# Objective
Fixes#8894Fixes#7944
## Solution
The UI pipeline's `MultisampleState::count` is set to 1 whereas the
`MultisampleState::count` for the camera's ViewTarget is taken from the
`Msaa` resource, and corruption occurs when these two values are
different.
This PR solves the problem by setting `MultisampleState::count` for the
UI pipeline to the value from the Msaa resource too.
I don't know much about Bevy's rendering internals or graphics hardware,
so maybe there is a better solution than this. UI MSAA was probably
disabled for a good reason (performance?).
## Changelog
* Enabled multisampling for the UI pipeline.
# Objective
Continue #7867 now that we have URect #7984
- Return `URect` instead of `(UVec2, UVec2)` in
`Camera::physical_viewport_rect`
- Add `URect` and `IRect` to prelude
## Changelog
- Changed `Camera::physical_viewport_rect` return type from `(UVec2,
UVec2)` to `URect`
- `URect` and `IRect` were added to prelude
## Migration Guide
Before:
```rust
fn view_physical_camera_rect(camera_query: Query<&Camera>) {
let camera = camera_query.single();
let Some((min, max)) = camera.physical_viewport_rect() else { return };
dbg!(min, max);
}
```
After:
```rust
fn view_physical_camera_rect(camera_query: Query<&Camera>) {
let camera = camera_query.single();
let Some(URect { min, max }) = camera.physical_viewport_rect() else { return };
dbg!(min, max);
}
```
# Objective
`ExtractedUiNodes` is cleared by the `extract_uinodes` function during
the extraction schedule. Because the Bevy UI renderer uses a painters
algorithm, this makes it impossible for users to create a custom
extraction function that adds items for a node to be drawn behind the
rectangle added by `extract_uniodes`.
## Solution
Drain `ExtractedUiNodes` in `prepare_ui_nodes` instead, after the
extraction schedule has finished.
CI-capable version of #9086
---------
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François <mockersf@gmail.com>
# Objective
Fix typos throughout the project.
## Solution
[`typos`](https://github.com/crate-ci/typos) project was used for
scanning, but no automatic corrections were applied. I checked
everything by hand before fixing.
Most of the changes are documentation/comments corrections. Also, there
are few trivial changes to code (variable name, pub(crate) function name
and a few error/panic messages).
## Unsolved
`bevy_reflect_derive` has
[typo](1b51053f19/crates/bevy_reflect/bevy_reflect_derive/src/type_path.rs (L76))
in enum variant name that I didn't fix. Enum is `pub(crate)`, so there
shouldn't be any trouble if fixed. However, code is tightly coupled with
macro usage, so I decided to leave it for more experienced contributor
just in case.
I created this manually as Github didn't want to run CI for the
workflow-generated PR. I'm guessing we didn't hit this in previous
releases because we used bors.
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
# Objective
fixes#8911, #7712
## Solution
Rounding was added to Taffy which fixed issue #7712.
The implementation uses the f32 `round` method which rounds ties
(fractional part is a half) away from zero. Issue #8911 occurs when a
node's min and max bounds on either axis are "ties" and zero is between
them. Then the bounds are rounded away from each other, and the node
grows by a pixel. This alone shouldn't cause the node to expand
continuously, but I think there is some interaction with the way Taffy
recomputes a layout from its cached data that I didn't identify.
This PR fixes#8911 by first disabling Taffy's internal rounding and
using an alternative rounding function that rounds ties up.
Then, instead of rounding the values of the internal layout tree as
Taffy's built-in rounding does, we leave those values unmodified and
only the values stored in the components are rounded. This requires
walking the tree for the UI node geometry update rather than iterating
through a query.
Because the component values are regenerated each update, that should
mean that UI updates are idempotent (ish) now and make the growing node
behaviour seen in issue #8911 impossible.
I expected a performance regression, but it's an improvement on main:
```
cargo run --profile stress-test --features trace_tracy --example many_buttons
```
<img width="461" alt="ui-rounding-fix-compare"
src="https://github.com/bevyengine/bevy/assets/27962798/914bfd50-e18a-4642-b262-fafa69005432">
I guess it makes sense to do the rounding together with the node size
and position updates.
---
## Changelog
`bevy_ui::layout`:
* Taffy's built-in rounding is disabled and rounding is now performed by
`ui_layout_system`.
* Instead of rounding the values of the internal layout tree as Taffy's
built-in rounding does, we leave those values unmodified and only the
values stored in the components are rounded. This requires walking the
tree for the UI node geometry update rather than iterating through a
query. Because the component values are regenerated each update, that
should mean that UI updates are idempotent now and make the growing node
behaviour seen in issue #8911 impossible.
* Added two helper functions `round_ties_up` and
`round_layout_coordinates`.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
After the UI layout is computed when the coordinates are converted back
from physical coordinates to logical coordinates the `UiScale` is
ignored. This results in a confusing situation where we have two
different systems of logical coordinates.
Example:
```rust
use bevy::prelude::*;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(Update, update)
.run();
}
fn setup(mut commands: Commands, mut ui_scale: ResMut<UiScale>) {
ui_scale.scale = 4.;
commands.spawn(Camera2dBundle::default());
commands.spawn(NodeBundle {
style: Style {
align_items: AlignItems::Center,
justify_content: JustifyContent::Center,
width: Val::Percent(100.),
..Default::default()
},
..Default::default()
})
.with_children(|builder| {
builder.spawn(NodeBundle {
style: Style {
width: Val::Px(100.),
height: Val::Px(100.),
..Default::default()
},
background_color: Color::MAROON.into(),
..Default::default()
}).with_children(|builder| {
builder.spawn(TextBundle::from_section("", TextStyle::default());
});
});
}
fn update(
mut text_query: Query<(&mut Text, &Parent)>,
node_query: Query<Ref<Node>>,
) {
for (mut text, parent) in text_query.iter_mut() {
let node = node_query.get(parent.get()).unwrap();
if node.is_changed() {
text.sections[0].value = format!("size: {}", node.size());
}
}
}
```
result:
![Bevy App 30_05_2023
16_54_32](https://github.com/bevyengine/bevy/assets/27962798/a5ecbf31-0a12-4669-87df-b0c32f058732)
We asked for a 100x100 UI node but the Node's size is multiplied by the
value of `UiScale` to give a logical size of 400x400.
## Solution
Divide the output physical coordinates by `UiScale` in
`ui_layout_system` and multiply the logical viewport size by `UiScale`
when creating the projection matrix for the UI's `ExtractedView` in
`extract_default_ui_camera_view`.
---
## Changelog
* The UI layout's physical coordinates are divided by both the window
scale factor and `UiScale` when converting them back to logical
coordinates. The logical size of Ui nodes now matches the values given
to their size constraints.
* Multiply the logical viewport size by `UiScale` before creating the
projection matrix for the UI's `ExtractedView` in
`extract_default_ui_camera_view`.
* In `ui_focus_system` the cursor position returned from `Window` is
divided by `UiScale`.
* Added a scale factor parameter to `Node::physical_size` and
`Node::physical_rect`.
* The example `viewport_debug` now uses a `UiScale` of 2. to ensure that
viewport coordinates are working correctly with a non-unit `UiScale`.
## Migration Guide
Physical UI coordinates are now divided by both the `UiScale` and the
window's scale factor to compute the logical sizes and positions of UI
nodes.
This ensures that UI Node size and position values, held by the `Node`
and `GlobalTransform` components, conform to the same logical coordinate
system as the style constraints from which they are derived,
irrespective of the current `scale_factor` and `UiScale`.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Fix#8984
### Solution
- Address compilation errors
I admit: I did sneak it an unrelated mini-refactor. of the
`measurment.rs` module. it seemed to me that directly importing `taffy`
types helped reduce a lot of boilerplate, so I did it.
# Objective
**This implementation is based on
https://github.com/bevyengine/rfcs/pull/59.**
---
Resolves#4597
Full details and motivation can be found in the RFC, but here's a brief
summary.
`FromReflect` is a very powerful and important trait within the
reflection API. It allows Dynamic types (e.g., `DynamicList`, etc.) to
be formed into Real ones (e.g., `Vec<i32>`, etc.).
This mainly comes into play concerning deserialization, where the
reflection deserializers both return a `Box<dyn Reflect>` that almost
always contain one of these Dynamic representations of a Real type. To
convert this to our Real type, we need to use `FromReflect`.
It also sneaks up in other ways. For example, it's a required bound for
`T` in `Vec<T>` so that `Vec<T>` as a whole can be made `FromReflect`.
It's also required by all fields of an enum as it's used as part of the
`Reflect::apply` implementation.
So in other words, much like `GetTypeRegistration` and `Typed`, it is
very much a core reflection trait.
The problem is that it is not currently treated like a core trait and is
not automatically derived alongside `Reflect`. This makes using it a bit
cumbersome and easy to forget.
## Solution
Automatically derive `FromReflect` when deriving `Reflect`.
Users can then choose to opt-out if needed using the
`#[reflect(from_reflect = false)]` attribute.
```rust
#[derive(Reflect)]
struct Foo;
#[derive(Reflect)]
#[reflect(from_reflect = false)]
struct Bar;
fn test<T: FromReflect>(value: T) {}
test(Foo); // <-- OK
test(Bar); // <-- Panic! Bar does not implement trait `FromReflect`
```
#### `ReflectFromReflect`
This PR also automatically adds the `ReflectFromReflect` (introduced in
#6245) registration to the derived `GetTypeRegistration` impl— if the
type hasn't opted out of `FromReflect` of course.
<details>
<summary><h4>Improved Deserialization</h4></summary>
> **Warning**
> This section includes changes that have since been descoped from this
PR. They will likely be implemented again in a followup PR. I am mainly
leaving these details in for archival purposes, as well as for reference
when implementing this logic again.
And since we can do all the above, we might as well improve
deserialization. We can now choose to deserialize into a Dynamic type or
automatically convert it using `FromReflect` under the hood.
`[Un]TypedReflectDeserializer::new` will now perform the conversion and
return the `Box`'d Real type.
`[Un]TypedReflectDeserializer::new_dynamic` will work like what we have
now and simply return the `Box`'d Dynamic type.
```rust
// Returns the Real type
let reflect_deserializer = UntypedReflectDeserializer::new(®istry);
let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?;
let output: SomeStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?;
// Returns the Dynamic type
let reflect_deserializer = UntypedReflectDeserializer::new_dynamic(®istry);
let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?;
let output: DynamicStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?;
```
</details>
---
## Changelog
* `FromReflect` is now automatically derived within the `Reflect` derive
macro
* This includes auto-registering `ReflectFromReflect` in the derived
`GetTypeRegistration` impl
* ~~Renamed `TypedReflectDeserializer::new` and
`UntypedReflectDeserializer::new` to
`TypedReflectDeserializer::new_dynamic` and
`UntypedReflectDeserializer::new_dynamic`, respectively~~ **Descoped**
* ~~Changed `TypedReflectDeserializer::new` and
`UntypedReflectDeserializer::new` to automatically convert the
deserialized output using `FromReflect`~~ **Descoped**
## Migration Guide
* `FromReflect` is now automatically derived within the `Reflect` derive
macro. Items with both derives will need to remove the `FromReflect`
one.
```rust
// OLD
#[derive(Reflect, FromReflect)]
struct Foo;
// NEW
#[derive(Reflect)]
struct Foo;
```
If using a manual implementation of `FromReflect` and the `Reflect`
derive, users will need to opt-out of the automatic implementation.
```rust
// OLD
#[derive(Reflect)]
struct Foo;
impl FromReflect for Foo {/* ... */}
// NEW
#[derive(Reflect)]
#[reflect(from_reflect = false)]
struct Foo;
impl FromReflect for Foo {/* ... */}
```
<details>
<summary><h4>Removed Migrations</h4></summary>
> **Warning**
> This section includes changes that have since been descoped from this
PR. They will likely be implemented again in a followup PR. I am mainly
leaving these details in for archival purposes, as well as for reference
when implementing this logic again.
* The reflect deserializers now perform a `FromReflect` conversion
internally. The expected output of `TypedReflectDeserializer::new` and
`UntypedReflectDeserializer::new` is no longer a Dynamic (e.g.,
`DynamicList`), but its Real counterpart (e.g., `Vec<i32>`).
```rust
let reflect_deserializer =
UntypedReflectDeserializer::new_dynamic(®istry);
let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?;
// OLD
let output: DynamicStruct = reflect_deserializer.deserialize(&mut
deserializer)?.take()?;
// NEW
let output: SomeStruct = reflect_deserializer.deserialize(&mut
deserializer)?.take()?;
```
Alternatively, if this behavior isn't desired, use the
`TypedReflectDeserializer::new_dynamic` and
`UntypedReflectDeserializer::new_dynamic` methods instead:
```rust
// OLD
let reflect_deserializer = UntypedReflectDeserializer::new(®istry);
// NEW
let reflect_deserializer =
UntypedReflectDeserializer::new_dynamic(®istry);
```
</details>
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
operate on naga IR directly to improve handling of shader modules.
- give codespan reporting into imported modules
- allow glsl to be used from wgsl and vice-versa
the ultimate objective is to make it possible to
- provide user hooks for core shader functions (to modify light
behaviour within the standard pbr pipeline, for example)
- make automatic binding slot allocation possible
but ... since this is already big, adds some value and (i think) is at
feature parity with the existing code, i wanted to push this now.
## Solution
i made a crate called naga_oil (https://github.com/robtfm/naga_oil -
unpublished for now, could be part of bevy) which manages modules by
- building each module independantly to naga IR
- creating "header" files for each supported language, which are used to
build dependent modules/shaders
- make final shaders by combining the shader IR with the IR for imported
modules
then integrated this into bevy, replacing some of the existing shader
processing stuff. also reworked examples to reflect this.
## Migration Guide
shaders that don't use `#import` directives should work without changes.
the most notable user-facing difference is that imported
functions/variables/etc need to be qualified at point of use, and
there's no "leakage" of visible stuff into your shader scope from the
imports of your imports, so if you used things imported by your imports,
you now need to import them directly and qualify them.
the current strategy of including/'spreading' `mesh_vertex_output`
directly into a struct doesn't work any more, so these need to be
modified as per the examples (e.g. color_material.wgsl, or many others).
mesh data is assumed to be in bindgroup 2 by default, if mesh data is
bound into bindgroup 1 instead then the shader def `MESH_BINDGROUP_1`
needs to be added to the pipeline shader_defs.
# Objective
In Bevy 10.1 and before, the only way to enable text wrapping was to set
a local `Val::Px` width constraint on the text node itself.
`Val::Percent` constraints and constraints on the text node's ancestors
did nothing.
#7779 fixed those problems. But perversely displaying unwrapped text is
really difficult now, and requires users to nest each `TextBundle` in a
`NodeBundle` and apply `min_width` and `max_width` constraints. Some
constructions may even need more than one layer of nesting. I've seen
several people already who have really struggled with this when porting
their projects to main in advance of 0.11.
## Solution
Add a `NoWrap` variant to the `BreakLineOn` enum.
If `NoWrap` is set, ignore any constraints on the width for the text and
call `TextPipeline::queue_text` with a width bound of `f32::INFINITY`.
---
## Changelog
* Added a `NoWrap` variant to the `BreakLineOn` enum.
* If `NoWrap` is set, any constraints on the width for the text are
ignored and `TextPipeline::queue_text` is called with a width bound of
`f32::INFINITY`.
* Changed the `size` field of `FixedMeasure` to `pub`. This shouldn't
have been private, it was always intended to have `pub` visibility.
* Added a `with_no_wrap` method to `TextBundle`.
## Migration Guide
`bevy_text::text::BreakLineOn` has a new variant `NoWrap` that disables
text wrapping for the `Text`.
Text wrapping can also be disabled using the `with_no_wrap` method of
`TextBundle`.
# Objective
- Fix this error to be able to run UI examples in WebGPU
```
1 error(s) generated while compiling the shader:
:31:18 error: integral user-defined vertex outputs must have a flat interpolation attribute
@location(3) mode: u32,
^^^^
:36:1 note: while analyzing entry point 'vertex'
fn vertex(
^^
```
It was introduce in #8793
## Solution
- Add `@interpolate(flat)` to the `mode` field
# Objective
In Bevy main, the unconstrained size of an `ImageBundle` or
`AtlasImageBundle` UI node is based solely on the size of its texture
and doesn't change with window scale factor or `UiScale`.
## Solution
* The size field of each `ImageMeasure` should be multiplied by the
current combined scale factor.
* Each `ImageMeasure` should be updated when the combined scale factor
is changed.
## Example:
```rust
use bevy::prelude::*;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.insert_resource(UiScale { scale: 1.5 })
.add_systems(Startup, setup)
.run();
}
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
commands.spawn(Camera2dBundle::default());
commands.spawn(NodeBundle {
style: Style {
// The size of the "bevy_logo_dark.png" texture is 520x130 pixels
width: Val::Px(520.),
height: Val::Px(130.),
..Default::default()
},
background_color: Color::RED.into(),
..Default::default()
});
commands
.spawn(ImageBundle {
style: Style {
position_type: PositionType::Absolute,
..Default::default()
},
image: UiImage::new(asset_server.load("bevy_logo_dark.png")),
..Default::default()
});
}
```
The red node is given a size with the same dimensions as the texture. So
we would expect the texture to fill the node exactly.
* Result with Bevy main branch bb59509d44:
<img width="400" alt="image-size-broke"
src="https://github.com/bevyengine/bevy/assets/27962798/19fd927d-ecc5-49a7-be05-c121a8df163f">
* Result with this PR (and Bevy 0.10.1):
<img width="400" alt="image-size-fixed"
src="https://github.com/bevyengine/bevy/assets/27962798/40b47820-5f2d-408f-88ef-9e2beb9c92a0">
---
## Changelog
`bevy_ui::widget::image`
* Update all `ImageMeasure`s on changes to the window scale factor or
`UiScale`.
* Multiply `ImageMeasure::size` by the window scale factor and
`UiScale`.
## Migration Guide
# Objective
`prepare_uinodes` creates a new `UiBatch` whenever the texture changes,
when most often it's just queuing untextured quads. Instead of switching
textures, we can reduce the number of batches generated significantly by
adding a condition to the fragment shader so that it only multiplies by
the `textureSample` value when drawing a textured quad.
# Solution
Add a `mode` field to `UiVertex`.
In `prepare_uinodes` set `mode` to 0 if the quad is textured or 1 if
untextured.
Add a condition to the fragment shader that only multiplies by the
`color` value from `textureSample` if `mode` is set to 1.
---
## Changelog
* Added a `mode` field to `UiVertex`, and added an extra `u32` vertex
attribute to the shader and vertex buffer layout.
* In `prepare_uinodes` mode is set to 0 for the vertices of textured
quads, and 1 if untextured.
* Added a condition to the fragment shader in `ui.wgsl` that only
multiplies by the `color` value from `textureSample` if the mode is
equal to 0.
# Objective
- Better consistency with `add_systems`.
- Deprecating `add_plugin` in favor of a more powerful `add_plugins`.
- Allow passing `Plugin` to `add_plugins`.
- Allow passing tuples to `add_plugins`.
## Solution
- `App::add_plugins` now takes an `impl Plugins` parameter.
- `App::add_plugin` is deprecated.
- `Plugins` is a new sealed trait that is only implemented for `Plugin`,
`PluginGroup` and tuples over `Plugins`.
- All examples, benchmarks and tests are changed to use `add_plugins`,
using tuples where appropriate.
---
## Changelog
### Changed
- `App::add_plugins` now accepts all types that implement `Plugins`,
which is implemented for:
- Types that implement `Plugin`.
- Types that implement `PluginGroup`.
- Tuples (up to 16 elements) over types that implement `Plugins`.
- Deprecated `App::add_plugin` in favor of `App::add_plugins`.
## Migration Guide
- Replace `app.add_plugin(plugin)` calls with `app.add_plugins(plugin)`.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
The "bevy_text" feature attributes for the `PrimaryWindow`, `Window` and
`TextureAtlas` imports in `bevy_ui::render` are used by non-text systems
(`extract_uinode_borders` and `extract_atlas_uinodes`) and need to be
removed.
# Objective
This adds support for using texture atlas sprites in UI. From
discussions today in the ui-dev discord it seems this is a much wanted
feature.
This was previously attempted in #5070 by @ManevilleF however that was
blocked #5103. This work can be easily modified to support #5103 changes
after that merges.
## Solution
I created a new UI bundle that reuses the existing texture atlas
infrastructure. I create a new atlas image component to prevent it from
being drawn by the existing non-UI systems and to remove unused
parameters.
In extract I added new system to calculate the required values for the
texture atlas image, this extracts into the same resource as the
existing UI Image and Text components.
This should have minimal performance impact because if texture atlas is
not present then the exact same code path is followed. Also there should
be no unintended behavior changes because without the new components the
existing systems write the extract same resulting data.
I also added an example showing the sprite working and a system to
advance the animation on space bar presses.
Naming is hard and I would accept any feedback on the bundle name!
---
## Changelog
> Added TextureAtlasImageBundle
---------
Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
# Objective
Discovered that PointLight did not implement FromReflect. Adding
FromReflect where Reflect is used. I overreached and applied this rule
everywhere there was a Reflect without a FromReflect, except from where
the compiler wouldn't allow me.
Based from question: https://github.com/bevyengine/bevy/discussions/8774
## Solution
- Adding FromReflect where Reflect was already derived
## Notes
First PR I do in this ecosystem, so not sure if this is the usual
approach, that is, to touch many files at once.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Make the UI code more concise.
## Solution
Add two utility methods to make manipulating `UiRect` from code more
concise:
- `UiRect::px()` create a new `UiRect` like the `new()` function, but
with values in logical pixels directly.
- `UiRect::percent()` is similar, with values as percentages.
This saves a lot of typing and makes UI code more compact while
retaining readability.
---
## Changelog
### Added
Added two new constructors `UiRect::px()` and `UiRect::percent()` to
create a new `UiRect` from values directly specified in logical pixels
and percentages, respectively. The argument order is the same as
`UiRect::new()`, but avoids having to repeat `Val::Px` and
`Val::Percent`, respectively.
# Objective
Implement borders for UI nodes.
Relevant discussion: #7785
Related: #5924, #3991
<img width="283" alt="borders"
src="https://user-images.githubusercontent.com/27962798/220968899-7661d5ec-6f5b-4b0f-af29-bf9af02259b5.PNG">
## Solution
Add an extraction function to draw the borders.
---
Can only do one colour rectangular borders due to the limitations of the
Bevy UI renderer.
Maybe it can be combined with #3991 eventually to add curved border
support.
## Changelog
* Added a component `BorderColor`.
* Added the `extract_uinode_borders` system to the UI Render App.
* Added the UI example `borders`
---------
Co-authored-by: Nico Burns <nico@nicoburns.com>
# Objective
- Some reflect components weren't properly registered.
## Solution
- We register them
- I also sorted the register lines in `Plugin::build` in `bevy_ui`
### Note
How I did I find them:
- I picked up the list of `Component`s from the `Component` trait page
in rustdoc.
- Then I tried to register all of them. Removing the registration when
it doesn't implement `Reflect` to pass compilation.
- Then I added `app.register_type_data::<T, Foo>()`, for all Reflect
components. It panics if `T` is not registered.
- I repeated the last line N times until bevy stopped panicking at
startup
---
## Changelog
- Register the following components: `PrimaryWindow` `Fxaa`
`FogSettings` `NotShadowCaster` `NotShadowReceiver` `CalculatedClip`
`RelativeCursorPosition`
# Objective
This calculation is performed componentwise but all the values are
vectors so it should be using vector operations.
Works correctly with the `relative_cursor_position` example.
# Objective
- Simplify API and make authoring styles easier
See:
https://github.com/bevyengine/bevy/issues/8540#issuecomment-1536177102
## Solution
- The `size`, `min_size`, `max_size`, and `gap` properties have been
replaced by `width`, `height`, `min_width`, `min_height`, `max_width`,
`max_height`, `row_gap`, and `column_gap` properties
---
## Changelog
- Flattened `Style` properties that have a `Size` value directly into
`Style`
## Migration Guide
- The `size`, `min_size`, `max_size`, and `gap` properties have been
replaced by the `width`, `height`, `min_width`, `min_height`,
`max_width`, `max_height`, `row_gap`, and `column_gap` properties. Use
the new properties instead.
---------
Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
# Objective
* `Node::physical_rect` divides the logical size of the node by the
scale factor, when it should multiply.
* Add a `physical_size` method to `Node` that calculates the physical
size of a node.
---
## Changelog
* Added a method `physical_size` to `Node` that calculates the physical
size of the `Node` based on the given scale factor.
* Fixed the `Node::physical_rect` method, the logical size should be
multiplied by the scale factor to get the physical size.
* Removed the `scale_value` function from the `text` widget module and
replaced its usage with `Node::physical_size`.
* Derived `Copy` for `Node` (since it's only a wrapped `Vec2`).
* Made `Node::size` const.
# Objective
Replace `Query<&T, Changed<T>>` style queries with the more efficient
`Query<Ref<T>>` form in two of the UI systems.
---
## Changelog
Replaced use of `Changed` with `Ref` in queries in the
`ui_layout_system` and `calc_bounds` UI systems.
# Objective
`text_system` and `measure_text_system` both keep local queues to keep
track of text node entities that need recomputations/remeasurement,
which scales very badly with large numbers of text entities (O(n^2)) and
makes the code quite difficult to understand.
Also `text_system` filters for `Changed<Text>`, this isn't something
that it should do. When a text node entity fails to be processed by
`measure_text_system` because a font can't be found, the text node will
still be added to `text_system`'s local queue for recomputation. `Text`
should only ever be queued by `text_system` when a text node's geometry
is modified or a new measure is added.
## Solution
Remove the local text queues and use a component `TextFlags` to schedule
remeasurements and recomputations.
## Changelog
* Created a component `TextFlags` with fields `remeasure` and
`recompute`, which can be used to schedule a text `remeasure` or
`recomputation` respectively and added it to `TextBundle`.
* Removed the local text queues from `measure_text_system` and
`text_system` and instead use the `TextFlags` component to schedule
remeasurements and recomputations.
## Migration Guide
The component `TextFlags` has been added to `TextBundle`.
# Objective
Copy the `debug::print_tree` function from Taffy except display entity
ids instead of Taffy's node ids and indicate which ui nodes have a
measure func.
# Objective
- Support WebGPU
- alternative to #5027 that doesn't need any async / await
- fixes#8315
- Surprise fix#7318
## Solution
### For async renderer initialisation
- Update the plugin lifecycle:
- app builds the plugin
- calls `plugin.build`
- registers the plugin
- app starts the event loop
- event loop waits for `ready` of all registered plugins in the same
order
- returns `true` by default
- then call all `finish` then all `cleanup` in the same order as
registered
- then execute the schedule
In the case of the renderer, to avoid anything async:
- building the renderer plugin creates a detached task that will send
back the initialised renderer through a mutex in a resource
- `ready` will wait for the renderer to be present in the resource
- `finish` will take that renderer and place it in the expected
resources by other plugins
- other plugins (that expect the renderer to be available) `finish` are
called and they are able to set up their pipelines
- `cleanup` is called, only custom one is still for pipeline rendering
### For WebGPU support
- update the `build-wasm-example` script to support passing `--api
webgpu` that will build the example with WebGPU support
- feature for webgl2 was always enabled when building for wasm. it's now
in the default feature list and enabled on all platforms, so check for
this feature must also check that the target_arch is `wasm32`
---
## Migration Guide
- `Plugin::setup` has been renamed `Plugin::cleanup`
- `Plugin::finish` has been added, and plugins adding pipelines should
do it in this function instead of `Plugin::build`
```rust
// Before
impl Plugin for MyPlugin {
fn build(&self, app: &mut App) {
app.insert_resource::<MyResource>
.add_systems(Update, my_system);
let render_app = match app.get_sub_app_mut(RenderApp) {
Ok(render_app) => render_app,
Err(_) => return,
};
render_app
.init_resource::<RenderResourceNeedingDevice>()
.init_resource::<OtherRenderResource>();
}
}
// After
impl Plugin for MyPlugin {
fn build(&self, app: &mut App) {
app.insert_resource::<MyResource>
.add_systems(Update, my_system);
let render_app = match app.get_sub_app_mut(RenderApp) {
Ok(render_app) => render_app,
Err(_) => return,
};
render_app
.init_resource::<OtherRenderResource>();
}
fn finish(&self, app: &mut App) {
let render_app = match app.get_sub_app_mut(RenderApp) {
Ok(render_app) => render_app,
Err(_) => return,
};
render_app
.init_resource::<RenderResourceNeedingDevice>();
}
}
```
# Objective
fixes#8516
* Give `CalculatedSize` a more specific and intuitive name.
* `MeasureFunc`s should only be updated when their `CalculatedSize` is
modified by the systems managing their content.
For example, suppose that you have a UI displaying an image using an
`ImageNode`. When the window is resized, the node's `MeasureFunc` will
be updated even though the dimensions of the texture contained by the
node are unchanged.
* Fix the `CalculatedSize` API so that it no longer requires the extra
boxing and the `dyn_clone` method.
## Solution
* Rename `CalculatedSize` to `ContentSize`
* Only update `MeasureFunc`s on `CalculatedSize` changes.
* Remove the `dyn_clone` method from `Measure` and move the `Measure`
from the `ContentSize` component rather than cloning it.
* Change the measure_func field of `ContentSize` to type
`Option<taffy::node::MeasureFunc>`. Add a `set` method that wraps the
given measure appropriately.
---
## Changelog
* Renamed `CalculatedSize` to `ContentSize`.
* Replaced `upsert_leaf` with a function `update_measure` that only
updates the node's `MeasureFunc`.
* `MeasureFunc`s are only updated when the `ContentSize` changes and not
when the layout changes.
* Scale factor is no longer applied to the size values passed to the
`MeasureFunc`.
* Remove the `ContentSize` scaling in `text_system`.
* The `dyn_clone` method has been removed from the `Measure` trait.
* `Measure`s are moved from the `ContentSize` component instead of
cloning them.
* Added `set` method to `ContentSize` that replaces the `new` function.
## Migration Guide
* `CalculatedSize` has been renamed to `ContentSize`.
* The `upsert_leaf` function has been removed from `UiSurface` and
replaced with `update_measure` which updates the `MeasureFunc` without
node insertion.
* The `dyn_clone` method has been removed from the `Measure` trait.
* The new function of `CalculatedSize` has been replaced with the method
`set`.
# Objective
A lot of items in `bevy_ui` could be `FromReflect` but aren't. This
prevents users and library authors from being able to convert from a
`dyn Reflect` to one of these items.
## Solution
Derive `FromReflect` where possible. Also register the
`ReflectFromReflect` type data.
Links in the api docs are nice. I noticed that there were several places
where structs / functions and other things were referenced in the docs,
but weren't linked. I added the links where possible / logical.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
# Objective
The first query of `measure_text_system`'s `text_queries` `ParamSet`
queries for all changed `Text` meaning that non-UI `Text` entities could
be added to its queue.
## Solution
Add a `With<Node>` query filter.
---
## Changelog
changes:
* Added a `With<Node>` query filter to first query of
`measure_text_system`'s `text_queries` `ParamSet` to ensure that only UI
node entities are added to its local queue.
* Fixed comment (text is not computed on changes to style).
# Objective
If a UI node has a changed `CalculatedSize` component and either the UI
does a full update or the node also has a changed `Style` component, the
node's corresponding Taffy node will be updated twice by
`flex_node_system`.
## Solution
Add a `Without<Calculated>` query filter so that the two changed node
queries in `flex_node_system` are mutually exclusive and move the
`CalculatedSize` node updater into the else block of the full-update if
conditional.
# Objective
Split the UI overflow enum so that overflow can be set for each axis
separately.
## Solution
Change `Overflow` from an enum to a struct with `x` and `y`
`OverflowAxis` fields, where `OverflowAxis` is an enum with `Clip` and
`Visible` variants. Modify `update_clipping` to calculate clipping for
each axis separately. If only one axis is clipped, the other axis is
given infinite bounds.
<img width="642" alt="overflow"
src="https://user-images.githubusercontent.com/27962798/227592983-568cf76f-7e40-48c4-a511-43c886f5e431.PNG">
---
## Changelog
* Split the UI overflow implementation so overflow can be set for each
axis separately.
* Added the enum `OverflowAxis` with `Clip` and `Visible` variants.
* Changed `Overflow` to a struct with `x` and `y` fields of type
`OverflowAxis`.
* `Overflow` has new methods `visible()` and `hidden()` that replace its
previous `Clip` and `Visible` variants.
* Added `Overflow` helper methods `clip_x()` and `clip_y()` that return
a new `Overflow` value with the given axis clipped.
* Modified `update_clipping` so it calculates clipping for each axis
separately. If a node is only clipped on a single axis, the other axis
is given `-f32::INFINITY` to `f32::INFINITY` clipping bounds.
## Migration Guide
The `Style` property `Overflow` is now a struct with `x` and `y` fields,
that allow for per-axis overflow control.
Use these helper functions to replace the variants of `Overflow`:
* Replace `Overflow::Visible` with `Overflow::visible()`
* Replace `Overflow::Hidden` with `Overflow::clip()`
# Objective
Fixes#8415.
## Solution
I simply added the missing types to the type registry.
## Changelog
Added `#[reflect(Component]` to `bevi_ui::ui_node::ZIndex`, since it
impls `Component` and `Reflect.`
The following types have been added to the type registry:
1. `bevy_ui::ZIndex`
2. `bevy_math::Rect`
3. `bevy_text::BreakLineOn`
4. `bevy_text::Text2dBounds`
# Objective
Followup to #7779 which tweaks the actual text measurement algorithm to
be more robust.
Before:
<img width="822" alt="Screenshot 2023-04-17 at 18 12 05"
src="https://user-images.githubusercontent.com/1007307/232566858-3d3f0fd5-f3d4-400a-8371-3c2a3f541e56.png">
After:
<img width="810" alt="Screenshot 2023-04-17 at 18 41 40"
src="https://user-images.githubusercontent.com/1007307/232566919-4254cbfa-1cc3-4ea7-91ed-8ca1b759bacf.png">
(note extra space taken up in header in before example)
## Solution
- Text layout of horizontal text (currently the only kind of text we
support) is now based solely on the layout constraints in the horizontal
axis. It ignores constraints in the vertical axis and computes vertical
size based on wrapping subject to the horizontal axis constraints.
- I've also added a paragraph to the `grid` example for testing / demo
purposes.
# Objective
- Incorrectly resolved merge conflicts in
https://github.com/bevyengine/bevy/pull/8026 have caused UI text to not
render at all.
## Solution
Restore correct system schedule for text systems
# Objective
An easy way to create 2D grid layouts
## Solution
Enable the `grid` feature in Taffy and add new style types for defining
grids.
## Notes
- ~I'm having a bit of trouble getting `#[derive(Reflect)]` to work
properly. Help with that would be appreciated (EDIT: got it to compile
by ignoring the problematic fields, but this presumably can't be
merged).~ This is now fixed
- ~The alignment types now have a `Normal` variant because I couldn't
get reflect to work with `Option`.~ I've decided to stick with the
flattened variant, as it saves a level of wrapping when authoring
styles. But I've renamed the variants from `Normal` to `Default`.
- ~This currently exposes a simplified API on top of grid. In particular
the following is not currently supported:~
- ~Negative grid indices~ Now supported.
- ~Custom `end` values for grid placement (you can only use `start` and
`span`)~ Now supported
- ~`minmax()` track sizing functions~ minmax is now support through a
`GridTrack::minmax()` constructor
- ~`repeat()`~ repeat is now implemented as `RepeatedGridTrack`
- ~Documentation still needs to be improved.~ An initial pass over the
documentation has been completed.
## Screenshot
<img width="846" alt="Screenshot 2023-03-10 at 17 56 21"
src="https://user-images.githubusercontent.com/1007307/224435332-69aa9eac-123d-4856-b75d-5449d3f1d426.png">
---
## Changelog
- Support for CSS Grid layout added to `bevy_ui`
---------
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Andreas Weibye <13300393+Weibye@users.noreply.github.com>
# Objective
`text_system` runs before the UI layout is calculated and the size of
the text node is determined, so it cannot correctly shape the text to
fit the layout, and has no way of determining if the text needs to be
wrapped.
The function `text_constraint` attempts to determine the size of the
node from the local size constraints in the `Style` component. It can't
be made to work, you have to compute the whole layout to get the correct
size. A simple example of where this fails completely is a text node set
to stretch to fill the empty space adjacent to a node with size
constraints set to `Val::Percent(50.)`. The text node will take up half
the space, even though its size constraints are `Val::Auto`
Also because the `text_system` queries for changes to the `Style`
component, when a style value is changed that doesn't affect the node's
geometry the text is recomputed unnecessarily.
Querying on changes to `Node` is not much better. The UI layout is
changed to fit the `CalculatedSize` of the text, so the size of the node
is changed and so the text and UI layout get recalculated multiple times
from a single change to a `Text`.
Also, the `MeasureFunc` doesn't work at all, it doesn't have enough
information to fit the text correctly and makes no attempt.
Fixes#7663, #6717, #5834, #1490,
## Solution
Split the `text_system` into two functions:
* `measure_text_system` which calculates the size constraints for the
text node and runs before `UiSystem::Flex`
* `text_system` which runs after `UiSystem::Flex` and generates the
actual text.
* Fix the `MeasureFunc` calculations.
---
Text wrapping in main:
<img width="961" alt="Capturemain"
src="https://user-images.githubusercontent.com/27962798/220425740-4fe4bf46-24fb-4685-a1cf-bc01e139e72d.PNG">
With this PR:
<img width="961" alt="captured_wrap"
src="https://user-images.githubusercontent.com/27962798/220425807-949996b0-f127-4637-9f33-56a6da944fb0.PNG">
## Changelog
* Removed the previous fields from `CalculatedSize`. `CalculatedSize`
now contains a boxed `Measure`.
* Added `measurement` module to `bevy_ui`.
* Added the method `create_text_measure` to `TextPipeline`.
* Added a new system `measure_text_system` that runs before
`UiSystem::Flex` that creates a `MeasureFunc` for the text.
* Rescheduled `text_system` to run after `UiSystem::Flex`.
* Added a trait `Measure`. A `Measure` is used to compute the size of a
UI node when the size of that node is based on its content.
* Added `ImageMeasure` and `TextMeasure` which implement `Measure`.
* Added a new component `UiImageSize` which is used by
`update_image_calculated_size_system` to track image size changes.
* Added a `UiImageSize` component to `ImageBundle`.
## Migration Guide
`ImageBundle` has a new component `UiImageSize` which contains the size
of the image bundle's texture and is updated automatically by
`update_image_calculated_size_system`
---------
Co-authored-by: François <mockersf@gmail.com>
# Objective
We don't have a constructor function for `UiRect` that sets uniform
horizontal and vertical values, even though it is a common pattern.
## Solution
Add a constructor function to `UiRect` called `axes`, that sets both
`left` and `right` to the same given horizontal value,
and sets both `top` and `bottom` to same given vertical value.
## Changelog
* Added a constructor function `axes` to `UiRect`.
# Objective
The clippy lint `type_complexity` is known not to play well with bevy.
It frequently triggers when writing complex queries, and taking the
lint's advice of using a type alias almost always just obfuscates the
code with no benefit. Because of this, this lint is currently ignored in
CI, but unfortunately it still shows up when viewing bevy code in an
IDE.
As someone who's made a fair amount of pull requests to this repo, I
will say that this issue has been a consistent thorn in my side. Since
bevy code is filled with spurious, ignorable warnings, it can be very
difficult to spot the *real* warnings that must be fixed -- most of the
time I just ignore all warnings, only to later find out that one of them
was real after I'm done when CI runs.
## Solution
Suppress this lint in all bevy crates. This was previously attempted in
#7050, but the review process ended up making it more complicated than
it needs to be and landed on a subpar solution.
The discussion in https://github.com/rust-lang/rust-clippy/pull/10571
explores some better long-term solutions to this problem. Since there is
no timeline on when these solutions may land, we should resolve this
issue in the meantime by locally suppressing these lints.
### Unresolved issues
Currently, these lints are not suppressed in our examples, since that
would require suppressing the lint in every single source file. They are
still ignored in CI.
# Objective
Make the coordinate systems of screen-space items (cursor position, UI,
viewports, etc.) consistent.
## Solution
Remove the weird double inversion of the cursor position's Y origin.
Once in bevy_winit to the bottom and then again in bevy_ui back to the
top.
This leaves the origin at the top left like it is in every other popular
app framework.
Update the `world_to_viewport`, `viewport_to_world`, and
`viewport_to_world_2d` methods to flip the Y origin (as they should
since the viewport coordinates were always relative to the top left).
## Migration Guide
`Window::cursor_position` now returns the position of the cursor
relative to the top left instead of the bottom left.
This now matches other screen-space coordinates like
`RelativeCursorPosition`, UI, and viewports.
The `world_to_viewport`, `viewport_to_world`, and `viewport_to_world_2d`
methods on `Camera` now return/take the viewport position relative to
the top left instead of the bottom left.
If you were using `world_to_viewport` to position a UI node the returned
`y` value should now be passed into the `top` field on `Style` instead
of the `bottom` field.
Note that this might shift the position of the UI node as it is now
anchored at the top.
If you were passing `Window::cursor_position` to `viewport_to_world` or
`viewport_to_world_2d` no change is necessary.
# Objective
Text glyphs that were clipped were not sized correctly because the
transform extracted from the `extract_text_uinodes` had a scaling on it
that wasn't accounted for.
fixes#8167
## Solution
Remove the scaling from the transform and multiply the size of the
glyphs by the inverse of the scale factor.
# Objective
Add helper functions to `UiImage` for creating flipped images.
## Changelog
* Added `with_flip_x` and `with_flip_y` methods to `UiImage` that return
the `UiImage` flipped along the respective axis.
# Objective
When a `CalculatedSize` component from a UI Node entity is removed, the
corresponding Taffy measure isn't removed which will mess up the layout
in confusing, unpredictable ways.
## Solution
Iterate through all the entities with removed `CalculatedSize`
components and remove the corresponding Taffy measures.
# Objective
In the
[`Text`](3442a13d2c/crates/bevy_text/src/text.rs (L18))
struct the field is named: `linebreak_behaviour`, the British spelling
of _behavior_.
**Update**, also found:
- `FileDragAndDrop::HoveredFileCancelled`
- `TouchPhase::Cancelled`
- `Touches.just_cancelled`
The majority of all spelling is in the US but when you have a lot of
contributors across the world, sometimes
spelling differences can pop up in APIs such as in this case.
For consistency, I think it would be worth a while to ensure that the
API is persistent.
Some examples:
`from_reflect.rs` has `DefaultBehavior`
TextStyle has `color` and uses the `Color` struct.
In `bevy_input/src/Touch.rs` `TouchPhase::Cancelled` and _canceled_ are
used interchangeably in the documentation
I've found that there is also the same type of discrepancies in the
documentation, though this is a low priority but is worth checking.
**Update**: I've now checked the documentation (See #8291)
## Solution
I've only renamed the inconsistencies that have breaking changes and
documentation pertaining to them. The rest of the documentation will be
changed via #8291.
Do note that the winit API is written with UK spelling, thus this may be
a cause for confusion:
`winit::event::TouchPhase::Cancelled => TouchPhase::Canceled`
`winit::event::WindowEvent::HoveredFileCancelled` -> Related to
`FileDragAndDrop::HoveredFileCanceled`
But I'm hoping to maybe outline other spelling inconsistencies in the
API, and maybe an addition to the contribution guide.
---
## Changelog
- `Text` field `linebreak_behaviour` has been renamed to
`linebreak_behavior`.
- Event `FileDragAndDrop::HoveredFileCancelled` has been renamed to
`HoveredFileCanceled`
- Function `Touches.just_cancelled` has been renamed to
`Touches.just_canceled`
- Event `TouchPhase::Cancelled` has been renamed to
`TouchPhase::Canceled`
## Migration Guide
Update where `linebreak_behaviour` is used to `linebreak_behavior`
Updated the event `FileDragAndDrop::HoveredFileCancelled` where used to
`HoveredFileCanceled`
Update `Touches.just_cancelled` where used as `Touches.just_canceled`
The event `TouchPhase::Cancelled` is now called `TouchPhase::Canceled`
# Objective
Fixes#8089.
## Solution
Splits the MainPass3dNode into 2 nodes, one for the opaque + alpha
passes and one for the transparent pass.
---
## Changelog
- Split MainPass3dNode into MainOpaquePass3dNode and
MainTransparentPass3dNode
- Combine opaque and alpha phases in MainOpaquePass3dNode into one pass
- Create `START_MAIN_PASS` and `END_MAIN_PASS` empty nodes as labels
- Main pass becomes `START_MAIN_PASS -> MAIN_OPAQUE_PASS ->
MAIN_TRANSPARENT_PASS -> END_MAIN_PASS`
## Migration Guide
Nodes that previously added edges involving `MAIN_PASS` should now add
edges to or from `START_MAIN_PASS` or `END_MAIN_PASS` respectively.
# Objective
- Currently, the render graph slots are only used to pass the
view_entity around. This introduces significant boilerplate for very
little value. Instead of using slots for this, make the view_entity part
of the `RenderGraphContext`. This also means we won't need to have
`IN_VIEW` on every node and and we'll be able to use the default impl of
`Node::input()`.
## Solution
- Add `view_entity: Option<Entity>` to the `RenderGraphContext`
- Update all nodes to use this instead of entity slot input
---
## Changelog
- Add optional `view_entity` to `RenderGraphContext`
## Migration Guide
You can now get the view_entity directly from the `RenderGraphContext`.
When implementing the Node:
```rust
// 0.10
struct FooNode;
impl FooNode {
const IN_VIEW: &'static str = "view";
}
impl Node for FooNode {
fn input(&self) -> Vec<SlotInfo> {
vec![SlotInfo::new(Self::IN_VIEW, SlotType::Entity)]
}
fn run(
&self,
graph: &mut RenderGraphContext,
// ...
) -> Result<(), NodeRunError> {
let view_entity = graph.get_input_entity(Self::IN_VIEW)?;
// ...
Ok(())
}
}
// 0.11
struct FooNode;
impl Node for FooNode {
fn run(
&self,
graph: &mut RenderGraphContext,
// ...
) -> Result<(), NodeRunError> {
let view_entity = graph.view_entity();
// ...
Ok(())
}
}
```
When adding the node to the graph, you don't need to specify a slot_edge
for the view_entity.
```rust
// 0.10
let mut graph = RenderGraph::default();
graph.add_node(FooNode::NAME, node);
let input_node_id = draw_2d_graph.set_input(vec![SlotInfo::new(
graph::input::VIEW_ENTITY,
SlotType::Entity,
)]);
graph.add_slot_edge(
input_node_id,
graph::input::VIEW_ENTITY,
FooNode::NAME,
FooNode::IN_VIEW,
);
// add_node_edge ...
// 0.11
let mut graph = RenderGraph::default();
graph.add_node(FooNode::NAME, node);
// add_node_edge ...
```
## Notes
This PR paired with #8007 will help reduce a lot of annoying boilerplate
with the render nodes. Depending on which one gets merged first. It will
require a bit of clean up work to make both compatible.
I tagged this as a breaking change, because using the old system to get
the view_entity will break things because it's not a node input slot
anymore.
## Notes for reviewers
A lot of the diffs are just removing the slots in every nodes and graph
creation. The important part is mostly in the
graph_runner/CameraDriverNode.
# Objective
Add viewport variants to `Val` that specify a percentage length based on
the size of the window.
## Solution
Add the variants `Vw`, `Vh`, `VMin` and `VMax` to `Val`.
Add a physical window size parameter to the `from_style` function and
use it to convert the viewport variants to Taffy Points values.
One issue: It isn't responsive to window resizes. So `flex_node_system`
has to do a full update every time the window size changes. Perhaps this
can be fixed with support from Taffy.
---
## Changelog
* Added `Val` viewport unit variants `Vw`, `Vh`, `VMin` and `VMax`.
* Modified `convert` module to support the new `Val` variants.
* Changed `flex_node_system` to support the new `Val` variants.
* Perform full layout update on screen resizing, to propagate the new
viewport size to all nodes.
# Objective
Add comments explaining:
* That `Val::Px` is a value in logical pixels
* That `Val::Percent` is based on the length of its parent along a
specific axis.
* How the layout algorithm determines which axis the percentage should
be based on.
# Objective
Current `Node` doc comment:
```rust
/// The size of the node as width and height in pixels
/// automatically calculated by [`super::flex::flex_node_system`]
```
It should be changed to make it clear that `Node` stores the size in logical pixels, not physical.
# Objective
Upgrade to Taffy 0.3.3
Fixes: #7712
## Solution
Upgrade to Taffy 0.3.3 with the `grid` feature disabled.
---
## Changelog
* Changed Taffy version to 0.3.3 and disabled its `grid` feature.
* Added the `Start` and `End` variants to `AlignItems`, `AlignSelf`, `AlignContent` and `JustifyContent`.
* Added the `SpaceEvenly` variant to `AlignContent`.
* Updated `from_style` for Taffy 0.3.3.
# Objective
- Fixes#7874.
- The `bevy_text` dependency is optional for `bevy_ui`, but the `accessibility` module depended on it.
## Solution
- Guard the `accessibility` module behind the `bevy_text` feature and only add the plugin when it's enabled.
# Objective
UIs created for Bevy cannot currently be made accessible. This PR aims to address that.
## Solution
Integrate AccessKit as a dependency, adding accessibility support to existing bevy_ui widgets.
## Changelog
### Added
* Integrate with and expose [AccessKit](https://accesskit.dev) for platform accessibility.
* Add `Label` for marking text specifically as a label for UI controls.
# Objective
Support the following syntax for adding systems:
```rust
App::new()
.add_system(setup.on_startup())
.add_systems((
show_menu.in_schedule(OnEnter(GameState::Paused)),
menu_ssytem.in_set(OnUpdate(GameState::Paused)),
hide_menu.in_schedule(OnExit(GameState::Paused)),
))
```
## Solution
Add the traits `IntoSystemAppConfig{s}`, which provide the extension methods necessary for configuring which schedule a system belongs to. These extension methods return `IntoSystemAppConfig{s}`, which `App::add_system{s}` uses to choose which schedule to add systems to.
---
## Changelog
+ Added the extension methods `in_schedule(label)` and `on_startup()` for configuring the schedule a system belongs to.
## Future Work
* Replace all uses of `add_startup_system` in the engine.
* Deprecate this method
# Objective
- `bevy_text` used to be "optional". the feature could be disabled, which meant that the systems were not added but `bevy_text` was still compiled because of a hard dependency in `bevy_ui`
- Running something without `bevy_text` enabled and with `bevy_ui` enabled now crashes:
```
thread 'main' panicked at 'called `Option::unwrap()` on a `None` value', /bevy/crates/bevy_ecs/src/schedule/schedule.rs:1147:34
```
- This is because `bevy_ui` declares some of its systems in ambiguity sets with systems from `bevy_text`, which were not added if `bevy_text` is disabled
## Solution
- Make `bevy_text` completely optional
## Migration Guide
- feature `bevy_text` now completely removes `bevy_text` from the dependencies when not enabled. Enable feature `bevy_text` if you use Bevy to render text
# Objective
`TextBundle` should have a `BackgroundColor` component.
Apart from adding emphasis etc to text, adding a background color to text nodes can be extremely useful for understanding how Bevy aligns, sizes and positions text, and identifying and debugging problems.
It's easy for users to insert the `BackgroundColor` component themselves but not immediately obvious or discoverable that it's possible. A `BackgroundColor` component allows us to add a `with_background_color` helper function to `TextBundle`.
related issue: #5935
## Solution
Add a `BackgroundColor` component to `TextBundle`.
---
## Changelog
* Added a `BackgroundColor` component to `TextBundle`.
* Added a helper method `with_background_color` to `TextBundle`.
## Migration Guide
`TextBundle` now has a `BackgroundColor` component.
Use `TextBundle`'s `background_color` field or the `with_background_color` method to set a background color for text when spawning a text node, in place of manual insertion of a `BackgroundColor` component.
# Objective
Splits tone mapping from https://github.com/bevyengine/bevy/pull/6677 into a separate PR.
Address https://github.com/bevyengine/bevy/issues/2264.
Adds tone mapping options:
- None: Bypasses tonemapping for instances where users want colors output to match those set.
- Reinhard
- Reinhard Luminance: Bevy's exiting tonemapping
- [ACES](https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl) (Fitted version, based on the same implementation that Godot 4 uses) see https://github.com/bevyengine/bevy/issues/2264
- [AgX](https://github.com/sobotka/AgX)
- SomewhatBoringDisplayTransform
- TonyMcMapface
- Blender Filmic
This PR also adds support for EXR images so they can be used to compare tonemapping options with reference images.
## Migration Guide
- Tonemapping is now an enum with NONE and the various tonemappers.
- The DebandDither is now a separate component.
Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
# Objective
Allow for creating pipelines that use push constants. To be able to use push constants. Fixes#4825
As of right now, trying to call `RenderPass::set_push_constants` will trigger the following error:
```
thread 'main' panicked at 'wgpu error: Validation Error
Caused by:
In a RenderPass
note: encoder = `<CommandBuffer-(0, 59, Vulkan)>`
In a set_push_constant command
provided push constant is for stage(s) VERTEX | FRAGMENT | VERTEX_FRAGMENT, however the pipeline layout has no push constant range for the stage(s) VERTEX | FRAGMENT | VERTEX_FRAGMENT
```
## Solution
Add a field push_constant_ranges to` RenderPipelineDescriptor` and `ComputePipelineDescriptor`.
This PR supersedes #4908 which now contains merge conflicts due to significant changes to `bevy_render`.
Meanwhile, this PR also made the `layout` field of `RenderPipelineDescriptor` and `ComputePipelineDescriptor` non-optional. If the user do not need to specify the bind group layouts, they can simply supply an empty vector here. No need for it to be optional.
---
## Changelog
- Add a field push_constant_ranges to RenderPipelineDescriptor and ComputePipelineDescriptor
- Made the `layout` field of RenderPipelineDescriptor and ComputePipelineDescriptor non-optional.
## Migration Guide
- Add push_constant_ranges: Vec::new() to every `RenderPipelineDescriptor` and `ComputePipelineDescriptor`
- Unwrap the optional values on the `layout` field of `RenderPipelineDescriptor` and `ComputePipelineDescriptor`. If the descriptor has no layout, supply an empty vector.
Co-authored-by: Zhixing Zhang <me@neoto.xin>
# Objective
The current doc comment for `flex-basis` states that it is "The initial size of the item", which is a bit confusing since size in Bevy is mostly used to refer to two-dimensional extents but `flex-basis` is a one-dimensional value.
It also needs to explain that:
* `flex-basis` sets the initial length of the main axis.
* Overrides `size` on the main axis.
* Obeys the `min_size` and `max_size` constraints.
# Objective
The text contained by a text node is only recomputed when its `Style` or `Text` components change, or when the scale factor changes. Not when the geometry of the text node is modified.
Make it so that any change in text node size triggers a text recomputation.
## Solution
Change `text_system` so that it queries for text nodes with changed `Node` components and recomputes their text.
---
Most users won't notice any difference but it should fix some confusing edge cases in more complicated and interactive layouts.
## Changelog
* Added `Changed<Node>` to the change detection query of `text_system`. This ensures that any change in the size of a text node will cause any text it contains to be recomputed.
# Objective
Add doc tests for the `Size` constructor functions.
Also changed the function descriptions so they explicitly state the values that elided values are given.
## Changelog
* Added doc tests for the `Size` constructor functions.
# Objective
The `size` field of `CalculatedSize` shouldn't be a `Size` as it only ever stores (unscaled) pixel values. By default its fields are `Val::Auto` but these are converted to `0`s before being sent to Taffy.
## Solution
Change the `size` field of `CalculatedSize` to a Vec2.
## Changelog
* Changed the `size` field of `CalculatedSize` to a Vec2.
* Removed the `Val` <-> `f32` conversion code for `CalculatedSize`.
## Migration Guide
* The size field of `CalculatedSize` has been changed to a `Vec2`.
# Objective
`Size::width` sets the `height` field to `Val::DEFAULT` which is `Val::Undefined`, but the default for `Size` `height` is `Val::Auto`.
`Size::height` has the same problem, but with the `width` field.
The UI examples specify numeric values in many places where they could either be elided or replaced by composition of the Flex enum properties.
related: https://github.com/bevyengine/bevy/pull/7468
fixes: https://github.com/bevyengine/bevy/issues/6498
## Solution
Change `Size::width` so it sets `height` to `Val::AUTO` and change `Size::height` so it sets `width` to `Val::AUTO`.
Added some tests so this doesn't happen again.
## Changelog
Changed `Size::width` so it sets the `height` to `Val::AUTO`.
Changed `Size::height` so it sets the `width` to `Val::AUTO`.
Added tests to `geometry.rs` for `Size` and `UiRect` to ensure correct behaviour.
Simplified the UI examples. Replaced numeric values with the Flex property enums or elided them where possible, and removed the remaining use of auto margins.
## Migration Guide
The `Size::width` constructor function now sets the `height` to `Val::Auto` instead of `Val::Undefined`.
The `Size::height` constructor function now sets the `width` to `Val::Auto` instead of `Val::Undefined`.
fixes#6799
# Objective
We should be able to reuse the `Globals` or `View` shader struct definitions from anywhere (including third party plugins) without needing to worry about defining unrelated shader defs.
Also we'd like to refactor these structs to not be repeatedly defined.
## Solution
Refactor both `Globals` and `View` into separate importable shaders.
Use the imports throughout.
Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com>
# Objective
The current `AlignSelf` doc comments:
```rust
pub enum AlignSelf {
/// Use the value of [`AlignItems`]
Auto,
/// If the parent has [`AlignItems::Center`] only this item will be at the start
FlexStart,
/// If the parent has [`AlignItems::Center`] only this item will be at the end
FlexEnd,
/// If the parent has [`AlignItems::FlexStart`] only this item will be at the center
Center,
/// If the parent has [`AlignItems::Center`] only this item will be at the baseline
Baseline,
/// If the parent has [`AlignItems::Center`] only this item will stretch along the whole cross axis
Stretch,
}
```
Actual behaviour of `AlignSelf` in Bevy main:
<img width="642" alt="align_self" src="https://user-images.githubusercontent.com/27962798/217795178-7a82638f-118d-4474-b7f9-ca27f204731d.PNG">
The white label at the top of each column is the parent node's `AlignItems` setting.
`AlignSelf` is always applied, not (as the documentation states) only when the parent has `AlignItems::Center` or `AlignItems::FlexStart` set.
```rust
use bevy::prelude::*;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_startup_system(setup)
.run();
}
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
commands.spawn(Camera2dBundle::default());
commands.spawn(NodeBundle {
style: Style {
justify_content: JustifyContent::SpaceAround,
align_items: AlignItems::Center,
size: Size::new(Val::Percent(100.), Val::Percent(100.)),
..Default::default()
},
background_color: BackgroundColor(Color::NAVY),
..Default::default()
}).with_children(|builder| {
for align_items in [
AlignItems::Baseline,
AlignItems::FlexStart,
AlignItems::Center,
AlignItems::FlexEnd,
AlignItems::Stretch,
] {
builder.spawn(NodeBundle {
style: Style {
align_items,
flex_direction: FlexDirection::Column,
justify_content: JustifyContent::SpaceBetween,
size: Size::new(Val::Px(150.), Val::Px(500.)),
..Default::default()
},
background_color: BackgroundColor(Color::DARK_GRAY),
..Default::default()
}).with_children(|builder| {
builder.spawn((
TextBundle {
text: Text::from_section(
format!("AlignItems::{align_items:?}"),
TextStyle {
font: asset_server.load("fonts/FiraSans-Regular.ttf"),
font_size: 16.0,
color: Color::BLACK,
},
),
style: Style {
align_self: AlignSelf::Stretch,
..Default::default()
},
..Default::default()
},
BackgroundColor(Color::WHITE),
));
for align_self in [
AlignSelf::Auto,
AlignSelf::FlexStart,
AlignSelf::Center,
AlignSelf::FlexEnd,
AlignSelf::Baseline,
AlignSelf::Stretch,
] {
builder.spawn((
TextBundle {
text: Text::from_section(
format!("AlignSelf::{align_self:?}"),
TextStyle {
font: asset_server.load("fonts/FiraSans-Regular.ttf"),
font_size: 16.0,
color: Color::WHITE,
},
),
style: Style {
align_self,
..Default::default()
},
..Default::default()
},
BackgroundColor(Color::BLACK),
));
}
});
}
});
}
```
# Objective
Fix#7377Fix#7513
## Solution
Record the changes made to the Bevy `Window` from `winit` as 'canon' to avoid Bevy sending those changes back to `winit` again, causing a feedback loop.
## Changelog
* Removed `ModifiesWindows` system label.
Neither `despawn_window` nor `changed_window` actually modify the `Window` component so all the `.after(ModifiesWindows)` shouldn't be necessary.
* Moved `changed_window` and `despawn_window` systems to `CoreStage::Last` to avoid systems making changes to the `Window` between `changed_window` and the end of the frame as they would be ignored.
## Migration Guide
The `ModifiesWindows` system label was removed.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
NOTE: This depends on #7267 and should not be merged until #7267 is merged. If you are reviewing this before that is merged, I highly recommend viewing the Base Sets commit instead of trying to find my changes amongst those from #7267.
"Default sets" as described by the [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) have some [unfortunate consequences](https://github.com/bevyengine/bevy/discussions/7365).
## Solution
This adds "base sets" as a variant of `SystemSet`:
A set is a "base set" if `SystemSet::is_base` returns `true`. Typically this will be opted-in to using the `SystemSet` derive:
```rust
#[derive(SystemSet, Clone, Hash, Debug, PartialEq, Eq)]
#[system_set(base)]
enum MyBaseSet {
A,
B,
}
```
**Base sets are exclusive**: a system can belong to at most one "base set". Adding a system to more than one will result in an error. When possible we fail immediately during system-config-time with a nice file + line number. For the more nested graph-ey cases, this will fail at the final schedule build.
**Base sets cannot belong to other sets**: this is where the word "base" comes from
Systems and Sets can only be added to base sets using `in_base_set`. Calling `in_set` with a base set will fail. As will calling `in_base_set` with a normal set.
```rust
app.add_system(foo.in_base_set(MyBaseSet::A))
// X must be a normal set ... base sets cannot be added to base sets
.configure_set(X.in_base_set(MyBaseSet::A))
```
Base sets can still be configured like normal sets:
```rust
app.add_system(MyBaseSet::B.after(MyBaseSet::Ap))
```
The primary use case for base sets is enabling a "default base set":
```rust
schedule.set_default_base_set(CoreSet::Update)
// this will belong to CoreSet::Update by default
.add_system(foo)
// this will override the default base set with PostUpdate
.add_system(bar.in_base_set(CoreSet::PostUpdate))
```
This allows us to build apis that work by default in the standard Bevy style. This is a rough analog to the "default stage" model, but it use the new "stageless sets" model instead, with all of the ordering flexibility (including exclusive systems) that it provides.
---
## Changelog
- Added "base sets" and ported CoreSet to use them.
## Migration Guide
TODO
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR.
# Objective
- Followup #6587.
- Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45
## Solution
- [x] Remove old scheduling module
- [x] Migrate new methods to no longer use extension methods
- [x] Fix compiler errors
- [x] Fix benchmarks
- [x] Fix examples
- [x] Fix docs
- [x] Fix tests
## Changelog
### Added
- a large number of methods on `App` to work with schedules ergonomically
- the `CoreSchedule` enum
- `App::add_extract_system` via the `RenderingAppExtension` trait extension method
- the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms`
### Removed
- stages, and all code that mentions stages
- states have been dramatically simplified, and no longer use a stack
- `RunCriteriaLabel`
- `AsSystemLabel` trait
- `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition)
- systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world
- `RunCriteriaLabel`
- `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear.
### Changed
- `System::default_labels` is now `System::default_system_sets`.
- `App::add_default_labels` is now `App::add_default_sets`
- `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet`
- `App::add_system_set` was renamed to `App::add_systems`
- The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum
- `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)`
- `SystemLabel` trait was replaced by `SystemSet`
- `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>`
- The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq`
- Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria.
- Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied.
- `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`.
- `bevy_pbr::add_clusters` is no longer an exclusive system
- the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling`
- `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread.
## Migration Guide
- Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)`
- Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed.
- The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved.
- Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior.
- Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you.
- For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with
- `add_system(my_system.in_set(CoreSet::PostUpdate)`
- When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages
- Run criteria have been renamed to run conditions. These can now be combined with each other and with states.
- Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow.
- For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label.
- Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default.
- Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually.
- Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior.
- the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity
- `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl.
- Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings.
- `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds.
- `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool.
- States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set`
## TODO
- [x] remove dead methods on App and World
- [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule`
- [x] avoid adding the default system set at inappropriate times
- [x] remove any accidental cycles in the default plugins schedule
- [x] migrate benchmarks
- [x] expose explicit labels for the built-in command flush points
- [x] migrate engine code
- [x] remove all mentions of stages from the docs
- [x] verify docs for States
- [x] fix uses of exclusive systems that use .end / .at_start / .before_commands
- [x] migrate RenderStage and AssetStage
- [x] migrate examples
- [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub)
- [x] ensure that on_enter schedules are run at least once before the main app
- [x] re-enable opt-in to execution order ambiguities
- [x] revert change to `update_bounds` to ensure it runs in `PostUpdate`
- [x] test all examples
- [x] unbreak directional lights
- [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples)
- [x] game menu example shows loading screen and menu simultaneously
- [x] display settings menu is a blank screen
- [x] `without_winit` example panics
- [x] ensure all tests pass
- [x] SubApp doc test fails
- [x] runs_spawn_local tasks fails
- [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120)
## Points of Difficulty and Controversy
**Reviewers, please give feedback on these and look closely**
1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup.
2. The outer schedule controls which schedule is run when `App::update` is called.
3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes.
4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset.
5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order
6. Implemetnation strategy for fixed timesteps
7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks.
8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements.
## Future Work (ideally before 0.10)
- Rename schedule_v3 module to schedule or scheduling
- Add a derive macro to states, and likely a `EnumIter` trait of some form
- Figure out what exactly to do with the "systems added should basically work by default" problem
- Improve ergonomics for working with fixed timesteps and states
- Polish FixedTime API to match Time
- Rebase and merge #7415
- Resolve all internal ambiguities (blocked on better tools, especially #7442)
- Add "base sets" to replace the removed default sets.
# Objective
Fixes#7476. UI scale was being incorrectly ignored when a primary window exists.
## Solution
Always take into account UI scale, regardless of whether a primary window exists.
Tested locally on @forbjok 's minimal repro project https://github.com/forbjok/bevy_ui_repro with this patch, and the issue is fixed on my machine.
The `DoubleEndedIterator` impls produce incorrect results on subsequent calls to `iter()` if the iterator is only partially consumed.
The following code shows what happens
```rust
fn next_back_is_bad() {
let mut events = Events::<TestEvent>::default();
events.send(TestEvent { i: 0 });
events.send(TestEvent { i: 1 });
events.send(TestEvent { i: 2 });
let mut reader = events.get_reader();
let mut iter = reader.iter(&events);
assert_eq!(iter.next_back(), Some(&TestEvent { i: 2 }));
assert_eq!(iter.next(), Some(&TestEvent { i: 0 }));
let mut iter = reader.iter(&events);
// `i: 2` event is returned twice! The `i: 1` event is missed.
assert_eq!(iter.next(), Some(&TestEvent { i: 2 }));
assert_eq!(iter.next(), None);
}
```
I don't think this can be fixed without adding some very convoluted bookkeeping.
## Migration Guide
`ManualEventIterator` and `ManualEventIteratorWithId` are no longer `DoubleEndedIterator`s.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
Removal events are unwieldy and require some knowledge of when to put systems that need to catch events for them, it is very easy to end up missing one and end up with memory leak-ish issues where you don't clean up after yourself.
## Solution
Consolidate removals with the benefits of `Events<...>` (such as double buffering and per system ticks for reading the events) and reduce the special casing of it, ideally I was hoping to move the removals to a `Resource` in the world, but that seems a bit more rough to implement/maintain because of double mutable borrowing issues.
This doesn't go the full length of change detection esque removal detection a la https://github.com/bevyengine/rfcs/pull/44.
Just tries to make the current workflow a bit more user friendly so detecting removals isn't such a scheduling nightmare.
---
## Changelog
- RemovedComponents<T> is now backed by an `Events<Entity>` for the benefits of double buffering.
## Migration Guide
- Add a `mut` for `removed: RemovedComponents<T>` since we are now modifying an event reader internally.
- Iterating over removed components now requires `&mut removed_components` or `removed_components.iter()` instead of `&removed_components`.
# Objective
In CSS Flexbox width and height are auto by default, whereas in Bevy their default is `Size::Undefined`.
This means that, unlike in CSS, if you elide a height or width value for a node it will be given zero length (unless it has an explicitly sized child node). This has misled users into falsely assuming that they have to explicitly set a value for both height and width all the time.
relevant issue: #7120
## Solution
Change the `Size` `width` and `height` default values to `Val::Auto`
## Changelog
* Changed the `Size` `width` and `height` default values to `Val::Auto`
## Migration Guide
The default values for `Size` `width` and `height` have been changed from `Val::Undefined` to `Val::Auto`.
It's unlikely to cause any issues with existing code.
## Objective
A common easy to miss mistake is to write something like:
``` rust
Size::new(Val::Percent(100.), Val::Px(100.));
```
`UiRect` has the `left`, `right`, `all`, `vertical`, etc constructor functions, `Size` is used a lot more frequently but lacks anything similar.
## Solution
Implement `all`, `width` and `height` functions for `Size`.
## Changelog
* Added `all`, `width` and `height` functions to `Size`.
# Problem
The field is called `background_color` but it is also used to hold the colors of text glyphs and images.
It's mildly confusing and longer to type than just `color`.
## Solution
Rename `background_color` to `color`.
## Changelog
* Renamed the `background_color` field of `ExtractedUiNode` to `color`.
## Migration Guide
* The `background_color` field of `ExtractedUiNode` is now named `color`.
## Objective
Remove `QueuedText`.
`QueuedText` isn't useful. It's exposed in the `bevy_ui` public interface but can't be used for anything because its `entities` field is private.
## Solution
Remove the `QueuedText` struct and use a `Local<Vec<Entity>` in its place.
## Changelog
* Removed `QueuedText`
# Objective
In simple cases we might want to derive the `ExtractComponent` trait.
This adds symmetry to the existing `ExtractResource` derive.
## Solution
Add an implementation of `#[derive(ExtractComponent)]`.
The implementation is adapted from the existing `ExtractResource` derive macro.
Additionally, there is an attribute called `extract_component_filter`. This allows specifying a query filter type used when extracting.
If not specified, no filter (equal to `()`) is used.
So:
```rust
#[derive(Component, Clone, ExtractComponent)]
#[extract_component_filter(With<Fuel>)]
pub struct Car {
pub wheels: usize,
}
```
would expand to (a bit cleaned up here):
```rust
impl ExtractComponent for Car
{
type Query = &'static Self;
type Filter = With<Fuel>;
type Out = Self;
fn extract_component(item: QueryItem<'_, Self::Query>) -> Option<Self::Out> {
Some(item.clone())
}
}
```
---
## Changelog
- Added the ability to `#[derive(ExtractComponent)]` with an optional filter.
Co-authored-by: Robert Swain <robert.swain@gmail.com>
# Objective
Implements cascaded shadow maps for directional lights, which produces better quality shadows without needing excessively large shadow maps.
Fixes#3629
Before
![image](https://user-images.githubusercontent.com/1222141/210061203-bbd965a4-8d11-4cec-9a88-67fc59d0819f.png)
After
![image](https://user-images.githubusercontent.com/1222141/210061334-2ff15334-e6d7-4a31-9314-f34a7805cac6.png)
## Solution
Rather than rendering a single shadow map for directional light, the view frustum is divided into a series of cascades, each of which gets its own shadow map. The correct cascade is then sampled for shadow determination.
---
## Changelog
Directional lights now use cascaded shadow maps for improved shadow quality.
## Migration Guide
You no longer have to manually specify a `shadow_projection` for a directional light, and these settings should be removed. If customization of how cascaded shadow maps work is desired, modify the `CascadeShadowConfig` component instead.
# Problem
The `upsert_leaf` method creates a new `MeasureFunc` and, if required, a new leaf node, but then it only adds the new `MeasureFunc` to existing leaf nodes.
## Solution
Add the `MeasureFunc` to new leaf nodes as well.
# Objective
Speed up `prepare_uinodes`. The color `[f32; 4]` is being computed separately for every vertex in the UI, even though the color is the same for all 6 verticies.
## Solution
Avoid recomputing the color and cache it for all 6 verticies.
## Performance
On `many_buttons`, this shaved off 33% of the time in `prepare_uinodes` (7.67ms -> 5.09ms) on my local machine.
![image](https://user-images.githubusercontent.com/3137680/213862448-236ac6e4-040a-4c86-a801-b947d99cc581.png)
# Objective
Currently, Text always uses the default linebreaking behaviour in glyph_brush_layout `BuiltInLineBreaker::Unicode` which breaks lines at word boundaries. However, glyph_brush_layout also supports breaking lines at any character by setting the linebreaker to `BuiltInLineBreaker::AnyChar`. Having text wrap character-by-character instead of at word boundaries is desirable in some cases - consider that consoles/terminals usually wrap this way.
As a side note, the default Unicode linebreaker does not seem to handle emergency cases, where there is no word boundary on a line to break at. In that case, the text runs out of bounds. Issue #1867 shows an example of this.
## Solution
Basically just copies how TextAlignment is exposed, but for a new enum TextLineBreakBehaviour.
This PR exposes glyph_brush_layout's two simple linebreaking options (Unicode, AnyChar) to users of Text via the enum TextLineBreakBehaviour (which just translates those 2 aforementioned options), plus a method 'with_linebreak_behaviour' on Text and TextBundle.
## Changelog
Added `Text::with_linebreak_behaviour`
Added `TextBundle::with_linebreak_behaviour`
`TextPipeline::queue_text` and `GlyphBrush::compute_glyphs` now need a TextLineBreakBehaviour argument, in order to pass through the new field.
Modified the `text2d` example to show both linebreaking behaviours.
## Example
Here's what the modified example looks like
![image](https://user-images.githubusercontent.com/117271367/213589184-b1a54bf3-116c-4721-8cb6-1cb69edb3070.png)
# Objective
- Fixes#7288
- Do not expose access directly to cursor position as it is the physical position, ignoring scale
## Solution
- Make cursor position private
- Expose getter/setter on the window to have access to the scale
## Problem
`extract_uinodes` checks if an image is loaded for nodes without images
## Solution
Move the image loading skip check so that it is only performed for nodes with a `UiImage` component.
# Objective
Fix https://github.com/bevyengine/bevy/issues/4530
- Make it easier to open/close/modify windows by setting them up as `Entity`s with a `Window` component.
- Make multiple windows very simple to set up. (just add a `Window` component to an entity and it should open)
## Solution
- Move all properties of window descriptor to ~components~ a component.
- Replace `WindowId` with `Entity`.
- ~Use change detection for components to update backend rather than events/commands. (The `CursorMoved`/`WindowResized`/... events are kept for user convenience.~
Check each field individually to see what we need to update, events are still kept for user convenience.
---
## Changelog
- `WindowDescriptor` renamed to `Window`.
- Width/height consolidated into a `WindowResolution` component.
- Requesting maximization/minimization is done on the [`Window::state`] field.
- `WindowId` is now `Entity`.
## Migration Guide
- Replace `WindowDescriptor` with `Window`.
- Change `width` and `height` fields in a `WindowResolution`, either by doing
```rust
WindowResolution::new(width, height) // Explicitly
// or using From<_> for tuples for convenience
(1920., 1080.).into()
```
- Replace any `WindowCommand` code to just modify the `Window`'s fields directly and creating/closing windows is now by spawning/despawning an entity with a `Window` component like so:
```rust
let window = commands.spawn(Window { ... }).id(); // open window
commands.entity(window).despawn(); // close window
```
## Unresolved
- ~How do we tell when a window is minimized by a user?~
~Currently using the `Resize(0, 0)` as an indicator of minimization.~
No longer attempting to tell given how finnicky this was across platforms, now the user can only request that a window be maximized/minimized.
## Future work
- Move `exit_on_close` functionality out from windowing and into app(?)
- https://github.com/bevyengine/bevy/issues/5621
- https://github.com/bevyengine/bevy/issues/7099
- https://github.com/bevyengine/bevy/issues/7098
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Add useful information about cursor position relative to a UI node. Fixes#7079.
## Solution
- Added a new `RelativeCursorPosition` component
---
## Changelog
- Added
- `RelativeCursorPosition`
- an example showcasing the new component
Co-authored-by: Dawid Piotrowski <41804418+Pietrek14@users.noreply.github.com>
# Objective
- Allow rendering queue systems to use a `Res<PipelineCache>` even for queueing up new rendering pipelines. This is part of unblocking parallel execution queue systems.
## Solution
- Make `PipelineCache` internally mutable w.r.t to queueing new pipelines. Pipelines are no longer immediately updated into the cache state, but rather queued into a Vec. The Vec of pending new pipelines is then later processed at the same time we actually create the queued pipelines on the GPU device.
---
## Changelog
`PipelineCache` no longer requires mutable access in order to queue render / compute pipelines.
## Migration Guide
* Most usages of `resource_mut::<PipelineCache>` and `ResMut<PipelineCache>` can be changed to `resource::<PipelineCache>` and `Res<PipelineCache>` as long as they don't use any methods requiring mutability - the only public method requiring it is `process_queue`.
# Objective
- While building UI, it makes more sense for most nodes to have a `FocusPolicy` of `Pass`, so that user interaction can correctly bubble
- Only `ButtonBundle` blocks by default
This change means that for someone adding children to a button, it's not needed to change the focus policy of those children to `Pass` for the button to continue to work.
---
## Changelog
- `FocusPolicy` default has changed from `FocusPolicy::Block` to `FocusPolicy::Pass`
## Migration Guide
- `FocusPolicy` default has changed from `FocusPolicy::Block` to `FocusPolicy::Pass`
# Objective
- Fixes#7066
## Solution
- Split the ChangeDetection trait into ChangeDetection and ChangeDetectionMut
- Added Ref as equivalent to &T with change detection
---
## Changelog
- Support for Ref which allow inspecting change detection flags in an immutable way
## Migration Guide
- While bevy prelude includes both ChangeDetection and ChangeDetectionMut any code explicitly referencing ChangeDetection might need to be updated to ChangeDetectionMut or both. Specifically any reading logic requires ChangeDetection while writes requires ChangeDetectionMut.
use bevy_ecs::change_detection::DetectChanges -> use bevy_ecs::change_detection::{DetectChanges, DetectChangesMut}
- Previously Res had methods to access change detection `is_changed` and `is_added` those methods have been moved to the `DetectChanges` trait. If you are including bevy prelude you will have access to these types otherwise you will need to `use bevy_ecs::change_detection::DetectChanges` to continue using them.
# Objective
Speed up the render phase for rendering.
## Solution
- Follow up #6988 and make the internals of atomic IDs `NonZeroU32`. This niches the `Option`s of the IDs in draw state, which reduces the size and branching behavior when evaluating for equality.
- Require `&RenderDevice` to get the device's `Limits` when initializing a `TrackedRenderPass` to preallocate the bind groups and vertex buffer state in `DrawState`, this removes the branch on needing to resize those `Vec`s.
## Performance
This produces a similar speed up akin to that of #6885. This shows an approximate 6% speed up in `main_opaque_pass_3d` on `many_foxes` (408.79 us -> 388us). This should be orthogonal to the gains seen there.
![image](https://user-images.githubusercontent.com/3137680/209906239-e430f026-63c2-4b95-957e-a2045b810d79.png)
---
## Changelog
Added: `RenderContext::begin_tracked_render_pass`.
Changed: `TrackedRenderPass` now requires a `&RenderDevice` on construction.
Removed: `bevy_render::render_phase::DrawState`. It was not usable in any form outside of `bevy_render`.
## Migration Guide
TODO
# Objective
- Fixes#5529
## Solution
- Add assosciated constants named DEFAULT to as many types as possible
- Add const to as many methods in bevy_ui as possible
I have not applied the same treatment to the bundles in bevy_ui as it would require going into other bevy crates to implement const defaults for structs in bevy_text or relies on UiImage which calls HandleUntyped.typed() which isn't const safe.
Alternatively the defaults could relatively easily be turned into a macro to regain some of the readability and conciseness at the cost of explicitness.
Such a macro that partially implements this exists as a crate here: [const-default](https://docs.rs/const-default/latest/const_default/derive.ConstDefault.html) but does not support enums.
Let me know if there's anything I've missed or if I should push further into other crates.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Speed up the render phase of rendering. Simplify the trait structure for render commands.
## Solution
- Merge `EntityPhaseItem` into `PhaseItem` (`EntityPhaseItem::entity` -> `PhaseItem::entity`)
- Merge `EntityRenderCommand` into `RenderCommand`.
- Add two associated types to `RenderCommand`: `RenderCommand::ViewWorldQuery` and `RenderCommand::WorldQuery`.
- Use the new associated types to construct two `QueryStates`s for `RenderCommandState`.
- Hoist any `SQuery<T>` fetches in `EntityRenderCommand`s into the aformentioned two queries. Batch fetch them all at once.
## Performance
`main_opaque_pass_3d` is slightly faster on `many_foxes` (427.52us -> 401.15us)
![image](https://user-images.githubusercontent.com/3137680/206359804-9928b20a-7d92-41f8-bf7d-6e8c5cc802f0.png)
The shadow pass node is also slightly faster (344.52 -> 338.24us)
![image](https://user-images.githubusercontent.com/3137680/206359977-1212198d-f933-49a0-80f1-62ff88eb5727.png)
## Future Work
- Can we hoist the view level queries out of the core loop?
---
## Changelog
Added: `PhaseItem::entity`
Added: `RenderCommand::ViewWorldQuery` associated type.
Added: `RenderCommand::ItemorldQuery` associated type.
Added: `Draw<T>::prepare` optional trait function.
Removed: `EntityPhaseItem` trait
## Migration Guide
TODO
# Objective
- The recently merged PR #7013 does not allow multiple `RenderPhase`s to share the same `RenderPass`.
- Due to the introduced overhead we want to minimize the number of `RenderPass`es recorded during each frame.
## Solution
- Take a constructed `TrackedRenderPass` instead of a `RenderPassDiscriptor` as a parameter to the `RenderPhase::render` method.
---
## Changelog
To enable multiple `RenderPhases` to share the same `TrackedRenderPass`,
the `RenderPhase::render` signature has changed.
```rust
pub fn render<'w>(
&self,
render_pass: &mut TrackedRenderPass<'w>,
world: &'w World,
view: Entity)
```
Co-authored-by: Kurt Kühnert <51823519+kurtkuehnert@users.noreply.github.com>
# Objective
All `RenderPhases` follow the same render procedure.
The same code is duplicated multiple times across the codebase.
## Solution
I simply extracted this code into a method on the `RenderPhase`.
This avoids code duplication and makes setting up new `RenderPhases` easier.
---
## Changelog
### Changed
You can now set up the rendering code of a `RenderPhase` directly using the `RenderPhase::render` method, instead of implementing it manually in your render graph node.
# Objective
Upgrade to Taffy 0.2
## Solution
Do it
## Changelog
Upgraded to Taffy 0.2, improving UI layout performance significantly and adding the flexbox `gap` property and `AlignContent::SpaceEvenly`.
## Notes
`many_buttons` is 8% faster! speed improvements for more highly nested UIs will be much more dramatic. Great work, Team Taffy.
The Camera link in the UiCameraConfig was not rendered properly by the documentation.
# Objective
- In the UiCameraConfig page (https://docs.rs/bevy/latest/bevy/prelude/struct.UiCameraConfig.html), a link to the Camera page (https://docs.rs/bevy/latest/bevy/render/camera/struct.Camera.html) is broken.
## Solution
- It seems that when using URL fragment specifiers, backtick should not be used. It might be an issue of rust itself. Replacing the URL fragment specifier `[`Camera`]: bevy_render:📷:Camera` with `[Camera]: bevy_render:📷:Camera` solves this.
## Objective
Bevy UI uses a `MeasureFunc` that preserves the aspect ratio of text, not just images. This means that the extent of flex-items containing text may be calculated incorrectly depending on the ratio of the text size compared to the size of its containing node.
Fixes#6748
Related to #6724
with Bevy 0.9:
![Capture_cols_0 9](https://user-images.githubusercontent.com/27962798/205435999-386d3400-fe9b-475a-aab1-18e61c4c074f.PNG)
with this PR (accurately matching the behavior of Flexbox):
![Capture_fixed](https://user-images.githubusercontent.com/27962798/205436005-6bafbcc2-cd87-4eb7-b5c6-9dbcb30fc795.PNG)
## Solution
Only perform the aspect ratio calculations if the uinode contains an image.
## Changelog
* Added a field `preserve_aspect_ratio` to `CalculatedSize`
* The `MeasureFunc` only preserves the aspect ratio when `preserve_aspect_ratio` is true.
* `update_image_calculated_size_system` sets `preserve_aspect_ratio` to true for nodes with images.
# Objective
Change detection can be spuriously triggered by setting a field to the same value as before. As a result, a common pattern is to write:
```rust
if *foo != value {
*foo = value;
}
```
This is confusing to read, and heavy on boilerplate.
Adopted from #5373, but untangled and rebased to current `bevy/main`.
## Solution
1. Add a method to the `DetectChanges` trait that implements this boilerplate when the appropriate trait bounds are met.
2. Document this minor footgun, and point users to it.
## Changelog
* added the `set_if_neq` method to avoid triggering change detection when the new and previous values are equal. This will work on both components and resources.
## Migration Guide
If you are manually checking if a component or resource's value is equal to its new value before setting it to avoid triggering change detection, migrate to the clearer and more convenient `set_if_neq` method.
## Context
Related to #2363 as it avoids triggering change detection, but not a complete solution (as it still requires triggering it when real changes are made).
Co-authored-by: Zoey <Dessix@Dessix.net>
# Objective
- Every usage of `DrawFunctionsInternals::get_id()` was followed by a `.unwrap()`. which just adds boilerplate.
## Solution
- Introduce a fallible version of `DrawFunctionsInternals::get_id()` and use it where possible.
- I also took the opportunity to improve the error message a little in the case where it fails.
---
## Changelog
- Added `DrawFunctionsInternals::id()`
# Objective
Fixes#6642
In a way that doesn't create any breaking changes, as a possible way to fix the above in a patch release.
## Solution
Don't actually remove font atlases when `max_font_atlases` is exceeded. Add a warning instead.
Keep `TextError::ExceedMaxTextAtlases` and `TextSettings` as-is so we don't break anything.
This is a bit of a cop-out, but the problems revealed by #6642 seem very challenging to fix properly.
Maybe follow up later with something more like https://github.com/rparrett/bevy/commits/remove-max-font-atlases later, if this is the direction we want to go.
## Note
See previous attempt at a "simple fix" that only solved some of the issues: #6666
# Objective
`add_node_edge` and `add_slot_edge` are fallible methods, but are always used with `.unwrap()`.
`input_node` is often unwrapped as well.
This points to having an infallible behaviour as default, with an alternative fallible variant if needed.
Improves readability and ergonomics.
## Solution
- Change `add_node_edge` and `add_slot_edge` to panic on error.
- Change `input_node` to panic on `None`.
- Add `try_add_node_edge` and `try_add_slot_edge` in case fallible methods are needed.
- Add `get_input_node` to still be able to get an `Option`.
---
## Changelog
### Added
- `try_add_node_edge`
- `try_add_slot_edge`
- `get_input_node`
### Changed
- `add_node_edge` is now infallible (panics on error)
- `add_slot_edge` is now infallible (panics on error)
- `input_node` now panics on `None`
## Migration Guide
Remove `.unwrap()` from `add_node_edge` and `add_slot_edge`.
For cases where the error was handled, use `try_add_node_edge` and `try_add_slot_edge` instead.
Remove `.unwrap()` from `input_node`.
For cases where the option was handled, use `get_input_node` instead.
Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com>
# Objective
Allow more use cases where the user may benefit from both `ExtractComponentPlugin` _and_ `UniformComponentPlugin`.
## Solution
Add an associated type to `ExtractComponent` in order to allow specifying the output component (or bundle).
Make `extract_component` return an `Option<_>` such that components can be extracted only when needed.
What problem does this solve?
`ExtractComponentPlugin` allows extracting components, but currently the output type is the same as the input.
This means that use cases such as having a settings struct which turns into a uniform is awkward.
For example we might have:
```rust
struct MyStruct {
enabled: bool,
val: f32
}
struct MyStructUniform {
val: f32
}
```
With the new approach, we can extract `MyStruct` only when it is enabled, and turn it into its related uniform.
This chains well with `UniformComponentPlugin`.
The user may then:
```rust
app.add_plugin(ExtractComponentPlugin::<MyStruct>::default());
app.add_plugin(UniformComponentPlugin::<MyStructUniform>::default());
```
This then saves the user a fair amount of boilerplate.
## Changelog
### Changed
- `ExtractComponent` can specify output type, and outputting is optional.
Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com>
# Objective
Delete `ImageMode`. It doesn't do anything except mislead people into thinking it controls the aspect ratio of images somehow.
Fixes#3933 and #6637
## Solution
Delete `ImageMode`
## Changelog
Removes the `ImageMode` enum.
Removes the `image_mode` field from `ImageBundle`
Removes the `With<ImageMode>` query filter from `image_node_system`
Renames `image_node_system` to` update_image_calculated_size_system`
# Objective
Fixes#6594
## Solution
- `New` function for `Size` is now a `const` function :)
## Changelog
- `New` function for `Size` is now a `const` function
## Migration Guide
- Nothing has been changed
# Objective
Fixes #3225, Allow for flippable UI Images
## Solution
Add flip_x and flip_y fields to UiImage, and swap the UV coordinates accordingly in ui_prepare_nodes.
## Changelog
* Changes UiImage to a struct with texture, flip_x, and flip_y fields.
* Adds flip_x and flip_y fields to ExtractedUiNode.
* Changes extract_uinodes to extract the flip_x and flip_y values from UiImage.
* Changes prepare_uinodes to swap the UV coordinates as required.
* Changes UiImage derefs to texture field accesses.
This reverts commit 8429b6d6ca as discussed in #6522.
I tested that the game_menu example works as it should.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
`NodeBundle` contains an `image` field, which can be misleading, because if you do supply an image there, nothing will be shown to screen. You need to use an `ImageBundle` instead.
## Solution
* `image` (`UiImage`) field is removed from `NodeBundle`,
* extraction stage queries now make an optional query for `UiImage`, if one is not found, use the image handle that is used as a default by `UiImage`: c019a60b39/crates/bevy_ui/src/ui_node.rs (L464)
* touching up docs for `NodeBundle` to help guide what `NodeBundle` should be used for
* renamed `entity.rs` to `node_bundle.rs` as that gives more of a hint regarding the module's purpose
* separating `camera_config` stuff from the pre-made UI node bundles so that `node_bundle.rs` makes more sense as a module name.
# Objective
Bevy UI (and third party plugins) currently have no good way to position themselves after all post processing effects. They currently use the tonemapping node, but this is not adequate if there is anything after tonemapping (such as FXAA).
## Solution
Add a logical `END_MAIN_PASS_POST_PROCESSING` RenderGraph node that main pass post processing effects position themselves before, and things like UIs can position themselves after.
# Objective
The UI pass in HDR breaks currently because the color attachment format does not match the HDR ViewTarget.
## Solution
Specialize the UI pipeline on "hdr-ness" and select the appropriate format (like we do in the other built in pipelines).
# Objective
Replace `WorldQueryGats` trait with actual gats
## Solution
Replace `WorldQueryGats` trait with actual gats
---
## Changelog
- Replaced `WorldQueryGats` trait with actual gats
## Migration Guide
- Replace usage of `WorldQueryGats` assoc types with the actual gats on `WorldQuery` trait
# Objective
Add consistent UI rendering and interaction where deep nodes inside two different hierarchies will never render on top of one-another by default and offer an escape hatch (z-index) for nodes to change their depth.
## The problem with current implementation
The current implementation of UI rendering is broken in that regard, mainly because [it sets the Z value of the `Transform` component based on a "global Z" space](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/update.rs#L43) shared by all nodes in the UI. This doesn't account for the fact that each node's final `GlobalTransform` value will be relative to its parent. This effectively makes the depth unpredictable when two deep trees are rendered on top of one-another.
At the moment, it's also up to each part of the UI code to sort all of the UI nodes. The solution that's offered here does the full sorting of UI node entities once and offers the result through a resource so that all systems can use it.
## Solution
### New ZIndex component
This adds a new optional `ZIndex` enum component for nodes which offers two mechanism:
- `ZIndex::Local(i32)`: Overrides the depth of the node relative to its siblings.
- `ZIndex::Global(i32)`: Overrides the depth of the node relative to the UI root. This basically allows any node in the tree to "escape" the parent and be ordered relative to the entire UI.
Note that in the current implementation, omitting `ZIndex` on a node has the same result as adding `ZIndex::Local(0)`. Additionally, the "global" stacking context is essentially a way to add your node to the root stacking context, so using `ZIndex::Local(n)` on a root node (one without parent) will share that space with all nodes using `Index::Global(n)`.
### New UiStack resource
This adds a new `UiStack` resource which is calculated from both hierarchy and `ZIndex` during UI update and contains a vector of all node entities in the UI, ordered by depth (from farthest from camera to closest). This is exposed publicly by the bevy_ui crate with the hope that it can be used for consistent ordering and to reduce the amount of sorting that needs to be done by UI systems (i.e. instead of sorting everything by `global_transform.z` in every system, this array can be iterated over).
### New z_index example
This also adds a new z_index example that showcases the new `ZIndex` component. It's also a good general demo of the new UI stack system, because making this kind of UI was very broken with the old system (e.g. nodes would render on top of each other, not respecting hierarchy or insert order at all).
![image](https://user-images.githubusercontent.com/1060971/189015985-8ea8f989-0e9d-4601-a7e0-4a27a43a53f9.png)
---
## Changelog
- Added the `ZIndex` component to bevy_ui.
- Added the `UiStack` resource to bevy_ui, and added implementation in a new `stack.rs` module.
- Removed the previous Z updating system from bevy_ui, because it was replaced with the above.
- Changed bevy_ui rendering to use UiStack instead of z ordering.
- Changed bevy_ui focus/interaction system to use UiStack instead of z ordering.
- Added a new z_index example.
## ZIndex demo
Here's a demo I wrote to test these features
https://user-images.githubusercontent.com/1060971/188329295-d7beebd6-9aee-43ab-821e-d437df5dbe8a.mp4
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
This reverts commit 53d387f340.
# Objective
Reverts #6448. This didn't have the intended effect: we're now getting bevy::prelude shown in the docs again.
Co-authored-by: Alejandro Pascual <alejandro.pascual.pozo@gmail.com>
# Objective
- Right now re-exports are completely hidden in prelude docs.
- Fixes#6433
## Solution
- We could show the re-exports without inlining their documentation.
# Objective
Bevy still has many instances of using single-tuples `(T,)` to create a bundle. Due to #2975, this is no longer necessary.
## Solution
Search for regex `\(.+\s*,\)`. This should have found every instance.
# Objective
- fix new clippy lints before they get stable and break CI
## Solution
- run `clippy --fix` to auto-fix machine-applicable lints
- silence `clippy::should_implement_trait` for `fn HandleId::default<T: Asset>`
## Changes
- always prefer `format!("{inline}")` over `format!("{}", not_inline)`
- prefer `Box::default` (or `Box::<T>::default` if necessary) over `Box::new(T::default())`
# Objective
Bevy's internal plugins have lots of execution-order ambiguities, which makes the ambiguity detection tool very noisy for our users.
## Solution
Silence every last ambiguity that can currently be resolved.
Each time an ambiguity is silenced, it is accompanied by a comment describing why it is correct. This description should be based on the public API of the respective systems. Thus, I have added documentation to some systems describing how they use some resources.
# Future work
Some ambiguities remain, due to issues out of scope for this PR.
* The ambiguity checker does not respect `Without<>` filters, leading to false positives.
* Ambiguities between `bevy_ui` and `bevy_animation` cannot be resolved, since neither crate knows that the other exists. We will need a general solution to this problem.
Attempt to make features like bloom https://github.com/bevyengine/bevy/pull/2876 easier to implement.
**This PR:**
- Moves the tonemapping from `pbr.wgsl` into a separate pass
- also add a separate upscaling pass after the tonemapping which writes to the swap chain (enables resolution-independant rendering and post-processing after tonemapping)
- adds a `hdr` bool to the camera which controls whether the pbr and sprite shaders render into a `Rgba16Float` texture
**Open questions:**
- ~should the 2d graph work the same as the 3d one?~ it is the same now
- ~The current solution is a bit inflexible because while you can add a post processing pass that writes to e.g. the `hdr_texture`, you can't write to a separate `user_postprocess_texture` while reading the `hdr_texture` and tell the tone mapping pass to read from the `user_postprocess_texture` instead. If the tonemapping and upscaling render graph nodes were to take in a `TextureView` instead of the view entity this would almost work, but the bind groups for their respective input textures are already created in the `Queue` render stage in the hardcoded order.~ solved by creating bind groups in render node
**New render graph:**
![render_graph](https://user-images.githubusercontent.com/22177966/147767249-57dd4229-cfab-4ec5-9bf3-dc76dccf8e8b.png)
<details>
<summary>Before</summary>
![render_graph_old](https://user-images.githubusercontent.com/22177966/147284579-c895fdbd-4028-41cf-914c-e1ffef60e44e.png)
</details>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Proactive changing of code to comply with warnings generated by beta of rustlang version of cargo clippy.
## Solution
- Code changed as recommended by `rustup update`, `rustup default beta`, `cargo run -p ci -- clippy`.
- Tested using `beta` and `stable`. No clippy warnings in either after changes made.
---
## Changelog
- Warnings fixed were: `clippy::explicit-auto-deref` (present in 11 files), `clippy::needless-borrow` (present in 2 files), and `clippy::only-used-in-recursion` (only 1 file).
# Objective
- Reverts unnecessary version increase for `thiserror` caused by the following PR. 9066d51420
- The aforementioned PR should have increased `thiserrror` version uniformly across all bevy crates. As far as I can tell it was unneccessary to bump versions
## Solution
- Revert versions to the matching version used by other bevy "crates"
```
MBP-Larry-Du.local:~/Code/bevy:$ git grep thiserror
CHANGELOG.md:- [Derive thiserror::Error for HexColorError][2740]
crates/bevy_asset/Cargo.toml:thiserror = "1.0"
crates/bevy_asset/src/asset_server.rs:use thiserror::Error;
crates/bevy_asset/src/io/mod.rs:use thiserror::Error;
crates/bevy_gltf/Cargo.toml:thiserror = "1.0"
crates/bevy_gltf/src/loader.rs:use thiserror::Error;
crates/bevy_input/Cargo.toml:thiserror = "1.0"
crates/bevy_input/src/gamepad.rs:use thiserror::Error;
crates/bevy_reflect/Cargo.toml:thiserror = "1.0"
crates/bevy_reflect/src/path.rs:use thiserror::Error;
crates/bevy_render/Cargo.toml:thiserror = "1.0"
```
---
## Changelog
> This section is optional. If this was a trivial fix, or has no externally-visible impact, you can delete this section.
- What changed as a result of this PR? Fixed dependency conflict for building projects.
Current build of StarRust runs successfully with the `thiserror` reversion: https://github.com/LarsDu/StarRust
But will run into dependency conflicts if `thiserror` is version 1.037
Co-authored-by: Larry Du <larry.du@freenome.com>
# Objective
- Clipping (visible in the UI example with text scrolling) is funky
- Fixes#6287
## Solution
- Fix UV calculation:
- correct order for values (issue introduced in #6000)
- add the `y` values instead of subtracting them now that vertical order is reversed
- take scale factor into account (bug already present before reversing the order)
- While around clipping, I changed clip to only mutate when changed
No more funkiness! 😞
<img width="696" alt="Screenshot 2022-10-23 at 22 44 18" src="https://user-images.githubusercontent.com/8672791/197417721-30ad4150-5264-427f-ac82-e5265c1fb3a9.png">
# Objective
Adds a better interface for performing mathematical operations with UI unit `Val`. Fixes#6080.
## Solution
- Added `try_add` and `try_sub` methods to Val.
- Removed the `Add` and `AddAssign` impls for `Val` that introduced unintuitive and bug-prone behaviour.
- As a consequence of the prior, ~~changed the `Add` and `Sub` impls for the `Size` struct to take a `(Val, Val)` instead of `Vec2`~~ deleted the `Add` and `Sub` impls for the `Size` struct
- Added a `From<(Val, Val)>` impl for the `Size` struct
- Added `evaluate(size: f32)` method that converts from `Val::Percent` to `Val::Px`.
- Added `try_add_with_size` and `try_sub_with_size` methods to `Val`, which evaluate `Val::Percent` values into `Val::Px` values before adding.
---
## Migration Guide
Instead of using the + and - operators, perform calculations on `Val`s using the new `try_add` and `try_sub` methods. Multiplication and division remained unchanged. Also, when adding or subtracting from `Size`, ~~use a `Val` tuple instead of `Vec2`~~ perform the addition on `width` and `height` separately.
Co-authored-by: Dawid Piotrowski <41804418+Pietrek14@users.noreply.github.com>
# Objective
Fixes#6272
## Solution
Revert to old way of positioning text for Text2D rendered text.
Co-authored-by: Michel van der Hulst <hulstmichel@gmail.com>
# Objective
Fixes#5820
## Solution
Change field name and documentation from `bevy::ui::Node` struct
---
## Changelog
`bevy::ui::Node` `size` field has renamed to `calculated_size`
## Migration Guide
All references to the old `size` name has been changed, to access `bevy::ui::Node` `size` field use `calculated_size`
# Objective
There is no Srgb support on some GPU and display protocols with `winit` (for example, Nvidia's GPUs with Wayland). Thus `TextureFormat::bevy_default()` which returns `Rgba8UnormSrgb` or `Bgra8UnormSrgb` will cause panics on such platforms. This patch will resolve this problem. Fix https://github.com/bevyengine/bevy/issues/3897.
## Solution
Make `initialize_renderer` expose `wgpu::Adapter` and `first_available_texture_format`, use the `first_available_texture_format` by default.
## Changelog
* Fixed https://github.com/bevyengine/bevy/issues/3897.
# Objective
Closes#6202.
The default background color for `NodeBundle` is currently white.
However, it's very rare that you actually want a white background color.
Instead, you often want a background color specific to the style of your game or a transparent background (e.g. for UI layout nodes).
## Solution
`Default` is not derived for `NodeBundle` anymore, but explicitly specified.
The default background color is now transparent (`Color::NONE.into()`) as this is the most common use-case, is familiar from the web and makes specifying a layout for your UI less tedious.
---
## Changelog
- Changed the default `NodeBundle.background_color` to be transparent (`Color::NONE.into()`).
## Migration Guide
If you want a `NodeBundle` with a white background color, you must explicitly specify it:
Before:
```rust
let node = NodeBundle {
..default()
}
```
After:
```rust
let node = NodeBundle {
background_color: Color::WHITE.into(),
..default()
}
```
# Objective
Fixes#6010
## Solution
As discussed in #6010, this makes it so the `Children` component is removed from the entity whenever all of its children are removed. The behavior is now consistent between all of the commands that may remove children from a parent, and this is tested via two new test functions (one for world functions and one for commands).
Documentation was also added to `insert_children`, `push_children`, `add_child` and `remove_children` commands to make this behavior clearer for users.
## Changelog
- Fixed `Children` component not getting removed from entity when all its children are moved to a new parent.
## Migration Guide
- Queries with `Changed<Children>` will no longer match entities that had all of their children removed using `remove_children`.
- `RemovedComponents<Children>` will now contain entities that had all of their children remove using `remove_children`.
# Objective
Often one wants to create a `UiRect` with a value only specifying a single field. These ways are already available, but not the most ergonomic:
```rust
UiRect::new(Val::Undefined, Val::Undefined, Val::Percent(25.0), Val::Undefined)
```
```rust
UiRect {
top: Val::Percent(25.0),
..default()
}
```
## Solution
Introduce 6 new constructors:
- `horizontal`
- `vertical`
- `left`
- `right`
- `top`
- `bottom`
So the above code can be written instead as:
```rust
UiRect::top(Val::Percent(25.0))
```
This solution is similar to the style fields `margin-left`, `padding-top`, etc. that you would see in CSS, from which bevy's UI has other inspiration. Therefore, it should still feel intuitive to users coming from CSS.
---
## Changelog
### Added
- Additional constructors for `UiRect` to specify values for specific fields
# Objective
The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move.
This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns).
## Solution
This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity).
This means you can remove all cases of `exclusive_system()`:
```rust
// before
commands.add_system(some_system.exclusive_system());
// after
commands.add_system(some_system);
```
I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems:
```rust
fn some_exclusive_system(
world: &mut World,
transforms: &mut QueryState<&Transform>,
state: &mut SystemState<(Res<Time>, Query<&Player>)>,
) {
for transform in transforms.iter(world) {
println!("{transform:?}");
}
let (time, players) = state.get(world);
for player in players.iter() {
println!("{player:?}");
}
}
```
Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system.
I added some targeted SystemParam `static` constraints, which removed the need for this:
``` rust
fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {}
```
## Related
- #2923
- #3001
- #3946
## Changelog
- `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait.
- `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems
- `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam`
- Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api.
## Migration Guide
Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems:
```rust
// Old (0.8)
app.add_system(some_exclusive_system.exclusive_system());
// New (0.9)
app.add_system(some_exclusive_system);
```
Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis:
```rust
// Old (0.8)
app.add_system(some_system.exclusive_system().at_end());
// New (0.9)
app.add_system(some_system.at_end());
```
Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons:
```rust
// Old (0.8)
fn some_system(world: &mut World) {
let mut transforms = world.query::<&Transform>();
for transform in transforms.iter(world) {
}
}
// New (0.9)
fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) {
for transform in transforms.iter(world) {
}
}
```
# Objective
I was working with the TextBundle component bundle because I wanted to change the position of the text that the bundle was holding. I used the transform field on the TextBundle at first because that is normally what controls the position of sprites in Bevy and that's what I was used to working with.
But the actual way to change the position of text inside of a TextBundle is to use the Style's position field, not the TextBundle's transform field.
Anecdotally, it was mentioned on the discord that other users have had this issue too.
## Solution
I added a small doc comment to the TextBundle's transform telling users not to use it to set the position of text. And since this issue applies to the other UI bundles, I added comments there as well!
# Objective
Fixes#6078. The `UiColor` component is unhelpfully named: it is unclear, ambiguous with border color and
## Solution
Rename the `UiColor` component (and associated fields) to `BackgroundColor` / `background_colorl`.
## Migration Guide
`UiColor` has been renamed to `BackgroundColor`. This change affects `NodeBundle`, `ButtonBundle` and `ImageBundle`. In addition, the corresponding field on `ExtractedUiNode` has been renamed to `background_color` for consistency.
# Objective
Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands).
## Solution
All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input:
```rust
// before:
commands
.spawn()
.insert((A, B, C));
world
.spawn()
.insert((A, B, C);
// after
commands.spawn((A, B, C));
world.spawn((A, B, C));
```
All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api.
By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`).
This improves spawn performance by over 10%:
![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png)
To take this measurement, I added a new `world_spawn` benchmark.
Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main.
**Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).**
---
## Changelog
- All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input
- All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api
- World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior.
## Migration Guide
```rust
// Old (0.8):
commands
.spawn()
.insert_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));
// Old (0.8):
commands.spawn_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));
// Old (0.8):
let entity = commands.spawn().id();
// New (0.9)
let entity = commands.spawn_empty().id();
// Old (0.8)
let entity = world.spawn().id();
// New (0.9)
let entity = world.spawn_empty();
```
# Objective
Take advantage of the "impl Bundle for Component" changes in #2975 / add the follow up changes discussed there.
## Solution
- Change `insert` and `remove` to accept a Bundle instead of a Component (for both Commands and World)
- Deprecate `insert_bundle`, `remove_bundle`, and `remove_bundle_intersection`
- Add `remove_intersection`
---
## Changelog
- Change `insert` and `remove` now accept a Bundle instead of a Component (for both Commands and World)
- `insert_bundle` and `remove_bundle` are deprecated
## Migration Guide
Replace `insert_bundle` with `insert`:
```rust
// Old (0.8)
commands.spawn().insert_bundle(SomeBundle::default());
// New (0.9)
commands.spawn().insert(SomeBundle::default());
```
Replace `remove_bundle` with `remove`:
```rust
// Old (0.8)
commands.entity(some_entity).remove_bundle::<SomeBundle>();
// New (0.9)
commands.entity(some_entity).remove::<SomeBundle>();
```
Replace `remove_bundle_intersection` with `remove_intersection`:
```rust
// Old (0.8)
world.entity_mut(some_entity).remove_bundle_intersection::<SomeBundle>();
// New (0.9)
world.entity_mut(some_entity).remove_intersection::<SomeBundle>();
```
Consider consolidating as many operations as possible to improve ergonomics and cut down on archetype moves:
```rust
// Old (0.8)
commands.spawn()
.insert_bundle(SomeBundle::default())
.insert(SomeComponent);
// New (0.9) - Option 1
commands.spawn().insert((
SomeBundle::default(),
SomeComponent,
))
// New (0.9) - Option 2
commands.spawn_bundle((
SomeBundle::default(),
SomeComponent,
))
```
## Next Steps
Consider changing `spawn` to accept a bundle and deprecate `spawn_bundle`.
# Objective
Implement `IntoIterator` for `&Extract<P>` if the system parameter it wraps implements `IntoIterator`.
Enables the use of `IntoIterator` with an extracted query.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
Fixes#5636
Summary: The FontAtlasSet caches generated font textures per font size. Since font size can be any arbitrary floating point number it is possible for the user to generate thousands of font texture inadvertently by changing the font size over time. This results in a memory leak as these generated font textures fill the available memory.
## Solution
We limit the number of possible font sizes that we will cache and throw an error if the user attempts to generate more. This error encourages the user to use alternative, less performance intensive methods to accomplish the same goal. If the user requires more font sizes and the alternative solutions wont work there is now a TextSettings Resource that the user can set to configure this limit.
---
## Changelog
The number of cached font sizes per font is now limited with a default limit of 100 font sizes per font. This limit is configurable via the new TextSettings struct.
# Objective
Fixes Issue #6005.
## Solution
Replaced WorldQuery with ReadOnlyWorldQuery on F generic in Query filters and QueryState to restrict its trait bound.
## Migration Guide
Query filter (`F`) generics are now bound by `ReadOnlyWorldQuery`, rather than `WorldQuery`. If for some reason you were requesting `Query<&A, &mut B>`, please use `Query<&A, With<B>>` instead.
# Objective
fixes#5946
## Solution
adjust cluster index calculation for viewport origin.
from reading point 2 of the rasterization algorithm description in https://gpuweb.github.io/gpuweb/#rasterization, it looks like framebuffer space (and so @bulitin(position)) is not meant to be adjusted for viewport origin, so we need to subtract that to get the right cluster index.
- add viewport origin to rust `ExtractedView` and wgsl `View` structs
- subtract from frag coord for cluster index calculation
# Objective
Make `TextLayoutInfo` more accessible as a component, rather than internal to `TextPipeline`. I am working on a plugin that manipulates these and there is no (mutable) access to them right now.
## Solution
This changes `TextPipeline::queue_text` to return `TextLayoutInfo`'s rather than storing them in a map internally. `text2d_system` and `text_system` now take the returned `TextLayoutInfo` and store it as a component of the entity. I considered adding an accessor to `TextPipeline` (e.g. `get_glyphs_mut`) but this seems like it might be a little faster, and also has the added benefit of cleaning itself up when entities are removed. Right now nothing is ever removed from the glyphs map.
## Changelog
Removed `DefaultTextPipeline`. `TextPipeline` no longer has a generic key type. `TextPipeline::queue_text` returns `TextLayoutInfo` directly.
## Migration Guide
This might break a third-party crate? I could restore the orginal TextPipeline API as a wrapper around what's in this PR.
# Objective
Clean up taffy nodes when the associated UI node gets removed. The current UI code will keep the taffy nodes around forever.
## Solution
Use `RemovedComponents<Node>` to iterate over nodes that are no longer valid UI nodes or that have been despawned, and remove them from taffy and the internal hash map.
## Implementation Notes
Do note that using `despawn()` instead of `despawn_recursive()` on a UI node that has children will result in a [warnings spam](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/flex/mod.rs#L120) since the children will not be part of a proper UI hierarchy anymore.
---
## Changelog
- Fixed memory leak when nodes are removed in bevy_ui
# Objective
Promote the `Rect` utility of `sprite::Rect`, which defines a rectangle
by its minimum and maximum corners, to the `bevy_math` crate to make it
available as a general math type to all crates without the need to
depend on the `bevy_sprite` crate.
Fixes#5575
## Solution
Move `sprite::Rect` into `bevy_math` and fix all uses.
Implement `Reflect` for `Rect` directly into the `bevy_reflect` crate by
having `bevy_reflect` depend on `bevy_math`. This looks like a new
dependency, but the `bevy_reflect` was "cheating" for other math types
by directly depending on `glam` to reflect other math types, thereby
giving the illusion that there was no dependency on `bevy_math`. In
practice conceptually Bevy's math types are reflected into the
`bevy_reflect` crate to avoid a dependency of that crate to a "lower
level" utility crate like `bevy_math` (which in turn would make
`bevy_reflect` be a dependency of most other crates, and increase the
risk of circular dependencies). So this change simply formalizes that
dependency in `Cargo.toml`.
The `Rect` struct is also augmented in this change with a collection of
utility methods to improve its usability. A few uses cases are updated
to use those new methods, resulting is more clear and concise syntax.
---
## Changelog
### Changed
- Moved the `sprite::Rect` type into `bevy_math`.
### Added
- Added several utility methods to the `math::Rect` type.
## Migration Guide
The `bevy::sprite::Rect` type moved to the math utility crate as
`bevy::math::Rect`. You should change your imports from `use
bevy::sprite::Rect` to `use bevy::math::Rect`.
# Objective
Since `identity` is a const fn that takes no arguments it seems logical to make it an associated constant.
This is also more in line with types from glam (eg. `Quat::IDENTITY`).
## Migration Guide
The method `identity()` on `Transform`, `GlobalTransform` and `TransformBundle` has been deprecated.
Use the associated constant `IDENTITY` instead.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
- Allow users to change the scaling of the UI
- Adopted from #2808
## Solution
- This is an accessibility feature for fixed-size UI elements, allowing the developer to expose a range of UI scales for the player to set a scale that works for their needs.
> - The user can modify the UiScale struct to change the scaling at runtime. This multiplies the Px values by the scale given, while not touching any others.
> - The example showcases how this even allows for fluid transitions
> Here's how the example looks like:
https://user-images.githubusercontent.com/1631166/132979069-044161a9-8e85-45ab-9e93-fcf8e3852c2b.mp4
---
## Changelog
- Added a `UiScale` which can be used to scale all of UI
Co-authored-by: Andreas Weibye <13300393+Weibye@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Very small convenience constructors added to `Size`.
Does not change current examples too much but I'm working on a rather complex UI use-case where this cuts down on some extra typing :)
# Objective
Remove unused `enum DepthCalculation` and its usages. This was used to compute visible entities in the [old renderer](db665b96c0/crates/bevy_render/src/camera/visible_entities.rs), but is now unused.
## Solution
`sed 's/DepthCalculation//g'`
---
## Changelog
### Changed
Removed `bevy_render:📷:DepthCalculation`.
## Migration Guide
Remove references to `bevy_render:📷:DepthCalculation`, such as `use bevy_render:📷:DepthCalculation`. Remove `depth_calculation` fields from Projections.
# Objective
- I often have UI nodes that are completely transparent and just for organisation
- Don't render them
- I doesn't bring a lot of improvements, but it doesn't add a lot of complexity either
*This PR description is an edited copy of #5007, written by @alice-i-cecile.*
# Objective
Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds.
While ergonomic, this results in several drawbacks:
* it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource
* it is challenging to discover if a type is intended to be used as a resource
* we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component).
* dependencies can use the same Rust type as a resource in invisibly conflicting ways
* raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values
* we cannot capture a definitive list of possible resources to display to users in an editor
## Notes to reviewers
* Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits.
*ira: My commits are not as well organized :')*
* I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does.
* I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981.
## Changelog
`Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro.
## Migration Guide
Add `#[derive(Resource)]` to all types you are using as a resource.
If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics.
`ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing.
Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead.
Co-authored-by: Alice <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Similar to #5512 , the `View` struct definition in the shaders in `bevy_sprite` and `bevy_ui` were out of sync with the rust-side `ViewUniform`. Only `view_proj` was being used and is the first member and as those shaders are not customisable it makes little difference in practice, unlike for `Mesh2d`.
## Solution
- Sync shader `View` struct definition in `bevy_sprite` and `bevy_ui` with the correct definition that matches `ViewUniform`
> In draft until #4761 is merged. See the relevant commits [here](a85fe94a18).
---
# Objective
Update enums across Bevy to use the new enum reflection and get rid of `#[reflect_value(...)]` usages.
## Solution
Find and replace all[^1] instances of `#[reflect_value(...)]` on enum types.
---
## Changelog
- Updated all[^1] reflected enums to implement `Enum` (i.e. they are no longer `ReflectRef::Value`)
## Migration Guide
Bevy-defined enums have been updated to implement `Enum` and are not considered value types (`ReflectRef::Value`) anymore. This means that their serialized representations will need to be updated. For example, given the Bevy enum:
```rust
pub enum ScalingMode {
None,
WindowSize,
Auto { min_width: f32, min_height: f32 },
FixedVertical(f32),
FixedHorizontal(f32),
}
```
You will need to update the serialized versions accordingly.
```js
// OLD FORMAT
{
"type": "bevy_render:📷:projection::ScalingMode",
"value": FixedHorizontal(720),
},
// NEW FORMAT
{
"type": "bevy_render:📷:projection::ScalingMode",
"enum": {
"variant": "FixedHorizontal",
"tuple": [
{
"type": "f32",
"value": 720,
},
],
},
},
```
This may also have other smaller implications (such as `Debug` representation), but serialization is probably the most prominent.
[^1]: All enums except `HandleId` as neither `Uuid` nor `AssetPathId` implement the reflection traits
# Objective
- Migrate changes from #3503.
## Solution
- Change `Size<T>` and `UiRect<T>` to `Size` and `UiRect` using `Val`.
- Implement `Sub`, `SubAssign`, `Mul`, `MulAssign`, `Div` and `DivAssign` for `Val`.
- Update tests for `Size`.
---
## Changelog
### Changed
- The generic `T` of `Size` and `UiRect` got removed and instead they both now always use `Val`.
## Migration Guide
- The generic `T` of `Size` and `UiRect` got removed and instead they both now always use `Val`. If you used a `Size<f32>` consider replacing it with a `Vec2` which is way more powerful.
Co-authored-by: KDecay <KDecayMusic@protonmail.com>
# Objective
- Improve performance when rendering text
## Solution
- While playing with example `many_buttons`, I noticed a lot of time was spent converting colours
- Investigating, the biggest culprit seems to be text colour. Each glyph in a text is an individual UI node for rendering, with a copy of the colour. Making the conversion to RGBA linear only once per text section reduces the number of conversion done once rendering.
- This improves FPS for example `many_buttons` from ~33 to ~42
- I did the same change for text 2d
# Objective
UI nodes can be hidden by setting their `Visibility` property. Since #5310 was merged, this is now ergonomic to use, as visibility is now inherited.
However, UI nodes still receive (and store) interactions when hidden, resulting in surprising hidden state (and an inability to otherwise disable UI nodes.
## Solution
Fixes#5360.
I've updated the `ui_focus_system` to accomplish this in a minimally intrusive way, and updated the docs to match.
**NOTE:** I have not added automated tests to verify this behavior, as we do not currently have a good testing paradigm for `bevy_ui`. I'm not thrilled with that by any means, but I'm not sure fixing it is within scope.
## Paths not taken
### Separate `Disabled` component
This is a much larger and more controversial change, and not well-scoped to UI.
Furthermore, it is extremely rare that you want hidden UI elements to function: the most common cases are for things like changing tabs, collapsing elements or so on.
Splitting this behavior would be more complex, and substantially violate user expectations.
### A separate limbo world
Mentioned in the linked issue. Super cool, but all of the problems of the `Disabled` component solution with a whole new RFC-worth of complexity.
### Using change detection to reduce the amount of redundant work
Adds a lot of complexity for questionable performance gains. Likely involves a complete refactor of the entire system.
We simply don't have the tests or benchmarks here to justify this.
## Changelog
- UI nodes are now always in an `Interaction::None` state while they are hidden (via the `ComputedVisibility` component).
# Objective
- Fixes#5293
- UI nodes with a rotation that made the top left corner lower than the top right corner (z rotations greater than π/4) were culled
## Solution
- Do not cull nodes with a rotation, but don't do proper culling in this case
As a reminder, changing rotation and scale of UI nodes is not recommended as it won't impact layout. This is a quick fix but doesn't handle properly rotations and scale in clipping/culling. This would need a lot more work as mentioned here: c2b332f98a/crates/bevy_ui/src/render/mod.rs (L404-L405)
# Objective
- Migrate changes from #3503.
## Solution
- Document `Size` and `UiRect`.
- I also removed the type alias from the `size_ops` test since it's unnecessary.
## Follow Up
After this change is merged I'd follow up with removing the generics from `Size` and `UiRect` since `Val` should be extensible enough. This was also discussed and decided on in #3503. let me know if this is not needed or wanted anymore!
# Objective
Creating UI elements is very boilerplate-y with lots of indentation.
This PR aims to reduce boilerplate around creating text elements.
## Changelog
* Renamed `Text::with_section` to `from_section`.
It no longer takes a `TextAlignment` as argument, as the vast majority of cases left it `Default::default()`.
* Added `Text::from_sections` which creates a `Text` from a list of `TextSections`.
Reduces line-count and reduces indentation by one level.
* Added `Text::with_alignment`.
A builder style method for setting the `TextAlignment` of a `Text`.
* Added `TextSection::new`.
Does not reduce line count, but reduces character count and made it easier to read. No more `.to_string()` calls!
* Added `TextSection::from_style` which creates an empty `TextSection` with a style.
No more empty strings! Reduces indentation.
* Added `TextAlignment::CENTER` and friends.
* Added methods to `TextBundle`. `from_section`, `from_sections`, `with_text_alignment` and `with_style`.
## Note for reviewers.
Because of the nature of these changes I recommend setting diff view to 'split'.
~~Look for the book icon~~ cog in the top-left of the Files changed tab.
Have fun reviewing ❤️
<sup> >:D </sup>
## Migration Guide
`Text::with_section` was renamed to `from_section` and no longer takes a `TextAlignment` as argument.
Use `with_alignment` to set the alignment instead.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
- Fixes #5338
- Allow the usage of `use bevy::ui::Size` (see migration guide in #4285)
## Solution
- Remove the `use crate::Size` import so that the `pub use geometry::*` import also publicly uses the `Size` struct.
# Objective
- Add capability to use `Affine3A`s for some `GlobalTransform`s. This allows affine transformations that are not possible using a single `Transform` such as shear and non-uniform scaling along an arbitrary axis.
- Related to #1755 and #2026
## Solution
- `GlobalTransform` becomes an enum wrapping either a `Transform` or an `Affine3A`.
- The API of `GlobalTransform` is minimized to avoid inefficiency, and to make it clear that operations should be performed using the underlying data types.
- using `GlobalTransform::Affine3A` disables transform propagation, because the main use is for cases that `Transform`s cannot support.
---
## Changelog
- `GlobalTransform`s can optionally support any affine transformation using an `Affine3A`.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Fixes#4907. Fixes#838. Fixes#5089.
Supersedes #5146. Supersedes #2087. Supersedes #865. Supersedes #5114
Visibility is currently entirely local. Set a parent entity to be invisible, and the children are still visible. This makes it hard for users to hide entire hierarchies of entities.
Additionally, the semantics of `Visibility` vs `ComputedVisibility` are inconsistent across entity types. 3D meshes use `ComputedVisibility` as the "definitive" visibility component, with `Visibility` being just one data source. Sprites just use `Visibility`, which means they can't feed off of `ComputedVisibility` data, such as culling information, RenderLayers, and (added in this pr) visibility inheritance information.
## Solution
Splits `ComputedVisibilty::is_visible` into `ComputedVisibilty::is_visible_in_view` and `ComputedVisibilty::is_visible_in_hierarchy`. For each visible entity, `is_visible_in_hierarchy` is computed by propagating visibility down the hierarchy. The `ComputedVisibility::is_visible()` function combines these two booleans for the canonical "is this entity visible" function.
Additionally, all entities that have `Visibility` now also have `ComputedVisibility`. Sprites, Lights, and UI entities now use `ComputedVisibility` when appropriate.
This means that in addition to visibility inheritance, everything using Visibility now also supports RenderLayers. Notably, Sprites (and other 2d objects) now support `RenderLayers` and work properly across multiple views.
Also note that this does increase the amount of work done per sprite. Bevymark with 100,000 sprites on `main` runs in `0.017612` seconds and this runs in `0.01902`. That is certainly a gap, but I believe the api consistency and extra functionality this buys us is worth it. See [this thread](https://github.com/bevyengine/bevy/pull/5146#issuecomment-1182783452) for more info. Note that #5146 in combination with #5114 _are_ a viable alternative to this PR and _would_ perform better, but that comes at the cost of api inconsistencies and doing visibility calculations in the "wrong" place. The current visibility system does have potential for performance improvements. I would prefer to evolve that one system as a whole rather than doing custom hacks / different behaviors for each feature slice.
Here is a "split screen" example where the left camera uses RenderLayers to filter out the blue sprite.
![image](https://user-images.githubusercontent.com/2694663/178814868-2e9a2173-bf8c-4c79-8815-633899d492c3.png)
Note that this builds directly on #5146 and that @james7132 deserves the credit for the baseline visibility inheritance work. This pr moves the inherited visibility field into `ComputedVisibility`, then does the additional work of porting everything to `ComputedVisibility`. See my [comments here](https://github.com/bevyengine/bevy/pull/5146#issuecomment-1182783452) for rationale.
## Follow up work
* Now that lights use ComputedVisibility, VisibleEntities now includes "visible lights" in the entity list. Functionally not a problem as we use queries to filter the list down in the desired context. But we should consider splitting this out into a separate`VisibleLights` collection for both clarity and performance reasons. And _maybe_ even consider scoping `VisibleEntities` down to `VisibleMeshes`?.
* Investigate alternative sprite rendering impls (in combination with visibility system tweaks) that avoid re-generating a per-view fixedbitset of visible entities every frame, then checking each ExtractedEntity. This is where most of the performance overhead lives. Ex: we could generate ExtractedEntities per-view using the VisibleEntities list, avoiding the need for the bitset.
* Should ComputedVisibility use bitflags under the hood? This would cut down on the size of the component, potentially speed up the `is_visible()` function, and allow us to cheaply expand ComputedVisibility with more data (ex: split out local visibility and parent visibility, add more culling classes, etc).
---
## Changelog
* ComputedVisibility now takes hierarchy visibility into account.
* 2D, UI and Light entities now use the ComputedVisibility component.
## Migration Guide
If you were previously reading `Visibility::is_visible` as the "actual visibility" for sprites or lights, use `ComputedVisibilty::is_visible()` instead:
```rust
// before (0.7)
fn system(query: Query<&Visibility>) {
for visibility in query.iter() {
if visibility.is_visible {
log!("found visible entity");
}
}
}
// after (0.8)
fn system(query: Query<&ComputedVisibility>) {
for visibility in query.iter() {
if visibility.is_visible() {
log!("found visible entity");
}
}
}
```
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Added a bunch of backticks to things that should have them, like equations, abstract variable names,
- Changed all small x, y, and z to capitals X, Y, Z.
This might be more annoying than helpful; Feel free to refuse this PR.
Remove unnecessary calls to `iter()`/`iter_mut()`.
Mainly updates the use of queries in our code, docs, and examples.
```rust
// From
for _ in list.iter() {
for _ in list.iter_mut() {
// To
for _ in &list {
for _ in &mut list {
```
We already enable the pedantic lint [clippy::explicit_iter_loop](https://rust-lang.github.io/rust-clippy/stable/) inside of Bevy. However, this only warns for a few known types from the standard library.
## Note for reviewers
As you can see the additions and deletions are exactly equal.
Maybe give it a quick skim to check I didn't sneak in a crypto miner, but you don't have to torture yourself by reading every line.
I already experienced enough pain making this PR :)
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
- Currently bevy_ui only checks for primary window cursor position to determine `Interaction` behavior.
- Added checks for focused window where cursor position is available.
- Fixes#5224.
## Solution
- Added checks for focused windows in `Interaction` focus system.
## Follow Up
- All windows with camera will be rendering the UI elements right now.
- We will need some way to tell which camera to render which UI.
---
Co-authored-by: fadhliazhari <44402264+fadhliazhari@users.noreply.github.com>
## Objective
Implement absolute minimum viable product for the changes proposed in bevyengine/rfcs#53.
## Solution
- Remove public mutative access to `Parent` (Children is already publicly read-only). This includes public construction methods like `Copy`, `Clone`, and `Default`.
- Remove `PreviousParent`
- Remove `parent_update_system`
- Update all hierarchy related commands to immediately update both `Parent` and `Children` references.
## Remaining TODOs
- [ ] Update documentation for both `Parent` and `Children`. Discourage using `EntityCommands::remove`
- [x] Add `HierarchyEvent` to notify listeners of hierarchy updates. This is meant to replace listening on `PreviousParent`
## Followup
- These changes should be best moved to the hooks mentioned in #3742.
- Backing storage for both might be best moved to indexes mentioned in the same relations.
# Objective
- Currently, the `Extract` `RenderStage` is executed on the main world, with the render world available as a resource.
- However, when needing access to resources in the render world (e.g. to mutate them), the only way to do so was to get exclusive access to the whole `RenderWorld` resource.
- This meant that effectively only one extract which wrote to resources could run at a time.
- We didn't previously make `Extract`ing writing to the world a non-happy path, even though we want to discourage that.
## Solution
- Move the extract stage to run on the render world.
- Add the main world as a `MainWorld` resource.
- Add an `Extract` `SystemParam` as a convenience to access a (read only) `SystemParam` in the main world during `Extract`.
## Future work
It should be possible to avoid needing to use `get_or_spawn` for the render commands, since now the `Commands`' `Entities` matches up with the world being executed on.
We need to determine how this interacts with https://github.com/bevyengine/bevy/pull/3519
It's theoretically possible to remove the need for the `value` method on `Extract`. However, that requires slightly changing the `SystemParam` interface, which would make it more complicated. That would probably mess up the `SystemState` api too.
## Todo
I still need to add doc comments to `Extract`.
---
## Changelog
### Changed
- The `Extract` `RenderStage` now runs on the render world (instead of the main world as before).
You must use the `Extract` `SystemParam` to access the main world during the extract phase.
Resources on the render world can now be accessed using `ResMut` during extract.
### Removed
- `Commands::spawn_and_forget`. Use `Commands::get_or_spawn(e).insert_bundle(bundle)` instead
## Migration Guide
The `Extract` `RenderStage` now runs on the render world (instead of the main world as before).
You must use the `Extract` `SystemParam` to access the main world during the extract phase. `Extract` takes a single type parameter, which is any system parameter (such as `Res`, `Query` etc.). It will extract this from the main world, and returns the result of this extraction when `value` is called on it.
For example, if previously your extract system looked like:
```rust
fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) {
for cloud in clouds.iter() {
commands.get_or_spawn(cloud).insert(Cloud);
}
}
```
the new version would be:
```rust
fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) {
for cloud in clouds.value().iter() {
commands.get_or_spawn(cloud).insert(Cloud);
}
}
```
The diff is:
```diff
--- a/src/clouds.rs
+++ b/src/clouds.rs
@@ -1,5 +1,5 @@
-fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) {
- for cloud in clouds.iter() {
+fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) {
+ for cloud in clouds.value().iter() {
commands.get_or_spawn(cloud).insert(Cloud);
}
}
```
You can now also access resources from the render world using the normal system parameters during `Extract`:
```rust
fn extract_assets(mut render_assets: ResMut<MyAssets>, source_assets: Extract<Res<MyAssets>>) {
*render_assets = source_assets.clone();
}
```
Please note that all existing extract systems need to be updated to match this new style; even if they currently compile they will not run as expected. A warning will be emitted on a best-effort basis if this is not met.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
In bevy 0.7, `CameraUi` was a component specifically added to cameras
that display the UI. Since camera-driven rendering was merged, it
actually does the opposite! This will make it difficult for current
users to adapt to 0.8.
## Solution
To avoid unnecessary confusion, we rename `CameraUi` into
`UiCameraConfig`.
---
## Changelog
- Rename `CameraUi` to `UiCameraConfig`
# Objective
`SAFETY` comments are meant to be placed before `unsafe` blocks and should contain the reasoning of why in this case the usage of unsafe is okay. This is useful when reading the code because it makes it clear which assumptions are required for safety, and makes it easier to spot possible unsoundness holes. It also forces the code writer to think of something to write and maybe look at the safety contracts of any called unsafe methods again to double-check their correct usage.
There's a clippy lint called `undocumented_unsafe_blocks` which warns when using a block without such a comment.
## Solution
- since clippy expects `SAFETY` instead of `SAFE`, rename those
- add `SAFETY` comments in more places
- for the last remaining 3 places, add an `#[allow()]` and `// TODO` since I wasn't comfortable enough with the code to justify their safety
- add ` #![warn(clippy::undocumented_unsafe_blocks)]` to `bevy_ecs`
### Note for reviewers
The first commit only renames `SAFETY` to `SAFE` so it doesn't need a thorough review.
cb042a416e..55cef2d6fa is the diff for all other changes.
### Safety comments where I'm not too familiar with the code
774012ece5/crates/bevy_ecs/src/entity/mod.rs (L540-L546)774012ece5/crates/bevy_ecs/src/world/entity_ref.rs (L249-L252)
### Locations left undocumented with a `TODO` comment
5dde944a30/crates/bevy_ecs/src/schedule/executor_parallel.rs (L196-L199)5dde944a30/crates/bevy_ecs/src/world/entity_ref.rs (L287-L289)5dde944a30/crates/bevy_ecs/src/world/entity_ref.rs (L413-L415)
Co-authored-by: Jakob Hellermann <hellermann@sipgate.de>
Removed `const_vec2`/`const_vec3`
and replaced with equivalent `.from_array`.
# Objective
Fixes#5112
## Solution
- `encase` needs to update to `glam` as well. See teoxoy/encase#4 on progress on that.
- `hexasphere` also needs to be updated, see OptimisticPeach/hexasphere#12.
# Objective
- Nightly clippy lints should be fixed before they get stable and break CI
## Solution
- fix new clippy lints
- ignore `significant_drop_in_scrutinee` since it isn't relevant in our loop https://github.com/rust-lang/rust-clippy/issues/8987
```rust
for line in io::stdin().lines() {
...
}
```
Co-authored-by: Jakob Hellermann <hellermann@sipgate.de>
# Objective
Fixes#5153
## Solution
Search for all enums and manually check if they have default impls that can use this new derive.
By my reckoning:
| enum | num |
|-|-|
| total | 159 |
| has default impl | 29 |
| default is unit variant | 23 |
# Objective
DioxusLabs and Bevy have taken over maintaining what was our abandoned ui layout dependency [stretch](https://github.com/vislyhq/stretch). Dioxus' fork has had a lot of work done on it by @alice-i-cecile, @Weibye , @jkelleyrtp, @mockersf, @HackerFoo, @TimJentzsch and a dozen other contributors and now is in much better shape than stretch was. The updated crate is called taffy and is available on github [here](https://github.com/DioxusLabs/taffy) ([taffy](https://crates.io/crates/taffy) on crates.io). The goal of this PR is to replace stretch v0.3.2 with taffy v0.1.0.
## Solution
I changed the bevy_ui Cargo.toml to depend on taffy instead of stretch and fixed all the errors rustc complained about.
---
## Changelog
Changed bevy_ui layout dependency from stretch to taffy (the maintained fork of stretch).
fixes#677
## Migration Guide
The public api of taffy is different from that of stretch so please advise me on what to do here @alice-i-cecile.
# Objective
`bevy_ui` doesn't support correctly touch inputs because of two problems in the focus system:
- It attempts to retrieve touch input with a specific `0` id
- It doesn't retrieve touch positions and bases its focus solely on mouse position, absent from mobile devices
## Solution
I added a few methods to the `Touches` resource, allowing to check if **any** touch input was pressed, released or cancelled and to retrieve the *position* of the first pressed touch input and adapted the focus system.
I added a test button to the *iOS* example and it works correclty on emulator. I did not test on a real touch device as:
- Android is not working (https://github.com/bevyengine/bevy/issues/3249)
- I don't have an iOS device
builds on top of #4780
# Objective
`Reflect` and `Serialize` are currently very tied together because `Reflect` has a `fn serialize(&self) -> Option<Serializable<'_>>` method. Because of that, we can either implement `Reflect` for types like `Option<T>` with `T: Serialize` and have `fn serialize` be implemented, or without the bound but having `fn serialize` return `None`.
By separating `ReflectSerialize` into a separate type (like how it already is for `ReflectDeserialize`, `ReflectDefault`), we could separately `.register::<Option<T>>()` and `.register_data::<Option<T>, ReflectSerialize>()` only if the type `T: Serialize`.
This PR does not change the registration but allows it to be changed in a future PR.
## Solution
- add the type
```rust
struct ReflectSerialize { .. }
impl<T: Reflect + Serialize> FromType<T> for ReflectSerialize { .. }
```
- remove `#[reflect(Serialize)]` special casing.
- when serializing reflect value types, look for `ReflectSerialize` in the `TypeRegistry` instead of calling `value.serialize()`
# Objective
Overflow::Hidden doesn't work correctly with scale_factor_override.
If you run the Bevy UI example with scale_factor_override 3 you'll see half clipped text around the edges of the scrolling listbox.
The problem seems to be that the corners of the node are transformed before the amount of clipping required is calculated. But then that transformed clip is compared to the original untransformed size of the node rect to see if it should be culled or not. With a higher scale factor the relative size of the untransformed node rect is going to be really big, so the overflow isn't culled.
# Solution
Multiply the size of the node rect by extracted_uinode.transform before the cull test.
# Objective
Users should be able to render cameras to specific areas of a render target, which enables scenarios like split screen, minimaps, etc.
Builds on the new Camera Driven Rendering added here: #4745Fixes: #202
Alternative to #1389 and #3626 (which are incompatible with the new Camera Driven Rendering)
## Solution
![image](https://user-images.githubusercontent.com/2694663/171560044-f0694f67-0cd9-4598-83e2-a9658c4fed57.png)
Cameras can now configure an optional "viewport", which defines a rectangle within their render target to draw to. If a `Viewport` is defined, the camera's `CameraProjection`, `View`, and visibility calculations will use the viewport configuration instead of the full render target.
```rust
// This camera will render to the first half of the primary window (on the left side).
commands.spawn_bundle(Camera3dBundle {
camera: Camera {
viewport: Some(Viewport {
physical_position: UVec2::new(0, 0),
physical_size: UVec2::new(window.physical_width() / 2, window.physical_height()),
depth: 0.0..1.0,
}),
..default()
},
..default()
});
```
To account for this, the `Camera` component has received a few adjustments:
* `Camera` now has some new getter functions:
* `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, `projection_matrix`
* All computed camera values are now private and live on the `ComputedCameraValues` field (logical/physical width/height, the projection matrix). They are now exposed on `Camera` via getters/setters This wasn't _needed_ for viewports, but it was long overdue.
---
## Changelog
### Added
* `Camera` components now have a `viewport` field, which can be set to draw to a portion of a render target instead of the full target.
* `Camera` component has some new functions: `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, and `projection_matrix`
* Added a new split_screen example illustrating how to render two cameras to the same scene
## Migration Guide
`Camera::projection_matrix` is no longer a public field. Use the new `Camera::projection_matrix()` method instead:
```rust
// Bevy 0.7
let projection = camera.projection_matrix;
// Bevy 0.8
let projection = camera.projection_matrix();
```
This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier.
Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915):
![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png)
Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work".
Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id:
```rust
// main camera (main window)
commands.spawn_bundle(Camera2dBundle::default());
// second camera (other window)
commands.spawn_bundle(Camera2dBundle {
camera: Camera {
target: RenderTarget::Window(window_id),
..default()
},
..default()
});
```
Rendering to a texture is as simple as pointing the camera at a texture:
```rust
commands.spawn_bundle(Camera2dBundle {
camera: Camera {
target: RenderTarget::Texture(image_handle),
..default()
},
..default()
});
```
Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`).
```rust
// main pass camera with a default priority of 0
commands.spawn_bundle(Camera2dBundle::default());
commands.spawn_bundle(Camera2dBundle {
camera: Camera {
target: RenderTarget::Texture(image_handle.clone()),
priority: -1,
..default()
},
..default()
});
commands.spawn_bundle(SpriteBundle {
texture: image_handle,
..default()
})
```
Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system:
```rust
commands.spawn_bundle(Camera3dBundle::default());
commands.spawn_bundle(Camera2dBundle {
camera: Camera {
// this will render 2d entities "on top" of the default 3d camera's render
priority: 1,
..default()
},
..default()
});
```
There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active.
Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections.
```rust
// old 3d perspective camera
commands.spawn_bundle(PerspectiveCameraBundle::default())
// new 3d perspective camera
commands.spawn_bundle(Camera3dBundle::default())
```
```rust
// old 2d orthographic camera
commands.spawn_bundle(OrthographicCameraBundle::new_2d())
// new 2d orthographic camera
commands.spawn_bundle(Camera2dBundle::default())
```
```rust
// old 3d orthographic camera
commands.spawn_bundle(OrthographicCameraBundle::new_3d())
// new 3d orthographic camera
commands.spawn_bundle(Camera3dBundle {
projection: OrthographicProjection {
scale: 3.0,
scaling_mode: ScalingMode::FixedVertical,
..default()
}.into(),
..default()
})
```
Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors.
If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component:
```rust
commands.spawn_bundle(Camera3dBundle {
camera_render_graph: CameraRenderGraph::new(some_render_graph_name),
..default()
})
```
Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added.
Speaking of using components to configure graphs / passes, there are a number of new configuration options:
```rust
commands.spawn_bundle(Camera3dBundle {
camera_3d: Camera3d {
// overrides the default global clear color
clear_color: ClearColorConfig::Custom(Color::RED),
..default()
},
..default()
})
commands.spawn_bundle(Camera3dBundle {
camera_3d: Camera3d {
// disables clearing
clear_color: ClearColorConfig::None,
..default()
},
..default()
})
```
Expect to see more of the "graph configuration Components on Cameras" pattern in the future.
By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component:
```rust
commands
.spawn_bundle(Camera3dBundle::default())
.insert(CameraUi {
is_enabled: false,
..default()
})
```
## Other Changes
* The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr.
* I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization.
* I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler.
* All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr.
* Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic.
* Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals:
1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs.
2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense.
## Follow Up Work
* Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen)
* Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor)
* Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system).
* Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable.
* Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home.
# Objective
- Sometimes, people might load an asset as one type, then use it with an `Asset`s for a different type.
- See e.g. #4784.
- This is especially likely with the Gltf types, since users may not have a clear conceptual model of what types the assets will be.
- We had an instance of this ourselves, in the `scene_viewer` example
## Solution
- Make `Assets::get` require a type safe handle.
---
## Changelog
### Changed
- `Assets::<T>::get` and `Assets::<T>::get_mut` now require that the passed handles are `Handle<T>`, improving the type safety of handles.
### Added
- `HandleUntyped::typed_weak`, a helper function for creating a weak typed version of an exisitng `HandleUntyped`.
## Migration Guide
`Assets::<T>::get` and `Assets::<T>::get_mut` now require that the passed handles are `Handle<T>`, improving the type safety of handles. If you were previously passing in:
- a `HandleId`, use `&Handle::weak(id)` instead, to create a weak handle. You may have been able to store a type safe `Handle` instead.
- a `HandleUntyped`, use `&handle_untyped.typed_weak()` to create a weak handle of the specified type. This is most likely to be the useful when using [load_folder](https://docs.rs/bevy_asset/latest/bevy_asset/struct.AssetServer.html#method.load_folder)
- a `Handle<U>` of of a different type, consider whether this is the correct handle type to store. If it is (i.e. the same handle id is used for multiple different Asset types) use `Handle::weak(handle.id)` to cast to a different type.
### Problem
It currently isn't possible to construct the default value of a reflected type. Because of that, it isn't possible to use `add_component` of `ReflectComponent` to add a new component to an entity because you can't know what the initial value should be.
### Solution
1. add `ReflectDefault` type
```rust
#[derive(Clone)]
pub struct ReflectDefault {
default: fn() -> Box<dyn Reflect>,
}
impl ReflectDefault {
pub fn default(&self) -> Box<dyn Reflect> {
(self.default)()
}
}
impl<T: Reflect + Default> FromType<T> for ReflectDefault {
fn from_type() -> Self {
ReflectDefault {
default: || Box::new(T::default()),
}
}
}
```
2. add `#[reflect(Default)]` to all component types that implement `Default` and are user facing (so not `ComputedSize`, `CubemapVisibleEntities` etc.)
This makes it possible to add the default value of a component to an entity without any compile-time information:
```rust
fn main() {
let mut app = App::new();
app.register_type::<Camera>();
let type_registry = app.world.get_resource::<TypeRegistry>().unwrap();
let type_registry = type_registry.read();
let camera_registration = type_registry.get(std::any::TypeId::of::<Camera>()).unwrap();
let reflect_default = camera_registration.data::<ReflectDefault>().unwrap();
let reflect_component = camera_registration
.data::<ReflectComponent>()
.unwrap()
.clone();
let default = reflect_default.default();
drop(type_registry);
let entity = app.world.spawn().id();
reflect_component.add_component(&mut app.world, entity, &*default);
let camera = app.world.entity(entity).get::<Camera>().unwrap();
dbg!(&camera);
}
```
### Open questions
- should we have `ReflectDefault` or `ReflectFromWorld` or both?
# Objective
- Creating and executing render passes has GPU overhead. If there are no phase items in the render phase to draw, then this overhead should not be incurred as it has no benefit.
## Solution
- Check if there are no phase items to draw, and if not, do not construct not execute the render pass
---
## Changelog
- Changed: Do not create nor execute empty render passes
# Objective
`bevy_ecs` has large amounts of unsafe code which is hard to get right and makes it difficult to audit for soundness.
## Solution
Introduce lifetimed, type-erased pointers: `Ptr<'a>` `PtrMut<'a>` `OwningPtr<'a>'` and `ThinSlicePtr<'a, T>` which are newtypes around a raw pointer with a lifetime and conceptually representing strong invariants about the pointee and validity of the pointer.
The process of converting bevy_ecs to use these has already caught multiple cases of unsound behavior.
## Changelog
TL;DR for release notes: `bevy_ecs` now uses lifetimed, type-erased pointers internally, significantly improving safety and legibility without sacrificing performance. This should have approximately no end user impact, unless you were meddling with the (unfortunately public) internals of `bevy_ecs`.
- `Fetch`, `FilterFetch` and `ReadOnlyFetch` trait no longer have a `'state` lifetime
- this was unneeded
- `ReadOnly/Fetch` associated types on `WorldQuery` are now on a new `WorldQueryGats<'world>` trait
- was required to work around lack of Generic Associated Types (we wish to express `type Fetch<'a>: Fetch<'a>`)
- `derive(WorldQuery)` no longer requires `'w` lifetime on struct
- this was unneeded, and improves the end user experience
- `EntityMut::get_unchecked_mut` returns `&'_ mut T` not `&'w mut T`
- allows easier use of unsafe API with less footguns, and can be worked around via lifetime transmutery as a user
- `Bundle::from_components` now takes a `ctx` parameter to pass to the `FnMut` closure
- required because closure return types can't borrow from captures
- `Fetch::init` takes `&'world World`, `Fetch::set_archetype` takes `&'world Archetype` and `&'world Tables`, `Fetch::set_table` takes `&'world Table`
- allows types implementing `Fetch` to store borrows into world
- `WorldQuery` trait now has a `shrink` fn to shorten the lifetime in `Fetch::<'a>::Item`
- this works around lack of subtyping of assoc types, rust doesnt allow you to turn `<T as Fetch<'static>>::Item'` into `<T as Fetch<'a>>::Item'`
- `QueryCombinationsIter` requires this
- Most types implementing `Fetch` now have a lifetime `'w`
- allows the fetches to store borrows of world data instead of using raw pointers
## Migration guide
- `EntityMut::get_unchecked_mut` returns a more restricted lifetime, there is no general way to migrate this as it depends on your code
- `Bundle::from_components` implementations must pass the `ctx` arg to `func`
- `Bundle::from_components` callers have to use a fn arg instead of closure captures for borrowing from world
- Remove lifetime args on `derive(WorldQuery)` structs as it is nonsensical
- `<Q as WorldQuery>::ReadOnly/Fetch` should be changed to either `RO/QueryFetch<'world>` or `<Q as WorldQueryGats<'world>>::ReadOnly/Fetch`
- `<F as Fetch<'w, 's>>` should be changed to `<F as Fetch<'w>>`
- Change the fn sigs of `Fetch::init/set_archetype/set_table` to match respective trait fn sigs
- Implement the required `fn shrink` on any `WorldQuery` implementations
- Move assoc types `Fetch` and `ReadOnlyFetch` on `WorldQuery` impls to `WorldQueryGats` impls
- Pass an appropriate `'world` lifetime to whatever fetch struct you are for some reason using
### Type inference regression
in some cases rustc may give spurrious errors when attempting to infer the `F` parameter on a query/querystate this can be fixed by manually specifying the type, i.e. `QueryState:🆕:<_, ()>(world)`. The error is rather confusing:
```rust=
error[E0271]: type mismatch resolving `<() as Fetch<'_>>::Item == bool`
--> crates/bevy_pbr/src/render/light.rs:1413:30
|
1413 | main_view_query: QueryState::new(world),
| ^^^^^^^^^^^^^^^ expected `bool`, found `()`
|
= note: required because of the requirements on the impl of `for<'x> FilterFetch<'x>` for `<() as WorldQueryGats<'x>>::Fetch`
note: required by a bound in `bevy_ecs::query::QueryState::<Q, F>::new`
--> crates/bevy_ecs/src/query/state.rs:49:32
|
49 | for<'x> QueryFetch<'x, F>: FilterFetch<'x>,
| ^^^^^^^^^^^^^^^ required by this bound in `bevy_ecs::query::QueryState::<Q, F>::new`
```
---
Made with help from @BoxyUwU and @alice-i-cecile
Co-authored-by: Boxy <supbscripter@gmail.com>
# Objective
Reduce the catch-all grab-bag of functionality in bevy_core by moving FloatOrd to bevy_utils.
A step in addressing #2931 and splitting bevy_core into more specific locations.
## Solution
Move FloatOrd into bevy_utils. Fix the compile errors.
As a result, bevy_core_pipeline, bevy_pbr, bevy_sprite, bevy_text, and bevy_ui no longer depend on bevy_core (they were only using it for `FloatOrd` previously).
# Objective
- Closes#335.
- Related #4285.
- Part of the splitting process of #3503.
## Solution
- Move `Rect` to `bevy_ui` and rename it to `UiRect`.
## Reasons
- `Rect` is only used in `bevy_ui` and therefore calling it `UiRect` makes the intent clearer.
- We have two types that are called `Rect` currently and it's missleading (see `bevy_sprite::Rect` and #335).
- Discussion in #3503.
## Changelog
### Changed
- The `Rect` type got moved from `bevy_math` to `bevy_ui` and renamed to `UiRect`.
## Migration Guide
- The `Rect` type got renamed to `UiRect`. To migrate you just have to change every occurrence of `Rect` to `UiRect`.
Co-authored-by: KDecay <KDecayMusic@protonmail.com>
# Objective
- Related #4276.
- Part of the splitting process of #3503.
## Solution
- Move `Size` to `bevy_ui`.
## Reasons
- `Size` is only needed in `bevy_ui` (because it needs to use `Val` instead of `f32`), but it's also used as a worse `Vec2` replacement in other areas.
- `Vec2` is more powerful than `Size` so it should be used whenever possible.
- Discussion in #3503.
## Changelog
### Changed
- The `Size` type got moved from `bevy_math` to `bevy_ui`.
## Migration Guide
- The `Size` type got moved from `bevy::math` to `bevy::ui`. To migrate you just have to import `bevy::ui::Size` instead of `bevy::math::Math` or use the `bevy::prelude` instead.
Co-authored-by: KDecay <KDecayMusic@protonmail.com>
# Objective
Fixes#4193
## Solution
When resetting a node's `Interaction` to `None`, ignore any `Clicked` node because that should be handled by the mouse release check exclusively.
# Objective
Add a system parameter `ParamSet` to be used as container for conflicting parameters.
## Solution
Added two methods to the SystemParamState trait, which gives the access used by the parameter. Did the implementation. Added some convenience methods to FilteredAccessSet. Changed `get_conflicts` to return every conflicting component instead of breaking on the first conflicting `FilteredAccess`.
Co-authored-by: bilsen <40690317+bilsen@users.noreply.github.com>
# Objective
Cleans up some duplicated color -> u32 conversion code in `bevy_sprite` and `bevy_ui`
## Solution
Use `as_linear_rgba_u32` which was added recently by #4088
# Objective
- Closes#335.
- Part of the splitting process of #3503.
## Solution
- Remove the `margins.rs` file containing the `Margins` type.
## Reasons
- It is unused inside of `bevy`.
- The `Rect`/`UiRect` is identical to the `Margins` type and is also used for margins inside of `bevy` (rename of `Rect` happens in #4276)
- Discussion in #3503.
## Changelog
### Removed
- The `Margins` type got removed.
## Migration Guide
- The `Margins` type got removed. To migrate you just have to change every occurrence of `Margins` to `UiRect`.
# Objective
- Fixes#3970
- To support Bevy's shader abstraction(shader defs, shader imports and hot shader reloading) for compute shaders, I have followed carts advice and change the `PipelinenCache` to accommodate both compute and render pipelines.
## Solution
- renamed `RenderPipelineCache` to `PipelineCache`
- Cached Pipelines are now represented by an enum (render, compute)
- split the `SpecializedPipelines` into `SpecializedRenderPipelines` and `SpecializedComputePipelines`
- updated the game of life example
## Open Questions
- should `SpecializedRenderPipelines` and `SpecializedComputePipelines` be merged and how would we do that?
- should the `get_render_pipeline` and `get_compute_pipeline` methods be merged?
- is pipeline specialization for different entry points a good pattern
Co-authored-by: Kurt Kühnert <51823519+Ku95@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Hierarchy tools are not just used for `Transform`: they are also used for scenes.
- In the future there's interest in using them for other features, such as visiibility inheritance.
- The fact that these tools are found in `bevy_transform` causes a great deal of user and developer confusion
- Fixes#2758.
## Solution
- Split `bevy_transform` into two!
- Make everything work again.
Note that this is a very tightly scoped PR: I *know* there are code quality and docs issues that existed in bevy_transform that I've just moved around. We should fix those in a seperate PR and try to merge this ASAP to reduce the bitrot involved in splitting an entire crate.
## Frustrations
The API around `GlobalTransform` is a mess: we have massive code and docs duplication, no link between the two types and no clear way to extend this to other forms of inheritance.
In the medium-term, I feel pretty strongly that `GlobalTransform` should be replaced by something like `Inherited<Transform>`, which lives in `bevy_hierarchy`:
- avoids code duplication
- makes the inheritance pattern extensible
- links the types at the type-level
- allows us to remove all references to inheritance from `bevy_transform`, making it more useful as a standalone crate and cleaning up its docs
## Additional context
- double-blessed by @cart in https://github.com/bevyengine/bevy/issues/4141#issuecomment-1063592414 and https://github.com/bevyengine/bevy/issues/2758#issuecomment-913810963
- preparation for more advanced / cleaner hierarchy tools: go read https://github.com/bevyengine/rfcs/pull/53 !
- originally attempted by @finegeometer in #2789. It was a great idea, just needed more discussion!
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
**Problem**
- whenever you want more than one of the builtin cameras (for example multiple windows, split screen, portals), you need to add a render graph node that executes the correct sub graph, extract the camera into the render world and add the correct `RenderPhase<T>` components
- querying for the 3d camera is annoying because you need to compare the camera's name to e.g. `CameraPlugin::CAMERA_3d`
**Solution**
- Introduce the marker types `Camera3d`, `Camera2d` and `CameraUi`
-> `Query<&mut Transform, With<Camera3d>>` works
- `PerspectiveCameraBundle::new_3d()` and `PerspectiveCameraBundle::<Camera3d>::default()` contain the `Camera3d` marker
- `OrthographicCameraBundle::new_3d()` has `Camera3d`, `OrthographicCameraBundle::new_2d()` has `Camera2d`
- remove `ActiveCameras`, `ExtractedCameraNames`
- run 2d, 3d and ui passes for every camera of their respective marker
-> no custom setup for multiple windows example needed
**Open questions**
- do we need a replacement for `ActiveCameras`? What about a component `ActiveCamera { is_active: bool }` similar to `Visibility`?
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Fixes#4133
## Solution
Add comparisons to make sure we don't dereference `Mut<>` in the two places where `Transform` is being mutated. `GlobalTransform` implementation already works properly so fixing Transform automatically fixed that as well.
# Objective
- Improve documentation.
- Provide helper functions for common uses of `Windows` relating to getting the primary `Window`.
- Reduce repeated `Window` code.
# Solution
- Adds infallible `primary()` and `primary_mut()` functions with standard error text. This replaces the commonly used `get_primary().unwrap()` seen throughout bevy which has inconsistent or nonexistent error messages.
- Adds `scale_factor(WindowId)` to replace repeated code blocks throughout.
# Considerations
- The added functions can panic if the primary window does not exist.
- It is very uncommon for the primary window to not exist, as seen by the regular use of `get_primary().unwrap()`. Most users will have a single window and will need to reference the primary window in their code multiple times.
- The panic provides a consistent error message to make this class of error easy to spot from the panic text.
- This follows the established standard of short names for infallible-but-unlikely-to-panic functions in bevy.
- Removes line noise for common usage of `Windows`.
# Objective
- In the large majority of cases, users were calling `.unwrap()` immediately after `.get_resource`.
- Attempting to add more helpful error messages here resulted in endless manual boilerplate (see #3899 and the linked PRs).
## Solution
- Add an infallible variant named `.resource` and so on.
- Use these infallible variants over `.get_resource().unwrap()` across the code base.
## Notes
I did not provide equivalent methods on `WorldCell`, in favor of removing it entirely in #3939.
## Migration Guide
Infallible variants of `.get_resource` have been added that implicitly panic, rather than needing to be unwrapped.
Replace `world.get_resource::<Foo>().unwrap()` with `world.resource::<Foo>()`.
## Impact
- `.unwrap` search results before: 1084
- `.unwrap` search results after: 942
- internal `unwrap_or_else` calls added: 4
- trivial unwrap calls removed from tests and code: 146
- uses of the new `try_get_resource` API: 11
- percentage of the time the unwrapping API was used internally: 93%
This PR makes a number of changes to how meshes and vertex attributes are handled, which the goal of enabling easy and flexible custom vertex attributes:
* Reworks the `Mesh` type to use the newly added `VertexAttribute` internally
* `VertexAttribute` defines the name, a unique `VertexAttributeId`, and a `VertexFormat`
* `VertexAttributeId` is used to produce consistent sort orders for vertex buffer generation, replacing the more expensive and often surprising "name based sorting"
* Meshes can be used to generate a `MeshVertexBufferLayout`, which defines the layout of the gpu buffer produced by the mesh. `MeshVertexBufferLayouts` can then be used to generate actual `VertexBufferLayouts` according to the requirements of a specific pipeline. This decoupling of "mesh layout" vs "pipeline vertex buffer layout" is what enables custom attributes. We don't need to standardize _mesh layouts_ or contort meshes to meet the needs of a specific pipeline. As long as the mesh has what the pipeline needs, it will work transparently.
* Mesh-based pipelines now specialize on `&MeshVertexBufferLayout` via the new `SpecializedMeshPipeline` trait (which behaves like `SpecializedPipeline`, but adds `&MeshVertexBufferLayout`). The integrity of the pipeline cache is maintained because the `MeshVertexBufferLayout` is treated as part of the key (which is fully abstracted from implementers of the trait ... no need to add any additional info to the specialization key).
* Hashing `MeshVertexBufferLayout` is too expensive to do for every entity, every frame. To make this scalable, I added a generalized "pre-hashing" solution to `bevy_utils`: `Hashed<T>` keys and `PreHashMap<K, V>` (which uses `Hashed<T>` internally) . Why didn't I just do the quick and dirty in-place "pre-compute hash and use that u64 as a key in a hashmap" that we've done in the past? Because its wrong! Hashes by themselves aren't enough because two different values can produce the same hash. Re-hashing a hash is even worse! I decided to build a generalized solution because this pattern has come up in the past and we've chosen to do the wrong thing. Now we can do the right thing! This did unfortunately require pulling in `hashbrown` and using that in `bevy_utils`, because avoiding re-hashes requires the `raw_entry_mut` api, which isn't stabilized yet (and may never be ... `entry_ref` has favor now, but also isn't available yet). If std's HashMap ever provides the tools we need, we can move back to that. Note that adding `hashbrown` doesn't increase our dependency count because it was already in our tree. I will probably break these changes out into their own PR.
* Specializing on `MeshVertexBufferLayout` has one non-obvious behavior: it can produce identical pipelines for two different MeshVertexBufferLayouts. To optimize the number of active pipelines / reduce re-binds while drawing, I de-duplicate pipelines post-specialization using the final `VertexBufferLayout` as the key. For example, consider a pipeline that needs the layout `(position, normal)` and is specialized using two meshes: `(position, normal, uv)` and `(position, normal, other_vec2)`. If both of these meshes result in `(position, normal)` specializations, we can use the same pipeline! Now we do. Cool!
To briefly illustrate, this is what the relevant section of `MeshPipeline`'s specialization code looks like now:
```rust
impl SpecializedMeshPipeline for MeshPipeline {
type Key = MeshPipelineKey;
fn specialize(
&self,
key: Self::Key,
layout: &MeshVertexBufferLayout,
) -> RenderPipelineDescriptor {
let mut vertex_attributes = vec![
Mesh::ATTRIBUTE_POSITION.at_shader_location(0),
Mesh::ATTRIBUTE_NORMAL.at_shader_location(1),
Mesh::ATTRIBUTE_UV_0.at_shader_location(2),
];
let mut shader_defs = Vec::new();
if layout.contains(Mesh::ATTRIBUTE_TANGENT) {
shader_defs.push(String::from("VERTEX_TANGENTS"));
vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(3));
}
let vertex_buffer_layout = layout
.get_layout(&vertex_attributes)
.expect("Mesh is missing a vertex attribute");
```
Notice that this is _much_ simpler than it was before. And now any mesh with any layout can be used with this pipeline, provided it has vertex postions, normals, and uvs. We even got to remove `HAS_TANGENTS` from MeshPipelineKey and `has_tangents` from `GpuMesh`, because that information is redundant with `MeshVertexBufferLayout`.
This is still a draft because I still need to:
* Add more docs
* Experiment with adding error handling to mesh pipeline specialization (which would print errors at runtime when a mesh is missing a vertex attribute required by a pipeline). If it doesn't tank perf, we'll keep it.
* Consider breaking out the PreHash / hashbrown changes into a separate PR.
* Add an example illustrating this change
* Verify that the "mesh-specialized pipeline de-duplication code" works properly
Please dont yell at me for not doing these things yet :) Just trying to get this in peoples' hands asap.
Alternative to #3120Fixes#3030
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Adds "hot reloading" of internal assets, which is normally not possible because they are loaded using `include_str` / direct Asset collection access.
This is accomplished via the following:
* Add a new `debug_asset_server` feature flag
* When that feature flag is enabled, create a second App with a second AssetServer that points to a configured location (by default the `crates` folder). Plugins that want to add hot reloading support for their assets can call the new `app.add_debug_asset::<T>()` and `app.init_debug_asset_loader::<T>()` functions.
* Load "internal" assets using the new `load_internal_asset` macro. By default this is identical to the current "include_str + register in asset collection" approach. But if the `debug_asset_server` feature flag is enabled, it will also load the asset dynamically in the debug asset server using the file path. It will then set up a correlation between the "debug asset" and the "actual asset" by listening for asset change events.
This is an alternative to #3673. The goal was to keep the boilerplate and features flags to a minimum for bevy plugin authors, and allow them to home their shaders near relevant code.
This is a draft because I haven't done _any_ quality control on this yet. I'll probably rename things and remove a bunch of unwraps. I just got it working and wanted to use it to start a conversation.
Fixes#3660
What is says on the tin.
This has got more to do with making `clippy` slightly more *quiet* than it does with changing anything that might greatly impact readability or performance.
that said, deriving `Default` for a couple of structs is a nice easy win
On platforms like wasm (on mobile) the cursor can disappear suddenly (ex: the user releases their finger from the screen). This causes the undesirable behavior in #3752. These changes make the UI handler properly handle this case.
Fixes#3752
Alternative to #3599
# Objective
- Fixes#3562
## Solution
- The outdated reference to `TextGlyphs` has been removed, and replaced with a more accurate docstring.
## What was `TextGlyphs`?
This is the real question of this Issue and PR. This is particulary interesting because not only is `TextGlyphs` not a type in bevy, but it _never was_. Indeed, this type never existed on main. Where did it come from?
`TextGlyphs` was originally a tuple struct wrapping a `Vec<PositionedGlyph>`. It was first introduced back in commit ec390aec4e in #765. At the time, position information was being stored on the text entities directly. However, after design review, [it was decided](https://github.com/bevyengine/bevy/pull/765#issuecomment-725047186) to instead store the glyphs in a `HashMap` owned by the `TextPipeline`. When this was done, the original type was not only removed, but abstracted behind a few layers of the `TextPipeline` API. Obviously, the original docstring wasn't updated accordingly.
Later, as part of #1122, the incorrect docstring was swept up when copy/pasting `text_system` for `text2d`. (Although I don't blame @CleanCut for this; it took me like 3 hours to track all this down to find the original context.)
# Objective
In this PR I added the ability to opt-out graphical backends. Closes#3155.
## Solution
I turned backends into `Option` ~~and removed panicking sub app API to force users handle the error (was suggested by `@cart`)~~.
# Objective
The current 2d rendering is specialized to render sprites, we need a generic way to render 2d items, using meshes and materials like we have for 3d.
## Solution
I cloned a good part of `bevy_pbr` into `bevy_sprite/src/mesh2d`, removed lighting and pbr itself, adapted it to 2d rendering, added a `ColorMaterial`, and modified the sprite rendering to break batches around 2d meshes.
~~The PR is a bit crude; I tried to change as little as I could in both the parts copied from 3d and the current sprite rendering to make reviewing easier. In the future, I expect we could make the sprite rendering a normal 2d material, cleanly integrated with the rest.~~ _edit: see <https://github.com/bevyengine/bevy/pull/3460#issuecomment-1003605194>_
## Remaining work
- ~~don't require mesh normals~~ _out of scope_
- ~~add an example~~ _done_
- support 2d meshes & materials in the UI?
- bikeshed names (I didn't think hard about naming, please check if it's fine)
## Remaining questions
- ~~should we add a depth buffer to 2d now that there are 2d meshes?~~ _let's revisit that when we have an opaque render phase_
- ~~should we add MSAA support to the sprites, or remove it from the 2d meshes?~~ _I added MSAA to sprites since it's really needed for 2d meshes_
- ~~how to customize vertex attributes?~~ _#3120_
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Updated the docs for bevy_ui as requested by #3492
## Solution
I have documented the parts I understand. anchors.rs is not in use and should be removed, thus I haven't documented that, and some of the more renderer-heavy code is beyond me and needs input from either cart or someone familiar with bevy rendering
Co-authored-by: Troels Jessen <kairyuka@gmail.com>
#3457 adds the `doc_markdown` clippy lint, which checks doc comments to make sure code identifiers are escaped with backticks. This causes a lot of lint errors, so this is one of a number of PR's that will fix those lint errors one crate at a time.
This PR fixes lints in the `bevy_ui` crate.
# Objective
Fix a bug: UI nodes that are clipped could still be interacted with in the clipped area.
## Solution
Clip the position calculation in `ui_focus_system`
# Objective
- While reading code, found some queries that are `mut` and not used as such
## Solution
- Remove `mut` when possible
Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
# Objective
Fixes#3422
## Solution
Adds the existing `Visibility` component to UI bundles and checks for it in the extract phase of the render app.
The `ComputedVisibility` component was not added. I don't think the UI camera needs frustum culling, but having `RenderLayers` work may be desirable. However I think we would need to change `check_visibility()` to differentiate between 2d, 3d and UI entities.
# Objective
- Our crevice is still called "crevice", which we can't use for a release
- Users would need to use our "crevice" directly to be able to use the derive macro
## Solution
- Rename crevice to bevy_crevice, and crevice-derive to bevy-crevice-derive
- Re-export it from bevy_render, and use it from bevy_render everywhere
- Fix derive macro to work either from bevy_render, from bevy_crevice, or from bevy
## Remaining
- It is currently re-exported as `bevy::render::bevy_crevice`, is it the path we want?
- After a brief suggestion to Cart, I changed the version to follow Bevy version instead of crevice, do we want that?
- Crevice README.md need to be updated
- in the `Cargo.toml`, there are a few things to change. How do we want to change them? How do we keep attributions to original Crevice?
```
authors = ["Lucien Greathouse <me@lpghatguy.com>"]
documentation = "https://docs.rs/crevice"
homepage = "https://github.com/LPGhatguy/crevice"
repository = "https://github.com/LPGhatguy/crevice"
```
Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Only bevy_render should depend directly on wgpu
- This helps to make sure bevy_render re-exports everything needed from wgpu
## Solution
- Remove bevy_pbr, bevy_sprite and bevy_ui dependency on wgpu
Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
# Objective
This PR implements the `overflow` style property in `bevy_ui`. When set to `Overflow::Hidden`, the children of that node are clipped so that overflowing parts are not rendered. This is an important building block for UI widgets.
## Solution
Clipping is done on the CPU so that it does not break batching.
The clip regions update was implemented as a separate system for clarity, but it could be merged with the other UI systems to avoid doing an additional tree traversal. (I don't think it's important until we fix the layout performance issues though).
A scrolling list was added to the `ui_pipelined` example to showcase `Overflow::Hidden`. For the sake of simplicity, it can only be scrolled with a mouse.
# Objective
Fixes#3352Fixes#3208
## Solution
- Update wgpu to 0.12
- Update naga to 0.8
- Resolve compilation errors
- Remove [[block]] from WGSL shaders (because it is depracated and now wgpu cant parse it)
- Replace `elseif` with `else if` in pbr.wgsl
This makes the [New Bevy Renderer](#2535) the default (and only) renderer. The new renderer isn't _quite_ ready for the final release yet, but I want as many people as possible to start testing it so we can identify bugs and address feedback prior to release.
The examples are all ported over and operational with a few exceptions:
* I removed a good portion of the examples in the `shader` folder. We still have some work to do in order to make these examples possible / ergonomic / worthwhile: #3120 and "high level shader material plugins" are the big ones. This is a temporary measure.
* Temporarily removed the multiple_windows example: doing this properly in the new renderer will require the upcoming "render targets" changes. Same goes for the render_to_texture example.
* Removed z_sort_debug: entity visibility sort info is no longer available in app logic. we could do this on the "render app" side, but i dont consider it a priority.
Mention the fact that the UI layout system is based on the CSS layout
model through a docstring comment on the `Style` type.
# Objective
Explain to new users that the Bevy UI uses the CSS layout model, to lower the barrier to entry given the fact documentation (book and code) is fairly limited on the topic.
## Solution
Fix as discussed with @alice-i-cecile on #2918.
Objective
During work on #3009 I've found that not all jobs use actions-rs, and therefore, an previous version of Rust is used for them. So while compilation and other stuff can pass, checking markup and Android build may fail with compilation errors.
Solution
This PR adds `action-rs` for any job running cargo, and updates the edition to 2021.
This PR adds a ControlNode which marks an entity as "transparent" to the UI layout system, meaning the children of this entity will be treated as the children of this entity s parent by the layout system(s).
This implements the most minimal variant of #1843 - a derive for marker trait. This is a prerequisite to more complicated features like statically defined storage type or opt-out component reflection.
In order to make component struct's purpose explicit and avoid misuse, it must be annotated with `#[derive(Component)]` (manual impl is discouraged for compatibility). Right now this is just a marker trait, but in the future it might be expanded. Making this change early allows us to make further changes later without breaking backward compatibility for derive macro users.
This already prevents a lot of issues, like using bundles in `insert` calls. Primitive types are no longer valid components as well. This can be easily worked around by adding newtype wrappers and deriving `Component` for them.
One funny example of prevented bad code (from our own tests) is when an newtype struct or enum variant is used. Previously, it was possible to write `insert(Newtype)` instead of `insert(Newtype(value))`. That code compiled, because function pointers (in this case newtype struct constructor) implement `Send + Sync + 'static`, so we allowed them to be used as components. This is no longer the case and such invalid code will trigger a compile error.
Co-authored-by: = <=>
Co-authored-by: TheRawMeatball <therawmeatball@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Clarify vague meaning of "Ltr" and "Rtl". For someone familiar with Flex Box, this is easy to understand, but being more explicit will help beginners or those unfamiliar, without the need to do research.
## Solution
- Change three letter abbreviation to fully descriptive name.
# Objective
Enable using exact World lifetimes during read-only access . This is motivated by the new renderer's need to allow read-only world-only queries to outlive the query itself (but still be constrained by the world lifetime).
For example:
115b170d1f/pipelined/bevy_pbr2/src/render/mod.rs (L774)
## Solution
Split out SystemParam state and world lifetimes and pipe those lifetimes up to read-only Query ops (and add into_inner for Res). According to every safety test I've run so far (except one), this is safe (see the temporary safety test commit). Note that changing the mutable variants to the new lifetimes would allow aliased mutable pointers (try doing that to see how it affects the temporary safety tests).
The new state lifetime on SystemParam does make `#[derive(SystemParam)]` more cumbersome (the current impl requires PhantomData if you don't use both lifetimes). We can make this better by detecting whether or not a lifetime is used in the derive and adjusting accordingly, but that should probably be done in its own pr.
## Why is this a draft?
The new lifetimes break QuerySet safety in one very specific case (see the query_set system in system_safety_test). We need to solve this before we can use the lifetimes given.
This is due to the fact that QuerySet is just a wrapper over Query, which now relies on world lifetimes instead of `&self` lifetimes to prevent aliasing (but in systems, each Query has its own implied lifetime, not a centralized world lifetime). I believe the fix is to rewrite QuerySet to have its own World lifetime (and own the internal reference). This will complicate the impl a bit, but I think it is doable. I'm curious if anyone else has better ideas.
Personally, I think these new lifetimes need to happen. We've gotta have a way to directly tie read-only World queries to the World lifetime. The new renderer is the first place this has come up, but I doubt it will be the last. Worst case scenario we can come up with a second `WorldLifetimeQuery<Q, F = ()>` parameter to enable these read-only scenarios, but I'd rather not add another type to the type zoo.
# Objective
- Remove all the `.system()` possible.
- Check for remaining missing cases.
## Solution
- Remove all `.system()`, fix compile errors
- 32 calls to `.system()` remains, mostly internals, the few others should be removed after #2446
This is extracted out of eb8f973646476b4a4926ba644a77e2b3a5772159 and includes some additional changes to remove all references to AppBuilder and fix examples that still used App::build() instead of App::new(). In addition I didn't extract the sub app feature as it isn't ready yet.
You can use `git diff --diff-filter=M eb8f973646476b4a4926ba644a77e2b3a5772159` to find all differences in this PR. The `--diff-filtered=M` filters all files added in the original commit but not in this commit away.
Co-Authored-By: Carter Anderson <mcanders1@gmail.com>
This relicenses Bevy under the dual MIT or Apache-2.0 license. For rationale, see #2373.
* Changes the LICENSE file to describe the dual license. Moved the MIT license to docs/LICENSE-MIT. Added the Apache-2.0 license to docs/LICENSE-APACHE. I opted for this approach over dumping both license files at the root (the more common approach) for a number of reasons:
* Github links to the "first" license file (LICENSE-APACHE) in its license links (you can see this in the wgpu and rust-analyzer repos). People clicking these links might erroneously think that the apache license is the only option. Rust and Amethyst both use COPYRIGHT or COPYING files to solve this problem, but this creates more file noise (if you do everything at the root) and the naming feels way less intuitive.
* People have a reflex to look for a LICENSE file. By providing a single license file at the root, we make it easy for them to understand our licensing approach.
* I like keeping the root clean and noise free
* There is precedent for putting the apache and mit license text in sub folders (amethyst)
* Removed the `Copyright (c) 2020 Carter Anderson` copyright notice from the MIT license. I don't care about this attribution, it might make license compliance more difficult in some cases, and it didn't properly attribute other contributors. We shoudn't replace it with something like "Copyright (c) 2021 Bevy Contributors" because "Bevy Contributors" is not a legal entity. Instead, we just won't include the copyright line (which has precedent ... Rust also uses this approach).
* Updates crates to use the new "MIT OR Apache-2.0" license value
* Removes the old legion-transform license file from bevy_transform. bevy_transform has been its own, fully custom implementation for a long time and that license no longer applies.
* Added a License section to the main readme
* Updated our Bevy Plugin licensing guidelines.
As a follow-up we should update the website to properly describe the new license.
Closes#2373
This was tested using cargo generate-lockfile -Zminimal-versions.
The following indirect dependencies also have minimal version
dependencies. For at least num, rustc-serialize and rand this is
necessary to compile on rustc versions that are not older than 1.0.
* num = "0.1.27"
* rustc-serialize = "0.3.20"
* termcolor = "1.0.4"
* libudev-sys = "0.1.1"
* rand = "0.3.14"
* ab_glyph = "0.2.7
Based on https://github.com/bevyengine/bevy/pull/2455
Changes to get Bevy to compile with wgpu master.
With this, on a Mac:
* 2d examples look fine
* ~~3d examples crash with an error specific to metal about a compilation error~~
* 3d examples work fine after enabling feature `wgpu/cross`
Feature `wgpu/cross` seems to be needed only on some platforms, not sure how to know which. It was introduced in https://github.com/gfx-rs/wgpu-rs/pull/826
This PR adds two systems to the sprite module that culls Sprites and AtlasSprites that are not within the camera's view.
This is achieved by removing / adding a new `Viewable` Component dynamically.
Some of the render queries now use a `With<Viewable>` filter to only process the sprites that are actually on screen, which improves performance drastically for scene swith a large amount of sprites off-screen.
https://streamable.com/vvzh2u
This scene shows a map with a 320x320 tiles, with a grid size of 64p.
This is exactly 102400 Sprites in the entire scene.
Without this PR, this scene runs with 1 to 4 FPS.
With this PR..
.. at 720p, there are around 600 visible sprites and runs at ~215 FPS
.. at 1440p there are around 2000 visible sprites and runs at ~135 FPS
The Systems this PR adds take around 1.2ms (with 100K+ sprites in the scene)
Note:
This is only implemented for Sprites and AtlasTextureSprites.
There is no culling for 3D in this PR.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Resolves#1253#1562
This makes the Commands apis consistent with World apis. This moves to a "type state" pattern (like World) where the "current entity" is stored in an `EntityCommands` builder.
In general this tends to cuts down on indentation and line count. It comes at the cost of needing to type `commands` more and adding more semicolons to terminate expressions.
I also added `spawn_bundle` to Commands because this is a common enough operation that I think its worth providing a shorthand.
This is a rebase of StarArawns PBR work from #261 with IngmarBitters work from #1160 cherry-picked on top.
I had to make a few minor changes to make some intermediate commits compile and the end result is not yet 100% what I expected, so there's a bit more work to do.
Co-authored-by: John Mitchell <toasterthegamer@gmail.com>
Co-authored-by: Ingmar Bitter <ingmar.bitter@gmail.com>
Alternative to #1203 and #1611
Camera bindings have historically been "hacked in". They were _required_ in all shaders and only supported a single Mat4. PBR (#1554) requires the CameraView matrix, but adding this using the "hacked" method forced users to either include all possible camera data in a single binding (#1203) or include all possible bindings (#1611).
This approach instead assigns each "active camera" its own RenderResourceBindings, which are populated by CameraNode. The PassNode then retrieves (and initializes) the relevant bind groups for all render pipelines used by visible entities.
* Enables any number of camera bindings , including zero (with any set or binding number ... set 0 should still be used to avoid rebinds).
* Renames Camera binding to CameraViewProj
* Adds CameraView binding
it's a followup of #1550
I think calling explicit methods/values instead of default makes the code easier to read: "what is `Quat::default()`" vs "Oh, it's `Quat::IDENTITY`"
`Transform::identity()` and `GlobalTransform::identity()` can also be consts and I replaced the calls to their `default()` impl with `identity()`
* Adds labels and orderings to systems that need them (uses the new many-to-many labels for InputSystem)
* Removes the Event, PreEvent, Scene, and Ui stages in favor of First, PreUpdate, and PostUpdate (there is more collapsing potential, such as the Asset stages and _maybe_ removing First, but those have more nuance so they should be handled separately)
* Ambiguity detection now prints component conflicts
* Removed broken change filters from flex calculation (which implicitly relied on the z-update system always modifying translation.z). This will require more work to make it behave as expected so i just removed it (and it was already doing this work every frame).
This is an effort to provide the correct `#[reflect_value(...)]` attributes where they are needed.
Supersedes #1533 and resolves#1528.
---
I am working under the following assumptions (thanks to @bjorn3 and @Davier for advice here):
- Any `enum` that derives `Reflect` and one or more of { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } needs a `#[reflect_value(...)]` attribute containing the same subset of { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } that is present on the derive.
- Same as above for `struct` and `#[reflect(...)]`, respectively.
- If a `struct` is used as a component, it should also have `#[reflect(Component)]`
- All reflected types should be registered in their plugins
I treated the following as components (added `#[reflect(Component)]` if necessary):
- `bevy_render`
- `struct RenderLayers`
- `bevy_transform`
- `struct GlobalTransform`
- `struct Parent`
- `struct Transform`
- `bevy_ui`
- `struct Style`
Not treated as components:
- `bevy_math`
- `struct Size<T>`
- `struct Rect<T>`
- Note: The updates for `Size<T>` and `Rect<T>` in `bevy::math::geometry` required using @Davier's suggestion to add `+ PartialEq` to the trait bound. I then registered the specific types used over in `bevy_ui` such as `Size<Val>`, etc. in `bevy_ui`'s plugin, since `bevy::math` does not contain a plugin.
- `bevy_render`
- `struct Color`
- `struct PipelineSpecialization`
- `struct ShaderSpecialization`
- `enum PrimitiveTopology`
- `enum IndexFormat`
Not Addressed:
- I am not searching for components in Bevy that are _not_ reflected. So if there are components that are not reflected that should be reflected, that will need to be figured out in another PR.
- I only added `#[reflect(...)]` or `#[reflect_value(...)]` entries for the set of four traits { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } _if they were derived via `#[derive(...)]`_. I did not look for manual trait implementations of the same set of four, nor did I consider any traits outside the four. Are those other possibilities something that needs to be looked into?
# Bevy ECS V2
This is a rewrite of Bevy ECS (basically everything but the new executor/schedule, which are already awesome). The overall goal was to improve the performance and versatility of Bevy ECS. Here is a quick bulleted list of changes before we dive into the details:
* Complete World rewrite
* Multiple component storage types:
* Tables: fast cache friendly iteration, slower add/removes (previously called Archetypes)
* Sparse Sets: fast add/remove, slower iteration
* Stateful Queries (caches query results for faster iteration. fragmented iteration is _fast_ now)
* Stateful System Params (caches expensive operations. inspired by @DJMcNab's work in #1364)
* Configurable System Params (users can set configuration when they construct their systems. once again inspired by @DJMcNab's work)
* Archetypes are now "just metadata", component storage is separate
* Archetype Graph (for faster archetype changes)
* Component Metadata
* Configure component storage type
* Retrieve information about component size/type/name/layout/send-ness/etc
* Components are uniquely identified by a densely packed ComponentId
* TypeIds are now totally optional (which should make implementing scripting easier)
* Super fast "for_each" query iterators
* Merged Resources into World. Resources are now just a special type of component
* EntityRef/EntityMut builder apis (more efficient and more ergonomic)
* Fast bitset-backed `Access<T>` replaces old hashmap-based approach everywhere
* Query conflicts are determined by component access instead of archetype component access (to avoid random failures at runtime)
* With/Without are still taken into account for conflicts, so this should still be comfy to use
* Much simpler `IntoSystem` impl
* Significantly reduced the amount of hashing throughout the ecs in favor of Sparse Sets (indexed by densely packed ArchetypeId, ComponentId, BundleId, and TableId)
* Safety Improvements
* Entity reservation uses a normal world reference instead of unsafe transmute
* QuerySets no longer transmute lifetimes
* Made traits "unsafe" where relevant
* More thorough safety docs
* WorldCell
* Exposes safe mutable access to multiple resources at a time in a World
* Replaced "catch all" `System::update_archetypes(world: &World)` with `System::new_archetype(archetype: &Archetype)`
* Simpler Bundle implementation
* Replaced slow "remove_bundle_one_by_one" used as fallback for Commands::remove_bundle with fast "remove_bundle_intersection"
* Removed `Mut<T>` query impl. it is better to only support one way: `&mut T`
* Removed with() from `Flags<T>` in favor of `Option<Flags<T>>`, which allows querying for flags to be "filtered" by default
* Components now have is_send property (currently only resources support non-send)
* More granular module organization
* New `RemovedComponents<T>` SystemParam that replaces `query.removed::<T>()`
* `world.resource_scope()` for mutable access to resources and world at the same time
* WorldQuery and QueryFilter traits unified. FilterFetch trait added to enable "short circuit" filtering. Auto impled for cases that don't need it
* Significantly slimmed down SystemState in favor of individual SystemParam state
* System Commands changed from `commands: &mut Commands` back to `mut commands: Commands` (to allow Commands to have a World reference)
Fixes#1320
## `World` Rewrite
This is a from-scratch rewrite of `World` that fills the niche that `hecs` used to. Yes, this means Bevy ECS is no longer a "fork" of hecs. We're going out our own!
(the only shared code between the projects is the entity id allocator, which is already basically ideal)
A huge shout out to @SanderMertens (author of [flecs](https://github.com/SanderMertens/flecs)) for sharing some great ideas with me (specifically hybrid ecs storage and archetype graphs). He also helped advise on a number of implementation details.
## Component Storage (The Problem)
Two ECS storage paradigms have gained a lot of traction over the years:
* **Archetypal ECS**:
* Stores components in "tables" with static schemas. Each "column" stores components of a given type. Each "row" is an entity.
* Each "archetype" has its own table. Adding/removing an entity's component changes the archetype.
* Enables super-fast Query iteration due to its cache-friendly data layout
* Comes at the cost of more expensive add/remove operations for an Entity's components, because all components need to be copied to the new archetype's "table"
* **Sparse Set ECS**:
* Stores components of the same type in densely packed arrays, which are sparsely indexed by densely packed unsigned integers (Entity ids)
* Query iteration is slower than Archetypal ECS because each entity's component could be at any position in the sparse set. This "random access" pattern isn't cache friendly. Additionally, there is an extra layer of indirection because you must first map the entity id to an index in the component array.
* Adding/removing components is a cheap, constant time operation
Bevy ECS V1, hecs, legion, flec, and Unity DOTS are all "archetypal ecs-es". I personally think "archetypal" storage is a good default for game engines. An entity's archetype doesn't need to change frequently in general, and it creates "fast by default" query iteration (which is a much more common operation). It is also "self optimizing". Users don't need to think about optimizing component layouts for iteration performance. It "just works" without any extra boilerplate.
Shipyard and EnTT are "sparse set ecs-es". They employ "packing" as a way to work around the "suboptimal by default" iteration performance for specific sets of components. This helps, but I didn't think this was a good choice for a general purpose engine like Bevy because:
1. "packs" conflict with each other. If bevy decides to internally pack the Transform and GlobalTransform components, users are then blocked if they want to pack some custom component with Transform.
2. users need to take manual action to optimize
Developers selecting an ECS framework are stuck with a hard choice. Select an "archetypal" framework with "fast iteration everywhere" but without the ability to cheaply add/remove components, or select a "sparse set" framework to cheaply add/remove components but with slower iteration performance.
## Hybrid Component Storage (The Solution)
In Bevy ECS V2, we get to have our cake and eat it too. It now has _both_ of the component storage types above (and more can be added later if needed):
* **Tables** (aka "archetypal" storage)
* The default storage. If you don't configure anything, this is what you get
* Fast iteration by default
* Slower add/remove operations
* **Sparse Sets**
* Opt-in
* Slower iteration
* Faster add/remove operations
These storage types complement each other perfectly. By default Query iteration is fast. If developers know that they want to add/remove a component at high frequencies, they can set the storage to "sparse set":
```rust
world.register_component(
ComponentDescriptor:🆕:<MyComponent>(StorageType::SparseSet)
).unwrap();
```
## Archetypes
Archetypes are now "just metadata" ... they no longer store components directly. They do store:
* The `ComponentId`s of each of the Archetype's components (and that component's storage type)
* Archetypes are uniquely defined by their component layouts
* For example: entities with "table" components `[A, B, C]` _and_ "sparse set" components `[D, E]` will always be in the same archetype.
* The `TableId` associated with the archetype
* For now each archetype has exactly one table (which can have no components),
* There is a 1->Many relationship from Tables->Archetypes. A given table could have any number of archetype components stored in it:
* Ex: an entity with "table storage" components `[A, B, C]` and "sparse set" components `[D, E]` will share the same `[A, B, C]` table as an entity with `[A, B, C]` table component and `[F]` sparse set components.
* This 1->Many relationship is how we preserve fast "cache friendly" iteration performance when possible (more on this later)
* A list of entities that are in the archetype and the row id of the table they are in
* ArchetypeComponentIds
* unique densely packed identifiers for (ArchetypeId, ComponentId) pairs
* used by the schedule executor for cheap system access control
* "Archetype Graph Edges" (see the next section)
## The "Archetype Graph"
Archetype changes in Bevy (and a number of other archetypal ecs-es) have historically been expensive to compute. First, you need to allocate a new vector of the entity's current component ids, add or remove components based on the operation performed, sort it (to ensure it is order-independent), then hash it to find the archetype (if it exists). And thats all before we get to the _already_ expensive full copy of all components to the new table storage.
The solution is to build a "graph" of archetypes to cache these results. @SanderMertens first exposed me to the idea (and he got it from @gjroelofs, who came up with it). They propose adding directed edges between archetypes for add/remove component operations. If `ComponentId`s are densely packed, you can use sparse sets to cheaply jump between archetypes.
Bevy takes this one step further by using add/remove `Bundle` edges instead of `Component` edges. Bevy encourages the use of `Bundles` to group add/remove operations. This is largely for "clearer game logic" reasons, but it also helps cut down on the number of archetype changes required. `Bundles` now also have densely-packed `BundleId`s. This allows us to use a _single_ edge for each bundle operation (rather than needing to traverse N edges ... one for each component). Single component operations are also bundles, so this is strictly an improvement over a "component only" graph.
As a result, an operation that used to be _heavy_ (both for allocations and compute) is now two dirt-cheap array lookups and zero allocations.
## Stateful Queries
World queries are now stateful. This allows us to:
1. Cache archetype (and table) matches
* This resolves another issue with (naive) archetypal ECS: query performance getting worse as the number of archetypes goes up (and fragmentation occurs).
2. Cache Fetch and Filter state
* The expensive parts of fetch/filter operations (such as hashing the TypeId to find the ComponentId) now only happen once when the Query is first constructed
3. Incrementally build up state
* When new archetypes are added, we only process the new archetypes (no need to rebuild state for old archetypes)
As a result, the direct `World` query api now looks like this:
```rust
let mut query = world.query::<(&A, &mut B)>();
for (a, mut b) in query.iter_mut(&mut world) {
}
```
Requiring `World` to generate stateful queries (rather than letting the `QueryState` type be constructed separately) allows us to ensure that _all_ queries are properly initialized (and the relevant world state, such as ComponentIds). This enables QueryState to remove branches from its operations that check for initialization status (and also enables query.iter() to take an immutable world reference because it doesn't need to initialize anything in world).
However in systems, this is a non-breaking change. State management is done internally by the relevant SystemParam.
## Stateful SystemParams
Like Queries, `SystemParams` now also cache state. For example, `Query` system params store the "stateful query" state mentioned above. Commands store their internal `CommandQueue`. This means you can now safely use as many separate `Commands` parameters in your system as you want. `Local<T>` system params store their `T` value in their state (instead of in Resources).
SystemParam state also enabled a significant slim-down of SystemState. It is much nicer to look at now.
Per-SystemParam state naturally insulates us from an "aliased mut" class of errors we have hit in the past (ex: using multiple `Commands` system params).
(credit goes to @DJMcNab for the initial idea and draft pr here #1364)
## Configurable SystemParams
@DJMcNab also had the great idea to make SystemParams configurable. This allows users to provide some initial configuration / values for system parameters (when possible). Most SystemParams have no config (the config type is `()`), but the `Local<T>` param now supports user-provided parameters:
```rust
fn foo(value: Local<usize>) {
}
app.add_system(foo.system().config(|c| c.0 = Some(10)));
```
## Uber Fast "for_each" Query Iterators
Developers now have the choice to use a fast "for_each" iterator, which yields ~1.5-3x iteration speed improvements for "fragmented iteration", and minor ~1.2x iteration speed improvements for unfragmented iteration.
```rust
fn system(query: Query<(&A, &mut B)>) {
// you now have the option to do this for a speed boost
query.for_each_mut(|(a, mut b)| {
});
// however normal iterators are still available
for (a, mut b) in query.iter_mut() {
}
}
```
I think in most cases we should continue to encourage "normal" iterators as they are more flexible and more "rust idiomatic". But when that extra "oomf" is needed, it makes sense to use `for_each`.
We should also consider using `for_each` for internal bevy systems to give our users a nice speed boost (but that should be a separate pr).
## Component Metadata
`World` now has a `Components` collection, which is accessible via `world.components()`. This stores mappings from `ComponentId` to `ComponentInfo`, as well as `TypeId` to `ComponentId` mappings (where relevant). `ComponentInfo` stores information about the component, such as ComponentId, TypeId, memory layout, send-ness (currently limited to resources), and storage type.
## Significantly Cheaper `Access<T>`
We used to use `TypeAccess<TypeId>` to manage read/write component/archetype-component access. This was expensive because TypeIds must be hashed and compared individually. The parallel executor got around this by "condensing" type ids into bitset-backed access types. This worked, but it had to be re-generated from the `TypeAccess<TypeId>`sources every time archetypes changed.
This pr removes TypeAccess in favor of faster bitset access everywhere. We can do this thanks to the move to densely packed `ComponentId`s and `ArchetypeComponentId`s.
## Merged Resources into World
Resources had a lot of redundant functionality with Components. They stored typed data, they had access control, they had unique ids, they were queryable via SystemParams, etc. In fact the _only_ major difference between them was that they were unique (and didn't correlate to an entity).
Separate resources also had the downside of requiring a separate set of access controls, which meant the parallel executor needed to compare more bitsets per system and manage more state.
I initially got the "separate resources" idea from `legion`. I think that design was motivated by the fact that it made the direct world query/resource lifetime interactions more manageable. It certainly made our lives easier when using Resources alongside hecs/bevy_ecs. However we already have a construct for safely and ergonomically managing in-world lifetimes: systems (which use `Access<T>` internally).
This pr merges Resources into World:
```rust
world.insert_resource(1);
world.insert_resource(2.0);
let a = world.get_resource::<i32>().unwrap();
let mut b = world.get_resource_mut::<f64>().unwrap();
*b = 3.0;
```
Resources are now just a special kind of component. They have their own ComponentIds (and their own resource TypeId->ComponentId scope, so they don't conflict wit components of the same type). They are stored in a special "resource archetype", which stores components inside the archetype using a new `unique_components` sparse set (note that this sparse set could later be used to implement Tags). This allows us to keep the code size small by reusing existing datastructures (namely Column, Archetype, ComponentFlags, and ComponentInfo). This allows us the executor to use a single `Access<ArchetypeComponentId>` per system. It should also make scripting language integration easier.
_But_ this merge did create problems for people directly interacting with `World`. What if you need mutable access to multiple resources at the same time? `world.get_resource_mut()` borrows World mutably!
## WorldCell
WorldCell applies the `Access<ArchetypeComponentId>` concept to direct world access:
```rust
let world_cell = world.cell();
let a = world_cell.get_resource_mut::<i32>().unwrap();
let b = world_cell.get_resource_mut::<f64>().unwrap();
```
This adds cheap runtime checks (a sparse set lookup of `ArchetypeComponentId` and a counter) to ensure that world accesses do not conflict with each other. Each operation returns a `WorldBorrow<'w, T>` or `WorldBorrowMut<'w, T>` wrapper type, which will release the relevant ArchetypeComponentId resources when dropped.
World caches the access sparse set (and only one cell can exist at a time), so `world.cell()` is a cheap operation.
WorldCell does _not_ use atomic operations. It is non-send, does a mutable borrow of world to prevent other accesses, and uses a simple `Rc<RefCell<ArchetypeComponentAccess>>` wrapper in each WorldBorrow pointer.
The api is currently limited to resource access, but it can and should be extended to queries / entity component access.
## Resource Scopes
WorldCell does not yet support component queries, and even when it does there are sometimes legitimate reasons to want a mutable world ref _and_ a mutable resource ref (ex: bevy_render and bevy_scene both need this). In these cases we could always drop down to the unsafe `world.get_resource_unchecked_mut()`, but that is not ideal!
Instead developers can use a "resource scope"
```rust
world.resource_scope(|world: &mut World, a: &mut A| {
})
```
This temporarily removes the `A` resource from `World`, provides mutable pointers to both, and re-adds A to World when finished. Thanks to the move to ComponentIds/sparse sets, this is a cheap operation.
If multiple resources are required, scopes can be nested. We could also consider adding a "resource tuple" to the api if this pattern becomes common and the boilerplate gets nasty.
## Query Conflicts Use ComponentId Instead of ArchetypeComponentId
For safety reasons, systems cannot contain queries that conflict with each other without wrapping them in a QuerySet. On bevy `main`, we use ArchetypeComponentIds to determine conflicts. This is nice because it can take into account filters:
```rust
// these queries will never conflict due to their filters
fn filter_system(a: Query<&mut A, With<B>>, b: Query<&mut B, Without<B>>) {
}
```
But it also has a significant downside:
```rust
// these queries will not conflict _until_ an entity with A, B, and C is spawned
fn maybe_conflicts_system(a: Query<(&mut A, &C)>, b: Query<(&mut A, &B)>) {
}
```
The system above will panic at runtime if an entity with A, B, and C is spawned. This makes it hard to trust that your game logic will run without crashing.
In this pr, I switched to using `ComponentId` instead. This _is_ more constraining. `maybe_conflicts_system` will now always fail, but it will do it consistently at startup. Naively, it would also _disallow_ `filter_system`, which would be a significant downgrade in usability. Bevy has a number of internal systems that rely on disjoint queries and I expect it to be a common pattern in userspace.
To resolve this, I added a new `FilteredAccess<T>` type, which wraps `Access<T>` and adds with/without filters. If two `FilteredAccess` have with/without values that prove they are disjoint, they will no longer conflict.
## EntityRef / EntityMut
World entity operations on `main` require that the user passes in an `entity` id to each operation:
```rust
let entity = world.spawn((A, )); // create a new entity with A
world.get::<A>(entity);
world.insert(entity, (B, C));
world.insert_one(entity, D);
```
This means that each operation needs to look up the entity location / verify its validity. The initial spawn operation also requires a Bundle as input. This can be awkward when no components are required (or one component is required).
These operations have been replaced by `EntityRef` and `EntityMut`, which are "builder-style" wrappers around world that provide read and read/write operations on a single, pre-validated entity:
```rust
// spawn now takes no inputs and returns an EntityMut
let entity = world.spawn()
.insert(A) // insert a single component into the entity
.insert_bundle((B, C)) // insert a bundle of components into the entity
.id() // id returns the Entity id
// Returns EntityMut (or panics if the entity does not exist)
world.entity_mut(entity)
.insert(D)
.insert_bundle(SomeBundle::default());
{
// returns EntityRef (or panics if the entity does not exist)
let d = world.entity(entity)
.get::<D>() // gets the D component
.unwrap();
// world.get still exists for ergonomics
let d = world.get::<D>(entity).unwrap();
}
// These variants return Options if you want to check existence instead of panicing
world.get_entity_mut(entity)
.unwrap()
.insert(E);
if let Some(entity_ref) = world.get_entity(entity) {
let d = entity_ref.get::<D>().unwrap();
}
```
This _does not_ affect the current Commands api or terminology. I think that should be a separate conversation as that is a much larger breaking change.
## Safety Improvements
* Entity reservation in Commands uses a normal world borrow instead of an unsafe transmute
* QuerySets no longer transmutes lifetimes
* Made traits "unsafe" when implementing a trait incorrectly could cause unsafety
* More thorough safety docs
## RemovedComponents SystemParam
The old approach to querying removed components: `query.removed:<T>()` was confusing because it had no connection to the query itself. I replaced it with the following, which is both clearer and allows us to cache the ComponentId mapping in the SystemParamState:
```rust
fn system(removed: RemovedComponents<T>) {
for entity in removed.iter() {
}
}
```
## Simpler Bundle implementation
Bundles are no longer responsible for sorting (or deduping) TypeInfo. They are just a simple ordered list of component types / data. This makes the implementation smaller and opens the door to an easy "nested bundle" implementation in the future (which i might even add in this pr). Duplicate detection is now done once per bundle type by World the first time a bundle is used.
## Unified WorldQuery and QueryFilter types
(don't worry they are still separate type _parameters_ in Queries .. this is a non-breaking change)
WorldQuery and QueryFilter were already basically identical apis. With the addition of `FetchState` and more storage-specific fetch methods, the overlap was even clearer (and the redundancy more painful).
QueryFilters are now just `F: WorldQuery where F::Fetch: FilterFetch`. FilterFetch requires `Fetch<Item = bool>` and adds new "short circuit" variants of fetch methods. This enables a filter tuple like `(With<A>, Without<B>, Changed<C>)` to stop evaluating the filter after the first mismatch is encountered. FilterFetch is automatically implemented for `Fetch` implementations that return bool.
This forces fetch implementations that return things like `(bool, bool, bool)` (such as the filter above) to manually implement FilterFetch and decide whether or not to short-circuit.
## More Granular Modules
World no longer globs all of the internal modules together. It now exports `core`, `system`, and `schedule` separately. I'm also considering exporting `core` submodules directly as that is still pretty "glob-ey" and unorganized (feedback welcome here).
## Remaining Draft Work (to be done in this pr)
* ~~panic on conflicting WorldQuery fetches (&A, &mut A)~~
* ~~bevy `main` and hecs both currently allow this, but we should protect against it if possible~~
* ~~batch_iter / par_iter (currently stubbed out)~~
* ~~ChangedRes~~
* ~~I skipped this while we sort out #1313. This pr should be adapted to account for whatever we land on there~~.
* ~~The `Archetypes` and `Tables` collections use hashes of sorted lists of component ids to uniquely identify each archetype/table. This hash is then used as the key in a HashMap to look up the relevant ArchetypeId or TableId. (which doesn't handle hash collisions properly)~~
* ~~It is currently unsafe to generate a Query from "World A", then use it on "World B" (despite the api claiming it is safe). We should probably close this gap. This could be done by adding a randomly generated WorldId to each world, then storing that id in each Query. They could then be compared to each other on each `query.do_thing(&world)` operation. This _does_ add an extra branch to each query operation, so I'm open to other suggestions if people have them.~~
* ~~Nested Bundles (if i find time)~~
## Potential Future Work
* Expand WorldCell to support queries.
* Consider not allocating in the empty archetype on `world.spawn()`
* ex: return something like EntityMutUninit, which turns into EntityMut after an `insert` or `insert_bundle` op
* this actually regressed performance last time i tried it, but in theory it should be faster
* Optimize SparseSet::insert (see `PERF` comment on insert)
* Replace SparseArray `Option<T>` with T::MAX to cut down on branching
* would enable cheaper get_unchecked() operations
* upstream fixedbitset optimizations
* fixedbitset could be allocation free for small block counts (store blocks in a SmallVec)
* fixedbitset could have a const constructor
* Consider implementing Tags (archetype-specific by-value data that affects archetype identity)
* ex: ArchetypeA could have `[A, B, C]` table components and `[D(1)]` "tag" component. ArchetypeB could have `[A, B, C]` table components and a `[D(2)]` tag component. The archetypes are different, despite both having D tags because the value inside D is different.
* this could potentially build on top of the `archetype.unique_components` added in this pr for resource storage.
* Consider reverting `all_tuples` proc macro in favor of the old `macro_rules` implementation
* all_tuples is more flexible and produces cleaner documentation (the macro_rules version produces weird type parameter orders due to parser constraints)
* but unfortunately all_tuples also appears to make Rust Analyzer sad/slow when working inside of `bevy_ecs` (does not affect user code)
* Consider "resource queries" and/or "mixed resource and entity component queries" as an alternative to WorldCell
* this is basically just "systems" so maybe it's not worth it
* Add more world ops
* `world.clear()`
* `world.reserve<T: Bundle>(count: usize)`
* Try using the old archetype allocation strategy (allocate new memory on resize and copy everything over). I expect this to improve batch insertion performance at the cost of unbatched performance. But thats just a guess. I'm not an allocation perf pro :)
* Adapt Commands apis for consistency with new World apis
## Benchmarks
key:
* `bevy_old`: bevy `main` branch
* `bevy`: this branch
* `_foreach`: uses an optimized for_each iterator
* ` _sparse`: uses sparse set storage (if unspecified assume table storage)
* `_system`: runs inside a system (if unspecified assume test happens via direct world ops)
### Simple Insert (from ecs_bench_suite)
![image](https://user-images.githubusercontent.com/2694663/109245573-9c3ce100-7795-11eb-9003-bfd41cd5c51f.png)
### Simpler Iter (from ecs_bench_suite)
![image](https://user-images.githubusercontent.com/2694663/109245795-ffc70e80-7795-11eb-92fb-3ffad09aabf7.png)
### Fragment Iter (from ecs_bench_suite)
![image](https://user-images.githubusercontent.com/2694663/109245849-0fdeee00-7796-11eb-8d25-eb6b7a682c48.png)
### Sparse Fragmented Iter
Iterate a query that matches 5 entities from a single matching archetype, but there are 100 unmatching archetypes
![image](https://user-images.githubusercontent.com/2694663/109245916-2b49f900-7796-11eb-9a8f-ed89c203f940.png)
### Schedule (from ecs_bench_suite)
![image](https://user-images.githubusercontent.com/2694663/109246428-1fab0200-7797-11eb-8841-1b2161e90fa4.png)
### Add Remove Component (from ecs_bench_suite)
![image](https://user-images.githubusercontent.com/2694663/109246492-39e4e000-7797-11eb-8985-2706bd0495ab.png)
### Add Remove Component Big
Same as the test above, but each entity has 5 "large" matrix components and 1 "large" matrix component is added and removed
![image](https://user-images.githubusercontent.com/2694663/109246517-449f7500-7797-11eb-835e-28b6790daeaa.png)
### Get Component
Looks up a single component value a large number of times
![image](https://user-images.githubusercontent.com/2694663/109246129-87ad1880-7796-11eb-9fcb-c38012aa7c70.png)
* Fix Interaction getting stuck when pressing and releasing mouse button in one frame
* Fix Interaction not resetting in some cases with FocusPolicy::Pass
* use `length_squared` for visible entities
* ortho projection 2d/3d different depth calculation
* use ScalingMode::FixedVertical for 3d ortho
* new example: 3d orthographic
* add normalized orthographic projection
* custom scale for ScaledOrthographicProjection
* allow choosing base axis for ScaledOrthographicProjection
* cargo fmt
* add general (scaled) orthographic camera bundle
FIXME: does the same "far" trick from Camera2DBundle make any sense here?
* fixes
* camera bundles: rename and new ortho constructors
* unify orthographic projections
* give PerspectiveCameraBundle constructors like those of OrthographicCameraBundle
* update examples with new camera bundle syntax
* rename CameraUiBundle to UiCameraBundle
* update examples
* ScalingMode::None
* remove extra blank lines
* sane default bounds for orthographic projection
* fix alien_cake_addict example
* reorder ScalingMode enum variants
* ios example fix
* Add test for ui-z system
* Remove generic hierarchy runner and refactor ui z-system
* Remove different handling for childless nodes
Having an empty children list should be the same as having no child
component.
* Further simplify system after change
Extend the Texture asset type to support 3D data
Textures are still loaded from images as 2D, but they can be reshaped
according to how the render pipeline would like to use them.
Also add an example of how this can be used with the texture2DArray uniform type.
* Remove cfg!(feature = "metal-auto-capture")
This cfg! has existed since the initial commit, but the corresponding
feature has never been part of Cargo.toml
* Remove unnecessary handle_create_window_events call
* Remove EventLoopProxyPtr wrapper
* Remove unnecessary statics
* Fix unrelated deprecation warning to fix CI
Use glyph_brush_layout and add text alignment support
Co-authored-by: Olivier Pinon <op@impero.com>
Co-authored-by: tigregalis <anak.harimau@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
* Add force touches, fix ui focus system and touch screen system
* Fix examples README. Update rodio with Android support. Add Android build CI
* Alter android metadata in root Cargo.toml
Transform and GlobalTransform are now Similarities.
This resolves precision errors and simplifies the api
Co-authored-by: Carter Anderson <mcanders1@gmail.com>