is an implementation
detail and users should not need to downcast to the wrapper type. Feel
free to let me know if there are other opinions on this though!
- [x] 2. Implementing `Deref/DerefMut` and `From`
~~We don't currently do this, but should we implement other traits on
the generated transparent struct? We could implement `Deref`/`DerefMut`
to easily access the inner type. And we could implement `From` for
easier conversion between the two types (e.g. `T: Into<Foo>`).~~ As
mentioned in the comments, we probably don't need to do this. Again, the
remote wrapper is an implementation detail, and should generally not be
used directly.
- [x] 3. ~~Should we define a getter/setter field attribute in this PR
as well or leave it for a future one?~~ I think this should be saved for
a future PR
- [ ] 4. Any foreseeable issues with this implementation?
#### Alternatives
One alternative to defining our own `ReflectRemote` would be to use
[bytemuck's
`TransparentWrapper`](https://docs.rs/bytemuck/1.13.1/bytemuck/trait.TransparentWrapper.html)
(as suggested by @danielhenrymantilla).
This is definitely a viable option, as `ReflectRemote` is pretty much
the same thing as `TransparentWrapper`. However, the cost would be
bringing in a new crate— though, it is already in use in a few other
sub-crates like bevy_render.
I think we're okay just defining `ReflectRemote` ourselves, but we can
go the bytemuck route if we'd prefer offloading that work to another
crate.
---
## Changelog
* Added the `#[reflect_remote(...)]` attribute macro to allow `Reflect`
to be used on remote types
* Added `ReflectRemote` trait for ensuring proper remote wrapper usage
# Objective
- Fixes#14697
## Solution
This PR modifies the existing `all_tuples!` macro to optionally accept a
`#[doc(fake_variadic)]` attribute in its input. If the attribute is
present, each invocation of the impl macro gets the correct attributes
(i.e. the first impl receives `#[doc(fake_variadic)]` while the other
impls are hidden using `#[doc(hidden)]`.
Impls for the empty tuple (unit type) are left untouched (that's what
the [standard
library](https://doc.rust-lang.org/std/cmp/trait.PartialEq.html#impl-PartialEq-for-())
and
[serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-())
do).
To work around https://github.com/rust-lang/cargo/issues/8811 and to get
impls on re-exports to correctly show up as variadic, `--cfg docsrs_dep`
is passed when building the docs for the toplevel `bevy` crate.
`#[doc(fake_variadic)]` only works on tuples and fn pointers, so impls
for structs like `AnyOf<(T1, T2, ..., Tn)>` are unchanged.
## Testing
I built the docs locally using `RUSTDOCFLAGS='--cfg docsrs'
RUSTFLAGS='--cfg docsrs_dep' cargo +nightly doc --no-deps --workspace`
and checked the documentation page of a trait both in its original crate
and the re-exported version in `bevy`.
The description should correctly mention for how many tuple items the
trait is implemented.
I added `rustc-args` for docs.rs to the `bevy` crate, I hope there
aren't any other notable crates that re-export `#[doc(fake_variadic)]`
traits.
---
## Showcase
`bevy_ecs::query::QueryData`:
<img width="1015" alt="Screenshot 2024-08-12 at 16 41 28"
src="https://github.com/user-attachments/assets/d40136ed-6731-475f-91a0-9df255cd24e3">
`bevy::ecs::query::QueryData` (re-export):
<img width="1005" alt="Screenshot 2024-08-12 at 16 42 57"
src="https://github.com/user-attachments/assets/71d44cf0-0ab0-48b0-9a51-5ce332594e12">
## Original Description
<details>
Resolves#14697
Submitting as a draft for now, very WIP.
Unfortunately, the docs don't show the variadics nicely when looking at
reexported items.
For example:
`bevy_ecs::bundle::Bundle` correctly shows the variadic impl:
![image](https://github.com/user-attachments/assets/90bf8af1-1d1f-4714-9143-cdd3d0199998)
while `bevy::ecs::bundle::Bundle` (the reexport) shows all the impls
(not good):
![image](https://github.com/user-attachments/assets/439c428e-f712-465b-bec2-481f7bf5870b)
Built using `RUSTDOCFLAGS='--cfg docsrs' cargo +nightly doc --workspace
--no-deps` (`--no-deps` because of wgpu-core).
Maybe I missed something or this is a limitation in the *totally not
private* `#[doc(fake_variadic)]` thingy. In any case I desperately need
some sleep now :))
</details>
# Objective
- Implements the [Unique Reflect
RFC](https://github.com/nicopap/rfcs/blob/bevy-reflect-api/rfcs/56-better-reflect.md).
## Solution
- Implements the RFC.
- This implementation differs in some ways from the RFC:
- In the RFC, it was suggested `Reflect: Any` but `PartialReflect:
?Any`. During initial implementation I tried this, but we assume the
`PartialReflect: 'static` in a lot of places and the changes required
crept out of the scope of this PR.
- `PartialReflect::try_into_reflect` originally returned `Option<Box<dyn
Reflect>>` but i changed this to `Result<Box<dyn Reflect>, Box<dyn
PartialReflect>>` since the method takes by value and otherwise there
would be no way to recover the type. `as_full` and `as_full_mut` both
still return `Option<&(mut) dyn Reflect>`.
---
## Changelog
- Added `PartialReflect`.
- `Reflect` is now a subtrait of `PartialReflect`.
- Moved most methods on `Reflect` to the new `PartialReflect`.
- Added `PartialReflect::{as_partial_reflect, as_partial_reflect_mut,
into_partial_reflect}`.
- Added `PartialReflect::{try_as_reflect, try_as_reflect_mut,
try_into_reflect}`.
- Added `<dyn PartialReflect>::{try_downcast_ref, try_downcast_mut,
try_downcast, try_take}` supplementing the methods on `dyn Reflect`.
## Migration Guide
- Most instances of `dyn Reflect` should be changed to `dyn
PartialReflect` which is less restrictive, however trait bounds should
generally stay as `T: Reflect`.
- The new `PartialReflect::{as_partial_reflect, as_partial_reflect_mut,
into_partial_reflect, try_as_reflect, try_as_reflect_mut,
try_into_reflect}` methods as well as `Reflect::{as_reflect,
as_reflect_mut, into_reflect}` will need to be implemented for manual
implementors of `Reflect`.
## Future Work
- This PR is designed to be followed up by another "Unique Reflect Phase
2" that addresses the following points:
- Investigate making serialization revolve around `Reflect` instead of
`PartialReflect`.
- [Remove the `try_*` methods on `dyn PartialReflect` since they are
stop
gaps](https://github.com/bevyengine/bevy/pull/7207#discussion_r1083476050).
- Investigate usages like `ReflectComponent`. In the places they
currently use `PartialReflect`, should they be changed to use `Reflect`?
- Merging this opens the door to lots of reflection features we haven't
been able to implement.
- We could re-add [the `Reflectable`
trait](8e3488c880/crates/bevy_reflect/src/reflect.rs (L337-L342))
and make `FromReflect` a requirement to improve [`FromReflect`
ergonomics](https://github.com/bevyengine/rfcs/pull/59). This is
currently not possible because dynamic types cannot sensibly be
`FromReflect`.
- Since this is an alternative to #5772, #5781 would be made cleaner.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
Upgrading to WGPU 22.
Needs `naga_oil` to upgrade first, I've got a fork that compiles but
fails tests, so until that's fixed and the crate is officially
updated/released this will be blocked.
---------
Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
# Objective
Closes#14474
Previously, the `libm` feature of bevy_math would just pass the same
feature flag down to glam. However, bevy_math itself had many uses of
floating-point arithmetic with unspecified precision. For example,
`f32::sin_cos` and `f32::powi` have unspecified precision, which means
that the exact details of their output are not guaranteed to be stable
across different systems and/or versions of Rust. This means that users
of bevy_math could observe slightly different behavior on different
systems if these methods were used.
The goal of this PR is to make it so that the `libm` feature flag
actually guarantees some degree of determinacy within bevy_math itself
by switching to the libm versions of these functions when the `libm`
feature is enabled.
## Solution
bevy_math now has an internal module `bevy_math::ops`, which re-exports
either the standard versions of the operations or the libm versions
depending on whether the `libm` feature is enabled. For example,
`ops::sin` compiles to `f32::sin` without the `libm` feature and to
`libm::sinf` with it.
This approach has a small shortfall, which is that `f32::powi` (integer
powers of floating point numbers) does not have an equivalent in `libm`.
On the other hand, this method is only used for squaring and cubing
numbers in bevy_math. Accordingly, this deficit is covered by the
introduction of a trait `ops::FloatPow`:
```rust
pub(crate) trait FloatPow {
fn squared(self) -> Self;
fn cubed(self) -> Self;
}
```
Next, each current usage of the unspecified-precision methods has been
replaced by its equivalent in `ops`, so that when `libm` is enabled, the
libm version is used instead. The exception, of course, is that
`.powi(2)`/`.powi(3)` have been replaced with `.squared()`/`.cubed()`.
Finally, the usage of the plain `f32` methods with unspecified precision
is now linted out of bevy_math (and hence disallowed in CI). For
example, using `f32::sin` within bevy_math produces a warning that tells
the user to use the `ops::sin` version instead.
## Testing
Ran existing tests. It would be nice to check some benchmarks on NURBS
things once #14677 merges. I'm happy to wait until then if the rest of
this PR is fine.
---
## Discussion
In the future, it might make sense to actually expose `bevy_math::ops`
as public if any downstream Bevy crates want to provide similar
determinacy guarantees. For now, it's all just `pub(crate)`.
This PR also only covers `f32`. If we find ourselves using `f64`
internally in parts of bevy_math for better robustness, we could extend
the module and lints to cover the `f64` versions easily enough.
I don't know how feasible it is, but it would also be nice if we could
standardize the bevy_math tests with the `libm` feature in CI, since
their success is currently platform-dependent (e.g. 8 of them fail on my
machine when run locally).
---------
Co-authored-by: IQuick 143 <IQuick143cz@gmail.com>
# Objective
Enables writing queries like `Query<Entity, With<SystemIdMarker>>` to
filter `Entity`s that are, or are not (with `Without`), `SystemId`s.
## Solution
Simple unit struct `SystemIdMarker` added during
`World::register_boxed_system`; `World::remove_system` already despawns
the entity, removing the marker.
## Testing
No tests, but happy to write some with direction.
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
~~Enables writing queries like `Query<Entity, With<ObserverMarker>>` to
filter `Entity`s that are, or are not (with `Without`), `Observer`s.~~
~~`Observer` version of [similar
PR](https://github.com/bevyengine/bevy/pull/14584) for `SystemId`s.~~
just adding a line to the docs :)
## Solution
~~Simple unit struct `ObserverMarker` added in `Observer`'s `.on_add`
component hook.~~
## Testing
No tests, but happy to write some with direction.
# Objective
Fixes#14365
## Migration Guide
- When using the iterator returned by `Mesh::attributes` or
`Mesh::attributes_mut` the first value of the tuple is not the
`MeshVertexAttribute` instead of `MeshVertexAttributeId`. To access the
`MeshVertexAttributeId` use the `MeshVertexAttribute.id` field.
Signed-off-by: Sarthak Singh <sarthak.singh99@gmail.com>
# Objective
- Add custom images as cursors
- Fixes#9557
## Solution
- Change cursor type to accommodate both native and image cursors
- I don't really like this solution because I couldn't use
`Handle<Image>` directly. I would need to import `bevy_assets` and that
causes a circular dependency. Alternatively we could use winit's
`CustomCursor` smart pointers, but that seems hard because the event
loop is needed to create those and is not easily accessable for users.
So now I need to copy around rgba buffers which is sad.
- I use a cache because especially on the web creating cursor images is
really slow
- Sorry to #14196 for yoinking, I just wanted to make a quick solution
for myself and thought that I should probably share it too.
Update:
- Now uses `Handle<Image>`, reads rgba data in `bevy_render` and uses
resources to send the data to `bevy_winit`, where the final cursors are
created.
## Testing
- Added example which works fine at least on Linux Wayland (winit side
has been tested with all platforms).
- I haven't tested if the url cursor works.
## Migration Guide
- `CursorIcon` is no longer a field in `Window`, but a separate
component can be inserted to a window entity. It has been changed to an
enum that can hold custom images in addition to system icons.
- `Cursor` is renamed to `CursorOptions` and `cursor` field of `Window`
is renamed to `cursor_options`
- `CursorIcon` is renamed to `SystemCursorIcon`
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Jan Hohenheim <jan@hohenheim.ch>
# Objective
Support more kinds of system params in buildable systems, such as a
`ParamSet` or `Vec` containing buildable params or tuples of buildable
params.
## Solution
Replace the `BuildableSystemParam` trait with `SystemParamBuilder` to
make it easier to compose builders. Provide implementations for existing
buildable params, plus tuples, `ParamSet`, and `Vec`.
## Examples
```rust
// ParamSet of tuple:
let system = (ParamSetBuilder((
QueryParamBuilder::new(|builder| { builder.with::<B>(); }),
QueryParamBuilder::new(|builder| { builder.with::<C>(); }),
)),)
.build_state(&mut world)
.build_system(|mut params: ParamSet<(Query<&mut A>, Query<&mut A>)>| {
params.p0().iter().count() + params.p1().iter().count()
});
// ParamSet of Vec:
let system = (ParamSetBuilder(vec![
QueryParamBuilder::new_box(|builder| { builder.with::<B>(); }),
QueryParamBuilder::new_box(|builder| { builder.with::<C>(); }),
]),)
.build_state(&mut world)
.build_system(|mut params: ParamSet<Vec<Query<&mut A>>>| {
let mut count = 0;
params.for_each(|mut query| count += query.iter_mut().count());
count
});
```
## Migration Guide
The API for `SystemBuilder` has changed. Instead of constructing a
builder with a world and then adding params, you first create a tuple of
param builders and then supply the world.
```rust
// Before
let system = SystemBuilder::<()>::new(&mut world)
.local::<u64>()
.builder::<Local<u64>>(|x| *x = 10)
.builder::<Query<&A>>(|builder| { builder.with::<B>(); })
.build(system);
// After
let system = (
ParamBuilder,
LocalBuilder(10),
QueryParamBuilder::new(|builder| { builder.with::<B>(); }),
)
.build_state(&mut world)
.build_system(system);
```
## Possible Future Work
Here are a few possible follow-up changes. I coded them up to prove that
this API can support them, but they aren't necessary for this PR.
* chescock/bevy#1
* chescock/bevy#2
* chescock/bevy#3
Based on top of #12982 and #13069
# Objective
- Opaque2d was implemented with SortedRenderPhase but BinnedRenderPhase
should be much faster
## Solution
- Implement BinnedRenderPhase for Opaque2d
## Notes
While testing this PR, before the change I had ~14 fps in bevymark with
100k entities. After this change I get ~71 fps, compared to using
sprites where I only get ~63 fps. This means that after this PR mesh2d
with opaque meshes will be faster than the sprite path. This is not a 1
to 1 comparison since sprites do alpha blending.
Ci fixed version of: #14541
Upstream the remainder of bevy_picking_core and all of
bevy_picking_input.
This work is intentionally nonfunctional and has minimal changes, but
does compile. More work is necessary to replace bevy_eventlistener with
propagating observers.
This work is being coordinated as part of "bevy_mod_picking upstream"
working group. Come say hi on discord!
---------
Co-authored-by: Miles Silberling-Cook <nth.tensor@gmail.com>
Co-authored-by: Aevyrie <aevyrie@gmail.com>
# Objective
- fix#14679
- bevy's performance highly depends on compiler optimization,inline hot
function could greatly help compiler to optimize our program
# Objective
This PR implements part of the [Curve
RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/80-curve-trait.md).
See that document for motivation, objectives, etc.
## Solution
For purposes of reviewability, this PR excludes the entire part of the
RFC related to taking multiple samples, resampling, and interpolation
generally. (This means the entire `cores` submodule is also excluded.)
On the other hand, the entire `Interval` type and all of the functional
`Curve` adaptors are included.
## Testing
Test modules are included and can be run locally (but they are also
included in CI).
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- after #14502 ,explicit using clone_from should has better performance
because it could reuse the resources to avoid unnecessary allocations.
# Objective
The changes made in https://github.com/bevyengine/bevy/pull/12252
introduced an previously fixed bug in webgpu rendering.
## Solution
This fix is based on https://github.com/bevyengine/bevy/pull/8910 and
applies the same vertex buffer layout assignment for the LineGizmo
Pipeline.
## Testing
- Tested the 3D Gizmo example in webgpu and webgl environments
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
The `dynamic_types` example was missing a reference to the newly added
`DynamicSet` type.
## Solution
Add `DynamicSet` to the `dynamic_types` example.
For parity with the other dynamic types, I also implemented
`FromIterator<T: Reflect>`, `FromIterator<Box<dyn Reflect>>`, and
`IntoIterator for &DynamicSet`.
## Testing
You can run the example locally:
```
cargo run --example dynamic_types
```
# Objective
As pointed out by @SkiFire13 on
[Discord](https://discord.com/channels/691052431525675048/1002362493634629796/1270624366119485441),
I was incorrect in #14641 regarding the type name of anonymous
functions. I had stated that they will return something like `fn(i32,
i32) -> i32`, but this is wrong. They actually behave like closures
(despite not technically being closures) and return something more like
`foo::bar::{{closure}}`.
This isn't a major issue because the reasoning behind #14641 still
stands. However, the internal documentation should probably be updated
so future contributors don't believe the lies I left behind.
## Solution
Updated the internal documentation for `create_info` to reflect the
actual type name of an anonymous function.
In that same module, I also added a test for function pointers and
updated all tests to include sanity checks for the `std::any::type_name`
of each category of callable.
## Testing
You can test locally by running:
```
cargo test --package bevy_reflect
```
# Objective
CI is
[failing](https://github.com/bevyengine/bevy/actions/runs/10308658332/job/28536587448)
due to certain methods not being used.
## Solution
Make the `reflect` module public so that these warnings go away and so
that the `pub` items in these modules can be used.
## Testing
CI should pass.
# Objective
- While developing a debug tool I saw the gap where it was not possible
to get all existing states from a World using reflection.
- This PR allows to iterate over all `States` types that exist in a
world, and modify them in case they implement `FreelyMutableState`.
- Two new methods are available on `App` and `SubApp` as helper to
register the data types:
- `register_state_reflect` and `register_mutable_state_reflect`
## Solution
- Two new data types are added:
- `ReflectState`: Allows to extract the current value of a state from
the World.
- `ReflectFreelyMutableState`: Allows to set the next state in a world,
similar to call `NextState::set`.
- There is no distinction between `States`, `SubStates` and
`ComputedStates`:
- `States` can register both `ReflectState` and
`ReflectFreelyMutableState`.
- `SubStates` can register both `ReflectState` and
`ReflectFreelyMutableState`.
- `ComputedStates` can register only `ReflectState` .
## Testing
- Added tests inside the `bevy_state` crate.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
Co-authored-by: Jan Hohenheim <jan@hohenheim.ch>
# Objective
Closes#14526
## Solution
The history texture was being created incorrectly with the viewport size
rather than target size. When viewport < target, this meant that the
render attachments would differer in size which causes a wgpu validation
error.
## Testing
Example in linked issue works.
# Objective
### TL;DR
#14098 added the `FunctionRegistry` but had some last minute
complications due to anonymous functions. It ended up going with a
"required name" approach to ensure anonymous functions would always have
a name.
However, this approach isn't ideal for named functions since, by
definition, they will always have a name.
Therefore, this PR aims to modify function reflection such that we can
make function registration easier for named functions, while still
allowing anonymous functions to be registered as well.
### Context
Function registration (#14098) ran into a little problem: anonymous
functions.
Anonymous functions, including function pointers, have very non-unique
type names. For example, the anonymous function `|a: i32, b: i32| a + b`
has the type name of `fn(i32, i32) -> i32`. This obviously means we'd
conflict with another function like `|a: i32, b: i32| a - b`.
The solution that #14098 landed on was to always require a name during
function registration.
The downside with this is that named functions (e.g. `fn add(a: i32, b:
i32) -> i32 { a + b }`) had to redundantly provide a name. Additionally,
manually constructed `DynamicFunction`s also ran into this ergonomics
issue.
I don't entirely know how the function registry will be used, but I have
a strong suspicion that most of its registrations will either be named
functions or manually constructed `DynamicFunction`s, with anonymous
functions only being used here and there for quick prototyping or adding
small functionality.
Why then should the API prioritize the anonymous function use case by
always requiring a name during registration?
#### Telling Functions Apart
Rust doesn't provide a lot of out-of-the-box tools for reflecting
functions. One of the biggest hurdles in attempting to solve the problem
outlined above would be to somehow tell the different kinds of functions
apart.
Let's briefly recap on the categories of functions in Rust:
| Category | Example |
| ------------------ | ----------------------------------------- |
| Named function | `fn add(a: i32, b: i32) -> i32 { a + b }` |
| Closure | `\|a: i32\| a + captured_variable` |
| Anonymous function | `\|a: i32, b: i32\| a + b` |
| Function pointer | `fn(i32, i32) -> i32` |
My first thought was to try and differentiate these categories based on
their size. However, we can see that this doesn't quite work:
| Category | `size_of` |
| ------------------ | --------- |
| Named function | 0 |
| Closure | 0+ |
| Anonymous function | 0 |
| Function pointer | 8 |
Not only does this not tell anonymous functions from named ones, but it
struggles with pretty much all of them.
My second then was to differentiate based on type name:
| Category | `type_name` |
| ------------------ | ----------------------- |
| Named function | `foo::bar::baz` |
| Closure | `foo::bar::{{closure}}` |
| Anonymous function | `fn() -> String` |
| Function pointer | `fn() -> String` |
This is much better. While it can't distinguish between function
pointers and anonymous functions, this doesn't matter too much since we
only care about whether we can _name_ the function.
So why didn't we implement this in #14098?
#### Relying on `type_name`
While this solution was known about while working on #14098, it was left
out from that PR due to it being potentially controversial.
The [docs](https://doc.rust-lang.org/stable/std/any/fn.type_name.html)
for `std::any::type_name` state:
> The returned string must not be considered to be a unique identifier
of a type as multiple types may map to the same type name. Similarly,
there is no guarantee that all parts of a type will appear in the
returned string: for example, lifetime specifiers are currently not
included. In addition, the output may change between versions of the
compiler.
So that's it then? We can't use `type_name`?
Well, this statement isn't so much a rule as it is a guideline. And Bevy
is no stranger to bending the rules to make things work or to improve
ergonomics. Remember that before `TypePath`, Bevy's scene system was
entirely dependent on `type_name`. Not to mention that `type_name` is
being used as a key into both the `TypeRegistry` and the
`FunctionRegistry`.
Bevy's practices aside, can we reliably use `type_name` for this?
My answer would be "yes".
Anonymous functions are anonymous. They have no name. There's nothing
Rust could do to give them a name apart from generating a random string
of characters. But remember that this is a diagnostic tool, it doesn't
make sense to obfuscate the type by randomizing the output. So changing
it to be anything other than what it is now is very unlikely.
The only changes that I could potentially see happening are:
1. Closures replace `{{closure}}` with the name of their variable
2. Lifetimes are included in the output
I don't think the first is likely to happen, but if it does then it
actually works out in our favor: closures are now named!
The second point is probably the likeliest. However, adding lifetimes
doesn't mean we can't still rely on `type_name` to determine whether or
not a function is named. So we should be okay in this case as well.
## Solution
Parse the `type_name` of the function in the `TypedFunction` impl to
determine if the function is named or anonymous.
This once again makes `FunctionInfo::name` optional. For manual
constructions of `DynamicFunction`, `FunctionInfo::named` or
``FunctionInfo::anonymous` can be used.
The `FunctionRegistry` API has also been reworked to account for this
change.
`FunctionRegistry::register` no longer takes a name and instead takes it
from the supplied function, returning a
`FunctionRegistrationError::MissingName` error if the name is `None`.
This also doubles as a replacement for the old
`FunctionRegistry::register_dynamic` method, which has been removed.
To handle anonymous functions, a `FunctionRegistry::register_with_name`
method has been added. This works in the same way
`FunctionRegistry::register` used to work before this PR.
The overwriting methods have been updated in a similar manner, with
modifications to `FunctionRegistry::overwrite_registration`, the removal
of `FunctionRegistry::overwrite_registration_dynamic`, and the addition
of `FunctionRegistry::overwrite_registration_with_name`.
This PR also updates the methods on `App` in a similar way:
`App::register_function` no longer requires a name argument and
`App::register_function_with_name` has been added to handle anonymous
functions (and eventually closures).
## Testing
You can run the tests locally by running:
```
cargo test --package bevy_reflect --features functions
```
---
## Internal Migration Guide
> [!important]
> Function reflection was introduced as part of the 0.15 dev cycle. This
migration guide was written for developers relying on `main` during this
cycle, and is not a breaking change coming from 0.14.
> [!note]
> This list is not exhaustive. It only contains some of the most
important changes.
`FunctionRegistry::register` no longer requires a name string for named
functions. Anonymous functions, however, need to be registered using
`FunctionRegistry::register_with_name`.
```rust
// BEFORE
registry
.register(std::any::type_name_of_val(&foo), foo)?
.register("bar", || println!("Hello world!"));
// AFTER
registry
.register(foo)?
.register_with_name("bar", || println!("Hello world!"));
```
`FunctionInfo::name` is now optional. Anonymous functions and closures
will now have their name set to `None` by default. Additionally,
`FunctionInfo::new` has been renamed to `FunctionInfo::named`.
This PR is based on top of #12982
# Objective
- Mesh2d currently only has an alpha blended phase. Most sprites don't
need transparency though.
- For some 2d games it can be useful to have a 2d depth buffer
## Solution
- Add an opaque phase to render Mesh2d that don't need transparency
- This phase currently uses the `SortedRenderPhase` to make it easier to
implement based on the already existing transparent phase. A follow up
PR will switch this to `BinnedRenderPhase`.
- Add a 2d depth buffer
- Use that depth buffer in the transparent phase to make sure that
sprites and transparent mesh2d are displayed correctly
## Testing
I added the mesh2d_transforms example that layers many opaque and
transparent mesh2d to make sure they all get displayed correctly. I also
confirmed it works with sprites by modifying that example locally.
---
## Changelog
- Added `AlphaMode2d`
- Added `Opaque2d` render phase
- Camera2d now have a `ViewDepthTexture` component
## Migration Guide
- `ColorMaterial` now contains `AlphaMode2d`. To keep previous
behaviour, use `AlphaMode::BLEND`. If you know your sprite is opaque,
use `AlphaMode::OPAQUE`
## Follow up PRs
- See tracking issue: #13265
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Christopher Biscardi <chris@christopherbiscardi.com>
# Objective
- I made a mistake when fixing the merge conflicts here:
https://github.com/bevyengine/bevy/pull/14579#discussion_r1705377452
It wasn't caught because there's no easy way to trigger access conflicts
with resources without triggering them with components first.
# Objective
- Fixes#14142
## Solution
- Make sure a regression test is written on this case that fails for the
current code base but works with the suggested patch linked in the
aforementioned issue. After this is confirmed to be working, apply the
patch.
## Testing
- Run the regression test in both contexts, outputs were as expected.
# Objective
This PR makes `bevy_render` an optional dependency for `bevy_gizmos`,
thereby allowing `bevy_gizmos` to be used with alternative rendering
backend.
Previously `bevy_gizmos` assumes that one of `bevy_pbr` or `bevy_sprite`
will be enabled. Here we introduced a new feature named `bevy_render`
which disables all rendering-related code paths. An alternative renderer
will then take the `LineGizmo` assets (made public in this PR) and issue
draw calls on their own. A new field `config_ty` was added to
`LineGizmo` to help looking up the related configuration info.
---
## Migration Guide
No user-visible changes needed from the users.