mirror of
https://github.com/bevyengine/bevy
synced 2024-11-10 07:04:33 +00:00
Cascaded shadow maps. (#7064)
Co-authored-by: Robert Swain <robert.swain@gmail.com> # Objective Implements cascaded shadow maps for directional lights, which produces better quality shadows without needing excessively large shadow maps. Fixes #3629 Before ![image](https://user-images.githubusercontent.com/1222141/210061203-bbd965a4-8d11-4cec-9a88-67fc59d0819f.png) After ![image](https://user-images.githubusercontent.com/1222141/210061334-2ff15334-e6d7-4a31-9314-f34a7805cac6.png) ## Solution Rather than rendering a single shadow map for directional light, the view frustum is divided into a series of cascades, each of which gets its own shadow map. The correct cascade is then sampled for shadow determination. --- ## Changelog Directional lights now use cascaded shadow maps for improved shadow quality. ## Migration Guide You no longer have to manually specify a `shadow_projection` for a directional light, and these settings should be removed. If customization of how cascaded shadow maps work is desired, modify the `CascadeShadowConfig` component instead.
This commit is contained in:
parent
f27e9b241d
commit
c3a46822e1
23 changed files with 672 additions and 284 deletions
|
@ -61,7 +61,7 @@ impl Camera2dBundle {
|
|||
let transform = Transform::from_xyz(0.0, 0.0, far - 0.1);
|
||||
let view_projection =
|
||||
projection.get_projection_matrix() * transform.compute_matrix().inverse();
|
||||
let frustum = Frustum::from_view_projection(
|
||||
let frustum = Frustum::from_view_projection_custom_far(
|
||||
&view_projection,
|
||||
&transform.translation,
|
||||
&transform.back(),
|
||||
|
|
|
@ -1,13 +1,17 @@
|
|||
use crate::{DirectionalLight, Material, PointLight, SpotLight, StandardMaterial};
|
||||
use crate::{
|
||||
CascadeShadowConfig, Cascades, DirectionalLight, Material, PointLight, SpotLight,
|
||||
StandardMaterial,
|
||||
};
|
||||
use bevy_asset::Handle;
|
||||
use bevy_ecs::{bundle::Bundle, component::Component, reflect::ReflectComponent};
|
||||
use bevy_ecs::{bundle::Bundle, component::Component, prelude::Entity, reflect::ReflectComponent};
|
||||
use bevy_reflect::Reflect;
|
||||
use bevy_render::{
|
||||
mesh::Mesh,
|
||||
primitives::{CubemapFrusta, Frustum},
|
||||
primitives::{CascadesFrusta, CubemapFrusta, Frustum},
|
||||
view::{ComputedVisibility, Visibility, VisibleEntities},
|
||||
};
|
||||
use bevy_transform::components::{GlobalTransform, Transform};
|
||||
use bevy_utils::HashMap;
|
||||
|
||||
/// A component bundle for PBR entities with a [`Mesh`] and a [`StandardMaterial`].
|
||||
pub type PbrBundle = MaterialMeshBundle<StandardMaterial>;
|
||||
|
@ -63,6 +67,14 @@ impl CubemapVisibleEntities {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Component, Clone, Debug, Default, Reflect)]
|
||||
#[reflect(Component)]
|
||||
pub struct CascadesVisibleEntities {
|
||||
/// Map of view entity to the visible entities for each cascade frustum.
|
||||
#[reflect(ignore)]
|
||||
pub entities: HashMap<Entity, Vec<VisibleEntities>>,
|
||||
}
|
||||
|
||||
/// A component bundle for [`PointLight`] entities.
|
||||
#[derive(Debug, Bundle, Default)]
|
||||
pub struct PointLightBundle {
|
||||
|
@ -95,8 +107,10 @@ pub struct SpotLightBundle {
|
|||
#[derive(Debug, Bundle, Default)]
|
||||
pub struct DirectionalLightBundle {
|
||||
pub directional_light: DirectionalLight,
|
||||
pub frustum: Frustum,
|
||||
pub visible_entities: VisibleEntities,
|
||||
pub frusta: CascadesFrusta,
|
||||
pub cascades: Cascades,
|
||||
pub cascade_shadow_config: CascadeShadowConfig,
|
||||
pub visible_entities: CascadesVisibleEntities,
|
||||
pub transform: Transform,
|
||||
pub global_transform: GlobalTransform,
|
||||
/// Enables or disables the light
|
||||
|
|
|
@ -145,17 +145,20 @@ impl Plugin for PbrPlugin {
|
|||
Shader::from_wgsl
|
||||
);
|
||||
|
||||
app.register_type::<CubemapVisibleEntities>()
|
||||
.register_type::<DirectionalLight>()
|
||||
.register_type::<PointLight>()
|
||||
.register_type::<SpotLight>()
|
||||
.register_asset_reflect::<StandardMaterial>()
|
||||
app.register_asset_reflect::<StandardMaterial>()
|
||||
.register_type::<AmbientLight>()
|
||||
.register_type::<DirectionalLightShadowMap>()
|
||||
.register_type::<CascadeShadowConfig>()
|
||||
.register_type::<Cascades>()
|
||||
.register_type::<CascadesVisibleEntities>()
|
||||
.register_type::<ClusterConfig>()
|
||||
.register_type::<ClusterZConfig>()
|
||||
.register_type::<ClusterFarZMode>()
|
||||
.register_type::<ClusterZConfig>()
|
||||
.register_type::<CubemapVisibleEntities>()
|
||||
.register_type::<DirectionalLight>()
|
||||
.register_type::<DirectionalLightShadowMap>()
|
||||
.register_type::<PointLight>()
|
||||
.register_type::<PointLightShadowMap>()
|
||||
.register_type::<SpotLight>()
|
||||
.add_plugin(MeshRenderPlugin)
|
||||
.add_plugin(MaterialPlugin::<StandardMaterial> {
|
||||
prepass_enabled: self.prepass_enabled,
|
||||
|
@ -183,6 +186,12 @@ impl Plugin for PbrPlugin {
|
|||
.after(CameraUpdateSystem)
|
||||
.after(ModifiesWindows),
|
||||
)
|
||||
.add_system_to_stage(
|
||||
CoreStage::PostUpdate,
|
||||
update_directional_light_cascades
|
||||
.label(SimulationLightSystems::UpdateDirectionalLightCascades)
|
||||
.after(TransformSystem::TransformPropagate),
|
||||
)
|
||||
.add_system_to_stage(
|
||||
CoreStage::PostUpdate,
|
||||
update_directional_light_frusta
|
||||
|
@ -190,6 +199,7 @@ impl Plugin for PbrPlugin {
|
|||
// This must run after CheckVisibility because it relies on ComputedVisibility::is_visible()
|
||||
.after(VisibilitySystems::CheckVisibility)
|
||||
.after(TransformSystem::TransformPropagate)
|
||||
.after(SimulationLightSystems::UpdateDirectionalLightCascades)
|
||||
// We assume that no entity will be both a directional light and a spot light,
|
||||
// so these systems will run independently of one another.
|
||||
// FIXME: Add an archetype invariant for this https://github.com/bevyengine/bevy/issues/1481.
|
||||
|
|
|
@ -4,21 +4,23 @@ use bevy_ecs::prelude::*;
|
|||
use bevy_math::{Mat4, UVec2, UVec3, Vec2, Vec3, Vec3A, Vec3Swizzles, Vec4, Vec4Swizzles};
|
||||
use bevy_reflect::prelude::*;
|
||||
use bevy_render::{
|
||||
camera::{Camera, CameraProjection, OrthographicProjection},
|
||||
camera::Camera,
|
||||
color::Color,
|
||||
extract_resource::ExtractResource,
|
||||
primitives::{Aabb, CubemapFrusta, Frustum, Plane, Sphere},
|
||||
prelude::Projection,
|
||||
primitives::{Aabb, CascadesFrusta, CubemapFrusta, Frustum, Plane, Sphere},
|
||||
render_resource::BufferBindingType,
|
||||
renderer::RenderDevice,
|
||||
view::{ComputedVisibility, RenderLayers, VisibleEntities},
|
||||
};
|
||||
use bevy_transform::{components::GlobalTransform, prelude::Transform};
|
||||
use bevy_utils::tracing::warn;
|
||||
use bevy_utils::{tracing::warn, HashMap};
|
||||
|
||||
use crate::{
|
||||
calculate_cluster_factors, spot_light_projection_matrix, spot_light_view_matrix, CubeMapFace,
|
||||
CubemapVisibleEntities, ViewClusterBindings, CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT,
|
||||
CUBE_MAP_FACES, MAX_UNIFORM_BUFFER_POINT_LIGHTS, POINT_LIGHT_NEAR_Z,
|
||||
calculate_cluster_factors, spot_light_projection_matrix, spot_light_view_matrix,
|
||||
CascadesVisibleEntities, CubeMapFace, CubemapVisibleEntities, ViewClusterBindings,
|
||||
CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT, CUBE_MAP_FACES, MAX_UNIFORM_BUFFER_POINT_LIGHTS,
|
||||
POINT_LIGHT_NEAR_Z,
|
||||
};
|
||||
|
||||
/// A light that emits light in all directions from a central point.
|
||||
|
@ -172,24 +174,11 @@ impl Default for SpotLight {
|
|||
///
|
||||
/// To enable shadows, set the `shadows_enabled` property to `true`.
|
||||
///
|
||||
/// While directional lights contribute to the illumination of meshes regardless
|
||||
/// of their (or the meshes') positions, currently only a limited region of the scene
|
||||
/// (the _shadow volume_) can cast and receive shadows for any given directional light.
|
||||
/// Shadows are produced via [cascaded shadow maps](https://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf).
|
||||
///
|
||||
/// The shadow volume is a _rectangular cuboid_, with left/right/bottom/top/near/far
|
||||
/// planes controllable via the `shadow_projection` field. It is affected by the
|
||||
/// directional light entity's [`GlobalTransform`], and as such can be freely repositioned in the
|
||||
/// scene, (or even scaled!) without affecting illumination in any other way, by simply
|
||||
/// moving (or scaling) the entity around. The shadow volume is always oriented towards the
|
||||
/// light entity's forward direction.
|
||||
/// To modify the cascade set up, such as the number of cascades or the maximum shadow distance,
|
||||
/// change the [`CascadeShadowConfig`] component of the [`crate::bundle::DirectionalLightBundle`].
|
||||
///
|
||||
/// For smaller scenes, a static directional light with a preset volume is typically
|
||||
/// sufficient. For larger scenes with movable cameras, you might want to introduce
|
||||
/// a system that dynamically repositions and scales the light entity (and therefore
|
||||
/// its shadow volume) based on the scene subject's position (e.g. a player character)
|
||||
/// and its relative distance to the camera.
|
||||
///
|
||||
/// Shadows are produced via [shadow mapping](https://en.wikipedia.org/wiki/Shadow_mapping).
|
||||
/// To control the resolution of the shadow maps, use the [`DirectionalLightShadowMap`] resource:
|
||||
///
|
||||
/// ```
|
||||
|
@ -198,12 +187,6 @@ impl Default for SpotLight {
|
|||
/// App::new()
|
||||
/// .insert_resource(DirectionalLightShadowMap { size: 2048 });
|
||||
/// ```
|
||||
///
|
||||
/// **Note:** Very large shadow map resolutions (> 4K) can have non-negligible performance and
|
||||
/// memory impact, and not work properly under mobile or lower-end hardware. To improve the visual
|
||||
/// fidelity of shadow maps, it's typically advisable to first reduce the `shadow_projection`
|
||||
/// left/right/top/bottom to a scene-appropriate size, before ramping up the shadow map
|
||||
/// resolution.
|
||||
#[derive(Component, Debug, Clone, Reflect)]
|
||||
#[reflect(Component, Default)]
|
||||
pub struct DirectionalLight {
|
||||
|
@ -211,8 +194,6 @@ pub struct DirectionalLight {
|
|||
/// Illuminance in lux
|
||||
pub illuminance: f32,
|
||||
pub shadows_enabled: bool,
|
||||
/// A projection that controls the volume in which shadow maps are rendered
|
||||
pub shadow_projection: OrthographicProjection,
|
||||
pub shadow_depth_bias: f32,
|
||||
/// A bias applied along the direction of the fragment's surface normal. It is scaled to the
|
||||
/// shadow map's texel size so that it is automatically adjusted to the orthographic projection.
|
||||
|
@ -221,20 +202,10 @@ pub struct DirectionalLight {
|
|||
|
||||
impl Default for DirectionalLight {
|
||||
fn default() -> Self {
|
||||
let size = 100.0;
|
||||
DirectionalLight {
|
||||
color: Color::rgb(1.0, 1.0, 1.0),
|
||||
illuminance: 100000.0,
|
||||
shadows_enabled: false,
|
||||
shadow_projection: OrthographicProjection {
|
||||
left: -size,
|
||||
right: size,
|
||||
bottom: -size,
|
||||
top: size,
|
||||
near: -size,
|
||||
far: size,
|
||||
..Default::default()
|
||||
},
|
||||
shadow_depth_bias: Self::DEFAULT_SHADOW_DEPTH_BIAS,
|
||||
shadow_normal_bias: Self::DEFAULT_SHADOW_NORMAL_BIAS,
|
||||
}
|
||||
|
@ -256,9 +227,258 @@ pub struct DirectionalLightShadowMap {
|
|||
impl Default for DirectionalLightShadowMap {
|
||||
fn default() -> Self {
|
||||
#[cfg(feature = "webgl")]
|
||||
return Self { size: 2048 };
|
||||
return Self { size: 1024 };
|
||||
#[cfg(not(feature = "webgl"))]
|
||||
return Self { size: 4096 };
|
||||
return Self { size: 2048 };
|
||||
}
|
||||
}
|
||||
|
||||
/// Controls how cascaded shadow mapping works.
|
||||
#[derive(Component, Clone, Debug, Reflect)]
|
||||
#[reflect(Component)]
|
||||
pub struct CascadeShadowConfig {
|
||||
/// The (positive) distance to the far boundary of each cascade.
|
||||
pub bounds: Vec<f32>,
|
||||
/// The proportion of overlap each cascade has with the previous cascade.
|
||||
pub overlap_proportion: f32,
|
||||
}
|
||||
|
||||
impl Default for CascadeShadowConfig {
|
||||
fn default() -> Self {
|
||||
if cfg!(feature = "webgl") {
|
||||
// Currently only support one cascade in webgl.
|
||||
Self::new(1, 5.0, 100.0, 0.2)
|
||||
} else {
|
||||
Self::new(4, 5.0, 1000.0, 0.2)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn calculate_cascade_bounds(
|
||||
num_cascades: usize,
|
||||
nearest_bound: f32,
|
||||
shadow_maximum_distance: f32,
|
||||
) -> Vec<f32> {
|
||||
if num_cascades == 1 {
|
||||
return vec![shadow_maximum_distance];
|
||||
}
|
||||
let base = (shadow_maximum_distance / nearest_bound).powf(1.0 / (num_cascades - 1) as f32);
|
||||
(0..num_cascades)
|
||||
.map(|i| nearest_bound * base.powf(i as f32))
|
||||
.collect()
|
||||
}
|
||||
|
||||
impl CascadeShadowConfig {
|
||||
/// Returns a cascade config for `num_cascades` cascades, with the first cascade
|
||||
/// having far bound `nearest_bound` and the last cascade having far bound `shadow_maximum_distance`.
|
||||
/// In-between cascades will be exponentially spaced.
|
||||
pub fn new(
|
||||
num_cascades: usize,
|
||||
nearest_bound: f32,
|
||||
shadow_maximum_distance: f32,
|
||||
overlap_proportion: f32,
|
||||
) -> Self {
|
||||
assert!(
|
||||
num_cascades > 0,
|
||||
"num_cascades must be positive, but was {}",
|
||||
num_cascades
|
||||
);
|
||||
assert!(
|
||||
(0.0..1.0).contains(&overlap_proportion),
|
||||
"overlap_proportion must be in [0.0, 1.0) but was {}",
|
||||
overlap_proportion
|
||||
);
|
||||
Self {
|
||||
bounds: calculate_cascade_bounds(num_cascades, nearest_bound, shadow_maximum_distance),
|
||||
overlap_proportion,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Component, Clone, Debug, Default, Reflect)]
|
||||
#[reflect(Component)]
|
||||
pub struct Cascades {
|
||||
/// Map from a view to the configuration of each of its [`Cascade`]s.
|
||||
pub(crate) cascades: HashMap<Entity, Vec<Cascade>>,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Default, Reflect, FromReflect)]
|
||||
pub struct Cascade {
|
||||
/// The transform of the light, i.e. the view to world matrix.
|
||||
pub(crate) view_transform: Mat4,
|
||||
/// The orthographic projection for this cascade.
|
||||
pub(crate) projection: Mat4,
|
||||
/// The view-projection matrix for this cacade, converting world space into light clip space.
|
||||
/// Importantly, this is derived and stored separately from `view_transform` and `projection` to
|
||||
/// ensure shadow stability.
|
||||
pub(crate) view_projection: Mat4,
|
||||
/// Size of each shadow map texel in world units.
|
||||
pub(crate) texel_size: f32,
|
||||
}
|
||||
|
||||
pub fn update_directional_light_cascades(
|
||||
directional_light_shadow_map: Res<DirectionalLightShadowMap>,
|
||||
views: Query<(Entity, &GlobalTransform, &Projection, &Camera)>,
|
||||
mut lights: Query<(
|
||||
&GlobalTransform,
|
||||
&DirectionalLight,
|
||||
&CascadeShadowConfig,
|
||||
&mut Cascades,
|
||||
)>,
|
||||
) {
|
||||
let views = views
|
||||
.iter()
|
||||
.filter_map(|view| match view {
|
||||
// TODO: orthographic camera projection support.
|
||||
(entity, transform, Projection::Perspective(projection), camera)
|
||||
if camera.is_active =>
|
||||
{
|
||||
Some((
|
||||
entity,
|
||||
projection.aspect_ratio,
|
||||
(0.5 * projection.fov).tan(),
|
||||
transform.compute_matrix(),
|
||||
))
|
||||
}
|
||||
_ => None,
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
for (transform, directional_light, cascades_config, mut cascades) in lights.iter_mut() {
|
||||
if !directional_light.shadows_enabled {
|
||||
continue;
|
||||
}
|
||||
|
||||
// It is very important to the numerical and thus visual stability of shadows that
|
||||
// light_to_world has orthogonal upper-left 3x3 and zero translation.
|
||||
// Even though only the direction (i.e. rotation) of the light matters, we don't constrain
|
||||
// users to not change any other aspects of the transform - there's no guarantee
|
||||
// `transform.compute_matrix()` will give us a matrix with our desired properties.
|
||||
// Instead, we directly create a good matrix from just the rotation.
|
||||
let light_to_world = Mat4::from_quat(transform.compute_transform().rotation);
|
||||
let light_to_world_inverse = light_to_world.inverse();
|
||||
|
||||
cascades.cascades.clear();
|
||||
for (view_entity, aspect_ratio, tan_half_fov, view_to_world) in views.iter().copied() {
|
||||
let camera_to_light_view = light_to_world_inverse * view_to_world;
|
||||
let view_cascades = cascades_config
|
||||
.bounds
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(idx, far_bound)| {
|
||||
calculate_cascade(
|
||||
aspect_ratio,
|
||||
tan_half_fov,
|
||||
directional_light_shadow_map.size as f32,
|
||||
light_to_world,
|
||||
camera_to_light_view,
|
||||
// Negate bounds as -z is camera forward direction.
|
||||
if idx > 0 {
|
||||
(1.0 - cascades_config.overlap_proportion)
|
||||
* -cascades_config.bounds[idx - 1]
|
||||
} else {
|
||||
0.0
|
||||
},
|
||||
-far_bound,
|
||||
)
|
||||
})
|
||||
.collect();
|
||||
cascades.cascades.insert(view_entity, view_cascades);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn calculate_cascade(
|
||||
aspect_ratio: f32,
|
||||
tan_half_fov: f32,
|
||||
cascade_texture_size: f32,
|
||||
light_to_world: Mat4,
|
||||
camera_to_light: Mat4,
|
||||
z_near: f32,
|
||||
z_far: f32,
|
||||
) -> Cascade {
|
||||
debug_assert!(z_near <= 0.0, "z_near {} must be <= 0.0", z_near);
|
||||
debug_assert!(z_far <= 0.0, "z_far {} must be <= 0.0", z_far);
|
||||
// NOTE: This whole function is very sensitive to floating point precision and instability and
|
||||
// has followed instructions to avoid view dependence from the section on cascade shadow maps in
|
||||
// Eric Lengyel's Foundations of Game Engine Development 2: Rendering. Be very careful when
|
||||
// modifying this code!
|
||||
|
||||
let a = z_near.abs() * tan_half_fov;
|
||||
let b = z_far.abs() * tan_half_fov;
|
||||
// NOTE: These vertices are in a specific order: bottom right, top right, top left, bottom left
|
||||
// for near then for far
|
||||
let frustum_corners = [
|
||||
Vec3A::new(a * aspect_ratio, -a, z_near),
|
||||
Vec3A::new(a * aspect_ratio, a, z_near),
|
||||
Vec3A::new(-a * aspect_ratio, a, z_near),
|
||||
Vec3A::new(-a * aspect_ratio, -a, z_near),
|
||||
Vec3A::new(b * aspect_ratio, -b, z_far),
|
||||
Vec3A::new(b * aspect_ratio, b, z_far),
|
||||
Vec3A::new(-b * aspect_ratio, b, z_far),
|
||||
Vec3A::new(-b * aspect_ratio, -b, z_far),
|
||||
];
|
||||
|
||||
let mut min = Vec3A::splat(f32::MAX);
|
||||
let mut max = Vec3A::splat(f32::MIN);
|
||||
for corner_camera_view in frustum_corners {
|
||||
let corner_light_view = camera_to_light.transform_point3a(corner_camera_view);
|
||||
min = min.min(corner_light_view);
|
||||
max = max.max(corner_light_view);
|
||||
}
|
||||
|
||||
// NOTE: Use the larger of the frustum slice far plane diagonal and body diagonal lengths as this
|
||||
// will be the maximum possible projection size. Use the ceiling to get an integer which is
|
||||
// very important for floating point stability later. It is also important that these are
|
||||
// calculated using the original camera space corner positions for floating point precision
|
||||
// as even though the lengths using corner_light_view above should be the same, precision can
|
||||
// introduce small but significant differences.
|
||||
// NOTE: The size remains the same unless the view frustum or cascade configuration is modified.
|
||||
let cascade_diameter = (frustum_corners[0] - frustum_corners[6])
|
||||
.length()
|
||||
.max((frustum_corners[4] - frustum_corners[6]).length())
|
||||
.ceil();
|
||||
|
||||
// NOTE: If we ensure that cascade_texture_size is a power of 2, then as we made cascade_diameter an
|
||||
// integer, cascade_texel_size is then an integer multiple of a power of 2 and can be
|
||||
// exactly represented in a floating point value.
|
||||
let cascade_texel_size = cascade_diameter / cascade_texture_size;
|
||||
// NOTE: For shadow stability it is very important that the near_plane_center is at integer
|
||||
// multiples of the texel size to be exactly representable in a floating point value.
|
||||
let near_plane_center = Vec3A::new(
|
||||
(0.5 * (min.x + max.x) / cascade_texel_size).floor() * cascade_texel_size,
|
||||
(0.5 * (min.y + max.y) / cascade_texel_size).floor() * cascade_texel_size,
|
||||
// NOTE: max.z is the near plane for right-handed y-up
|
||||
max.z,
|
||||
);
|
||||
|
||||
// It is critical for `world_to_cascade` to be stable. So rather than forming `cascade_to_world`
|
||||
// and inverting it, which risks instability due to numerical precision, we directly form
|
||||
// `world_to_cascde` as the reference material suggests.
|
||||
let light_to_world_transpose = light_to_world.transpose();
|
||||
let world_to_cascade = Mat4::from_cols(
|
||||
light_to_world_transpose.x_axis,
|
||||
light_to_world_transpose.y_axis,
|
||||
light_to_world_transpose.z_axis,
|
||||
(-near_plane_center).extend(1.0),
|
||||
);
|
||||
|
||||
// Right-handed orthographic projection, centered at `near_plane_center`.
|
||||
// NOTE: This is different from the reference material, as we use reverse Z.
|
||||
let r = (max.z - min.z).recip();
|
||||
let cascade_projection = Mat4::from_cols(
|
||||
Vec4::new(2.0 / cascade_diameter, 0.0, 0.0, 0.0),
|
||||
Vec4::new(0.0, 2.0 / cascade_diameter, 0.0, 0.0),
|
||||
Vec4::new(0.0, 0.0, r, 0.0),
|
||||
Vec4::new(0.0, 0.0, 1.0, 1.0),
|
||||
);
|
||||
|
||||
let cascade_view_projection = cascade_projection * world_to_cascade;
|
||||
Cascade {
|
||||
view_transform: world_to_cascade.inverse(),
|
||||
projection: cascade_projection,
|
||||
view_projection: cascade_view_projection,
|
||||
texel_size: cascade_texel_size,
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -293,6 +513,7 @@ pub struct NotShadowReceiver;
|
|||
pub enum SimulationLightSystems {
|
||||
AddClusters,
|
||||
AssignLightsToClusters,
|
||||
UpdateDirectionalLightCascades,
|
||||
UpdateLightFrusta,
|
||||
CheckLightVisibility,
|
||||
}
|
||||
|
@ -1462,19 +1683,18 @@ fn project_to_plane_y(y_light: Sphere, y_plane: Plane, is_orthographic: bool) ->
|
|||
pub fn update_directional_light_frusta(
|
||||
mut views: Query<
|
||||
(
|
||||
&GlobalTransform,
|
||||
&Cascades,
|
||||
&DirectionalLight,
|
||||
&mut Frustum,
|
||||
&ComputedVisibility,
|
||||
&mut CascadesFrusta,
|
||||
),
|
||||
(
|
||||
Or<(Changed<GlobalTransform>, Changed<DirectionalLight>)>,
|
||||
// Prevents this query from conflicting with camera queries.
|
||||
Without<Camera>,
|
||||
),
|
||||
>,
|
||||
) {
|
||||
for (transform, directional_light, mut frustum, visibility) in &mut views {
|
||||
for (cascades, directional_light, visibility, mut frusta) in &mut views {
|
||||
// The frustum is used for culling meshes to the light for shadow mapping
|
||||
// so if shadow mapping is disabled for this light, then the frustum is
|
||||
// not needed.
|
||||
|
@ -1482,14 +1702,19 @@ pub fn update_directional_light_frusta(
|
|||
continue;
|
||||
}
|
||||
|
||||
let view_projection = directional_light.shadow_projection.get_projection_matrix()
|
||||
* transform.compute_matrix().inverse();
|
||||
*frustum = Frustum::from_view_projection(
|
||||
&view_projection,
|
||||
&transform.translation(),
|
||||
&transform.back(),
|
||||
directional_light.shadow_projection.far(),
|
||||
);
|
||||
frusta.frusta = cascades
|
||||
.cascades
|
||||
.iter()
|
||||
.map(|(view, cascades)| {
|
||||
(
|
||||
*view,
|
||||
cascades
|
||||
.iter()
|
||||
.map(|c| Frustum::from_view_projection(&c.view_projection))
|
||||
.collect::<Vec<_>>(),
|
||||
)
|
||||
})
|
||||
.collect();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1528,7 +1753,7 @@ pub fn update_point_light_frusta(
|
|||
let view = view_translation * *view_rotation;
|
||||
let view_projection = projection * view.compute_matrix().inverse();
|
||||
|
||||
*frustum = Frustum::from_view_projection(
|
||||
*frustum = Frustum::from_view_projection_custom_far(
|
||||
&view_projection,
|
||||
&transform.translation(),
|
||||
&view_backward,
|
||||
|
@ -1563,7 +1788,7 @@ pub fn update_spot_light_frusta(
|
|||
let spot_projection = spot_light_projection_matrix(spot_light.outer_angle);
|
||||
let view_projection = spot_projection * spot_view.inverse();
|
||||
|
||||
*frustum = Frustum::from_view_projection(
|
||||
*frustum = Frustum::from_view_projection_custom_far(
|
||||
&view_projection,
|
||||
&transform.translation(),
|
||||
&view_backward,
|
||||
|
@ -1591,10 +1816,10 @@ pub fn check_light_mesh_visibility(
|
|||
mut directional_lights: Query<
|
||||
(
|
||||
&DirectionalLight,
|
||||
&Frustum,
|
||||
&mut VisibleEntities,
|
||||
&CascadesFrusta,
|
||||
&mut CascadesVisibleEntities,
|
||||
Option<&RenderLayers>,
|
||||
&ComputedVisibility,
|
||||
&mut ComputedVisibility,
|
||||
),
|
||||
Without<SpotLight>,
|
||||
>,
|
||||
|
@ -1628,13 +1853,34 @@ pub fn check_light_mesh_visibility(
|
|||
// Directional lights
|
||||
for (
|
||||
directional_light,
|
||||
frustum,
|
||||
frusta,
|
||||
mut visible_entities,
|
||||
maybe_view_mask,
|
||||
light_computed_visibility,
|
||||
) in &mut directional_lights
|
||||
{
|
||||
visible_entities.entities.clear();
|
||||
// Re-use already allocated entries where possible.
|
||||
let mut views_to_remove = Vec::new();
|
||||
for (view, cascade_view_entities) in visible_entities.entities.iter_mut() {
|
||||
match frusta.frusta.get(view) {
|
||||
Some(view_frusta) => {
|
||||
cascade_view_entities.resize(view_frusta.len(), Default::default());
|
||||
cascade_view_entities
|
||||
.iter_mut()
|
||||
.for_each(|x| x.entities.clear());
|
||||
}
|
||||
None => views_to_remove.push(*view),
|
||||
};
|
||||
}
|
||||
for (view, frusta) in frusta.frusta.iter() {
|
||||
visible_entities
|
||||
.entities
|
||||
.entry(*view)
|
||||
.or_insert_with(|| vec![VisibleEntities::default(); frusta.len()]);
|
||||
}
|
||||
for v in views_to_remove {
|
||||
visible_entities.entities.remove(&v);
|
||||
}
|
||||
|
||||
// NOTE: If shadow mapping is disabled for the light then it must have no visible entities
|
||||
if !directional_light.shadows_enabled || !light_computed_visibility.is_visible() {
|
||||
|
@ -1657,16 +1903,30 @@ pub fn check_light_mesh_visibility(
|
|||
|
||||
// If we have an aabb and transform, do frustum culling
|
||||
if let (Some(aabb), Some(transform)) = (maybe_aabb, maybe_transform) {
|
||||
if !frustum.intersects_obb(aabb, &transform.compute_matrix(), true) {
|
||||
continue;
|
||||
for (view, view_frusta) in frusta.frusta.iter() {
|
||||
let view_visible_entities = visible_entities
|
||||
.entities
|
||||
.get_mut(view)
|
||||
.expect("Per-view visible entities should have been inserted already");
|
||||
|
||||
for (frustum, frustum_visible_entities) in
|
||||
view_frusta.iter().zip(view_visible_entities)
|
||||
{
|
||||
// Disable near-plane culling, as a shadow caster could lie before the near plane.
|
||||
if !frustum.intersects_obb(aabb, &transform.compute_matrix(), false, true) {
|
||||
continue;
|
||||
}
|
||||
|
||||
computed_visibility.set_visible_in_view();
|
||||
frustum_visible_entities.entities.push(entity);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
computed_visibility.set_visible_in_view();
|
||||
visible_entities.entities.push(entity);
|
||||
}
|
||||
|
||||
shrink_entities(&mut visible_entities);
|
||||
for (_, cascade_view_entities) in visible_entities.entities.iter_mut() {
|
||||
cascade_view_entities.iter_mut().for_each(shrink_entities);
|
||||
}
|
||||
}
|
||||
|
||||
for visible_lights in &visible_point_lights {
|
||||
|
@ -1724,7 +1984,7 @@ pub fn check_light_mesh_visibility(
|
|||
.iter()
|
||||
.zip(cubemap_visible_entities.iter_mut())
|
||||
{
|
||||
if frustum.intersects_obb(aabb, &model_to_world, true) {
|
||||
if frustum.intersects_obb(aabb, &model_to_world, true, true) {
|
||||
computed_visibility.set_visible_in_view();
|
||||
visible_entities.entities.push(entity);
|
||||
}
|
||||
|
@ -1784,7 +2044,7 @@ pub fn check_light_mesh_visibility(
|
|||
continue;
|
||||
}
|
||||
|
||||
if frustum.intersects_obb(aabb, &model_to_world, true) {
|
||||
if frustum.intersects_obb(aabb, &model_to_world, true, true) {
|
||||
computed_visibility.set_visible_in_view();
|
||||
visible_entities.entities.push(entity);
|
||||
}
|
||||
|
|
|
@ -38,5 +38,9 @@ fn vertex(vertex: Vertex) -> VertexOutput {
|
|||
|
||||
var out: VertexOutput;
|
||||
out.clip_position = mesh_position_local_to_clip(model, vec4<f32>(vertex.position, 1.0));
|
||||
#ifdef DEPTH_CLAMP_ORTHO
|
||||
out.clip_position.z = min(out.clip_position.z, 1.0);
|
||||
#endif
|
||||
|
||||
return out;
|
||||
}
|
||||
|
|
|
@ -1,8 +1,9 @@
|
|||
use crate::{
|
||||
directional_light_order, point_light_order, AmbientLight, Clusters, CubemapVisibleEntities,
|
||||
DirectionalLight, DirectionalLightShadowMap, DrawMesh, GlobalVisiblePointLights, MeshPipeline,
|
||||
NotShadowCaster, PointLight, PointLightShadowMap, SetMeshBindGroup, SpotLight,
|
||||
VisiblePointLights, SHADOW_SHADER_HANDLE,
|
||||
directional_light_order, point_light_order, AmbientLight, Cascade, CascadeShadowConfig,
|
||||
Cascades, CascadesVisibleEntities, Clusters, CubemapVisibleEntities, DirectionalLight,
|
||||
DirectionalLightShadowMap, DrawMesh, GlobalVisiblePointLights, MeshPipeline, NotShadowCaster,
|
||||
PointLight, PointLightShadowMap, SetMeshBindGroup, SpotLight, VisiblePointLights,
|
||||
SHADOW_SHADER_HANDLE,
|
||||
};
|
||||
use bevy_asset::Handle;
|
||||
use bevy_core_pipeline::core_3d::Transparent3d;
|
||||
|
@ -10,9 +11,9 @@ use bevy_ecs::{
|
|||
prelude::*,
|
||||
system::{lifetimeless::*, SystemParamItem},
|
||||
};
|
||||
use bevy_math::{Mat4, UVec3, UVec4, Vec2, Vec3, Vec3A, Vec3Swizzles, Vec4, Vec4Swizzles};
|
||||
use bevy_math::{Mat4, UVec3, UVec4, Vec2, Vec3, Vec3Swizzles, Vec4, Vec4Swizzles};
|
||||
use bevy_render::{
|
||||
camera::{Camera, CameraProjection},
|
||||
camera::Camera,
|
||||
color::Color,
|
||||
mesh::{Mesh, MeshVertexBufferLayout},
|
||||
render_asset::RenderAssets,
|
||||
|
@ -61,15 +62,16 @@ pub struct ExtractedPointLight {
|
|||
spot_light_angles: Option<(f32, f32)>,
|
||||
}
|
||||
|
||||
#[derive(Component)]
|
||||
#[derive(Component, Debug)]
|
||||
pub struct ExtractedDirectionalLight {
|
||||
color: Color,
|
||||
illuminance: f32,
|
||||
transform: GlobalTransform,
|
||||
projection: Mat4,
|
||||
shadows_enabled: bool,
|
||||
shadow_depth_bias: f32,
|
||||
shadow_normal_bias: f32,
|
||||
cascade_shadow_config: CascadeShadowConfig,
|
||||
cascades: HashMap<Entity, Vec<Cascade>>,
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, ShaderType, Default, Debug)]
|
||||
|
@ -174,13 +176,23 @@ bitflags::bitflags! {
|
|||
}
|
||||
|
||||
#[derive(Copy, Clone, ShaderType, Default, Debug)]
|
||||
pub struct GpuDirectionalLight {
|
||||
pub struct GpuDirectionalCascade {
|
||||
view_projection: Mat4,
|
||||
texel_size: f32,
|
||||
far_bound: f32,
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, ShaderType, Default, Debug)]
|
||||
pub struct GpuDirectionalLight {
|
||||
cascades: [GpuDirectionalCascade; MAX_CASCADES_PER_LIGHT],
|
||||
color: Vec4,
|
||||
dir_to_light: Vec3,
|
||||
flags: u32,
|
||||
shadow_depth_bias: f32,
|
||||
shadow_normal_bias: f32,
|
||||
num_cascades: u32,
|
||||
cascades_overlap_proportion: f32,
|
||||
depth_texture_base_index: u32,
|
||||
}
|
||||
|
||||
// NOTE: These must match the bit flags in bevy_pbr/src/render/mesh_view_types.wgsl!
|
||||
|
@ -211,6 +223,10 @@ pub struct GpuLights {
|
|||
// NOTE: this must be kept in sync with the same constants in pbr.frag
|
||||
pub const MAX_UNIFORM_BUFFER_POINT_LIGHTS: usize = 256;
|
||||
pub const MAX_DIRECTIONAL_LIGHTS: usize = 10;
|
||||
#[cfg(not(feature = "webgl"))]
|
||||
pub const MAX_CASCADES_PER_LIGHT: usize = 4;
|
||||
#[cfg(feature = "webgl")]
|
||||
pub const MAX_CASCADES_PER_LIGHT: usize = 1;
|
||||
pub const SHADOW_FORMAT: TextureFormat = TextureFormat::Depth32Float;
|
||||
|
||||
#[derive(Resource, Clone)]
|
||||
|
@ -279,6 +295,7 @@ bitflags::bitflags! {
|
|||
#[repr(transparent)]
|
||||
pub struct ShadowPipelineKey: u32 {
|
||||
const NONE = 0;
|
||||
const DEPTH_CLAMP_ORTHO = 1;
|
||||
const PRIMITIVE_TOPOLOGY_RESERVED_BITS = ShadowPipelineKey::PRIMITIVE_TOPOLOGY_MASK_BITS << ShadowPipelineKey::PRIMITIVE_TOPOLOGY_SHIFT_BITS;
|
||||
}
|
||||
}
|
||||
|
@ -324,6 +341,15 @@ impl SpecializedMeshPipeline for ShadowPipeline {
|
|||
"MAX_DIRECTIONAL_LIGHTS".to_string(),
|
||||
MAX_DIRECTIONAL_LIGHTS as u32,
|
||||
));
|
||||
shader_defs.push(ShaderDefVal::UInt(
|
||||
"MAX_CASCADES_PER_LIGHT".to_string(),
|
||||
MAX_CASCADES_PER_LIGHT as u32,
|
||||
));
|
||||
|
||||
if key.contains(ShadowPipelineKey::DEPTH_CLAMP_ORTHO) {
|
||||
// Avoid clipping shadow casters that are behind the near plane.
|
||||
shader_defs.push("DEPTH_CLAMP_ORTHO".into());
|
||||
}
|
||||
|
||||
if layout.contains(Mesh::ATTRIBUTE_JOINT_INDEX)
|
||||
&& layout.contains(Mesh::ATTRIBUTE_JOINT_WEIGHT)
|
||||
|
@ -437,7 +463,9 @@ pub fn extract_lights(
|
|||
(
|
||||
Entity,
|
||||
&DirectionalLight,
|
||||
&VisibleEntities,
|
||||
&CascadesVisibleEntities,
|
||||
&Cascades,
|
||||
&CascadeShadowConfig,
|
||||
&GlobalTransform,
|
||||
&ComputedVisibility,
|
||||
),
|
||||
|
@ -546,22 +574,20 @@ pub fn extract_lights(
|
|||
*previous_spot_lights_len = spot_lights_values.len();
|
||||
commands.insert_or_spawn_batch(spot_lights_values);
|
||||
|
||||
for (entity, directional_light, visible_entities, transform, visibility) in
|
||||
directional_lights.iter()
|
||||
for (
|
||||
entity,
|
||||
directional_light,
|
||||
visible_entities,
|
||||
cascades,
|
||||
cascade_config,
|
||||
transform,
|
||||
visibility,
|
||||
) in directional_lights.iter()
|
||||
{
|
||||
if !visibility.is_visible() {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Calculate the directional light shadow map texel size using the scaled x,y length of
|
||||
// the orthographic projection divided by the shadow map resolution
|
||||
// NOTE: When using various PCF kernel sizes, this will need to be adjusted, according to:
|
||||
// https://catlikecoding.com/unity/tutorials/custom-srp/directional-shadows/
|
||||
let directional_light_texel_size = transform.radius_vec3a(Vec3A::new(
|
||||
directional_light.shadow_projection.right - directional_light.shadow_projection.left,
|
||||
directional_light.shadow_projection.top - directional_light.shadow_projection.bottom,
|
||||
0.,
|
||||
)) / directional_light_shadow_map.size as f32;
|
||||
// TODO: As above
|
||||
let render_visible_entities = visible_entities.clone();
|
||||
commands.get_or_spawn(entity).insert((
|
||||
|
@ -569,11 +595,12 @@ pub fn extract_lights(
|
|||
color: directional_light.color,
|
||||
illuminance: directional_light.illuminance,
|
||||
transform: *transform,
|
||||
projection: directional_light.shadow_projection.get_projection_matrix(),
|
||||
shadows_enabled: directional_light.shadows_enabled,
|
||||
shadow_depth_bias: directional_light.shadow_depth_bias,
|
||||
shadow_normal_bias: directional_light.shadow_normal_bias
|
||||
* directional_light_texel_size,
|
||||
// The factor of SQRT_2 is for the worst-case diagonal offset
|
||||
shadow_normal_bias: directional_light.shadow_normal_bias * std::f32::consts::SQRT_2,
|
||||
cascade_shadow_config: cascade_config.clone(),
|
||||
cascades: cascades.cascades.clone(),
|
||||
},
|
||||
render_visible_entities,
|
||||
));
|
||||
|
@ -696,6 +723,7 @@ pub struct LightMeta {
|
|||
pub enum LightEntity {
|
||||
Directional {
|
||||
light_entity: Entity,
|
||||
cascade_index: usize,
|
||||
},
|
||||
Point {
|
||||
light_entity: Entity,
|
||||
|
@ -770,6 +798,7 @@ pub fn prepare_lights(
|
|||
point_light_shadow_map: Res<PointLightShadowMap>,
|
||||
directional_light_shadow_map: Res<DirectionalLightShadowMap>,
|
||||
mut max_directional_lights_warning_emitted: Local<bool>,
|
||||
mut max_cascades_per_light_warning_emitted: Local<bool>,
|
||||
point_lights: Query<(Entity, &ExtractedPointLight)>,
|
||||
directional_lights: Query<(Entity, &ExtractedDirectionalLight)>,
|
||||
) {
|
||||
|
@ -807,6 +836,18 @@ pub fn prepare_lights(
|
|||
*max_directional_lights_warning_emitted = true;
|
||||
}
|
||||
|
||||
if !*max_cascades_per_light_warning_emitted
|
||||
&& directional_lights
|
||||
.iter()
|
||||
.any(|(_, light)| light.cascade_shadow_config.bounds.len() > MAX_CASCADES_PER_LIGHT)
|
||||
{
|
||||
warn!(
|
||||
"The number of cascades configured for a directional light exceeds the supported limit of {}.",
|
||||
MAX_CASCADES_PER_LIGHT
|
||||
);
|
||||
*max_cascades_per_light_warning_emitted = true;
|
||||
}
|
||||
|
||||
let point_light_count = point_lights
|
||||
.iter()
|
||||
.filter(|light| light.1.spot_light_angles.is_none())
|
||||
|
@ -818,18 +859,18 @@ pub fn prepare_lights(
|
|||
.count()
|
||||
.min(max_texture_cubes);
|
||||
|
||||
let directional_shadow_maps_count = directional_lights
|
||||
let directional_shadow_enabled_count = directional_lights
|
||||
.iter()
|
||||
.take(MAX_DIRECTIONAL_LIGHTS)
|
||||
.filter(|(_, light)| light.shadows_enabled)
|
||||
.count()
|
||||
.min(max_texture_array_layers);
|
||||
.min(max_texture_array_layers / MAX_CASCADES_PER_LIGHT);
|
||||
|
||||
let spot_light_shadow_maps_count = point_lights
|
||||
.iter()
|
||||
.filter(|(_, light)| light.shadows_enabled && light.spot_light_angles.is_some())
|
||||
.count()
|
||||
.min(max_texture_array_layers - directional_shadow_maps_count);
|
||||
.min(max_texture_array_layers - directional_shadow_enabled_count * MAX_CASCADES_PER_LIGHT);
|
||||
|
||||
// Sort lights by
|
||||
// - point-light vs spot-light, so that we can iterate point lights and spot lights in contiguous blocks in the fragment shader,
|
||||
|
@ -931,7 +972,7 @@ pub fn prepare_lights(
|
|||
}
|
||||
|
||||
let mut gpu_directional_lights = [GpuDirectionalLight::default(); MAX_DIRECTIONAL_LIGHTS];
|
||||
|
||||
let mut num_directional_cascades_enabled = 0usize;
|
||||
for (index, (_light_entity, light)) in directional_lights
|
||||
.iter()
|
||||
.enumerate()
|
||||
|
@ -940,13 +981,10 @@ pub fn prepare_lights(
|
|||
let mut flags = DirectionalLightFlags::NONE;
|
||||
|
||||
// Lights are sorted, shadow enabled lights are first
|
||||
if light.shadows_enabled && (index < directional_shadow_maps_count) {
|
||||
if light.shadows_enabled && (index < directional_shadow_enabled_count) {
|
||||
flags |= DirectionalLightFlags::SHADOWS_ENABLED;
|
||||
}
|
||||
|
||||
// direction is negated to be ready for N.L
|
||||
let dir_to_light = light.transform.back();
|
||||
|
||||
// convert from illuminance (lux) to candelas
|
||||
//
|
||||
// exposure is hard coded at the moment but should be replaced
|
||||
|
@ -959,22 +997,29 @@ pub fn prepare_lights(
|
|||
let exposure = 1.0 / (f32::powf(2.0, ev100) * 1.2);
|
||||
let intensity = light.illuminance * exposure;
|
||||
|
||||
// NOTE: For the purpose of rendering shadow maps, we apply the directional light's transform to an orthographic camera
|
||||
let view = light.transform.compute_matrix().inverse();
|
||||
// NOTE: This orthographic projection defines the volume within which shadows from a directional light can be cast
|
||||
let projection = light.projection;
|
||||
|
||||
let num_cascades = light
|
||||
.cascade_shadow_config
|
||||
.bounds
|
||||
.len()
|
||||
.min(MAX_CASCADES_PER_LIGHT);
|
||||
gpu_directional_lights[index] = GpuDirectionalLight {
|
||||
// Filled in later.
|
||||
cascades: [GpuDirectionalCascade::default(); MAX_CASCADES_PER_LIGHT],
|
||||
// premultiply color by intensity
|
||||
// we don't use the alpha at all, so no reason to multiply only [0..3]
|
||||
color: Vec4::from_slice(&light.color.as_linear_rgba_f32()) * intensity,
|
||||
dir_to_light,
|
||||
// NOTE: * view is correct, it should not be view.inverse() here
|
||||
view_projection: projection * view,
|
||||
// direction is negated to be ready for N.L
|
||||
dir_to_light: light.transform.back(),
|
||||
flags: flags.bits,
|
||||
shadow_depth_bias: light.shadow_depth_bias,
|
||||
shadow_normal_bias: light.shadow_normal_bias,
|
||||
num_cascades: num_cascades as u32,
|
||||
cascades_overlap_proportion: light.cascade_shadow_config.overlap_proportion,
|
||||
depth_texture_base_index: num_directional_cascades_enabled as u32,
|
||||
};
|
||||
if index < directional_shadow_enabled_count {
|
||||
num_directional_cascades_enabled += num_cascades;
|
||||
}
|
||||
}
|
||||
|
||||
global_light_meta.gpu_point_lights.set(gpu_point_lights);
|
||||
|
@ -1008,7 +1053,7 @@ pub fn prepare_lights(
|
|||
.min(render_device.limits().max_texture_dimension_2d),
|
||||
height: (directional_light_shadow_map.size as u32)
|
||||
.min(render_device.limits().max_texture_dimension_2d),
|
||||
depth_or_array_layers: (directional_shadow_maps_count
|
||||
depth_or_array_layers: (num_directional_cascades_enabled
|
||||
+ spot_light_shadow_maps_count)
|
||||
.max(1) as u32,
|
||||
},
|
||||
|
@ -1031,7 +1076,7 @@ pub fn prepare_lights(
|
|||
);
|
||||
|
||||
let n_clusters = clusters.dimensions.x * clusters.dimensions.y * clusters.dimensions.z;
|
||||
let gpu_lights = GpuLights {
|
||||
let mut gpu_lights = GpuLights {
|
||||
directional_lights: gpu_directional_lights,
|
||||
ambient_color: Vec4::from_slice(&ambient_light.color.as_linear_rgba_f32())
|
||||
* ambient_light.brightness,
|
||||
|
@ -1043,10 +1088,10 @@ pub fn prepare_lights(
|
|||
),
|
||||
cluster_dimensions: clusters.dimensions.extend(n_clusters),
|
||||
n_directional_lights: directional_lights.iter().len() as u32,
|
||||
// spotlight shadow maps are stored in the directional light array, starting at directional_shadow_maps_count.
|
||||
// spotlight shadow maps are stored in the directional light array, starting at num_directional_cascades_enabled.
|
||||
// the spot lights themselves start in the light array at point_light_count. so to go from light
|
||||
// index to shadow map index, we need to subtract point light count and add directional shadowmap count.
|
||||
spot_light_shadowmap_offset: directional_shadow_maps_count as i32
|
||||
spot_light_shadowmap_offset: num_directional_cascades_enabled as i32
|
||||
- point_light_count as i32,
|
||||
};
|
||||
|
||||
|
@ -1099,6 +1144,7 @@ pub fn prepare_lights(
|
|||
point_light_shadow_map.size as u32,
|
||||
),
|
||||
transform: view_translation * *view_rotation,
|
||||
view_projection: None,
|
||||
projection: cube_face_projection,
|
||||
hdr: false,
|
||||
},
|
||||
|
@ -1137,7 +1183,7 @@ pub fn prepare_lights(
|
|||
aspect: TextureAspect::All,
|
||||
base_mip_level: 0,
|
||||
mip_level_count: None,
|
||||
base_array_layer: (directional_shadow_maps_count + light_index) as u32,
|
||||
base_array_layer: (num_directional_cascades_enabled + light_index) as u32,
|
||||
array_layer_count: NonZeroU32::new(1),
|
||||
});
|
||||
|
||||
|
@ -1156,6 +1202,7 @@ pub fn prepare_lights(
|
|||
),
|
||||
transform: spot_view_transform,
|
||||
projection: spot_projection,
|
||||
view_projection: None,
|
||||
hdr: false,
|
||||
},
|
||||
RenderPhase::<Shadow>::default(),
|
||||
|
@ -1167,47 +1214,71 @@ pub fn prepare_lights(
|
|||
}
|
||||
|
||||
// directional lights
|
||||
let mut directional_depth_texture_array_index = 0u32;
|
||||
for (light_index, &(light_entity, light)) in directional_lights
|
||||
.iter()
|
||||
.enumerate()
|
||||
.take(directional_shadow_maps_count)
|
||||
.take(directional_shadow_enabled_count)
|
||||
{
|
||||
let depth_texture_view =
|
||||
directional_light_depth_texture
|
||||
.texture
|
||||
.create_view(&TextureViewDescriptor {
|
||||
label: Some("directional_light_shadow_map_texture_view"),
|
||||
format: None,
|
||||
dimension: Some(TextureViewDimension::D2),
|
||||
aspect: TextureAspect::All,
|
||||
base_mip_level: 0,
|
||||
mip_level_count: None,
|
||||
base_array_layer: light_index as u32,
|
||||
array_layer_count: NonZeroU32::new(1),
|
||||
});
|
||||
for (cascade_index, (cascade, bound)) in light
|
||||
.cascades
|
||||
.get(&entity)
|
||||
.unwrap()
|
||||
.iter()
|
||||
.take(MAX_CASCADES_PER_LIGHT)
|
||||
.zip(&light.cascade_shadow_config.bounds)
|
||||
.enumerate()
|
||||
{
|
||||
gpu_lights.directional_lights[light_index].cascades[cascade_index] =
|
||||
GpuDirectionalCascade {
|
||||
view_projection: cascade.view_projection,
|
||||
texel_size: cascade.texel_size,
|
||||
far_bound: *bound,
|
||||
};
|
||||
|
||||
let view_light_entity = commands
|
||||
.spawn((
|
||||
ShadowView {
|
||||
depth_texture_view,
|
||||
pass_name: format!("shadow pass directional light {light_index}"),
|
||||
},
|
||||
ExtractedView {
|
||||
viewport: UVec4::new(
|
||||
0,
|
||||
0,
|
||||
directional_light_shadow_map.size as u32,
|
||||
directional_light_shadow_map.size as u32,
|
||||
),
|
||||
transform: light.transform,
|
||||
projection: light.projection,
|
||||
hdr: false,
|
||||
},
|
||||
RenderPhase::<Shadow>::default(),
|
||||
LightEntity::Directional { light_entity },
|
||||
))
|
||||
.id();
|
||||
view_lights.push(view_light_entity);
|
||||
let depth_texture_view =
|
||||
directional_light_depth_texture
|
||||
.texture
|
||||
.create_view(&TextureViewDescriptor {
|
||||
label: Some("directional_light_shadow_map_array_texture_view"),
|
||||
format: None,
|
||||
dimension: Some(TextureViewDimension::D2),
|
||||
aspect: TextureAspect::All,
|
||||
base_mip_level: 0,
|
||||
mip_level_count: None,
|
||||
base_array_layer: directional_depth_texture_array_index,
|
||||
array_layer_count: NonZeroU32::new(1),
|
||||
});
|
||||
directional_depth_texture_array_index += 1;
|
||||
|
||||
let view_light_entity = commands
|
||||
.spawn((
|
||||
ShadowView {
|
||||
depth_texture_view,
|
||||
pass_name: format!(
|
||||
"shadow pass directional light {light_index} cascade {cascade_index}"),
|
||||
},
|
||||
ExtractedView {
|
||||
viewport: UVec4::new(
|
||||
0,
|
||||
0,
|
||||
directional_light_shadow_map.size as u32,
|
||||
directional_light_shadow_map.size as u32,
|
||||
),
|
||||
transform: GlobalTransform::from(cascade.view_transform),
|
||||
projection: cascade.projection,
|
||||
view_projection: Some(cascade.view_projection),
|
||||
hdr: false,
|
||||
},
|
||||
RenderPhase::<Shadow>::default(),
|
||||
LightEntity::Directional {
|
||||
light_entity,
|
||||
cascade_index,
|
||||
},
|
||||
))
|
||||
.id();
|
||||
view_lights.push(view_light_entity);
|
||||
}
|
||||
}
|
||||
|
||||
let point_light_depth_texture_view =
|
||||
|
@ -1627,21 +1698,30 @@ pub fn queue_shadows(
|
|||
render_meshes: Res<RenderAssets<Mesh>>,
|
||||
mut pipelines: ResMut<SpecializedMeshPipelines<ShadowPipeline>>,
|
||||
pipeline_cache: Res<PipelineCache>,
|
||||
view_lights: Query<&ViewLightEntities>,
|
||||
view_lights: Query<(Entity, &ViewLightEntities)>,
|
||||
mut view_light_shadow_phases: Query<(&LightEntity, &mut RenderPhase<Shadow>)>,
|
||||
point_light_entities: Query<&CubemapVisibleEntities, With<ExtractedPointLight>>,
|
||||
directional_light_entities: Query<&VisibleEntities, With<ExtractedDirectionalLight>>,
|
||||
directional_light_entities: Query<&CascadesVisibleEntities, With<ExtractedDirectionalLight>>,
|
||||
spot_light_entities: Query<&VisibleEntities, With<ExtractedPointLight>>,
|
||||
) {
|
||||
for view_lights in &view_lights {
|
||||
for (entity, view_lights) in &view_lights {
|
||||
let draw_shadow_mesh = shadow_draw_functions.read().id::<DrawShadowMesh>();
|
||||
for view_light_entity in view_lights.lights.iter().copied() {
|
||||
let (light_entity, mut shadow_phase) =
|
||||
view_light_shadow_phases.get_mut(view_light_entity).unwrap();
|
||||
let is_directional_light = matches!(light_entity, LightEntity::Directional { .. });
|
||||
let visible_entities = match light_entity {
|
||||
LightEntity::Directional { light_entity } => directional_light_entities
|
||||
LightEntity::Directional {
|
||||
light_entity,
|
||||
cascade_index,
|
||||
} => directional_light_entities
|
||||
.get(*light_entity)
|
||||
.expect("Failed to get directional light visible entities"),
|
||||
.expect("Failed to get directional light visible entities")
|
||||
.entities
|
||||
.get(&entity)
|
||||
.expect("Failed to get directional light visible entities for view")
|
||||
.get(*cascade_index)
|
||||
.expect("Failed to get directional light visible entities for cascade"),
|
||||
LightEntity::Point {
|
||||
light_entity,
|
||||
face_index,
|
||||
|
@ -1658,8 +1738,11 @@ pub fn queue_shadows(
|
|||
for entity in visible_entities.iter().copied() {
|
||||
if let Ok(mesh_handle) = casting_meshes.get(entity) {
|
||||
if let Some(mesh) = render_meshes.get(mesh_handle) {
|
||||
let key =
|
||||
let mut key =
|
||||
ShadowPipelineKey::from_primitive_topology(mesh.primitive_topology);
|
||||
if is_directional_light {
|
||||
key |= ShadowPipelineKey::DEPTH_CLAMP_ORTHO;
|
||||
}
|
||||
let pipeline_id = pipelines.specialize(
|
||||
&pipeline_cache,
|
||||
&shadow_pipeline,
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
use crate::{
|
||||
GlobalLightMeta, GpuLights, GpuPointLights, LightMeta, NotShadowCaster, NotShadowReceiver,
|
||||
ShadowPipeline, ViewClusterBindings, ViewLightsUniformOffset, ViewShadowBindings,
|
||||
CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT, MAX_DIRECTIONAL_LIGHTS,
|
||||
CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT, MAX_CASCADES_PER_LIGHT, MAX_DIRECTIONAL_LIGHTS,
|
||||
};
|
||||
use bevy_app::Plugin;
|
||||
use bevy_asset::{load_internal_asset, Assets, Handle, HandleUntyped};
|
||||
|
@ -646,6 +646,10 @@ impl SpecializedMeshPipeline for MeshPipeline {
|
|||
"MAX_DIRECTIONAL_LIGHTS".to_string(),
|
||||
MAX_DIRECTIONAL_LIGHTS as u32,
|
||||
));
|
||||
shader_defs.push(ShaderDefVal::UInt(
|
||||
"MAX_CASCADES_PER_LIGHT".to_string(),
|
||||
MAX_CASCADES_PER_LIGHT as u32,
|
||||
));
|
||||
|
||||
if layout.contains(Mesh::ATTRIBUTE_UV_0) {
|
||||
shader_defs.push("VERTEX_UVS".into());
|
||||
|
|
|
@ -28,14 +28,23 @@ struct PointLight {
|
|||
let POINT_LIGHT_FLAGS_SHADOWS_ENABLED_BIT: u32 = 1u;
|
||||
let POINT_LIGHT_FLAGS_SPOT_LIGHT_Y_NEGATIVE: u32 = 2u;
|
||||
|
||||
struct DirectionalLight {
|
||||
struct DirectionalCascade {
|
||||
view_projection: mat4x4<f32>,
|
||||
texel_size: f32,
|
||||
far_bound: f32,
|
||||
}
|
||||
|
||||
struct DirectionalLight {
|
||||
cascades: array<DirectionalCascade, #{MAX_CASCADES_PER_LIGHT}>,
|
||||
color: vec4<f32>,
|
||||
direction_to_light: vec3<f32>,
|
||||
// 'flags' is a bit field indicating various options. u32 is 32 bits so we have up to 32 options.
|
||||
flags: u32,
|
||||
shadow_depth_bias: f32,
|
||||
shadow_normal_bias: f32,
|
||||
num_cascades: u32,
|
||||
cascades_overlap_proportion: f32,
|
||||
depth_texture_base_index: u32,
|
||||
};
|
||||
|
||||
let DIRECTIONAL_LIGHT_FLAGS_SHADOWS_ENABLED_BIT: u32 = 1u;
|
||||
|
|
|
@ -224,7 +224,7 @@ fn pbr(
|
|||
var shadow: f32 = 1.0;
|
||||
if ((mesh.flags & MESH_FLAGS_SHADOW_RECEIVER_BIT) != 0u
|
||||
&& (lights.directional_lights[i].flags & DIRECTIONAL_LIGHT_FLAGS_SHADOWS_ENABLED_BIT) != 0u) {
|
||||
shadow = fetch_directional_shadow(i, in.world_position, in.world_normal);
|
||||
shadow = fetch_directional_shadow(i, in.world_position, in.world_normal, view_z);
|
||||
}
|
||||
let light_contrib = directional_light(i, roughness, NdotV, in.N, in.V, R, F0, diffuse_color);
|
||||
light_accum = light_accum + light_contrib * shadow;
|
||||
|
|
|
@ -98,15 +98,27 @@ fn fetch_spot_shadow(light_id: u32, frag_position: vec4<f32>, surface_normal: ve
|
|||
#endif
|
||||
}
|
||||
|
||||
fn fetch_directional_shadow(light_id: u32, frag_position: vec4<f32>, surface_normal: vec3<f32>) -> f32 {
|
||||
fn get_cascade_index(light_id: u32, view_z: f32) -> u32 {
|
||||
let light = &lights.directional_lights[light_id];
|
||||
|
||||
for (var i: u32 = 0u; i < (*light).num_cascades; i = i + 1u) {
|
||||
if (-view_z < (*light).cascades[i].far_bound) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
return (*light).num_cascades;
|
||||
}
|
||||
|
||||
fn sample_cascade(light_id: u32, cascade_index: u32, frag_position: vec4<f32>, surface_normal: vec3<f32>) -> f32 {
|
||||
let light = &lights.directional_lights[light_id];
|
||||
let cascade = &(*light).cascades[cascade_index];
|
||||
|
||||
// The normal bias is scaled to the texel size.
|
||||
let normal_offset = (*light).shadow_normal_bias * surface_normal.xyz;
|
||||
let normal_offset = (*light).shadow_normal_bias * (*cascade).texel_size * surface_normal.xyz;
|
||||
let depth_offset = (*light).shadow_depth_bias * (*light).direction_to_light.xyz;
|
||||
let offset_position = vec4<f32>(frag_position.xyz + normal_offset + depth_offset, frag_position.w);
|
||||
|
||||
let offset_position_clip = (*light).view_projection * offset_position;
|
||||
let offset_position_clip = (*cascade).view_projection * offset_position;
|
||||
if (offset_position_clip.w <= 0.0) {
|
||||
return 1.0;
|
||||
}
|
||||
|
@ -127,8 +139,42 @@ fn fetch_directional_shadow(light_id: u32, frag_position: vec4<f32>, surface_nor
|
|||
// NOTE: Due to non-uniform control flow above, we must use the level variant of the texture
|
||||
// sampler to avoid use of implicit derivatives causing possible undefined behavior.
|
||||
#ifdef NO_ARRAY_TEXTURES_SUPPORT
|
||||
return textureSampleCompareLevel(directional_shadow_textures, directional_shadow_textures_sampler, light_local, depth);
|
||||
return textureSampleCompareLevel(
|
||||
directional_shadow_textures,
|
||||
directional_shadow_textures_sampler,
|
||||
light_local,
|
||||
depth
|
||||
);
|
||||
#else
|
||||
return textureSampleCompareLevel(directional_shadow_textures, directional_shadow_textures_sampler, light_local, i32(light_id), depth);
|
||||
return textureSampleCompareLevel(
|
||||
directional_shadow_textures,
|
||||
directional_shadow_textures_sampler,
|
||||
light_local,
|
||||
i32((*light).depth_texture_base_index + cascade_index),
|
||||
depth
|
||||
);
|
||||
#endif
|
||||
}
|
||||
|
||||
fn fetch_directional_shadow(light_id: u32, frag_position: vec4<f32>, surface_normal: vec3<f32>, view_z: f32) -> f32 {
|
||||
let light = &lights.directional_lights[light_id];
|
||||
let cascade_index = get_cascade_index(light_id, view_z);
|
||||
|
||||
if (cascade_index >= (*light).num_cascades) {
|
||||
return 1.0;
|
||||
}
|
||||
|
||||
var shadow = sample_cascade(light_id, cascade_index, frag_position, surface_normal);
|
||||
|
||||
// Blend with the next cascade, if there is one.
|
||||
let next_cascade_index = cascade_index + 1u;
|
||||
if (next_cascade_index < (*light).num_cascades) {
|
||||
let this_far_bound = (*light).cascades[cascade_index].far_bound;
|
||||
let next_near_bound = (1.0 - (*light).cascades_overlap_proportion) * this_far_bound;
|
||||
if (-view_z >= next_near_bound) {
|
||||
let next_shadow = sample_cascade(light_id, next_cascade_index, frag_position, surface_normal);
|
||||
shadow = mix(shadow, next_shadow, (-view_z - next_near_bound) / (this_far_bound - next_near_bound));
|
||||
}
|
||||
}
|
||||
return shadow;
|
||||
}
|
||||
|
|
|
@ -559,6 +559,7 @@ pub fn extract_cameras(
|
|||
ExtractedView {
|
||||
projection: camera.projection_matrix(),
|
||||
transform: *transform,
|
||||
view_projection: None,
|
||||
hdr: camera.hdr,
|
||||
viewport: UVec4::new(
|
||||
viewport_origin.x,
|
||||
|
|
|
@ -279,6 +279,7 @@ impl Plugin for RenderPlugin {
|
|||
|
||||
app.register_type::<color::Color>()
|
||||
.register_type::<primitives::Aabb>()
|
||||
.register_type::<primitives::CascadesFrusta>()
|
||||
.register_type::<primitives::CubemapFrusta>()
|
||||
.register_type::<primitives::Frustum>();
|
||||
}
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
use bevy_ecs::{component::Component, reflect::ReflectComponent};
|
||||
use bevy_ecs::{component::Component, prelude::Entity, reflect::ReflectComponent};
|
||||
use bevy_math::{Mat4, Vec3, Vec3A, Vec4, Vec4Swizzles};
|
||||
use bevy_reflect::Reflect;
|
||||
use bevy_utils::HashMap;
|
||||
|
||||
/// An Axis-Aligned Bounding Box
|
||||
#[derive(Component, Clone, Debug, Default, Reflect)]
|
||||
|
@ -134,17 +135,33 @@ pub struct Frustum {
|
|||
}
|
||||
|
||||
impl Frustum {
|
||||
// NOTE: This approach of extracting the frustum planes from the view
|
||||
// projection matrix is from Foundations of Game Engine Development 2
|
||||
// Rendering by Lengyel. Slight modification has been made for when
|
||||
// the far plane is infinite but we still want to cull to a far plane.
|
||||
/// Returns a frustum derived from `view_projection`.
|
||||
#[inline]
|
||||
pub fn from_view_projection(
|
||||
pub fn from_view_projection(view_projection: &Mat4) -> Self {
|
||||
let mut frustum = Frustum::from_view_projection_no_far(view_projection);
|
||||
frustum.planes[5] = Plane::new(view_projection.row(2));
|
||||
frustum
|
||||
}
|
||||
|
||||
/// Returns a frustum derived from `view_projection`, but with a custom
|
||||
/// far plane.
|
||||
#[inline]
|
||||
pub fn from_view_projection_custom_far(
|
||||
view_projection: &Mat4,
|
||||
view_translation: &Vec3,
|
||||
view_backward: &Vec3,
|
||||
far: f32,
|
||||
) -> Self {
|
||||
let mut frustum = Frustum::from_view_projection_no_far(view_projection);
|
||||
let far_center = *view_translation - far * *view_backward;
|
||||
frustum.planes[5] = Plane::new(view_backward.extend(-view_backward.dot(far_center)));
|
||||
frustum
|
||||
}
|
||||
|
||||
// NOTE: This approach of extracting the frustum planes from the view
|
||||
// projection matrix is from Foundations of Game Engine Development 2
|
||||
// Rendering by Lengyel.
|
||||
fn from_view_projection_no_far(view_projection: &Mat4) -> Self {
|
||||
let row3 = view_projection.row(3);
|
||||
let mut planes = [Plane::default(); 6];
|
||||
for (i, plane) in planes.iter_mut().enumerate().take(5) {
|
||||
|
@ -155,8 +172,6 @@ impl Frustum {
|
|||
row3 - row
|
||||
});
|
||||
}
|
||||
let far_center = *view_translation - far * *view_backward;
|
||||
planes[5] = Plane::new(view_backward.extend(-view_backward.dot(far_center)));
|
||||
Self { planes }
|
||||
}
|
||||
|
||||
|
@ -173,7 +188,13 @@ impl Frustum {
|
|||
}
|
||||
|
||||
#[inline]
|
||||
pub fn intersects_obb(&self, aabb: &Aabb, model_to_world: &Mat4, intersect_far: bool) -> bool {
|
||||
pub fn intersects_obb(
|
||||
&self,
|
||||
aabb: &Aabb,
|
||||
model_to_world: &Mat4,
|
||||
intersect_near: bool,
|
||||
intersect_far: bool,
|
||||
) -> bool {
|
||||
let aabb_center_world = model_to_world.transform_point3a(aabb.center).extend(1.0);
|
||||
let axes = [
|
||||
Vec3A::from(model_to_world.x_axis),
|
||||
|
@ -181,8 +202,13 @@ impl Frustum {
|
|||
Vec3A::from(model_to_world.z_axis),
|
||||
];
|
||||
|
||||
let max = if intersect_far { 6 } else { 5 };
|
||||
for plane in &self.planes[..max] {
|
||||
for (idx, plane) in self.planes.into_iter().enumerate() {
|
||||
if idx == 4 && !intersect_near {
|
||||
continue;
|
||||
}
|
||||
if idx == 5 && !intersect_far {
|
||||
continue;
|
||||
}
|
||||
let p_normal = Vec3A::from(plane.normal_d());
|
||||
let relative_radius = aabb.relative_radius(&p_normal, &axes);
|
||||
if plane.normal_d().dot(aabb_center_world) + relative_radius <= 0.0 {
|
||||
|
@ -209,6 +235,13 @@ impl CubemapFrusta {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Component, Debug, Default, Reflect)]
|
||||
#[reflect(Component)]
|
||||
pub struct CascadesFrusta {
|
||||
#[reflect(ignore)]
|
||||
pub frusta: HashMap<Entity, Vec<Frustum>>,
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
|
|
@ -91,6 +91,10 @@ impl Msaa {
|
|||
pub struct ExtractedView {
|
||||
pub projection: Mat4,
|
||||
pub transform: GlobalTransform,
|
||||
// The view-projection matrix. When provided it is used instead of deriving it from
|
||||
// `projection` and `transform` fields, which can be helpful in cases where numerical
|
||||
// stability matters and there is a more direct way to derive the view-projection matrix.
|
||||
pub view_projection: Option<Mat4>,
|
||||
pub hdr: bool,
|
||||
// uvec4(origin.x, origin.y, width, height)
|
||||
pub viewport: UVec4,
|
||||
|
@ -251,7 +255,9 @@ fn prepare_view_uniforms(
|
|||
let inverse_view = view.inverse();
|
||||
let view_uniforms = ViewUniformOffset {
|
||||
offset: view_uniforms.uniforms.push(ViewUniform {
|
||||
view_proj: projection * inverse_view,
|
||||
view_proj: camera
|
||||
.view_projection
|
||||
.unwrap_or_else(|| projection * inverse_view),
|
||||
inverse_view_proj: view * inverse_projection,
|
||||
view,
|
||||
inverse_view,
|
||||
|
|
|
@ -281,7 +281,7 @@ pub fn update_frusta<T: Component + CameraProjection + Send + Sync + 'static>(
|
|||
for (transform, projection, mut frustum) in &mut views {
|
||||
let view_projection =
|
||||
projection.get_projection_matrix() * transform.compute_matrix().inverse();
|
||||
*frustum = Frustum::from_view_projection(
|
||||
*frustum = Frustum::from_view_projection_custom_far(
|
||||
&view_projection,
|
||||
&transform.translation(),
|
||||
&transform.back(),
|
||||
|
@ -407,7 +407,7 @@ pub fn check_visibility(
|
|||
return;
|
||||
}
|
||||
// If we have an aabb, do aabb-based frustum culling
|
||||
if !frustum.intersects_obb(model_aabb, &model, false) {
|
||||
if !frustum.intersects_obb(model_aabb, &model, true, false) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -275,6 +275,7 @@ pub fn extract_default_ui_camera_view<T: Component>(
|
|||
0.0,
|
||||
UI_CAMERA_FAR + UI_CAMERA_TRANSFORM_OFFSET,
|
||||
),
|
||||
view_projection: None,
|
||||
hdr: camera.hdr,
|
||||
viewport: UVec4::new(
|
||||
physical_origin.x,
|
||||
|
|
|
@ -70,18 +70,8 @@ fn setup(
|
|||
});
|
||||
|
||||
// light
|
||||
const HALF_SIZE: f32 = 2.0;
|
||||
commands.spawn(DirectionalLightBundle {
|
||||
directional_light: DirectionalLight {
|
||||
shadow_projection: OrthographicProjection {
|
||||
left: -HALF_SIZE,
|
||||
right: HALF_SIZE,
|
||||
bottom: -HALF_SIZE,
|
||||
top: HALF_SIZE,
|
||||
near: -10.0 * HALF_SIZE,
|
||||
far: 10.0 * HALF_SIZE,
|
||||
..default()
|
||||
},
|
||||
shadows_enabled: true,
|
||||
..default()
|
||||
},
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
|
||||
use std::f32::consts::PI;
|
||||
|
||||
use bevy::prelude::*;
|
||||
use bevy::{pbr::CascadeShadowConfig, prelude::*};
|
||||
|
||||
fn main() {
|
||||
App::new()
|
||||
|
@ -186,19 +186,8 @@ fn setup(
|
|||
});
|
||||
|
||||
// directional 'sun' light
|
||||
const HALF_SIZE: f32 = 10.0;
|
||||
commands.spawn(DirectionalLightBundle {
|
||||
directional_light: DirectionalLight {
|
||||
// Configure the projection to better fit the scene
|
||||
shadow_projection: OrthographicProjection {
|
||||
left: -HALF_SIZE,
|
||||
right: HALF_SIZE,
|
||||
bottom: -HALF_SIZE,
|
||||
top: HALF_SIZE,
|
||||
near: -10.0 * HALF_SIZE,
|
||||
far: 10.0 * HALF_SIZE,
|
||||
..default()
|
||||
},
|
||||
shadows_enabled: true,
|
||||
..default()
|
||||
},
|
||||
|
@ -207,6 +196,10 @@ fn setup(
|
|||
rotation: Quat::from_rotation_x(-PI / 4.),
|
||||
..default()
|
||||
},
|
||||
// The default cascade config is designed to handle large scenes.
|
||||
// As this example has a much smaller world, we can tighten the shadow
|
||||
// far bound for better visual quality.
|
||||
cascade_shadow_config: CascadeShadowConfig::new(4, 5.0, 30.0, 0.2),
|
||||
..default()
|
||||
});
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
use std::f32::consts::*;
|
||||
|
||||
use bevy::prelude::*;
|
||||
use bevy::{pbr::CascadeShadowConfig, prelude::*};
|
||||
|
||||
fn main() {
|
||||
App::new()
|
||||
|
@ -21,21 +21,14 @@ fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
|
|||
transform: Transform::from_xyz(0.7, 0.7, 1.0).looking_at(Vec3::new(0.0, 0.3, 0.0), Vec3::Y),
|
||||
..default()
|
||||
});
|
||||
const HALF_SIZE: f32 = 1.0;
|
||||
commands.spawn(DirectionalLightBundle {
|
||||
directional_light: DirectionalLight {
|
||||
shadow_projection: OrthographicProjection {
|
||||
left: -HALF_SIZE,
|
||||
right: HALF_SIZE,
|
||||
bottom: -HALF_SIZE,
|
||||
top: HALF_SIZE,
|
||||
near: -10.0 * HALF_SIZE,
|
||||
far: 10.0 * HALF_SIZE,
|
||||
..default()
|
||||
},
|
||||
shadows_enabled: true,
|
||||
..default()
|
||||
},
|
||||
// This is a relatively small scene, so use tighter shadow
|
||||
// cascade bounds than the default for better quality.
|
||||
cascade_shadow_config: CascadeShadowConfig::new(1, 1.1, 1.5, 0.3),
|
||||
..default()
|
||||
});
|
||||
commands.spawn(SceneBundle {
|
||||
|
|
|
@ -69,15 +69,6 @@ fn setup(
|
|||
commands.spawn(DirectionalLightBundle {
|
||||
directional_light: DirectionalLight {
|
||||
illuminance: 100000.0,
|
||||
shadow_projection: OrthographicProjection {
|
||||
left: -0.35,
|
||||
right: 500.35,
|
||||
bottom: -0.1,
|
||||
top: 5.0,
|
||||
near: -5.0,
|
||||
far: 5.0,
|
||||
..default()
|
||||
},
|
||||
shadow_depth_bias: 0.0,
|
||||
shadow_normal_bias: 0.0,
|
||||
shadows_enabled: true,
|
||||
|
|
|
@ -100,15 +100,6 @@ fn setup(
|
|||
commands.spawn(DirectionalLightBundle {
|
||||
directional_light: DirectionalLight {
|
||||
illuminance: 100000.0,
|
||||
shadow_projection: OrthographicProjection {
|
||||
left: -10.0,
|
||||
right: 10.0,
|
||||
bottom: -10.0,
|
||||
top: 10.0,
|
||||
near: -50.0,
|
||||
far: 50.0,
|
||||
..default()
|
||||
},
|
||||
shadows_enabled: true,
|
||||
..default()
|
||||
},
|
||||
|
|
|
@ -132,26 +132,9 @@ fn setup_scene_after_load(
|
|||
|
||||
// Spawn a default light if the scene does not have one
|
||||
if !scene_handle.has_light {
|
||||
let sphere = Sphere {
|
||||
center: aabb.center,
|
||||
radius: aabb.half_extents.length(),
|
||||
};
|
||||
let aabb = Aabb::from(sphere);
|
||||
let min = aabb.min();
|
||||
let max = aabb.max();
|
||||
|
||||
info!("Spawning a directional light");
|
||||
commands.spawn(DirectionalLightBundle {
|
||||
directional_light: DirectionalLight {
|
||||
shadow_projection: OrthographicProjection {
|
||||
left: min.x,
|
||||
right: max.x,
|
||||
bottom: min.y,
|
||||
top: max.y,
|
||||
near: min.z,
|
||||
far: max.z,
|
||||
..default()
|
||||
},
|
||||
shadows_enabled: false,
|
||||
..default()
|
||||
},
|
||||
|
|
|
@ -44,9 +44,6 @@ Scene Controls:
|
|||
L - animate light direction
|
||||
U - toggle shadows
|
||||
C - cycle through the camera controller and any cameras loaded from the scene
|
||||
5/6 - decrease/increase shadow projection width
|
||||
7/8 - decrease/increase shadow projection height
|
||||
9/0 - decrease/increase shadow projection near/far
|
||||
|
||||
Space - Play/Pause animation
|
||||
Enter - Cycle through animations
|
||||
|
@ -198,35 +195,13 @@ fn keyboard_animation_control(
|
|||
}
|
||||
}
|
||||
|
||||
const SCALE_STEP: f32 = 0.1;
|
||||
|
||||
fn update_lights(
|
||||
key_input: Res<Input<KeyCode>>,
|
||||
time: Res<Time>,
|
||||
mut query: Query<(&mut Transform, &mut DirectionalLight)>,
|
||||
mut animate_directional_light: Local<bool>,
|
||||
) {
|
||||
let mut projection_adjustment = Vec3::ONE;
|
||||
if key_input.just_pressed(KeyCode::Key5) {
|
||||
projection_adjustment.x -= SCALE_STEP;
|
||||
} else if key_input.just_pressed(KeyCode::Key6) {
|
||||
projection_adjustment.x += SCALE_STEP;
|
||||
} else if key_input.just_pressed(KeyCode::Key7) {
|
||||
projection_adjustment.y -= SCALE_STEP;
|
||||
} else if key_input.just_pressed(KeyCode::Key8) {
|
||||
projection_adjustment.y += SCALE_STEP;
|
||||
} else if key_input.just_pressed(KeyCode::Key9) {
|
||||
projection_adjustment.z -= SCALE_STEP;
|
||||
} else if key_input.just_pressed(KeyCode::Key0) {
|
||||
projection_adjustment.z += SCALE_STEP;
|
||||
}
|
||||
for (_, mut light) in &mut query {
|
||||
light.shadow_projection.left *= projection_adjustment.x;
|
||||
light.shadow_projection.right *= projection_adjustment.x;
|
||||
light.shadow_projection.bottom *= projection_adjustment.y;
|
||||
light.shadow_projection.top *= projection_adjustment.y;
|
||||
light.shadow_projection.near *= projection_adjustment.z;
|
||||
light.shadow_projection.far *= projection_adjustment.z;
|
||||
if key_input.just_pressed(KeyCode::U) {
|
||||
light.shadows_enabled = !light.shadows_enabled;
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue