# Objective
- Fixes#7352
## Solution
GLES doesn't support binding specific mip levels for sampling. Fallback
to using separate textures instead.
-
[wgpu-hal/src/gles/device.rs](628a95cd1c/wgpu-hal/src/gles/device.rs (L1038))
---
---------
Co-authored-by: Wilhelm Vallrand <>
# Objective
Add support for the [Netpbm](https://en.wikipedia.org/wiki/Netpbm) image
formats, behind a `pnm` feature flag.
My personal use case for this was robotics applications, with `pgm`
being a popular format used in the field to represent world maps in
robots.
I chose the formats and feature name by checking the logic in
[image.rs](a35ed552fa/crates/bevy_render/src/texture/image.rs (L76))
## Solution
Quite straightforward, the `pnm` feature flag already exists in the
`image` crate so it's just creating and exposing a `pnm` feature flag in
the root `Cargo.toml` and forwarding it through `bevy_internal` and
`bevy_render` all the way to the `image` crate.
---
## Changelog
### Added
`pnm` feature to add support for `pam`, `pbm`, `pgm` and `ppm` image
formats.
---------
Signed-off-by: Luca Della Vedova <lucadv@intrinsic.ai>
# Objective
Bevy code tends to make heavy use of the [newtype](
https://doc.rust-lang.org/rust-by-example/generics/new_types.html)
pattern, which is why we have a dedicated derive for
[`Deref`](https://doc.rust-lang.org/std/ops/trait.Deref.html) and
[`DerefMut`](https://doc.rust-lang.org/std/ops/trait.DerefMut.html).
This derive works for any struct with a single field:
```rust
#[derive(Component, Deref, DerefMut)]
struct MyNewtype(usize);
```
One reason for the single-field limitation is to prevent confusion and
footguns related that would arise from allowing multi-field structs:
<table align="center">
<tr>
<th colspan="2">
Similar structs, different derefs
</th>
</tr>
<tr>
<td>
```rust
#[derive(Deref, DerefMut)]
struct MyStruct {
foo: usize, // <- Derefs usize
bar: String,
}
```
</td>
<td>
```rust
#[derive(Deref, DerefMut)]
struct MyStruct {
bar: String, // <- Derefs String
foo: usize,
}
```
</td>
</tr>
<tr>
<th colspan="2">
Why `.1`?
</th>
</tr>
<tr>
<td colspan="2">
```rust
#[derive(Deref, DerefMut)]
struct MyStruct(Vec<usize>, Vec<f32>);
let mut foo = MyStruct(vec![123], vec![1.23]);
// Why can we skip the `.0` here?
foo.push(456);
// But not here?
foo.1.push(4.56);
```
</td>
</tr>
</table>
However, there are certainly cases where it's useful to allow for
structs with multiple fields. Such as for structs with one "real" field
and one `PhantomData` to allow for generics:
```rust
#[derive(Deref, DerefMut)]
struct MyStruct<T>(
// We want use this field for the `Deref`/`DerefMut` impls
String,
// But we need this field so that we can make this struct generic
PhantomData<T>
);
// ERROR: Deref can only be derived for structs with a single field
// ERROR: DerefMut can only be derived for structs with a single field
```
Additionally, the possible confusion and footguns are mainly an issue
for newer Rust/Bevy users. Those familiar with `Deref` and `DerefMut`
understand what adding the derive really means and can anticipate its
behavior.
## Solution
Allow users to opt into multi-field `Deref`/`DerefMut` derives using a
`#[deref]` attribute:
```rust
#[derive(Deref, DerefMut)]
struct MyStruct<T>(
// Use this field for the `Deref`/`DerefMut` impls
#[deref] String,
// We can freely include any other field without a compile error
PhantomData<T>
);
```
This prevents the footgun pointed out in the first issue described in
the previous section, but it still leaves the possible confusion
surrounding `.0`-vs-`.#`. However, the idea is that by making this
behavior explicit with an attribute, users will be more aware of it and
can adapt appropriately.
---
## Changelog
- Added `#[deref]` attribute to `Deref` and `DerefMut` derives
# Objective
- Replace the `example_showcase.sh` script
- Helper tool to prepare the example page on the website
## Solution
- Have a command to run all the examples: `cargo run -p example-showcase
-- run`
- Have a command to take screenshots of all examples: `cargo run -p
example-showcase -- run --screenshot`
- Have a command to build the markdown files for the website: `cargo run
-p example-showcase -- build-website-list --content-folder content`
- Have a command to build all the examples in wasm/WebGPU: `cargo run -p
example-showcase -- build-web-gpu-examples --content-folder webgpus`
(with `--website-hacks` to enable the hacks for the Bevy website: canvas
id, resizing and loading bar)
This is the first step to an improved example page (all examples marked
as wasm, uses the card layout, has screenshots, reuse name, category and
description from the metadata). As one of the goal is to have a page
with WebGPU examples before the official release, this is not touching
the example page for now but targeting a new one.
<img width="1912" alt="Screenshot 2023-05-06 at 17 16 25"
src="https://user-images.githubusercontent.com/8672791/236632744-4372c95f-c50a-4168-973f-349412548f33.png">
# Objective
- Support WebGPU
- alternative to #5027 that doesn't need any async / await
- fixes#8315
- Surprise fix#7318
## Solution
### For async renderer initialisation
- Update the plugin lifecycle:
- app builds the plugin
- calls `plugin.build`
- registers the plugin
- app starts the event loop
- event loop waits for `ready` of all registered plugins in the same
order
- returns `true` by default
- then call all `finish` then all `cleanup` in the same order as
registered
- then execute the schedule
In the case of the renderer, to avoid anything async:
- building the renderer plugin creates a detached task that will send
back the initialised renderer through a mutex in a resource
- `ready` will wait for the renderer to be present in the resource
- `finish` will take that renderer and place it in the expected
resources by other plugins
- other plugins (that expect the renderer to be available) `finish` are
called and they are able to set up their pipelines
- `cleanup` is called, only custom one is still for pipeline rendering
### For WebGPU support
- update the `build-wasm-example` script to support passing `--api
webgpu` that will build the example with WebGPU support
- feature for webgl2 was always enabled when building for wasm. it's now
in the default feature list and enabled on all platforms, so check for
this feature must also check that the target_arch is `wasm32`
---
## Migration Guide
- `Plugin::setup` has been renamed `Plugin::cleanup`
- `Plugin::finish` has been added, and plugins adding pipelines should
do it in this function instead of `Plugin::build`
```rust
// Before
impl Plugin for MyPlugin {
fn build(&self, app: &mut App) {
app.insert_resource::<MyResource>
.add_systems(Update, my_system);
let render_app = match app.get_sub_app_mut(RenderApp) {
Ok(render_app) => render_app,
Err(_) => return,
};
render_app
.init_resource::<RenderResourceNeedingDevice>()
.init_resource::<OtherRenderResource>();
}
}
// After
impl Plugin for MyPlugin {
fn build(&self, app: &mut App) {
app.insert_resource::<MyResource>
.add_systems(Update, my_system);
let render_app = match app.get_sub_app_mut(RenderApp) {
Ok(render_app) => render_app,
Err(_) => return,
};
render_app
.init_resource::<OtherRenderResource>();
}
fn finish(&self, app: &mut App) {
let render_app = match app.get_sub_app_mut(RenderApp) {
Ok(render_app) => render_app,
Err(_) => return,
};
render_app
.init_resource::<RenderResourceNeedingDevice>();
}
}
```
# Objective
- Enable taking a screenshot in wasm
- Followup on #7163
## Solution
- Create a blob from the image data, generate a url to that blob, add an
`a` element to the document linking to that url, click on that element,
then revoke the url
- This will automatically trigger a download of the screenshot file in
the browser
# Objective
- Reduce compilation time
## Solution
- Make `spirv` and `glsl` shader format support optional. They are not
needed for Bevy shaders.
- on my mac (where shaders are compiled to `msl`), this reduces the
total build time by 2 to 5 seconds, improvement should be even better
with less cores
There is a big reduction in compile time for `naga`, and small
improvements on `wgpu` and `bevy_render`
This PR with optional shader formats enabled timings:
<img width="1478" alt="current main"
src="https://user-images.githubusercontent.com/8672791/234347032-cbd5c276-a9b0-49c3-b793-481677391c18.png">
This PR:
<img width="1479" alt="this pr"
src="https://user-images.githubusercontent.com/8672791/234347059-a67412a9-da8d-4356-91d8-7b0ae84ca100.png">
---
## Migration Guide
- If you want to use shaders in `spirv`, enable the
`shader_format_spirv` feature
- If you want to use shaders in `glsl`, enable the `shader_format_glsl`
feature
# Objective
Provide the ability to trigger controller rumbling (force-feedback) with
a cross-platform API.
## Solution
This adds the `GamepadRumbleRequest` event to `bevy_input` and adds a
system in `bevy_gilrs` to read them and rumble controllers accordingly.
It's a relatively primitive API with a `duration` in seconds and
`GamepadRumbleIntensity` with values for the weak and strong gamepad
motors. It's is an almost 1-to-1 mapping to platform APIs. Some
platforms refer to these motors as left and right, and low frequency and
high frequency, but by convention, they're usually the same.
I used #3868 as a starting point, updated to main, removed the low-level
gilrs effect API, and moved the requests to `bevy_input` and exposed the
strong and weak intensities.
I intend this to hopefully be a non-controversial cross-platform
starting point we can build upon to eventually support more fine-grained
control (closer to the gilrs effect API)
---
## Changelog
### Added
- Gamepads can now be rumbled by sending the `GamepadRumbleRequest`
event.
---------
Co-authored-by: Nicola Papale <nico@nicopap.ch>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
Co-authored-by: Bruce Reif (Buswolley) <bruce.reif@dynata.com>
# Objective
The objective is to be able to load data from "application-specific"
(see glTF spec 3.7.2.1.) vertex attribute semantics from glTF files into
Bevy meshes.
## Solution
Rather than probe the glTF for the specific attributes supported by
Bevy, this PR changes the loader to iterate through all the attributes
and map them onto `MeshVertexAttribute`s. This mapping includes all the
previously supported attributes, plus it is now possible to add mappings
using the `add_custom_vertex_attribute()` method on `GltfPlugin`.
## Changelog
- Add support for loading custom vertex attributes from glTF files.
- Add the `custom_gltf_vertex_attribute.rs` example to illustrate
loading custom vertex attributes.
## Migration Guide
- If you were instantiating `GltfPlugin` using the unit-like struct
syntax, you must instead use `GltfPlugin::default()` as the type is no
longer unit-like.
# Objective
- Have a default font
## Solution
- Add a font based on FiraMono containing only ASCII characters and use
it as the default font
- It is behind a feature `default_font` enabled by default
- I also updated examples to use it, but not UI examples to still show
how to use a custom font
---
## Changelog
* If you display text without using the default handle provided by
`TextStyle`, the text will be displayed
Fixes https://github.com/bevyengine/bevy/issues/1207
# Objective
Right now, it's impossible to capture a screenshot of the entire window
without forking bevy. This is because
- The swapchain texture never has the COPY_SRC usage
- It can't be accessed without taking ownership of it
- Taking ownership of it breaks *a lot* of stuff
## Solution
- Introduce a dedicated api for taking a screenshot of a given bevy
window, and guarantee this screenshot will always match up with what
gets put on the screen.
---
## Changelog
- Added the `ScreenshotManager` resource with two functions,
`take_screenshot` and `save_screenshot_to_disk`
# Objective
Split the UI overflow enum so that overflow can be set for each axis
separately.
## Solution
Change `Overflow` from an enum to a struct with `x` and `y`
`OverflowAxis` fields, where `OverflowAxis` is an enum with `Clip` and
`Visible` variants. Modify `update_clipping` to calculate clipping for
each axis separately. If only one axis is clipped, the other axis is
given infinite bounds.
<img width="642" alt="overflow"
src="https://user-images.githubusercontent.com/27962798/227592983-568cf76f-7e40-48c4-a511-43c886f5e431.PNG">
---
## Changelog
* Split the UI overflow implementation so overflow can be set for each
axis separately.
* Added the enum `OverflowAxis` with `Clip` and `Visible` variants.
* Changed `Overflow` to a struct with `x` and `y` fields of type
`OverflowAxis`.
* `Overflow` has new methods `visible()` and `hidden()` that replace its
previous `Clip` and `Visible` variants.
* Added `Overflow` helper methods `clip_x()` and `clip_y()` that return
a new `Overflow` value with the given axis clipped.
* Modified `update_clipping` so it calculates clipping for each axis
separately. If a node is only clipped on a single axis, the other axis
is given `-f32::INFINITY` to `f32::INFINITY` clipping bounds.
## Migration Guide
The `Style` property `Overflow` is now a struct with `x` and `y` fields,
that allow for per-axis overflow control.
Use these helper functions to replace the variants of `Overflow`:
* Replace `Overflow::Visible` with `Overflow::visible()`
* Replace `Overflow::Hidden` with `Overflow::clip()`
# Objective
An easy way to create 2D grid layouts
## Solution
Enable the `grid` feature in Taffy and add new style types for defining
grids.
## Notes
- ~I'm having a bit of trouble getting `#[derive(Reflect)]` to work
properly. Help with that would be appreciated (EDIT: got it to compile
by ignoring the problematic fields, but this presumably can't be
merged).~ This is now fixed
- ~The alignment types now have a `Normal` variant because I couldn't
get reflect to work with `Option`.~ I've decided to stick with the
flattened variant, as it saves a level of wrapping when authoring
styles. But I've renamed the variants from `Normal` to `Default`.
- ~This currently exposes a simplified API on top of grid. In particular
the following is not currently supported:~
- ~Negative grid indices~ Now supported.
- ~Custom `end` values for grid placement (you can only use `start` and
`span`)~ Now supported
- ~`minmax()` track sizing functions~ minmax is now support through a
`GridTrack::minmax()` constructor
- ~`repeat()`~ repeat is now implemented as `RepeatedGridTrack`
- ~Documentation still needs to be improved.~ An initial pass over the
documentation has been completed.
## Screenshot
<img width="846" alt="Screenshot 2023-03-10 at 17 56 21"
src="https://user-images.githubusercontent.com/1007307/224435332-69aa9eac-123d-4856-b75d-5449d3f1d426.png">
---
## Changelog
- Support for CSS Grid layout added to `bevy_ui`
---------
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Andreas Weibye <13300393+Weibye@users.noreply.github.com>
# Objective
Examples on how to use the freshly merged `Bezier` struct ( #7653 ) are
missing.
## Solution
- Added a `bezier_curve.rs` example in the `animation/` folder.
---------
Co-authored-by: ira <JustTheCoolDude@gmail.com>
Co-authored-by: Aevyrie <aevyrie@gmail.com>
# Objective
- The old post processing example doesn't use the actual post processing
features of bevy. It also has some issues with resizing. It's also
causing some confusion for people because accessing the prepass textures
from it is not easy.
- There's already a render to texture example
- At this point, it's mostly obsolete since the post_process_pass
example is more complete and shows the recommended way to do post
processing in bevy. It's a bit more complicated, but it's well
documented and I'm working on simplifying it even more
## Solution
- Remove the old post_processing example
- Rename post_process_pass to post_processing
## Reviewer Notes
The diff is really noisy because of the rename, but I didn't change any
code in the example.
---------
Co-authored-by: James Liu <contact@jamessliu.com>
# Objective
- Add a new example that helps debug different UI overflow scenarios
- This example tests the clipping behavior for images and text when the
node is moved, scaled or rotated.
## Solution
- Add a new `overflow_debug` example
# Preview
**Note:** Only top-left is working properly right now.
https://user-images.githubusercontent.com/188612/227629093-26c94c67-1781-437d-8410-e854b6f1adc1.mp4
---
Related #8095, #8167
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
# Objective
- Allow the use of the "glam _assert" feature to help catch runtime
errors and validate the arguments passed to glam.
e.g.
```rs
// Will panic if self is zero length when glam_assert is enabled.
pub fn normalize(self) -> Self {
let normalized = self.mul(self.length_recip());
glam_assert!(normalized.is_finite());
normalized
}
```
## Solution
- Re-export the optional feature glam_assert
---
## Changelog
Added: Optional feature "glam_assert"
# Objective
WebP is a modern image format developed by Google that offers a
significant reduction in file size compared to other image formats such
as PNG and JPEG, while still maintaining good image quality. This makes
it particularly useful for games with large numbers of images, such as
those with high-quality textures or detailed sprites, where file size
and loading times can have a significant impact on performance.
By adding support for WebP images in Bevy, game developers using this
engine can now take advantage of this modern image format and reduce the
memory usage and loading times of their games. This improvement can
ultimately result in a better gaming experience for players.
In summary, the objective of adding WebP image format support in Bevy is
to enable game developers to use a modern image format that provides
better compression rates and smaller file sizes, resulting in faster
loading times and reduced memory usage for their games.
## Solution
To add support for WebP images in Bevy, this pull request leverages the
existing `image` crate support for WebP. This implementation is easily
integrated into the existing Bevy asset-loading system. To maintain
compatibility with existing Bevy projects, WebP image support is
disabled by default, and developers can enable it by adding a feature
flag to their project's `Cargo.toml` file. With this feature, Bevy
becomes even more versatile for game developers and provides a valuable
addition to the game engine.
---
## Changelog
- Added support for WebP image format in Bevy game engine
## Migration Guide
To enable WebP image support in your Bevy project, add the following
line to your project's Cargo.toml file:
```toml
bevy = { version = "*", features = ["webp"]}
```
![image](https://user-images.githubusercontent.com/47158642/214374911-412f0986-3927-4f7a-9a6c-413bdee6b389.png)
# Objective
- Implement an alternative antialias technique
- TAA scales based off of view resolution, not geometry complexity
- TAA filters textures, firefly pixels, and other aliasing not covered
by MSAA
- TAA additionally will reduce noise / increase quality in future
stochastic rendering techniques
- Closes https://github.com/bevyengine/bevy/issues/3663
## Solution
- Add a temporal jitter component
- Add a motion vector prepass
- Add a TemporalAntialias component and plugin
- Combine existing MSAA and FXAA examples and add TAA
## Followup Work
- Prepass motion vector support for skinned meshes
- Move uniforms needed for motion vectors into a separate bind group,
instead of using different bind group layouts
- Reuse previous frame's GPU view buffer for motion vectors, instead of
recomputing
- Mip biasing for sharper textures, and or unjitter texture UVs
https://github.com/bevyengine/bevy/issues/7323
- Compute shader for better performance
- Investigate FSR techniques
- Historical depth based disocclusion tests, for geometry disocclusion
- Historical luminance/hue based tests, for shading disocclusion
- Pixel "locks" to reduce blending rate / revamp history confidence
mechanism
- Orthographic camera support for TemporalJitter
- Figure out COD's 1-tap bicubic filter
---
## Changelog
- Added MotionVectorPrepass and TemporalJitter
- Added TemporalAntialiasPlugin, TemporalAntialiasBundle, and
TemporalAntialiasSettings
---------
Co-authored-by: IceSentry <c.giguere42@gmail.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: Daniel Chia <danstryder@gmail.com>
Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
Co-authored-by: Brandon Dyer <brandondyer64@gmail.com>
Co-authored-by: Edgar Geier <geieredgar@gmail.com>
# Objective
- Rename `text_layout` example to `flex_layout` to better reflect the
example purpose
- `AlignItems`/`JustifyContent` is not related to text layout, it's
about child nodes positioning
## Solution
- Rename the example
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Add a convenient immediate mode drawing API for visual debugging.
Fixes#5619
Alternative to #1625
Partial alternative to #5734
Based off https://github.com/Toqozz/bevy_debug_lines with some changes:
* Simultaneous support for 2D and 3D.
* Methods for basic shapes; circles, spheres, rectangles, boxes, etc.
* 2D methods.
* Removed durations. Seemed niche, and can be handled by users.
<details>
<summary>Performance</summary>
Stress tested using Bevy's recommended optimization settings for the dev
profile with the
following command.
```bash
cargo run --example many_debug_lines \
--config "profile.dev.package.\"*\".opt-level=3" \
--config "profile.dev.opt-level=1"
```
I dipped to 65-70 FPS at 300,000 lines
CPU: 3700x
RAM Speed: 3200 Mhz
GPU: 2070 super - probably not very relevant, mostly cpu/memory bound
</details>
<details>
<summary>Fancy bloom screenshot</summary>
![Screenshot_20230207_155033](https://user-images.githubusercontent.com/29694403/217291980-f1e0500e-7a14-4131-8c96-eaaaf52596ae.png)
</details>
## Changelog
* Added `GizmoPlugin`
* Added `Gizmos` system parameter for drawing lines and wireshapes.
### TODO
- [ ] Update changelog
- [x] Update performance numbers
- [x] Add credit to PR description
### Future work
- Cache rendering primitives instead of constructing them out of line
segments each frame.
- Support for drawing solid meshes
- Interactions. (See
[bevy_mod_gizmos](https://github.com/LiamGallagher737/bevy_mod_gizmos))
- Fancier line drawing. (See
[bevy_polyline](https://github.com/ForesightMiningSoftwareCorporation/bevy_polyline))
- Support for `RenderLayers`
- Display gizmos for a certain duration. Currently everything displays
for one frame (ie. immediate mode)
- Changing settings per drawn item like drawing on top or drawing to
different `RenderLayers`
Co-Authored By: @lassade <felipe.jorge.pereira@gmail.com>
Co-Authored By: @The5-1 <agaku@hotmail.de>
Co-Authored By: @Toqozz <toqoz@hotmail.com>
Co-Authored By: @nicopap <nico@nicopap.ch>
---------
Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: IceSentry <c.giguere42@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Simple text pipeline benchmark. It's quite expensive but current examples don't capture the performance of `queue_text` as it only runs on changes to the text.
![image](https://user-images.githubusercontent.com/47158642/220197588-25e11022-02e4-45f3-b2e5-392c4ce7a025.png)
Huge credit to @StarLederer, who did almost all of the work on this. We're just reusing this PR to keep everything in one place.
# Objective
1. Make bloom more physically based.
1. Improve artistic control.
1. Allow to use bloom as screen blur.
1. Fix#6634.
1. Address #6655 (although the author makes incorrect conclusions).
## Solution
1. Set the default threshold to 0.
2. Lerp between bloom textures when `composite_mode: BloomCompositeMode::EnergyConserving`.
1. Use [a parametric function](https://starlederer.github.io/bloom) to control blend levels for each bloom texture. In the future this can be controlled per-pixel for things like lens dirt.
3. Implement BloomCompositeMode::Additive` for situations where the old school look is desired.
## Changelog
* Bloom now looks different.
* Added `BloomSettings:lf_boost`, `BloomSettings:lf_boost_curvature`, `BloomSettings::high_pass_frequency` and `BloomSettings::composite_mode`.
* `BloomSettings::scale` removed.
* `BloomSettings::knee` renamed to `BloomPrefilterSettings::softness`.
* `BloomSettings::threshold` renamed to `BloomPrefilterSettings::threshold`.
* The bloom example has been renamed to bloom_3d and improved. A bloom_2d example was added.
## Migration Guide
* Refactor mentions of `BloomSettings::knee` and `BloomSettings::threshold` as `BloomSettings::prefilter_settings` where knee is now `softness`.
* If defined without `..default()` add `..default()` to definitions of `BloomSettings` instances or manually define missing fields.
* Adapt to Bloom looking visually different (if needed).
Co-authored-by: Herman Lederer <germans.lederers@gmail.com>
# Objective
Unfortunately, there are three issues with my changes introduced by #7784.
1. The changes left some dead code. This is already taken care of here: #7875.
2. Disabling prepass causes failures because the shadow mapping relies on the `PrepassPlugin` now.
3. Custom materials use the `prepass.wgsl` shader, but this does not always define a fragment entry point.
This PR fixes 2. and 3. and resolves#7879.
## Solution
- Add a regression test with disabled prepass.
- Split `PrepassPlugin` into two plugins:
- `PrepassPipelinePlugin` contains the part that is required for the shadow mapping to work and is unconditionally added.
- `PrepassPlugin` now only adds the systems and resources required for the "real" prepasses.
- Add a noop fragment entry point to `prepass.wgsl`, used if `NORMAL_PASS` is not defined.
Co-authored-by: Edgar Geier <geieredgar@gmail.com>
# Objective
- Use the prepass textures in webgl
## Solution
- Bind the prepass textures even when using webgl, but only if msaa is disabled
- Also did some refactors to centralize how textures are bound, similar to the EnvironmentMapLight PR
- ~~Also did some refactors of the example to make it work in webgl~~
- ~~To make the example work in webgl, I needed to use a sampler for the depth texture, the resulting code looks a bit weird, but it's simple enough and I think it's worth it to show how it works when using webgl~~
# Objective
UIs created for Bevy cannot currently be made accessible. This PR aims to address that.
## Solution
Integrate AccessKit as a dependency, adding accessibility support to existing bevy_ui widgets.
## Changelog
### Added
* Integrate with and expose [AccessKit](https://accesskit.dev) for platform accessibility.
* Add `Label` for marking text specifically as a label for UI controls.
# Objective
- Fixes#1800, fixes#6984
- Alternative to #7196
- Ensure feature list is always up to date and that all are documented
- Help discovery of features
## Solution
- Use a template to update the cargo feature list
- Use the comment just above the feature declaration as the description
- Add the checks to CI
- Add the features to the base crate doc
# Objective
This PR adds an example that shows how to use `apply_system_buffers` and how to order it with respect to the relevant systems. It also shows how not ordering the systems can lead to unexpected behaviours.
## Solution
Add the example.
# Objective
- Add basic spatial audio support to Bevy
- this is what rodio supports, so no HRTF, just simple stereo channel manipulation
- no "built-in" ECS support: `Emitter` and `Listener` should be components that would automatically update the positions
This PR goal is to just expose rodio functionality, made possible with the recent update to rodio 0.16. A proper ECS integration opens a lot more questions, and would probably require an RFC
Also updates rodio and fixes#6122
# Objective
Splits tone mapping from https://github.com/bevyengine/bevy/pull/6677 into a separate PR.
Address https://github.com/bevyengine/bevy/issues/2264.
Adds tone mapping options:
- None: Bypasses tonemapping for instances where users want colors output to match those set.
- Reinhard
- Reinhard Luminance: Bevy's exiting tonemapping
- [ACES](https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl) (Fitted version, based on the same implementation that Godot 4 uses) see https://github.com/bevyengine/bevy/issues/2264
- [AgX](https://github.com/sobotka/AgX)
- SomewhatBoringDisplayTransform
- TonyMcMapface
- Blender Filmic
This PR also adds support for EXR images so they can be used to compare tonemapping options with reference images.
## Migration Guide
- Tonemapping is now an enum with NONE and the various tonemappers.
- The DebandDither is now a separate component.
Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
# Objective
- Environment maps use these formats, and in the future rendering LUTs will need textures loaded by default in the engine
## Solution
- Make ktx2 and zstd part of the default feature
- Let examples assume these features are enabled
---
## Changelog
- `ktx2` and `zstd` are now party of bevy's default enabled features
## Migration Guide
- If you used the `ktx2` or `zstd` features, you no longer need to explicitly enable them, as they are now part of bevy's default enabled features
Profiles show that in extremely hot loops, like the draw loops in the renderer, invoking the trace! macro has noticeable overhead, even if the trace log level is not enabled.
Solve this by introduce a 'wrapper' detailed_trace macro around trace, that wraps the trace! log statement in a trivially false if statement unless a cargo feature is enabled
# Objective
- Eliminate significant overhead observed with trace-level logging in render hot loops, even when trace log level is not enabled.
- This is an alternative solution to the one proposed in #7223
## Solution
- Introduce a wrapper around the `trace!` macro called `detailed_trace!`. This macro wraps the `trace!` macro with an if statement that is conditional on a new cargo feature, `detailed_trace`. When the feature is not enabled (the default), then the if statement is trivially false and should be optimized away at compile time.
- Convert the observed hot occurrences of trace logging in `TrackedRenderPass` with this new macro.
Testing the results of
```
cargo run --profile stress-test --features bevy/trace_tracy --example many_cubes -- spheres
```
![image](https://user-images.githubusercontent.com/1222141/218298552-38551717-b062-4c64-afdc-a60267ac984d.png)
shows significant improvement of the `main_opaque_pass_3d` of the renderer, a median time decrease from 6.0ms to 3.5ms.
---
## Changelog
- For performance reasons, some detailed renderer trace logs now require the use of cargo feature `detailed_trace` in addition to setting the log level to `TRACE` in order to be shown.
## Migration Guide
- Some detailed bevy trace events now require the use of the cargo feature `detailed_trace` in addition to enabling `TRACE` level logging to view. Should you wish to see these logs, please compile your code with the bevy feature `detailed_trace`. Currently, the only logs that are affected are the renderer logs pertaining to `TrackedRenderPass` functions
# Objective
- Required features were added to some examples in #7051 even though those features aren't the main focus of the examples
- Don't require features on examples that are useful without them
## Solution
- Remove required features on examples `load_gltf` and `scene_viewer`, but log a warning when they are not enabled
(Before)
![image](https://user-images.githubusercontent.com/47158642/213946111-15ec758f-1f1d-443c-b196-1fdcd4ae49da.png)
(After)
![image](https://user-images.githubusercontent.com/47158642/217051179-67381e73-dd44-461b-a2c7-87b0440ef8de.png)
![image](https://user-images.githubusercontent.com/47158642/212492404-524e4ad3-7837-4ed4-8b20-2abc276aa8e8.png)
# Objective
- Improve lighting; especially reflections.
- Closes https://github.com/bevyengine/bevy/issues/4581.
## Solution
- Implement environment maps, providing better ambient light.
- Add microfacet multibounce approximation for specular highlights from Filament.
- Occlusion is no longer incorrectly applied to direct lighting. It now only applies to diffuse indirect light. Unsure if it's also supposed to apply to specular indirect light - the glTF specification just says "indirect light". In the case of ambient occlusion, for instance, that's usually only calculated as diffuse though. For now, I'm choosing to apply this just to indirect diffuse light, and not specular.
- Modified the PBR example to use an environment map, and have labels.
- Added `FallbackImageCubemap`.
## Implementation
- IBL technique references can be found in environment_map.wgsl.
- It's more accurate to use a LUT for the scale/bias. Filament has a good reference on generating this LUT. For now, I just used an analytic approximation.
- For now, environment maps must first be prefiltered outside of bevy using a 3rd party tool. See the `EnvironmentMap` documentation.
- Eventually, we should have our own prefiltering code, so that we can have dynamically changing environment maps, as well as let users drop in an HDR image and use asset preprocessing to create the needed textures using only bevy.
---
## Changelog
- Added an `EnvironmentMapLight` camera component that adds additional ambient light to a scene.
- StandardMaterials will now appear brighter and more saturated at high roughness, due to internal material changes. This is more physically correct.
- Fixed StandardMaterial occlusion being incorrectly applied to direct lighting.
- Added `FallbackImageCubemap`.
Co-authored-by: IceSentry <c.giguere42@gmail.com>
Co-authored-by: James Liu <contact@jamessliu.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
# Objective
- Merge the examples on iOS and Android
- Make sure they both work from the same code
## Solution
- don't create window when not in an active state (from #6830)
- exit on suspend on Android (from #6830)
- automatically enable dependency feature of bevy_audio on android so that it works out of the box
- don't inverse y position of touch events
- reuse the same example for both Android and iOS
Fixes#4616Fixes#4103Fixes#3648Fixes#3458Fixes#3249Fixes#86
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR.
# Objective
- Followup #6587.
- Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45
## Solution
- [x] Remove old scheduling module
- [x] Migrate new methods to no longer use extension methods
- [x] Fix compiler errors
- [x] Fix benchmarks
- [x] Fix examples
- [x] Fix docs
- [x] Fix tests
## Changelog
### Added
- a large number of methods on `App` to work with schedules ergonomically
- the `CoreSchedule` enum
- `App::add_extract_system` via the `RenderingAppExtension` trait extension method
- the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms`
### Removed
- stages, and all code that mentions stages
- states have been dramatically simplified, and no longer use a stack
- `RunCriteriaLabel`
- `AsSystemLabel` trait
- `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition)
- systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world
- `RunCriteriaLabel`
- `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear.
### Changed
- `System::default_labels` is now `System::default_system_sets`.
- `App::add_default_labels` is now `App::add_default_sets`
- `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet`
- `App::add_system_set` was renamed to `App::add_systems`
- The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum
- `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)`
- `SystemLabel` trait was replaced by `SystemSet`
- `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>`
- The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq`
- Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria.
- Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied.
- `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`.
- `bevy_pbr::add_clusters` is no longer an exclusive system
- the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling`
- `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread.
## Migration Guide
- Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)`
- Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed.
- The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved.
- Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior.
- Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you.
- For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with
- `add_system(my_system.in_set(CoreSet::PostUpdate)`
- When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages
- Run criteria have been renamed to run conditions. These can now be combined with each other and with states.
- Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow.
- For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label.
- Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default.
- Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually.
- Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior.
- the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity
- `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl.
- Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings.
- `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds.
- `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool.
- States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set`
## TODO
- [x] remove dead methods on App and World
- [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule`
- [x] avoid adding the default system set at inappropriate times
- [x] remove any accidental cycles in the default plugins schedule
- [x] migrate benchmarks
- [x] expose explicit labels for the built-in command flush points
- [x] migrate engine code
- [x] remove all mentions of stages from the docs
- [x] verify docs for States
- [x] fix uses of exclusive systems that use .end / .at_start / .before_commands
- [x] migrate RenderStage and AssetStage
- [x] migrate examples
- [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub)
- [x] ensure that on_enter schedules are run at least once before the main app
- [x] re-enable opt-in to execution order ambiguities
- [x] revert change to `update_bounds` to ensure it runs in `PostUpdate`
- [x] test all examples
- [x] unbreak directional lights
- [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples)
- [x] game menu example shows loading screen and menu simultaneously
- [x] display settings menu is a blank screen
- [x] `without_winit` example panics
- [x] ensure all tests pass
- [x] SubApp doc test fails
- [x] runs_spawn_local tasks fails
- [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120)
## Points of Difficulty and Controversy
**Reviewers, please give feedback on these and look closely**
1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup.
2. The outer schedule controls which schedule is run when `App::update` is called.
3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes.
4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset.
5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order
6. Implemetnation strategy for fixed timesteps
7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks.
8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements.
## Future Work (ideally before 0.10)
- Rename schedule_v3 module to schedule or scheduling
- Add a derive macro to states, and likely a `EnumIter` trait of some form
- Figure out what exactly to do with the "systems added should basically work by default" problem
- Improve ergonomics for working with fixed timesteps and states
- Polish FixedTime API to match Time
- Rebase and merge #7415
- Resolve all internal ambiguities (blocked on better tools, especially #7442)
- Add "base sets" to replace the removed default sets.
# Objective
- Bevy should not have any "internal" execution order ambiguities. These clutter the output of user-facing error reporting, and can result in nasty, nondetermistic, very difficult to solve bugs.
- Verifying this currently involves repeated non-trivial manual work.
## Solution
- [x] add an example to quickly check this
- ~~[ ] ensure that this example panics if there are any unresolved ambiguities~~
- ~~[ ] run the example in CI 😈~~
There's one tricky ambiguity left, between UI and animation. I don't have the tools to fix this without system set configuration, so the remaining work is going to be left to #7267 or another PR after that.
```
2023-01-27T18:38:42.989405Z INFO bevy_ecs::schedule::ambiguity_detection: Execution order ambiguities detected, you might want to add an explicit dependency relation between some of these systems:
* Parallel systems:
-- "bevy_animation::animation_player" and "bevy_ui::flex::flex_node_system"
conflicts: ["bevy_transform::components::transform::Transform"]
```
## Changelog
Resolved internal execution order ambiguities for:
1. Transform propagation (ignored, we need smarter filter checking).
2. Gamepad processing (fixed).
3. bevy_winit's window handling (fixed).
4. Cascaded shadow maps and perspectives (fixed).
Also fixed a desynchronized state bug that could occur when the `Window` component is removed and then added to the same entity in a single frame.
# Objective
- Fix#7315
- Add IME support
## Solution
- Add two new fields to `Window`, to control if IME is enabled and the candidate box position
This allows the use of dead keys which are needed in French, or the full IME experience to type using Pinyin
I also added a basic general text input example that can handle IME input.
https://user-images.githubusercontent.com/8672791/213941353-5ed73a73-5dd1-4e66-a7d6-a69b49694c52.mp4
<img width="1392" alt="image" src="https://user-images.githubusercontent.com/418473/203873533-44c029af-13b7-4740-8ea3-af96bd5867c9.png">
<img width="1392" alt="image" src="https://user-images.githubusercontent.com/418473/203873549-36be7a23-b341-42a2-8a9f-ceea8ac7a2b8.png">
# Objective
- Add support for the “classic” distance fog effect, as well as a more advanced atmospheric fog effect.
## Solution
This PR:
- Introduces a new `FogSettings` component that controls distance fog per-camera.
- Adds support for three widely used “traditional” fog falloff modes: `Linear`, `Exponential` and `ExponentialSquared`, as well as a more advanced `Atmospheric` fog;
- Adds support for directional light influence over fog color;
- Extracts fog via `ExtractComponent`, then uses a prepare system that sets up a new dynamic uniform struct (`Fog`), similar to other mesh view types;
- Renders fog in PBR material shader, as a final adjustment to the `output_color`, after PBR is computed (but before tone mapping);
- Adds a new `StandardMaterial` flag to enable fog; (`fog_enabled`)
- Adds convenience methods for easier artistic control when creating non-linear fog types;
- Adds documentation around fog.
---
## Changelog
### Added
- Added support for distance-based fog effects for PBR materials, controllable per-camera via the new `FogSettings` component;
- Added `FogFalloff` enum for selecting between three widely used “traditional” fog falloff modes: `Linear`, `Exponential` and `ExponentialSquared`, as well as a more advanced `Atmospheric` fog;
# Objective
Bump the MSRV to 1.67. Enable cleanup PRs like #7346 to work.
## Solution
Bump it to 1.67
---
## Changelog
Changed: The MSRV of the engine is now 1.67.
# Objective
Fixes#6952
## Solution
- Request WGPU capabilities `SAMPLED_TEXTURE_AND_STORAGE_BUFFER_ARRAY_NON_UNIFORM_INDEXING`, `SAMPLER_NON_UNIFORM_INDEXING` and `UNIFORM_BUFFER_AND_STORAGE_TEXTURE_ARRAY_NON_UNIFORM_INDEXING` when corresponding features are enabled.
- Add an example (`shaders/texture_binding_array`) illustrating (and testing) the use of non-uniform indexed textures and samplers.
![image](https://user-images.githubusercontent.com/16053640/209448310-defa4eae-6bcb-460d-9b3d-a3d2fad4316c.png)
## Changelog
- Added new capabilities for shader validation.
- Added example `shaders/texture_binding_array`.
# Problemo
Some code in #5911 and #5454 does not compile with dynamic linking enabled.
The code is behind a feature gate to prevent dynamically linked builds from breaking, but it's not quite set up correctly.
## Solution
Forward the `dynamic` feature flag to the `bevy_diagnostic` crate and gate the code behind it.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
- This PR adds support for blend modes to the PBR `StandardMaterial`.
<img width="1392" alt="Screenshot 2022-11-18 at 20 00 56" src="https://user-images.githubusercontent.com/418473/202820627-0636219a-a1e5-437a-b08b-b08c6856bf9c.png">
<img width="1392" alt="Screenshot 2022-11-18 at 20 01 01" src="https://user-images.githubusercontent.com/418473/202820615-c8d43301-9a57-49c4-bd21-4ae343c3e9ec.png">
## Solution
- The existing `AlphaMode` enum is extended, adding three more modes: `AlphaMode::Premultiplied`, `AlphaMode::Add` and `AlphaMode::Multiply`;
- All new modes are rendered in the existing `Transparent3d` phase;
- The existing mesh flags for alpha mode are reorganized for a more compact/efficient representation, and new values are added;
- `MeshPipelineKey::TRANSPARENT_MAIN_PASS` is refactored into `MeshPipelineKey::BLEND_BITS`.
- `AlphaMode::Opaque` and `AlphaMode::Mask(f32)` share a single opaque pipeline key: `MeshPipelineKey::BLEND_OPAQUE`;
- `Blend`, `Premultiplied` and `Add` share a single premultiplied alpha pipeline key, `MeshPipelineKey::BLEND_PREMULTIPLIED_ALPHA`. In the shader, color values are premultiplied accordingly (or not) depending on the blend mode to produce the three different results after PBR/tone mapping/dithering;
- `Multiply` uses its own independent pipeline key, `MeshPipelineKey::BLEND_MULTIPLY`;
- Example and documentation are provided.
---
## Changelog
### Added
- Added support for additive and multiplicative blend modes in the PBR `StandardMaterial`, via `AlphaMode::Add` and `AlphaMode::Multiply`;
- Added support for premultiplied alpha in the PBR `StandardMaterial`, via `AlphaMode::Premultiplied`;
# Objective
- Add a configurable prepass
- A depth prepass is useful for various shader effects and to reduce overdraw. It can be expansive depending on the scene so it's important to be able to disable it if you don't need any effects that uses it or don't suffer from excessive overdraw.
- The goal is to eventually use it for things like TAA, Ambient Occlusion, SSR and various other techniques that can benefit from having a prepass.
## Solution
The prepass node is inserted before the main pass. It runs for each `Camera3d` with a prepass component (`DepthPrepass`, `NormalPrepass`). The presence of one of those components is used to determine which textures are generated in the prepass. When any prepass is enabled, the depth buffer generated will be used by the main pass to reduce overdraw.
The prepass runs for each `Material` created with the `MaterialPlugin::prepass_enabled` option set to `true`. You can overload the shader used by the prepass by using `Material::prepass_vertex_shader()` and/or `Material::prepass_fragment_shader()`. It will also use the `Material::specialize()` for more advanced use cases. It is enabled by default on all materials.
The prepass works on opaque materials and materials using an alpha mask. Transparent materials are ignored.
The `StandardMaterial` overloads the prepass fragment shader to support alpha mask and normal maps.
---
## Changelog
- Add a new `PrepassNode` that runs before the main pass
- Add a `PrepassPlugin` to extract/prepare/queue the necessary data
- Add a `DepthPrepass` and `NormalPrepass` component to control which textures will be created by the prepass and available in later passes.
- Add a new `prepass_enabled` flag to the `MaterialPlugin` that will control if a material uses the prepass or not.
- Add a new `prepass_enabled` flag to the `PbrPlugin` to control if the StandardMaterial uses the prepass. Currently defaults to false.
- Add `Material::prepass_vertex_shader()` and `Material::prepass_fragment_shader()` to control the prepass from the `Material`
## Notes
In bevy's sample 3d scene, the performance is actually worse when enabling the prepass, but on more complex scenes the performance is generally better. I would like more testing on this, but @DGriffin91 has reported a very noticeable improvements in some scenes.
The prepass is also used by @JMS55 for TAA and GTAO
discord thread: <https://discord.com/channels/691052431525675048/1011624228627419187>
This PR was built on top of the work of multiple people
Co-Authored-By: @superdump
Co-Authored-By: @robtfm
Co-Authored-By: @JMS55
Co-authored-by: Charles <IceSentry@users.noreply.github.com>
Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
# Objective
- Fixes#6361
- Fixes#6362
- Fixes#6364
## Solution
- Added an example for creating a custom `Decodable` type
- Clarified the documentation on `Decodable`
- Added an `AddAudioSource` trait and implemented it for `App`
Co-authored-by: dis-da-moe <84386186+dis-da-moe@users.noreply.github.com>
# Objective
Add useful information about cursor position relative to a UI node. Fixes#7079.
## Solution
- Added a new `RelativeCursorPosition` component
---
## Changelog
- Added
- `RelativeCursorPosition`
- an example showcasing the new component
Co-authored-by: Dawid Piotrowski <41804418+Pietrek14@users.noreply.github.com>
# Objective
It is possible to manually update `GlobalTransform`.
The engine actually assumes this is not possible.
For example, `propagate_transform` does not update children
of an `Entity` which **`GlobalTransform`** changed,
leading to unexpected behaviors.
A `GlobalTransform` set by the user may also be blindly
overwritten by the propagation system.
## Solution
- Remove `translation_mut`
- Explain to users that they shouldn't manually update the `GlobalTransform`
- Remove `global_vs_local.rs` example, since it misleads users
in believing that it is a valid use-case to manually update the
`GlobalTransform`
---
## Changelog
- Remove `GlobalTransform::translation_mut`
## Migration Guide
`GlobalTransform::translation_mut` has been removed without alternative,
if you were relying on this, update the `Transform` instead. If the given entity
had children or parent, you may need to remove its parent to make its transform
independent (in which case the new `Commands::set_parent_in_place` and
`Commands::remove_parent_in_place` may be of interest)
Bevy may add in the future a way to toggle transform propagation on
an entity basis.
# Objective
- Fixes#6777, fixes#2998, replaces #5518
- Help avoid confusing error message when using an older version of Rust
## Solution
- Add the `rust-version` field to `Cargo.toml`
- Add a CI job checking the MSRV
- Add the job to bors
# Objective
There isn't really a way to test that code using bevy_reflect compiles or doesn't compile for certain scenarios. This would be especially useful for macro-centric PRs like #6511 and #6042.
## Solution
Using `bevy_ecs_compile_fail_tests` as reference, added the `bevy_reflect_compile_fail_tests` crate.
Currently, this crate contains a very simple test case. This is so that we can get the basic foundation of this crate agreed upon and merged so that more tests can be added by other PRs.
### Open Questions
- [x] Should this be added to CI? (Answer: Yes)
---
## Changelog
- Added the `bevy_reflect_compile_fail_tests` crate for testing compilation errors
# Objective
This PR reorganizes majority of the scene viewer example into a module of plugins which then allows reuse of functionality among new or existing examples. In addition, this enables the scene viewer to be more succinct and showcase the distinct cases of camera control and scene control.
This work is to support future work in organization and future examples. A more complicated 3D scene example has been requested by the community (#6551) which requests functionality currently included in scene_viewer, but previously inaccessible. The future example can now just utilize the two plugins created here. The existing example [animated_fox example] can utilize the scene creation and animation control functionality of `SceneViewerPlugin`.
## Solution
- Created a `scene_viewer` module inside the `tools` example folder.
- Created two plugins: `SceneViewerPlugin` (gltf scene loading, animation control, camera tracking control, light control) and `CameraControllerPlugin` (controllable camera).
- Original `scene_viewer.rs` moved to `scene_viewer/main.rs` and now utilizes the two plugins.
# Objective
This adds a custom profile for testing against stress tests. Bevy seemingly gets notably faster with LTO turned on. To more accurately depict production level performance, LTO and other rustc-level optimizations should be enabled when performance testing on stress tests.
Also updated the stress test docs to reflect that users should be using it.
# Objective
The feature doesn't have any use case in libraries or applications and many users use this feature incorrectly. See the issue for details.
Closes#5753.
## Solution
Remove it.
---
## Changelog
### Removed
- `render` feature group.
## Migration Guide
Instead of using `render` feature group use dependencies directly. This group consisted of `bevy_core_pipeline`, `bevy_pbr`, `bevy_gltf`, `bevy_render`, `bevy_sprite`, `bevy_text` and `bevy_ui`. You probably want to check if you need all of them.
# Objective
- Fix CI issue with updated `cargo-app`
## Solution
- Move the Android example to its own package. It's not necessary for the CI fix, but it's cleaner, mimic the iOS example, and easier to reuse for someone wanting to setup android support in their project
- Build the package in CI instead of the example
The Android example is still working on my android device with this change 👍
# Objective
- Bevy should be usable to create 'overlay' type apps, where the input is not captured by Bevy, but passed down/into a target app, or to allow passive displays/widgets etc.
## Solution
- the `winit:🪟:Window` already has a `set_cursor_hittest()` which basically does this for mouse input events, so I've exposed it (trying to copy the style laid out in the existing wrappings, and added a simple demo.
---
## Changelog
- Added `hittest` to `WindowAttributes`
- Added the `hittest`'s setters/getters
- Modified the `WindowBuilder`
- Modifed the `WindowDescriptor`'s `Default` impl.
- Added an example `cargo run --example fallthrough`
# Objective
#6461 introduced `lto = true` as a profile setting for release builds. This is causing the `run-examples` CI task to timeout.
## Solution
Remove it.
# Objective
- Adds a bloom pass for HDR-enabled Camera3ds.
- Supersedes (and all credit due to!) https://github.com/bevyengine/bevy/pull/3430 and https://github.com/bevyengine/bevy/pull/2876
![image](https://user-images.githubusercontent.com/47158642/198698783-228edc00-20b5-4218-a613-331ccd474f38.png)
## Solution
- A threshold is applied to isolate emissive samples, and then a series of downscale and upscaling passes are applied and composited together.
- Bloom is applied to 2d or 3d Cameras with hdr: true and a BloomSettings component.
---
## Changelog
- Added a `core_pipeline::bloom::BloomSettings` component.
- Added `BloomNode` that runs between the main pass and tonemapping.
- Added a `BloomPlugin` that is loaded as part of CorePipelinePlugin.
- Added a bloom example project.
Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Co-authored-by: DGriffin91 <github@dgdigital.net>
# Objective
Add consistent UI rendering and interaction where deep nodes inside two different hierarchies will never render on top of one-another by default and offer an escape hatch (z-index) for nodes to change their depth.
## The problem with current implementation
The current implementation of UI rendering is broken in that regard, mainly because [it sets the Z value of the `Transform` component based on a "global Z" space](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/update.rs#L43) shared by all nodes in the UI. This doesn't account for the fact that each node's final `GlobalTransform` value will be relative to its parent. This effectively makes the depth unpredictable when two deep trees are rendered on top of one-another.
At the moment, it's also up to each part of the UI code to sort all of the UI nodes. The solution that's offered here does the full sorting of UI node entities once and offers the result through a resource so that all systems can use it.
## Solution
### New ZIndex component
This adds a new optional `ZIndex` enum component for nodes which offers two mechanism:
- `ZIndex::Local(i32)`: Overrides the depth of the node relative to its siblings.
- `ZIndex::Global(i32)`: Overrides the depth of the node relative to the UI root. This basically allows any node in the tree to "escape" the parent and be ordered relative to the entire UI.
Note that in the current implementation, omitting `ZIndex` on a node has the same result as adding `ZIndex::Local(0)`. Additionally, the "global" stacking context is essentially a way to add your node to the root stacking context, so using `ZIndex::Local(n)` on a root node (one without parent) will share that space with all nodes using `Index::Global(n)`.
### New UiStack resource
This adds a new `UiStack` resource which is calculated from both hierarchy and `ZIndex` during UI update and contains a vector of all node entities in the UI, ordered by depth (from farthest from camera to closest). This is exposed publicly by the bevy_ui crate with the hope that it can be used for consistent ordering and to reduce the amount of sorting that needs to be done by UI systems (i.e. instead of sorting everything by `global_transform.z` in every system, this array can be iterated over).
### New z_index example
This also adds a new z_index example that showcases the new `ZIndex` component. It's also a good general demo of the new UI stack system, because making this kind of UI was very broken with the old system (e.g. nodes would render on top of each other, not respecting hierarchy or insert order at all).
![image](https://user-images.githubusercontent.com/1060971/189015985-8ea8f989-0e9d-4601-a7e0-4a27a43a53f9.png)
---
## Changelog
- Added the `ZIndex` component to bevy_ui.
- Added the `UiStack` resource to bevy_ui, and added implementation in a new `stack.rs` module.
- Removed the previous Z updating system from bevy_ui, because it was replaced with the above.
- Changed bevy_ui rendering to use UiStack instead of z ordering.
- Changed bevy_ui focus/interaction system to use UiStack instead of z ordering.
- Added a new z_index example.
## ZIndex demo
Here's a demo I wrote to test these features
https://user-images.githubusercontent.com/1060971/188329295-d7beebd6-9aee-43ab-821e-d437df5dbe8a.mp4
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Add post processing passes for FXAA (Fast Approximate Anti-Aliasing)
- Add example comparing MSAA and FXAA
## Solution
When the FXAA plugin is added, passes for FXAA are inserted between the main pass and the tonemapping pass. Supports using either HDR or LDR output from the main pass.
---
## Changelog
- Add a new FXAANode that runs after the main pass when the FXAA plugin is added.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
To be consistent like other examples, it's better to keep file name and example name same, so we don't need to find correct example name in Cargo.toml.
## Solution
Rename example file scaling.rs to ui_scaling.rs.
# Objective
> System chaining is a confusing name: it implies the ability to construct non-linear graphs, and suggests a sense of system ordering that is only incidentally true. Instead, it actually works by passing data from one system to the next, much like the pipe operator.
> In the accepted [stageless RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/45-stageless.md), this concept is renamed to piping, and "system chaining" is used to construct groups of systems with ordering dependencies between them.
Fixes#6225.
## Changelog
System chaining has been renamed to system piping to improve clarity (and free up the name for new ordering APIs).
## Migration Guide
The `.chain(handler_system)` method on systems is now `.pipe(handler_system)`.
The `IntoChainSystem` trait is now `IntoPipeSystem`, and the `ChainSystem` struct is now `PipeSystem`.
# Objective
I was about to submit a PR to add these two examples to `bevy-website` and re-discovered the inconsistency.
Although it's not a major issue on the website where only the filenames are shown, this would help to visually distinguish the two examples in the list because the names are very prominent.
This also helps out when fuzzy-searching the codebase for these files.
## Solution
Rename `shapes` to `2d_shapes`. Now the filename matches the example name, and the naming structure matches the 3d example.
## Notes
@Nilirad proposed this in https://github.com/bevyengine/bevy/pull/4613#discussion_r862455631 but it had slipped away from my brain at that time.
# Objective
- Update ron to 0.8.0
- Fix breaking changes
- Closes#5862
## Solution
- Removed now non-existing method call (behavior is now the same without it)
# Objective
- Adopted from #3836
- Example showcases how to request a new resolution
- Example showcases how to react to resolution changes
Co-authored-by: Andreas Weibye <13300393+Weibye@users.noreply.github.com>
# Objective
- Allow users to change the scaling of the UI
- Adopted from #2808
## Solution
- This is an accessibility feature for fixed-size UI elements, allowing the developer to expose a range of UI scales for the player to set a scale that works for their needs.
> - The user can modify the UiScale struct to change the scaling at runtime. This multiplies the Px values by the scale given, while not touching any others.
> - The example showcases how this even allows for fluid transitions
> Here's how the example looks like:
https://user-images.githubusercontent.com/1631166/132979069-044161a9-8e85-45ab-9e93-fcf8e3852c2b.mp4
---
## Changelog
- Added a `UiScale` which can be used to scale all of UI
Co-authored-by: Andreas Weibye <13300393+Weibye@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Fix / support KTX2 array / cubemap / cubemap array textures
- Fixes#4495 . Supersedes #4514 .
## Solution
- Add `Option<TextureViewDescriptor>` to `Image` to enable configuration of the `TextureViewDimension` of a texture.
- This allows users to set `D2Array`, `D3`, `Cube`, `CubeArray` or whatever they need
- Automatically configure this when loading KTX2
- Transcode all layers and faces instead of just one
- Use the UASTC block size of 128 bits, and the number of blocks in x/y for a given mip level in order to determine the offset of the layer and face within the KTX2 mip level data
- `wgpu` wants data ordered as layer 0 mip 0..n, layer 1 mip 0..n, etc. See https://docs.rs/wgpu/latest/wgpu/util/trait.DeviceExt.html#tymethod.create_texture_with_data
- Reorder the data KTX2 mip X layer Y face Z to `wgpu` layer Y face Z mip X order
- Add a `skybox` example to demonstrate / test loading cubemaps from PNG and KTX2, including ASTC 4x4, BC7, and ETC2 compression for support everywhere. Note that you need to enable the `ktx2,zstd` features to be able to load the compressed textures.
---
## Changelog
- Fixed: KTX2 array / cubemap / cubemap array textures
- Fixes: Validation failure for compressed textures stored in KTX2 where the width/height are not a multiple of the block dimensions.
- Added: `Image` now has an `Option<TextureViewDescriptor>` field to enable configuration of the texture view. This is useful for configuring the `TextureViewDimension` when it is not just a plain 2D texture and the loader could/did not identify what it should be.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Even though it's marked as optional, it is no longer possible to not depend on `bevy_render` as it's a dependency of `bevy_scene`
## Solution
- Make `bevy_scene` optional
- For the minimalist among us, also make `bevy_asset` optional
# Objective
Add a section to the example's README on how
to reduce generated wasm executable size.
Add a `wasm-release` profile to bevy's `Cargo.toml`
in order to use it when building bevy-website.
Notes:
- We do not recommend `strip = "symbols"` since it breaks bindgen
- see https://github.com/bevyengine/bevy-website/pull/402
# Objective
Bevy need a way to benchmark UI rendering code,
this PR adds a stress test that spawns a lot of buttons.
## Solution
- Add the `many_buttons` stress test.
---
## Changelog
- Add the `many_buttons` stress test.
# Objective
- Showcase how to use a `Material` and `Mesh` to spawn 3d lines
![image](https://user-images.githubusercontent.com/8348954/179034236-ebc07f90-3eb5-46cc-8fc1-be7e6bf983fb.png)
## Solution
- Add an example using a simple `Material` and `Mesh` definition to draw a 3d line
- Shows how to use `LineList` and `LineStrip` in combination with a specialized `Material`
## Notes
This isn't just a primitive shape because it needs a special Material, but I think it's a good showcase of the power of the `Material` and `AsBindGroup` abstractions. All of this is easy to figure out when you know these options are a thing, but I think they are hard to discover which is why I think this should be an example and not shipped with bevy.
Co-authored-by: Charles <IceSentry@users.noreply.github.com>
# Objective
- Reduce confusion as the example opens a window and isn't truly "headless"
- Fixes https://github.com/bevyengine/bevy/issues/5260.
## Solution
- Rename the example and add to the docs that the window is expected.
# Objective
add spotlight support
## Solution / Changelog
- add spotlight angles (inner, outer) to ``PointLight`` struct. emitted light is linearly attenuated from 100% to 0% as angle tends from inner to outer. Direction is taken from the existing transform rotation.
- add spotlight direction (vec3) and angles (f32,f32) to ``GpuPointLight`` struct (60 bytes -> 80 bytes) in ``pbr/render/lights.rs`` and ``mesh_view_bind_group.wgsl``
- reduce no-buffer-support max point light count to 204 due to above
- use spotlight data to attenuate light in ``pbr.wgsl``
- do additional cluster culling on spotlights to minimise cost in ``assign_lights_to_clusters``
- changed one of the lights in the lighting demo to a spotlight
- also added a ``spotlight`` demo - probably not justified but so reviewers can see it more easily
## notes
increasing the size of the GpuPointLight struct on my machine reduces the FPS of ``many_lights -- sphere`` from ~150fps to 140fps.
i thought this was a reasonable tradeoff, and felt better than handling spotlights separately which is possible but would mean introducing a new bind group, refactoring light-assignment code and adding new spotlight-specific code in pbr.wgsl. the FPS impact for smaller numbers of lights should be very small.
the cluster culling strategy reintroduces the cluster aabb code which was recently removed... sorry. the aabb is used to get a cluster bounding sphere, which can then be tested fairly efficiently using the strategy described at the end of https://bartwronski.com/2017/04/13/cull-that-cone/. this works well with roughly cubic clusters (where the cluster z size is close to the same as x/y size), less well for other cases like single Z slice / tiled forward rendering. In the worst case we will end up just keeping the culling of the equivalent point light.
Co-authored-by: François <mockersf@gmail.com>
# Objective
Intended to close#5073
## Solution
Adds a stress test that use TextureAtlas based on the existing many_sprites test using the animated sprite implementation from the sprite_sheet example.
In order to satisfy the goals described in #5073 the animations are all slightly offset.
Of note is that the original stress test was designed to test fullstrum culling. I kept this test similar as to facilitate easy comparisons between the use of TextureAtlas and without.
# Objective
- Make Bevy work on android
## Solution
- Update android metadata and add a few more
- Set the target sdk to 31 as it will soon (in august) be the minimum sdk level for play store
- Remove the custom code to create an activity and use ndk-glue macro instead
- Delay window creation event on android
- Set the example with compatibility settings for wgpu. Those are needed for Bevy to work on my 2019 android tablet
- Add a few details on how to debug in case of failures
- Fix running the example on emulator. This was failing because of the name of the example
Bevy still doesn't work on android with this, audio features need to be disabled because of an ndk-glue version mismatch: rodio depends on 0.6.2, winit on 0.5.2. You can test with:
```
cargo apk run --release --example android_example --no-default-features --features "bevy_winit,render"
```
# Objective
- Make the reusable PBR shading functionality a little more reusable
- Add constructor functions for `StandardMaterial` and `PbrInput` structs to populate them with default values
- Document unclear `PbrInput` members
- Demonstrate how to reuse the bevy PBR shading functionality
- The final important piece from #3969 as the initial shot at making the PBR shader code reusable in custom materials
## Solution
- Add back and rework the 'old' `array_texture` example from pre-0.6.
- Create a custom shader material
- Use a single array texture binding and sampler for the material bind group
- Use a shader that calls `pbr()` from the `bevy_pbr::pbr_functions` import
- Spawn a row of cubes using the custom material
- In the shader, select the array texture layer to sample by using the world position x coordinate modulo the number of array texture layers
<img width="1392" alt="Screenshot 2022-06-23 at 12 28 05" src="https://user-images.githubusercontent.com/302146/175278593-2296f519-f577-4ece-81c0-d842283784a1.png">
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Have information about examples only in one place that can be used for the repo and for the website (and remove the need to keep a list of example to build for wasm in the website 75acb73040/generate-wasm-examples/generate_wasm_examples.sh (L92-L99))
## Solution
- Add metadata about examples in `Cargo.toml`
- Build the `examples/README.md` from a template using those metadata. I used tera as the template engine to use the same tech as the website.
- Make CI fail if an example is missing metadata, or if the readme file needs to be updated (the command to update it is displayed in the failed step in CI)
## Remaining To Do
- After the next release with this merged in, the website will be able to be updated to use those metadata too
- I would like to build the examples in wasm and make them available at http://dev-docs.bevyengine.org/ but that will require more design
- https://github.com/bevyengine/bevy-website/issues/299 for other ToDos
Co-authored-by: Readme <github-actions@github.com>
# Objective
- Add an example showing a custom post processing effect, done after the first rendering pass.
## Solution
- A simple post processing "chromatic aberration" effect. I mixed together examples `3d/render_to_texture`, and `shader/shader_material_screenspace_texture`
- Reading a bit how https://github.com/bevyengine/bevy/pull/3430 was done gave me pointers to apply the main pass to the 2d render rather than using a 3d quad.
This work might be or not be relevant to https://github.com/bevyengine/bevy/issues/2724
<details>
<summary> ⚠️ Click for a video of the render ⚠️ I’ve been told it might hurt the eyes 👀 , maybe we should choose another effect just in case ?</summary>
https://user-images.githubusercontent.com/2290685/169138830-a6dc8a9f-8798-44b9-8d9e-449e60614916.mp4
</details>
# Request for feedbacks
- [ ] Is chromatic aberration effect ok ? (Correct term, not a danger for the eyes ?) I'm open to suggestion to make something different.
- [ ] Is the code idiomatic ? I preferred a "main camera -> **new camera with post processing applied to a quad**" approach to emulate minimum modification to existing code wanting to add global post processing.
---
## Changelog
- Add a full screen post processing shader example
# Objective
Users should be able to render cameras to specific areas of a render target, which enables scenarios like split screen, minimaps, etc.
Builds on the new Camera Driven Rendering added here: #4745Fixes: #202
Alternative to #1389 and #3626 (which are incompatible with the new Camera Driven Rendering)
## Solution
![image](https://user-images.githubusercontent.com/2694663/171560044-f0694f67-0cd9-4598-83e2-a9658c4fed57.png)
Cameras can now configure an optional "viewport", which defines a rectangle within their render target to draw to. If a `Viewport` is defined, the camera's `CameraProjection`, `View`, and visibility calculations will use the viewport configuration instead of the full render target.
```rust
// This camera will render to the first half of the primary window (on the left side).
commands.spawn_bundle(Camera3dBundle {
camera: Camera {
viewport: Some(Viewport {
physical_position: UVec2::new(0, 0),
physical_size: UVec2::new(window.physical_width() / 2, window.physical_height()),
depth: 0.0..1.0,
}),
..default()
},
..default()
});
```
To account for this, the `Camera` component has received a few adjustments:
* `Camera` now has some new getter functions:
* `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, `projection_matrix`
* All computed camera values are now private and live on the `ComputedCameraValues` field (logical/physical width/height, the projection matrix). They are now exposed on `Camera` via getters/setters This wasn't _needed_ for viewports, but it was long overdue.
---
## Changelog
### Added
* `Camera` components now have a `viewport` field, which can be set to draw to a portion of a render target instead of the full target.
* `Camera` component has some new functions: `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, and `projection_matrix`
* Added a new split_screen example illustrating how to render two cameras to the same scene
## Migration Guide
`Camera::projection_matrix` is no longer a public field. Use the new `Camera::projection_matrix()` method instead:
```rust
// Bevy 0.7
let projection = camera.projection_matrix;
// Bevy 0.8
let projection = camera.projection_matrix();
```
# Objective
- Add Vertex Color support to 2D meshes and ColorMaterial. This extends the work from #4528 (which in turn builds on the excellent tangent handling).
## Solution
- Added `#ifdef` wrapped support for vertex colors in the 2D mesh shader and `ColorMaterial` shader.
- Added an example, `mesh2d_vertex_color_texture` to demonstrate it in action.
![image](https://user-images.githubusercontent.com/14896751/169530930-6ae0c6be-2f69-40e3-a600-ba91d7178bc3.png)
---
## Changelog
- Added optional (ifdef wrapped) vertex color support to the 2dmesh and color material systems.
# Objective
- Have an easy way to compare spans between executions
## Solution
- Add a tool to compare spans from chrome traces
```bash
> cargo run --release -p spancmp -- --help
Compiling spancmp v0.1.0
Finished release [optimized] target(s) in 1.10s
Running `target/release/spancmp --help`
spancmp
USAGE:
spancmp [OPTIONS] <TRACE> [SECOND_TRACE]
ARGS:
<TRACE>
<SECOND_TRACE>
OPTIONS:
-h, --help Print help information
-p, --pattern <PATTERN> Filter spans by name matching the pattern
-t, --threshold <THRESHOLD> Filter spans that have an average shorther than the threshold
[default: 0]
```
for each span, it will display the count, minimum duration, average duration and max duration. It can be filtered by a pattern on the span name or by a minimum average duration.
just displaying a trace
![Screenshot 2022-04-28 at 21 56 21](https://user-images.githubusercontent.com/8672791/165835310-f465c6f2-9e6b-4808-803e-884b06e49292.png)
comparing two traces
![Screenshot 2022-04-28 at 21 56 55](https://user-images.githubusercontent.com/8672791/165835353-097d266b-a70c-41b8-a8c1-27804011dc97.png)
Co-authored-by: Robert Swain <robert.swain@gmail.com>
# Objective
Add support for vertex colors
## Solution
This change is modeled after how vertex tangents are handled, so the shader is conditionally compiled with vertex color support if the mesh has the corresponding attribute set.
Vertex colors are multiplied by the base color. I'm not sure if this is the best for all cases, but may be useful for modifying vertex colors without creating a new mesh.
I chose `VertexFormat::Float32x4`, but I'd prefer 16-bit floats if/when support is added.
## Changelog
### Added
- Vertex colors can be specified using the `Mesh::ATTRIBUTE_COLOR` mesh attribute.
# Objective
Bevy users often want to create circles and other simple shapes.
All the machinery is in place to accomplish this, and there are external crates that help. But when writing code for e.g. a new bevy example, it's not really possible to draw a circle without bringing in a new asset, writing a bunch of scary looking mesh code, or adding a dependency.
In particular, this PR was inspired by this interaction in another PR: https://github.com/bevyengine/bevy/pull/3721#issuecomment-1016774535
## Solution
This PR adds `shape::RegularPolygon` and `shape::Circle` (which is just a `RegularPolygon` that defaults to a large number of sides)
## Discussion
There's a lot of ongoing discussion about shapes in <https://github.com/bevyengine/rfcs/pull/12> and at least one other lingering shape PR (although it seems incomplete).
That RFC currently includes `RegularPolygon` and `Circle` shapes, so I don't think that having working mesh generation code in the engine for those shapes would add much burden to an author of an implementation.
But if we'd prefer not to add additional shapes until after that's sorted out, I'm happy to close this for now.
## Alternatives for users
For any users stumbling on this issue, here are some plugins that will help if you need more shapes.
https://github.com/Nilirad/bevy_prototype_lyonhttps://github.com/johanhelsing/bevy_smudhttps://github.com/Weasy666/bevy_svghttps://github.com/redpandamonium/bevy_more_shapeshttps://github.com/ForesightMiningSoftwareCorporation/bevy_polyline
# Objective
- As requested here: https://github.com/bevyengine/bevy/pull/4520#issuecomment-1109302039
- Make it easier to spot issues with built-in shapes
## Solution
https://user-images.githubusercontent.com/200550/165624709-c40dfe7e-0e1e-4bd3-ae52-8ae66888c171.mp4
- Add an example showcasing the built-in 3d shapes with lighting/shadows
- Rotate objects in such a way that all faces are seen by the camera
- Add a UV debug texture
## Discussion
I'm not sure if this is what @alice-i-cecile had in mind, but I adapted the little "torus playground" from the issue linked above to include all built-in shapes.
This exact arrangement might not be particularly scalable if many more shapes are added. Maybe a slow camera pan, or cycling with the keyboard or on a timer, or a sidebar with buttons would work better. If one of the latter options is used, options for showing wireframes or computed flat normals might add some additional utility.
Ideally, I think we'd have a better way of visualizing normals.
Happy to rework this or close it if there's not a consensus around it being useful.
# Objective
We keep getting issues where things break at small window sizes, e.g #3368 (caused by #3153), #3596 ('caused' by #3545)
## Solution
- Add a test that we can make small windows.
Currently, this fails on my machine with some quite scary vulkan errors:
```
2022-01-08T22:55:13.770261Z ERROR wgpu_hal::vulkan::instance: VALIDATION [VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 (0x7cd0911d)]
Validation Error: [ VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 ] Object 0: handle = 0x1adbd410a60, type = VK_OBJECT_TYPE_DEVICE; | MessageID = 0x7cd0911d | vkCreateSwapchainKHR() called with imageExtent = (225,60), which is outside the bounds returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR(): currentExtent = (225,56), minImageExtent = (225,56), maxImageExtent = (225,56). The Vulkan spec states: imageExtent must be between minImageExtent and maxImageExtent, inclusive, where minImageExtent and maxImageExtent are members of the VkSurfaceCapabilitiesKHR structure returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR for the surface (https://vulkan.lunarg.com/doc/view/1.2.198.1/windows/1.2-extensions/vkspec.html#VUID-VkSwapchainCreateInfoKHR-imageExtent-01274)
2022-01-08T22:55:13.770808Z ERROR wgpu_hal::vulkan::instance: objects: (type: DEVICE, hndl: 0x1adbd410a60, name: ?)
2022-01-08T22:55:13.787403Z ERROR wgpu_hal::vulkan::instance: VALIDATION [VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 (0x7cd0911d)]
Validation Error: [ VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 ] Object 0: handle = 0x1adbd410a60, type = VK_OBJECT_TYPE_DEVICE; | MessageID = 0x7cd0911d | vkCreateSwapchainKHR() called with imageExtent = (225,56), which is outside the bounds returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR(): currentExtent = (225,52), minImageExtent = (225,52), maxImageExtent = (225,52). The Vulkan spec states: imageExtent must be between minImageExtent and maxImageExtent, inclusive, where minImageExtent and maxImageExtent are members of the VkSurfaceCapabilitiesKHR structure returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR for the surface (https://vulkan.lunarg.com/doc/view/1.2.198.1/windows/1.2-extensions/vkspec.html#VUID-VkSwapchainCreateInfoKHR-imageExtent-01274)
```
etc.
This might be a new issue here, although I'm surprised it's vulkan giving this error; wgpu should stop it if this is illegal.
# Objective
Fixes https://github.com/bevyengine/bevy/issues/3499
## Solution
Uses a `HashMap` from `RenderTarget` to sampled textures when preparing `ViewTarget`s to ensure that two passes with the same render target get sampled to the same texture.
This builds on and depends on https://github.com/bevyengine/bevy/pull/3412, so this will be a draft PR until #3412 is merged. All changes for this PR are in the last commit.
# Objective
- Several examples are useful for qualitative tests of Bevy's performance
- By contrast, these are less useful for learning material: they are often relatively complex and have large amounts of setup and are performance optimized.
## Solution
- Move bevymark, many_sprites and many_cubes into the new stress_tests example folder
- Move contributors into the games folder: unlike the remaining examples in the 2d folder, it is not focused on demonstrating a clear feature.
# Objective
- Make use of storage buffers, where they are available, for clustered forward bindings to support far more point lights in a scene
- Fixes#3605
- Based on top of #4079
This branch on an M1 Max can keep 60fps with about 2150 point lights of radius 1m in the Sponza scene where I've been testing. The bottleneck is mostly assigning lights to clusters which grows faster than linearly (I think 1000 lights was about 1.5ms and 5000 was 7.5ms). I have seen papers and presentations leveraging compute shaders that can get this up to over 1 million. That said, I think any further optimisations should probably be done in a separate PR.
## Solution
- Add `RenderDevice` to the `Material` and `SpecializedMaterial` trait `::key()` functions to allow setting flags on the keys depending on feature/limit availability
- Make `GpuPointLights` and `ViewClusterBuffers` into enums containing `UniformVec` and `StorageBuffer` variants. Implement the necessary API on them to make usage the same for both cases, and the only difference is at initialisation time.
- Appropriate shader defs in the shader code to handle the two cases
## Context on some decisions / open questions
- I'm using `max_storage_buffers_per_shader_stage >= 3` as a check to see if storage buffers are supported. I was thinking about diving into 'binding resource management' but it feels like we don't have enough use cases to understand the problem yet, and it is mostly a separate concern to this PR, so I think it should be handled separately.
- Should `ViewClusterBuffers` and `ViewClusterBindings` be merged, duplicating the count variables into the enum variants?
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Load skeletal weights and indices from GLTF files. Animate meshes.
## Solution
- Load skeletal weights and indices from GLTF files.
- Added `SkinnedMesh` component and ` SkinnedMeshInverseBindPose` asset
- Added `extract_skinned_meshes` to extract joint matrices.
- Added queue phase systems for enqueuing the buffer writes.
Some notes:
- This ports part of # #2359 to the current main.
- This generates new `BufferVec`s and bind groups every frame. The expectation here is that the number of `Query::get` calls during extract is probably going to be the stronger bottleneck, with up to 256 calls per skinned mesh. Until that is optimized, caching buffers and bind groups is probably a non-concern.
- Unfortunately, due to the uniform size requirements, this means a 16KB buffer is allocated for every skinned mesh every frame. There's probably a few ways to get around this, but most of them require either compute shaders or storage buffers, which are both incompatible with WebGL2.
Co-authored-by: james7132 <contact@jamessliu.com>
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: James Liu <contact@jamessliu.com>
## Objective
There recently was a discussion on Discord about a possible test case for stress-testing transform hierarchies.
## Solution
Create a test case for stress testing transform propagation.
*Edit:* I have scrapped my previous example and built something more functional and less focused on visuals.
There are three test setups:
- `TestCase::Tree` recursively creates a tree with a specified depth and branch width
- `TestCase::NonUniformTree` is the same as `Tree` but omits nodes in a way that makes the tree "lean" towards one side, like this:
<details>
<summary></summary>
![image](https://user-images.githubusercontent.com/3957610/158069737-2ddf4e4a-7d5c-4ee5-8566-424a54a06723.png)
</details>
- `TestCase::Humanoids` creates one or more separate hierarchies based on the structure of common humanoid rigs
- this can both insert `active` and `inactive` instances of the human rig
It's possible to parameterize which parts of the hierarchy get updated (transform change) and which remain unchanged. This is based on @james7132 suggestion:
There's a probability to decide which entities should remain static. On top of that these changes can be limited to a certain range in the hierarchy (min_depth..max_depth).
# Objective
- Allow quick and easy testing of scenes
## Solution
- Add a `scene-viewer` tool based on `load_gltf`.
- Run it with e.g. `cargo run --release --example scene_viewer --features jpeg -- ../some/path/assets/models/Sponza/glTF/Sponza.gltf#Scene0`
- Configure the asset path as pointing to the repo root for convenience (paths specified relative to current working directory)
- Copy over the camera controller from the `shadow_biases` example
- Support toggling the light animation
- Support toggling shadows
- Support adjusting the directional light shadow projection (cascaded shadow maps will remove the need for this later)
I don't want to do too much on it up-front. Rather we can add features over time as we need them.
# Objective
- Support compressed textures including 'universal' formats (ETC1S, UASTC) and transcoding of them to
- Support `.dds`, `.ktx2`, and `.basis` files
## Solution
- Fixes https://github.com/bevyengine/bevy/issues/3608 Look there for more details.
- Note that the functionality is all enabled through non-default features. If it is desirable to enable some by default, I can do that.
- The `basis-universal` crate, used for `.basis` file support and for transcoding, is built on bindings against a C++ library. It's not feasible to rewrite in Rust in a short amount of time. There are no Rust alternatives of which I am aware and it's specialised code. In its current state it doesn't support the wasm target, but I don't know for sure. However, it is possible to build the upstream C++ library with emscripten, so there is perhaps a way to add support for web too with some shenanigans.
- There's no support for transcoding from BasisLZ/ETC1S in KTX2 files as it was quite non-trivial to implement and didn't feel important given people could use `.basis` files for ETC1S.
# Add Transform Examples
- Adding examples for moving/rotating entities (with its own section) to resolve#2400
I've stumbled upon this project and been fiddling around a little. Saw the issue and thought I might just add some examples for the proposed transformations.
Mind to check if I got the gist correctly and suggest anything I can improve?
# Objective
- Reduce power usage for games when not focused.
- Reduce power usage to ~0 when a desktop application is minimized (opt-in).
- Reduce power usage when focused, only updating on a `winit` event, or the user sends a redraw request. (opt-in)
https://user-images.githubusercontent.com/2632925/156904387-ec47d7de-7f06-4c6f-8aaf-1e952c1153a2.mp4
Note resource usage in the Task Manager in the above video.
## Solution
- Added a type `UpdateMode` that allows users to specify how the winit event loop is updated, without exposing winit types.
- Added two fields to `WinitConfig`, both with the `UpdateMode` type. One configures how the application updates when focused, and the other configures how the application behaves when it is not focused. Users can modify this resource manually to set the type of event loop control flow they want.
- For convenience, two functions were added to `WinitConfig`, that provide reasonable presets: `game()` (default) and `desktop_app()`.
- The `game()` preset, which is used by default, is unchanged from current behavior with one exception: when the app is out of focus the app updates at a minimum of 10fps, or every time a winit event is received. This has a huge positive impact on power use and responsiveness on my machine, which will otherwise continue running the app at many hundreds of fps when out of focus or minimized.
- The `desktop_app()` preset is fully reactive, only updating when user input (winit event) is supplied or a `RedrawRequest` event is sent. When the app is out of focus, it only updates on `Window` events - i.e. any winit event that directly interacts with the window. What this means in practice is that the app uses *zero* resources when minimized or not interacted with, but still updates fluidly when the app is out of focus and the user mouses over the application.
- Added a `RedrawRequest` event so users can force an update even if there are no events. This is useful in an application when you want to, say, run an animation even when the user isn't providing input.
- Added an example `low_power` to demonstrate these changes
## Usage
Configuring the event loop:
```rs
use bevy::winit::{WinitConfig};
// ...
.insert_resource(WinitConfig::desktop_app()) // preset
// or
.insert_resource(WinitConfig::game()) // preset
// or
.insert_resource(WinitConfig{ .. }) // manual
```
Requesting a redraw:
```rs
use bevy:🪟:RequestRedraw;
// ...
fn request_redraw(mut event: EventWriter<RequestRedraw>) {
event.send(RequestRedraw);
}
```
## Other details
- Because we have a single event loop for multiple windows, every time I've mentioned "focused" above, I more precisely mean, "if at least one bevy window is focused".
- Due to a platform bug in winit (https://github.com/rust-windowing/winit/issues/1619), we can't simply use `Window::request_redraw()`. As a workaround, this PR will temporarily set the window mode to `Poll` when a redraw is requested. This is then reset to the user's `WinitConfig` setting on the next frame.
# Objective
- Add ways to control how audio is played
## Solution
- playing a sound will return a (weak) handle to an asset that can be used to control playback
- if the asset is dropped, it will detach the sink (same behaviour as now)
All other examples dont have "2d" prefix in their names (even though they are in 2d folder) and reading README makes user think that example is named "rotation" not "2d_rotation" hence rename PR
# Objective
- Remove discrepancy between example name in documentation and in cargo
## Solution
- Rename example in cargo file
# Objective
Will fix#3377 and #3254
## Solution
Use an enum to represent either a `WindowId` or `Handle<Image>` in place of `Camera::window`.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Closes#786
- Closes#2252
- Closes#2588
This PR implements a derive macro that allows users to define their queries as structs with named fields.
## Example
```rust
#[derive(WorldQuery)]
#[world_query(derive(Debug))]
struct NumQuery<'w, T: Component, P: Component> {
entity: Entity,
u: UNumQuery<'w>,
generic: GenericQuery<'w, T, P>,
}
#[derive(WorldQuery)]
#[world_query(derive(Debug))]
struct UNumQuery<'w> {
u_16: &'w u16,
u_32_opt: Option<&'w u32>,
}
#[derive(WorldQuery)]
#[world_query(derive(Debug))]
struct GenericQuery<'w, T: Component, P: Component> {
generic: (&'w T, &'w P),
}
#[derive(WorldQuery)]
#[world_query(filter)]
struct NumQueryFilter<T: Component, P: Component> {
_u_16: With<u16>,
_u_32: With<u32>,
_or: Or<(With<i16>, Changed<u16>, Added<u32>)>,
_generic_tuple: (With<T>, With<P>),
_without: Without<Option<u16>>,
_tp: PhantomData<(T, P)>,
}
fn print_nums_readonly(query: Query<NumQuery<u64, i64>, NumQueryFilter<u64, i64>>) {
for num in query.iter() {
println!("{:#?}", num);
}
}
#[derive(WorldQuery)]
#[world_query(mutable, derive(Debug))]
struct MutNumQuery<'w, T: Component, P: Component> {
i_16: &'w mut i16,
i_32_opt: Option<&'w mut i32>,
}
fn print_nums(mut query: Query<MutNumQuery, NumQueryFilter<u64, i64>>) {
for num in query.iter_mut() {
println!("{:#?}", num);
}
}
```
## TODOs:
- [x] Add support for `&T` and `&mut T`
- [x] Test
- [x] Add support for optional types
- [x] Test
- [x] Add support for `Entity`
- [x] Test
- [x] Add support for nested `WorldQuery`
- [x] Test
- [x] Add support for tuples
- [x] Test
- [x] Add support for generics
- [x] Test
- [x] Add support for query filters
- [x] Test
- [x] Add support for `PhantomData`
- [x] Test
- [x] Refactor `read_world_query_field_type_info`
- [x] Properly document `readonly` attribute for nested queries and the static assertions that guarantee safety
- [x] Test that we never implement `ReadOnlyFetch` for types that need mutable access
- [x] Test that we insert static assertions for nested `WorldQuery` that a user marked as readonly
This PR makes a number of changes to how meshes and vertex attributes are handled, which the goal of enabling easy and flexible custom vertex attributes:
* Reworks the `Mesh` type to use the newly added `VertexAttribute` internally
* `VertexAttribute` defines the name, a unique `VertexAttributeId`, and a `VertexFormat`
* `VertexAttributeId` is used to produce consistent sort orders for vertex buffer generation, replacing the more expensive and often surprising "name based sorting"
* Meshes can be used to generate a `MeshVertexBufferLayout`, which defines the layout of the gpu buffer produced by the mesh. `MeshVertexBufferLayouts` can then be used to generate actual `VertexBufferLayouts` according to the requirements of a specific pipeline. This decoupling of "mesh layout" vs "pipeline vertex buffer layout" is what enables custom attributes. We don't need to standardize _mesh layouts_ or contort meshes to meet the needs of a specific pipeline. As long as the mesh has what the pipeline needs, it will work transparently.
* Mesh-based pipelines now specialize on `&MeshVertexBufferLayout` via the new `SpecializedMeshPipeline` trait (which behaves like `SpecializedPipeline`, but adds `&MeshVertexBufferLayout`). The integrity of the pipeline cache is maintained because the `MeshVertexBufferLayout` is treated as part of the key (which is fully abstracted from implementers of the trait ... no need to add any additional info to the specialization key).
* Hashing `MeshVertexBufferLayout` is too expensive to do for every entity, every frame. To make this scalable, I added a generalized "pre-hashing" solution to `bevy_utils`: `Hashed<T>` keys and `PreHashMap<K, V>` (which uses `Hashed<T>` internally) . Why didn't I just do the quick and dirty in-place "pre-compute hash and use that u64 as a key in a hashmap" that we've done in the past? Because its wrong! Hashes by themselves aren't enough because two different values can produce the same hash. Re-hashing a hash is even worse! I decided to build a generalized solution because this pattern has come up in the past and we've chosen to do the wrong thing. Now we can do the right thing! This did unfortunately require pulling in `hashbrown` and using that in `bevy_utils`, because avoiding re-hashes requires the `raw_entry_mut` api, which isn't stabilized yet (and may never be ... `entry_ref` has favor now, but also isn't available yet). If std's HashMap ever provides the tools we need, we can move back to that. Note that adding `hashbrown` doesn't increase our dependency count because it was already in our tree. I will probably break these changes out into their own PR.
* Specializing on `MeshVertexBufferLayout` has one non-obvious behavior: it can produce identical pipelines for two different MeshVertexBufferLayouts. To optimize the number of active pipelines / reduce re-binds while drawing, I de-duplicate pipelines post-specialization using the final `VertexBufferLayout` as the key. For example, consider a pipeline that needs the layout `(position, normal)` and is specialized using two meshes: `(position, normal, uv)` and `(position, normal, other_vec2)`. If both of these meshes result in `(position, normal)` specializations, we can use the same pipeline! Now we do. Cool!
To briefly illustrate, this is what the relevant section of `MeshPipeline`'s specialization code looks like now:
```rust
impl SpecializedMeshPipeline for MeshPipeline {
type Key = MeshPipelineKey;
fn specialize(
&self,
key: Self::Key,
layout: &MeshVertexBufferLayout,
) -> RenderPipelineDescriptor {
let mut vertex_attributes = vec![
Mesh::ATTRIBUTE_POSITION.at_shader_location(0),
Mesh::ATTRIBUTE_NORMAL.at_shader_location(1),
Mesh::ATTRIBUTE_UV_0.at_shader_location(2),
];
let mut shader_defs = Vec::new();
if layout.contains(Mesh::ATTRIBUTE_TANGENT) {
shader_defs.push(String::from("VERTEX_TANGENTS"));
vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(3));
}
let vertex_buffer_layout = layout
.get_layout(&vertex_attributes)
.expect("Mesh is missing a vertex attribute");
```
Notice that this is _much_ simpler than it was before. And now any mesh with any layout can be used with this pipeline, provided it has vertex postions, normals, and uvs. We even got to remove `HAS_TANGENTS` from MeshPipelineKey and `has_tangents` from `GpuMesh`, because that information is redundant with `MeshVertexBufferLayout`.
This is still a draft because I still need to:
* Add more docs
* Experiment with adding error handling to mesh pipeline specialization (which would print errors at runtime when a mesh is missing a vertex attribute required by a pipeline). If it doesn't tank perf, we'll keep it.
* Consider breaking out the PreHash / hashbrown changes into a separate PR.
* Add an example illustrating this change
* Verify that the "mesh-specialized pipeline de-duplication code" works properly
Please dont yell at me for not doing these things yet :) Just trying to get this in peoples' hands asap.
Alternative to #3120Fixes#3030
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Adds "hot reloading" of internal assets, which is normally not possible because they are loaded using `include_str` / direct Asset collection access.
This is accomplished via the following:
* Add a new `debug_asset_server` feature flag
* When that feature flag is enabled, create a second App with a second AssetServer that points to a configured location (by default the `crates` folder). Plugins that want to add hot reloading support for their assets can call the new `app.add_debug_asset::<T>()` and `app.init_debug_asset_loader::<T>()` functions.
* Load "internal" assets using the new `load_internal_asset` macro. By default this is identical to the current "include_str + register in asset collection" approach. But if the `debug_asset_server` feature flag is enabled, it will also load the asset dynamically in the debug asset server using the file path. It will then set up a correlation between the "debug asset" and the "actual asset" by listening for asset change events.
This is an alternative to #3673. The goal was to keep the boilerplate and features flags to a minimum for bevy plugin authors, and allow them to home their shaders near relevant code.
This is a draft because I haven't done _any_ quality control on this yet. I'll probably rename things and remove a bunch of unwraps. I just got it working and wanted to use it to start a conversation.
Fixes#3660
# Objective
My attempt at fixing #2142. My very first attempt at contributing to Bevy so more than open to any feedback.
I borrowed heavily from the [Bevy Cheatbook page](https://bevy-cheatbook.github.io/patterns/generic-systems.html?highlight=generic#generic-systems).
## Solution
Fairly straightforward example using a clean up system to delete entities that are coupled with app state after exiting that state.
Co-authored-by: B-Janson <brandon@canva.com>
Add two examples on how to communicate with a task that is running either in another thread or in a thread from `AsyncComputeTaskPool`.
Loosely based on https://github.com/bevyengine/bevy/discussions/1150
## Objective
There is no bevy example that shows how to transform a sprite. At least as its singular purpose. This creates an example of how to use transform.translate to move a sprite up and down. The last pull request had issues that I couldn't fix so I created a new one
### Solution
I created move_sprite example.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Some new bevy users are unfamiliar with quaternions and have trouble working with rotations in 2D.
There has been an [issue](https://github.com/bitshifter/glam-rs/issues/226) raised with glam to add helpers to better support these users, however for now I feel could be better to provide examples of how to do this in Bevy as a starting point for new users.
## Solution
I've added a 2d_rotation example which demonstrates 3 different rotation examples to try help get people started:
- Rotating and translating a player ship based on keyboard input
- An enemy ship type that rotates to face the player ship immediately
- An enemy ship type that rotates to face the player at a fixed angular velocity
I also have a standalone version of this example here https://github.com/bitshifter/bevy-2d-rotation-example but I think it would be more discoverable if it's included with Bevy.
# Objective
- There are wasm specific examples, which is misleading as now it works by default
- I saw a few people on discord trying to work through those examples that are very limited
## Solution
- Remove them and update the instructions
adds an example using UI for something more related to a game than the current UI examples.
Example with a game menu:
* new game - will display settings for 5 seconds before returning to menu
* preferences - can modify the settings, with two sub menus
* quit - will quit the game
I wanted a more complex UI example before starting the UI rewrite to have ground for comparison
Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
# Objective
In this PR I added the ability to opt-out graphical backends. Closes#3155.
## Solution
I turned backends into `Option` ~~and removed panicking sub app API to force users handle the error (was suggested by `@cart`)~~.
# Objective
The current 2d rendering is specialized to render sprites, we need a generic way to render 2d items, using meshes and materials like we have for 3d.
## Solution
I cloned a good part of `bevy_pbr` into `bevy_sprite/src/mesh2d`, removed lighting and pbr itself, adapted it to 2d rendering, added a `ColorMaterial`, and modified the sprite rendering to break batches around 2d meshes.
~~The PR is a bit crude; I tried to change as little as I could in both the parts copied from 3d and the current sprite rendering to make reviewing easier. In the future, I expect we could make the sprite rendering a normal 2d material, cleanly integrated with the rest.~~ _edit: see <https://github.com/bevyengine/bevy/pull/3460#issuecomment-1003605194>_
## Remaining work
- ~~don't require mesh normals~~ _out of scope_
- ~~add an example~~ _done_
- support 2d meshes & materials in the UI?
- bikeshed names (I didn't think hard about naming, please check if it's fine)
## Remaining questions
- ~~should we add a depth buffer to 2d now that there are 2d meshes?~~ _let's revisit that when we have an opaque render phase_
- ~~should we add MSAA support to the sprites, or remove it from the 2d meshes?~~ _I added MSAA to sprites since it's really needed for 2d meshes_
- ~~how to customize vertex attributes?~~ _#3120_
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- For a plugin, I would like to enable `bevy_ui` without adding the complete `render` feature
## Solution
- Add a feature for `bevy_ui`
Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
# Objective
- Our crevice is still called "crevice", which we can't use for a release
- Users would need to use our "crevice" directly to be able to use the derive macro
## Solution
- Rename crevice to bevy_crevice, and crevice-derive to bevy-crevice-derive
- Re-export it from bevy_render, and use it from bevy_render everywhere
- Fix derive macro to work either from bevy_render, from bevy_crevice, or from bevy
## Remaining
- It is currently re-exported as `bevy::render::bevy_crevice`, is it the path we want?
- After a brief suggestion to Cart, I changed the version to follow Bevy version instead of crevice, do we want that?
- Crevice README.md need to be updated
- in the `Cargo.toml`, there are a few things to change. How do we want to change them? How do we keep attributions to original Crevice?
```
authors = ["Lucien Greathouse <me@lpghatguy.com>"]
documentation = "https://docs.rs/crevice"
homepage = "https://github.com/LPGhatguy/crevice"
repository = "https://github.com/LPGhatguy/crevice"
```
Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- mp3 feature of rodio has dependencies that are not maintained with security issues
- mp3 feature of rodio doesn't build in wasm
- mp3 feature of rodio uses internal memory allocation that cause rejection from Apple appstore
## Solution
- Use vorbis instead of mp3 by default
Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
# Objective
- 3d examples fail to run in webgl2 because of unsupported texture formats or texture too large
## Solution
- switch to supported formats if a feature is enabled. I choose a feature instead of a build target to not conflict with a potential webgpu support
Very inspired by 6813b2edc5, and need #3290 to work.
I named the feature `webgl2`, but it's only needed if one want to use PBR in webgl2. Examples using only 2D already work.
Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
# Objective
- The multiple windows example which was viciously murdered in #3175.
- cart asked me to
## Solution
- Rework the example to work on pipelined-rendering, based on the work from #2898
# Objective
Every time I come back to Bevy I face the same issue: how do I draw a rectangle again? How did that work? So I go to https://github.com/bevyengine/bevy/tree/main/examples in the hope of finding literally the simplest possible example that draws something on the screen without any dependency such as an image. I don't want to have to add some image first, I just quickly want to get something on the screen with `main.rs` alone so that I can continue building on from that point on. Such an example is particularly helpful for a quick start for smaller projects that don't even need any assets such as images (this is my case currently).
Currently every single example of https://github.com/bevyengine/bevy/tree/main/examples#2d-rendering (which is the first section after hello world that beginners will look for for very minimalistic and quick examples) depends on at least an asset or is too complex. This PR solves this.
It also serves as a great comparison for a beginner to realize what Bevy is really like and how different it is from what they may expect Bevy to be. For example for someone coming from [LÖVE](https://love2d.org/), they will have something like this in their head when they think of drawing a rectangle:
```lua
function love.draw()
love.graphics.setColor(0.25, 0.25, 0.75);
love.graphics.rectangle("fill", 0, 0, 50, 50);
end
```
This, of course, differs quite a lot from what you do in Bevy. I imagine there will be people that just want to see something as simple as this in comparison to have a better understanding for the amount of differences.
## Solution
Add a dead simple example drawing a blue 50x50 rectangle in the center with no more and no less than needed.
# Objective
- It isn't very useful to be able to enable feature `trace_chrome` on its own
## Solution
- Enable `trace` feature when enabling `trace_chrome` or `trace_tracy`
Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
# Objective
This PR fixes a crash when winit is enabled when there is a camera in the world. Part of #3155
## Solution
In this PR, I removed two unwraps and added an example for regression testing.
This makes the [New Bevy Renderer](#2535) the default (and only) renderer. The new renderer isn't _quite_ ready for the final release yet, but I want as many people as possible to start testing it so we can identify bugs and address feedback prior to release.
The examples are all ported over and operational with a few exceptions:
* I removed a good portion of the examples in the `shader` folder. We still have some work to do in order to make these examples possible / ergonomic / worthwhile: #3120 and "high level shader material plugins" are the big ones. This is a temporary measure.
* Temporarily removed the multiple_windows example: doing this properly in the new renderer will require the upcoming "render targets" changes. Same goes for the render_to_texture example.
* Removed z_sort_debug: entity visibility sort info is no longer available in app logic. we could do this on the "render app" side, but i dont consider it a priority.
# Objective
Fixes#3255
## Solution
- mark the `bevy_gltf` feature as required for some examples
This should be cleaned up when we remove the old renderer
# Objective
Port bevy_ui to pipelined-rendering (see #2535 )
## Solution
I did some changes during the port:
- [X] separate color from the texture asset (as suggested [here](https://discord.com/channels/691052431525675048/743663924229963868/874353914525413406))
- [X] ~give the vertex shader a per-instance buffer instead of per-vertex buffer~ (incompatible with batching)
Remaining features to implement to reach parity with the old renderer:
- [x] textures
- [X] TextBundle
I'd also like to add these features, but they need some design discussion:
- [x] batching
- [ ] separate opaque and transparent phases
- [ ] multiple windows
- [ ] texture atlases
- [ ] (maybe) clipping
# Objective
- there are a few new versions for `ron`, `winit`, `ndk`, `raw-window-handle`
- `cargo-deny` is failing due to new security issues / duplicated dependencies
## Solution
- Update our dependencies
- Note all new security issues, with which of Bevy direct dependency it comes from
- Update duplicate crate list, with which of Bevy direct dependency it comes from
`notify` is not updated here as it's in #2993
Applogies, had to recreate this pr because of branching issue.
Old PR: https://github.com/bevyengine/bevy/pull/3033
# Objective
Fixes#3032
Allowing a user to create a transparent window
## Solution
I've allowed the transparent bool to be passed to the winit window builder
# Objective
bevy_ecs has several compile_fail tests that assert lifetime safety. In the past, these tests have been green for the wrong reasons (see e.g. #2984). This PR makes sure, that they will fail if the compiler error changes.
## Solution
Use [trybuild](https://crates.io/crates/trybuild) to assert the compiler errors.
The UI tests are in a separate crate that is not part of the Bevy workspace. This is to ensure that they do not break Bevy's crater builds. The tests get executed by the CI workflow on the stable toolchain.
# Objective
- `bevy_ecs` exposes as an optional feature `bevy_reflect`. Disabling it doesn't compile.
- `bevy_asset` exposes as an optional feature `filesystem_watcher`. Disabling it doesn't compile. It is also not possible to disable this feature from Bevy
## Solution
- Fix compilation errors when disabling the default features. Make it possible to disable the feature `filesystem_watcher` from Bevy
# Objective
- Update vendor crevice to have the latest update from crevice 0.8.0
- Using https://github.com/ElectronicRU/crevice/tree/arrays which has the changes to make arrays work
## Solution
- Also updated glam and hexasphere to only have one version of glam
- From the original PR, using crevice to write GLSL code containing arrays would probably not work but it's not something used by Bevy
- Requires #2997
- Removes `wasm_audio` feature as discussed in #2397
- Closes only task in #2479
Open questions:
Should we enable wasm audio by default or only when building for wasm using `cfg`?
Maybe there should be a global wasm feature for bevy?
# Objective
- Improve error descriptions and help understand how to fix them
- I noticed one today that could be expanded, it seemed like a good starting point
## Solution
- Start something like https://github.com/rust-lang/rust/tree/master/compiler/rustc_error_codes/src/error_codes
- Remove sentence about Rust mutability rules which is not very helpful in the error message
I decided to start the error code with B for Bevy so that they're not confused with error code from rust (which starts with E)
Longer term, there are a few more evolutions that can continue this:
- the code samples should be compiled check, and even executed for some of them to check they have the correct error code in a panic
- the error could be build on a page in the website like https://doc.rust-lang.org/error-index.html
- most panic should have their own error code
Add an example that demonstrates the difference between no MSAA and MSAA 4x. This is also useful for testing panics when resizing the window using MSAA. This is on top of #3042 .
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
## New Features
This adds the following to the new renderer:
* **Shader Assets**
* Shaders are assets again! Users no longer need to call `include_str!` for their shaders
* Shader hot-reloading
* **Shader Defs / Shader Preprocessing**
* Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives
* **Bevy RenderPipelineDescriptor and RenderPipelineCache**
* Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization.
* The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering.
* **Pipeline Specialization**
* This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts.
* Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline.
* Specialized pipelines are also hot-reloadable.
* This was the result of experimentation with two different approaches:
1. **"generic immediate mode multi-key hash pipeline specialization"**
* breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together
* the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes)
* the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might).
* this is the approach rafx used last time i checked
2. **"custom key specialization"**
* Pipelines by default are not specialized
* Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type
* This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings.
* Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated.
* I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache
## Callouts
* The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline.
* The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand".
## Next Steps
* Port compute pipelines to the new system
* Add more preprocessor directives (else, elif, import)
* More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
Objective
During work on #3009 I've found that not all jobs use actions-rs, and therefore, an previous version of Rust is used for them. So while compilation and other stuff can pass, checking markup and Android build may fail with compilation errors.
Solution
This PR adds `action-rs` for any job running cargo, and updates the edition to 2021.
Upgrades both the old and new renderer to wgpu 0.11 (and naga 0.7). This builds on @zicklag's work here #2556.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
This implements the most minimal variant of #1843 - a derive for marker trait. This is a prerequisite to more complicated features like statically defined storage type or opt-out component reflection.
In order to make component struct's purpose explicit and avoid misuse, it must be annotated with `#[derive(Component)]` (manual impl is discouraged for compatibility). Right now this is just a marker trait, but in the future it might be expanded. Making this change early allows us to make further changes later without breaking backward compatibility for derive macro users.
This already prevents a lot of issues, like using bundles in `insert` calls. Primitive types are no longer valid components as well. This can be easily worked around by adding newtype wrappers and deriving `Component` for them.
One funny example of prevented bad code (from our own tests) is when an newtype struct or enum variant is used. Previously, it was possible to write `insert(Newtype)` instead of `insert(Newtype(value))`. That code compiled, because function pointers (in this case newtype struct constructor) implement `Send + Sync + 'static`, so we allowed them to be used as components. This is no longer the case and such invalid code will trigger a compile error.
Co-authored-by: = <=>
Co-authored-by: TheRawMeatball <therawmeatball@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
This changes how render logic is composed to make it much more modular. Previously, all extraction logic was centralized for a given "type" of rendered thing. For example, we extracted meshes into a vector of ExtractedMesh, which contained the mesh and material asset handles, the transform, etc. We looked up bindings for "drawn things" using their index in the `Vec<ExtractedMesh>`. This worked fine for built in rendering, but made it hard to reuse logic for "custom" rendering. It also prevented us from reusing things like "extracted transforms" across contexts.
To make rendering more modular, I made a number of changes:
* Entities now drive rendering:
* We extract "render components" from "app components" and store them _on_ entities. No more centralized uber lists! We now have true "ECS-driven rendering"
* To make this perform well, I implemented #2673 in upstream Bevy for fast batch insertions into specific entities. This was merged into the `pipelined-rendering` branch here: #2815
* Reworked the `Draw` abstraction:
* Generic `PhaseItems`: each draw phase can define its own type of "rendered thing", which can define its own "sort key"
* Ported the 2d, 3d, and shadow phases to the new PhaseItem impl (currently Transparent2d, Transparent3d, and Shadow PhaseItems)
* `Draw` trait and and `DrawFunctions` are now generic on PhaseItem
* Modular / Ergonomic `DrawFunctions` via `RenderCommands`
* RenderCommand is a trait that runs an ECS query and produces one or more RenderPass calls. Types implementing this trait can be composed to create a final DrawFunction. For example the DrawPbr DrawFunction is created from the following DrawCommand tuple. Const generics are used to set specific bind group locations:
```rust
pub type DrawPbr = (
SetPbrPipeline,
SetMeshViewBindGroup<0>,
SetStandardMaterialBindGroup<1>,
SetTransformBindGroup<2>,
DrawMesh,
);
```
* The new `custom_shader_pipelined` example illustrates how the commands above can be reused to create a custom draw function:
```rust
type DrawCustom = (
SetCustomMaterialPipeline,
SetMeshViewBindGroup<0>,
SetTransformBindGroup<2>,
DrawMesh,
);
```
* ExtractComponentPlugin and UniformComponentPlugin:
* Simple, standardized ways to easily extract individual components and write them to GPU buffers
* Ported PBR and Sprite rendering to the new primitives above.
* Removed staging buffer from UniformVec in favor of direct Queue usage
* Makes UniformVec much easier to use and more ergonomic. Completely removes the need for custom render graph nodes in these contexts (see the PbrNode and view Node removals and the much simpler call patterns in the relevant Prepare systems).
* Added a many_cubes_pipelined example to benchmark baseline 3d rendering performance and ensure there were no major regressions during this port. Avoiding regressions was challenging given that the old approach of extracting into centralized vectors is basically the "optimal" approach. However thanks to a various ECS optimizations and render logic rephrasing, we pretty much break even on this benchmark!
* Lifetimeless SystemParams: this will be a bit divisive, but as we continue to embrace "trait driven systems" (ex: ExtractComponentPlugin, UniformComponentPlugin, DrawCommand), the ergonomics of `(Query<'static, 'static, (&'static A, &'static B, &'static)>, Res<'static, C>)` were getting very hard to bear. As a compromise, I added "static type aliases" for the relevant SystemParams. The previous example can now be expressed like this: `(SQuery<(Read<A>, Read<B>)>, SRes<C>)`. If anyone has better ideas / conflicting opinions, please let me know!
* RunSystem trait: a way to define Systems via a trait with a SystemParam associated type. This is used to implement the various plugins mentioned above. I also added SystemParamItem and QueryItem type aliases to make "trait stye" ecs interactions nicer on the eyes (and fingers).
* RenderAsset retrying: ensures that render assets are only created when they are "ready" and allows us to create bind groups directly inside render assets (which significantly simplified the StandardMaterial code). I think ultimately we should swap this out on "asset dependency" events to wait for dependencies to load, but this will require significant asset system changes.
* Updated some built in shaders to account for missing MeshUniform fields
# Objective
[Tracy](https://github.com/wolfpld/tracy) is:
> A real time, nanosecond resolution, remote telemetry, hybrid frame and sampling profiler for games and other applications.
With the `trace_tracy` feature enabled, you run your bevy app and either a headless server (`capture`) or a live, interactive profiler UI (`Tracy`), and connect that to your bevy application to then stream the metric data and events, and save it or inspect it live/offline.
Previously when I implemented the spans across systems and stages and I was trying out different profiling tools, Tracy was too unstable on macOS to use. But now, quite some months later, it is working stably with Tracy 0.7.8. You can see timelines, aggregate statistics of mean system/stage execution times, and much more. It's very useful!
![Screenshot_2021-09-15_at_18 07 19](https://user-images.githubusercontent.com/302146/133554920-350d3d45-fbb8-479f-91f7-7a7a4f9f5873.png)
## Solution
- Use the `tracing-tracy` crate which supports our tracing spans
- Expose via the non-default feature `trace_tracy` for consistency with other `trace*` features
This updates the `pipelined-rendering` branch to use the latest `bevy_ecs` from `main`. This accomplishes a couple of goals:
1. prepares for upcoming `custom-shaders` branch changes, which were what drove many of the recent bevy_ecs changes on `main`
2. prepares for the soon-to-happen merge of `pipelined-rendering` into `main`. By including bevy_ecs changes now, we make that merge simpler / easier to review.
I split this up into 3 commits:
1. **add upstream bevy_ecs**: please don't bother reviewing this content. it has already received thorough review on `main` and is a literal copy/paste of the relevant folders (the old folders were deleted so the directories are literally exactly the same as `main`).
2. **support manual buffer application in stages**: this is used to enable the Extract step. we've already reviewed this once on the `pipelined-rendering` branch, but its worth looking at one more time in the new context of (1).
3. **support manual archetype updates in QueryState**: same situation as (2).
# Objective
Forward perspective projections have poor floating point precision distribution over the depth range. Reverse projections fair much better, and instead of having to have a far plane, with the reverse projection, using an infinite far plane is not a problem. The infinite reverse perspective projection has become the industry standard. The renderer rework is a great time to migrate to it.
## Solution
All perspective projections, including point lights, have been moved to using `glam::Mat4::perspective_infinite_reverse_rh()` and so have no far plane. As various depth textures are shared between orthographic and perspective projections, a quirk of this PR is that the near and far planes of the orthographic projection are swapped when the Mat4 is computed. This has no impact on 2D/3D orthographic projection usage, and provides consistency in shaders, texture clear values, etc. throughout the codebase.
## Known issues
For some reason, when looking along -Z, all geometry is black. The camera can be translated up/down / strafed left/right and geometry will still be black. Moving forward/backward or rotating the camera away from looking exactly along -Z causes everything to work as expected.
I have tried to debug this issue but both in macOS and Windows I get crashes when doing pixel debugging. If anyone could reproduce this and debug it I would be very grateful. Otherwise I will have to try to debug it further without pixel debugging, though the projections and such all looked fine to me.
# Objective
Allow marking meshes as not casting / receiving shadows.
## Solution
- Added `NotShadowCaster` and `NotShadowReceiver` zero-sized type components.
- Extract these components into `bool`s in `ExtractedMesh`
- Only generate `DrawShadowMesh` `Drawable`s for meshes _without_ `NotShadowCaster`
- Add a `u32` bit `flags` member to `MeshUniform` with one flag indicating whether the mesh is a shadow receiver
- If a mesh does _not_ have the `NotShadowReceiver` component, then it is a shadow receiver, and so the bit in the `MeshUniform` is set, otherwise it is not set.
- Added an example illustrating the functionality.
NOTE: I wanted to have the default state of a mesh as being a shadow caster and shadow receiver, hence the `Not*` components. However, I am on the fence about this. I don't want to have a negative performance impact, nor have people wondering why their custom meshes don't have shadows because they forgot to add `ShadowCaster` and `ShadowReceiver` components, but I also really don't like the double negatives the `Not*` approach incurs. What do you think?
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Allow the user to set the clear color when using the pipelined renderer
## Solution
- Add a `ClearColor` resource that can be added to the world to configure the clear color
## Remaining Issues
Currently the `ClearColor` resource is cloned from the app world to the render world every frame. There are two ways I can think of around this:
1. Figure out why `app_world.is_resource_changed::<ClearColor>()` always returns `true` in the `extract` step and fix it so that we are only updating the resource when it changes
2. Require the users to add the `ClearColor` resource to the render sub-app instead of the parent app. This is currently sub-optimal until we have labled sub-apps, and probably a helper funciton on `App` such as `app.with_sub_app(RenderApp, |app| { ... })`. Even if we had that, I think it would be more than we want the user to have to think about. They shouldn't have to know about the render sub-app I don't think.
I think the first option is the best, but I could really use some help figuring out the nuance of why `is_resource_changed` is always returning true in that context.
# Objective
Restore the functionality of sprite atlases in the new renderer.
### **Note:** This PR relies on #2555
## Solution
Mostly just a copy paste of the existing sprite atlas implementation, however I unified the rendering between sprites and atlases.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
It doesn't compile on wasm, and it's full of footguns
# Objective
- If bevy is used with default features on wasm, there's more of a chance it will compile
- Note that I haven't done a full audit - it's possible that there are other problematic crates
## Solution
- `bevy_dynamic_plugin` is no longer a default plugin
- I've also done an accidental drive by reformatting of the root `Cargo.toml`, as I have [Even Better Toml](https://github.com/tamasfe/taplo) installed.
- (Please, rustfmt do this for us)
# Objective
Port bevy_gltf to the pipelined-rendering branch.
## Solution
crates/bevy_gltf has been copied and pasted into pipelined/bevy_gltf2 and modifications were made to work with the pipelined-rendering branch. Notably vertex tangents and vertex colours are not supported.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
This decouples the opinionated "core pipeline" from the new (less opinionated) bevy_render crate. The "core pipeline" is intended to be used by crates like bevy_sprites, bevy_pbr, bevy_ui, and 3rd party crates that extends core rendering functionality.
* 3d_scene_pipelined: Use a shallower directional light angle to provoke acne
* cornell_box_pipelined: Remove bias tweaks
* bevy_pbr2: Simplify shadow biases by moving them to linear depth
* bevy_pbr2: Do not use DepthBiasState
* bevy_pbr2: Do not use bilinear filtering for sampling depth textures
* pbr.wgsl: Remove unnecessary comment
* bevy_pbr2: Do manual shadow map depth comparisons for more flexibility
* examples: Add shadow_biases_pipelined example
This is useful for stress testing biases.
* bevy_pbr2: Scale the point light normal bias by the shadow map texel size
This allows the normal bias to be small close to the light source where the
shadow map texel to screen texel ratio is high, but is appropriately large
further away from the light source where the shadow map texel can easily cover
multiple screen texels.
* shadow_biases_pipelined: Add support for toggling directional / point light
* shadow_biases_pipelined: Cleanup
* bevy_pbr2: Scale the directional light normal bias by the shadow map texel size
* shadow_biases_pipelined: Fit the orthographic projection around the scene
* bevy_pbr2: Directional lights should have no shadows outside their projection
Before this change, sampling a fragment position from outside the ndc volume
would result in the return sample being clamped to the edge in x,y or possibly
always casting a shadow for fragment positions past the orthographic
projection's far plane.
* bevy_pbr2: Fix the default directional light normal bias
* Revert "bevy_pbr2: Do manual shadow map depth comparisons for more flexibility"
This reverts commit 7df1bab38a42d8a33bc50ca583d4be37bd9c9f0d.
* shadow_biases_pipelined: Adjust directional light normal bias in 0.1 increments
* pbr.wgsl: Add a couple of clarifying comments
* Revert "bevy_pbr2: Do not use bilinear filtering for sampling depth textures"
This reverts commit f53baab0232ce218866a45cad6902b470f4cf2c4.
* shadow_biases_pipelined: Print usage to terminal
* bevy_pbr2: Add support for most of the StandardMaterial textures
Normal maps are not included here as they require tangents in a vertex attribute.
* bevy_pbr2: Ensure RenderCommandQueue is ready for PbrShaders init
* texture_pipelined: Add a light to the scene so we can see stuff
* WIP bevy_pbr2: back to front sorting hack
* bevy_pbr2: Uniform control flow for texture sampling in pbr.frag
From 'fintelia' on the Bevy Render Rework Round 2 discussion:
"My understanding is that GPUs these days never use the "execute both branches
and select the result" strategy. Rather, what they do is evaluate the branch
condition on all threads of a warp, and jump over it if all of them evaluate to
false. If even a single thread needs to execute the if statement body, however,
then the remaining threads are paused until that is completed."
* bevy_pbr2: Simplify texture and sampler names
The StandardMaterial_ prefix is no longer needed
* bevy_pbr2: Match default 'AmbientColor' of current bevy_pbr for now
* bevy_pbr2: Convert from non-linear to linear sRGB for the color uniform
* bevy_pbr2: Add pbr_pipelined example
* Fix view vector in pbr frag to work in ortho
* bevy_pbr2: Use a 90 degree y fov and light range projection for lights
* bevy_pbr2: Add AmbientLight resource
* bevy_pbr2: Convert PointLight color to linear sRGB for use in fragment shader
* bevy_pbr2: pbr.frag: Rename PointLight.projection to view_projection
The uniform contains the view_projection matrix so this was incorrect.
* bevy_pbr2: PointLight is an OmniLight as it has a radius
* bevy_pbr2: Factoring out duplicated code
* bevy_pbr2: Implement RenderAsset for StandardMaterial
* Remove unnecessary texture and sampler clones
* fix comment formatting
* remove redundant Buffer:from
* Don't extract meshes when their material textures aren't ready
* make missing textures in the queue step an error
Co-authored-by: Aevyrie <aevyrie@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
This relicenses Bevy under the dual MIT or Apache-2.0 license. For rationale, see #2373.
* Changes the LICENSE file to describe the dual license. Moved the MIT license to docs/LICENSE-MIT. Added the Apache-2.0 license to docs/LICENSE-APACHE. I opted for this approach over dumping both license files at the root (the more common approach) for a number of reasons:
* Github links to the "first" license file (LICENSE-APACHE) in its license links (you can see this in the wgpu and rust-analyzer repos). People clicking these links might erroneously think that the apache license is the only option. Rust and Amethyst both use COPYRIGHT or COPYING files to solve this problem, but this creates more file noise (if you do everything at the root) and the naming feels way less intuitive.
* People have a reflex to look for a LICENSE file. By providing a single license file at the root, we make it easy for them to understand our licensing approach.
* I like keeping the root clean and noise free
* There is precedent for putting the apache and mit license text in sub folders (amethyst)
* Removed the `Copyright (c) 2020 Carter Anderson` copyright notice from the MIT license. I don't care about this attribution, it might make license compliance more difficult in some cases, and it didn't properly attribute other contributors. We shoudn't replace it with something like "Copyright (c) 2021 Bevy Contributors" because "Bevy Contributors" is not a legal entity. Instead, we just won't include the copyright line (which has precedent ... Rust also uses this approach).
* Updates crates to use the new "MIT OR Apache-2.0" license value
* Removes the old legion-transform license file from bevy_transform. bevy_transform has been its own, fully custom implementation for a long time and that license no longer applies.
* Added a License section to the main readme
* Updated our Bevy Plugin licensing guidelines.
As a follow-up we should update the website to properly describe the new license.
Closes#2373
This was tested using cargo generate-lockfile -Zminimal-versions.
The following indirect dependencies also have minimal version
dependencies. For at least num, rustc-serialize and rand this is
necessary to compile on rustc versions that are not older than 1.0.
* num = "0.1.27"
* rustc-serialize = "0.3.20"
* termcolor = "1.0.4"
* libudev-sys = "0.1.1"
* rand = "0.3.14"
* ab_glyph = "0.2.7
Based on https://github.com/bevyengine/bevy/pull/2455
# Objective
Noticed a warning when running tests:
```
> cargo test --workspace
warning: output filename collision.
The example target `change_detection` in package `bevy_ecs v0.5.0 (/bevy/crates/bevy_ecs)` has the same output filename as the example target `change_detection` in package `bevy v0.5.0 (/bevy)`.
Colliding filename is: /bevy/target/debug/examples/change_detection
The targets should have unique names.
Consider changing their names to be unique or compiling them separately.
This may become a hard error in the future; see <https://github.com/rust-lang/cargo/issues/6313>.
warning: output filename collision.
The example target `change_detection` in package `bevy_ecs v0.5.0 (/bevy/crates/bevy_ecs)` has the same output filename as the example target `change_detection` in package `bevy v0.5.0 (/bevy)`.
Colliding filename is: /bevy/target/debug/examples/change_detection.dSYM
The targets should have unique names.
Consider changing their names to be unique or compiling them separately.
This may become a hard error in the future; see <https://github.com/rust-lang/cargo/issues/6313>.
```
## Solution
I renamed example `change_detection` to `component_change_detection`
Related to [discussion on discord](https://discord.com/channels/691052431525675048/742569353878437978/824731187724681289)
With const generics, it is now possible to write generic iterator over multiple entities at once.
This enables patterns of query iterations like
```rust
for [e1, e2, e3] in query.iter_combinations() {
// do something with relation of all three entities
}
```
The compiler is able to infer the correct iterator for given size of array, so either of those work
```rust
for [e1, e2] in query.iter_combinations() { ... }
for [e1, e2, e3] in query.iter_combinations() { ... }
```
This feature can be very useful for systems like collision detection.
When you ask for permutations of size K of N entities:
- if K == N, you get one result of all entities
- if K < N, you get all possible subsets of N with size K, without repetition
- if K > N, the result set is empty (no permutation of size K exist)
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Changes to get Bevy to compile with wgpu master.
With this, on a Mac:
* 2d examples look fine
* ~~3d examples crash with an error specific to metal about a compilation error~~
* 3d examples work fine after enabling feature `wgpu/cross`
Feature `wgpu/cross` seems to be needed only on some platforms, not sure how to know which. It was introduced in https://github.com/gfx-rs/wgpu-rs/pull/826
In response to #2023, here is a draft for a PR.
Fixes#2023
I've added an example to show how to use `WithBundle`, and also to test it out.
Right now there is a bug: If a bundle and a query are "the same", then it doesn't filter out
what it needs to filter out.
Example:
```
Print component initated from bundle.
[examples/ecs/query_bundle.rs:57] x = Dummy( <========= This should not get printed
111,
)
[examples/ecs/query_bundle.rs:57] x = Dummy(
222,
)
Show all components
[examples/ecs/query_bundle.rs:50] x = Dummy(
111,
)
[examples/ecs/query_bundle.rs:50] x = Dummy(
222,
)
```
However, it behaves the right way, if I add one more component to the bundle,
so the query and the bundle doesn't look the same:
```
Print component initated from bundle.
[examples/ecs/query_bundle.rs:57] x = Dummy(
222,
)
Show all components
[examples/ecs/query_bundle.rs:50] x = Dummy(
111,
)
[examples/ecs/query_bundle.rs:50] x = Dummy(
222,
)
```
I hope this helps. I'm definitely up for tinkering with this, and adding anything that I'm asked to add
or change.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
If accepted, fixes#1694 .
I wanted to explore system sets and run criteria a bit, so made an example expanding a bit on the snippets shown in the 0.5 release post.
Shows a couple of system sets, uses system labels, run criterion, and a use of the interesting `RunCriterion::pipe` functionality.
This PR adds an example on how to animate a shader by passing the global `time.seconds_since_startup()` to a component, and accessing that component inside the shader.
Hopefully this is the current proper solution, please let me know if it should be solved in another way.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
From suggestion from Godot workflows: https://github.com/bevyengine/bevy/issues/1730#issuecomment-810321110
* Add a feature `bevy_debug` that will make Bevy read a debug config file to setup some debug systems
* Currently, only one that will exit after x frames
* Could add option to dump screen to image file once that's possible
* Add a job in CI workflow that will run a few examples using [`swiftshader`](https://github.com/google/swiftshader)
* This job takes around 13 minutes, so doesn't add to global CI duration
|example|number of frames|duration|
|-|-|-|
|`alien_cake_addict`|300|1:50|
|`breakout`|1800|0:44|
|`contributors`|1800|0:43|
|`load_gltf`|300|2:37|
|`scene`|1800|0:44|
I was looking into "lower level" rendering and I saw no example on how to do that. Yet, I think it's something relevant to show, so I set up a simple example on how to do that. I hope it's welcome.
I'm not confident about the code and a review is definitely nice to have, especially because there are a few things that are not great.
Specifically, I think it would be nice to see how to render with a completely custom set of attributes (position and color, in this case), but I couldn't manage to get it working without normals and uv.
It makes sense if bevy Meshes need these two attributes, but I'm not sure about it.
Co-authored-by: Alessandro Re <ale@ale-re.net>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
This is a temporary fix for the CI (and anyone building for wasm) break until `wgpu` can update
* `syn` released a version that fixed a bug in how they parsed attributes
* `wasm_bindgen` released a version that uses that fix
* but we're stuck with old `wasm_bindgen` as `wgpu` uses a fixed version: c5ee9cd983/Cargo.toml (L118)
So, to fix this, either we update everyone to latest version of `wasm_bindgen` or we keep using old version of `syn`.
On Bevy side, it should be faster to fix the version of `syn` to one that works.
More details: https://github.com/rustwasm/wasm-bindgen/pull/2510 & https://github.com/rustwasm/wasm-bindgen/issues/2508
This adds a new project for showing off Frustum Culling.
(Master runs this at sub 1 FPS while with the frustum culling it runs at 144 FPS on my system)
Short clip of the project running:
https://streamable.com/vvzh2u
This is a rebase of StarArawns PBR work from #261 with IngmarBitters work from #1160 cherry-picked on top.
I had to make a few minor changes to make some intermediate commits compile and the end result is not yet 100% what I expected, so there's a bit more work to do.
Co-authored-by: John Mitchell <toasterthegamer@gmail.com>
Co-authored-by: Ingmar Bitter <ingmar.bitter@gmail.com>
This PR implements wireframe rendering.
Usage:
This is now ready as soon as #1401 gets merged.
Usage:
```rust
app
.insert_resource(WgpuOptions {
name: Some("3d_scene"),
features: WgpuFeatures::NON_FILL_POLYGON_MODE,
..Default::default()
}) // To enable the NON_FILL_POLYGON_MODE feature
.add_plugin(WireframePlugin)
.run();
```
Now we just need to add the Wireframe component on an entity, and it'll draw. its wireframe.
We can also enable wireframe drawing globally by setting the global property in the `WireframeConfig` resource to `true`.
Co-authored-by: Zhixing Zhang <me@neoto.xin>
OK, here's my attempt at sprite flipping. There are a couple of points that I need review/help on, but I think the UX is about ideal:
```rust
.spawn(SpriteBundle {
material: materials.add(texture_handle.into()),
sprite: Sprite {
// Flip the sprite along the x axis
flip: SpriteFlip { x: true, y: false },
..Default::default()
},
..Default::default()
});
```
Now for the issues. The big issue is that for some reason, when flipping the UVs on the sprite, there is a light "bleeding" or whatever you call it where the UV tries to sample past the texture boundry and ends up clipping. This is only noticed when resizing the window, though. You can see a screenshot below.
![image](https://user-images.githubusercontent.com/25393315/107098172-397aaa00-67d4-11eb-8e02-c90c820cd70e.png)
I am quite baffled why the texture sampling is overrunning like it is and could use some guidance if anybody knows what might be wrong.
The other issue, which I just worked around, is that I had to remove the `#[render_resources(from_self)]` annotation from the Spritesheet because the `SpriteFlip` render resource wasn't being picked up properly in the shader when using it. I'm not sure what the cause of that was, but by removing the annotation and re-organizing the shader inputs accordingly the problem was fixed.
I'm not sure if this is the most efficient way to do this or if there is a better way, but I wanted to try it out if only for the learning experience. Let me know what you think!
It took me a little while to figure out how to use the `SystemParam` derive macro to easily create my own params. So I figured I'd add some docs and an example with what I learned.
- Fixed a bug in the `SystemParam` derive macro where it didn't detect the correct crate name when used in an example (no longer relevant, replaced by #1426 - see further)
- Added some doc comments and a short example code block in the docs for the `SystemParam` trait
- Added a more complete example with explanatory comments in examples
This PR is easiest to review commit by commit.
Followup on https://github.com/bevyengine/bevy/pull/1309#issuecomment-767310084
- [x] Switch from a bash script to an xtask rust workspace member.
- Results in ~30s longer CI due to compilation of the xtask itself
- Enables Bevy contributors on any platform to run `cargo ci` to run linting -- if the default available Rust is the same version as on CI, then the command should give an identical result.
- [x] Use the xtask from official CI so there's only one place to update.
- [x] Bonus: Run clippy on the _entire_ workspace (existing CI setup was missing the `--workspace` flag
- [x] Clean up newly-exposed clippy errors
~#1388 builds on this to clean up newly discovered clippy errors -- I thought it might be nicer as a separate PR.~ Nope, merged it into this one so CI would pass.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
I have run the VSCode Extension [markdownlint](https://marketplace.visualstudio.com/items?itemName=DavidAnson.vscode-markdownlint) on all Markdown Files in the Repo.
The provided Rules are documented here: https://github.com/DavidAnson/markdownlint/blob/v0.23.1/doc/Rules.md
Rules I didn't follow/fix:
* MD024/no-duplicate-heading
* Changelog: Here Heading will always repeat.
* Examples Readme: Platform-specific documentation should be symmetrical.
* MD025/single-title
* MD026/no-trailing-punctuation
* Caused by the ! in "Hello, World!".
* MD033/no-inline-html
* The plugins_guidlines file does need HTML, so the shown badges aren't downscaled too much.
* ~~MD036/no-emphasis-as-heading:~~
* ~~This Warning only Appears in the Github Issue Templates and can be ignored.~~
* ~~MD041/first-line-heading~~
* ~~Only appears in the Readme for the AlienCake example Assets, which is unimportant.~~
---
I also sorted the Examples in the Readme and Cargo.toml in this order/Priority:
* Topic/Folder
* Introductionary Examples
* Alphabetical Order
The explanation for each case, where it isn't Alphabetical :
* Diagnostics
* log_diagnostics: The usage of inbuild Diagnostics is more important than creating your own.
* ECS (Entity Component System)
* ecs_guide: The guide should be read, before diving into other Features.
* Reflection
* reflection: Basic Explanation should be read, before more advanced Topics.
* WASM Examples
* hello_wasm: It's "Hello, World!".
* use `length_squared` for visible entities
* ortho projection 2d/3d different depth calculation
* use ScalingMode::FixedVertical for 3d ortho
* new example: 3d orthographic
* move print diagnostics to log
* entity count diagnostic
* asset count diagnostic
* remove useless `pub`s
* use `BTreeMap` instead of `HashMap`
* get entity count from world
* keep ordered list of diagnostics
Extend the Texture asset type to support 3D data
Textures are still loaded from images as 2D, but they can be reshaped
according to how the render pipeline would like to use them.
Also add an example of how this can be used with the texture2DArray uniform type.
Use glyph_brush_layout and add text alignment support
Co-authored-by: Olivier Pinon <op@impero.com>
Co-authored-by: tigregalis <anak.harimau@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
* Add force touches, fix ui focus system and touch screen system
* Fix examples README. Update rodio with Android support. Add Android build CI
* Alter android metadata in root Cargo.toml
This adds a new WinitConfig resource that can be used to configure the behavior of winit.
When `return_from_run` is set to `true`, `App::run()` will return on `target_os` configurations that
support it.
Closesbevyengine/bevy#167.