# Objective
Adjust bevy internals to utilize `Option<Res<State<S>>>` instead of
`Res<State<S>>`, to allow for adding/removing states at runtime and
avoid unexpected panics.
As requested here:
https://github.com/bevyengine/bevy/pull/10088#issuecomment-1869185413
---
## Changelog
- Changed the use of `world.resource`/`world.resource_mut` to
`world.get_resource`/`world.get_resource_mut` in the
`run_enter_schedule` and `apply_state_transition` systems and handled
the `None` option.
- `in_state` now returns a ` FnMut(Option<Res<State<S>>>) -> bool +
Clone`, returning `false` if the resource doesn't exist.
- `state_exists_and_equals` was marked as deprecated, and now just runs
and returns `in_state`, since their bevhaviour is now identical
- `state_changed` now takes an `Option<Res<State<S>>>` and returns
`false` if it does not exist.
I would like to remove `state_exists_and_equals` fully, but wanted to
ensure that is acceptable before doing so.
---------
Co-authored-by: Mike <mike.hsu@gmail.com>
# Objective
- `FromType<T>` for `ReflectComponent` and `ReflectBundle` currently
require `T: FromWorld` for two reasons:
- they include a `from_world` method;
- they create dummy `T`s using `FromWorld` and then `apply` a `&dyn
Reflect` to it to simulate `FromReflect`.
- However `FromWorld`/`Default` may be difficult/weird/impractical to
implement, while `FromReflect` is easier and also more natural for the
job.
- See also
https://discord.com/channels/691052431525675048/1146022009554337792
## Solution
- Split `from_world` from `ReflectComponent` and `ReflectBundle` into
its own `ReflectFromWorld` struct.
- Replace the requirement on `FromWorld` in `ReflectComponent` and
`ReflectBundle` with `FromReflect`
---
## Changelog
- `ReflectComponent` and `ReflectBundle` no longer offer a `from_world`
method.
- `ReflectComponent` and `ReflectBundle`'s `FromType<T>` implementation
no longer requires `T: FromWorld`, but now requires `FromReflect`.
- `ReflectComponent::insert`, `ReflectComponent::apply_or_insert` and
`ReflectComponent::copy` now take an extra `&TypeRegistry` parameter.
- There is now a new `ReflectFromWorld` struct.
## Migration Guide
- Existing uses of `ReflectComponent::from_world` and
`ReflectBundle::from_world` will have to be changed to
`ReflectFromWorld::from_world`.
- Users of `#[reflect(Component)]` and `#[reflect(Bundle)]` will need to
also implement/derive `FromReflect`.
- Users of `#[reflect(Component)]` and `#[reflect(Bundle)]` may now want
to also add `FromWorld` to the list of reflected traits in case their
`FromReflect` implementation may fail.
- Users of `ReflectComponent` will now need to pass a `&TypeRegistry` to
its `insert`, `apply_or_insert` and `copy` methods.
This pull request re-submits #10057, which was backed out for breaking
macOS, iOS, and Android. I've tested this version on macOS and Android
and on the iOS simulator.
# Objective
This pull request implements *reflection probes*, which generalize
environment maps to allow for multiple environment maps in the same
scene, each of which has an axis-aligned bounding box. This is a
standard feature of physically-based renderers and was inspired by [the
corresponding feature in Blender's Eevee renderer].
## Solution
This is a minimal implementation of reflection probes that allows
artists to define cuboid bounding regions associated with environment
maps. For every view, on every frame, a system builds up a list of the
nearest 4 reflection probes that are within the view's frustum and
supplies that list to the shader. The PBR fragment shader searches
through the list, finds the first containing reflection probe, and uses
it for indirect lighting, falling back to the view's environment map if
none is found. Both forward and deferred renderers are fully supported.
A reflection probe is an entity with a pair of components, *LightProbe*
and *EnvironmentMapLight* (as well as the standard *SpatialBundle*, to
position it in the world). The *LightProbe* component (along with the
*Transform*) defines the bounding region, while the
*EnvironmentMapLight* component specifies the associated diffuse and
specular cubemaps.
A frequent question is "why two components instead of just one?" The
advantages of this setup are:
1. It's readily extensible to other types of light probes, in particular
*irradiance volumes* (also known as ambient cubes or voxel global
illumination), which use the same approach of bounding cuboids. With a
single component that applies to both reflection probes and irradiance
volumes, we can share the logic that implements falloff and blending
between multiple light probes between both of those features.
2. It reduces duplication between the existing *EnvironmentMapLight* and
these new reflection probes. Systems can treat environment maps attached
to cameras the same way they treat environment maps applied to
reflection probes if they wish.
Internally, we gather up all environment maps in the scene and place
them in a cubemap array. At present, this means that all environment
maps must have the same size, mipmap count, and texture format. A
warning is emitted if this restriction is violated. We could potentially
relax this in the future as part of the automatic mipmap generation
work, which could easily do texture format conversion as part of its
preprocessing.
An easy way to generate reflection probe cubemaps is to bake them in
Blender and use the `export-blender-gi` tool that's part of the
[`bevy-baked-gi`] project. This tool takes a `.blend` file containing
baked cubemaps as input and exports cubemap images, pre-filtered with an
embedded fork of the [glTF IBL Sampler], alongside a corresponding
`.scn.ron` file that the scene spawner can use to recreate the
reflection probes.
Note that this is intentionally a minimal implementation, to aid
reviewability. Known issues are:
* Reflection probes are basically unsupported on WebGL 2, because WebGL
2 has no cubemap arrays. (Strictly speaking, you can have precisely one
reflection probe in the scene if you have no other cubemaps anywhere,
but this isn't very useful.)
* Reflection probes have no falloff, so reflections will abruptly change
when objects move from one bounding region to another.
* As mentioned before, all cubemaps in the world of a given type
(diffuse or specular) must have the same size, format, and mipmap count.
Future work includes:
* Blending between multiple reflection probes.
* A falloff/fade-out region so that reflected objects disappear
gradually instead of vanishing all at once.
* Irradiance volumes for voxel-based global illumination. This should
reuse much of the reflection probe logic, as they're both GI techniques
based on cuboid bounding regions.
* Support for WebGL 2, by breaking batches when reflection probes are
used.
These issues notwithstanding, I think it's best to land this with
roughly the current set of functionality, because this patch is useful
as is and adding everything above would make the pull request
significantly larger and harder to review.
---
## Changelog
### Added
* A new *LightProbe* component is available that specifies a bounding
region that an *EnvironmentMapLight* applies to. The combination of a
*LightProbe* and an *EnvironmentMapLight* offers *reflection probe*
functionality similar to that available in other engines.
[the corresponding feature in Blender's Eevee renderer]:
https://docs.blender.org/manual/en/latest/render/eevee/light_probes/reflection_cubemaps.html
[`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi
[glTF IBL Sampler]: https://github.com/KhronosGroup/glTF-IBL-Sampler
# Objective
When working within `bevy_ecs`, we can't use the `log_once` macros due
to their placement in `bevy_log` - which depends on `bevy_ecs`. All this
create does is migrate those macros to the `bevy_utils` crate, while
still re-exporting them in `bevy_log`.
created to resolve this:
https://github.com/bevyengine/bevy/pull/11417#discussion_r1458100211
---------
Co-authored-by: François <mockersf@gmail.com>
# Objective
After the Gizmos changes, `App::init_gizmos_group` turned into a
important function that for sure mustn't panic. The problem is: the
actual implementation causes a panic if somehow the code is runned
before `GizmoPlugin` was added to the App
- The error occurs here for example:
```rust
fn main() {
App::new()
.init_gizmo_group::<MyGizmoConfig>()
.add_plugins(DefaultPlugins)
.run();
}
#[derive(Default, Reflect, GizmoConfigGroup)]
struct MyGizmoConfig;
```
![image](https://github.com/bevyengine/bevy/assets/126117294/35e75608-0946-4320-8035-00a82562e37e)
## Solution
- Instead of panicking when getting `GizmoConfigStore`, insert the store
in `App::init_gizmos_group` if needed
---
## Changelog
### Changed
- Changed App::init_gizmos_group to insert the resource if it don't
exist
### Removed
- Removed explicit init of `GizmoConfigStore`
---------
Co-authored-by: François <mockersf@gmail.com>
# Objective
- Some users want to change the default texture usage of the main camera
but they are currently hardcoded
## Solution
- Add a component that is used to configure the main texture usage field
---
## Changelog
Added `CameraMainTextureUsage`
Added `CameraMainTextureUsage` to `Camera3dBundle` and `Camera2dBundle`
## Migration Guide
Add `main_texture_usages: Default::default()` to your camera bundle.
# Notes
Inspired by: #6815
# Objective
- Tests are manually checking whether derived types implement certain
traits. (Specifically in `bevy_reflect.)
- #11182 introduces
[`static_assertions`](https://docs.rs/static_assertions/) to
automatically check this.
- Simplifies `Reflect` test in #11195.
- Closes#11196.
## Solution
- Add `static_assertions` and replace current tests.
---
I wasn't sure whether to remove the existing test or not. What do you
think?
# Objective
- Add methods to get Change Ticks for a given resource by type or
ComponentId
- Fixes#11390
The `is_resource_id_changed` requested in the Issue already exists, this
adds their request for `get_resource_change_ticks`
## Solution
- Added two methods to get change ticks by Type or ComponentId
# Objective
Closes#10570.
#10946 added bounding volume types and traits, but didn't use them for
anything yet. This PR implements `Bounded2d` and `Bounded3d` for Bevy's
primitive shapes.
## Solution
Implement `Bounded2d` and `Bounded3d` for primitive shapes. This allows
computing AABBs and bounding circles/spheres for them.
For most shapes, there are several ways of implementing bounding
volumes. I took inspiration from [Parry's bounding
volumes](https://github.com/dimforge/parry/tree/master/src/bounding_volume),
[Inigo Quilez](http://iquilezles.org/articles/diskbbox/), and figured
out the rest myself using geometry. I tried to comment all slightly
non-trivial or unclear math to make it understandable.
Parry uses support mapping (finding the farthest point in some direction
for convex shapes) for some AABBs like cones, cylinders, and line
segments. This involves several quat operations and normalizations, so I
opted for the simpler and more efficient geometric approaches shown in
[Quilez's article](http://iquilezles.org/articles/diskbbox/).
Below you can see some of the bounding volumes working in 2D and 3D.
Note that I can't conveniently add these examples yet because they use
primitive shape meshing, which is still WIP.
https://github.com/bevyengine/bevy/assets/57632562/4465cbc6-285b-4c71-b62d-a2b3ee16f8b4https://github.com/bevyengine/bevy/assets/57632562/94b4ac84-a092-46d7-b438-ce2e971496a4
---
## Changelog
- Implemented `Bounded2d`/`Bounded3d` for primitive shapes
- Added `from_point_cloud` method for bounding volumes (used by many
bounding implementations)
- Added `point_cloud_2d/3d_center` and `rotate_vec2` utility functions
- Added `RegularPolygon::vertices` method (used in regular polygon AABB
construction)
- Added `Triangle::circumcenter` method (used in triangle bounding
circle construction)
- Added bounding circle/sphere creation from AABBs and vice versa
## Extra
Do we want to implement `Bounded2d` for some "3D-ish" shapes too? For
example, capsules are sort of dimension-agnostic and useful for 2D, so I
think that would be good to implement. But a cylinder in 2D is just a
rectangle, and a cone is a triangle, so they wouldn't make as much sense
to me. A conical frustum would be an isosceles trapezoid, which could be
useful, but I'm not sure if computing the 2D AABB of a 3D frustum makes
semantic sense.
# Objective
This PR aims to implement multiple configs for gizmos as discussed in
#9187.
## Solution
Configs for the new `GizmoConfigGroup`s are stored in a
`GizmoConfigStore` resource and can be accesses using a type based key
or iterated over. This type based key doubles as a standardized location
where plugin authors can put their own configuration not covered by the
standard `GizmoConfig` struct. For example the `AabbGizmoGroup` has a
default color and toggle to show all AABBs. New configs can be
registered using `app.init_gizmo_group::<T>()` during startup.
When requesting the `Gizmos<T>` system parameter the generic type
determines which config is used. The config structs are available
through the `Gizmos` system parameter allowing for easy access while
drawing your gizmos.
Internally, resources and systems used for rendering (up to an including
the extract system) are generic over the type based key and inserted on
registering a new config.
## Alternatives
The configs could be stored as components on entities with markers which
would make better use of the ECS. I also implemented this approach
([here](https://github.com/jeliag/bevy/tree/gizmo-multiconf-comp)) and
believe that the ergonomic benefits of a central config store outweigh
the decreased use of the ECS.
## Unsafe Code
Implementing system parameter by hand is unsafe but seems to be required
to access the config store once and not on every gizmo draw function
call. This is critical for performance. ~Is there a better way to do
this?~
## Future Work
New gizmos (such as #10038, and ideas from #9400) will require custom
configuration structs. Should there be a new custom config for every
gizmo type, or should we group them together in a common configuration?
(for example `EditorGizmoConfig`, or something more fine-grained)
## Changelog
- Added `GizmoConfigStore` resource and `GizmoConfigGroup` trait
- Added `init_gizmo_group` to `App`
- Added early returns to gizmo drawing increasing performance when
gizmos are disabled
- Changed `GizmoConfig` and aabb gizmos to use new `GizmoConfigStore`
- Changed `Gizmos` system parameter to use type based key to retrieve
config
- Changed resources and systems used for gizmo rendering to be generic
over type based key
- Changed examples (3d_gizmos, 2d_gizmos) to showcase new API
## Migration Guide
- `GizmoConfig` is no longer a resource and has to be accessed through
`GizmoConfigStore` resource. The default config group is
`DefaultGizmoGroup`, but consider using your own custom config group if
applicable.
---------
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
# Objective
This adds events for assets that fail to load along with minor utility
methods to make them useful. This paves the way for users writing their
own error handling and retry systems, plus Bevy including robust retry
handling: #11349.
* Addresses #11288
* Needed for #11349
# Solution
```rust
/// An event emitted when a specific [`Asset`] fails to load.
#[derive(Event, Clone, Debug)]
pub struct AssetLoadFailedEvent<A: Asset> {
pub id: AssetId<A>,
/// The original handle returned when the asset load was requested.
pub handle: Option<Handle<A>>,
/// The asset path that was attempted.
pub path: AssetPath<'static>,
/// Why the asset failed to load.
pub error: AssetLoadError,
}
```
I started implementing `AssetEvent::Failed` like suggested in #11288,
but decided it was better as its own type because:
* I think it makes sense for `AssetEvent` to only refer to assets that
actually exist.
* In order to return `AssetLoadError` in the event (which is useful
information for error handlers that might attempt a retry) we would have
to remove `Copy` from `AssetEvent`.
* There are numerous places in the render app that match against
`AssetEvent`, and I don't think it's worth introducing extra noise about
assets that don't exist.
I also introduced `UntypedAssetLoadErrorEvent`, which is very useful in
places that need to support type flexibility, like an Asset-agnostic
retry plugin.
# Changelog
* **Added:** `AssetLoadFailedEvent<A>`
* **Added**: `UntypedAssetLoadFailedEvent`
* **Added:** `AssetReaderError::Http` for status code information on
HTTP errors. Before this, status codes were only available by parsing
the error message of generic `Io` errors.
* **Added:** `asset_server.get_path_id(path)`. This method simply gets
the asset id for the path. Without this, one was left using
`get_path_handle(path)`, which has the overhead of returning a strong
handle.
* **Fixed**: Made `AssetServer` loads return the same handle for assets
that already exist in a failed state. Now, when you attempt a `load`
that's in a `LoadState::Failed` state, it'll re-use the original asset
id. The advantage of this is that any dependent assets created using the
original handle will "unbreak" if a retry succeeds.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
fix an occasional crash when moving ui root nodes between cameras.
occasionally, updating the TargetCamera of a ui element and then
removing the element causes a crash.
i believe that is because when we assign a child in taffy, the old
parent doesn't remove that child from it's children, so we have:
```
user: create root node N1, camera A
-> layout::set_camera_children(A) :
- create implicit node A1
- assign 1 as child -> taffy.children[A1] = [N1], taffy.parents[1] = A1
user: move root node N1 to camera B
-> layout::set_camera_children(B) :
- create implicit node B1
- assign 1 as child -> taffy.children[A1] = [N1], taffy.children[B1] = [N1], taffy.parents[1] = B1
-> layout::set_camera_children(A) :
- remove implicit node A1 (which still has N1 as a child) ->
-> taffy sets parent[N1] = None ***
-> taffy.children[B1] = [N1], taffy.parents[1] = None
user: remove N1
-> layout::remove_entities(N1)
- since parent[N1] is None, it's not removed from B1 -> taffy.children[B1] = [N1], taffy.parents[1] is removed
-> layout::set_camera_children(B)
- remove implicit node B1
- taffy crash accessing taffy.parents[N1]
```
## Solution
we can work around this by making sure to remove the child from the old
parent if one exists (this pr).
i think a better fix may be for taffy to check in `Taffy::remove` and
only set the child's parent to None if it is currently equal to the node
being removed but i'm not sure if there's an explicit assumption we're
violating here (@nicoburns).
# Objective
- `DynamicUniformBuffer::push` takes an owned `T` but only uses a shared
reference to it
- This in turn requires users of `DynamicUniformBuffer::push` to
potentially unecessarily clone data
## Solution
- Have `DynamicUniformBuffer::push` take a shared reference to `T`
---
## Changelog
- `DynamicUniformBuffer::push` now takes a `&T` instead of `T`
## Migration Guide
- Users of `DynamicUniformBuffer::push` now need to pass references to
`DynamicUniformBuffer::push` (e.g. existing `uniforms.push(value)` will
now become `uniforms.push(&value)`)
# Objective
Expand the existing `Query` API to support more dynamic use cases i.e.
scripting.
## Prior Art
- #6390
- #8308
- #10037
## Solution
- Create a `QueryBuilder` with runtime methods to define the set of
component accesses for a built query.
- Create new `WorldQueryData` implementations `FilteredEntityMut` and
`FilteredEntityRef` as variants of `EntityMut` and `EntityRef` that
provide run time checked access to the components included in a given
query.
- Add new methods to `Query` to create "query lens" with a subset of the
access of the initial query.
### Query Builder
The `QueryBuilder` API allows you to define a query at runtime. At it's
most basic use it will simply create a query with the corresponding type
signature:
```rust
let query = QueryBuilder::<Entity, With<A>>::new(&mut world).build();
// is equivalent to
let query = QueryState::<Entity, With<A>>::new(&mut world);
```
Before calling `.build()` you also have the opportunity to add
additional accesses and filters. Here is a simple example where we add
additional filter terms:
```rust
let entity_a = world.spawn((A(0), B(0))).id();
let entity_b = world.spawn((A(0), C(0))).id();
let mut query_a = QueryBuilder::<Entity>::new(&mut world)
.with::<A>()
.without::<C>()
.build();
assert_eq!(entity_a, query_a.single(&world));
```
This alone is useful in that allows you to decide which archetypes your
query will match at runtime. However it is also very limited, consider a
case like the following:
```rust
let query_a = QueryBuilder::<&A>::new(&mut world)
// Add an additional access
.data::<&B>()
.build();
```
This will grant the query an additional read access to component B
however we have no way of accessing the data while iterating as the type
signature still only includes &A. For an even more concrete example of
this consider dynamic components:
```rust
let query_a = QueryBuilder::<Entity>::new(&mut world)
// Adding a filter is easy since it doesn't need be read later
.with_id(component_id_a)
// How do I access the data of this component?
.ref_id(component_id_b)
.build();
```
With this in mind the `QueryBuilder` API seems somewhat incomplete by
itself, we need some way method of accessing the components dynamically.
So here's one:
### Query Transmutation
If the problem is not having the component in the type signature why not
just add it? This PR also adds transmute methods to `QueryBuilder` and
`QueryState`. Here's a simple example:
```rust
world.spawn(A(0));
world.spawn((A(1), B(0)));
let mut query = QueryBuilder::<()>::new(&mut world)
.with::<B>()
.transmute::<&A>()
.build();
query.iter(&world).for_each(|a| assert_eq!(a.0, 1));
```
The `QueryState` and `QueryBuilder` transmute methods look quite similar
but are different in one respect. Transmuting a builder will always
succeed as it will just add the additional accesses needed for the new
terms if they weren't already included. Transmuting a `QueryState` will
panic in the case that the new type signature would give it access it
didn't already have, for example:
```rust
let query = QueryState::<&A, Option<&B>>::new(&mut world);
/// This is fine, the access for Option<&A> is less restrictive than &A
query.transmute::<Option<&A>>(&world);
/// Oh no, this would allow access to &B on entities that might not have it, so it panics
query.transmute::<&B>(&world);
/// This is right out
query.transmute::<&C>(&world);
```
This is quite an appealing API to also have available on `Query` however
it does pose one additional wrinkle: In order to to change the iterator
we need to create a new `QueryState` to back it. `Query` doesn't own
it's own state though, it just borrows it, so we need a place to borrow
it from. This is why `QueryLens` exists, it is a place to store the new
state so it can be borrowed when you call `.query()` leaving you with an
API like this:
```rust
fn function_that_takes_a_query(query: &Query<&A>) {
// ...
}
fn system(query: Query<(&A, &B)>) {
let lens = query.transmute_lens::<&A>();
let q = lens.query();
function_that_takes_a_query(&q);
}
```
Now you may be thinking: Hey, wait a second, you introduced the problem
with dynamic components and then described a solution that only works
for static components! Ok, you got me, I guess we need a bit more:
### Filtered Entity References
Currently the only way you can access dynamic components on entities
through a query is with either `EntityMut` or `EntityRef`, however these
can access all components and so conflict with all other accesses. This
PR introduces `FilteredEntityMut` and `FilteredEntityRef` as
alternatives that have additional runtime checking to prevent accessing
components that you shouldn't. This way you can build a query with a
`QueryBuilder` and actually access the components you asked for:
```rust
let mut query = QueryBuilder::<FilteredEntityRef>::new(&mut world)
.ref_id(component_id_a)
.with(component_id_b)
.build();
let entity_ref = query.single(&world);
// Returns Some(Ptr) as we have that component and are allowed to read it
let a = entity_ref.get_by_id(component_id_a);
// Will return None even though the entity does have the component, as we are not allowed to read it
let b = entity_ref.get_by_id(component_id_b);
```
For the most part these new structs have the exact same methods as their
non-filtered equivalents.
Putting all of this together we can do some truly dynamic ECS queries,
check out the `dynamic` example to see it in action:
```
Commands:
comp, c Create new components
spawn, s Spawn entities
query, q Query for entities
Enter a command with no parameters for usage.
> c A, B, C, Data 4
Component A created with id: 0
Component B created with id: 1
Component C created with id: 2
Component Data created with id: 3
> s A, B, Data 1
Entity spawned with id: 0v0
> s A, C, Data 0
Entity spawned with id: 1v0
> q &Data
0v0: Data: [1, 0, 0, 0]
1v0: Data: [0, 0, 0, 0]
> q B, &mut Data
0v0: Data: [2, 1, 1, 1]
> q B || C, &Data
0v0: Data: [2, 1, 1, 1]
1v0: Data: [0, 0, 0, 0]
```
## Changelog
- Add new `transmute_lens` methods to `Query`.
- Add new types `QueryBuilder`, `FilteredEntityMut`, `FilteredEntityRef`
and `QueryLens`
- `update_archetype_component_access` has been removed, archetype
component accesses are now determined by the accesses set in
`update_component_access`
- Added method `set_access` to `WorldQuery`, this is called before
`update_component_access` for queries that have a restricted set of
accesses, such as those built by `QueryBuilder` or `QueryLens`. This is
primarily used by the `FilteredEntity*` variants and has an empty trait
implementation.
- Added method `get_state` to `WorldQuery` as a fallible version of
`init_state` when you don't have `&mut World` access.
## Future Work
Improve performance of `FilteredEntityMut` and `FilteredEntityRef`,
currently they have to determine the accesses a query has in a given
archetype during iteration which is far from ideal, especially since we
already did the work when matching the archetype in the first place. To
avoid making more internal API changes I have left it out of this PR.
---------
Co-authored-by: Mike Hsu <mike.hsu@gmail.com>
# Objective
Tried using "embedded_watcher" feature and `embedded_asset!()` from
another crate. The assets embedded fine but were not "watched." The
problem appears to be that checking for the feature was done inside the
macro, so rather than checking if "embedded_watcher" was enabled for
bevy, it would check if it was enabled for the current crate.
## Solution
I extracted the checks for the "embedded_watcher" feature into its own
function called `watched_path()`. No external changes.
### Alternative Solution
An alternative fix would be to not do any feature checking in
`embedded_asset!()` or an extracted function and always send the
full_path to `insert_asset()` where it's promptly dropped when the
feature isn't turned on. That would be simpler.
```
($app: ident, $source_path: expr, $path: expr) => {{
let mut embedded = $app
.world
.resource_mut::<$crate::io::embedded::EmbeddedAssetRegistry>();
let path = $crate::embedded_path!($source_path, $path);
//#[cfg(feature = "embedded_watcher")]
let full_path = std::path::Path::new(file!()).parent().unwrap().join($path);
//#[cfg(not(feature = "embedded_watcher"))]
//let full_path = std::path::PathBuf::new();
embedded.insert_asset(full_path, &path, include_bytes!($path));
}};
```
## Changelog
> Fix embedded_watcher feature to work with external crates
Rebased and finished version of
https://github.com/bevyengine/bevy/pull/8407. Huge thanks to @GitGhillie
for adjusting all the examples, and the many other people who helped
write this PR (@superdump , @coreh , among others) :)
Fixes https://github.com/bevyengine/bevy/issues/8369
---
## Changelog
- Added a `brightness` control to `Skybox`.
- Added an `intensity` control to `EnvironmentMapLight`.
- Added `ExposureSettings` and `PhysicalCameraParameters` for
controlling exposure of 3D cameras.
- Removed the baked-in `DirectionalLight` exposure Bevy previously
hardcoded internally.
## Migration Guide
- If using a `Skybox` or `EnvironmentMapLight`, use the new `brightness`
and `intensity` controls to adjust their strength.
- All 3D scene will now have different apparent brightnesses due to Bevy
implementing proper exposure controls. You will have to adjust the
intensity of your lights and/or your camera exposure via the new
`ExposureSettings` component to compensate.
---------
Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: GitGhillie <jillisnoordhoek@gmail.com>
Co-authored-by: Marco Buono <thecoreh@gmail.com>
Co-authored-by: vero <email@atlasdostal.com>
Co-authored-by: atlas dostal <rodol@rivalrebels.com>
# Objective
gltf-rs does its own computations when accessing `transform.matrix()`
which does not use glam types, rendering #11238 useless if people were
to load gltf models and expecting the results to be deterministic across
platforms.
## Solution
Move the computation to bevy side which uses glam types, it was already
used in one place, so I created one common function to handle the two
cases.
The added benefit this has, is that some gltf files can have
translation, rotation and scale directly instead of matrix which skips
the transform computation completely, win-win.
# Objective
> Old MR: #5072
> ~~Associated UI MR: #5070~~
> Adresses #1618
Unify sprite management
## Solution
- Remove the `Handle<Image>` field in `TextureAtlas` which is the main
cause for all the boilerplate
- Remove the redundant `TextureAtlasSprite` component
- Renamed `TextureAtlas` asset to `TextureAtlasLayout`
([suggestion](https://github.com/bevyengine/bevy/pull/5103#discussion_r917281844))
- Add a `TextureAtlas` component, containing the atlas layout handle and
the section index
The difference between this solution and #5072 is that instead of the
`enum` approach is that we can more easily manipulate texture sheets
without any breaking changes for classic `SpriteBundle`s (@mockersf
[comment](https://github.com/bevyengine/bevy/pull/5072#issuecomment-1165836139))
Also, this approach is more *data oriented* extracting the
`Handle<Image>` and avoiding complex texture atlas manipulations to
retrieve the texture in both applicative and engine code.
With this method, the only difference between a `SpriteBundle` and a
`SpriteSheetBundle` is an **additional** component storing the atlas
handle and the index.
~~This solution can be applied to `bevy_ui` as well (see #5070).~~
EDIT: I also applied this solution to Bevy UI
## Changelog
- (**BREAKING**) Removed `TextureAtlasSprite`
- (**BREAKING**) Renamed `TextureAtlas` to `TextureAtlasLayout`
- (**BREAKING**) `SpriteSheetBundle`:
- Uses a `Sprite` instead of a `TextureAtlasSprite` component
- Has a `texture` field containing a `Handle<Image>` like the
`SpriteBundle`
- Has a new `TextureAtlas` component instead of a
`Handle<TextureAtlasLayout>`
- (**BREAKING**) `DynamicTextureAtlasBuilder::add_texture` takes an
additional `&Handle<Image>` parameter
- (**BREAKING**) `TextureAtlasLayout::from_grid` no longer takes a
`Handle<Image>` parameter
- (**BREAKING**) `TextureAtlasBuilder::finish` now returns a
`Result<(TextureAtlasLayout, Handle<Image>), _>`
- `bevy_text`:
- `GlyphAtlasInfo` stores the texture `Handle<Image>`
- `FontAtlas` stores the texture `Handle<Image>`
- `bevy_ui`:
- (**BREAKING**) Removed `UiAtlasImage` , the atlas bundle is now
identical to the `ImageBundle` with an additional `TextureAtlas`
## Migration Guide
* Sprites
```diff
fn my_system(
mut images: ResMut<Assets<Image>>,
- mut atlases: ResMut<Assets<TextureAtlas>>,
+ mut atlases: ResMut<Assets<TextureAtlasLayout>>,
asset_server: Res<AssetServer>
) {
let texture_handle: asset_server.load("my_texture.png");
- let layout = TextureAtlas::from_grid(texture_handle, Vec2::new(25.0, 25.0), 5, 5, None, None);
+ let layout = TextureAtlasLayout::from_grid(Vec2::new(25.0, 25.0), 5, 5, None, None);
let layout_handle = atlases.add(layout);
commands.spawn(SpriteSheetBundle {
- sprite: TextureAtlasSprite::new(0),
- texture_atlas: atlas_handle,
+ atlas: TextureAtlas {
+ layout: layout_handle,
+ index: 0
+ },
+ texture: texture_handle,
..Default::default()
});
}
```
* UI
```diff
fn my_system(
mut images: ResMut<Assets<Image>>,
- mut atlases: ResMut<Assets<TextureAtlas>>,
+ mut atlases: ResMut<Assets<TextureAtlasLayout>>,
asset_server: Res<AssetServer>
) {
let texture_handle: asset_server.load("my_texture.png");
- let layout = TextureAtlas::from_grid(texture_handle, Vec2::new(25.0, 25.0), 5, 5, None, None);
+ let layout = TextureAtlasLayout::from_grid(Vec2::new(25.0, 25.0), 5, 5, None, None);
let layout_handle = atlases.add(layout);
commands.spawn(AtlasImageBundle {
- texture_atlas_image: UiTextureAtlasImage {
- index: 0,
- flip_x: false,
- flip_y: false,
- },
- texture_atlas: atlas_handle,
+ atlas: TextureAtlas {
+ layout: layout_handle,
+ index: 0
+ },
+ image: UiImage {
+ texture: texture_handle,
+ flip_x: false,
+ flip_y: false,
+ },
..Default::default()
});
}
```
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
# Objective
- The
[`build-templated-pages`](4778fbeb65/tools/build-templated-pages)
tool is used to render the Markdown templates in the
[docs-template](4778fbeb65/docs-template)
folder.
- It depends on out outdated version of `toml_edit`.
## Solution
- Bump `toml_edit` to 0.21, disabling all features except `parse`.
# Objective
Add support for presenting each UI tree on a specific window and
viewport, while making as few breaking changes as possible.
This PR is meant to resolve the following issues at once, since they're
all related.
- Fixes#5622
- Fixes#5570
- Fixes#5621
Adopted #5892 , but started over since the current codebase diverged
significantly from the original PR branch. Also, I made a decision to
propagate component to children instead of recursively iterating over
nodes in search for the root.
## Solution
Add a new optional component that can be inserted to UI root nodes and
propagate to children to specify which camera it should render onto.
This is then used to get the render target and the viewport for that UI
tree. Since this component is optional, the default behavior should be
to render onto the single camera (if only one exist) and warn of
ambiguity if multiple cameras exist. This reduces the complexity for
users with just one camera, while giving control in contexts where it
matters.
## Changelog
- Adds `TargetCamera(Entity)` component to specify which camera should a
node tree be rendered into. If only one camera exists, this component is
optional.
- Adds an example of rendering UI to a texture and using it as a
material in a 3D world.
- Fixes recalculation of physical viewport size when target scale factor
changes. This can happen when the window is moved between displays with
different DPI.
- Changes examples to demonstrate assigning UI to different viewports
and windows and make interactions in an offset viewport testable.
- Removes `UiCameraConfig`. UI visibility now can be controlled via
combination of explicit `TargetCamera` and `Visibility` on the root
nodes.
---------
Co-authored-by: davier <bricedavier@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
# Objective
- Update async channel to v2.
## Solution
- async channel doesn't support `send_blocking` on wasm anymore. So
don't compile the pipelined rendering plugin on wasm anymore.
- Replaces https://github.com/bevyengine/bevy/pull/10405
## Migration Guide
- The `PipelinedRendering` plugin is no longer exported on wasm. If you
are including it in your wasm builds you should remove it.
```rust
#[cfg(all(not(target_arch = "wasm32"))]
app.add_plugins(bevy_render::pipelined_rendering::PipelinedRenderingPlugin);
```
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Partial fix for #11235
- Fixes#11274
- Fixes#11320
- Fixes#11273
## Solution
- check update mode to trigger redraw request, instead of once a redraw
request has been triggered
- don't ignore device event in case of `Reactive` update mode
- make sure that at least 5 updates are triggered on application start
to ensure everything is correctly initialized
- trigger manual updates instead of relying on redraw requests when
there are no window or they are not visible
> Replaces #5213
# Objective
Implement sprite tiling and [9 slice
scaling](https://en.wikipedia.org/wiki/9-slice_scaling) for
`bevy_sprite`.
Allowing slice scaling and texture tiling.
Basic scaling vs 9 slice scaling:
![Traditional_scaling_vs_9-slice_scaling](https://user-images.githubusercontent.com/26703856/177335801-27f6fa27-c569-4ce6-b0e6-4f54e8f4e80a.svg)
Slicing example:
<img width="481" alt="Screenshot 2022-07-05 at 15 05 49"
src="https://user-images.githubusercontent.com/26703856/177336112-9e961af0-c0af-4197-aec9-430c1170a79d.png">
Tiling example:
<img width="1329" alt="Screenshot 2023-11-16 at 13 53 32"
src="https://github.com/bevyengine/bevy/assets/26703856/14db39b7-d9e0-4bc3-ba0e-b1f2db39ae8f">
# Solution
- `SpriteBundlue` now has a `scale_mode` component storing a
`SpriteScaleMode` enum with three variants:
- `Stretched` (default)
- `Tiled` to have sprites tile horizontally and/or vertically
- `Sliced` allowing 9 slicing the texture and optionally tile some
sections with a `Textureslicer`.
- `bevy_sprite` has two extra systems to compute a
`ComputedTextureSlices` if necessary,:
- One system react to changes on `Sprite`, `Handle<Image>` or
`SpriteScaleMode`
- The other listens to `AssetEvent<Image>` to compute slices on sprites
when the texture is ready or changed
- I updated the `bevy_sprite` extraction stage to extract potentially
multiple textures instead of one, depending on the presence of
`ComputedTextureSlices`
- I added two examples showcasing the slicing and tiling feature.
The addition of `ComputedTextureSlices` as a cache is to avoid querying
the image data, to retrieve its dimensions, every frame in a extract or
prepare stage. Also it reacts to changes so we can have stuff like this
(tiling example):
https://github.com/bevyengine/bevy/assets/26703856/a349a9f3-33c3-471f-8ef4-a0e5dfce3b01
# Related
- [ ] Once #5103 or #10099 is merged I can enable tiling and slicing for
texture sheets as ui
# To discuss
There is an other option, to consider slice/tiling as part of the asset,
using the new asset preprocessing but I have no clue on how to do it.
Also, instead of retrieving the Image dimensions, we could use the same
system as the sprite sheet and have the user give the image dimensions
directly (grid). But I think it's less user friendly
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
# Objective
Adds support for accessing raw extension data of loaded GLTF assets
## Solution
Via the GLTF loader settings, you can specify whether or not to include
the GLTF source. While not the ideal way of solving this problem,
modeling all of GLTF within Bevy just for extensions adds a lot of
complexity to the way Bevy handles GLTF currently. See the example GLTF
meta file and code
```
(
meta_format_version: "1.0",
asset: Load(
loader: "bevy_gltf::loader::GltfLoader",
settings: (
load_meshes: true,
load_cameras: true,
load_lights: true,
include_source: true,
),
),
)
```
```rs
pub fn load_gltf(mut commands: Commands, assets: Res<AssetServer>) {
let my_gltf = assets.load("test_platform.gltf");
commands.insert_resource(MyAssetPack {
spawned: false,
handle: my_gltf,
});
}
#[derive(Resource)]
pub struct MyAssetPack {
pub spawned: bool,
pub handle: Handle<Gltf>,
}
pub fn spawn_gltf_objects(
mut commands: Commands,
mut my: ResMut<MyAssetPack>,
assets_gltf: Res<Assets<Gltf>>,
) {
// This flag is used to because this system has to be run until the asset is loaded.
// If there's a better way of going about this I am unaware of it.
if my.spawned {
return;
}
if let Some(gltf) = assets_gltf.get(&my.handle) {
info!("spawn");
my.spawned = true;
// spawn the first scene in the file
commands.spawn(SceneBundle {
scene: gltf.scenes[0].clone(),
..Default::default()
});
let source = gltf.source.as_ref().unwrap();
info!("materials count {}", &source.materials().size_hint().0);
info!(
"materials ext is some {}",
&source.materials().next().unwrap().extensions().is_some()
);
}
}
```
---
## Changelog
Added support for GLTF extensions through including raw GLTF source via
loader flag `GltfLoaderSettings::include_source == true`, stored in
`Gltf::source: Option<gltf::Gltf>`
## Migration Guide
This will have issues with "asset migrations", as there is currently no
way for .meta files to be migrated. Attempting to migrate .meta files
without the new flag will yield the following error:
```
bevy_asset::server: Failed to deserialize meta for asset test_platform.gltf: Failed to deserialize asset meta: SpannedError { code: MissingStructField { field: "include_source", outer: Some("GltfLoaderSettings") }, position: Position { line: 9, col: 9 } }
```
This means users who want to migrate their .meta files will have to add
the `include_source: true,` setting to their meta files by hand.
# Objective
The ability to ignore the global volume doesn't seem desirable and
complicates the API.
#7706 added global volume and the ability to ignore it, but there was no
further discussion about whether that's useful. Feel free to discuss
here :)
## Solution
Replace the `Volume` type's functionality with the `VolumeLevel`. Remove
`VolumeLevel`.
I also removed `DerefMut` derive that effectively made the volume `pub`
and actually ensured that the volume isn't set below `0` even in release
builds.
## Migration Guide
The option to ignore the global volume using `Volume::Absolute` has been
removed and `Volume` now stores the volume level directly, removing the
need for the `VolumeLevel` struct.
# Objective
This PR is heavily inspired by
https://github.com/bevyengine/bevy/pull/7682
It aims to solve the same problem: allowing the user to extend the
tracing subscriber with extra layers.
(in my case, I'd like to use `use
metrics_tracing_context::{MetricsLayer, TracingContextLayer};`)
## Solution
I'm proposing a different api where the user has the opportunity to take
the existing `subscriber` and apply any transformations on it.
---
## Changelog
- Added a `update_subscriber` option on the `LogPlugin` that lets the
user modify the `subscriber` (for example to extend it with more tracing
`Layers`
## Migration Guide
> This section is optional. If there are no breaking changes, you can
delete this section.
- Added a new field `update_subscriber` in the `LogPlugin`
---------
Co-authored-by: Charles Bournhonesque <cbournhonesque@snapchat.com>
# Objective
The table [here](https://github.com/nagisa/rust_tracy_client) shows
which versions of [Tracy](https://github.com/wolfpld/tracy) should be
used combined with which Rust deps.
Reading `bevy_log`'s `Cargo.toml` can be slightly confusing since the
exact versions are not picked from the same row.
Reading the produced `Cargo.lock` when building a Bevy example shows
that it's the most recent row that is resolved, but this should be more
clearly understood without needing to check the lock file.
## Solution
- Specify versions from the compatibility table including patch version
Signed-off-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
Co-authored-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
# Objective
- `bevy_gizmos` cannot work if both `bevy_sprite` and `bevy_pbr` are
disabled.
- It silently fails to render, making it difficult to debug.
- Fixes#10984
## Solution
- Log an error message when `GizmoPlugin` is registered.
## Alternatives
I chose to log an error message, since it seemed the least intrusive of
potential solutions. Some alternatives include:
- Choosing one dependency as the default, neglecting the other. (#11035)
- Raising a compile error when neither dependency is enabled. ([See my
original
comment](https://github.com/bevyengine/bevy/issues/10984#issuecomment-1873420426))
- Raising a compile warning using a macro hack. ([Pre-RFC - Add
compile_warning!
macro](https://internals.rust-lang.org/t/pre-rfc-add-compile-warning-macro/9370/7?u=bd103))
- Logging a warning instead of an error.
- _This might be the better option. Let me know if I should change it._
---
## Changelog
- `bevy_gizmos` will now log an error if neither `bevy_pbr` nor
`bevy_sprite` are enabled.
# Objective
- Implementing `Default` for
[`CubicCurve`](https://docs.rs/bevy/latest/bevy/math/cubic_splines/struct.CubicCurve.html)
does not make sense because it cannot be mutated after creation.
- Closes#11209.
- Alternative to #11211.
## Solution
- Remove `Default` from `CubicCurve`'s derive statement.
Based off of @mockersf comment
(https://github.com/bevyengine/bevy/pull/11211#issuecomment-1880088036):
> CubicCurve can't be updated once created... I would prefer to remove
the Default impl as it doesn't make sense
---
## Changelog
- Removed the `Default` implementation for `CubicCurve`.
## Migration Guide
- Remove `CubicCurve` from any structs that implement `Default`.
- Wrap `CubicCurve` in a new type and provide your own default.
```rust
#[derive(Deref)]
struct MyCubicCurve<P: Point>(pub CubicCurve<P>);
impl Default for MyCubicCurve<Vec2> {
fn default() -> Self {
let points = [[
vec2(-1.0, -20.0),
vec2(3.0, 2.0),
vec2(5.0, 3.0),
vec2(9.0, 8.0),
]];
Self(CubicBezier::new(points).to_curve())
}
}
```
Based on discussion after #11268 was merged:
Instead of panicking should the impl of `TypeId::hash` change
significantly, have a fallback and detect this in a test.
# Objective
In #11330 I found out that `Parent::get` didn't get inlined, **even with
LTO on**!
This means that just to access a field, we have an instruction cache
invalidation, we will move some registers to the stack, will jump to new
instructions, move the field into a register, then do the same dance in
the other direction to go back to the call site.
## Solution
Mark trivial functions as `#[inline]`.
`inline(always)` may increase compilation time proportional to how many
time the function is called **and the size of the function marked with
`inline`**. Since we mark as `inline` functions that consists in a
single instruction, the cost is absolutely negligible.
I also took the opportunity to `inline` other functions. I'm not as
confident that marking functions calling other functions as `inline`
works similarly to very simple functions, so I used `inline` over
`inline(always)`, which doesn't have the same downsides as
`inline(always)`.
More information on inlining in rust:
https://nnethercote.github.io/perf-book/inlining.html
Not always, but skip it if the new length is smaller.
For context, `path_cache` is a `Vec<Vec<Option<Entity>>>`.
# Objective
Previously, when setting a new length to the `path_cache`, we would:
1. Deallocate all existing `Vec<Option<Entity>>`
2. Deallocate the `path_cache`
3. Allocate a new `Vec<Vec<Option<Entity>>>`, where each item is an
empty `Vec`, and would have to be allocated when pushed to.
This is a lot of allocations!
## Solution
Use
[`Vec::resize_with`](https://doc.rust-lang.org/stable/std/vec/struct.Vec.html#method.resize_with).
With this change, what occurs is:
1. We `clear` each `Vec<Option<Entity>>`, keeping the allocation, but
making the memory of each `Vec` re-usable
2. We only append new `Vec` to `path_cache` when it is too small.
* Fixes#11328
### Note on performance
I didn't benchmark it, I just ran a diff on the generated assembly (ran
with `--profile stress-test` and `--native`). I found this PR has 20
less instructions in `apply_animation` (out of 2504).
Though on a purely abstract level, I can deduce this leads to less
allocation.
More information on profiling allocations in rust:
https://nnethercote.github.io/perf-book/heap-allocations.html
## Future work
I think a [jagged vec](https://en.wikipedia.org/wiki/Jagged_array) would
be much more pertinent. Because it allocates everything in a single
contiguous buffer.
This would avoid dancing around allocations, and reduces the overhead of
one `*mut T` and two `usize` per row, also removes indirection,
improving cache efficiency. I think it would both improve code quality
and performance.
# Objective
`TypeId` contains a high-quality hash. Whenever a lookup based on a
`TypeId` is performed (e.g. to insert/remove components), the hash is
run through a second hash function. This is unnecessary.
## Solution
Skip re-hashing `TypeId`s.
In my
[testing](https://gist.github.com/SpecificProtagonist/4b49ad74c6b82b0aedd3b4ea35121be8),
this improves lookup performance consistently by 10%-15% (of course, the
lookup is only a small part of e.g. a bundle insertion).
# Objective
While working on #10832, I found this code very dense and hard to
understand.
I was not confident in my fix (or the correctness of the existing code).
## Solution
Clean up, test and document the code used in the `apply_animation`
system.
I also added a pair of length-related utility methods to `Keyframes` for
easier testing. They seemed generically useful, so I made them pub.
## Changelog
- Added `VariableCurve::find_current_keyframe` method.
- Added `Keyframes::len` and `is_empty` methods.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
# Objective
The purpose of this PR is to begin putting together a unified identifier
structure that can be used by entities and later components (as
entities) as well as relationship pairs for relations, to enable all of
these to be able to use the same storages. For the moment, to keep
things small and focused, only `Entity` is being changed to make use of
the new `Identifier` type, keeping `Entity`'s API and
serialization/deserialization the same. Further changes are for
follow-up PRs.
## Solution
`Identifier` is a wrapper around `u64` split into two `u32` segments
with the idea of being generalised to not impose restrictions on
variants. That is for `Entity` to do. Instead, it is a general API for
taking bits to then merge and map into a `u64` integer. It exposes
low/high methods to return the two value portions as `u32` integers,
with then the MSB masked for usage as a type flag, enabling entity kind
discrimination and future activation/deactivation semantics.
The layout in this PR for `Identifier` is described as below, going from
MSB -> LSB.
```
|F| High value | Low value |
|_|_______________________________|________________________________|
|1| 31 | 32 |
F = Bit Flags
```
The high component in this implementation has only 31 bits, but that
still leaves 2^31 or 2,147,483,648 values that can be stored still, more
than enough for any generation/relation kinds/etc usage. The low part is
a full 32-bit index. The flags allow for 1 bit to be used for
entity/pair discrimination, as these have different usages for the
low/high portions of the `Identifier`. More bits can be reserved for
more variants or activation/deactivation purposes, but this currently
has no use in bevy.
More bits could be reserved for future features at the cost of bits for
the high component, so how much to reserve is up for discussion. Also,
naming of the struct and methods are also subject to further
bikeshedding and feedback.
Also, because IDs can have different variants, I wonder if
`Entity::from_bits` needs to return a `Result` instead of potentially
panicking on receiving an invalid ID.
PR is provided as an early WIP to obtain feedback and notes on whether
this approach is viable.
---
## Changelog
### Added
New `Identifier` struct for unifying IDs.
### Changed
`Entity` changed to use new `Identifier`/`IdentifierMask` as the
underlying ID logic.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: vero <email@atlasdostal.com>
# Objective
- It is common to run a system only when the clock is paused or not
paused, but this run condition doesn't exist.
## Solution
- Add the "paused" run condition.
---
## Changelog
- Systems can now be scheduled to run only if the clock is paused or not
using `.run_if(paused())` or `.run_if(not(paused()))`.
---------
Co-authored-by: radiish <cb.setho@gmail.com>
# Objective
Fixes https://github.com/bevyengine/bevy/issues/11222
## Solution
SSAO's sample_mip_level was always giving negative values because it was
in UV space (0..1) when it needed to be in pixel units (0..resolution).
Fixing it so it properly samples lower mip levels when appropriate is a
pretty large speedup (~3.2ms -> ~1ms at 4k, ~507us-> 256us at 1080p on a
6800xt), and I didn't notice any obvious visual quality differences.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Implement bounding volume trait and the 4 types from
https://github.com/bevyengine/bevy/issues/10570. I will add intersection
tests in a future PR.
## Solution
Implement mostly everything as written in the issue, except:
- Intersection is no longer a method on the bounding volumes, but a
separate trait.
- I implemented a `visible_area` since it's the most common usecase to
care about the surface that could collide with cast rays.
- Maybe we want both?
---
## Changelog
- Added bounding volume types to bevy_math
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
In the past `winit:🪟:Window` was not Send + Sync on web.
https://github.com/rust-windowing/winit/pull/2834 made
`winit:🪟:Window` Sync + Send so Bevy's `unsafe impl` is no longer
necessary.
## Solution
Remove the unsafe impls.
# Objective
This dependency is seemingly no longer used directly after #7267.
Unfortunately, this doesn't fix us having versions of `event-listener`
in our tree.
Closes#10654
## Solution
Remove it, see if anything breaks.
# Objective
- Since #11227, Bevy doesn't work on mobile anymore. Windows are not
created.
## Solution
- Create initial window on mobile after the initial `Resume` event.
macOS is included because it's excluded from the other initial window
creation and I didn't want it to feel alone. Also, it makes sense. this
is needed for Android
cfcb6885e3/crates/bevy_winit/src/lib.rs (L152)
- request redraw during plugin initialisation (needed for WebGPU)
- request redraw when receiving `AboutToWait` instead of at the end of
the event handler. request to redraw during a `RedrawRequested` event
are ignored on iOS
# Objective
Issue #10243: rendering multiple triangles in the same place results in
flickering.
## Solution
Considered these alternatives:
- `depth_bias` may not work, because of high number of entities, so
creating a material per entity is practically not possible
- rendering at slightly different positions does not work, because when
camera is far, float rounding causes the same issues (edit: assuming we
have to use the same `depth_bias`)
- considered implementing deterministic operation like
`query.par_iter().flat_map(...).collect()` to be used in
`check_visibility` system (which would solve the issue since query is
deterministic), and could not figure out how to make it as cheap as
current approach with thread-local collectors (#11249)
So adding an option to sort entities after `check_visibility` system
run.
Should not be too bad, because after visibility check, only a handful
entities remain.
This is probably not the only source of non-determinism in Bevy, but
this is one I could find so far. At least it fixes the repro example.
## Changelog
- `DeterministicRenderingConfig` option to enable deterministic
rendering
## Test
<img width="1392" alt="image"
src="https://github.com/bevyengine/bevy/assets/28969/c735bce1-3a71-44cd-8677-c19f6c0ee6bd">
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
I want to run a system once after a given delay.
- First, I tried using the `on_timer` run condition, but it uses a
repeating timer, causing the system to run multiple times.
- Next, I tried combining the `on_timer` with the `run_once` run
condition. However, this causes the timer to *tick* only once, so the
system is never executed.
## Solution
- ~~Replace `on_timer` by `on_time_interval` and `on_real_timer` by
`on_real_time_interval` to clarify the meaning (the old ones are
deprecated to avoid a breaking change).~~ (Reverted according to
feedback)
- Add `once_after_delay` and `once_after_real_delay` to run the system
exactly once after the delay, using `TimerMode::Once`.
- Add `repeating_after_delay` and `repeating_after_real_delay` to run
the system indefinitely after the delay, using `Timer::finished` instead
of `Timer::just_finished`.
---
## Changelog
### Added
- `once_after_delay` and `once_after_real_delay` run conditions to run
the system exactly once after the delay, using `TimerMode::Once`.
- `repeating_after_delay` and `repeating_after_real_delay` run
conditions to run the system indefinitely after the delay, using
`Timer::finished` instead of `Timer::just_finished`.
# Objective
- Implements change described in
https://github.com/bevyengine/bevy/issues/3022
- Goal is to allow Entity to benefit from niche optimization, especially
in the case of Option<Entity> to reduce memory overhead with structures
with empty slots
## Discussion
- First PR attempt: https://github.com/bevyengine/bevy/pull/3029
- Discord:
https://discord.com/channels/691052431525675048/1154573759752183808/1154573764240093224
## Solution
- Change `Entity::generation` from u32 to NonZeroU32 to allow for niche
optimization.
- The reason for changing generation rather than index is so that the
costs are only encountered on Entity free, instead of on Entity alloc
- There was some concern with generations being used, due to there being
some desire to introduce flags. This was more to do with the original
retirement approach, however, in reality even if generations were
reduced to 24-bits, we would still have 16 million generations available
before wrapping and current ideas indicate that we would be using closer
to 4-bits for flags.
- Additionally, another concern was the representation of relationships
where NonZeroU32 prevents us using the full address space, talking with
Joy it seems unlikely to be an issue. The majority of the time these
entity references will be low-index entries (ie. `ChildOf`, `Owes`),
these will be able to be fast lookups, and the remainder of the range
can use slower lookups to map to the address space.
- It has the additional benefit of being less visible to most users,
since generation is only ever really set through `from_bits` type
methods.
- `EntityMeta` was changed to match
- On free, generation now explicitly wraps:
- Originally, generation would panic in debug mode and wrap in release
mode due to using regular ops.
- The first attempt at this PR changed the behavior to "retire" slots
and remove them from use when generations overflowed. This change was
controversial, and likely needs a proper RFC/discussion.
- Wrapping matches current release behaviour, and should therefore be
less controversial.
- Wrapping also more easily migrates to the retirement approach, as
users likely to exhaust the exorbitant supply of generations will code
defensively against aliasing and that defensive code is less likely to
break than code assuming that generations don't wrap.
- We use some unsafe code here when wrapping generations, to avoid
branch on NonZeroU32 construction. It's guaranteed safe due to how we
perform wrapping and it results in significantly smaller ASM code.
- https://godbolt.org/z/6b6hj8PrM
## Migration
- Previous `bevy_scene` serializations have a high likelihood of being
broken, as they contain 0th generation entities.
## Current Issues
- `Entities::reserve_generations` and `EntityMapper` wrap now, even in
debug - although they technically did in release mode already so this
probably isn't a huge issue. It just depends if we need to change
anything here?
---------
Co-authored-by: Natalie Baker <natalie.baker@advancednavigation.com>
Update to `glam` 0.25, `encase` 0.7 and `hexasphere` to 10.0
## Changelog
Added the `FloatExt` trait to the `bevy_math` prelude which adds `lerp`,
`inverse_lerp` and `remap` methods to the `f32` and `f64` types.
# Objective
When you have no idea what to put after `#` when loading an asset, error
message may help.
## Solution
Add all labels to the error message.
## Test plan
Modified `anti_alias` example to put incorrect label, the error is:
```
2024-01-08T07:41:25.462287Z ERROR bevy_asset::server: The file at 'models/FlightHelmet/FlightHelmet.gltf' does not contain the labeled asset 'Rrrr'; it contains the following 25 assets: 'Material0', 'Material1', 'Material2', 'Material3', 'Material4', 'Material5', 'Mesh0', 'Mesh0/Primitive0', 'Mesh1', 'Mesh1/Primitive0', 'Mesh2', 'Mesh2/Primitive0', 'Mesh3', 'Mesh3/Primitive0', 'Mesh4', 'Mesh4/Primitive0', 'Mesh5', 'Mesh5/Primitive0', 'Node0', 'Node1', 'Node2', 'Node3', 'Node4', 'Node5', 'Scene0'
```
# Objective
`Column` unconditionally requires three separate allocations: one for
the data, and two for the tick Vecs. The tick Vecs aren't really needed
for Resources, so we're allocating a bunch of one-element Vecs, and it
costs two extra dereferences when fetching/inserting/removing resources.
## Solution
Drop one level lower in `ResourceData` and directly store a `BlobVec`
and two `UnsafeCell<Tick>`s. This should significantly shrink
`ResourceData` (exchanging 6 usizes for 2 u32s), removes the need to
dereference two separate ticks when inserting/removing/fetching
resources, and can significantly decrease the number of small
allocations the ECS makes by default.
This tentatively might have a non-insignificant impact on the CPU cost
for rendering since we're constantly fetching resources in draw
functions, depending on how aggressively inlined the functions are.
This requires reimplementing some of the unsafe functions that `Column`
wraps, but it also allows us to delete a few Column APIs that were only
used for Resources, so the total amount of unsafe we're maintaining
shouldn't change significantly.
---------
Co-authored-by: Joseph <21144246+JoJoJet@users.noreply.github.com>
# Objective
When creating a normalized direction from a vector, it can be useful to
get both the direction *and* the original length of the vector.
This came up when I was recreating some Parry APIs using bevy_math, and
doing it manually is quite painful. Nalgebra calls this method
[`Unit::try_new_and_get`](https://docs.rs/nalgebra/latest/nalgebra/base/struct.Unit.html#method.try_new_and_get).
## Solution
Add a `new_and_length` method to `Direction2d` and `Direction3d`.
Usage:
```rust
if let Ok((direction, length)) = Direction2d::new_and_length(Vec2::X * 10.0) {
assert_eq!(direction, Vec2::X);
assert_eq!(length, 10.0);
}
```
I'm open to different names, couldn't come up with a perfectly clear one
that isn't too long. My reasoning with the current name is that it's
like using `new` and calling `length` on the original vector.
# Objective
In #9604 we removed the ability to define an `EntityCommand` as
`fn(Entity, &mut World)`. However I have since realized that `fn(Entity,
&mut World)` is an incredibly expressive and powerful way to define a
command for an entity that may or may not exist (`fn(EntityWorldMut)`
only works on entities that are alive).
## Solution
Support `EntityCommand`s in the style of `fn(Entity, &mut World)`, as
well as `fn(EntityWorldMut)`. Use a marker generic on the
`EntityCommand` trait to allow multiple impls.
The second commit in this PR replaces all of the internal command
definitions with ones using `fn` definitions. This is mostly just to
show off how expressive this style of command is -- we can revert this
commit if we'd rather avoid breaking changes.
---
## Changelog
Re-added support for expressively defining an `EntityCommand` as a
function that takes `Entity, &mut World`.
## Migration Guide
All `Command` types in `bevy_ecs`, such as `Spawn`, `SpawnBatch`,
`Insert`, etc., have been made private. Use the equivalent methods on
`Commands` or `EntityCommands` instead.
# Objective
- Make it possible to react to arbitrary state changes
- this will be useful regardless of the other changes to states
currently being discussed
## Solution
- added `StateTransitionEvent<S>` struct
- previously, this would have been impossible:
```rs
#[derive(States, Eq, PartialEq, Hash, Copy, Clone, Default)]
enum MyState {
#[default]
Foo,
Bar(MySubState),
}
enum MySubState {
Spam,
Eggs,
}
app.add_system(Update, on_enter_bar);
fn on_enter_bar(trans: EventReader<StateTransition<MyState>>){
for (befoare, after) in trans.read() {
match before, after {
MyState::Foo, MyState::Bar(_) => info!("detected transition foo => bar");
_, _ => ();
}
}
}
```
---
## Changelog
- Added
- `StateTransitionEvent<S>` - Fired on state changes of `S`
## Migration Guide
N/A no breaking changes
---------
Co-authored-by: Federico Rinaldi <gisquerin@gmail.com>
# Motivation
When spawning entities into a scene, it is very common to create assets
like meshes and materials and to add them via asset handles. A common
setup might look like this:
```rust
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
commands.spawn(PbrBundle {
mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
material: materials.add(StandardMaterial::from(Color::RED)),
..default()
});
}
```
Let's take a closer look at the part that adds the assets using `add`.
```rust
mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
material: materials.add(StandardMaterial::from(Color::RED)),
```
Here, "mesh" and "material" are both repeated three times. It's very
explicit, but I find it to be a bit verbose. In addition to being more
code to read and write, the extra characters can sometimes also lead to
the code being formatted to span multiple lines even though the core
task, adding e.g. a primitive mesh, is extremely simple.
A way to address this is by using `.into()`:
```rust
mesh: meshes.add(shape::Cube { size: 1.0 }.into()),
material: materials.add(Color::RED.into()),
```
This is fine, but from the names and the type of `meshes`, we already
know what the type should be. It's very clear that `Cube` should be
turned into a `Mesh` because of the context it's used in. `.into()` is
just seven characters, but it's so common that it quickly adds up and
gets annoying.
It would be nice if you could skip all of the conversion and let Bevy
handle it for you:
```rust
mesh: meshes.add(shape::Cube { size: 1.0 }),
material: materials.add(Color::RED),
```
# Objective
Make adding assets more ergonomic by making `Assets::add` take an `impl
Into<A>` instead of `A`.
## Solution
`Assets::add` now takes an `impl Into<A>` instead of `A`, so e.g. this
works:
```rust
commands.spawn(PbrBundle {
mesh: meshes.add(shape::Cube { size: 1.0 }),
material: materials.add(Color::RED),
..default()
});
```
I also changed all examples to use this API, which increases consistency
as well because `Mesh::from` and `into` were being used arbitrarily even
in the same file. This also gets rid of some lines of code because
formatting is nicer.
---
## Changelog
- `Assets::add` now takes an `impl Into<A>` instead of `A`
- Examples don't use `T::from(K)` or `K.into()` when adding assets
## Migration Guide
Some `into` calls that worked previously might now be broken because of
the new trait bounds. You need to either remove `into` or perform the
conversion explicitly with `from`:
```rust
// Doesn't compile
let mesh_handle = meshes.add(shape::Cube { size: 1.0 }.into()),
// These compile
let mesh_handle = meshes.add(shape::Cube { size: 1.0 }),
let mesh_handle = meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
```
## Concerns
I believe the primary concerns might be:
1. Is this too implicit?
2. Does this increase codegen bloat?
Previously, the two APIs were using `into` or `from`, and now it's
"nothing" or `from`. You could argue that `into` is slightly more
explicit than "nothing" in cases like the earlier examples where a
`Color` gets converted to e.g. a `StandardMaterial`, but I personally
don't think `into` adds much value even in this case, and you could
still see the actual type from the asset type.
As for codegen bloat, I doubt it adds that much, but I'm not very
familiar with the details of codegen. I personally value the user-facing
code reduction and ergonomics improvements that these changes would
provide, but it might be worth checking the other effects in more
detail.
Another slight concern is migration pain; apps might have a ton of
`into` calls that would need to be removed, and it did take me a while
to do so for Bevy itself (maybe around 20-40 minutes). However, I think
the fact that there *are* so many `into` calls just highlights that the
API could be made nicer, and I'd gladly migrate my own projects for it.
# Objective
This pull request implements *reflection probes*, which generalize
environment maps to allow for multiple environment maps in the same
scene, each of which has an axis-aligned bounding box. This is a
standard feature of physically-based renderers and was inspired by [the
corresponding feature in Blender's Eevee renderer].
## Solution
This is a minimal implementation of reflection probes that allows
artists to define cuboid bounding regions associated with environment
maps. For every view, on every frame, a system builds up a list of the
nearest 4 reflection probes that are within the view's frustum and
supplies that list to the shader. The PBR fragment shader searches
through the list, finds the first containing reflection probe, and uses
it for indirect lighting, falling back to the view's environment map if
none is found. Both forward and deferred renderers are fully supported.
A reflection probe is an entity with a pair of components, *LightProbe*
and *EnvironmentMapLight* (as well as the standard *SpatialBundle*, to
position it in the world). The *LightProbe* component (along with the
*Transform*) defines the bounding region, while the
*EnvironmentMapLight* component specifies the associated diffuse and
specular cubemaps.
A frequent question is "why two components instead of just one?" The
advantages of this setup are:
1. It's readily extensible to other types of light probes, in particular
*irradiance volumes* (also known as ambient cubes or voxel global
illumination), which use the same approach of bounding cuboids. With a
single component that applies to both reflection probes and irradiance
volumes, we can share the logic that implements falloff and blending
between multiple light probes between both of those features.
2. It reduces duplication between the existing *EnvironmentMapLight* and
these new reflection probes. Systems can treat environment maps attached
to cameras the same way they treat environment maps applied to
reflection probes if they wish.
Internally, we gather up all environment maps in the scene and place
them in a cubemap array. At present, this means that all environment
maps must have the same size, mipmap count, and texture format. A
warning is emitted if this restriction is violated. We could potentially
relax this in the future as part of the automatic mipmap generation
work, which could easily do texture format conversion as part of its
preprocessing.
An easy way to generate reflection probe cubemaps is to bake them in
Blender and use the `export-blender-gi` tool that's part of the
[`bevy-baked-gi`] project. This tool takes a `.blend` file containing
baked cubemaps as input and exports cubemap images, pre-filtered with an
embedded fork of the [glTF IBL Sampler], alongside a corresponding
`.scn.ron` file that the scene spawner can use to recreate the
reflection probes.
Note that this is intentionally a minimal implementation, to aid
reviewability. Known issues are:
* Reflection probes are basically unsupported on WebGL 2, because WebGL
2 has no cubemap arrays. (Strictly speaking, you can have precisely one
reflection probe in the scene if you have no other cubemaps anywhere,
but this isn't very useful.)
* Reflection probes have no falloff, so reflections will abruptly change
when objects move from one bounding region to another.
* As mentioned before, all cubemaps in the world of a given type
(diffuse or specular) must have the same size, format, and mipmap count.
Future work includes:
* Blending between multiple reflection probes.
* A falloff/fade-out region so that reflected objects disappear
gradually instead of vanishing all at once.
* Irradiance volumes for voxel-based global illumination. This should
reuse much of the reflection probe logic, as they're both GI techniques
based on cuboid bounding regions.
* Support for WebGL 2, by breaking batches when reflection probes are
used.
These issues notwithstanding, I think it's best to land this with
roughly the current set of functionality, because this patch is useful
as is and adding everything above would make the pull request
significantly larger and harder to review.
---
## Changelog
### Added
* A new *LightProbe* component is available that specifies a bounding
region that an *EnvironmentMapLight* applies to. The combination of a
*LightProbe* and an *EnvironmentMapLight* offers *reflection probe*
functionality similar to that available in other engines.
[the corresponding feature in Blender's Eevee renderer]:
https://docs.blender.org/manual/en/latest/render/eevee/light_probes/reflection_cubemaps.html
[`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi
[glTF IBL Sampler]: https://github.com/KhronosGroup/glTF-IBL-Sampler
# Objective
`SceneSpawner::spawn_dynamic_sync` currently returns `()` on success,
which is inconsistent with the other `SceneSpawner::spawn_` methods that
all return an `InstanceId`. We need this ID to do useful work with the
newly-created data.
## Solution
Updated `SceneSpawner::spawn_dynamic_sync` to return `Result<InstanceId,
SceneSpawnError>` instead of `Result<(), SceneSpawnError>`
# Objective
Different platforms use their own implementations of several
mathematical functions (especially transcendental functions like sin,
cos, tan, atan, and so on) to provide hardware-level optimization using
intrinsics. This is good for performance, but bad when you expect
consistent outputs across machines.
[`libm`](https://github.com/rust-lang/libm) is a widely used crate that
provides mathematical functions that don't use intrinsics like `std`
functions. This allows bit-for-bit deterministic math across hardware,
which is crucial for things like cross-platform deterministic physics
simulation.
Glam has the `libm` feature for using [`libm` for the
math](d2871a151b/src/f32/math.rs (L35))
in its own types. This would be nice to expose as a feature in
`bevy_math`.
## Solution
Add `libm` feature to `bevy_math`. We could name it something like
`enhanced-determinism`, but this wouldn't be accurate for the rest of
Bevy, so I think just `libm` is more fitting and explicit.
# Objective
- Since #10702, the way bevy updates the window leads to major slowdowns
as seen in
- #11122
- #11220
- Slow is bad, furthermore, _very_ slow is _very_ bad. We should fix
this issue.
## Solution
- Move the app update code into the `Event::WindowEvent { event:
WindowEvent::RedrawRequested }` branch of the event loop.
- Run `window.request_redraw()` When `runner_state.redraw_requested`
- Instead of swapping `ControlFlow` between `Poll` and `Wait`, we always
keep it at `Wait`, and use `window.request_redraw()` to schedule an
immediate call to the event loop.
- `runner_state.redraw_requested` is set to `true` when
`UpdateMode::Continuous` and when a `RequestRedraw` event is received.
- Extract the redraw code into a separate function, because otherwise
I'd go crazy with the indentation level.
- Fix#11122.
## Testing
I tested the WASM builds as follow:
```sh
cargo run -p build-wasm-example -- --api webgl2 bevymark
python -m http.server --directory examples/wasm/ 8080
# Open browser at http://localhost:8080
```
On main, even spawning a couple sprites is super choppy. Even if it says
"300 FPS". While on this branch, it is smooth as butter.
I also found that it fixes all choppiness on window resize (tested on
Linux/X11). This was another issue from #10702 IIRC.
So here is what I tested:
- On `wasm`: `many_foxes` and `bevymark`, with `argh::from_env()`
commented out, otherwise we get a cryptic error.
- Both with `PresentMode::AutoVsync` and `PresentMode::AutoNoVsync`
- On main, it is consistently choppy.
- With this PR, the visible frame rate is consistent with the diagnostic
numbers
- On native (linux/x11) I ran similar tests, making sure that
`AutoVsync` limits to monitor framerate, and `AutoNoVsync` doesn't.
## Future work
Code could be improved, I wanted a quick solution easy to review, but we
really need to make the code more accessible.
- #9768
- ~~**`WinitSettings::desktop_app()` is completely borked.**~~ actually
broken on main as well
### Review guide
Consider enable the non-whitespace diff to see the _real_ change set.
# Objective
When `BlobVec::reserve` is called with an argument causing capacity
overflow, in release build capacity overflow is ignored, and capacity is
decreased.
I'm not sure it is possible to exploit this issue using public API of
`bevy_ecs`, but better fix it anyway.
## Solution
Check for capacity overflow.
# Objective
- Since #10520, assets are unloaded from RAM by default. This breaks a
number of scenario:
- using `load_folder`
- loading a gltf, then going through its mesh to transform them /
compute a collider / ...
- any assets/subassets scenario should be `Keep` as you can't know what
the user will do with the assets
- android suspension, where GPU memory is unloaded
- Alternative to #11202
## Solution
- Keep assets on CPU memory by default
# Objective
- Resolves#10913.
- Extend `Touches` with methods that are implemented on `ButtonInput`.
## Solution
- Add function `clear_just_pressed` that clears the `just_pressed` state
of the touch input.
- Add function `clear_just_released` that clears the `just_released`
state of the touch input.
- Add function `clear_just_canceled` that clears the `just_canceled`
state of the touch input.
- Add function `release` that changes state of the touch input from
`pressed` to `just_released`.
- Add function `release_all` that changes state of every touch input
from `pressed` to `just_released`
- Add function `clear` that clears `just_pressed`, `just_released` and
`just_canceled` data for every input.
- Add function `reset_all` that clears `pressed`, `just_pressed`,
`just_released` and `just_canceled` data for every input.
- Add tests for functions above.
# Objective
- Fix#11117 by implementing `Reflect` for `EntityHashMap`
## Solution
- By implementing `TypePath` for `EntityHash`, Bevy will automatically
implement `Reflect` for `EntityHashMap`
---
## Changelog
- `TypePath` is implemented for `EntityHash`
- A test called `entity_hashmap_should_impl_reflect` was created to
verify that #11117 was solved.
# Objective
In my code I use a lot of images as render targets.
I'd like some convenience methods for working with this type.
## Solution
- Allow `.into()` to construct a `RenderTarget`
- Add `.as_image()`
---
## Changelog
### Added
- `RenderTarget` can be constructed via `.into()` on a `Handle<Image>`
- `RenderTarget` new method: `as_image`
---------
Signed-off-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
Co-authored-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
# Objective
- Fixes#11187
## Solution
- Rename the `AddChild` struct to `PushChild`
- Rename the `AddChildInPlace` struct to `PushChildInPlace`
## Migration Guide
The struct `AddChild` has been renamed to `PushChild`, and the struct
`AddChildInPlace` has been renamed to `PushChildInPlace`.
# Objective
- Since #10911, example `button` crashes when clicking the button
```
thread 'main' panicked at .cargo/registry/src/index.crates.io-6f17d22bba15001f/accesskit_consumer-0.16.1/src/tree.rs:139:9:
assertion `left == right` failed
left: 1
right: 0
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
Encountered a panic in system `bevy_winit::accessibility::update_accessibility_nodes`!
Encountered a panic in system `bevy_app::main_schedule::Main::run_main`!
```
## Solution
- Re-add lost negation
# Objective
- Fixes#11119
## Solution
- Creation of the serialize feature to ui
---
## Changelog
### Changed
- Changed all the structs that implement Serialize and Deserialize to
only implement when feature is on
## Migration Guide
- If you want to use serialize and deserialize with types from bevy_ui,
you need to use the feature serialize in your TOML
```toml
[dependencies.bevy]
features = ["serialize"]
```
# Objective
Fixes Gizmos crash due to the persistence policy being set to `Unload`
## Solution
Change it to `Keep`
Co-authored-by: rqg <ranqingguo318@gmail.com>
# Objective
- No point in keeping Meshes/Images in RAM once they're going to be sent
to the GPU, and kept in VRAM. This saves a _significant_ amount of
memory (several GBs) on scenes like bistro.
- References
- https://github.com/bevyengine/bevy/pull/1782
- https://github.com/bevyengine/bevy/pull/8624
## Solution
- Augment RenderAsset with the capability to unload the underlying asset
after extracting to the render world.
- Mesh/Image now have a cpu_persistent_access field. If this field is
RenderAssetPersistencePolicy::Unload, the asset will be unloaded from
Assets<T>.
- A new AssetEvent is sent upon dropping the last strong handle for the
asset, which signals to the RenderAsset to remove the GPU version of the
asset.
---
## Changelog
- Added `AssetEvent::NoLongerUsed` and
`AssetEvent::is_no_longer_used()`. This event is sent when the last
strong handle of an asset is dropped.
- Rewrote the API for `RenderAsset` to allow for unloading the asset
data from the CPU.
- Added `RenderAssetPersistencePolicy`.
- Added `Mesh::cpu_persistent_access` for memory savings when the asset
is not needed except for on the GPU.
- Added `Image::cpu_persistent_access` for memory savings when the asset
is not needed except for on the GPU.
- Added `ImageLoaderSettings::cpu_persistent_access`.
- Added `ExrTextureLoaderSettings`.
- Added `HdrTextureLoaderSettings`.
## Migration Guide
- Asset loaders (GLTF, etc) now load meshes and textures without
`cpu_persistent_access`. These assets will be removed from
`Assets<Mesh>` and `Assets<Image>` once `RenderAssets<Mesh>` and
`RenderAssets<Image>` contain the GPU versions of these assets, in order
to reduce memory usage. If you require access to the asset data from the
CPU in future frames after the GLTF asset has been loaded, modify all
dependent `Mesh` and `Image` assets and set `cpu_persistent_access` to
`RenderAssetPersistencePolicy::Keep`.
- `Mesh` now requires a new `cpu_persistent_access` field. Set it to
`RenderAssetPersistencePolicy::Keep` to mimic the previous behavior.
- `Image` now requires a new `cpu_persistent_access` field. Set it to
`RenderAssetPersistencePolicy::Keep` to mimic the previous behavior.
- `MorphTargetImage::new()` now requires a new `cpu_persistent_access`
parameter. Set it to `RenderAssetPersistencePolicy::Keep` to mimic the
previous behavior.
- `DynamicTextureAtlasBuilder::add_texture()` now requires that the
`TextureAtlas` you pass has an `Image` with `cpu_persistent_access:
RenderAssetPersistencePolicy::Keep`. Ensure you construct the image
properly for the texture atlas.
- The `RenderAsset` trait has significantly changed, and requires
adapting your existing implementations.
- The trait now requires `Clone`.
- The `ExtractedAsset` associated type has been removed (the type itself
is now extracted).
- The signature of `prepare_asset()` is slightly different
- A new `persistence_policy()` method is now required (return
RenderAssetPersistencePolicy::Unload to match the previous behavior).
- Match on the new `NoLongerUsed` variant for exhaustive matches of
`AssetEvent`.
# Objective
- We want to use `static_assertions` to perform precise compile time
checks at testing time. In this PR, we add those checks to make sure
that `EntityHashMap` and `PreHashMap` are `Clone` (and we replace the
more clumsy previous tests)
- Fixes#11181
(will need to be rebased once
https://github.com/bevyengine/bevy/pull/11178 is merged)
---------
Co-authored-by: Charles Bournhonesque <cbournhonesque@snapchat.com>
![Screenshot](https://i.imgur.com/A4KzWFq.png)
# Objective
Lightmaps, textures that store baked global illumination, have been a
mainstay of real-time graphics for decades. Bevy currently has no
support for them, so this pull request implements them.
## Solution
The new `Lightmap` component can be attached to any entity that contains
a `Handle<Mesh>` and a `StandardMaterial`. When present, it will be
applied in the PBR shader. Because multiple lightmaps are frequently
packed into atlases, each lightmap may have its own UV boundaries within
its texture. An `exposure` field is also provided, to control the
brightness of the lightmap.
Note that this PR doesn't provide any way to bake the lightmaps. That
can be done with [The Lightmapper] or another solution, such as Unity's
Bakery.
---
## Changelog
### Added
* A new component, `Lightmap`, is available, for baked global
illumination. If your mesh has a second UV channel (UV1), and you attach
this component to the entity with that mesh, Bevy will apply the texture
referenced in the lightmap.
[The Lightmapper]: https://github.com/Naxela/The_Lightmapper
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
This PR is part of a project aimed at improving the API documentation of
`bevy_hierarchy`. Other PRs will be based on this.
This PR in particular is also an experiment in providing a high level
overview of the tools provided by a Bevy plugin/crate. It also provides
general information about universal invariants, so statement repetition
in crate items can be dramatically reduced.
## Other changes
The other PRs of this project that expand on this one:
- #10952
- #10953
- #10954
- #10955
- #10956
- #10957
---------
Co-authored-by: GitGhillie <jillisnoordhoek@gmail.com>
# Objective
- `EntityHashMap`, `EntityHashSet` and `PreHashMap` are currently not
Cloneable because of a missing trivial `Clone` bound for `EntityHash`
and `PreHash`. This PR makes them Cloneable.
(the parent struct `hashbrown::HashMap` requires the `HashBuilder` to be
`Clone` for the `HashMap` to be `Clone`, see:
https://github.com/rust-lang/hashbrown/blob/master/src/map.rs#L195)
## Solution
- Add a `Clone` bound to `PreHash` and `EntityHash`
---------
Co-authored-by: Charles Bournhonesque <cbournhonesque@snapchat.com>
# Objective
`bevy_math` re-exports Glam, but doesn't have a feature for enabling
`approx` for it. Many projects (including some of Bevy's own crates)
need `approx`, and it'd be nice if you didn't have to manually add Glam
to specify the feature for it.
## Solution
Add an `approx` feature to `bevy_math`.
# Objective
I often need a direction along one of the cartesian XYZ axes, and it
currently requires e.g. `Direction2d::from_normalized(Vec2::X)`, which
isn't ideal.
## Solution
Add direction constants that are the same as the ones on Glam types. I
also copied the doc comment format "A unit vector pointing along the ...
axis", but I can change it if there's a better wording for directions.
# Objective
I frequently encounter cases where I need to get the opposite direction.
This currently requires something like
`Direction2d::from_normalized(-*direction)`, which is very inconvenient.
## Solution
Implement `Neg` for `Direction2d` and `Direction3d`.
# Objective
If you have multiple windows, there is no way to determine which window
a `TouchInput` event applies to. This fixes that.
## Solution
- Add the window entity directly to `TouchInput`, just like the other
input events.
- Fixes#6011.
## Migration Guide
+ Add a `window` field when constructing or destructuring a `TouchInput`
struct.
This expands upon https://github.com/bevyengine/bevy/pull/11134.
I found myself needing `tonemapping_pipeline_key` for some custom 2d
draw functions. #11134 exported the 3d version of
`tonemapping_pipeline_key` and this PR exports the 2d version. I also
made `alpha_mode_pipeline_key` public for good measure.
# Objective
When panic handler prints to stdout instead of stderr, I've observed two
outcomes with this PR test #11169:
- Sometimes output is mixed up, so it is not clear where one record ends
and another stards
- Sometimes output is lost
## Solution
Print to stderr.
## Changelog
- Panic handler in `LogPlugin` writes to stderr instead of stdin.
# Objective
`SystemName` might be useful in systems which accept `&mut World`.
## Solution
- `impl ExclusiveSystemParam for SystemName`
- move `SystemName` into a separate file, because it no longer belongs
to a file which defines `SystemParam`
- add a test for new impl, and for existing impl
## Changelog
- `impl ExclusiveSystemParam for SystemName`
Turns out whenever a normal prepass was active (which includes whenever
you use SSAO) we were attempting to read the normals from the prepass
for the specular transmissive material. Since transmissive materials
don't participate in the prepass (unlike opaque materials) we were
reading the normals from “behind” the mesh, producing really weird
visual results.
# Objective
- Fixes#11112.
## Solution
- We introduce a new `READS_VIEW_TRANSMISSION_TEXTURE` mesh pipeline
key;
- We set it whenever the material properties has the
`reads_view_transmission_texture` flag set; (i.e. the material is
transmissive)
- If this key is set we prevent the reading of normals from the prepass,
by not setting the `LOAD_PREPASS_NORMALS` shader def.
---
## Changelog
### Fixed
- Specular transmissive materials no longer attempt to erroneously load
prepass normals, and now work correctly even with the normal prepass
active (e.g. when using SSAO)
# Objective
- Refactor collide code and add tests.
## Solution
- Rebase the changes made in #4485.
Co-authored-by: Eduardo Canellas de Oliveira <eduardo.canellas@bemobi.com>
# Objective
There are a lot of doctests that are `ignore`d for no documented reason.
And that should be fixed.
## Solution
I searched the bevy repo with the regex ` ```[a-z,]*ignore ` in order to
find all `ignore`d doctests. For each one of the `ignore`d doctests, I
did the following steps:
1. Attempt to remove the `ignored` attribute while still passing the
test. I did this by adding hidden dummy structs and imports.
2. If step 1 doesn't work, attempt to replace the `ignored` attribute
with the `no_run` attribute while still passing the test.
3. If step 2 doesn't work, keep the `ignored` attribute but add
documentation for why the `ignored` attribute was added.
---------
Co-authored-by: François <mockersf@gmail.com>
# Objective
Fixes#11050
Rename ArchetypeEntity::entity to ArchetypeEntity::id to be consistent
with `EntityWorldMut`, `EntityMut` and `EntityRef`.
## Migration Guide
The method `ArchetypeEntity::entity` has been renamed to
`ArchetypeEntity::id`
# Objective
- There is an warning about non snake case on system_param.rs generated
by a macro
## Solution
- Allow non snake case on the function at fault
# Objective
Implement `ExclusiveSystemParam` for `PhantomData`.
For the same reason `SystemParam` impl exists: to simplify writing
generic code.
786abbf3f5/crates/bevy_ecs/src/system/system_param.rs (L1557)
Also for consistency.
## Solution
`impl ExclusiveSystemParam for PhantomData`.
## Changelog
Added: PhantomData<T> now implements ExclusiveSystemParam.
# Objective
Mostly for consistency.
## Solution
```rust
impl ExclusiveSystemParam for WorldId
```
- Also add a test for `SystemParam for WorldId`
## Changelog
Added: Worldd now implements ExclusiveSystemParam.
# Objective
- Custom render passes, or future passes in the engine (such as
https://github.com/bevyengine/bevy/pull/10164) need a better way to know
and indicate to the core passes whether the view color/depth/prepass
attachments have been cleared or not yet this frame, to know if they
should clear it themselves or load it.
## Solution
- For all render targets (depth textures, shadow textures, prepass
textures, main textures) use an atomic bool to track whether or not each
texture has been cleared this frame. Abstracted away in the new
ColorAttachment and DepthAttachment wrappers.
---
## Changelog
- Changed `ViewTarget::get_color_attachment()`, removed arguments.
- Changed `ViewTarget::get_unsampled_color_attachment()`, removed
arguments.
- Removed `Camera3d::clear_color`.
- Removed `Camera2d::clear_color`.
- Added `Camera::clear_color`.
- Added `ExtractedCamera::clear_color`.
- Added `ColorAttachment` and `DepthAttachment` wrappers.
- Moved `ClearColor` and `ClearColorConfig` from
`bevy::core_pipeline::clear_color` to `bevy::render::camera`.
- Core render passes now track when a texture is first bound as an
attachment in order to decide whether to clear or load it.
## Migration Guide
- Remove arguments to `ViewTarget::get_color_attachment()` and
`ViewTarget::get_unsampled_color_attachment()`.
- Configure clear color on `Camera` instead of on `Camera3d` and
`Camera2d`.
- Moved `ClearColor` and `ClearColorConfig` from
`bevy::core_pipeline::clear_color` to `bevy::render::camera`.
- `ViewDepthTexture` must now be created via the `new()` method
---------
Co-authored-by: vero <email@atlasdostal.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Fix ci hang, so we can merge pr's again.
## Solution
- switch ppa action to use mesa stable versions
https://launchpad.net/~kisak/+archive/ubuntu/turtle
- use commit from #11123
---------
Co-authored-by: Stepan Koltsov <stepan.koltsov@gmail.com>
# Objective
- Provides an alternate solution to the one implemented in #10791
without breaking changes.
## Solution
- Changes the bounds of macro-generated `TypePath` implementations to
universally ignore the types of fields, rather than use the same bounds
as other implementations. I think this is a more holistic solution than
#10791 because it totally erases the finicky bounds we currently
generate, helping to untangle the reflection trait system.
# Objective
- Make the implementation order consistent between all sources to fit
the order in the trait.
## Solution
- Change the implementation order.
Matches versioning & features from other Cargo.toml files in the
project.
# Objective
Resolves#10932
## Solution
Added smallvec to the bevy_utils cargo.toml and added a line to
re-export the crate. Target version and features set to match what's
used in the other bevy crates.
# Objective
Register and Serialize `Camera3dDepthTextureUsage` and
`ScreenSpaceTransmissionQuality`.
Fixes: #11036
## Solution
Added the relevant derives for reflection and serialization and type
registrations.
# Objective
Outlines are drawn for UI nodes with `Display::None` set and their
descendants. They should not be visible.
## Solution
Make all Nodes with `Display::None` inherit an empty clipping rect,
ensuring that the outlines are not visible.
Fixes#10940
---
## Changelog
* In `update_clipping_system` if a node has `Display::None` set, clip
the entire node and all its descendants by replacing the inherited clip
with a default rect (which is empty)
# Objective
The documentation for the `States` trait contains an error! There is a
single colon missing from `OnExit<T:Variant>`.
## Solution
Replace `OnExit<T:Variant>` with `OnExit<T::Variant>`. (Notice the added
colon.)
---
## Changelog
### Added
- Added missing colon in `States` documentation.
---
Bevy community, you may now rest easy.
The error conditions were not documented, this requires the user to
inspect the source code to know when to expect a `None`.
Error conditions should always be documented, so we document them.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Improves #11052
# Changelog
- Remove `Window::fit_canvas_to_parent`, as its resizing on wasm now
respects its CSS configuration.
## Migration Guide
- Remove uses of `Window::fit_canvas_to_parent` in favor of CSS
properties, for example:
```css
canvas {
width: 100%;
height: 100%;
}
```
# Objective
- After #10336, some gltf files fail to load (examples
custom_gltf_vertex_attribute, gltf_skinned_mesh, ...)
- Fix them
## Solution
- Allow padding in base 64 decoder
# Objective
Fix#10731.
## Solution
Rename `App::add_state<T>(&mut self)` to `init_state`, and add
`App::insert_state<T>(&mut self, state: T)`. I decided on these names
because they are more similar to `init_resource` and `insert_resource`.
I also removed the `States` trait's requirement for `Default`. Instead,
`init_state` requires `FromWorld`.
---
## Changelog
- Renamed `App::add_state` to `init_state`.
- Added `App::insert_state`.
- Removed the `States` trait's requirement for `Default`.
## Migration Guide
- Renamed `App::add_state` to `init_state`.
# Objective
- Update winit dependency to 0.29
## Changelog
### KeyCode changes
- Removed `ScanCode`, as it was [replaced by
KeyCode](https://github.com/rust-windowing/winit/blob/master/CHANGELOG.md#0292).
- `ReceivedCharacter.char` is now a `SmolStr`, [relevant
doc](https://docs.rs/winit/latest/winit/event/struct.KeyEvent.html#structfield.text).
- Changed most `KeyCode` values, and added more.
KeyCode has changed meaning. With this PR, it refers to physical
position on keyboard rather than the printed letter on keyboard keys.
In practice this means:
- On QWERTY keyboard layouts, nothing changes
- On any other keyboard layout, `KeyCode` no longer reflects the label
on key.
- This is "good". In bevy 0.12, when you used WASD for movement, users
with non-QWERTY keyboards couldn't play your game! This was especially
bad for non-latin keyboards. Now, WASD represents the physical keys. A
French player will press the ZQSD keys, which are near each other,
Kyrgyz players will use "Цфыв".
- This is "bad" as well. You can't know in advance what the label of the
key for input is. Your UI says "press WASD to move", even if in reality,
they should be pressing "ZQSD" or "Цфыв". You also no longer can use
`KeyCode` for text inputs. In any case, it was a pretty bad API for text
input. You should use `ReceivedCharacter` now instead.
### Other changes
- Use `web-time` rather than `instant` crate.
(https://github.com/rust-windowing/winit/pull/2836)
- winit did split `run_return` in `run_onDemand` and `pump_events`, I
did the same change in bevy_winit and used `pump_events`.
- Removed `return_from_run` from `WinitSettings` as `winit::run` now
returns on supported platforms.
- I left the example "return_after_run" as I think it's still useful.
- This winit change is done partly to allow to create a new window after
quitting all windows: https://github.com/emilk/egui/issues/1918 ; this
PR doesn't address.
- added `width` and `height` properties in the `canvas` from wasm
example
(https://github.com/bevyengine/bevy/pull/10702#discussion_r1420567168)
## Known regressions (important follow ups?)
- Provide an API for reacting when a specific key from current layout
was released.
- possible solutions: use winit::Key from winit::KeyEvent ; mapping
between KeyCode and Key ; or .
- We don't receive characters through alt+numpad (e.g. alt + 151 = "ù")
anymore ; reproduced on winit example "ime". maybe related to
https://github.com/rust-windowing/winit/issues/2945
- (windows) Window content doesn't refresh at all when resizing. By
reading https://github.com/rust-windowing/winit/issues/2900 ; I suspect
we should just fire a `window.request_redraw();` from `AboutToWait`, and
handle actual redrawing within `RedrawRequested`. I'm not sure how to
move all that code so I'd appreciate it to be a follow up.
- (windows) unreleased winit fix for using set_control_flow in
AboutToWait https://github.com/rust-windowing/winit/issues/3215 ; ⚠️ I'm
not sure what the implications are, but that feels bad 🤔
## Follow up
I'd like to avoid bloating this PR, here are a few follow up tasks
worthy of a separate PR, or new issue to track them once this PR is
closed, as they would either complicate reviews, or at risk of being
controversial:
- remove CanvasParentResizePlugin
(https://github.com/bevyengine/bevy/pull/10702#discussion_r1417068856)
- avoid mentionning explicitly winit in docs from bevy_window ?
- NamedKey integration on bevy_input:
https://github.com/rust-windowing/winit/pull/3143 introduced a new
NamedKey variant. I implemented it only on the converters but we'd
benefit making the same changes to bevy_input.
- Add more info in KeyboardInput
https://github.com/bevyengine/bevy/pull/10702#pullrequestreview-1748336313
- https://github.com/bevyengine/bevy/pull/9905 added a workaround on a
bug allegedly fixed by winit 0.29. We should check if it's still
necessary.
- update to raw_window_handle 0.6
- blocked by wgpu
- Rename `KeyCode` to `PhysicalKeyCode`
https://github.com/bevyengine/bevy/pull/10702#discussion_r1404595015
- remove `instant` dependency, [replaced
by](https://github.com/rust-windowing/winit/pull/2836) `web_time`), we'd
need to update to :
- fastrand >= 2.0
- [`async-executor`](https://github.com/smol-rs/async-executor) >= 1.7
- [`futures-lite`](https://github.com/smol-rs/futures-lite) >= 2.0
- Verify license, see
[discussion](https://github.com/bevyengine/bevy/pull/8745#discussion_r1402439800)
- we might be missing a short notice or description of changes made
- Consider using https://github.com/rust-windowing/cursor-icon directly
rather than vendoring it in bevy.
- investigate [this
unwrap](https://github.com/bevyengine/bevy/pull/8745#discussion_r1387044986)
(`winit_window.canvas().unwrap();`)
- Use more good things about winit's update
- https://github.com/bevyengine/bevy/pull/10689#issuecomment-1823560428
## Migration Guide
This PR should have one.
# Objective
- Update base64 requirement from 0.13.0 to 0.21.5.
- Closes#10317.
## Solution
- Bumped `base64` requirement and manually migrated code to fix a
breaking change after updating.
# Objective
`Has<T>` in some niche cases may behave in an unexpected way.
Specifically, when using `Query::get` on a `Has<T>` with a despawned
entity.
## Solution
Add precision about cases wehre `Query::get` could return an `Err`.
Use `'w` for world lifetime consistently.
When implementing system params, useful to look at how other params are
implemented. `'w` makes it clear it is world, not state.
# Objective
- Fixes#10587, where the `Aabb` component of entities with `Sprite` and
`Handle<Image>` components was not automatically updated when
`Sprite::custom_size` changed.
## Solution
- In the query for entities with `Sprite` components in
`calculate_bounds_2d`, use the `Changed` filter to detect for `Sprites`
that changed as well as sprites that do not have `Aabb` components. As
noted in the issue, this will cause the `Aabb` to be recalculated when
other fields of the `Sprite` component change, but calculating the
`Aabb` for sprites is trivial.
---
## Changelog
- Modified query for entities with `Sprite` components in
`calculate_bounds_2d`, so that entities with `Sprite` components that
changed will also have their AABB recalculated.
# Objective
- Provide way to check whether multiple inputs are pressed.
## Solution
- Add `all_pressed` method that checks if all inputs are currently being
pressed.
# Objective
- Allow checking if a resource has changed by its ComponentId
---
## Changelog
- Added `World::is_resource_changed_by_id()` and
`World::is_resource_added_by_id()`.
# Objective
Being able to do:
```rust
ev_scene_ready.read().next().unwrap();
```
Which currently isn't possible because `SceneInstanceReady` doesn't
implement `Debug`.
## Solution
Implement `Debug` for `SceneInstanceReady`.
---
## Changelog
### Added
- Implement Std traits for `SceneInstanceReady`.
# Objective
- Fix an inconsistency in the calculation of aspect ratio's.
- Fixes#10288
## Solution
- Created an intermediate `AspectRatio` struct, as suggested in the
issue. This is currently just used in any places where aspect ratio
calculations happen, to prevent doing it wrong. In my and @mamekoro 's
opinion, it would be better if this was used instead of a normal `f32`
in various places, but I didn't want to make too many changes to begin
with.
## Migration Guide
- Anywhere where you are currently expecting a f32 when getting aspect
ratios, you will now receive a `AspectRatio` struct. this still holds
the same value.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
The definition of several `QueryState` methods use unnecessary explicit
lifetimes, which adds to visual noise.
## Solution
Elide the lifetimes.
# Objective
- bevy_sprite crate is missing docs for important types. `Sprite` being
undocumented was especially confusing for me even though it is one of
the first types I need to learn.
## Solution
- Improves the situation a little by adding some documentations.
I'm unsure about my understanding of functionality and writing. I'm
happy to be pointed out any mistakes.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Federico Rinaldi <gisquerin@gmail.com>
# Objective
`Instant` and `Duration` from the `instant` crate are exposed in
`bevy_utils` to have a single abstraction for native/wasm.
It would be useful to have the same thing for
[`SystemTime`](https://doc.rust-lang.org/std/time/struct.SystemTime.html).
---
## Changelog
### Added
- `bevy_utils` now re-exposes the `instant::SystemTime` struct
Co-authored-by: Charles Bournhonesque <cbournhonesque@snapchat.com>
# Objective
- Users are often confused when their command effects are not visible in
the next system. This PR auto inserts sync points if there are deferred
buffers on a system and there are dependents on that system (systems
with after relationships).
- Manual sync points can lead to users adding more than needed and it's
hard for the user to have a global understanding of their system graph
to know which sync points can be merged. However we can easily calculate
which sync points can be merged automatically.
## Solution
1. Add new edge types to allow opting out of new behavior
2. Insert an sync point for each edge whose initial node has deferred
system params.
3. Reuse nodes if they're at the number of sync points away.
* add opt outs for specific edges with `after_ignore_deferred`,
`before_ignore_deferred` and `chain_ignore_deferred`. The
`auto_insert_apply_deferred` boolean on `ScheduleBuildSettings` can be
set to false to opt out for the whole schedule.
## Perf
This has a small negative effect on schedule build times.
```text
group auto-sync main-for-auto-sync
----- ----------- ------------------
build_schedule/1000_schedule 1.06 2.8±0.15s ? ?/sec 1.00 2.7±0.06s ? ?/sec
build_schedule/1000_schedule_noconstraints 1.01 26.2±0.88ms ? ?/sec 1.00 25.8±0.36ms ? ?/sec
build_schedule/100_schedule 1.02 13.1±0.33ms ? ?/sec 1.00 12.9±0.28ms ? ?/sec
build_schedule/100_schedule_noconstraints 1.08 505.3±29.30µs ? ?/sec 1.00 469.4±12.48µs ? ?/sec
build_schedule/500_schedule 1.00 485.5±6.29ms ? ?/sec 1.00 485.5±9.80ms ? ?/sec
build_schedule/500_schedule_noconstraints 1.00 6.8±0.10ms ? ?/sec 1.02 6.9±0.16ms ? ?/sec
```
---
## Changelog
- Auto insert sync points and added `after_ignore_deferred`,
`before_ignore_deferred`, `chain_no_deferred` and
`auto_insert_apply_deferred` APIs to opt out of this behavior
## Migration Guide
- `apply_deferred` points are added automatically when there is ordering
relationship with a system that has deferred parameters like `Commands`.
If you want to opt out of this you can switch from `after`, `before`,
and `chain` to the corresponding `ignore_deferred` API,
`after_ignore_deferred`, `before_ignore_deferred` or
`chain_ignore_deferred` for your system/set ordering.
- You can also set `ScheduleBuildSettings::auto_insert_sync_points` to
`false` if you want to do it for the whole schedule. Note that in this
mode you can still add `apply_deferred` points manually.
- For most manual insertions of `apply_deferred` you should remove them
as they cannot be merged with the automatically inserted points and
might reduce parallelizability of the system graph.
## TODO
- [x] remove any apply_deferred used in the engine
- [x] ~~decide if we should deprecate manually using apply_deferred.~~
We'll still allow inserting manual sync points for now for whatever edge
cases users might have.
- [x] Update migration guide
- [x] rerun schedule build benchmarks
---------
Co-authored-by: Joseph <21144246+JoJoJet@users.noreply.github.com>
# Objective
- Finish the work done in #8942 .
## Solution
- Rebase the changes made in #8942 and fix the issues stopping it from
being merged earlier
---------
Co-authored-by: Thomas <1234328+thmsgntz@users.noreply.github.com>
# Objective
Make direction construction a bit more ergonomic.
## Solution
Add `Direction2d::from_xy` and `Direction3d::from_xyz`, similar to
`Transform::from_xyz`:
```rust
let dir2 = Direction2d::from_xy(0.5, 0.5).unwrap();
let dir3 = Direction3d::from_xyz(0.5, 0.5, 0.5).unwrap();
```
This can be a bit cleaner than using `new`:
```rust
let dir2 = Direction2d::new(Vec2::new(0.5, 0.5)).unwrap();
let dir3 = Direction3d::new(Vec3::new(0.5, 0.5, 0.5)).unwrap();
```
Fixes https://github.com/bevyengine/bevy/issues/10974
# Objective
Duplicate the ordering logic of the `Main` schedule into the `FixedMain`
schedule.
---
## Changelog
- `FixedUpdate` is no longer the main schedule ran in
`RunFixedUpdateLoop`, `FixedMain` has replaced this and has a similar
structure to `Main`.
## Migration Guide
- Usage of `RunFixedUpdateLoop` should be renamed to `RunFixedMainLoop`.
# Objective
Fixes#10968
## Solution
Pull startup schedules from a list of `ScheduleLabel`s in the same way
the update schedules are handled.
---
## Changelog
- Added `MainScheduleOrder::startup_labels` to allow the editing of the
startup schedule order.
## Migration Guide
- Added a new field to `MainScheduleOrder`, `startup_labels`, for
editing the startup schedule order.
# Objective
Keep up to date with wgpu.
## Solution
Update the wgpu version.
Currently blocked on naga_oil updating to naga 0.14 and releasing a new
version.
3d scenes (or maybe any scene with lighting?) currently don't render
anything due to
```
error: naga_oil bug, please file a report: composer failed to build a valid header: Type [2] '' is invalid
= Capability Capabilities(CUBE_ARRAY_TEXTURES) is required
```
I'm not sure what should be passed in for `wgpu::InstanceFlags`, or if we want to make the gles3minorversion configurable (might be useful for debugging?)
Currently blocked on https://github.com/bevyengine/naga_oil/pull/63, and https://github.com/gfx-rs/wgpu/issues/4569 to be fixed upstream in wgpu first.
## Known issues
Amd+windows+vulkan has issues with texture_binding_arrays (see the image [here](https://github.com/bevyengine/bevy/pull/10266#issuecomment-1819946278)), but that'll be fixed in the next wgpu/naga version, and you can just use dx12 as a workaround for now (Amd+linux mesa+vulkan texture_binding_arrays are fixed though).
---
## Changelog
Updated wgpu to 0.18, naga to 0.14.2, and naga_oil to 0.11.
- Windows desktop GL should now be less painful as it no longer requires Angle.
- You can now toggle shader validation and debug information for debug and release builds using `WgpuSettings.instance_flags` and [InstanceFlags](https://docs.rs/wgpu/0.18.0/wgpu/struct.InstanceFlags.html)
## Migration Guide
- `RenderPassDescriptor` `color_attachments` (as well as `RenderPassColorAttachment`, and `RenderPassDepthStencilAttachment`) now use `StoreOp::Store` or `StoreOp::Discard` instead of a `boolean` to declare whether or not they should be stored.
- `RenderPassDescriptor` now have `timestamp_writes` and `occlusion_query_set` fields. These can safely be set to `None`.
- `ComputePassDescriptor` now have a `timestamp_writes` field. This can be set to `None` for now.
- See the [wgpu changelog](https://github.com/gfx-rs/wgpu/blob/trunk/CHANGELOG.md#v0180-2023-10-25) for additional details
# Objective
- Make the implementation order consistent between all sources to fit
the order in the trait.
## Solution
- Change the implementation order.
# Objective
A workaround for a webgl issue was introduced in #9383 but one function
for mesh2d was missed.
## Solution
Applied the migration guide from #9383 in
`mesh2d_normal_local_to_world()
Note: I'm not using normals so I have not tested the bug & fix
# Objective
The documentation for `AnimationPlayer::play` mentions a non-existent
`transition_duration` argument from an old iteration of the API. It's
confusing.
## Solution
Remove the offending sentence.
# Objective
Since #10776 split `WorldQuery` to `WorldQueryData` and
`WorldQueryFilter`, it should be clear that the query is actually
composed of two parts. It is not factually correct to call "query" only
the data part. Therefore I suggest to rename the `Q` parameter to `D` in
`Query` and related items.
As far as I know, there shouldn't be breaking changes from renaming
generic type parameters.
## Solution
I used a combination of rust-analyzer go to reference and `Ctrl-F`ing
various patterns to catch as many cases as possible. Hopefully I got
them all. Feel free to check if you're concerned of me having missed
some.
## Notes
This and #10779 have many lines in common, so merging one will cause a
lot of merge conflicts to the other.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- The example in the docs is unsound.
Demo:
```rust
#[derive(Resource)]
struct MyRes(u32);
fn main() {
let mut w = World::new();
w.insert_resource(MyRes(0));
let (mut res, comp) = split_world_access(&mut w);
let mut r1 = res.get_resource_mut::<MyRes>().unwrap();
let mut r2 = res.get_resource_mut::<MyRes>().unwrap();
*r1 = MyRes(1);
*r2 = MyRes(2);
}
```
The API in the example allows aliasing mutable references to the same
resource. Miri also complains when running this.
## Solution
- Change the example API to make the returned `Mut` borrow from the
`OnlyResourceAccessWorld` instead of borrowing from the world via `'w`.
This prevents obtaining more than one `Mut` at the same time from it.
I didn't notice minus where vertices are generated, so could not
understand the order there.
Adding a comment to help the next person who is going to understand Bevy
by reading its code.
# Objective
- Reduce nesting in `process_handle_drop_internal()`.
- Related to #10896.
## Solution
- Use early returns when possible.
- Reduced from 9 levels of indents to 4.
# Objective
add `RenderLayers` awareness to lights. lights default to
`RenderLayers::layer(0)`, and must intersect the camera entity's
`RenderLayers` in order to affect the camera's output.
note that lights already use renderlayers to filter meshes for shadow
casting. this adds filtering lights per view based on intersection of
camera layers and light layers.
fixes#3462
## Solution
PointLights and SpotLights are assigned to individual views in
`assign_lights_to_clusters`, so we simply cull the lights which don't
match the view layers in that function.
DirectionalLights are global, so we
- add the light layers to the `DirectionalLight` struct
- add the view layers to the `ViewUniform` struct
- check for intersection before processing the light in
`apply_pbr_lighting`
potential issue: when mesh/light layers are smaller than the view layers
weird results can occur. e.g:
camera = layers 1+2
light = layers 1
mesh = layers 2
the mesh does not cast shadows wrt the light as (1 & 2) == 0.
the light affects the view as (1+2 & 1) != 0.
the view renders the mesh as (1+2 & 2) != 0.
so the mesh is rendered and lit, but does not cast a shadow.
this could be fixed (so that the light would not affect the mesh in that
view) by adding the light layers to the point and spot light structs,
but i think the setup is pretty unusual, and space is at a premium in
those structs (adding 4 bytes more would reduce the webgl point+spot
light max count to 240 from 256).
I think typical usage is for cameras to have a single layer, and
meshes/lights to maybe have multiple layers to render to e.g. minimaps
as well as primary views.
if there is a good use case for the above setup and we should support
it, please let me know.
---
## Migration Guide
Lights no longer affect all `RenderLayers` by default, now like cameras
and meshes they default to `RenderLayers::layer(0)`. To recover the
previous behaviour and have all lights affect all views, add a
`RenderLayers::all()` component to the light entity.
# Objective
Printing `DynamicStruct` with a debug format does not show the contained
type anymore. For instance, in `examples/reflection/reflection.rs`,
adding `dbg!(&reflect_value);` to line 96 will print:
```rust
[examples/reflection/reflection.rs:96] &reflect_value = DynamicStruct(bevy_reflect::DynamicStruct {
a: 4,
nested: DynamicStruct(bevy_reflect::DynamicStruct {
b: 8,
}),
})
```
## Solution
Show the represented type instead (`reflection::Foo` and
`reflection::Bar` in this case):
```rust
[examples/reflection/reflection.rs:96] &reflect_value = DynamicStruct(reflection::Foo {
a: 4,
nested: DynamicStruct(reflection::Bar {
b: 8,
}),
})
```
---------
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
The `Despawn` command breaks the hierarchy whenever you use it if the
despawned entity has a parent or any children. This is a serious footgun
because the `Despawn` command has the shortest name, the behavior is
unexpected and not likely to be what you want, and the crash that it
causes can be very difficult to track down.
## Solution
Until this can be fixed by relations, add a note mentioning the footgun
in the documentation.
## Solution
`Commands.remove` and `.retain` (because I copied `remove`s doc)
referenced `EntityWorldMut.remove` and `retain` for more detail but the
`Commands` docs are much more detailed (which makes sense because it is
the most common api), so I have instead inverted this so that
`EntityWorldMut` docs link to `Commands`.
I also made `EntityWorldMut.despawn` reference `World.despawn` for more
details, like `Commands.despawn` does.
# Objective
Fixes#5891.
For mikktspace normal maps, normals must be renormalized in vertex
shaders to match the way mikktspace bakes vertex tangents and normal
maps so that the exact inverse process is applied when shading.
However, for invalid normals like `vec3<f32>(0.0, 0.0, 0.0)`, this
normalization causes NaN values, and because it's in the vertex shader,
it affects the entire triangle and causes it to be shaded as black:
![incorrectly shaded
cone](https://github.com/bevyengine/bevy/assets/57632562/3334b3a9-f72a-4a08-853e-8077a346f5c9)
*A cone with a tip that has a vertex normal of [0, 0, 0], causing the
mesh to be shaded as black.*
In some cases, normals of zero are actually *useful*. For example, a
smoothly shaded cone without creases requires the apex vertex normal to
be zero, because there is no singular normal that works correctly, so
the apex shouldn't contribute to the overall shading. Duplicate vertices
for the apex fix some shading issues, but it causes visible creases and
is more expensive. See #5891 and #10298 for more details.
For correctly shaded cones and other similar low-density shapes with
sharp tips, vertex normals of zero can not be normalized in the vertex
shader.
## Solution
Only normalize the vertex normals and tangents in the vertex shader if
the normal isn't [0, 0, 0]. This way, mikktspace normal maps should
still work for everything except the zero normals, and the zero normals
will only be normalized in the fragment shader.
This allows us to render cones correctly:
![smooth cone with some
banding](https://github.com/bevyengine/bevy/assets/57632562/6b36e264-22c6-453b-a6de-c404b314ca1a)
Notice how there is still a weird shadow banding effect in one area. I
noticed that it can be fixed by normalizing
[here](d2614f2d80/crates/bevy_pbr/src/render/pbr_functions.wgsl (L51)),
which produces a perfectly smooth cone without duplicate vertices:
![smooth
cone](https://github.com/bevyengine/bevy/assets/57632562/64f9ad5d-b249-4eae-880b-a1e61e07ae73)
I didn't add this change yet, because it seems a bit arbitrary. I can
add it here if that'd be useful or make another PR though.
# Objective
`update_accessibility_nodes` is one of the most nested functions in the
entire Bevy repository, with a maximum of 9 levels of indentations. This
PR refactors it down to 3 levels of indentations, while improving
readability on other fronts. The result is a function that is actually
understandable at a first glance.
- This is a proof of concept to demonstrate that it is possible to
gradually lower the nesting limit proposed by #10896.
PS: I read AccessKit's documentation, but I don't have experience with
it. Therefore, naming of variables and subroutines may be a bit off.
PS2: I don't know if the test suite covers the functionality of this
system, but since I've spent quite some time on it and the changes were
simple, I'm pretty confident the refactor is functionally equivalent to
the original.
## Solution
I documented each change with a commit, but as a summary I did the
following to reduce nesting:
- I moved from `if-let` blocks to `let-else` statements where
appropriate to reduce rightward shift
- I extracted the closure body to a new function `update_adapter`
- I factored out parts of `update_adapter` into new functions
`queue_node_for_update` and `add_children_nodes`
**Note for reviewers:** GitHub's diff viewer is not the greatest in
showing horizontal code shifts, therefore you may want to use a
different tool like VSCode to review some commits, especially the second
one (anyway, that commit is very straightforward, despite changing many
lines).
# Objective
A nodes outline should be clipped using its own clipping rect, not its
parents.
fixes#10921
## Solution
Clip outlines by the node's own clipping rect, not the parent's.
If you compare the `overflow` ui example in main with this PR, you'll
see that the outlines that appear when you hover above the images are
now clipped along with the images.
---
## Changelog
* Outlines are now clipped using the node's own clipping rect, not the
parent's.
# Objective
- Improve readability.
- Somewhat relates to #10896.
## Solution
- Use early returns to minimize nesting.
- Change `emitter_translation` to use `if let` instead of `map`.
# Objective
The `update_emitter_positions`, and `update_listener_positions` systems
are added for every call to `add_audio_source`.
Instead, add them once in the `AudioPlugin` directly.
Also merged the calls to `add_systems`.
Caught while working on my schedule visualizer c:
# Objective
Test more complex function signatures for exclusive systems, and test
that `StaticSystemParam` is indeed a `SystemParam`.
I mean, it currently works, but might as well add a test for it.
# Objective
- Resolves#10853
## Solution
- ~~Changed the name of `Input` struct to `PressableInput`.~~
- Changed the name of `Input` struct to `ButtonInput`.
## Migration Guide
- Breaking Change: Users need to rename `Input` to `ButtonInput` in
their projects.
# Objective
A better alternative version of #10843.
Currently, Bevy has a single `Ray` struct for 3D. To allow better
interoperability with Bevy's primitive shapes (#10572) and some third
party crates (that handle e.g. spatial queries), it would be very useful
to have separate versions for 2D and 3D respectively.
## Solution
Separate `Ray` into `Ray2d` and `Ray3d`. These new structs also take
advantage of the new primitives by using `Direction2d`/`Direction3d` for
the direction:
```rust
pub struct Ray2d {
pub origin: Vec2,
pub direction: Direction2d,
}
pub struct Ray3d {
pub origin: Vec3,
pub direction: Direction3d,
}
```
and by using `Plane2d`/`Plane3d` in `intersect_plane`:
```rust
impl Ray2d {
// ...
pub fn intersect_plane(&self, plane_origin: Vec2, plane: Plane2d) -> Option<f32> {
// ...
}
}
```
---
## Changelog
### Added
- `Ray2d` and `Ray3d`
- `Ray2d::new` and `Ray3d::new` constructors
- `Plane2d::new` and `Plane3d::new` constructors
### Removed
- Removed `Ray` in favor of `Ray3d`
### Changed
- `direction` is now a `Direction2d`/`Direction3d` instead of a vector,
which provides guaranteed normalization
- `intersect_plane` now takes a `Plane2d`/`Plane3d` instead of just a
vector for the plane normal
- `Direction2d` and `Direction3d` now derive `Serialize` and
`Deserialize` to preserve ray (de)serialization
## Migration Guide
`Ray` has been renamed to `Ray3d`.
### Ray creation
Before:
```rust
Ray {
origin: Vec3::ZERO,
direction: Vec3::new(0.5, 0.6, 0.2).normalize(),
}
```
After:
```rust
// Option 1:
Ray3d {
origin: Vec3::ZERO,
direction: Direction3d::new(Vec3::new(0.5, 0.6, 0.2)).unwrap(),
}
// Option 2:
Ray3d::new(Vec3::ZERO, Vec3::new(0.5, 0.6, 0.2))
```
### Plane intersections
Before:
```rust
let result = ray.intersect_plane(Vec2::X, Vec2::Y);
```
After:
```rust
let result = ray.intersect_plane(Vec2::X, Plane2d::new(Vec2::Y));
```
# Objective
Implement `TryFrom<Vec2>`/`TryFrom<Vec3>` for direction primitives as
considered in #10857.
## Solution
Implement `TryFrom` for the direction primitives.
These are all equivalent:
```rust
let dir2d = Direction2d::try_from(Vec2::new(0.5, 0.5)).unwrap();
let dir2d = Vec2::new(0.5, 0.5).try_into().unwrap(); // (assumes that the type is inferred)
let dir2d = Direction2d::new(Vec2::new(0.5, 0.5)).unwrap();
```
For error cases, an `Err(InvalidDirectionError)` is returned. It
contains the type of failure:
```rust
/// An error indicating that a direction is invalid.
#[derive(Debug, PartialEq)]
pub enum InvalidDirectionError {
/// The length of the direction vector is zero or very close to zero.
Zero,
/// The length of the direction vector is `std::f32::INFINITY`.
Infinite,
/// The length of the direction vector is `NaN`.
NaN,
}
```
# Objective
- Resolves#10784
## Solution
- As @ickshonpe mentioned in #10784, this is intended behavior but could
benefit from mentioning it in docs.
- I'm also thinking about adding a helper function to disable os scaling
such as `disable_os_scaling()`, but not sure if it's needed.
---
## Changelog
> Add a comment about scaling behavior that happens, and point user to
how he can avoid that behavior.
# Objective
Adds `EntityCommands.retain` and `EntityWorldMut.retain` to remove all
components except the given bundle from the entity.
Fixes#10865.
## Solution
I added a private unsafe function in `EntityWorldMut` called
`remove_bundle_info` which performs the shared behaviour of `remove` and
`retain`, namely taking a `BundleInfo` of components to remove, and
removing them from the given entity. Then `retain` simply gets all the
components on the entity and filters them by whether they are in the
bundle it was passed, before passing this `BundleInfo` into
`remove_bundle_info`.
`EntityCommands.retain` just creates a new type `Retain` which runs
`EntityWorldMut.retain` when run.
---
## Changelog
Added `EntityCommands.retain` and `EntityWorldMut.retain`, which remove
all components except the given bundle from the entity, they can also be
used to remove all components by passing `()` as the bundle.
# Objective
The name `TextAlignment` is really deceptive and almost every new user
gets confused about the differences between aligning text with
`TextAlignment`, aligning text with `Style` and aligning text with
anchor (when using `Text2d`).
## Solution
* Rename `TextAlignment` to `JustifyText`. The associated helper methods
are also renamed.
* Improve the doc comments for text explaining explicitly how the
`JustifyText` component affects the arrangement of text.
* Add some extra cases to the `text_debug` example that demonstate the
differences between alignment using `JustifyText` and alignment using
`Style`.
<img width="757" alt="text_debug_2"
src="https://github.com/bevyengine/bevy/assets/27962798/9d53e647-93f9-4bc7-8a20-0d9f783304d2">
---
## Changelog
* `TextAlignment` has been renamed to `JustifyText`
* `TextBundle::with_text_alignment` has been renamed to
`TextBundle::with_text_justify`
* `Text::with_alignment` has been renamed to `Text::with_justify`
* The `text_alignment` field of `TextMeasureInfo` has been renamed to
`justification`
## Migration Guide
* `TextAlignment` has been renamed to `JustifyText`
* `TextBundle::with_text_alignment` has been renamed to
`TextBundle::with_text_justify`
* `Text::with_alignment` has been renamed to `Text::with_justify`
* The `text_alignment` field of `TextMeasureInfo` has been renamed to
`justification`
# Objective
- Fixes#10806
## Solution
Replaced `new` and `index` methods for both `TableRow` and `TableId`
with `from_*` and `as_*` methods. These remove the need to perform
casting at call sites, reducing the total number of casts in the Bevy
codebase. Within these methods, an appropriate `debug_assertion` ensures
the cast will behave in an expected manner (no wrapping, etc.). I am
using a `debug_assertion` instead of an `assert` to reduce any possible
runtime overhead, however minimal. This choice is something I am open to
changing (or leaving up to another PR) if anyone has any strong
arguments for it.
---
## Changelog
- `ComponentSparseSet::sparse` stores a `TableRow` instead of a `u32`
(private change)
- Replaced `TableRow::new` and `TableRow::index` methods with
`TableRow::from_*` and `TableRow::as_*`, with `debug_assertions`
protecting any internal casting.
- Replaced `TableId::new` and `TableId::index` methods with
`TableId::from_*` and `TableId::as_*`, with `debug_assertions`
protecting any internal casting.
- All `TableId` methods are now `const`
## Migration Guide
- `TableRow::new` -> `TableRow::from_usize`
- `TableRow::index` -> `TableRow::as_usize`
- `TableId::new` -> `TableId::from_usize`
- `TableId::index` -> `TableId::as_usize`
---
## Notes
I have chosen to remove the `index` and `new` methods for the following
chain of reasoning:
- Across the codebase, `new` was called with a mixture of `u32` and
`usize` values. Likewise for `index`.
- Choosing `new` to either be `usize` or `u32` would break half of these
call-sites, requiring `as` casting at the site.
- Adding a second method `new_u32` or `new_usize` avoids the above, bu
looks visually inconsistent.
- Therefore, they should be replaced with `from_*` and `as_*` methods
instead.
Worth noting is that by updating `ComponentSparseSet`, there are now
zero instances of interacting with the inner value of `TableRow` as a
`u32`, it is exclusively used as a `usize` value (due to interactions
with methods like `len` and slice indexing). I have left the `as_u32`
and `from_u32` methods as the "proper" constructors/getters.
This removes the `From<Vec2/3>` implementations for the direction types.
It doesn't seem right to have when it only works if the vector is
nonzero and finite and produces NaN otherwise.
Added `Direction2d/3d::new` which uses `Vec2/3::try_normalize` to
guarantee it returns either a valid direction or `None`.
This should make it impossible to create an invalid direction, which I
think was the intention with these types.
# Objective
Fixes#10291
This adds a way to easily log messages once within system which are
called every frame.
## Solution
Opted for a macro-based approach. The fact that the 'once' call is
tracked per call site makes the `log_once!()` macro very versatile and
easy-to-use. I suspect it will be very handy for all of us, but
especially beginners, to get some initial feedback from systems without
spamming up the place!
I've made the macro's return its internal `has_fired` state, for
situations in which that might be useful to know (trigger something else
alongside the log, for example).
Please let me know if I placed the macro's in the right location, and if
you would like me to do something more clever with the macro's
themselves, since its looking quite copy-pastey at the moment. I've
tried ways to replace 5 with 1 macro's, but no success yet.
One downside of this approach is: Say you wish to warn the user if a
resource is invalid. In this situation, the
`resource.is_valid()` check would still be performed every frame:
```rust
fn my_system(my_res: Res<MyResource>) {
if !my_res.is_valid() {
warn_once!("resource is invalid!");
}
}
```
If you want to prevent that, you would still need to introduce a local
boolean. I don't think this is a very big deal, as expensive checks
shouldn't be called every frame in any case.
## Changelog
Added: `trace_once!()`, `debug_once!()`, `info_once!()`, `warn_once!()`,
and `error_once!()` log macros which fire only once per call site.