2019-11-13 03:36:02 +00:00
[ package ]
name = "bevy"
2023-11-04 17:24:23 +00:00
version = "0.12.0"
2021-10-27 00:12:14 +00:00
edition = "2021"
2020-11-10 03:26:08 +00:00
categories = [ "game-engines" , "graphics" , "gui" , "rendering" ]
2020-08-10 00:24:27 +00:00
description = "A refreshingly simple data-driven game engine and app framework"
2022-06-01 23:05:30 +00:00
exclude = [ "assets/" , "tools/" , ".github/" , "crates/" , "examples/wasm/assets/" ]
2020-08-10 00:24:27 +00:00
homepage = "https://bevyengine.org"
keywords = [ "game" , "engine" , "gamedev" , "graphics" , "bevy" ]
2021-07-23 21:11:51 +00:00
license = "MIT OR Apache-2.0"
2020-11-10 18:58:51 +00:00
readme = "README.md"
2020-11-10 03:26:08 +00:00
repository = "https://github.com/bevyengine/bevy"
2023-12-16 22:51:35 +00:00
documentation = "https://docs.rs/bevy"
2023-11-18 20:58:48 +00:00
rust-version = "1.74.0"
2020-11-10 03:26:08 +00:00
[ workspace ]
2023-02-17 01:00:07 +00:00
exclude = [
"benches" ,
"crates/bevy_ecs_compile_fail_tests" ,
bevy_derive: Add `#[deref]` attribute (#8552)
# Objective
Bevy code tends to make heavy use of the [newtype](
https://doc.rust-lang.org/rust-by-example/generics/new_types.html)
pattern, which is why we have a dedicated derive for
[`Deref`](https://doc.rust-lang.org/std/ops/trait.Deref.html) and
[`DerefMut`](https://doc.rust-lang.org/std/ops/trait.DerefMut.html).
This derive works for any struct with a single field:
```rust
#[derive(Component, Deref, DerefMut)]
struct MyNewtype(usize);
```
One reason for the single-field limitation is to prevent confusion and
footguns related that would arise from allowing multi-field structs:
<table align="center">
<tr>
<th colspan="2">
Similar structs, different derefs
</th>
</tr>
<tr>
<td>
```rust
#[derive(Deref, DerefMut)]
struct MyStruct {
foo: usize, // <- Derefs usize
bar: String,
}
```
</td>
<td>
```rust
#[derive(Deref, DerefMut)]
struct MyStruct {
bar: String, // <- Derefs String
foo: usize,
}
```
</td>
</tr>
<tr>
<th colspan="2">
Why `.1`?
</th>
</tr>
<tr>
<td colspan="2">
```rust
#[derive(Deref, DerefMut)]
struct MyStruct(Vec<usize>, Vec<f32>);
let mut foo = MyStruct(vec![123], vec![1.23]);
// Why can we skip the `.0` here?
foo.push(456);
// But not here?
foo.1.push(4.56);
```
</td>
</tr>
</table>
However, there are certainly cases where it's useful to allow for
structs with multiple fields. Such as for structs with one "real" field
and one `PhantomData` to allow for generics:
```rust
#[derive(Deref, DerefMut)]
struct MyStruct<T>(
// We want use this field for the `Deref`/`DerefMut` impls
String,
// But we need this field so that we can make this struct generic
PhantomData<T>
);
// ERROR: Deref can only be derived for structs with a single field
// ERROR: DerefMut can only be derived for structs with a single field
```
Additionally, the possible confusion and footguns are mainly an issue
for newer Rust/Bevy users. Those familiar with `Deref` and `DerefMut`
understand what adding the derive really means and can anticipate its
behavior.
## Solution
Allow users to opt into multi-field `Deref`/`DerefMut` derives using a
`#[deref]` attribute:
```rust
#[derive(Deref, DerefMut)]
struct MyStruct<T>(
// Use this field for the `Deref`/`DerefMut` impls
#[deref] String,
// We can freely include any other field without a compile error
PhantomData<T>
);
```
This prevents the footgun pointed out in the first issue described in
the previous section, but it still leaves the possible confusion
surrounding `.0`-vs-`.#`. However, the idea is that by making this
behavior explicit with an attribute, users will be more aware of it and
can adapt appropriately.
---
## Changelog
- Added `#[deref]` attribute to `Deref` and `DerefMut` derives
2023-05-16 18:29:09 +00:00
"crates/bevy_macros_compile_fail_tests" ,
2023-02-17 01:00:07 +00:00
"crates/bevy_reflect_compile_fail_tests" ,
]
2022-07-15 22:37:05 +00:00
members = [
"crates/*" ,
2023-02-06 18:08:49 +00:00
"examples/mobile" ,
2022-07-15 22:37:05 +00:00
"tools/ci" ,
2023-02-28 14:24:47 +00:00
"tools/build-templated-pages" ,
2022-07-15 22:37:05 +00:00
"tools/build-wasm-example" ,
2023-05-08 19:02:06 +00:00
"tools/example-showcase" ,
2022-07-15 22:37:05 +00:00
"errors" ,
]
2019-11-13 03:36:02 +00:00
2023-11-18 20:58:48 +00:00
[ workspace . lints . clippy ]
type_complexity = "allow"
2023-11-21 01:17:11 +00:00
doc_markdown = "warn"
2023-11-28 04:15:27 +00:00
manual_let_else = "warn"
2023-11-21 02:06:24 +00:00
undocumented_unsafe_blocks = "warn"
2023-11-28 04:12:48 +00:00
redundant_else = "warn"
match_same_arms = "warn"
semicolon_if_nothing_returned = "warn"
map_flatten = "warn"
2023-11-18 20:58:48 +00:00
[ lints ]
workspace = true
2020-03-11 05:20:49 +00:00
[ features ]
2020-09-02 00:02:11 +00:00
default = [
2022-04-02 22:36:02 +00:00
"animation" ,
2022-07-25 15:48:14 +00:00
"bevy_asset" ,
2020-11-10 03:26:08 +00:00
"bevy_audio" ,
"bevy_gilrs" ,
2022-07-25 15:48:14 +00:00
"bevy_scene" ,
2020-11-10 03:26:08 +00:00
"bevy_winit" ,
2022-12-11 18:46:46 +00:00
"bevy_core_pipeline" ,
"bevy_pbr" ,
"bevy_gltf" ,
"bevy_render" ,
"bevy_sprite" ,
"bevy_text" ,
"bevy_ui" ,
2023-07-09 04:22:15 +00:00
"multi-threaded" ,
2020-11-10 03:26:08 +00:00
"png" ,
"hdr" ,
2021-12-23 19:19:15 +00:00
"vorbis" ,
2020-11-10 03:26:08 +00:00
"x11" ,
2023-03-20 20:57:54 +00:00
"bevy_gizmos" ,
2023-02-17 01:00:07 +00:00
"android_shared_stdcxx" ,
2023-03-04 12:05:26 +00:00
"tonemapping_luts" ,
2023-04-21 22:30:18 +00:00
"default_font" ,
Webgpu support (#8336)
# Objective
- Support WebGPU
- alternative to #5027 that doesn't need any async / await
- fixes #8315
- Surprise fix #7318
## Solution
### For async renderer initialisation
- Update the plugin lifecycle:
- app builds the plugin
- calls `plugin.build`
- registers the plugin
- app starts the event loop
- event loop waits for `ready` of all registered plugins in the same
order
- returns `true` by default
- then call all `finish` then all `cleanup` in the same order as
registered
- then execute the schedule
In the case of the renderer, to avoid anything async:
- building the renderer plugin creates a detached task that will send
back the initialised renderer through a mutex in a resource
- `ready` will wait for the renderer to be present in the resource
- `finish` will take that renderer and place it in the expected
resources by other plugins
- other plugins (that expect the renderer to be available) `finish` are
called and they are able to set up their pipelines
- `cleanup` is called, only custom one is still for pipeline rendering
### For WebGPU support
- update the `build-wasm-example` script to support passing `--api
webgpu` that will build the example with WebGPU support
- feature for webgl2 was always enabled when building for wasm. it's now
in the default feature list and enabled on all platforms, so check for
this feature must also check that the target_arch is `wasm32`
---
## Migration Guide
- `Plugin::setup` has been renamed `Plugin::cleanup`
- `Plugin::finish` has been added, and plugins adding pipelines should
do it in this function instead of `Plugin::build`
```rust
// Before
impl Plugin for MyPlugin {
fn build(&self, app: &mut App) {
app.insert_resource::<MyResource>
.add_systems(Update, my_system);
let render_app = match app.get_sub_app_mut(RenderApp) {
Ok(render_app) => render_app,
Err(_) => return,
};
render_app
.init_resource::<RenderResourceNeedingDevice>()
.init_resource::<OtherRenderResource>();
}
}
// After
impl Plugin for MyPlugin {
fn build(&self, app: &mut App) {
app.insert_resource::<MyResource>
.add_systems(Update, my_system);
let render_app = match app.get_sub_app_mut(RenderApp) {
Ok(render_app) => render_app,
Err(_) => return,
};
render_app
.init_resource::<OtherRenderResource>();
}
fn finish(&self, app: &mut App) {
let render_app = match app.get_sub_app_mut(RenderApp) {
Ok(render_app) => render_app,
Err(_) => return,
};
render_app
.init_resource::<RenderResourceNeedingDevice>();
}
}
```
2023-05-04 22:07:57 +00:00
"webgl2" ,
2020-09-02 00:02:11 +00:00
]
2020-11-03 00:30:30 +00:00
2020-11-10 03:26:08 +00:00
# Force dynamic linking, which improves iterative compile times
2023-08-21 01:38:00 +00:00
dynamic_linking = [ "dep:bevy_dylib" , "bevy_internal/dynamic_linking" ]
2020-10-01 20:04:06 +00:00
2023-02-28 14:24:47 +00:00
# Provides animation functionality
2022-04-02 22:36:02 +00:00
bevy_animation = [ "bevy_internal/bevy_animation" ]
2023-02-28 14:24:47 +00:00
# Provides asset functionality
2022-07-25 15:48:14 +00:00
bevy_asset = [ "bevy_internal/bevy_asset" ]
2023-02-28 14:24:47 +00:00
# Provides audio functionality
2020-11-10 03:26:08 +00:00
bevy_audio = [ "bevy_internal/bevy_audio" ]
2023-02-28 14:24:47 +00:00
# Provides cameras and other basic render pipeline features
2023-10-25 19:20:17 +00:00
bevy_core_pipeline = [
"bevy_internal/bevy_core_pipeline" ,
"bevy_asset" ,
"bevy_render" ,
]
2023-02-28 14:24:47 +00:00
# Plugin for dynamic loading (using [libloading](https://crates.io/crates/libloading))
2020-11-10 03:26:08 +00:00
bevy_dynamic_plugin = [ "bevy_internal/bevy_dynamic_plugin" ]
2023-02-28 14:24:47 +00:00
# Adds gamepad support
2020-11-10 03:26:08 +00:00
bevy_gilrs = [ "bevy_internal/bevy_gilrs" ]
2023-02-28 14:24:47 +00:00
# [glTF](https://www.khronos.org/gltf/) support
2023-03-14 14:10:50 +00:00
bevy_gltf = [ "bevy_internal/bevy_gltf" , "bevy_asset" , "bevy_scene" , "bevy_pbr" ]
2023-02-28 14:24:47 +00:00
# Adds PBR rendering
2023-10-25 19:20:17 +00:00
bevy_pbr = [
"bevy_internal/bevy_pbr" ,
"bevy_asset" ,
"bevy_render" ,
"bevy_core_pipeline" ,
]
2023-02-28 14:24:47 +00:00
# Provides rendering functionality
2022-01-04 19:49:38 +00:00
bevy_render = [ "bevy_internal/bevy_render" ]
2023-02-28 14:24:47 +00:00
# Provides scene functionality
2023-03-14 14:10:50 +00:00
bevy_scene = [ "bevy_internal/bevy_scene" , "bevy_asset" ]
2023-02-28 14:24:47 +00:00
# Provides sprite functionality
2023-03-14 14:10:50 +00:00
bevy_sprite = [ "bevy_internal/bevy_sprite" , "bevy_render" , "bevy_core_pipeline" ]
2023-02-28 14:24:47 +00:00
# Provides text functionality
2023-06-22 02:57:04 +00:00
bevy_text = [ "bevy_internal/bevy_text" , "bevy_asset" , "bevy_sprite" ]
2023-02-28 14:24:47 +00:00
# A custom ECS-driven UI framework
2023-10-25 19:20:17 +00:00
bevy_ui = [
"bevy_internal/bevy_ui" ,
"bevy_core_pipeline" ,
"bevy_text" ,
"bevy_sprite" ,
]
2023-02-28 14:24:47 +00:00
# winit window and input backend
2020-11-10 03:26:08 +00:00
bevy_winit = [ "bevy_internal/bevy_winit" ]
2023-03-20 20:57:54 +00:00
# Adds support for rendering gizmos
bevy_gizmos = [ "bevy_internal/bevy_gizmos" ]
2023-02-28 14:24:47 +00:00
# Tracing support, saving a file in Chrome Tracing format
2021-12-18 00:09:22 +00:00
trace_chrome = [ "trace" , "bevy_internal/trace_chrome" ]
2023-02-28 14:24:47 +00:00
# Tracing support, exposing a port for Tracy
2021-12-18 00:09:22 +00:00
trace_tracy = [ "trace" , "bevy_internal/trace_tracy" ]
2023-02-28 14:24:47 +00:00
2023-04-17 16:04:46 +00:00
# Tracing support, with memory profiling, exposing a port for Tracy
2023-10-25 19:20:17 +00:00
trace_tracy_memory = [
"trace" ,
"bevy_internal/trace_tracy" ,
"bevy_internal/trace_tracy_memory" ,
]
2023-04-17 16:04:46 +00:00
2023-02-28 14:24:47 +00:00
# Tracing support
2020-11-11 02:49:49 +00:00
trace = [ "bevy_internal/trace" ]
2023-02-28 14:24:47 +00:00
# Save a trace of all wgpu calls
2020-11-10 03:26:08 +00:00
wgpu_trace = [ "bevy_internal/wgpu_trace" ]
2023-02-28 14:24:47 +00:00
# EXR image format support
2023-02-19 20:38:13 +00:00
exr = [ "bevy_internal/exr" ]
2023-02-28 14:24:47 +00:00
# HDR image format support
2020-11-10 03:26:08 +00:00
hdr = [ "bevy_internal/hdr" ]
2023-02-28 14:24:47 +00:00
# PNG image format support
2020-11-10 03:26:08 +00:00
png = [ "bevy_internal/png" ]
2023-02-28 14:24:47 +00:00
# TGA image format support
2020-12-10 02:34:27 +00:00
tga = [ "bevy_internal/tga" ]
2023-02-28 14:24:47 +00:00
# JPEG image format support
2020-12-10 02:34:27 +00:00
jpeg = [ "bevy_internal/jpeg" ]
2023-02-28 14:24:47 +00:00
# BMP image format support
2020-12-23 22:53:02 +00:00
bmp = [ "bevy_internal/bmp" ]
2023-02-28 14:24:47 +00:00
Added `WebP` image format support (#8220)
# Objective
WebP is a modern image format developed by Google that offers a
significant reduction in file size compared to other image formats such
as PNG and JPEG, while still maintaining good image quality. This makes
it particularly useful for games with large numbers of images, such as
those with high-quality textures or detailed sprites, where file size
and loading times can have a significant impact on performance.
By adding support for WebP images in Bevy, game developers using this
engine can now take advantage of this modern image format and reduce the
memory usage and loading times of their games. This improvement can
ultimately result in a better gaming experience for players.
In summary, the objective of adding WebP image format support in Bevy is
to enable game developers to use a modern image format that provides
better compression rates and smaller file sizes, resulting in faster
loading times and reduced memory usage for their games.
## Solution
To add support for WebP images in Bevy, this pull request leverages the
existing `image` crate support for WebP. This implementation is easily
integrated into the existing Bevy asset-loading system. To maintain
compatibility with existing Bevy projects, WebP image support is
disabled by default, and developers can enable it by adding a feature
flag to their project's `Cargo.toml` file. With this feature, Bevy
becomes even more versatile for game developers and provides a valuable
addition to the game engine.
---
## Changelog
- Added support for WebP image format in Bevy game engine
## Migration Guide
To enable WebP image support in your Bevy project, add the following
line to your project's Cargo.toml file:
```toml
bevy = { version = "*", features = ["webp"]}
```
2023-03-28 19:53:55 +00:00
# WebP image format support
webp = [ "bevy_internal/webp" ]
2023-02-28 14:24:47 +00:00
# Basis Universal compressed texture support
2022-03-15 22:26:46 +00:00
basis-universal = [ "bevy_internal/basis-universal" ]
2023-02-28 14:24:47 +00:00
# DDS compressed texture support
2022-03-15 22:26:46 +00:00
dds = [ "bevy_internal/dds" ]
2023-02-28 14:24:47 +00:00
# KTX2 compressed texture support
2022-03-15 22:26:46 +00:00
ktx2 = [ "bevy_internal/ktx2" ]
2023-02-28 14:24:47 +00:00
2023-05-16 23:51:47 +00:00
# PNM image format support, includes pam, pbm, pgm and ppm
pnm = [ "bevy_internal/pnm" ]
2023-02-28 14:24:47 +00:00
# For KTX2 supercompression
2022-03-15 22:26:46 +00:00
zlib = [ "bevy_internal/zlib" ]
2023-02-28 14:24:47 +00:00
# For KTX2 supercompression
2022-03-15 22:26:46 +00:00
zstd = [ "bevy_internal/zstd" ]
2020-08-11 06:30:42 +00:00
2023-02-28 14:24:47 +00:00
# FLAC audio format support
2020-11-10 03:26:08 +00:00
flac = [ "bevy_internal/flac" ]
2023-02-28 14:24:47 +00:00
# MP3 audio format support
2020-11-10 03:26:08 +00:00
mp3 = [ "bevy_internal/mp3" ]
2023-02-28 14:24:47 +00:00
# OGG/VORBIS audio format support
2020-11-10 03:26:08 +00:00
vorbis = [ "bevy_internal/vorbis" ]
2023-02-28 14:24:47 +00:00
# WAV audio format support
2020-11-10 03:26:08 +00:00
wav = [ "bevy_internal/wav" ]
2023-02-28 14:24:47 +00:00
2023-03-01 03:22:46 +00:00
# MP3 audio format support (through minimp3)
minimp3 = [ "bevy_internal/minimp3" ]
2023-02-28 14:24:47 +00:00
# AAC audio format support (through symphonia)
2023-01-09 19:05:30 +00:00
symphonia-aac = [ "bevy_internal/symphonia-aac" ]
2023-02-28 14:24:47 +00:00
# AAC, FLAC, MP3, MP4, OGG/VORBIS, and WAV audio formats support (through symphonia)
2023-01-09 19:05:30 +00:00
symphonia-all = [ "bevy_internal/symphonia-all" ]
2023-02-28 14:24:47 +00:00
# FLAC audio format support (through symphonia)
2023-01-09 19:05:30 +00:00
symphonia-flac = [ "bevy_internal/symphonia-flac" ]
2023-02-28 14:24:47 +00:00
# MP4 audio format support (through symphonia)
2023-01-09 19:05:30 +00:00
symphonia-isomp4 = [ "bevy_internal/symphonia-isomp4" ]
2023-02-28 14:24:47 +00:00
# OGG/VORBIS audio format support (through symphonia)
2023-01-09 19:05:30 +00:00
symphonia-vorbis = [ "bevy_internal/symphonia-vorbis" ]
2023-02-28 14:24:47 +00:00
# WAV audio format support (through symphonia)
2023-01-09 19:05:30 +00:00
symphonia-wav = [ "bevy_internal/symphonia-wav" ]
2020-08-11 06:30:42 +00:00
2023-02-28 14:24:47 +00:00
# Enable serialization support through serde
2020-11-10 03:26:08 +00:00
serialize = [ "bevy_internal/serialize" ]
2020-08-22 01:13:50 +00:00
2023-07-09 04:22:15 +00:00
# Enables multithreaded parallelism in the engine. Disabling it forces all engine tasks to run on a single thread.
multi-threaded = [ "bevy_internal/multi-threaded" ]
2023-09-25 19:59:50 +00:00
# Use async-io's implementation of block_on instead of futures-lite's implementation. This is preferred if your application uses async-io.
async-io = [ "bevy_internal/async-io" ]
2023-02-28 14:24:47 +00:00
# Wayland display server support
2020-11-10 03:26:08 +00:00
wayland = [ "bevy_internal/wayland" ]
2023-02-28 14:24:47 +00:00
# X11 display server support
2020-11-10 03:26:08 +00:00
x11 = [ "bevy_internal/x11" ]
2020-05-06 01:44:32 +00:00
2022-01-04 19:49:38 +00:00
# Enable rendering of font glyphs using subpixel accuracy
2021-01-03 20:39:11 +00:00
subpixel_glyph_atlas = [ "bevy_internal/subpixel_glyph_atlas" ]
2022-01-04 19:49:38 +00:00
# Enable systems that allow for automated testing on CI
2021-04-14 21:40:36 +00:00
bevy_ci_testing = [ "bevy_internal/bevy_ci_testing" ]
2022-04-02 22:36:02 +00:00
# Enable animation support, and glTF animation loading
2023-02-28 14:24:47 +00:00
animation = [ "bevy_internal/animation" , "bevy_animation" ]
2022-04-02 22:36:02 +00:00
2023-02-28 14:24:47 +00:00
# Enable using a shared stdlib for cxx on Android
2023-02-06 18:08:49 +00:00
android_shared_stdcxx = [ "bevy_internal/android_shared_stdcxx" ]
2023-02-28 14:24:47 +00:00
# Enable detailed trace event logging. These trace events are expensive even when off, thus they require compile time opt-in
Introduce detailed_trace macro, use in TrackedRenderPass (#7639)
Profiles show that in extremely hot loops, like the draw loops in the renderer, invoking the trace! macro has noticeable overhead, even if the trace log level is not enabled.
Solve this by introduce a 'wrapper' detailed_trace macro around trace, that wraps the trace! log statement in a trivially false if statement unless a cargo feature is enabled
# Objective
- Eliminate significant overhead observed with trace-level logging in render hot loops, even when trace log level is not enabled.
- This is an alternative solution to the one proposed in #7223
## Solution
- Introduce a wrapper around the `trace!` macro called `detailed_trace!`. This macro wraps the `trace!` macro with an if statement that is conditional on a new cargo feature, `detailed_trace`. When the feature is not enabled (the default), then the if statement is trivially false and should be optimized away at compile time.
- Convert the observed hot occurrences of trace logging in `TrackedRenderPass` with this new macro.
Testing the results of
```
cargo run --profile stress-test --features bevy/trace_tracy --example many_cubes -- spheres
```
![image](https://user-images.githubusercontent.com/1222141/218298552-38551717-b062-4c64-afdc-a60267ac984d.png)
shows significant improvement of the `main_opaque_pass_3d` of the renderer, a median time decrease from 6.0ms to 3.5ms.
---
## Changelog
- For performance reasons, some detailed renderer trace logs now require the use of cargo feature `detailed_trace` in addition to setting the log level to `TRACE` in order to be shown.
## Migration Guide
- Some detailed bevy trace events now require the use of the cargo feature `detailed_trace` in addition to enabling `TRACE` level logging to view. Should you wish to see these logs, please compile your code with the bevy feature `detailed_trace`. Currently, the only logs that are affected are the renderer logs pertaining to `TrackedRenderPass` functions
2023-02-13 18:20:27 +00:00
detailed_trace = [ "bevy_internal/detailed_trace" ]
Log a warning when the `tonemapping_luts` feature is disabled but required for the selected tonemapper. (#10253)
# Objective
Make it obvious why stuff renders pink when rendering stuff with bevy
with `default_features = false` and bevy's default tonemapper
(TonyMcMapFace, it requires a LUT which requires the `tonemapping_luts`,
`ktx2`, and `zstd` features).
Not sure if this should be considered as fixing these issues, but in my
previous PR (https://github.com/bevyengine/bevy/pull/9073, and old
discussions on discord that I only somewhat remember) it seemed like we
didn't want to make ktx2 and zstd required features for
bevy_core_pipeline.
Related https://github.com/bevyengine/bevy/issues/9179
Related https://github.com/bevyengine/bevy/issues/9098
## Solution
This logs an error when a LUT based tonemapper is used without the
`tonemapping_luts` feature enabled, and cleans up the default features a
bit (`tonemapping_luts` now includes the `ktx2` and `zstd` features,
since it panics without them).
Another solution would be to fall back to a non-lut based tonemapper,
but I don't like this solution as then it's not explicitly clear to
users why eg. a library example renders differently than a normal bevy
app (if the library forgot the `tonemapping_luts` feature).
I did remove the `ktx2` and `zstd` features from the list of default
features in Cargo.toml, as I don't believe anything else currently in
bevy relies on them (or at least searching through every hit for `ktx2`
and `zstd` didn't show anything except loading an environment map in
some examples), and they still show up in the `cargo_features` doc as
default features.
---
## Changelog
- The `tonemapping_luts` feature now includes both the `ktx2` and `zstd`
features to avoid a panic when the `tonemapping_luts` feature was enable
without both the `ktx2` and `zstd` feature enabled.
2023-10-27 02:07:24 +00:00
# Include tonemapping Look Up Tables KTX2 files. If everything is pink, you need to enable this feature or change the `Tonemapping` method on your `Camera2dBundle` or `Camera3dBundle`.
tonemapping_luts = [ "bevy_internal/tonemapping_luts" , "ktx2" , "zstd" ]
2023-02-19 20:38:13 +00:00
2023-03-01 22:45:04 +00:00
# Enable AccessKit on Unix backends (currently only works with experimental screen readers and forks.)
accesskit_unix = [ "bevy_internal/accesskit_unix" ]
2023-03-28 20:18:50 +00:00
# Enable assertions to check the validity of parameters passed to glam
glam_assert = [ "bevy_internal/glam_assert" ]
2023-10-22 23:01:28 +00:00
# Enable assertions in debug builds to check the validity of parameters passed to glam
debug_glam_assert = [ "bevy_internal/debug_glam_assert" ]
2023-04-21 22:30:18 +00:00
# Include a default font, containing only ASCII characters, at the cost of a 20kB binary size increase
default_font = [ "bevy_internal/default_font" ]
2023-04-25 19:30:48 +00:00
# Enable support for shaders in GLSL
shader_format_glsl = [ "bevy_internal/shader_format_glsl" ]
# Enable support for shaders in SPIR-V
shader_format_spirv = [ "bevy_internal/shader_format_spirv" ]
`StandardMaterial` Light Transmission (#8015)
# Objective
<img width="1920" alt="Screenshot 2023-04-26 at 01 07 34"
src="https://user-images.githubusercontent.com/418473/234467578-0f34187b-5863-4ea1-88e9-7a6bb8ce8da3.png">
This PR adds both diffuse and specular light transmission capabilities
to the `StandardMaterial`, with support for screen space refractions.
This enables realistically representing a wide range of real-world
materials, such as:
- Glass; (Including frosted glass)
- Transparent and translucent plastics;
- Various liquids and gels;
- Gemstones;
- Marble;
- Wax;
- Paper;
- Leaves;
- Porcelain.
Unlike existing support for transparency, light transmission does not
rely on fixed function alpha blending, and therefore works with both
`AlphaMode::Opaque` and `AlphaMode::Mask` materials.
## Solution
- Introduces a number of transmission related fields in the
`StandardMaterial`;
- For specular transmission:
- Adds logic to take a view main texture snapshot after the opaque
phase; (in order to perform screen space refractions)
- Introduces a new `Transmissive3d` phase to the renderer, to which all
meshes with `transmission > 0.0` materials are sent.
- Calculates a light exit point (of the approximate mesh volume) using
`ior` and `thickness` properties
- Samples the snapshot texture with an adaptive number of taps across a
`roughness`-controlled radius enabling “blurry” refractions
- For diffuse transmission:
- Approximates transmitted diffuse light by using a second, flipped +
displaced, diffuse-only Lambertian lobe for each light source.
## To Do
- [x] Figure out where `fresnel_mix()` is taking place, if at all, and
where `dielectric_specular` is being calculated, if at all, and update
them to use the `ior` value (Not a blocker, just a nice-to-have for more
correct BSDF)
- To the _best of my knowledge, this is now taking place, after
964340cdd. The fresnel mix is actually "split" into two parts in our
implementation, one `(1 - fresnel(...))` in the transmission, and
`fresnel()` in the light implementations. A surface with more
reflectance now will produce slightly dimmer transmission towards the
grazing angle, as more of the light gets reflected.
- [x] Add `transmission_texture`
- [x] Add `diffuse_transmission_texture`
- [x] Add `thickness_texture`
- [x] Add `attenuation_distance` and `attenuation_color`
- [x] Connect values to glTF loader
- [x] `transmission` and `transmission_texture`
- [x] `thickness` and `thickness_texture`
- [x] `ior`
- [ ] `diffuse_transmission` and `diffuse_transmission_texture` (needs
upstream support in `gltf` crate, not a blocker)
- [x] Add support for multiple screen space refraction “steps”
- [x] Conditionally create no transmission snapshot texture at all if
`steps == 0`
- [x] Conditionally enable/disable screen space refraction transmission
snapshots
- [x] Read from depth pre-pass to prevent refracting pixels in front of
the light exit point
- [x] Use `interleaved_gradient_noise()` function for sampling blur in a
way that benefits from TAA
- [x] Drill down a TAA `#define`, tweak some aspects of the effect
conditionally based on it
- [x] Remove const array that's crashing under HLSL (unless a new `naga`
release with https://github.com/gfx-rs/naga/pull/2496 comes out before
we merge this)
- [ ] Look into alternatives to the `switch` hack for dynamically
indexing the const array (might not be needed, compilers seem to be
decent at expanding it)
- [ ] Add pipeline keys for gating transmission (do we really want/need
this?)
- [x] Tweak some material field/function names?
## A Note on Texture Packing
_This was originally added as a comment to the
`specular_transmission_texture`, `thickness_texture` and
`diffuse_transmission_texture` documentation, I removed it since it was
more confusing than helpful, and will likely be made redundant/will need
to be updated once we have a better infrastructure for preprocessing
assets_
Due to how channels are mapped, you can more efficiently use a single
shared texture image
for configuring the following:
- R - `specular_transmission_texture`
- G - `thickness_texture`
- B - _unused_
- A - `diffuse_transmission_texture`
The `KHR_materials_diffuse_transmission` glTF extension also defines a
`diffuseTransmissionColorTexture`,
that _we don't currently support_. One might choose to pack the
intensity and color textures together,
using RGB for the color and A for the intensity, in which case this
packing advice doesn't really apply.
---
## Changelog
- Added a new `Transmissive3d` render phase for rendering specular
transmissive materials with screen space refractions
- Added rendering support for transmitted environment map light on the
`StandardMaterial` as a fallback for screen space refractions
- Added `diffuse_transmission`, `specular_transmission`, `thickness`,
`ior`, `attenuation_distance` and `attenuation_color` to the
`StandardMaterial`
- Added `diffuse_transmission_texture`, `specular_transmission_texture`,
`thickness_texture` to the `StandardMaterial`, gated behind a new
`pbr_transmission_textures` cargo feature (off by default, for maximum
hardware compatibility)
- Added `Camera3d::screen_space_specular_transmission_steps` for
controlling the number of “layers of transparency” rendered for
transmissive objects
- Added a `TransmittedShadowReceiver` component for enabling shadows in
(diffusely) transmitted light. (disabled by default, as it requires
carefully setting up the `thickness` to avoid self-shadow artifacts)
- Added support for the `KHR_materials_transmission`,
`KHR_materials_ior` and `KHR_materials_volume` glTF extensions
- Renamed items related to temporal jitter for greater consistency
## Migration Guide
- `SsaoPipelineKey::temporal_noise` has been renamed to
`SsaoPipelineKey::temporal_jitter`
- The `TAA` shader def (controlled by the presence of the
`TemporalAntiAliasSettings` component in the camera) has been replaced
with the `TEMPORAL_JITTER` shader def (controlled by the presence of the
`TemporalJitter` component in the camera)
- `MeshPipelineKey::TAA` has been replaced by
`MeshPipelineKey::TEMPORAL_JITTER`
- The `TEMPORAL_NOISE` shader def has been consolidated with
`TEMPORAL_JITTER`
2023-10-31 20:59:02 +00:00
# Enable support for transmission-related textures in the `StandardMaterial`, at the risk of blowing past the global, per-shader texture limit on older/lower-end GPUs
pbr_transmission_textures = [ "bevy_internal/pbr_transmission_textures" ]
2023-10-18 17:30:44 +00:00
# Enable some limitations to be able to use WebGL2. If not enabled, it will default to WebGPU in Wasm. Please refer to the [WebGL2 and WebGPU](https://github.com/bevyengine/bevy/tree/latest/examples#webgl2-and-webgpu) section of the examples README for more information on how to run Wasm builds with WebGPU.
Webgpu support (#8336)
# Objective
- Support WebGPU
- alternative to #5027 that doesn't need any async / await
- fixes #8315
- Surprise fix #7318
## Solution
### For async renderer initialisation
- Update the plugin lifecycle:
- app builds the plugin
- calls `plugin.build`
- registers the plugin
- app starts the event loop
- event loop waits for `ready` of all registered plugins in the same
order
- returns `true` by default
- then call all `finish` then all `cleanup` in the same order as
registered
- then execute the schedule
In the case of the renderer, to avoid anything async:
- building the renderer plugin creates a detached task that will send
back the initialised renderer through a mutex in a resource
- `ready` will wait for the renderer to be present in the resource
- `finish` will take that renderer and place it in the expected
resources by other plugins
- other plugins (that expect the renderer to be available) `finish` are
called and they are able to set up their pipelines
- `cleanup` is called, only custom one is still for pipeline rendering
### For WebGPU support
- update the `build-wasm-example` script to support passing `--api
webgpu` that will build the example with WebGPU support
- feature for webgl2 was always enabled when building for wasm. it's now
in the default feature list and enabled on all platforms, so check for
this feature must also check that the target_arch is `wasm32`
---
## Migration Guide
- `Plugin::setup` has been renamed `Plugin::cleanup`
- `Plugin::finish` has been added, and plugins adding pipelines should
do it in this function instead of `Plugin::build`
```rust
// Before
impl Plugin for MyPlugin {
fn build(&self, app: &mut App) {
app.insert_resource::<MyResource>
.add_systems(Update, my_system);
let render_app = match app.get_sub_app_mut(RenderApp) {
Ok(render_app) => render_app,
Err(_) => return,
};
render_app
.init_resource::<RenderResourceNeedingDevice>()
.init_resource::<OtherRenderResource>();
}
}
// After
impl Plugin for MyPlugin {
fn build(&self, app: &mut App) {
app.insert_resource::<MyResource>
.add_systems(Update, my_system);
let render_app = match app.get_sub_app_mut(RenderApp) {
Ok(render_app) => render_app,
Err(_) => return,
};
render_app
.init_resource::<OtherRenderResource>();
}
fn finish(&self, app: &mut App) {
let render_app = match app.get_sub_app_mut(RenderApp) {
Ok(render_app) => render_app,
Err(_) => return,
};
render_app
.init_resource::<RenderResourceNeedingDevice>();
}
}
```
2023-05-04 22:07:57 +00:00
webgl2 = [ "bevy_internal/webgl" ]
2023-10-20 20:50:26 +00:00
# Enables the built-in asset processor for processed assets.
asset_processor = [ "bevy_internal/asset_processor" ]
Bevy Asset V2 (#8624)
# Bevy Asset V2 Proposal
## Why Does Bevy Need A New Asset System?
Asset pipelines are a central part of the gamedev process. Bevy's
current asset system is missing a number of features that make it
non-viable for many classes of gamedev. After plenty of discussions and
[a long community feedback
period](https://github.com/bevyengine/bevy/discussions/3972), we've
identified a number missing features:
* **Asset Preprocessing**: it should be possible to "preprocess" /
"compile" / "crunch" assets at "development time" rather than when the
game starts up. This enables offloading expensive work from deployed
apps, faster asset loading, less runtime memory usage, etc.
* **Per-Asset Loader Settings**: Individual assets cannot define their
own loaders that override the defaults. Additionally, they cannot
provide per-asset settings to their loaders. This is a huge limitation,
as many asset types don't provide all information necessary for Bevy
_inside_ the asset. For example, a raw PNG image says nothing about how
it should be sampled (ex: linear vs nearest).
* **Asset `.meta` files**: assets should have configuration files stored
adjacent to the asset in question, which allows the user to configure
asset-type-specific settings. These settings should be accessible during
the pre-processing phase. Modifying a `.meta` file should trigger a
re-processing / re-load of the asset. It should be possible to configure
asset loaders from the meta file.
* **Processed Asset Hot Reloading**: Changes to processed assets (or
their dependencies) should result in re-processing them and re-loading
the results in live Bevy Apps.
* **Asset Dependency Tracking**: The current bevy_asset has no good way
to wait for asset dependencies to load. It punts this as an exercise for
consumers of the loader apis, which is unreasonable and error prone.
There should be easy, ergonomic ways to wait for assets to load and
block some logic on an asset's entire dependency tree loading.
* **Runtime Asset Loading**: it should be (optionally) possible to load
arbitrary assets dynamically at runtime. This necessitates being able to
deploy and run the asset server alongside Bevy Apps on _all platforms_.
For example, we should be able to invoke the shader compiler at runtime,
stream scenes from sources like the internet, etc. To keep deployed
binaries (and startup times) small, the runtime asset server
configuration should be configurable with different settings compared to
the "pre processor asset server".
* **Multiple Backends**: It should be possible to load assets from
arbitrary sources (filesystems, the internet, remote asset serves, etc).
* **Asset Packing**: It should be possible to deploy assets in
compressed "packs", which makes it easier and more efficient to
distribute assets with Bevy Apps.
* **Asset Handoff**: It should be possible to hold a "live" asset
handle, which correlates to runtime data, without actually holding the
asset in memory. Ex: it must be possible to hold a reference to a GPU
mesh generated from a "mesh asset" without keeping the mesh data in CPU
memory
* **Per-Platform Processed Assets**: Different platforms and app
distributions have different capabilities and requirements. Some
platforms need lower asset resolutions or different asset formats to
operate within the hardware constraints of the platform. It should be
possible to define per-platform asset processing profiles. And it should
be possible to deploy only the assets required for a given platform.
These features have architectural implications that are significant
enough to require a full rewrite. The current Bevy Asset implementation
got us this far, but it can take us no farther. This PR defines a brand
new asset system that implements most of these features, while laying
the foundations for the remaining features to be built.
## Bevy Asset V2
Here is a quick overview of the features introduced in this PR.
* **Asset Preprocessing**: Preprocess assets at development time into
more efficient (and configurable) representations
* **Dependency Aware**: Dependencies required to process an asset are
tracked. If an asset's processed dependency changes, it will be
reprocessed
* **Hot Reprocessing/Reloading**: detect changes to asset source files,
reprocess them if they have changed, and then hot-reload them in Bevy
Apps.
* **Only Process Changes**: Assets are only re-processed when their
source file (or meta file) has changed. This uses hashing and timestamps
to avoid processing assets that haven't changed.
* **Transactional and Reliable**: Uses write-ahead logging (a technique
commonly used by databases) to recover from crashes / forced-exits.
Whenever possible it avoids full-reprocessing / only uncompleted
transactions will be reprocessed. When the processor is running in
parallel with a Bevy App, processor asset writes block Bevy App asset
reads. Reading metadata + asset bytes is guaranteed to be transactional
/ correctly paired.
* **Portable / Run anywhere / Database-free**: The processor does not
rely on an in-memory database (although it uses some database techniques
for reliability). This is important because pretty much all in-memory
databases have unsupported platforms or build complications.
* **Configure Processor Defaults Per File Type**: You can say "use this
processor for all files of this type".
* **Custom Processors**: The `Processor` trait is flexible and
unopinionated. It can be implemented by downstream plugins.
* **LoadAndSave Processors**: Most asset processing scenarios can be
expressed as "run AssetLoader A, save the results using AssetSaver X,
and then load the result using AssetLoader B". For example, load this
png image using `PngImageLoader`, which produces an `Image` asset and
then save it using `CompressedImageSaver` (which also produces an
`Image` asset, but in a compressed format), which takes an `Image` asset
as input. This means if you have an `AssetLoader` for an asset, you are
already half way there! It also means that you can share AssetSavers
across multiple loaders. Because `CompressedImageSaver` accepts Bevy's
generic Image asset as input, it means you can also use it with some
future `JpegImageLoader`.
* **Loader and Saver Settings**: Asset Loaders and Savers can now define
their own settings types, which are passed in as input when an asset is
loaded / saved. Each asset can define its own settings.
* **Asset `.meta` files**: configure asset loaders, their settings,
enable/disable processing, and configure processor settings
* **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex:
if an asset contains a `Handle<Image>`) are tracked by the asset server.
An event is emitted when an asset and all of its dependencies have been
loaded
* **Unprocessed Asset Loading**: Assets do not require preprocessing.
They can be loaded directly. A processed asset is just a "normal" asset
with some extra metadata. Asset Loaders don't need to know or care about
whether or not an asset was processed.
* **Async Asset IO**: Asset readers/writers use async non-blocking
interfaces. Note that because Rust doesn't yet support async traits,
there is a bit of manual Boxing / Future boilerplate. This will
hopefully be removed in the near future when Rust gets async traits.
* **Pluggable Asset Readers and Writers**: Arbitrary asset source
readers/writers are supported, both by the processor and the asset
server.
* **Better Asset Handles**
* **Single Arc Tree**: Asset Handles now use a single arc tree that
represents the lifetime of the asset. This makes their implementation
simpler, more efficient, and allows us to cheaply attach metadata to
handles. Ex: the AssetPath of a handle is now directly accessible on the
handle itself!
* **Const Typed Handles**: typed handles can be constructed in a const
context. No more weird "const untyped converted to typed at runtime"
patterns!
* **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed
`Handle<T>` is now much smaller in memory and `AssetId<T>` is even
smaller.
* **Weak Handle Usage Reduction**: In general Handles are now considered
to be "strong". Bevy features that previously used "weak `Handle<T>`"
have been ported to `AssetId<T>`, which makes it statically clear that
the features do not hold strong handles (while retaining strong type
information). Currently Handle::Weak still exists, but it is very
possible that we can remove that entirely.
* **Efficient / Dense Asset Ids**: Assets now have efficient dense
runtime asset ids, which means we can avoid expensive hash lookups.
Assets are stored in Vecs instead of HashMaps. There are now typed and
untyped ids, which means we no longer need to store dynamic type
information in the ID for typed handles. "AssetPathId" (which was a
nightmare from a performance and correctness standpoint) has been
entirely removed in favor of dense ids (which are retrieved for a path
on load)
* **Direct Asset Loading, with Dependency Tracking**: Assets that are
defined at runtime can still have their dependencies tracked by the
Asset Server (ex: if you create a material at runtime, you can still
wait for its textures to load). This is accomplished via the (currently
optional) "asset dependency visitor" trait. This system can also be used
to define a set of assets to load, then wait for those assets to load.
* **Async folder loading**: Folder loading also uses this system and
immediately returns a handle to the LoadedFolder asset, which means
folder loading no longer blocks on directory traversals.
* **Improved Loader Interface**: Loaders now have a specific "top level
asset type", which makes returning the top-level asset simpler and
statically typed.
* **Basic Image Settings and Processing**: Image assets can now be
processed into the gpu-friendly Basic Universal format. The ImageLoader
now has a setting to define what format the image should be loaded as.
Note that this is just a minimal MVP ... plenty of additional work to do
here. To demo this, enable the `basis-universal` feature and turn on
asset processing.
* **Simpler Audio Play / AudioSink API**: Asset handle providers are
cloneable, which means the Audio resource can mint its own handles. This
means you can now do `let sink_handle = audio.play(music)` instead of
`let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that
this might still be replaced by
https://github.com/bevyengine/bevy/pull/8424.
**Removed Handle Casting From Engine Features**: Ex: FontAtlases no
longer use casting between handle types
## Using The New Asset System
### Normal Unprocessed Asset Loading
By default the `AssetPlugin` does not use processing. It behaves pretty
much the same way as the old system.
If you are defining a custom asset, first derive `Asset`:
```rust
#[derive(Asset)]
struct Thing {
value: String,
}
```
Initialize the asset:
```rust
app.init_asset:<Thing>()
```
Implement a new `AssetLoader` for it:
```rust
#[derive(Default)]
struct ThingLoader;
#[derive(Serialize, Deserialize, Default)]
pub struct ThingSettings {
some_setting: bool,
}
impl AssetLoader for ThingLoader {
type Asset = Thing;
type Settings = ThingSettings;
fn load<'a>(
&'a self,
reader: &'a mut Reader,
settings: &'a ThingSettings,
load_context: &'a mut LoadContext,
) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> {
Box::pin(async move {
let mut bytes = Vec::new();
reader.read_to_end(&mut bytes).await?;
// convert bytes to value somehow
Ok(Thing {
value
})
})
}
fn extensions(&self) -> &[&str] {
&["thing"]
}
}
```
Note that this interface will get much cleaner once Rust gets support
for async traits. `Reader` is an async futures_io::AsyncRead. You can
stream bytes as they come in or read them all into a `Vec<u8>`,
depending on the context. You can use `let handle =
load_context.load(path)` to kick off a dependency load, retrieve a
handle, and register the dependency for the asset.
Then just register the loader in your Bevy app:
```rust
app.init_asset_loader::<ThingLoader>()
```
Now just add your `Thing` asset files into the `assets` folder and load
them like this:
```rust
fn system(asset_server: Res<AssetServer>) {
let handle = Handle<Thing> = asset_server.load("cool.thing");
}
```
You can check load states directly via the asset server:
```rust
if asset_server.load_state(&handle) == LoadState::Loaded { }
```
You can also listen for events:
```rust
fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) {
for event in events.iter() {
if event.is_loaded_with_dependencies(&handle) {
}
}
}
```
Note the new `AssetEvent::LoadedWithDependencies`, which only fires when
the asset is loaded _and_ all dependencies (and their dependencies) have
loaded.
Unlike the old asset system, for a given asset path all `Handle<T>`
values point to the same underlying Arc. This means Handles can cheaply
hold more asset information, such as the AssetPath:
```rust
// prints the AssetPath of the handle
info!("{:?}", handle.path())
```
### Processed Assets
Asset processing can be enabled via the `AssetPlugin`. When developing
Bevy Apps with processed assets, do this:
```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))
```
This runs the `AssetProcessor` in the background with hot-reloading. It
reads assets from the `assets` folder, processes them, and writes them
to the `.imported_assets` folder. Asset loads in the Bevy App will wait
for a processed version of the asset to become available. If an asset in
the `assets` folder changes, it will be reprocessed and hot-reloaded in
the Bevy App.
When deploying processed Bevy apps, do this:
```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed()))
```
This does not run the `AssetProcessor` in the background. It behaves
like `AssetPlugin::unprocessed()`, but reads assets from
`.imported_assets`.
When the `AssetProcessor` is running, it will populate sibling `.meta`
files for assets in the `assets` folder. Meta files for assets that do
not have a processor configured look like this:
```rust
(
meta_format_version: "1.0",
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: FromExtension,
),
),
)
```
This is metadata for an image asset. For example, if you have
`assets/my_sprite.png`, this could be the metadata stored at
`assets/my_sprite.png.meta`. Meta files are totally optional. If no
metadata exists, the default settings will be used.
In short, this file says "load this asset with the ImageLoader and use
the file extension to determine the image type". This type of meta file
is supported in all AssetPlugin modes. If in `Unprocessed` mode, the
asset (with the meta settings) will be loaded directly. If in
`ProcessedDev` mode, the asset file will be copied directly to the
`.imported_assets` folder. The meta will also be copied directly to the
`.imported_assets` folder, but with one addition:
```rust
(
meta_format_version: "1.0",
processed_info: Some((
hash: 12415480888597742505,
full_hash: 14344495437905856884,
process_dependencies: [],
)),
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: FromExtension,
),
),
)
```
`processed_info` contains `hash` (a direct hash of the asset and meta
bytes), `full_hash` (a hash of `hash` and the hashes of all
`process_dependencies`), and `process_dependencies` (the `path` and
`full_hash` of every process_dependency). A "process dependency" is an
asset dependency that is _directly_ used when processing the asset.
Images do not have process dependencies, so this is empty.
When the processor is enabled, you can use the `Process` metadata
config:
```rust
(
meta_format_version: "1.0",
asset: Process(
processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>",
settings: (
loader_settings: (
format: FromExtension,
),
saver_settings: (
generate_mipmaps: true,
),
),
),
)
```
This configures the asset to use the `LoadAndSave` processor, which runs
an AssetLoader and feeds the result into an AssetSaver (which saves the
given Asset and defines a loader to load it with). (for terseness
LoadAndSave will likely get a shorter/friendlier type name when [Stable
Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common
processor type, but arbitrary processors are supported.
`CompressedImageSaver` saves an `Image` in the Basis Universal format
and configures the ImageLoader to load it as basis universal. The
`AssetProcessor` will read this meta, run it through the LoadAndSave
processor, and write the basis-universal version of the image to
`.imported_assets`. The final metadata will look like this:
```rust
(
meta_format_version: "1.0",
processed_info: Some((
hash: 905599590923828066,
full_hash: 9948823010183819117,
process_dependencies: [],
)),
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: Format(Basis),
),
),
)
```
To try basis-universal processing out in Bevy examples, (for example
`sprite.rs`), change `add_plugins(DefaultPlugins)` to
`add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run
with the `basis-universal` feature enabled: `cargo run
--features=basis-universal --example sprite`.
To create a custom processor, there are two main paths:
1. Use the `LoadAndSave` processor with an existing `AssetLoader`.
Implement the `AssetSaver` trait, register the processor using
`asset_processor.register_processor::<LoadAndSave<ImageLoader,
CompressedImageSaver>>(image_saver.into())`.
2. Implement the `Process` trait directly and register it using:
`asset_processor.register_processor(thing_processor)`.
You can configure default processors for file extensions like this:
```rust
asset_processor.set_default_processor::<ThingProcessor>("thing")
```
There is one more metadata type to be aware of:
```rust
(
meta_format_version: "1.0",
asset: Ignore,
)
```
This will ignore the asset during processing / prevent it from being
written to `.imported_assets`.
The AssetProcessor stores a transaction log at `.imported_assets/log`
and uses it to gracefully recover from unexpected stops. This means you
can force-quit the processor (and Bevy Apps running the processor in
parallel) at arbitrary times!
`.imported_assets` is "local state". It should _not_ be checked into
source control. It should also be considered "read only". In practice,
you _can_ modify processed assets and processed metadata if you really
need to test something. But those modifications will not be represented
in the hashes of the assets, so the processed state will be "out of
sync" with the source assets. The processor _will not_ fix this for you.
Either revert the change after you have tested it, or delete the
processed files so they can be re-populated.
## Open Questions
There are a number of open questions to be discussed. We should decide
if they need to be addressed in this PR and if so, how we will address
them:
### Implied Dependencies vs Dependency Enumeration
There are currently two ways to populate asset dependencies:
* **Implied via AssetLoaders**: if an AssetLoader loads an asset (and
retrieves a handle), a dependency is added to the list.
* **Explicit via the optional Asset::visit_dependencies**: if
`server.load_asset(my_asset)` is called, it will call
`my_asset.visit_dependencies`, which will grab dependencies that have
been manually defined for the asset via the Asset trait impl (which can
be derived).
This means that defining explicit dependencies is optional for "loaded
assets". And the list of dependencies is always accurate because loaders
can only produce Handles if they register dependencies. If an asset was
loaded with an AssetLoader, it only uses the implied dependencies. If an
asset was created at runtime and added with
`asset_server.load_asset(MyAsset)`, it will use
`Asset::visit_dependencies`.
However this can create a behavior mismatch between loaded assets and
equivalent "created at runtime" assets if `Assets::visit_dependencies`
doesn't exactly match the dependencies produced by the AssetLoader. This
behavior mismatch can be resolved by completely removing "implied loader
dependencies" and requiring `Asset::visit_dependencies` to supply
dependency data. But this creates two problems:
* It makes defining loaded assets harder and more error prone: Devs must
remember to manually annotate asset dependencies with `#[dependency]`
when deriving `Asset`. For more complicated assets (such as scenes), the
derive likely wouldn't be sufficient and a manual `visit_dependencies`
impl would be required.
* Removes the ability to immediately kick off dependency loads: When
AssetLoaders retrieve a Handle, they also immediately kick off an asset
load for the handle, which means it can start loading in parallel
_before_ the asset finishes loading. For large assets, this could be
significant. (although this could be mitigated for processed assets if
we store dependencies in the processed meta file and load them ahead of
time)
### Eager ProcessorDev Asset Loading
I made a controversial call in the interest of fast startup times ("time
to first pixel") for the "processor dev mode configuration". When
initializing the AssetProcessor, current processed versions of unchanged
assets are yielded immediately, even if their dependencies haven't been
checked yet for reprocessing. This means that
non-current-state-of-filesystem-but-previously-valid assets might be
returned to the App first, then hot-reloaded if/when their dependencies
change and the asset is reprocessed.
Is this behavior desirable? There is largely one alternative: do not
yield an asset from the processor to the app until all of its
dependencies have been checked for changes. In some common cases (load
dependency has not changed since last run) this will increase startup
time. The main question is "by how much" and is that slower startup time
worth it in the interest of only yielding assets that are true to the
current state of the filesystem. Should this be configurable? I'm
starting to think we should only yield an asset after its (historical)
dependencies have been checked for changes + processed as necessary, but
I'm curious what you all think.
### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs?
In this implementation AssetPaths are the only canonical asset
identifier (just like the previous Bevy Asset system and Godot). Moving
assets will result in re-scans (and currently reprocessing, although
reprocessing can easily be avoided with some changes). Asset
renames/moves will break code and assets that rely on specific paths,
unless those paths are fixed up.
Do we want / need "stable asset uuids"? Introducing them is very
possible:
1. Generate a UUID and include it in .meta files
2. Support UUID in AssetPath
3. Generate "asset indices" which are loaded on startup and map UUIDs to
paths.
4 (maybe). Consider only supporting UUIDs for processed assets so we can
generate quick-to-load indices instead of scanning meta files.
The main "pro" is that assets referencing UUIDs don't need to be
migrated when a path changes. The main "con" is that UUIDs cannot be
"lazily resolved" like paths. They need a full view of all assets to
answer the question "does this UUID exist". Which means UUIDs require
the AssetProcessor to fully finish startup scans before saying an asset
doesnt exist. And they essentially require asset pre-processing to use
in apps, because scanning all asset metadata files at runtime to resolve
a UUID is not viable for medium-to-large apps. It really requires a
pre-generated UUID index, which must be loaded before querying for
assets.
I personally think this should be investigated in a separate PR. Paths
aren't going anywhere ... _everyone_ uses filesystems (and
filesystem-like apis) to manage their asset source files. I consider
them permanent canonical asset information. Additionally, they behave
well for both processed and unprocessed asset modes. Given that Bevy is
supporting both, this feels like the right canonical ID to start with.
UUIDS (and maybe even other indexed-identifier types) can be added later
as necessary.
### Folder / File Naming Conventions
All asset processing config currently lives in the `.imported_assets`
folder. The processor transaction log is in `.imported_assets/log`.
Processed assets are added to `.imported_assets/Default`, which will
make migrating to processed asset profiles (ex: a
`.imported_assets/Mobile` profile) a non-breaking change. It also allows
us to create top-level files like `.imported_assets/log` without it
being interpreted as an asset. Meta files currently have a `.meta`
suffix. Do we like these names and conventions?
### Should the `AssetPlugin::processed_dev` configuration enable
`watch_for_changes` automatically?
Currently it does (which I think makes sense), but it does make it the
only configuration that enables watch_for_changes by default.
### Discuss on_loaded High Level Interface:
This PR includes a very rough "proof of concept" `on_loaded` system
adapter that uses the `LoadedWithDependencies` event in combination with
`asset_server.load_asset` dependency tracking to support this pattern
```rust
fn main() {
App::new()
.init_asset::<MyAssets>()
.add_systems(Update, on_loaded(create_array_texture))
.run();
}
#[derive(Asset, Clone)]
struct MyAssets {
#[dependency]
picture_of_my_cat: Handle<Image>,
#[dependency]
picture_of_my_other_cat: Handle<Image>,
}
impl FromWorld for ArrayTexture {
fn from_world(world: &mut World) -> Self {
picture_of_my_cat: server.load("meow.png"),
picture_of_my_other_cat: server.load("meeeeeeeow.png"),
}
}
fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) {
commands.spawn(SpriteBundle {
texture: my_assets.picture_of_my_cat.clone(),
..default()
});
commands.spawn(SpriteBundle {
texture: my_assets.picture_of_my_other_cat.clone(),
..default()
});
}
```
The implementation is _very_ rough. And it is currently unsafe because
`bevy_ecs` doesn't expose some internals to do this safely from inside
`bevy_asset`. There are plenty of unanswered questions like:
* "do we add a Loadable" derive? (effectively automate the FromWorld
implementation above)
* Should `MyAssets` even be an Asset? (largely implemented this way
because it elegantly builds on `server.load_asset(MyAsset { .. })`
dependency tracking).
We should think hard about what our ideal API looks like (and if this is
a pattern we want to support). Not necessarily something we need to
solve in this PR. The current `on_loaded` impl should probably be
removed from this PR before merging.
## Clarifying Questions
### What about Assets as Entities?
This Bevy Asset V2 proposal implementation initially stored Assets as
ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used
`Entity` as the asset id and Asset values were just ECS components.
There are plenty of compelling reasons to do this:
1. Easier to inline assets in Bevy Scenes (as they are "just" normal
entities + components)
2. More flexible queries: use the power of the ECS to filter assets (ex:
`Query<Mesh, With<Tree>>`).
3. Extensible. Users can add arbitrary component data to assets.
4. Things like "component visualization tools" work out of the box to
visualize asset data.
However Assets as Entities has a ton of caveats right now:
* We need to be able to allocate entity ids without a direct World
reference (aka rework id allocator in Entities ... i worked around this
in my prototypes by just pre allocating big chunks of entities)
* We want asset change events in addition to ECS change tracking ... how
do we populate them when mutations can come from anywhere? Do we use
Changed queries? This would require iterating over the change data for
all assets every frame. Is this acceptable or should we implement a new
"event based" component change detection option?
* Reconciling manually created assets with asset-system managed assets
has some nuance (ex: are they "loaded" / do they also have that
component metadata?)
* "how do we handle "static" / default entity handles" (ties in to the
Entity Indices discussion:
https://github.com/bevyengine/bevy/discussions/8319). This is necessary
for things like "built in" assets and default handles in things like
SpriteBundle.
* Storing asset information as a component makes it easy to "invalidate"
asset state by removing the component (or forcing modifications).
Ideally we have ways to lock this down (some combination of Rust type
privacy and ECS validation)
In practice, how we store and identify assets is a reasonably
superficial change (porting off of Assets as Entities and implementing
dedicated storage + ids took less than a day). So once we sort out the
remaining challenges the flip should be straightforward. Additionally, I
do still have "Assets as Entities" in my commit history, so we can reuse
that work. I personally think "assets as entities" is a good endgame,
but it also doesn't provide _significant_ value at the moment and it
certainly isn't ready yet with the current state of things.
### Why not Distill?
[Distill](https://github.com/amethyst/distill) is a high quality fully
featured asset system built in Rust. It is very natural to ask "why not
just use Distill?".
It is also worth calling out that for awhile, [we planned on adopting
Distill / I signed off on
it](https://github.com/bevyengine/bevy/issues/708).
However I think Bevy has a number of constraints that make Distill
adoption suboptimal:
* **Architectural Simplicity:**
* Distill's processor requires an in-memory database (lmdb) and RPC
networked API (using Cap'n Proto). Each of these introduces API
complexity that increases maintenance burden and "code grokability".
Ignoring tests, documentation, and examples, Distill has 24,237 lines of
Rust code (including generated code for RPC + database interactions). If
you ignore generated code, it has 11,499 lines.
* Bevy builds the AssetProcessor and AssetServer using pluggable
AssetReader/AssetWriter Rust traits with simple io interfaces. They do
not necessitate databases or RPC interfaces (although Readers/Writers
could use them if that is desired). Bevy Asset V2 (at the time of
writing this PR) is 5,384 lines of Rust code (ignoring tests,
documentation, and examples). Grain of salt: Distill does have more
features currently (ex: Asset Packing, GUIDS, remote-out-of-process
asset processor). I do plan to implement these features in Bevy Asset V2
and I personally highly doubt they will meaningfully close the 6115
lines-of-code gap.
* This complexity gap (which while illustrated by lines of code, is much
bigger than just that) is noteworthy to me. Bevy should be hackable and
there are pillars of Distill that are very hard to understand and
extend. This is a matter of opinion (and Bevy Asset V2 also has
complicated areas), but I think Bevy Asset V2 is much more approachable
for the average developer.
* Necessary disclaimer: counting lines of code is an extremely rough
complexity metric. Read the code and form your own opinions.
* **Optional Asset Processing:** Not all Bevy Apps (or Bevy App
developers) need / want asset preprocessing. Processing increases the
complexity of the development environment by introducing things like
meta files, imported asset storage, running processors in the
background, waiting for processing to finish, etc. Distill _requires_
preprocessing to work. With Bevy Asset V2 processing is fully opt-in.
The AssetServer isn't directly aware of asset processors at all.
AssetLoaders only care about converting bytes to runtime Assets ... they
don't know or care if the bytes were pre-processed or not. Processing is
"elegantly" (forgive my self-congratulatory phrasing) layered on top and
builds on the existing Asset system primitives.
* **Direct Filesystem Access to Processed Asset State:** Distill stores
processed assets in a database. This makes debugging / inspecting the
processed outputs harder (either requires special tooling to query the
database or they need to be "deployed" to be inspected). Bevy Asset V2,
on the other hand, stores processed assets in the filesystem (by default
... this is configurable). This makes interacting with the processed
state more natural. Note that both Godot and Unity's new asset system
store processed assets in the filesystem.
* **Portability**: Because Distill's processor uses lmdb and RPC
networking, it cannot be run on certain platforms (ex: lmdb is a
non-rust dependency that cannot run on the web, some platforms don't
support running network servers). Bevy should be able to process assets
everywhere (ex: run the Bevy Editor on the web, compile + process
shaders on mobile, etc). Distill does partially mitigate this problem by
supporting "streaming" assets via the RPC protocol, but this is not a
full solve from my perspective. And Bevy Asset V2 can (in theory) also
stream assets (without requiring RPC, although this isn't implemented
yet)
Note that I _do_ still think Distill would be a solid asset system for
Bevy. But I think the approach in this PR is a better solve for Bevy's
specific "asset system requirements".
### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the
point?
"True async file io" has limited / spotty platform support. async-fs
(and the rust async ecosystem generally ... ex Tokio) currently use
async wrappers over std::fs that offload blocking requests to separate
threads. This may feel unsatisfying, but it _does_ still provide value
because it prevents our task pools from blocking on file system
operations (which would prevent progress when there are many tasks to
do, but all threads in a pool are currently blocking on file system
ops).
Additionally, using async APIs for our AssetReaders and AssetWriters
also provides value because we can later add support for "true async
file io" for platforms that support it. _And_ we can implement other
"true async io" asset backends (such as networked asset io).
## Draft TODO
- [x] Fill in missing filesystem event APIs: file removed event (which
is expressed as dangling RenameFrom events in some cases), file/folder
renamed event
- [x] Assets without loaders are not moved to the processed folder. This
breaks things like referenced `.bin` files for GLTFs. This should be
configurable per-non-asset-type.
- [x] Initial implementation of Reflect and FromReflect for Handle. The
"deserialization" parity bar is low here as this only worked with static
UUIDs in the old impl ... this is a non-trivial problem. Either we add a
Handle::AssetPath variant that gets "upgraded" to a strong handle on
scene load or we use a separate AssetRef type for Bevy scenes (which is
converted to a runtime Handle on load). This deserves its own discussion
in a different pr.
- [x] Populate read_asset_bytes hash when run by the processor (a bit of
a special case .. when run by the processor the processed meta will
contain the hash so we don't need to compute it on the spot, but we
don't want/need to read the meta when run by the main AssetServer)
- [x] Delay hot reloading: currently filesystem events are handled
immediately, which creates timing issues in some cases. For example hot
reloading images can sometimes break because the image isn't finished
writing. We should add a delay, likely similar to the [implementation in
this PR](https://github.com/bevyengine/bevy/pull/8503).
- [x] Port old platform-specific AssetIo implementations to the new
AssetReader interface (currently missing Android and web)
- [x] Resolve on_loaded unsafety (either by removing the API entirely or
removing the unsafe)
- [x] Runtime loader setting overrides
- [x] Remove remaining unwraps that should be error-handled. There are
number of TODOs here
- [x] Pretty AssetPath Display impl
- [x] Document more APIs
- [x] Resolve spurious "reloading because it has changed" events (to
repro run load_gltf with `processed_dev()`)
- [x] load_dependency hot reloading currently only works for processed
assets. If processing is disabled, load_dependency changes are not hot
reloaded.
- [x] Replace AssetInfo dependency load/fail counters with
`loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from
(potentially) breaking counters. Storing this will also enable
"dependency reloaded" events (see [Next Steps](#next-steps))
- [x] Re-add filesystem watcher cargo feature gate (currently it is not
optional)
- [ ] Migration Guide
- [ ] Changelog
## Followup TODO
- [ ] Replace "eager unchanged processed asset loading" behavior with
"don't returned unchanged processed asset until dependencies have been
checked".
- [ ] Add true `Ignore` AssetAction that does not copy the asset to the
imported_assets folder.
- [ ] Finish "live asset unloading" (ex: free up CPU asset memory after
uploading an image to the GPU), rethink RenderAssets, and port renderer
features. The `Assets` collection uses `Option<T>` for asset storage to
support its removal. (1) the Option might not actually be necessary ...
might be able to just remove from the collection entirely (2) need to
finalize removal apis
- [ ] Try replacing the "channel based" asset id recycling with
something a bit more efficient (ex: we might be able to use raw atomic
ints with some cleverness)
- [ ] Consider adding UUIDs to processed assets (scoped just to helping
identify moved assets ... not exposed to load queries ... see [Next
Steps](#next-steps))
- [ ] Store "last modified" source asset and meta timestamps in
processed meta files to enable skipping expensive hashing when the file
wasn't changed
- [ ] Fix "slow loop" handle drop fix
- [ ] Migrate to TypeName
- [x] Handle "loader preregistration". See #9429
## Next Steps
* **Configurable per-type defaults for AssetMeta**: It should be
possible to add configuration like "all png image meta should default to
using nearest sampling" (currently this hard-coded per-loader/processor
Settings::default() impls). Also see the "Folder Meta" bullet point.
* **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical
asset ids" discussion in [Open Questions](#open-questions) and the
relevant bullet point in [Draft TODO](#draft-todo). Even without
canonical ids, folder renames could avoid reprocessing in some cases.
* **Multiple Asset Sources**: Expand AssetPath to support "asset source
names" and support multiple AssetReaders in the asset server (ex:
`webserver://some_path/image.png` backed by an Http webserver
AssetReader). The "default" asset reader would use normal
`some_path/image.png` paths. Ideally this works in combination with
multiple AssetWatchers for hot-reloading
* **Stable Type Names**: this pr removes the TypeUuid requirement from
assets in favor of `std::any::type_name`. This makes defining assets
easier (no need to generate a new uuid / use weird proc macro syntax).
It also makes reading meta files easier (because things have "friendly
names"). We also use type names for components in scene files. If they
are good enough for components, they are good enough for assets. And
consistency across Bevy pillars is desirable. However,
`std::any::type_name` is not guaranteed to be stable (although in
practice it is). We've developed a [stable type
path](https://github.com/bevyengine/bevy/pull/7184) to resolve this,
which should be adopted when it is ready.
* **Command Line Interface**: It should be possible to run the asset
processor in a separate process from the command line. This will also
require building a network-server-backed AssetReader to communicate
between the app and the processor. We've been planning to build a "bevy
cli" for awhile. This seems like a good excuse to build it.
* **Asset Packing**: This is largely an additive feature, so it made
sense to me to punt this until we've laid the foundations in this PR.
* **Per-Platform Processed Assets**: It should be possible to generate
assets for multiple platforms by supporting multiple "processor
profiles" per asset (ex: compress with format X on PC and Y on iOS). I
think there should probably be arbitrary "profiles" (which can be
separate from actual platforms), which are then assigned to a given
platform when generating the final asset distribution for that platform.
Ex: maybe devs want a "Mobile" profile that is shared between iOS and
Android. Or a "LowEnd" profile shared between web and mobile.
* **Versioning and Migrations**: Assets, Loaders, Savers, and Processors
need to have versions to determine if their schema is valid. If an asset
/ loader version is incompatible with the current version expected at
runtime, the processor should be able to migrate them. I think we should
try using Bevy Reflect for this, as it would allow us to load the old
version as a dynamic Reflect type without actually having the old Rust
type. It would also allow us to define "patches" to migrate between
versions (Bevy Reflect devs are currently working on patching). The
`.meta` file already has its own format version. Migrating that to new
versions should also be possible.
* **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write
type) currently used by AssetPath can still result in String clones that
aren't actually necessary (cloning an Owned Cow clones the contents).
Bevy's asset system requires cloning AssetPaths in a number of places,
which result in actual clones of the internal Strings. This is not
efficient. AssetPath internals should be reworked to exhibit truer
cow-like-behavior that reduces String clones to the absolute minimum.
* **Consider processor-less processing**: In theory the AssetServer
could run processors "inline" even if the background AssetProcessor is
disabled. If we decide this is actually desirable, we could add this.
But I don't think its a priority in the short or medium term.
* **Pre-emptive dependency loading**: We could encode dependencies in
processed meta files, which could then be used by the Asset Server to
kick of dependency loads as early as possible (prior to starting the
actual asset load). Is this desirable? How much time would this save in
practice?
* **Optimize Processor With UntypedAssetIds**: The processor exclusively
uses AssetPath to identify assets currently. It might be possible to
swap these out for UntypedAssetIds in some places, which are smaller /
cheaper to hash and compare.
* **One to Many Asset Processing**: An asset source file that produces
many assets currently must be processed into a single "processed" asset
source. If labeled assets can be written separately they can each have
their own configured savers _and_ they could be loaded more granularly.
Definitely worth exploring!
* **Automatically Track "Runtime-only" Asset Dependencies**: Right now,
tracking "created at runtime" asset dependencies requires adding them
via `asset_server.load_asset(StandardMaterial::default())`. I think with
some cleverness we could also do this for
`materials.add(StandardMaterial::default())`, making tracking work
"everywhere". There are challenges here relating to change detection /
ensuring the server is made aware of dependency changes. This could be
expensive in some cases.
* **"Dependency Changed" events**: Some assets have runtime artifacts
that need to be re-generated when one of their dependencies change (ex:
regenerate a material's bind group when a Texture needs to change). We
are generating the dependency graph so we can definitely produce these
events. Buuuuut generating these events will have a cost / they could be
high frequency for some assets, so we might want this to be opt-in for
specific cases.
* **Investigate Storing More Information In Handles**: Handles can now
store arbitrary information, which makes it cheaper and easier to
access. How much should we move into them? Canonical asset load states
(via atomics)? (`handle.is_loaded()` would be very cool). Should we
store the entire asset and remove the `Assets<T>` collection?
(`Arc<RwLock<Option<Image>>>`?)
* **Support processing and loading files without extensions**: This is a
pretty arbitrary restriction and could be supported with very minimal
changes.
* **Folder Meta**: It would be nice if we could define per folder
processor configuration defaults (likely in a `.meta` or `.folder_meta`
file). Things like "default to linear filtering for all Images in this
folder".
* **Replace async_broadcast with event-listener?** This might be
approximately drop-in for some uses and it feels more light weight
* **Support Running the AssetProcessor on the Web**: Most of the hard
work is done here, but there are some easy straggling TODOs (make the
transaction log an interface instead of a direct file writer so we can
write a web storage backend, implement an AssetReader/AssetWriter that
reads/writes to something like LocalStorage).
* **Consider identifying and preventing circular dependencies**: This is
especially important for "processor dependencies", as processing will
silently never finish in these cases.
* **Built-in/Inlined Asset Hot Reloading**: This PR regresses
"built-in/inlined" asset hot reloading (previously provided by the
DebugAssetServer). I'm intentionally punting this because I think it can
be cleanly implemented with "multiple asset sources" by registering a
"debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset
paths) in combination with an AssetWatcher for that asset source and
support for "manually loading pats with asset bytes instead of
AssetReaders". The old DebugAssetServer was quite nasty and I'd love to
avoid that hackery going forward.
* **Investigate ways to remove double-parsing meta files**: Parsing meta
files currently involves parsing once with "minimal" versions of the
meta file to extract the type name of the loader/processor config, then
parsing again to parse the "full" meta. This is suboptimal. We should be
able to define custom deserializers that (1) assume the loader/processor
type name comes first (2) dynamically looks up the loader/processor
registrations to deserialize settings in-line (similar to components in
the bevy scene format). Another alternative: deserialize as dynamic
Reflect objects and then convert.
* **More runtime loading configuration**: Support using the Handle type
as a hint to select an asset loader (instead of relying on AssetPath
extensions)
* **More high level Processor trait implementations**: For example, it
might be worth adding support for arbitrary chains of "asset transforms"
that modify an in-memory asset representation between loading and
saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by
a `flip_normals` transform, then save the mesh to an efficient
compressed format).
* **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO
item](#draft-todo) for context)
* **Explore High Level Load Interfaces**: See [this
discussion](#discuss-on_loaded-high-level-interface) for one prototype.
* **Asset Streaming**: It would be great if we could stream Assets (ex:
stream a long video file piece by piece)
* **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than
they need to be because they have a Uuid enum variant. If we implement
an "id exchanging" system that trades Uuids for "efficient runtime ids",
we can cut down on the size of AssetIds, making them more efficient.
This has some open design questions, such as how to spawn entities with
"default" handle values (as these wouldn't have access to the exchange
api in the current system).
* **Asset Path Fixup Tooling**: Assets that inline asset paths inside
them will break when an asset moves. The asset system provides the
functionality to detect when paths break. We should build a framework
that enables formats to define "path migrations". This is especially
important for scene files. For editor-generated files, we should also
consider using UUIDs (see other bullet point) to avoid the need to
migrate in these cases.
---------
Co-authored-by: BeastLe9enD <beastle9end@outlook.de>
Co-authored-by: Mike <mike.hsu@gmail.com>
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2023-09-07 02:07:27 +00:00
# Enables watching the filesystem for Bevy Asset hot-reloading
Multiple Asset Sources (#9885)
This adds support for **Multiple Asset Sources**. You can now register a
named `AssetSource`, which you can load assets from like you normally
would:
```rust
let shader: Handle<Shader> = asset_server.load("custom_source://path/to/shader.wgsl");
```
Notice that `AssetPath` now supports `some_source://` syntax. This can
now be accessed through the `asset_path.source()` accessor.
Asset source names _are not required_. If one is not specified, the
default asset source will be used:
```rust
let shader: Handle<Shader> = asset_server.load("path/to/shader.wgsl");
```
The behavior of the default asset source has not changed. Ex: the
`assets` folder is still the default.
As referenced in #9714
## Why?
**Multiple Asset Sources** enables a number of often-asked-for
scenarios:
* **Loading some assets from other locations on disk**: you could create
a `config` asset source that reads from the OS-default config folder
(not implemented in this PR)
* **Loading some assets from a remote server**: you could register a new
`remote` asset source that reads some assets from a remote http server
(not implemented in this PR)
* **Improved "Binary Embedded" Assets**: we can use this system for
"embedded-in-binary assets", which allows us to replace the old
`load_internal_asset!` approach, which couldn't support asset
processing, didn't support hot-reloading _well_, and didn't make
embedded assets accessible to the `AssetServer` (implemented in this pr)
## Adding New Asset Sources
An `AssetSource` is "just" a collection of `AssetReader`, `AssetWriter`,
and `AssetWatcher` entries. You can configure new asset sources like
this:
```rust
app.register_asset_source(
"other",
AssetSource::build()
.with_reader(|| Box::new(FileAssetReader::new("other")))
)
)
```
Note that `AssetSource` construction _must_ be repeatable, which is why
a closure is accepted.
`AssetSourceBuilder` supports `with_reader`, `with_writer`,
`with_watcher`, `with_processed_reader`, `with_processed_writer`, and
`with_processed_watcher`.
Note that the "asset source" system replaces the old "asset providers"
system.
## Processing Multiple Sources
The `AssetProcessor` now supports multiple asset sources! Processed
assets can refer to assets in other sources and everything "just works".
Each `AssetSource` defines an unprocessed and processed `AssetReader` /
`AssetWriter`.
Currently this is all or nothing for a given `AssetSource`. A given
source is either processed or it is not. Later we might want to add
support for "lazy asset processing", where an `AssetSource` (such as a
remote server) can be configured to only process assets that are
directly referenced by local assets (in order to save local disk space
and avoid doing extra work).
## A new `AssetSource`: `embedded`
One of the big features motivating **Multiple Asset Sources** was
improving our "embedded-in-binary" asset loading. To prove out the
**Multiple Asset Sources** implementation, I chose to build a new
`embedded` `AssetSource`, which replaces the old `load_interal_asset!`
system.
The old `load_internal_asset!` approach had a number of issues:
* The `AssetServer` was not aware of (or capable of loading) internal
assets.
* Because internal assets weren't visible to the `AssetServer`, they
could not be processed (or used by assets that are processed). This
would prevent things "preprocessing shaders that depend on built in Bevy
shaders", which is something we desperately need to start doing.
* Each "internal asset" needed a UUID to be defined in-code to reference
it. This was very manual and toilsome.
The new `embedded` `AssetSource` enables the following pattern:
```rust
// Called in `crates/bevy_pbr/src/render/mesh.rs`
embedded_asset!(app, "mesh.wgsl");
// later in the app
let shader: Handle<Shader> = asset_server.load("embedded://bevy_pbr/render/mesh.wgsl");
```
Notice that this always treats the crate name as the "root path", and it
trims out the `src` path for brevity. This is generally predictable, but
if you need to debug you can use the new `embedded_path!` macro to get a
`PathBuf` that matches the one used by `embedded_asset`.
You can also reference embedded assets in arbitrary assets, such as WGSL
shaders:
```rust
#import "embedded://bevy_pbr/render/mesh.wgsl"
```
This also makes `embedded` assets go through the "normal" asset
lifecycle. They are only loaded when they are actually used!
We are also discussing implicitly converting asset paths to/from shader
modules, so in the future (not in this PR) you might be able to load it
like this:
```rust
#import bevy_pbr::render::mesh::Vertex
```
Compare that to the old system!
```rust
pub const MESH_SHADER_HANDLE: Handle<Shader> = Handle::weak_from_u128(3252377289100772450);
load_internal_asset!(app, MESH_SHADER_HANDLE, "mesh.wgsl", Shader::from_wgsl);
// The mesh asset is the _only_ accessible via MESH_SHADER_HANDLE and _cannot_ be loaded via the AssetServer.
```
## Hot Reloading `embedded`
You can enable `embedded` hot reloading by enabling the
`embedded_watcher` cargo feature:
```
cargo run --features=embedded_watcher
```
## Improved Hot Reloading Workflow
First: the `filesystem_watcher` cargo feature has been renamed to
`file_watcher` for brevity (and to match the `FileAssetReader` naming
convention).
More importantly, hot asset reloading is no longer configured in-code by
default. If you enable any asset watcher feature (such as `file_watcher`
or `rust_source_watcher`), asset watching will be automatically enabled.
This removes the need to _also_ enable hot reloading in your app code.
That means you can replace this:
```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::default().watch_for_changes()))
```
with this:
```rust
app.add_plugins(DefaultPlugins)
```
If you want to hot reload assets in your app during development, just
run your app like this:
```
cargo run --features=file_watcher
```
This means you can use the same code for development and deployment! To
deploy an app, just don't include the watcher feature
```
cargo build --release
```
My intent is to move to this approach for pretty much all dev workflows.
In a future PR I would like to replace `AssetMode::ProcessedDev` with a
`runtime-processor` cargo feature. We could then group all common "dev"
cargo features under a single `dev` feature:
```sh
# this would enable file_watcher, embedded_watcher, runtime-processor, and more
cargo run --features=dev
```
## AssetMode
`AssetPlugin::Unprocessed`, `AssetPlugin::Processed`, and
`AssetPlugin::ProcessedDev` have been replaced with an `AssetMode` field
on `AssetPlugin`.
```rust
// before
app.add_plugins(DefaultPlugins.set(AssetPlugin::Processed { /* fields here */ })
// after
app.add_plugins(DefaultPlugins.set(AssetPlugin { mode: AssetMode::Processed, ..default() })
```
This aligns `AssetPlugin` with our other struct-like plugins. The old
"source" and "destination" `AssetProvider` fields in the enum variants
have been replaced by the "asset source" system. You no longer need to
configure the AssetPlugin to "point" to custom asset providers.
## AssetServerMode
To improve the implementation of **Multiple Asset Sources**,
`AssetServer` was made aware of whether or not it is using "processed"
or "unprocessed" assets. You can check that like this:
```rust
if asset_server.mode() == AssetServerMode::Processed {
/* do something */
}
```
Note that this refactor should also prepare the way for building "one to
many processed output files", as it makes the server aware of whether it
is loading from processed or unprocessed sources. Meaning we can store
and read processed and unprocessed assets differently!
## AssetPath can now refer to folders
The "file only" restriction has been removed from `AssetPath`. The
`AssetServer::load_folder` API now accepts an `AssetPath` instead of a
`Path`, meaning you can load folders from other asset sources!
## Improved AssetPath Parsing
AssetPath parsing was reworked to support sources, improve error
messages, and to enable parsing with a single pass over the string.
`AssetPath::new` was replaced by `AssetPath::parse` and
`AssetPath::try_parse`.
## AssetWatcher broken out from AssetReader
`AssetReader` is no longer responsible for constructing `AssetWatcher`.
This has been moved to `AssetSourceBuilder`.
## Duplicate Event Debouncing
Asset V2 already debounced duplicate filesystem events, but this was
_input_ events. Multiple input event types can produce the same _output_
`AssetSourceEvent`. Now that we have `embedded_watcher`, which does
expensive file io on events, it made sense to debounce output events
too, so I added that! This will also benefit the AssetProcessor by
preventing integrity checks for duplicate events (and helps keep the
noise down in trace logs).
## Next Steps
* **Port Built-in Shaders**: Currently the primary (and essentially
only) user of `load_interal_asset` in Bevy's source code is "built-in
shaders". I chose not to do that in this PR for a few reasons:
1. We need to add the ability to pass shader defs in to shaders via meta
files. Some shaders (such as MESH_VIEW_TYPES) need to pass shader def
values in that are defined in code.
2. We need to revisit the current shader module naming system. I think
we _probably_ want to imply modules from source structure (at least by
default). Ideally in a way that can losslessly convert asset paths
to/from shader modules (to enable the asset system to resolve modules
using the asset server).
3. I want to keep this change set minimal / get this merged first.
* **Deprecate `load_internal_asset`**: we can't do that until we do (1)
and (2)
* **Relative Asset Paths**: This PR significantly increases the need for
relative asset paths (which was already pretty high). Currently when
loading dependencies, it is assumed to be an absolute path, which means
if in an `AssetLoader` you call `context.load("some/path/image.png")` it
will assume that is the "default" asset source, _even if the current
asset is in a different asset source_. This will cause breakage for
AssetLoaders that are not designed to add the current source to whatever
paths are being used. AssetLoaders should generally not need to be aware
of the name of their current asset source, or need to think about the
"current asset source" generally. We should build apis that support
relative asset paths and then encourage using relative paths as much as
possible (both via api design and docs). Relative paths are also
important because they will allow developers to move folders around
(even across providers) without reprocessing, provided there is no path
breakage.
2023-10-13 23:17:32 +00:00
file_watcher = [ "bevy_internal/file_watcher" ]
# Enables watching in memory asset providers for Bevy Asset hot-reloading
embedded_watcher = [ "bevy_internal/embedded_watcher" ]
Bevy Asset V2 (#8624)
# Bevy Asset V2 Proposal
## Why Does Bevy Need A New Asset System?
Asset pipelines are a central part of the gamedev process. Bevy's
current asset system is missing a number of features that make it
non-viable for many classes of gamedev. After plenty of discussions and
[a long community feedback
period](https://github.com/bevyengine/bevy/discussions/3972), we've
identified a number missing features:
* **Asset Preprocessing**: it should be possible to "preprocess" /
"compile" / "crunch" assets at "development time" rather than when the
game starts up. This enables offloading expensive work from deployed
apps, faster asset loading, less runtime memory usage, etc.
* **Per-Asset Loader Settings**: Individual assets cannot define their
own loaders that override the defaults. Additionally, they cannot
provide per-asset settings to their loaders. This is a huge limitation,
as many asset types don't provide all information necessary for Bevy
_inside_ the asset. For example, a raw PNG image says nothing about how
it should be sampled (ex: linear vs nearest).
* **Asset `.meta` files**: assets should have configuration files stored
adjacent to the asset in question, which allows the user to configure
asset-type-specific settings. These settings should be accessible during
the pre-processing phase. Modifying a `.meta` file should trigger a
re-processing / re-load of the asset. It should be possible to configure
asset loaders from the meta file.
* **Processed Asset Hot Reloading**: Changes to processed assets (or
their dependencies) should result in re-processing them and re-loading
the results in live Bevy Apps.
* **Asset Dependency Tracking**: The current bevy_asset has no good way
to wait for asset dependencies to load. It punts this as an exercise for
consumers of the loader apis, which is unreasonable and error prone.
There should be easy, ergonomic ways to wait for assets to load and
block some logic on an asset's entire dependency tree loading.
* **Runtime Asset Loading**: it should be (optionally) possible to load
arbitrary assets dynamically at runtime. This necessitates being able to
deploy and run the asset server alongside Bevy Apps on _all platforms_.
For example, we should be able to invoke the shader compiler at runtime,
stream scenes from sources like the internet, etc. To keep deployed
binaries (and startup times) small, the runtime asset server
configuration should be configurable with different settings compared to
the "pre processor asset server".
* **Multiple Backends**: It should be possible to load assets from
arbitrary sources (filesystems, the internet, remote asset serves, etc).
* **Asset Packing**: It should be possible to deploy assets in
compressed "packs", which makes it easier and more efficient to
distribute assets with Bevy Apps.
* **Asset Handoff**: It should be possible to hold a "live" asset
handle, which correlates to runtime data, without actually holding the
asset in memory. Ex: it must be possible to hold a reference to a GPU
mesh generated from a "mesh asset" without keeping the mesh data in CPU
memory
* **Per-Platform Processed Assets**: Different platforms and app
distributions have different capabilities and requirements. Some
platforms need lower asset resolutions or different asset formats to
operate within the hardware constraints of the platform. It should be
possible to define per-platform asset processing profiles. And it should
be possible to deploy only the assets required for a given platform.
These features have architectural implications that are significant
enough to require a full rewrite. The current Bevy Asset implementation
got us this far, but it can take us no farther. This PR defines a brand
new asset system that implements most of these features, while laying
the foundations for the remaining features to be built.
## Bevy Asset V2
Here is a quick overview of the features introduced in this PR.
* **Asset Preprocessing**: Preprocess assets at development time into
more efficient (and configurable) representations
* **Dependency Aware**: Dependencies required to process an asset are
tracked. If an asset's processed dependency changes, it will be
reprocessed
* **Hot Reprocessing/Reloading**: detect changes to asset source files,
reprocess them if they have changed, and then hot-reload them in Bevy
Apps.
* **Only Process Changes**: Assets are only re-processed when their
source file (or meta file) has changed. This uses hashing and timestamps
to avoid processing assets that haven't changed.
* **Transactional and Reliable**: Uses write-ahead logging (a technique
commonly used by databases) to recover from crashes / forced-exits.
Whenever possible it avoids full-reprocessing / only uncompleted
transactions will be reprocessed. When the processor is running in
parallel with a Bevy App, processor asset writes block Bevy App asset
reads. Reading metadata + asset bytes is guaranteed to be transactional
/ correctly paired.
* **Portable / Run anywhere / Database-free**: The processor does not
rely on an in-memory database (although it uses some database techniques
for reliability). This is important because pretty much all in-memory
databases have unsupported platforms or build complications.
* **Configure Processor Defaults Per File Type**: You can say "use this
processor for all files of this type".
* **Custom Processors**: The `Processor` trait is flexible and
unopinionated. It can be implemented by downstream plugins.
* **LoadAndSave Processors**: Most asset processing scenarios can be
expressed as "run AssetLoader A, save the results using AssetSaver X,
and then load the result using AssetLoader B". For example, load this
png image using `PngImageLoader`, which produces an `Image` asset and
then save it using `CompressedImageSaver` (which also produces an
`Image` asset, but in a compressed format), which takes an `Image` asset
as input. This means if you have an `AssetLoader` for an asset, you are
already half way there! It also means that you can share AssetSavers
across multiple loaders. Because `CompressedImageSaver` accepts Bevy's
generic Image asset as input, it means you can also use it with some
future `JpegImageLoader`.
* **Loader and Saver Settings**: Asset Loaders and Savers can now define
their own settings types, which are passed in as input when an asset is
loaded / saved. Each asset can define its own settings.
* **Asset `.meta` files**: configure asset loaders, their settings,
enable/disable processing, and configure processor settings
* **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex:
if an asset contains a `Handle<Image>`) are tracked by the asset server.
An event is emitted when an asset and all of its dependencies have been
loaded
* **Unprocessed Asset Loading**: Assets do not require preprocessing.
They can be loaded directly. A processed asset is just a "normal" asset
with some extra metadata. Asset Loaders don't need to know or care about
whether or not an asset was processed.
* **Async Asset IO**: Asset readers/writers use async non-blocking
interfaces. Note that because Rust doesn't yet support async traits,
there is a bit of manual Boxing / Future boilerplate. This will
hopefully be removed in the near future when Rust gets async traits.
* **Pluggable Asset Readers and Writers**: Arbitrary asset source
readers/writers are supported, both by the processor and the asset
server.
* **Better Asset Handles**
* **Single Arc Tree**: Asset Handles now use a single arc tree that
represents the lifetime of the asset. This makes their implementation
simpler, more efficient, and allows us to cheaply attach metadata to
handles. Ex: the AssetPath of a handle is now directly accessible on the
handle itself!
* **Const Typed Handles**: typed handles can be constructed in a const
context. No more weird "const untyped converted to typed at runtime"
patterns!
* **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed
`Handle<T>` is now much smaller in memory and `AssetId<T>` is even
smaller.
* **Weak Handle Usage Reduction**: In general Handles are now considered
to be "strong". Bevy features that previously used "weak `Handle<T>`"
have been ported to `AssetId<T>`, which makes it statically clear that
the features do not hold strong handles (while retaining strong type
information). Currently Handle::Weak still exists, but it is very
possible that we can remove that entirely.
* **Efficient / Dense Asset Ids**: Assets now have efficient dense
runtime asset ids, which means we can avoid expensive hash lookups.
Assets are stored in Vecs instead of HashMaps. There are now typed and
untyped ids, which means we no longer need to store dynamic type
information in the ID for typed handles. "AssetPathId" (which was a
nightmare from a performance and correctness standpoint) has been
entirely removed in favor of dense ids (which are retrieved for a path
on load)
* **Direct Asset Loading, with Dependency Tracking**: Assets that are
defined at runtime can still have their dependencies tracked by the
Asset Server (ex: if you create a material at runtime, you can still
wait for its textures to load). This is accomplished via the (currently
optional) "asset dependency visitor" trait. This system can also be used
to define a set of assets to load, then wait for those assets to load.
* **Async folder loading**: Folder loading also uses this system and
immediately returns a handle to the LoadedFolder asset, which means
folder loading no longer blocks on directory traversals.
* **Improved Loader Interface**: Loaders now have a specific "top level
asset type", which makes returning the top-level asset simpler and
statically typed.
* **Basic Image Settings and Processing**: Image assets can now be
processed into the gpu-friendly Basic Universal format. The ImageLoader
now has a setting to define what format the image should be loaded as.
Note that this is just a minimal MVP ... plenty of additional work to do
here. To demo this, enable the `basis-universal` feature and turn on
asset processing.
* **Simpler Audio Play / AudioSink API**: Asset handle providers are
cloneable, which means the Audio resource can mint its own handles. This
means you can now do `let sink_handle = audio.play(music)` instead of
`let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that
this might still be replaced by
https://github.com/bevyengine/bevy/pull/8424.
**Removed Handle Casting From Engine Features**: Ex: FontAtlases no
longer use casting between handle types
## Using The New Asset System
### Normal Unprocessed Asset Loading
By default the `AssetPlugin` does not use processing. It behaves pretty
much the same way as the old system.
If you are defining a custom asset, first derive `Asset`:
```rust
#[derive(Asset)]
struct Thing {
value: String,
}
```
Initialize the asset:
```rust
app.init_asset:<Thing>()
```
Implement a new `AssetLoader` for it:
```rust
#[derive(Default)]
struct ThingLoader;
#[derive(Serialize, Deserialize, Default)]
pub struct ThingSettings {
some_setting: bool,
}
impl AssetLoader for ThingLoader {
type Asset = Thing;
type Settings = ThingSettings;
fn load<'a>(
&'a self,
reader: &'a mut Reader,
settings: &'a ThingSettings,
load_context: &'a mut LoadContext,
) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> {
Box::pin(async move {
let mut bytes = Vec::new();
reader.read_to_end(&mut bytes).await?;
// convert bytes to value somehow
Ok(Thing {
value
})
})
}
fn extensions(&self) -> &[&str] {
&["thing"]
}
}
```
Note that this interface will get much cleaner once Rust gets support
for async traits. `Reader` is an async futures_io::AsyncRead. You can
stream bytes as they come in or read them all into a `Vec<u8>`,
depending on the context. You can use `let handle =
load_context.load(path)` to kick off a dependency load, retrieve a
handle, and register the dependency for the asset.
Then just register the loader in your Bevy app:
```rust
app.init_asset_loader::<ThingLoader>()
```
Now just add your `Thing` asset files into the `assets` folder and load
them like this:
```rust
fn system(asset_server: Res<AssetServer>) {
let handle = Handle<Thing> = asset_server.load("cool.thing");
}
```
You can check load states directly via the asset server:
```rust
if asset_server.load_state(&handle) == LoadState::Loaded { }
```
You can also listen for events:
```rust
fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) {
for event in events.iter() {
if event.is_loaded_with_dependencies(&handle) {
}
}
}
```
Note the new `AssetEvent::LoadedWithDependencies`, which only fires when
the asset is loaded _and_ all dependencies (and their dependencies) have
loaded.
Unlike the old asset system, for a given asset path all `Handle<T>`
values point to the same underlying Arc. This means Handles can cheaply
hold more asset information, such as the AssetPath:
```rust
// prints the AssetPath of the handle
info!("{:?}", handle.path())
```
### Processed Assets
Asset processing can be enabled via the `AssetPlugin`. When developing
Bevy Apps with processed assets, do this:
```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))
```
This runs the `AssetProcessor` in the background with hot-reloading. It
reads assets from the `assets` folder, processes them, and writes them
to the `.imported_assets` folder. Asset loads in the Bevy App will wait
for a processed version of the asset to become available. If an asset in
the `assets` folder changes, it will be reprocessed and hot-reloaded in
the Bevy App.
When deploying processed Bevy apps, do this:
```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed()))
```
This does not run the `AssetProcessor` in the background. It behaves
like `AssetPlugin::unprocessed()`, but reads assets from
`.imported_assets`.
When the `AssetProcessor` is running, it will populate sibling `.meta`
files for assets in the `assets` folder. Meta files for assets that do
not have a processor configured look like this:
```rust
(
meta_format_version: "1.0",
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: FromExtension,
),
),
)
```
This is metadata for an image asset. For example, if you have
`assets/my_sprite.png`, this could be the metadata stored at
`assets/my_sprite.png.meta`. Meta files are totally optional. If no
metadata exists, the default settings will be used.
In short, this file says "load this asset with the ImageLoader and use
the file extension to determine the image type". This type of meta file
is supported in all AssetPlugin modes. If in `Unprocessed` mode, the
asset (with the meta settings) will be loaded directly. If in
`ProcessedDev` mode, the asset file will be copied directly to the
`.imported_assets` folder. The meta will also be copied directly to the
`.imported_assets` folder, but with one addition:
```rust
(
meta_format_version: "1.0",
processed_info: Some((
hash: 12415480888597742505,
full_hash: 14344495437905856884,
process_dependencies: [],
)),
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: FromExtension,
),
),
)
```
`processed_info` contains `hash` (a direct hash of the asset and meta
bytes), `full_hash` (a hash of `hash` and the hashes of all
`process_dependencies`), and `process_dependencies` (the `path` and
`full_hash` of every process_dependency). A "process dependency" is an
asset dependency that is _directly_ used when processing the asset.
Images do not have process dependencies, so this is empty.
When the processor is enabled, you can use the `Process` metadata
config:
```rust
(
meta_format_version: "1.0",
asset: Process(
processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>",
settings: (
loader_settings: (
format: FromExtension,
),
saver_settings: (
generate_mipmaps: true,
),
),
),
)
```
This configures the asset to use the `LoadAndSave` processor, which runs
an AssetLoader and feeds the result into an AssetSaver (which saves the
given Asset and defines a loader to load it with). (for terseness
LoadAndSave will likely get a shorter/friendlier type name when [Stable
Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common
processor type, but arbitrary processors are supported.
`CompressedImageSaver` saves an `Image` in the Basis Universal format
and configures the ImageLoader to load it as basis universal. The
`AssetProcessor` will read this meta, run it through the LoadAndSave
processor, and write the basis-universal version of the image to
`.imported_assets`. The final metadata will look like this:
```rust
(
meta_format_version: "1.0",
processed_info: Some((
hash: 905599590923828066,
full_hash: 9948823010183819117,
process_dependencies: [],
)),
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: Format(Basis),
),
),
)
```
To try basis-universal processing out in Bevy examples, (for example
`sprite.rs`), change `add_plugins(DefaultPlugins)` to
`add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run
with the `basis-universal` feature enabled: `cargo run
--features=basis-universal --example sprite`.
To create a custom processor, there are two main paths:
1. Use the `LoadAndSave` processor with an existing `AssetLoader`.
Implement the `AssetSaver` trait, register the processor using
`asset_processor.register_processor::<LoadAndSave<ImageLoader,
CompressedImageSaver>>(image_saver.into())`.
2. Implement the `Process` trait directly and register it using:
`asset_processor.register_processor(thing_processor)`.
You can configure default processors for file extensions like this:
```rust
asset_processor.set_default_processor::<ThingProcessor>("thing")
```
There is one more metadata type to be aware of:
```rust
(
meta_format_version: "1.0",
asset: Ignore,
)
```
This will ignore the asset during processing / prevent it from being
written to `.imported_assets`.
The AssetProcessor stores a transaction log at `.imported_assets/log`
and uses it to gracefully recover from unexpected stops. This means you
can force-quit the processor (and Bevy Apps running the processor in
parallel) at arbitrary times!
`.imported_assets` is "local state". It should _not_ be checked into
source control. It should also be considered "read only". In practice,
you _can_ modify processed assets and processed metadata if you really
need to test something. But those modifications will not be represented
in the hashes of the assets, so the processed state will be "out of
sync" with the source assets. The processor _will not_ fix this for you.
Either revert the change after you have tested it, or delete the
processed files so they can be re-populated.
## Open Questions
There are a number of open questions to be discussed. We should decide
if they need to be addressed in this PR and if so, how we will address
them:
### Implied Dependencies vs Dependency Enumeration
There are currently two ways to populate asset dependencies:
* **Implied via AssetLoaders**: if an AssetLoader loads an asset (and
retrieves a handle), a dependency is added to the list.
* **Explicit via the optional Asset::visit_dependencies**: if
`server.load_asset(my_asset)` is called, it will call
`my_asset.visit_dependencies`, which will grab dependencies that have
been manually defined for the asset via the Asset trait impl (which can
be derived).
This means that defining explicit dependencies is optional for "loaded
assets". And the list of dependencies is always accurate because loaders
can only produce Handles if they register dependencies. If an asset was
loaded with an AssetLoader, it only uses the implied dependencies. If an
asset was created at runtime and added with
`asset_server.load_asset(MyAsset)`, it will use
`Asset::visit_dependencies`.
However this can create a behavior mismatch between loaded assets and
equivalent "created at runtime" assets if `Assets::visit_dependencies`
doesn't exactly match the dependencies produced by the AssetLoader. This
behavior mismatch can be resolved by completely removing "implied loader
dependencies" and requiring `Asset::visit_dependencies` to supply
dependency data. But this creates two problems:
* It makes defining loaded assets harder and more error prone: Devs must
remember to manually annotate asset dependencies with `#[dependency]`
when deriving `Asset`. For more complicated assets (such as scenes), the
derive likely wouldn't be sufficient and a manual `visit_dependencies`
impl would be required.
* Removes the ability to immediately kick off dependency loads: When
AssetLoaders retrieve a Handle, they also immediately kick off an asset
load for the handle, which means it can start loading in parallel
_before_ the asset finishes loading. For large assets, this could be
significant. (although this could be mitigated for processed assets if
we store dependencies in the processed meta file and load them ahead of
time)
### Eager ProcessorDev Asset Loading
I made a controversial call in the interest of fast startup times ("time
to first pixel") for the "processor dev mode configuration". When
initializing the AssetProcessor, current processed versions of unchanged
assets are yielded immediately, even if their dependencies haven't been
checked yet for reprocessing. This means that
non-current-state-of-filesystem-but-previously-valid assets might be
returned to the App first, then hot-reloaded if/when their dependencies
change and the asset is reprocessed.
Is this behavior desirable? There is largely one alternative: do not
yield an asset from the processor to the app until all of its
dependencies have been checked for changes. In some common cases (load
dependency has not changed since last run) this will increase startup
time. The main question is "by how much" and is that slower startup time
worth it in the interest of only yielding assets that are true to the
current state of the filesystem. Should this be configurable? I'm
starting to think we should only yield an asset after its (historical)
dependencies have been checked for changes + processed as necessary, but
I'm curious what you all think.
### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs?
In this implementation AssetPaths are the only canonical asset
identifier (just like the previous Bevy Asset system and Godot). Moving
assets will result in re-scans (and currently reprocessing, although
reprocessing can easily be avoided with some changes). Asset
renames/moves will break code and assets that rely on specific paths,
unless those paths are fixed up.
Do we want / need "stable asset uuids"? Introducing them is very
possible:
1. Generate a UUID and include it in .meta files
2. Support UUID in AssetPath
3. Generate "asset indices" which are loaded on startup and map UUIDs to
paths.
4 (maybe). Consider only supporting UUIDs for processed assets so we can
generate quick-to-load indices instead of scanning meta files.
The main "pro" is that assets referencing UUIDs don't need to be
migrated when a path changes. The main "con" is that UUIDs cannot be
"lazily resolved" like paths. They need a full view of all assets to
answer the question "does this UUID exist". Which means UUIDs require
the AssetProcessor to fully finish startup scans before saying an asset
doesnt exist. And they essentially require asset pre-processing to use
in apps, because scanning all asset metadata files at runtime to resolve
a UUID is not viable for medium-to-large apps. It really requires a
pre-generated UUID index, which must be loaded before querying for
assets.
I personally think this should be investigated in a separate PR. Paths
aren't going anywhere ... _everyone_ uses filesystems (and
filesystem-like apis) to manage their asset source files. I consider
them permanent canonical asset information. Additionally, they behave
well for both processed and unprocessed asset modes. Given that Bevy is
supporting both, this feels like the right canonical ID to start with.
UUIDS (and maybe even other indexed-identifier types) can be added later
as necessary.
### Folder / File Naming Conventions
All asset processing config currently lives in the `.imported_assets`
folder. The processor transaction log is in `.imported_assets/log`.
Processed assets are added to `.imported_assets/Default`, which will
make migrating to processed asset profiles (ex: a
`.imported_assets/Mobile` profile) a non-breaking change. It also allows
us to create top-level files like `.imported_assets/log` without it
being interpreted as an asset. Meta files currently have a `.meta`
suffix. Do we like these names and conventions?
### Should the `AssetPlugin::processed_dev` configuration enable
`watch_for_changes` automatically?
Currently it does (which I think makes sense), but it does make it the
only configuration that enables watch_for_changes by default.
### Discuss on_loaded High Level Interface:
This PR includes a very rough "proof of concept" `on_loaded` system
adapter that uses the `LoadedWithDependencies` event in combination with
`asset_server.load_asset` dependency tracking to support this pattern
```rust
fn main() {
App::new()
.init_asset::<MyAssets>()
.add_systems(Update, on_loaded(create_array_texture))
.run();
}
#[derive(Asset, Clone)]
struct MyAssets {
#[dependency]
picture_of_my_cat: Handle<Image>,
#[dependency]
picture_of_my_other_cat: Handle<Image>,
}
impl FromWorld for ArrayTexture {
fn from_world(world: &mut World) -> Self {
picture_of_my_cat: server.load("meow.png"),
picture_of_my_other_cat: server.load("meeeeeeeow.png"),
}
}
fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) {
commands.spawn(SpriteBundle {
texture: my_assets.picture_of_my_cat.clone(),
..default()
});
commands.spawn(SpriteBundle {
texture: my_assets.picture_of_my_other_cat.clone(),
..default()
});
}
```
The implementation is _very_ rough. And it is currently unsafe because
`bevy_ecs` doesn't expose some internals to do this safely from inside
`bevy_asset`. There are plenty of unanswered questions like:
* "do we add a Loadable" derive? (effectively automate the FromWorld
implementation above)
* Should `MyAssets` even be an Asset? (largely implemented this way
because it elegantly builds on `server.load_asset(MyAsset { .. })`
dependency tracking).
We should think hard about what our ideal API looks like (and if this is
a pattern we want to support). Not necessarily something we need to
solve in this PR. The current `on_loaded` impl should probably be
removed from this PR before merging.
## Clarifying Questions
### What about Assets as Entities?
This Bevy Asset V2 proposal implementation initially stored Assets as
ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used
`Entity` as the asset id and Asset values were just ECS components.
There are plenty of compelling reasons to do this:
1. Easier to inline assets in Bevy Scenes (as they are "just" normal
entities + components)
2. More flexible queries: use the power of the ECS to filter assets (ex:
`Query<Mesh, With<Tree>>`).
3. Extensible. Users can add arbitrary component data to assets.
4. Things like "component visualization tools" work out of the box to
visualize asset data.
However Assets as Entities has a ton of caveats right now:
* We need to be able to allocate entity ids without a direct World
reference (aka rework id allocator in Entities ... i worked around this
in my prototypes by just pre allocating big chunks of entities)
* We want asset change events in addition to ECS change tracking ... how
do we populate them when mutations can come from anywhere? Do we use
Changed queries? This would require iterating over the change data for
all assets every frame. Is this acceptable or should we implement a new
"event based" component change detection option?
* Reconciling manually created assets with asset-system managed assets
has some nuance (ex: are they "loaded" / do they also have that
component metadata?)
* "how do we handle "static" / default entity handles" (ties in to the
Entity Indices discussion:
https://github.com/bevyengine/bevy/discussions/8319). This is necessary
for things like "built in" assets and default handles in things like
SpriteBundle.
* Storing asset information as a component makes it easy to "invalidate"
asset state by removing the component (or forcing modifications).
Ideally we have ways to lock this down (some combination of Rust type
privacy and ECS validation)
In practice, how we store and identify assets is a reasonably
superficial change (porting off of Assets as Entities and implementing
dedicated storage + ids took less than a day). So once we sort out the
remaining challenges the flip should be straightforward. Additionally, I
do still have "Assets as Entities" in my commit history, so we can reuse
that work. I personally think "assets as entities" is a good endgame,
but it also doesn't provide _significant_ value at the moment and it
certainly isn't ready yet with the current state of things.
### Why not Distill?
[Distill](https://github.com/amethyst/distill) is a high quality fully
featured asset system built in Rust. It is very natural to ask "why not
just use Distill?".
It is also worth calling out that for awhile, [we planned on adopting
Distill / I signed off on
it](https://github.com/bevyengine/bevy/issues/708).
However I think Bevy has a number of constraints that make Distill
adoption suboptimal:
* **Architectural Simplicity:**
* Distill's processor requires an in-memory database (lmdb) and RPC
networked API (using Cap'n Proto). Each of these introduces API
complexity that increases maintenance burden and "code grokability".
Ignoring tests, documentation, and examples, Distill has 24,237 lines of
Rust code (including generated code for RPC + database interactions). If
you ignore generated code, it has 11,499 lines.
* Bevy builds the AssetProcessor and AssetServer using pluggable
AssetReader/AssetWriter Rust traits with simple io interfaces. They do
not necessitate databases or RPC interfaces (although Readers/Writers
could use them if that is desired). Bevy Asset V2 (at the time of
writing this PR) is 5,384 lines of Rust code (ignoring tests,
documentation, and examples). Grain of salt: Distill does have more
features currently (ex: Asset Packing, GUIDS, remote-out-of-process
asset processor). I do plan to implement these features in Bevy Asset V2
and I personally highly doubt they will meaningfully close the 6115
lines-of-code gap.
* This complexity gap (which while illustrated by lines of code, is much
bigger than just that) is noteworthy to me. Bevy should be hackable and
there are pillars of Distill that are very hard to understand and
extend. This is a matter of opinion (and Bevy Asset V2 also has
complicated areas), but I think Bevy Asset V2 is much more approachable
for the average developer.
* Necessary disclaimer: counting lines of code is an extremely rough
complexity metric. Read the code and form your own opinions.
* **Optional Asset Processing:** Not all Bevy Apps (or Bevy App
developers) need / want asset preprocessing. Processing increases the
complexity of the development environment by introducing things like
meta files, imported asset storage, running processors in the
background, waiting for processing to finish, etc. Distill _requires_
preprocessing to work. With Bevy Asset V2 processing is fully opt-in.
The AssetServer isn't directly aware of asset processors at all.
AssetLoaders only care about converting bytes to runtime Assets ... they
don't know or care if the bytes were pre-processed or not. Processing is
"elegantly" (forgive my self-congratulatory phrasing) layered on top and
builds on the existing Asset system primitives.
* **Direct Filesystem Access to Processed Asset State:** Distill stores
processed assets in a database. This makes debugging / inspecting the
processed outputs harder (either requires special tooling to query the
database or they need to be "deployed" to be inspected). Bevy Asset V2,
on the other hand, stores processed assets in the filesystem (by default
... this is configurable). This makes interacting with the processed
state more natural. Note that both Godot and Unity's new asset system
store processed assets in the filesystem.
* **Portability**: Because Distill's processor uses lmdb and RPC
networking, it cannot be run on certain platforms (ex: lmdb is a
non-rust dependency that cannot run on the web, some platforms don't
support running network servers). Bevy should be able to process assets
everywhere (ex: run the Bevy Editor on the web, compile + process
shaders on mobile, etc). Distill does partially mitigate this problem by
supporting "streaming" assets via the RPC protocol, but this is not a
full solve from my perspective. And Bevy Asset V2 can (in theory) also
stream assets (without requiring RPC, although this isn't implemented
yet)
Note that I _do_ still think Distill would be a solid asset system for
Bevy. But I think the approach in this PR is a better solve for Bevy's
specific "asset system requirements".
### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the
point?
"True async file io" has limited / spotty platform support. async-fs
(and the rust async ecosystem generally ... ex Tokio) currently use
async wrappers over std::fs that offload blocking requests to separate
threads. This may feel unsatisfying, but it _does_ still provide value
because it prevents our task pools from blocking on file system
operations (which would prevent progress when there are many tasks to
do, but all threads in a pool are currently blocking on file system
ops).
Additionally, using async APIs for our AssetReaders and AssetWriters
also provides value because we can later add support for "true async
file io" for platforms that support it. _And_ we can implement other
"true async io" asset backends (such as networked asset io).
## Draft TODO
- [x] Fill in missing filesystem event APIs: file removed event (which
is expressed as dangling RenameFrom events in some cases), file/folder
renamed event
- [x] Assets without loaders are not moved to the processed folder. This
breaks things like referenced `.bin` files for GLTFs. This should be
configurable per-non-asset-type.
- [x] Initial implementation of Reflect and FromReflect for Handle. The
"deserialization" parity bar is low here as this only worked with static
UUIDs in the old impl ... this is a non-trivial problem. Either we add a
Handle::AssetPath variant that gets "upgraded" to a strong handle on
scene load or we use a separate AssetRef type for Bevy scenes (which is
converted to a runtime Handle on load). This deserves its own discussion
in a different pr.
- [x] Populate read_asset_bytes hash when run by the processor (a bit of
a special case .. when run by the processor the processed meta will
contain the hash so we don't need to compute it on the spot, but we
don't want/need to read the meta when run by the main AssetServer)
- [x] Delay hot reloading: currently filesystem events are handled
immediately, which creates timing issues in some cases. For example hot
reloading images can sometimes break because the image isn't finished
writing. We should add a delay, likely similar to the [implementation in
this PR](https://github.com/bevyengine/bevy/pull/8503).
- [x] Port old platform-specific AssetIo implementations to the new
AssetReader interface (currently missing Android and web)
- [x] Resolve on_loaded unsafety (either by removing the API entirely or
removing the unsafe)
- [x] Runtime loader setting overrides
- [x] Remove remaining unwraps that should be error-handled. There are
number of TODOs here
- [x] Pretty AssetPath Display impl
- [x] Document more APIs
- [x] Resolve spurious "reloading because it has changed" events (to
repro run load_gltf with `processed_dev()`)
- [x] load_dependency hot reloading currently only works for processed
assets. If processing is disabled, load_dependency changes are not hot
reloaded.
- [x] Replace AssetInfo dependency load/fail counters with
`loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from
(potentially) breaking counters. Storing this will also enable
"dependency reloaded" events (see [Next Steps](#next-steps))
- [x] Re-add filesystem watcher cargo feature gate (currently it is not
optional)
- [ ] Migration Guide
- [ ] Changelog
## Followup TODO
- [ ] Replace "eager unchanged processed asset loading" behavior with
"don't returned unchanged processed asset until dependencies have been
checked".
- [ ] Add true `Ignore` AssetAction that does not copy the asset to the
imported_assets folder.
- [ ] Finish "live asset unloading" (ex: free up CPU asset memory after
uploading an image to the GPU), rethink RenderAssets, and port renderer
features. The `Assets` collection uses `Option<T>` for asset storage to
support its removal. (1) the Option might not actually be necessary ...
might be able to just remove from the collection entirely (2) need to
finalize removal apis
- [ ] Try replacing the "channel based" asset id recycling with
something a bit more efficient (ex: we might be able to use raw atomic
ints with some cleverness)
- [ ] Consider adding UUIDs to processed assets (scoped just to helping
identify moved assets ... not exposed to load queries ... see [Next
Steps](#next-steps))
- [ ] Store "last modified" source asset and meta timestamps in
processed meta files to enable skipping expensive hashing when the file
wasn't changed
- [ ] Fix "slow loop" handle drop fix
- [ ] Migrate to TypeName
- [x] Handle "loader preregistration". See #9429
## Next Steps
* **Configurable per-type defaults for AssetMeta**: It should be
possible to add configuration like "all png image meta should default to
using nearest sampling" (currently this hard-coded per-loader/processor
Settings::default() impls). Also see the "Folder Meta" bullet point.
* **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical
asset ids" discussion in [Open Questions](#open-questions) and the
relevant bullet point in [Draft TODO](#draft-todo). Even without
canonical ids, folder renames could avoid reprocessing in some cases.
* **Multiple Asset Sources**: Expand AssetPath to support "asset source
names" and support multiple AssetReaders in the asset server (ex:
`webserver://some_path/image.png` backed by an Http webserver
AssetReader). The "default" asset reader would use normal
`some_path/image.png` paths. Ideally this works in combination with
multiple AssetWatchers for hot-reloading
* **Stable Type Names**: this pr removes the TypeUuid requirement from
assets in favor of `std::any::type_name`. This makes defining assets
easier (no need to generate a new uuid / use weird proc macro syntax).
It also makes reading meta files easier (because things have "friendly
names"). We also use type names for components in scene files. If they
are good enough for components, they are good enough for assets. And
consistency across Bevy pillars is desirable. However,
`std::any::type_name` is not guaranteed to be stable (although in
practice it is). We've developed a [stable type
path](https://github.com/bevyengine/bevy/pull/7184) to resolve this,
which should be adopted when it is ready.
* **Command Line Interface**: It should be possible to run the asset
processor in a separate process from the command line. This will also
require building a network-server-backed AssetReader to communicate
between the app and the processor. We've been planning to build a "bevy
cli" for awhile. This seems like a good excuse to build it.
* **Asset Packing**: This is largely an additive feature, so it made
sense to me to punt this until we've laid the foundations in this PR.
* **Per-Platform Processed Assets**: It should be possible to generate
assets for multiple platforms by supporting multiple "processor
profiles" per asset (ex: compress with format X on PC and Y on iOS). I
think there should probably be arbitrary "profiles" (which can be
separate from actual platforms), which are then assigned to a given
platform when generating the final asset distribution for that platform.
Ex: maybe devs want a "Mobile" profile that is shared between iOS and
Android. Or a "LowEnd" profile shared between web and mobile.
* **Versioning and Migrations**: Assets, Loaders, Savers, and Processors
need to have versions to determine if their schema is valid. If an asset
/ loader version is incompatible with the current version expected at
runtime, the processor should be able to migrate them. I think we should
try using Bevy Reflect for this, as it would allow us to load the old
version as a dynamic Reflect type without actually having the old Rust
type. It would also allow us to define "patches" to migrate between
versions (Bevy Reflect devs are currently working on patching). The
`.meta` file already has its own format version. Migrating that to new
versions should also be possible.
* **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write
type) currently used by AssetPath can still result in String clones that
aren't actually necessary (cloning an Owned Cow clones the contents).
Bevy's asset system requires cloning AssetPaths in a number of places,
which result in actual clones of the internal Strings. This is not
efficient. AssetPath internals should be reworked to exhibit truer
cow-like-behavior that reduces String clones to the absolute minimum.
* **Consider processor-less processing**: In theory the AssetServer
could run processors "inline" even if the background AssetProcessor is
disabled. If we decide this is actually desirable, we could add this.
But I don't think its a priority in the short or medium term.
* **Pre-emptive dependency loading**: We could encode dependencies in
processed meta files, which could then be used by the Asset Server to
kick of dependency loads as early as possible (prior to starting the
actual asset load). Is this desirable? How much time would this save in
practice?
* **Optimize Processor With UntypedAssetIds**: The processor exclusively
uses AssetPath to identify assets currently. It might be possible to
swap these out for UntypedAssetIds in some places, which are smaller /
cheaper to hash and compare.
* **One to Many Asset Processing**: An asset source file that produces
many assets currently must be processed into a single "processed" asset
source. If labeled assets can be written separately they can each have
their own configured savers _and_ they could be loaded more granularly.
Definitely worth exploring!
* **Automatically Track "Runtime-only" Asset Dependencies**: Right now,
tracking "created at runtime" asset dependencies requires adding them
via `asset_server.load_asset(StandardMaterial::default())`. I think with
some cleverness we could also do this for
`materials.add(StandardMaterial::default())`, making tracking work
"everywhere". There are challenges here relating to change detection /
ensuring the server is made aware of dependency changes. This could be
expensive in some cases.
* **"Dependency Changed" events**: Some assets have runtime artifacts
that need to be re-generated when one of their dependencies change (ex:
regenerate a material's bind group when a Texture needs to change). We
are generating the dependency graph so we can definitely produce these
events. Buuuuut generating these events will have a cost / they could be
high frequency for some assets, so we might want this to be opt-in for
specific cases.
* **Investigate Storing More Information In Handles**: Handles can now
store arbitrary information, which makes it cheaper and easier to
access. How much should we move into them? Canonical asset load states
(via atomics)? (`handle.is_loaded()` would be very cool). Should we
store the entire asset and remove the `Assets<T>` collection?
(`Arc<RwLock<Option<Image>>>`?)
* **Support processing and loading files without extensions**: This is a
pretty arbitrary restriction and could be supported with very minimal
changes.
* **Folder Meta**: It would be nice if we could define per folder
processor configuration defaults (likely in a `.meta` or `.folder_meta`
file). Things like "default to linear filtering for all Images in this
folder".
* **Replace async_broadcast with event-listener?** This might be
approximately drop-in for some uses and it feels more light weight
* **Support Running the AssetProcessor on the Web**: Most of the hard
work is done here, but there are some easy straggling TODOs (make the
transaction log an interface instead of a direct file writer so we can
write a web storage backend, implement an AssetReader/AssetWriter that
reads/writes to something like LocalStorage).
* **Consider identifying and preventing circular dependencies**: This is
especially important for "processor dependencies", as processing will
silently never finish in these cases.
* **Built-in/Inlined Asset Hot Reloading**: This PR regresses
"built-in/inlined" asset hot reloading (previously provided by the
DebugAssetServer). I'm intentionally punting this because I think it can
be cleanly implemented with "multiple asset sources" by registering a
"debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset
paths) in combination with an AssetWatcher for that asset source and
support for "manually loading pats with asset bytes instead of
AssetReaders". The old DebugAssetServer was quite nasty and I'd love to
avoid that hackery going forward.
* **Investigate ways to remove double-parsing meta files**: Parsing meta
files currently involves parsing once with "minimal" versions of the
meta file to extract the type name of the loader/processor config, then
parsing again to parse the "full" meta. This is suboptimal. We should be
able to define custom deserializers that (1) assume the loader/processor
type name comes first (2) dynamically looks up the loader/processor
registrations to deserialize settings in-line (similar to components in
the bevy scene format). Another alternative: deserialize as dynamic
Reflect objects and then convert.
* **More runtime loading configuration**: Support using the Handle type
as a hint to select an asset loader (instead of relying on AssetPath
extensions)
* **More high level Processor trait implementations**: For example, it
might be worth adding support for arbitrary chains of "asset transforms"
that modify an in-memory asset representation between loading and
saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by
a `flip_normals` transform, then save the mesh to an efficient
compressed format).
* **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO
item](#draft-todo) for context)
* **Explore High Level Load Interfaces**: See [this
discussion](#discuss-on_loaded-high-level-interface) for one prototype.
* **Asset Streaming**: It would be great if we could stream Assets (ex:
stream a long video file piece by piece)
* **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than
they need to be because they have a Uuid enum variant. If we implement
an "id exchanging" system that trades Uuids for "efficient runtime ids",
we can cut down on the size of AssetIds, making them more efficient.
This has some open design questions, such as how to spawn entities with
"default" handle values (as these wouldn't have access to the exchange
api in the current system).
* **Asset Path Fixup Tooling**: Assets that inline asset paths inside
them will break when an asset moves. The asset system provides the
functionality to detect when paths break. We should build a framework
that enables formats to define "path migrations". This is especially
important for scene files. For editor-generated files, we should also
consider using UUIDs (see other bullet point) to avoid the need to
migrate in these cases.
---------
Co-authored-by: BeastLe9enD <beastle9end@outlook.de>
Co-authored-by: Mike <mike.hsu@gmail.com>
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2023-09-07 02:07:27 +00:00
2019-11-13 03:36:02 +00:00
[ dependencies ]
2023-11-04 17:24:23 +00:00
bevy_dylib = { path = "crates/bevy_dylib" , version = "0.12.0" , default-features = false , optional = true }
bevy_internal = { path = "crates/bevy_internal" , version = "0.12.0" , default-features = false }
2020-04-06 03:19:02 +00:00
[ dev-dependencies ]
2021-01-17 21:43:03 +00:00
rand = "0.8.0"
2022-09-02 14:20:49 +00:00
ron = "0.8.0"
Added Method to Allow Pipelined Asset Loading (#10565)
# Objective
- Fixes #10518
## Solution
I've added a method to `LoadContext`, `load_direct_with_reader`, which
mirrors the behaviour of `load_direct` with a single key difference: it
is provided with the `Reader` by the caller, rather than getting it from
the contained `AssetServer`. This allows for an `AssetLoader` to process
its `Reader` stream, and then directly hand the results off to the
`LoadContext` to handle further loading. The outer `AssetLoader` can
control how the `Reader` is interpreted by providing a relevant
`AssetPath`.
For example, a Gzip decompression loader could process the asset
`images/my_image.png.gz` by decompressing the bytes, then handing the
decompressed result to the `LoadContext` with the new path
`images/my_image.png.gz/my_image.png`. This intuitively reflects the
nature of contained assets, whilst avoiding unintended behaviour, since
the generated path cannot be a real file path (a file and folder of the
same name cannot coexist in most file-systems).
```rust
#[derive(Asset, TypePath)]
pub struct GzAsset {
pub uncompressed: ErasedLoadedAsset,
}
#[derive(Default)]
pub struct GzAssetLoader;
impl AssetLoader for GzAssetLoader {
type Asset = GzAsset;
type Settings = ();
type Error = GzAssetLoaderError;
fn load<'a>(
&'a self,
reader: &'a mut Reader,
_settings: &'a (),
load_context: &'a mut LoadContext,
) -> BoxedFuture<'a, Result<Self::Asset, Self::Error>> {
Box::pin(async move {
let compressed_path = load_context.path();
let file_name = compressed_path
.file_name()
.ok_or(GzAssetLoaderError::IndeterminateFilePath)?
.to_string_lossy();
let uncompressed_file_name = file_name
.strip_suffix(".gz")
.ok_or(GzAssetLoaderError::IndeterminateFilePath)?;
let contained_path = compressed_path.join(uncompressed_file_name);
let mut bytes_compressed = Vec::new();
reader.read_to_end(&mut bytes_compressed).await?;
let mut decoder = GzDecoder::new(bytes_compressed.as_slice());
let mut bytes_uncompressed = Vec::new();
decoder.read_to_end(&mut bytes_uncompressed)?;
// Now that we have decompressed the asset, let's pass it back to the
// context to continue loading
let mut reader = VecReader::new(bytes_uncompressed);
let uncompressed = load_context
.load_direct_with_reader(&mut reader, contained_path)
.await?;
Ok(GzAsset { uncompressed })
})
}
fn extensions(&self) -> &[&str] {
&["gz"]
}
}
```
Because this example is so prudent, I've included an
`asset_decompression` example which implements this exact behaviour:
```rust
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.init_asset::<GzAsset>()
.init_asset_loader::<GzAssetLoader>()
.add_systems(Startup, setup)
.add_systems(Update, decompress::<Image>)
.run();
}
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
commands.spawn(Camera2dBundle::default());
commands.spawn((
Compressed::<Image> {
compressed: asset_server.load("data/compressed_image.png.gz"),
..default()
},
Sprite::default(),
TransformBundle::default(),
VisibilityBundle::default(),
));
}
fn decompress<A: Asset>(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut compressed_assets: ResMut<Assets<GzAsset>>,
query: Query<(Entity, &Compressed<A>)>,
) {
for (entity, Compressed { compressed, .. }) in query.iter() {
let Some(GzAsset { uncompressed }) = compressed_assets.remove(compressed) else {
continue;
};
let uncompressed = uncompressed.take::<A>().unwrap();
commands
.entity(entity)
.remove::<Compressed<A>>()
.insert(asset_server.add(uncompressed));
}
}
```
A key limitation to this design is how to type the internally loaded
asset, since the example `GzAssetLoader` is unaware of the internal
asset type `A`. As such, in this example I store the contained asset as
an `ErasedLoadedAsset`, and leave it up to the consumer of the `GzAsset`
to handle typing the final result, which is the purpose of the
`decompress` system. This limitation can be worked around by providing
type information to the `GzAssetLoader`, such as `GzAssetLoader<Image,
ImageAssetLoader>`, but this would require registering the asset loader
for every possible decompression target.
Aside from this limitation, nested asset containerisation works as an
end user would expect; if the user registers a `TarAssetLoader`, and a
`GzAssetLoader`, then they can load assets with compound
containerisation, such as `images.tar.gz`.
---
## Changelog
- Added `LoadContext::load_direct_with_reader`
- Added `asset_decompression` example
## Notes
- While I believe my implementation of a Gzip asset loader is
reasonable, I haven't included it as a public feature of `bevy_asset` to
keep the scope of this PR as focussed as possible.
- I have included `flate2` as a `dev-dependency` for the example; it is
not included in the main dependency graph.
2023-11-16 17:47:31 +00:00
flate2 = "1.0"
2021-08-01 19:14:47 +00:00
serde = { version = "1" , features = [ "derive" ] }
2022-01-05 19:43:11 +00:00
bytemuck = "1.7"
2021-05-23 20:13:55 +00:00
# Needed to poll Task examples
2023-11-24 00:11:02 +00:00
futures-lite = "2.0.1"
2022-02-05 01:52:47 +00:00
crossbeam-channel = "0.5.0"
2023-09-02 14:49:32 +00:00
argh = "0.1.12"
2019-12-24 00:13:05 +00:00
2020-05-01 20:12:47 +00:00
[ [ example ] ]
name = "hello_world"
path = "examples/hello_world.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-05-01 20:12:47 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . hello_world ]
hidden = true
2021-02-22 04:50:05 +00:00
# 2D Rendering
2023-03-04 12:05:26 +00:00
[ [ example ] ]
name = "bloom_2d"
path = "examples/2d/bloom_2d.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-03-04 12:05:26 +00:00
[ package . metadata . example . bloom_2d ]
name = "2D Bloom"
description = "Illustrates bloom post-processing in 2d"
category = "2D Rendering"
2023-05-19 20:11:41 +00:00
wasm = true
2023-03-04 12:05:26 +00:00
2022-02-02 02:44:51 +00:00
[ [ example ] ]
name = "move_sprite"
path = "examples/2d/move_sprite.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-02-02 02:44:51 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . move_sprite ]
name = "Move Sprite"
description = "Changes the transform of a sprite"
category = "2D Rendering"
wasm = true
2023-09-11 18:52:11 +00:00
[ [ example ] ]
name = "2d_viewport_to_world"
path = "examples/2d/2d_viewport_to_world.rs"
[ package . metadata . example . 2 d_viewport_to_world ]
name = "2D Viewport To World"
description = "Demonstrates how to use the `Camera::viewport_to_world_2d` method"
category = "2D Rendering"
wasm = true
2022-01-25 22:10:11 +00:00
[ [ example ] ]
2022-02-25 15:54:03 +00:00
name = "rotation"
2022-01-25 22:10:11 +00:00
path = "examples/2d/rotation.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-01-25 22:10:11 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . rotation ]
name = "2D Rotation"
description = "Demonstrates rotating entities in 2D with quaternions"
category = "2D Rendering"
wasm = true
Add 2d meshes and materials (#3460)
# Objective
The current 2d rendering is specialized to render sprites, we need a generic way to render 2d items, using meshes and materials like we have for 3d.
## Solution
I cloned a good part of `bevy_pbr` into `bevy_sprite/src/mesh2d`, removed lighting and pbr itself, adapted it to 2d rendering, added a `ColorMaterial`, and modified the sprite rendering to break batches around 2d meshes.
~~The PR is a bit crude; I tried to change as little as I could in both the parts copied from 3d and the current sprite rendering to make reviewing easier. In the future, I expect we could make the sprite rendering a normal 2d material, cleanly integrated with the rest.~~ _edit: see <https://github.com/bevyengine/bevy/pull/3460#issuecomment-1003605194>_
## Remaining work
- ~~don't require mesh normals~~ _out of scope_
- ~~add an example~~ _done_
- support 2d meshes & materials in the UI?
- bikeshed names (I didn't think hard about naming, please check if it's fine)
## Remaining questions
- ~~should we add a depth buffer to 2d now that there are 2d meshes?~~ _let's revisit that when we have an opaque render phase_
- ~~should we add MSAA support to the sprites, or remove it from the 2d meshes?~~ _I added MSAA to sprites since it's really needed for 2d meshes_
- ~~how to customize vertex attributes?~~ _#3120_
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-01-08 01:29:08 +00:00
[ [ example ] ]
name = "mesh2d"
path = "examples/2d/mesh2d.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Add 2d meshes and materials (#3460)
# Objective
The current 2d rendering is specialized to render sprites, we need a generic way to render 2d items, using meshes and materials like we have for 3d.
## Solution
I cloned a good part of `bevy_pbr` into `bevy_sprite/src/mesh2d`, removed lighting and pbr itself, adapted it to 2d rendering, added a `ColorMaterial`, and modified the sprite rendering to break batches around 2d meshes.
~~The PR is a bit crude; I tried to change as little as I could in both the parts copied from 3d and the current sprite rendering to make reviewing easier. In the future, I expect we could make the sprite rendering a normal 2d material, cleanly integrated with the rest.~~ _edit: see <https://github.com/bevyengine/bevy/pull/3460#issuecomment-1003605194>_
## Remaining work
- ~~don't require mesh normals~~ _out of scope_
- ~~add an example~~ _done_
- support 2d meshes & materials in the UI?
- bikeshed names (I didn't think hard about naming, please check if it's fine)
## Remaining questions
- ~~should we add a depth buffer to 2d now that there are 2d meshes?~~ _let's revisit that when we have an opaque render phase_
- ~~should we add MSAA support to the sprites, or remove it from the 2d meshes?~~ _I added MSAA to sprites since it's really needed for 2d meshes_
- ~~how to customize vertex attributes?~~ _#3120_
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-01-08 01:29:08 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . mesh2d ]
name = "Mesh 2D"
description = "Renders a 2d mesh"
category = "2D Rendering"
wasm = true
Add 2d meshes and materials (#3460)
# Objective
The current 2d rendering is specialized to render sprites, we need a generic way to render 2d items, using meshes and materials like we have for 3d.
## Solution
I cloned a good part of `bevy_pbr` into `bevy_sprite/src/mesh2d`, removed lighting and pbr itself, adapted it to 2d rendering, added a `ColorMaterial`, and modified the sprite rendering to break batches around 2d meshes.
~~The PR is a bit crude; I tried to change as little as I could in both the parts copied from 3d and the current sprite rendering to make reviewing easier. In the future, I expect we could make the sprite rendering a normal 2d material, cleanly integrated with the rest.~~ _edit: see <https://github.com/bevyengine/bevy/pull/3460#issuecomment-1003605194>_
## Remaining work
- ~~don't require mesh normals~~ _out of scope_
- ~~add an example~~ _done_
- support 2d meshes & materials in the UI?
- bikeshed names (I didn't think hard about naming, please check if it's fine)
## Remaining questions
- ~~should we add a depth buffer to 2d now that there are 2d meshes?~~ _let's revisit that when we have an opaque render phase_
- ~~should we add MSAA support to the sprites, or remove it from the 2d meshes?~~ _I added MSAA to sprites since it's really needed for 2d meshes_
- ~~how to customize vertex attributes?~~ _#3120_
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-01-08 01:29:08 +00:00
[ [ example ] ]
name = "mesh2d_manual"
path = "examples/2d/mesh2d_manual.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Add 2d meshes and materials (#3460)
# Objective
The current 2d rendering is specialized to render sprites, we need a generic way to render 2d items, using meshes and materials like we have for 3d.
## Solution
I cloned a good part of `bevy_pbr` into `bevy_sprite/src/mesh2d`, removed lighting and pbr itself, adapted it to 2d rendering, added a `ColorMaterial`, and modified the sprite rendering to break batches around 2d meshes.
~~The PR is a bit crude; I tried to change as little as I could in both the parts copied from 3d and the current sprite rendering to make reviewing easier. In the future, I expect we could make the sprite rendering a normal 2d material, cleanly integrated with the rest.~~ _edit: see <https://github.com/bevyengine/bevy/pull/3460#issuecomment-1003605194>_
## Remaining work
- ~~don't require mesh normals~~ _out of scope_
- ~~add an example~~ _done_
- support 2d meshes & materials in the UI?
- bikeshed names (I didn't think hard about naming, please check if it's fine)
## Remaining questions
- ~~should we add a depth buffer to 2d now that there are 2d meshes?~~ _let's revisit that when we have an opaque render phase_
- ~~should we add MSAA support to the sprites, or remove it from the 2d meshes?~~ _I added MSAA to sprites since it's really needed for 2d meshes_
- ~~how to customize vertex attributes?~~ _#3120_
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-01-08 01:29:08 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . mesh2d_manual ]
name = "Manual Mesh 2D"
description = "Renders a custom mesh \"manually\" with \"mid-level\" renderer apis"
category = "2D Rendering"
wasm = true
2022-05-30 16:59:45 +00:00
[ [ example ] ]
name = "mesh2d_vertex_color_texture"
path = "examples/2d/mesh2d_vertex_color_texture.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-05-30 16:59:45 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . mesh2d_vertex_color_texture ]
name = "Mesh 2D With Vertex Colors"
description = "Renders a 2d mesh with vertex color attributes"
category = "2D Rendering"
wasm = true
Add an example to draw a rectangle (#2957)
# Objective
Every time I come back to Bevy I face the same issue: how do I draw a rectangle again? How did that work? So I go to https://github.com/bevyengine/bevy/tree/main/examples in the hope of finding literally the simplest possible example that draws something on the screen without any dependency such as an image. I don't want to have to add some image first, I just quickly want to get something on the screen with `main.rs` alone so that I can continue building on from that point on. Such an example is particularly helpful for a quick start for smaller projects that don't even need any assets such as images (this is my case currently).
Currently every single example of https://github.com/bevyengine/bevy/tree/main/examples#2d-rendering (which is the first section after hello world that beginners will look for for very minimalistic and quick examples) depends on at least an asset or is too complex. This PR solves this.
It also serves as a great comparison for a beginner to realize what Bevy is really like and how different it is from what they may expect Bevy to be. For example for someone coming from [LÖVE](https://love2d.org/), they will have something like this in their head when they think of drawing a rectangle:
```lua
function love.draw()
love.graphics.setColor(0.25, 0.25, 0.75);
love.graphics.rectangle("fill", 0, 0, 50, 50);
end
```
This, of course, differs quite a lot from what you do in Bevy. I imagine there will be people that just want to see something as simple as this in comparison to have a better understanding for the amount of differences.
## Solution
Add a dead simple example drawing a blue 50x50 rectangle in the center with no more and no less than needed.
2021-12-18 00:52:37 +00:00
[ [ example ] ]
2022-09-25 00:57:07 +00:00
name = "2d_shapes"
path = "examples/2d/2d_shapes.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Add an example to draw a rectangle (#2957)
# Objective
Every time I come back to Bevy I face the same issue: how do I draw a rectangle again? How did that work? So I go to https://github.com/bevyengine/bevy/tree/main/examples in the hope of finding literally the simplest possible example that draws something on the screen without any dependency such as an image. I don't want to have to add some image first, I just quickly want to get something on the screen with `main.rs` alone so that I can continue building on from that point on. Such an example is particularly helpful for a quick start for smaller projects that don't even need any assets such as images (this is my case currently).
Currently every single example of https://github.com/bevyengine/bevy/tree/main/examples#2d-rendering (which is the first section after hello world that beginners will look for for very minimalistic and quick examples) depends on at least an asset or is too complex. This PR solves this.
It also serves as a great comparison for a beginner to realize what Bevy is really like and how different it is from what they may expect Bevy to be. For example for someone coming from [LÖVE](https://love2d.org/), they will have something like this in their head when they think of drawing a rectangle:
```lua
function love.draw()
love.graphics.setColor(0.25, 0.25, 0.75);
love.graphics.rectangle("fill", 0, 0, 50, 50);
end
```
This, of course, differs quite a lot from what you do in Bevy. I imagine there will be people that just want to see something as simple as this in comparison to have a better understanding for the amount of differences.
## Solution
Add a dead simple example drawing a blue 50x50 rectangle in the center with no more and no less than needed.
2021-12-18 00:52:37 +00:00
2022-09-25 00:57:07 +00:00
[ package . metadata . example . 2 d_shapes ]
name = "2D Shapes"
2022-06-25 20:23:24 +00:00
description = "Renders a rectangle, circle, and hexagon"
category = "2D Rendering"
wasm = true
2023-04-24 14:20:13 +00:00
[ [ example ] ]
name = "custom_gltf_vertex_attribute"
path = "examples/2d/custom_gltf_vertex_attribute.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-04-24 14:20:13 +00:00
[ package . metadata . example . custom_gltf_vertex_attribute ]
name = "Custom glTF vertex attribute 2D"
description = "Renders a glTF mesh in 2D with a custom vertex attribute"
category = "2D Rendering"
wasm = true
2023-03-20 20:57:54 +00:00
[ [ example ] ]
name = "2d_gizmos"
path = "examples/2d/2d_gizmos.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-03-20 20:57:54 +00:00
[ package . metadata . example . 2 d_gizmos ]
name = "2D Gizmos"
description = "A scene showcasing 2D gizmos"
category = "2D Rendering"
wasm = true
2020-05-04 08:22:25 +00:00
[ [ example ] ]
name = "sprite"
path = "examples/2d/sprite.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-05-04 08:22:25 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . sprite ]
name = "Sprite"
description = "Renders a sprite"
category = "2D Rendering"
wasm = true
Add Sprite Flipping (#1407)
OK, here's my attempt at sprite flipping. There are a couple of points that I need review/help on, but I think the UX is about ideal:
```rust
.spawn(SpriteBundle {
material: materials.add(texture_handle.into()),
sprite: Sprite {
// Flip the sprite along the x axis
flip: SpriteFlip { x: true, y: false },
..Default::default()
},
..Default::default()
});
```
Now for the issues. The big issue is that for some reason, when flipping the UVs on the sprite, there is a light "bleeding" or whatever you call it where the UV tries to sample past the texture boundry and ends up clipping. This is only noticed when resizing the window, though. You can see a screenshot below.
![image](https://user-images.githubusercontent.com/25393315/107098172-397aaa00-67d4-11eb-8e02-c90c820cd70e.png)
I am quite baffled why the texture sampling is overrunning like it is and could use some guidance if anybody knows what might be wrong.
The other issue, which I just worked around, is that I had to remove the `#[render_resources(from_self)]` annotation from the Spritesheet because the `SpriteFlip` render resource wasn't being picked up properly in the shader when using it. I'm not sure what the cause of that was, but by removing the annotation and re-organizing the shader inputs accordingly the problem was fixed.
I'm not sure if this is the most efficient way to do this or if there is a better way, but I wanted to try it out if only for the learning experience. Let me know what you think!
2021-03-03 19:26:45 +00:00
[ [ example ] ]
name = "sprite_flipping"
path = "examples/2d/sprite_flipping.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Add Sprite Flipping (#1407)
OK, here's my attempt at sprite flipping. There are a couple of points that I need review/help on, but I think the UX is about ideal:
```rust
.spawn(SpriteBundle {
material: materials.add(texture_handle.into()),
sprite: Sprite {
// Flip the sprite along the x axis
flip: SpriteFlip { x: true, y: false },
..Default::default()
},
..Default::default()
});
```
Now for the issues. The big issue is that for some reason, when flipping the UVs on the sprite, there is a light "bleeding" or whatever you call it where the UV tries to sample past the texture boundry and ends up clipping. This is only noticed when resizing the window, though. You can see a screenshot below.
![image](https://user-images.githubusercontent.com/25393315/107098172-397aaa00-67d4-11eb-8e02-c90c820cd70e.png)
I am quite baffled why the texture sampling is overrunning like it is and could use some guidance if anybody knows what might be wrong.
The other issue, which I just worked around, is that I had to remove the `#[render_resources(from_self)]` annotation from the Spritesheet because the `SpriteFlip` render resource wasn't being picked up properly in the shader when using it. I'm not sure what the cause of that was, but by removing the annotation and re-organizing the shader inputs accordingly the problem was fixed.
I'm not sure if this is the most efficient way to do this or if there is a better way, but I wanted to try it out if only for the learning experience. Let me know what you think!
2021-03-03 19:26:45 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . sprite_flipping ]
name = "Sprite Flipping"
description = "Renders a sprite flipped along an axis"
category = "2D Rendering"
wasm = true
2020-06-02 02:23:11 +00:00
[ [ example ] ]
name = "sprite_sheet"
path = "examples/2d/sprite_sheet.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-06-02 02:23:11 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . sprite_sheet ]
name = "Sprite Sheet"
description = "Renders an animated sprite"
category = "2D Rendering"
wasm = true
2024-01-15 15:40:06 +00:00
[ [ example ] ]
name = "sprite_tile"
path = "examples/2d/sprite_tile.rs"
[ package . metadata . example . sprite_tile ]
name = "Sprite Tile"
description = "Renders a sprite tiled in a grid"
category = "2D Rendering"
wasm = true
[ [ example ] ]
name = "sprite_slice"
path = "examples/2d/sprite_slice.rs"
[ package . metadata . example . sprite_slice ]
name = "Sprite Slice"
description = "Showcases slicing sprites into sections that can be scaled independently via the 9-patch technique"
category = "2D Rendering"
wasm = true
2020-12-27 19:19:03 +00:00
[ [ example ] ]
name = "text2d"
path = "examples/2d/text2d.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-12-27 19:19:03 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . text2d ]
name = "Text 2D"
description = "Generates text in 2D"
category = "2D Rendering"
wasm = true
2021-02-22 04:50:05 +00:00
[ [ example ] ]
name = "texture_atlas"
path = "examples/2d/texture_atlas.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-02-22 04:50:05 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . texture_atlas ]
name = "Texture Atlas"
description = "Generates a texture atlas (sprite sheet) from individual sprites"
category = "2D Rendering"
2023-05-25 21:57:04 +00:00
wasm = false
2022-06-25 20:23:24 +00:00
2022-06-06 17:52:09 +00:00
[ [ example ] ]
name = "transparency_2d"
path = "examples/2d/transparency_2d.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-06-06 17:52:09 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . transparency_2d ]
name = "Transparency in 2D"
description = "Demonstrates transparency in 2d"
category = "2D Rendering"
wasm = true
2022-11-14 22:15:46 +00:00
[ [ example ] ]
2023-12-26 17:15:50 +00:00
name = "pixel_grid_snap"
path = "examples/2d/pixel_grid_snap.rs"
2022-11-14 22:15:46 +00:00
2023-12-26 17:15:50 +00:00
[ package . metadata . example . pixel_grid_snap ]
name = "Pixel Grid Snapping"
description = "Shows how to create graphics that snap to the pixel grid by rendering to a texture in 2D"
2022-11-14 22:15:46 +00:00
category = "2D Rendering"
wasm = true
2021-02-22 04:50:05 +00:00
# 3D Rendering
2021-01-01 20:58:49 +00:00
[ [ example ] ]
name = "3d_scene"
path = "examples/3d/3d_scene.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-01-01 20:58:49 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . 3 d_scene ]
name = "3D Scene"
description = "Simple 3D scene with basic shapes and lighting"
category = "3D Rendering"
wasm = true
Camera Driven Viewports (#4898)
# Objective
Users should be able to render cameras to specific areas of a render target, which enables scenarios like split screen, minimaps, etc.
Builds on the new Camera Driven Rendering added here: #4745
Fixes: #202
Alternative to #1389 and #3626 (which are incompatible with the new Camera Driven Rendering)
## Solution
![image](https://user-images.githubusercontent.com/2694663/171560044-f0694f67-0cd9-4598-83e2-a9658c4fed57.png)
Cameras can now configure an optional "viewport", which defines a rectangle within their render target to draw to. If a `Viewport` is defined, the camera's `CameraProjection`, `View`, and visibility calculations will use the viewport configuration instead of the full render target.
```rust
// This camera will render to the first half of the primary window (on the left side).
commands.spawn_bundle(Camera3dBundle {
camera: Camera {
viewport: Some(Viewport {
physical_position: UVec2::new(0, 0),
physical_size: UVec2::new(window.physical_width() / 2, window.physical_height()),
depth: 0.0..1.0,
}),
..default()
},
..default()
});
```
To account for this, the `Camera` component has received a few adjustments:
* `Camera` now has some new getter functions:
* `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, `projection_matrix`
* All computed camera values are now private and live on the `ComputedCameraValues` field (logical/physical width/height, the projection matrix). They are now exposed on `Camera` via getters/setters This wasn't _needed_ for viewports, but it was long overdue.
---
## Changelog
### Added
* `Camera` components now have a `viewport` field, which can be set to draw to a portion of a render target instead of the full target.
* `Camera` component has some new functions: `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, and `projection_matrix`
* Added a new split_screen example illustrating how to render two cameras to the same scene
## Migration Guide
`Camera::projection_matrix` is no longer a public field. Use the new `Camera::projection_matrix()` method instead:
```rust
// Bevy 0.7
let projection = camera.projection_matrix;
// Bevy 0.8
let projection = camera.projection_matrix();
```
2022-06-05 00:27:49 +00:00
[ [ example ] ]
name = "3d_shapes"
2022-09-25 00:57:07 +00:00
path = "examples/3d/3d_shapes.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Camera Driven Viewports (#4898)
# Objective
Users should be able to render cameras to specific areas of a render target, which enables scenarios like split screen, minimaps, etc.
Builds on the new Camera Driven Rendering added here: #4745
Fixes: #202
Alternative to #1389 and #3626 (which are incompatible with the new Camera Driven Rendering)
## Solution
![image](https://user-images.githubusercontent.com/2694663/171560044-f0694f67-0cd9-4598-83e2-a9658c4fed57.png)
Cameras can now configure an optional "viewport", which defines a rectangle within their render target to draw to. If a `Viewport` is defined, the camera's `CameraProjection`, `View`, and visibility calculations will use the viewport configuration instead of the full render target.
```rust
// This camera will render to the first half of the primary window (on the left side).
commands.spawn_bundle(Camera3dBundle {
camera: Camera {
viewport: Some(Viewport {
physical_position: UVec2::new(0, 0),
physical_size: UVec2::new(window.physical_width() / 2, window.physical_height()),
depth: 0.0..1.0,
}),
..default()
},
..default()
});
```
To account for this, the `Camera` component has received a few adjustments:
* `Camera` now has some new getter functions:
* `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, `projection_matrix`
* All computed camera values are now private and live on the `ComputedCameraValues` field (logical/physical width/height, the projection matrix). They are now exposed on `Camera` via getters/setters This wasn't _needed_ for viewports, but it was long overdue.
---
## Changelog
### Added
* `Camera` components now have a `viewport` field, which can be set to draw to a portion of a render target instead of the full target.
* `Camera` component has some new functions: `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, and `projection_matrix`
* Added a new split_screen example illustrating how to render two cameras to the same scene
## Migration Guide
`Camera::projection_matrix` is no longer a public field. Use the new `Camera::projection_matrix()` method instead:
```rust
// Bevy 0.7
let projection = camera.projection_matrix;
// Bevy 0.8
let projection = camera.projection_matrix();
```
2022-06-05 00:27:49 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . 3 d_shapes ]
name = "3D Shapes"
description = "A scene showcasing the built-in 3D shapes"
category = "3D Rendering"
wasm = true
2023-09-11 18:52:11 +00:00
[ [ example ] ]
name = "3d_viewport_to_world"
path = "examples/3d/3d_viewport_to_world.rs"
doc-scrape-examples = true
[ package . metadata . example . 3 d_viewport_to_world ]
name = "3D Viewport To World"
description = "Demonstrates how to use the `Camera::viewport_to_world` method"
category = "3D Rendering"
wasm = true
2023-06-23 19:26:37 +00:00
[ [ example ] ]
name = "generate_custom_mesh"
path = "examples/3d/generate_custom_mesh.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-06-23 19:26:37 +00:00
[ package . metadata . example . generate_custom_mesh ]
name = "Generate Custom Mesh"
description = "Simple showcase of how to generate a custom mesh with a custom texture"
category = "3D Rendering"
wasm = true
Temporal Antialiasing (TAA) (#7291)
![image](https://user-images.githubusercontent.com/47158642/214374911-412f0986-3927-4f7a-9a6c-413bdee6b389.png)
# Objective
- Implement an alternative antialias technique
- TAA scales based off of view resolution, not geometry complexity
- TAA filters textures, firefly pixels, and other aliasing not covered
by MSAA
- TAA additionally will reduce noise / increase quality in future
stochastic rendering techniques
- Closes https://github.com/bevyengine/bevy/issues/3663
## Solution
- Add a temporal jitter component
- Add a motion vector prepass
- Add a TemporalAntialias component and plugin
- Combine existing MSAA and FXAA examples and add TAA
## Followup Work
- Prepass motion vector support for skinned meshes
- Move uniforms needed for motion vectors into a separate bind group,
instead of using different bind group layouts
- Reuse previous frame's GPU view buffer for motion vectors, instead of
recomputing
- Mip biasing for sharper textures, and or unjitter texture UVs
https://github.com/bevyengine/bevy/issues/7323
- Compute shader for better performance
- Investigate FSR techniques
- Historical depth based disocclusion tests, for geometry disocclusion
- Historical luminance/hue based tests, for shading disocclusion
- Pixel "locks" to reduce blending rate / revamp history confidence
mechanism
- Orthographic camera support for TemporalJitter
- Figure out COD's 1-tap bicubic filter
---
## Changelog
- Added MotionVectorPrepass and TemporalJitter
- Added TemporalAntialiasPlugin, TemporalAntialiasBundle, and
TemporalAntialiasSettings
---------
Co-authored-by: IceSentry <c.giguere42@gmail.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: Daniel Chia <danstryder@gmail.com>
Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
Co-authored-by: Brandon Dyer <brandondyer64@gmail.com>
Co-authored-by: Edgar Geier <geieredgar@gmail.com>
2023-03-27 22:22:40 +00:00
[ [ example ] ]
name = "anti_aliasing"
path = "examples/3d/anti_aliasing.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Temporal Antialiasing (TAA) (#7291)
![image](https://user-images.githubusercontent.com/47158642/214374911-412f0986-3927-4f7a-9a6c-413bdee6b389.png)
# Objective
- Implement an alternative antialias technique
- TAA scales based off of view resolution, not geometry complexity
- TAA filters textures, firefly pixels, and other aliasing not covered
by MSAA
- TAA additionally will reduce noise / increase quality in future
stochastic rendering techniques
- Closes https://github.com/bevyengine/bevy/issues/3663
## Solution
- Add a temporal jitter component
- Add a motion vector prepass
- Add a TemporalAntialias component and plugin
- Combine existing MSAA and FXAA examples and add TAA
## Followup Work
- Prepass motion vector support for skinned meshes
- Move uniforms needed for motion vectors into a separate bind group,
instead of using different bind group layouts
- Reuse previous frame's GPU view buffer for motion vectors, instead of
recomputing
- Mip biasing for sharper textures, and or unjitter texture UVs
https://github.com/bevyengine/bevy/issues/7323
- Compute shader for better performance
- Investigate FSR techniques
- Historical depth based disocclusion tests, for geometry disocclusion
- Historical luminance/hue based tests, for shading disocclusion
- Pixel "locks" to reduce blending rate / revamp history confidence
mechanism
- Orthographic camera support for TemporalJitter
- Figure out COD's 1-tap bicubic filter
---
## Changelog
- Added MotionVectorPrepass and TemporalJitter
- Added TemporalAntialiasPlugin, TemporalAntialiasBundle, and
TemporalAntialiasSettings
---------
Co-authored-by: IceSentry <c.giguere42@gmail.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: Daniel Chia <danstryder@gmail.com>
Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
Co-authored-by: Brandon Dyer <brandondyer64@gmail.com>
Co-authored-by: Edgar Geier <geieredgar@gmail.com>
2023-03-27 22:22:40 +00:00
[ package . metadata . example . anti_aliasing ]
name = "Anti-aliasing"
description = "Compares different anti-aliasing methods"
category = "3D Rendering"
wasm = false
2023-03-20 20:57:54 +00:00
[ [ example ] ]
name = "3d_gizmos"
path = "examples/3d/3d_gizmos.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-03-20 20:57:54 +00:00
[ package . metadata . example . 3 d_gizmos ]
name = "3D Gizmos"
description = "A scene showcasing 3D gizmos"
category = "3D Rendering"
wasm = true
Add Distance and Atmospheric Fog support (#6412)
<img width="1392" alt="image" src="https://user-images.githubusercontent.com/418473/203873533-44c029af-13b7-4740-8ea3-af96bd5867c9.png">
<img width="1392" alt="image" src="https://user-images.githubusercontent.com/418473/203873549-36be7a23-b341-42a2-8a9f-ceea8ac7a2b8.png">
# Objective
- Add support for the “classic” distance fog effect, as well as a more advanced atmospheric fog effect.
## Solution
This PR:
- Introduces a new `FogSettings` component that controls distance fog per-camera.
- Adds support for three widely used “traditional” fog falloff modes: `Linear`, `Exponential` and `ExponentialSquared`, as well as a more advanced `Atmospheric` fog;
- Adds support for directional light influence over fog color;
- Extracts fog via `ExtractComponent`, then uses a prepare system that sets up a new dynamic uniform struct (`Fog`), similar to other mesh view types;
- Renders fog in PBR material shader, as a final adjustment to the `output_color`, after PBR is computed (but before tone mapping);
- Adds a new `StandardMaterial` flag to enable fog; (`fog_enabled`)
- Adds convenience methods for easier artistic control when creating non-linear fog types;
- Adds documentation around fog.
---
## Changelog
### Added
- Added support for distance-based fog effects for PBR materials, controllable per-camera via the new `FogSettings` component;
- Added `FogFalloff` enum for selecting between three widely used “traditional” fog falloff modes: `Linear`, `Exponential` and `ExponentialSquared`, as well as a more advanced `Atmospheric` fog;
2023-01-29 15:28:56 +00:00
[ [ example ] ]
name = "atmospheric_fog"
path = "examples/3d/atmospheric_fog.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Add Distance and Atmospheric Fog support (#6412)
<img width="1392" alt="image" src="https://user-images.githubusercontent.com/418473/203873533-44c029af-13b7-4740-8ea3-af96bd5867c9.png">
<img width="1392" alt="image" src="https://user-images.githubusercontent.com/418473/203873549-36be7a23-b341-42a2-8a9f-ceea8ac7a2b8.png">
# Objective
- Add support for the “classic” distance fog effect, as well as a more advanced atmospheric fog effect.
## Solution
This PR:
- Introduces a new `FogSettings` component that controls distance fog per-camera.
- Adds support for three widely used “traditional” fog falloff modes: `Linear`, `Exponential` and `ExponentialSquared`, as well as a more advanced `Atmospheric` fog;
- Adds support for directional light influence over fog color;
- Extracts fog via `ExtractComponent`, then uses a prepare system that sets up a new dynamic uniform struct (`Fog`), similar to other mesh view types;
- Renders fog in PBR material shader, as a final adjustment to the `output_color`, after PBR is computed (but before tone mapping);
- Adds a new `StandardMaterial` flag to enable fog; (`fog_enabled`)
- Adds convenience methods for easier artistic control when creating non-linear fog types;
- Adds documentation around fog.
---
## Changelog
### Added
- Added support for distance-based fog effects for PBR materials, controllable per-camera via the new `FogSettings` component;
- Added `FogFalloff` enum for selecting between three widely used “traditional” fog falloff modes: `Linear`, `Exponential` and `ExponentialSquared`, as well as a more advanced `Atmospheric` fog;
2023-01-29 15:28:56 +00:00
[ package . metadata . example . atmospheric_fog ]
name = "Atmospheric Fog"
description = "A scene showcasing the atmospheric fog effect"
category = "3D Rendering"
wasm = true
[ [ example ] ]
name = "fog"
path = "examples/3d/fog.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Add Distance and Atmospheric Fog support (#6412)
<img width="1392" alt="image" src="https://user-images.githubusercontent.com/418473/203873533-44c029af-13b7-4740-8ea3-af96bd5867c9.png">
<img width="1392" alt="image" src="https://user-images.githubusercontent.com/418473/203873549-36be7a23-b341-42a2-8a9f-ceea8ac7a2b8.png">
# Objective
- Add support for the “classic” distance fog effect, as well as a more advanced atmospheric fog effect.
## Solution
This PR:
- Introduces a new `FogSettings` component that controls distance fog per-camera.
- Adds support for three widely used “traditional” fog falloff modes: `Linear`, `Exponential` and `ExponentialSquared`, as well as a more advanced `Atmospheric` fog;
- Adds support for directional light influence over fog color;
- Extracts fog via `ExtractComponent`, then uses a prepare system that sets up a new dynamic uniform struct (`Fog`), similar to other mesh view types;
- Renders fog in PBR material shader, as a final adjustment to the `output_color`, after PBR is computed (but before tone mapping);
- Adds a new `StandardMaterial` flag to enable fog; (`fog_enabled`)
- Adds convenience methods for easier artistic control when creating non-linear fog types;
- Adds documentation around fog.
---
## Changelog
### Added
- Added support for distance-based fog effects for PBR materials, controllable per-camera via the new `FogSettings` component;
- Added `FogFalloff` enum for selecting between three widely used “traditional” fog falloff modes: `Linear`, `Exponential` and `ExponentialSquared`, as well as a more advanced `Atmospheric` fog;
2023-01-29 15:28:56 +00:00
[ package . metadata . example . fog ]
name = "Fog"
description = "A scene showcasing the distance fog effect"
category = "3D Rendering"
wasm = true
2023-01-21 21:46:53 +00:00
[ [ example ] ]
name = "blend_modes"
path = "examples/3d/blend_modes.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-01-21 21:46:53 +00:00
[ package . metadata . example . blend_modes ]
name = "Blend Modes"
description = "Showcases different blend modes"
category = "3D Rendering"
2024-01-09 00:46:01 +00:00
wasm = true
[ [ example ] ]
name = "deterministic"
path = "examples/3d/deterministic.rs"
doc-scrape-examples = true
[ package . metadata . example . deterministic ]
name = "Deterministic rendering"
description = "Stop flickering from z-fighting at a performance cost"
category = "3D Rendering"
2023-01-21 21:46:53 +00:00
wasm = true
2021-06-02 02:59:17 +00:00
[ [ example ] ]
2021-12-14 03:58:23 +00:00
name = "lighting"
path = "examples/3d/lighting.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-07-08 02:49:33 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . lighting ]
name = "Lighting"
description = "Illustrates various lighting options in a simple scene"
category = "3D Rendering"
wasm = true
2022-07-15 22:37:05 +00:00
[ [ example ] ]
name = "lines"
path = "examples/3d/lines.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-07-15 22:37:05 +00:00
[ package . metadata . example . lines ]
name = "Lines"
description = "Create a custom material to draw 3d lines"
category = "3D Rendering"
wasm = true
Screen Space Ambient Occlusion (SSAO) MVP (#7402)
![image](https://github.com/bevyengine/bevy/assets/47158642/dbb62645-f639-4f2b-b84b-26fd915c186d)
# Objective
- Add Screen space ambient occlusion (SSAO). SSAO approximates
small-scale, local occlusion of _indirect_ diffuse light between
objects. SSAO does not apply to direct lighting, such as point or
directional lights.
- This darkens creases, e.g. on staircases, and gives nice contact
shadows where objects meet, giving entities a more "grounded" feel.
- Closes https://github.com/bevyengine/bevy/issues/3632.
## Solution
- Implement the GTAO algorithm.
-
https://www.activision.com/cdn/research/Practical_Real_Time_Strategies_for_Accurate_Indirect_Occlusion_NEW%20VERSION_COLOR.pdf
-
https://blog.selfshadow.com/publications/s2016-shading-course/activision/s2016_pbs_activision_occlusion.pdf
- Source code heavily based on [Intel's
XeGTAO](https://github.com/GameTechDev/XeGTAO/blob/0d177ce06bfa642f64d8af4de1197ad1bcb862d4/Source/Rendering/Shaders/XeGTAO.hlsli).
- Add an SSAO bevy example.
## Algorithm Overview
* Run a depth and normal prepass
* Create downscaled mips of the depth texture (preprocess_depths pass)
* GTAO pass - for each pixel, take several random samples from the
depth+normal buffers, reconstruct world position, raytrace in screen
space to estimate occlusion. Rather then doing completely random samples
on a hemisphere, you choose random _slices_ of the hemisphere, and then
can analytically compute the full occlusion of that slice. Also compute
edges based on depth differences here.
* Spatial denoise pass - bilateral blur, using edge detection to not
blur over edges. This is the final SSAO result.
* Main pass - if SSAO exists, sample the SSAO texture, and set occlusion
to be the minimum of ssao/material occlusion. This then feeds into the
rest of the PBR shader as normal.
---
## Future Improvements
- Maybe remove the low quality preset for now (too noisy)
- WebGPU fallback (see below)
- Faster depth->world position (see reverted code)
- Bent normals
- Try interleaved gradient noise or spatiotemporal blue noise
- Replace the spatial denoiser with a combined spatial+temporal denoiser
- Render at half resolution and use a bilateral upsample
- Better multibounce approximation
(https://drive.google.com/file/d/1SyagcEVplIm2KkRD3WQYSO9O0Iyi1hfy/view)
## Far-Future Performance Improvements
- F16 math (missing naga-wgsl support
https://github.com/gfx-rs/naga/issues/1884)
- Faster coordinate space conversion for normals
- Faster depth mipchain creation
(https://github.com/GPUOpen-Effects/FidelityFX-SPD) (wgpu/naga does not
currently support subgroup ops)
- Deinterleaved SSAO for better cache efficiency
(https://developer.nvidia.com/sites/default/files/akamai/gameworks/samples/DeinterleavedTexturing.pdf)
## Other Interesting Papers
- Visibility bitmask
(https://link.springer.com/article/10.1007/s00371-022-02703-y,
https://cdrinmatane.github.io/posts/cgspotlight-slides/)
- Screen space diffuse lighting
(https://github.com/Patapom/GodComplex/blob/master/Tests/TestHBIL/2018%20Mayaux%20-%20Horizon-Based%20Indirect%20Lighting%20(HBIL).pdf)
## Platform Support
* SSAO currently does not work on DirectX12 due to issues with wgpu and
naga:
* https://github.com/gfx-rs/wgpu/pull/3798
* https://github.com/gfx-rs/naga/pull/2353
* SSAO currently does not work on WebGPU because r16float is not a valid
storage texture format
https://gpuweb.github.io/gpuweb/wgsl/#storage-texel-formats. We can fix
this with a fallback to r32float.
---
## Changelog
- Added ScreenSpaceAmbientOcclusionSettings,
ScreenSpaceAmbientOcclusionQualityLevel, and
ScreenSpaceAmbientOcclusionBundle
---------
Co-authored-by: IceSentry <c.giguere42@gmail.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
Co-authored-by: Daniel Chia <danstryder@gmail.com>
Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
Co-authored-by: Brandon Dyer <brandondyer64@gmail.com>
Co-authored-by: Edgar Geier <geieredgar@gmail.com>
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-18 21:05:55 +00:00
[ [ example ] ]
name = "ssao"
path = "examples/3d/ssao.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Screen Space Ambient Occlusion (SSAO) MVP (#7402)
![image](https://github.com/bevyengine/bevy/assets/47158642/dbb62645-f639-4f2b-b84b-26fd915c186d)
# Objective
- Add Screen space ambient occlusion (SSAO). SSAO approximates
small-scale, local occlusion of _indirect_ diffuse light between
objects. SSAO does not apply to direct lighting, such as point or
directional lights.
- This darkens creases, e.g. on staircases, and gives nice contact
shadows where objects meet, giving entities a more "grounded" feel.
- Closes https://github.com/bevyengine/bevy/issues/3632.
## Solution
- Implement the GTAO algorithm.
-
https://www.activision.com/cdn/research/Practical_Real_Time_Strategies_for_Accurate_Indirect_Occlusion_NEW%20VERSION_COLOR.pdf
-
https://blog.selfshadow.com/publications/s2016-shading-course/activision/s2016_pbs_activision_occlusion.pdf
- Source code heavily based on [Intel's
XeGTAO](https://github.com/GameTechDev/XeGTAO/blob/0d177ce06bfa642f64d8af4de1197ad1bcb862d4/Source/Rendering/Shaders/XeGTAO.hlsli).
- Add an SSAO bevy example.
## Algorithm Overview
* Run a depth and normal prepass
* Create downscaled mips of the depth texture (preprocess_depths pass)
* GTAO pass - for each pixel, take several random samples from the
depth+normal buffers, reconstruct world position, raytrace in screen
space to estimate occlusion. Rather then doing completely random samples
on a hemisphere, you choose random _slices_ of the hemisphere, and then
can analytically compute the full occlusion of that slice. Also compute
edges based on depth differences here.
* Spatial denoise pass - bilateral blur, using edge detection to not
blur over edges. This is the final SSAO result.
* Main pass - if SSAO exists, sample the SSAO texture, and set occlusion
to be the minimum of ssao/material occlusion. This then feeds into the
rest of the PBR shader as normal.
---
## Future Improvements
- Maybe remove the low quality preset for now (too noisy)
- WebGPU fallback (see below)
- Faster depth->world position (see reverted code)
- Bent normals
- Try interleaved gradient noise or spatiotemporal blue noise
- Replace the spatial denoiser with a combined spatial+temporal denoiser
- Render at half resolution and use a bilateral upsample
- Better multibounce approximation
(https://drive.google.com/file/d/1SyagcEVplIm2KkRD3WQYSO9O0Iyi1hfy/view)
## Far-Future Performance Improvements
- F16 math (missing naga-wgsl support
https://github.com/gfx-rs/naga/issues/1884)
- Faster coordinate space conversion for normals
- Faster depth mipchain creation
(https://github.com/GPUOpen-Effects/FidelityFX-SPD) (wgpu/naga does not
currently support subgroup ops)
- Deinterleaved SSAO for better cache efficiency
(https://developer.nvidia.com/sites/default/files/akamai/gameworks/samples/DeinterleavedTexturing.pdf)
## Other Interesting Papers
- Visibility bitmask
(https://link.springer.com/article/10.1007/s00371-022-02703-y,
https://cdrinmatane.github.io/posts/cgspotlight-slides/)
- Screen space diffuse lighting
(https://github.com/Patapom/GodComplex/blob/master/Tests/TestHBIL/2018%20Mayaux%20-%20Horizon-Based%20Indirect%20Lighting%20(HBIL).pdf)
## Platform Support
* SSAO currently does not work on DirectX12 due to issues with wgpu and
naga:
* https://github.com/gfx-rs/wgpu/pull/3798
* https://github.com/gfx-rs/naga/pull/2353
* SSAO currently does not work on WebGPU because r16float is not a valid
storage texture format
https://gpuweb.github.io/gpuweb/wgsl/#storage-texel-formats. We can fix
this with a fallback to r32float.
---
## Changelog
- Added ScreenSpaceAmbientOcclusionSettings,
ScreenSpaceAmbientOcclusionQualityLevel, and
ScreenSpaceAmbientOcclusionBundle
---------
Co-authored-by: IceSentry <c.giguere42@gmail.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
Co-authored-by: Daniel Chia <danstryder@gmail.com>
Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
Co-authored-by: Brandon Dyer <brandondyer64@gmail.com>
Co-authored-by: Edgar Geier <geieredgar@gmail.com>
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-18 21:05:55 +00:00
[ package . metadata . example . ssao ]
name = "Screen Space Ambient Occlusion"
description = "A scene showcasing screen space ambient occlusion"
category = "3D Rendering"
wasm = false
2022-07-08 19:57:43 +00:00
[ [ example ] ]
name = "spotlight"
path = "examples/3d/spotlight.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-07-08 19:57:43 +00:00
[ package . metadata . example . spotlight ]
name = "Spotlight"
description = "Illustrates spot lights"
category = "3D Rendering"
wasm = true
2022-11-04 01:34:12 +00:00
[ [ example ] ]
2023-03-04 12:05:26 +00:00
name = "bloom_3d"
path = "examples/3d/bloom_3d.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-11-04 01:34:12 +00:00
2023-03-04 12:05:26 +00:00
[ package . metadata . example . bloom_3d ]
name = "3D Bloom"
2022-11-04 01:34:12 +00:00
description = "Illustrates bloom configuration using HDR and emissive materials"
category = "3D Rendering"
2023-05-19 20:11:41 +00:00
wasm = true
2022-11-04 01:34:12 +00:00
2023-10-12 22:10:38 +00:00
[ [ example ] ]
name = "deferred_rendering"
path = "examples/3d/deferred_rendering.rs"
[ package . metadata . example . deferred_rendering ]
name = "Deferred Rendering"
description = "Renders meshes with both forward and deferred pipelines"
category = "3D Rendering"
wasm = true
2020-05-01 20:12:47 +00:00
[ [ example ] ]
2020-10-18 20:48:15 +00:00
name = "load_gltf"
path = "examples/3d/load_gltf.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-05-01 20:12:47 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . load_gltf ]
name = "Load glTF"
description = "Loads and renders a glTF file as a scene"
category = "3D Rendering"
wasm = true
2023-02-19 20:38:13 +00:00
[ [ example ] ]
name = "tonemapping"
path = "examples/3d/tonemapping.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-02-19 20:38:13 +00:00
[ package . metadata . example . tonemapping ]
name = "Tonemapping"
description = "Compares tonemapping options"
category = "3D Rendering"
wasm = true
2021-02-01 00:22:06 +00:00
[ [ example ] ]
name = "orthographic"
path = "examples/3d/orthographic.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-02-01 00:22:06 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . orthographic ]
name = "Orthographic View"
description = "Shows how to create a 3D orthographic view (for isometric-look in games or CAD applications)"
category = "3D Rendering"
wasm = true
2020-05-01 20:12:47 +00:00
[ [ example ] ]
name = "parenting"
path = "examples/3d/parenting.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-05-01 20:12:47 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . parenting ]
name = "Parenting"
description = "Demonstrates parent->child relationships and relative transformations"
category = "3D Rendering"
wasm = true
2021-03-20 03:22:33 +00:00
[ [ example ] ]
name = "pbr"
path = "examples/3d/pbr.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-03-20 03:22:33 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . pbr ]
name = "Physically Based Rendering"
description = "Demonstrates use of Physically Based Rendering (PBR) properties"
category = "3D Rendering"
wasm = true
Add parallax mapping to bevy PBR (#5928)
# Objective
Add a [parallax mapping] shader to bevy. Please note that
this is a 3d technique, NOT a 2d sidescroller feature.
## Solution
- Add related fields to `StandardMaterial`
- update the pbr shader
- Add an example taking advantage of parallax mapping
A pre-existing implementation exists at:
https://github.com/nicopap/bevy_mod_paramap/
The implementation is derived from:
https://web.archive.org/web/20150419215321/http://sunandblackcat.com/tipFullView.php?l=eng&topicid=28
Further discussion on literature is found in the `bevy_mod_paramap`
README.
### Limitations
- The mesh silhouette isn't affected by the depth map.
- The depth of the pixel does not reflect its visual position, resulting
in artifacts for depth-dependent features such as fog or SSAO
- GLTF does not define a height map texture, so somehow the user will
always need to work around this limitation, though [an extension is in
the works][gltf]
### Future work
- It's possible to update the depth in the depth buffer to follow the
parallaxed texture. This would enable interop with depth-based
visual effects, it also allows `discard`ing pixels of materials when
computed depth is higher than the one in depth buffer
- Cheap lower quality single-sample method using [offset limiting]
- Add distance fading, to disable parallaxing (relatively expensive)
on distant objects
- GLTF extension to allow defining height maps. Or a workaround
implemented through a blender plugin to the GLTF exporter that
uses the `extras` field to add height map.
- [Quadratic surface vertex attributes][oliveira_3] to enable parallax
mapping on bending surfaces and allow clean silhouetting.
- noise based sampling, to limit the pancake artifacts.
- Cone mapping ([GPU gems], [Simcity (2013)][simcity]). Requires
preprocessing, increase depth map size, reduces sample count greatly.
- [Quadtree parallax mapping][qpm] (also requires preprocessing)
- Self-shadowing of parallax-mapped surfaces by modifying the shadow map
- Generate depth map from normal map [link to slides], [blender
question]
https://user-images.githubusercontent.com/26321040/223563792-dffcc6ab-70e8-4ff9-90d1-b36c338695ad.mp4
[blender question]:
https://blender.stackexchange.com/questions/89278/how-to-get-a-smooth-curvature-map-from-a-normal-map
[link to slides]:
https://developer.download.nvidia.com/assets/gamedev/docs/nmap2displacement.pdf
[oliveira_3]:
https://www.inf.ufrgs.br/~oliveira/pubs_files/Oliveira_Policarpo_RP-351_Jan_2005.pdf
[GPU gems]:
https://developer.nvidia.com/gpugems/gpugems3/part-iii-rendering/chapter-18-relaxed-cone-stepping-relief-mapping
[simcity]:
https://community.simtropolis.com/omnibus/other-games/building-and-rendering-simcity-2013-r247/
[offset limiting]:
https://raw.githubusercontent.com/marcusstenbeck/tncg14-parallax-mapping/master/documents/Parallax%20Mapping%20with%20Offset%20Limiting%20-%20A%20Per-Pixel%20Approximation%20of%20Uneven%20Surfaces.pdf
[gltf]: https://github.com/KhronosGroup/glTF/pull/2196
[qpm]:
https://www.gamedevs.org/uploads/quadtree-displacement-mapping-with-height-blending.pdf
---
## Changelog
- Add a `depth_map` field to the `StandardMaterial`, it is a grayscale
image where white represents bottom and black the top. If `depth_map`
is set, bevy's pbr shader will use it to do [parallax mapping] to
give an increased feel of depth to the material. This is similar to a
displacement map, but with infinite precision at fairly low cost.
- The fields `parallax_mapping_method`, `parallax_depth_scale` and
`max_parallax_layer_count` allow finer grained control over the
behavior of the parallax shader.
- Add the `parallax_mapping` example to show off the effect.
[parallax mapping]: https://en.wikipedia.org/wiki/Parallax_mapping
---------
Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-04-15 10:25:14 +00:00
[ [ example ] ]
name = "parallax_mapping"
path = "examples/3d/parallax_mapping.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Add parallax mapping to bevy PBR (#5928)
# Objective
Add a [parallax mapping] shader to bevy. Please note that
this is a 3d technique, NOT a 2d sidescroller feature.
## Solution
- Add related fields to `StandardMaterial`
- update the pbr shader
- Add an example taking advantage of parallax mapping
A pre-existing implementation exists at:
https://github.com/nicopap/bevy_mod_paramap/
The implementation is derived from:
https://web.archive.org/web/20150419215321/http://sunandblackcat.com/tipFullView.php?l=eng&topicid=28
Further discussion on literature is found in the `bevy_mod_paramap`
README.
### Limitations
- The mesh silhouette isn't affected by the depth map.
- The depth of the pixel does not reflect its visual position, resulting
in artifacts for depth-dependent features such as fog or SSAO
- GLTF does not define a height map texture, so somehow the user will
always need to work around this limitation, though [an extension is in
the works][gltf]
### Future work
- It's possible to update the depth in the depth buffer to follow the
parallaxed texture. This would enable interop with depth-based
visual effects, it also allows `discard`ing pixels of materials when
computed depth is higher than the one in depth buffer
- Cheap lower quality single-sample method using [offset limiting]
- Add distance fading, to disable parallaxing (relatively expensive)
on distant objects
- GLTF extension to allow defining height maps. Or a workaround
implemented through a blender plugin to the GLTF exporter that
uses the `extras` field to add height map.
- [Quadratic surface vertex attributes][oliveira_3] to enable parallax
mapping on bending surfaces and allow clean silhouetting.
- noise based sampling, to limit the pancake artifacts.
- Cone mapping ([GPU gems], [Simcity (2013)][simcity]). Requires
preprocessing, increase depth map size, reduces sample count greatly.
- [Quadtree parallax mapping][qpm] (also requires preprocessing)
- Self-shadowing of parallax-mapped surfaces by modifying the shadow map
- Generate depth map from normal map [link to slides], [blender
question]
https://user-images.githubusercontent.com/26321040/223563792-dffcc6ab-70e8-4ff9-90d1-b36c338695ad.mp4
[blender question]:
https://blender.stackexchange.com/questions/89278/how-to-get-a-smooth-curvature-map-from-a-normal-map
[link to slides]:
https://developer.download.nvidia.com/assets/gamedev/docs/nmap2displacement.pdf
[oliveira_3]:
https://www.inf.ufrgs.br/~oliveira/pubs_files/Oliveira_Policarpo_RP-351_Jan_2005.pdf
[GPU gems]:
https://developer.nvidia.com/gpugems/gpugems3/part-iii-rendering/chapter-18-relaxed-cone-stepping-relief-mapping
[simcity]:
https://community.simtropolis.com/omnibus/other-games/building-and-rendering-simcity-2013-r247/
[offset limiting]:
https://raw.githubusercontent.com/marcusstenbeck/tncg14-parallax-mapping/master/documents/Parallax%20Mapping%20with%20Offset%20Limiting%20-%20A%20Per-Pixel%20Approximation%20of%20Uneven%20Surfaces.pdf
[gltf]: https://github.com/KhronosGroup/glTF/pull/2196
[qpm]:
https://www.gamedevs.org/uploads/quadtree-displacement-mapping-with-height-blending.pdf
---
## Changelog
- Add a `depth_map` field to the `StandardMaterial`, it is a grayscale
image where white represents bottom and black the top. If `depth_map`
is set, bevy's pbr shader will use it to do [parallax mapping] to
give an increased feel of depth to the material. This is similar to a
displacement map, but with infinite precision at fairly low cost.
- The fields `parallax_mapping_method`, `parallax_depth_scale` and
`max_parallax_layer_count` allow finer grained control over the
behavior of the parallax shader.
- Add the `parallax_mapping` example to show off the effect.
[parallax mapping]: https://en.wikipedia.org/wiki/Parallax_mapping
---------
Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-04-15 10:25:14 +00:00
[ package . metadata . example . parallax_mapping ]
name = "Parallax Mapping"
description = "Demonstrates use of a normal map and depth map for parallax mapping"
category = "3D Rendering"
wasm = true
2022-05-05 00:46:32 +00:00
[ [ example ] ]
name = "render_to_texture"
path = "examples/3d/render_to_texture.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-05-05 00:46:32 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . render_to_texture ]
name = "Render to Texture"
description = "Shows how to render to a texture, useful for mirrors, UI, or exporting images"
category = "3D Rendering"
wasm = true
2021-06-27 23:10:23 +00:00
[ [ example ] ]
2021-12-14 03:58:23 +00:00
name = "shadow_biases"
path = "examples/3d/shadow_biases.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-07-19 19:20:59 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . shadow_biases ]
name = "Shadow Biases"
description = "Demonstrates how shadow biases affect shadows in a 3d scene"
category = "3D Rendering"
wasm = true
2021-08-25 19:44:20 +00:00
[ [ example ] ]
2021-12-14 03:58:23 +00:00
name = "shadow_caster_receiver"
path = "examples/3d/shadow_caster_receiver.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-05-01 20:12:47 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . shadow_caster_receiver ]
name = "Shadow Caster and Receiver"
description = "Demonstrates how to prevent meshes from casting/receiving shadows in a 3d scene"
category = "3D Rendering"
wasm = true
Support array / cubemap / cubemap array textures in KTX2 (#5325)
# Objective
- Fix / support KTX2 array / cubemap / cubemap array textures
- Fixes #4495 . Supersedes #4514 .
## Solution
- Add `Option<TextureViewDescriptor>` to `Image` to enable configuration of the `TextureViewDimension` of a texture.
- This allows users to set `D2Array`, `D3`, `Cube`, `CubeArray` or whatever they need
- Automatically configure this when loading KTX2
- Transcode all layers and faces instead of just one
- Use the UASTC block size of 128 bits, and the number of blocks in x/y for a given mip level in order to determine the offset of the layer and face within the KTX2 mip level data
- `wgpu` wants data ordered as layer 0 mip 0..n, layer 1 mip 0..n, etc. See https://docs.rs/wgpu/latest/wgpu/util/trait.DeviceExt.html#tymethod.create_texture_with_data
- Reorder the data KTX2 mip X layer Y face Z to `wgpu` layer Y face Z mip X order
- Add a `skybox` example to demonstrate / test loading cubemaps from PNG and KTX2, including ASTC 4x4, BC7, and ETC2 compression for support everywhere. Note that you need to enable the `ktx2,zstd` features to be able to load the compressed textures.
---
## Changelog
- Fixed: KTX2 array / cubemap / cubemap array textures
- Fixes: Validation failure for compressed textures stored in KTX2 where the width/height are not a multiple of the block dimensions.
- Added: `Image` now has an `Option<TextureViewDescriptor>` field to enable configuration of the texture view. This is useful for configuring the `TextureViewDimension` when it is not just a plain 2D texture and the loader could/did not identify what it should be.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-07-30 07:02:58 +00:00
[ [ example ] ]
name = "skybox"
path = "examples/3d/skybox.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Support array / cubemap / cubemap array textures in KTX2 (#5325)
# Objective
- Fix / support KTX2 array / cubemap / cubemap array textures
- Fixes #4495 . Supersedes #4514 .
## Solution
- Add `Option<TextureViewDescriptor>` to `Image` to enable configuration of the `TextureViewDimension` of a texture.
- This allows users to set `D2Array`, `D3`, `Cube`, `CubeArray` or whatever they need
- Automatically configure this when loading KTX2
- Transcode all layers and faces instead of just one
- Use the UASTC block size of 128 bits, and the number of blocks in x/y for a given mip level in order to determine the offset of the layer and face within the KTX2 mip level data
- `wgpu` wants data ordered as layer 0 mip 0..n, layer 1 mip 0..n, etc. See https://docs.rs/wgpu/latest/wgpu/util/trait.DeviceExt.html#tymethod.create_texture_with_data
- Reorder the data KTX2 mip X layer Y face Z to `wgpu` layer Y face Z mip X order
- Add a `skybox` example to demonstrate / test loading cubemaps from PNG and KTX2, including ASTC 4x4, BC7, and ETC2 compression for support everywhere. Note that you need to enable the `ktx2,zstd` features to be able to load the compressed textures.
---
## Changelog
- Fixed: KTX2 array / cubemap / cubemap array textures
- Fixes: Validation failure for compressed textures stored in KTX2 where the width/height are not a multiple of the block dimensions.
- Added: `Image` now has an `Option<TextureViewDescriptor>` field to enable configuration of the texture view. This is useful for configuring the `TextureViewDimension` when it is not just a plain 2D texture and the loader could/did not identify what it should be.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-07-30 07:02:58 +00:00
[ package . metadata . example . skybox ]
name = "Skybox"
description = "Load a cubemap texture onto a cube like a skybox and cycle through different compressed texture formats."
category = "3D Rendering"
wasm = false
2021-12-30 21:07:26 +00:00
[ [ example ] ]
name = "spherical_area_lights"
path = "examples/3d/spherical_area_lights.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-12-30 21:07:26 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . spherical_area_lights ]
name = "Spherical Area Lights"
description = "Demonstrates how point light radius values affect light behavior"
category = "3D Rendering"
wasm = true
Camera Driven Viewports (#4898)
# Objective
Users should be able to render cameras to specific areas of a render target, which enables scenarios like split screen, minimaps, etc.
Builds on the new Camera Driven Rendering added here: #4745
Fixes: #202
Alternative to #1389 and #3626 (which are incompatible with the new Camera Driven Rendering)
## Solution
![image](https://user-images.githubusercontent.com/2694663/171560044-f0694f67-0cd9-4598-83e2-a9658c4fed57.png)
Cameras can now configure an optional "viewport", which defines a rectangle within their render target to draw to. If a `Viewport` is defined, the camera's `CameraProjection`, `View`, and visibility calculations will use the viewport configuration instead of the full render target.
```rust
// This camera will render to the first half of the primary window (on the left side).
commands.spawn_bundle(Camera3dBundle {
camera: Camera {
viewport: Some(Viewport {
physical_position: UVec2::new(0, 0),
physical_size: UVec2::new(window.physical_width() / 2, window.physical_height()),
depth: 0.0..1.0,
}),
..default()
},
..default()
});
```
To account for this, the `Camera` component has received a few adjustments:
* `Camera` now has some new getter functions:
* `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, `projection_matrix`
* All computed camera values are now private and live on the `ComputedCameraValues` field (logical/physical width/height, the projection matrix). They are now exposed on `Camera` via getters/setters This wasn't _needed_ for viewports, but it was long overdue.
---
## Changelog
### Added
* `Camera` components now have a `viewport` field, which can be set to draw to a portion of a render target instead of the full target.
* `Camera` component has some new functions: `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, and `projection_matrix`
* Added a new split_screen example illustrating how to render two cameras to the same scene
## Migration Guide
`Camera::projection_matrix` is no longer a public field. Use the new `Camera::projection_matrix()` method instead:
```rust
// Bevy 0.7
let projection = camera.projection_matrix;
// Bevy 0.8
let projection = camera.projection_matrix();
```
2022-06-05 00:27:49 +00:00
[ [ example ] ]
name = "split_screen"
path = "examples/3d/split_screen.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Camera Driven Viewports (#4898)
# Objective
Users should be able to render cameras to specific areas of a render target, which enables scenarios like split screen, minimaps, etc.
Builds on the new Camera Driven Rendering added here: #4745
Fixes: #202
Alternative to #1389 and #3626 (which are incompatible with the new Camera Driven Rendering)
## Solution
![image](https://user-images.githubusercontent.com/2694663/171560044-f0694f67-0cd9-4598-83e2-a9658c4fed57.png)
Cameras can now configure an optional "viewport", which defines a rectangle within their render target to draw to. If a `Viewport` is defined, the camera's `CameraProjection`, `View`, and visibility calculations will use the viewport configuration instead of the full render target.
```rust
// This camera will render to the first half of the primary window (on the left side).
commands.spawn_bundle(Camera3dBundle {
camera: Camera {
viewport: Some(Viewport {
physical_position: UVec2::new(0, 0),
physical_size: UVec2::new(window.physical_width() / 2, window.physical_height()),
depth: 0.0..1.0,
}),
..default()
},
..default()
});
```
To account for this, the `Camera` component has received a few adjustments:
* `Camera` now has some new getter functions:
* `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, `projection_matrix`
* All computed camera values are now private and live on the `ComputedCameraValues` field (logical/physical width/height, the projection matrix). They are now exposed on `Camera` via getters/setters This wasn't _needed_ for viewports, but it was long overdue.
---
## Changelog
### Added
* `Camera` components now have a `viewport` field, which can be set to draw to a portion of a render target instead of the full target.
* `Camera` component has some new functions: `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, and `projection_matrix`
* Added a new split_screen example illustrating how to render two cameras to the same scene
## Migration Guide
`Camera::projection_matrix` is no longer a public field. Use the new `Camera::projection_matrix()` method instead:
```rust
// Bevy 0.7
let projection = camera.projection_matrix;
// Bevy 0.8
let projection = camera.projection_matrix();
```
2022-06-05 00:27:49 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . split_screen ]
name = "Split Screen"
description = "Demonstrates how to render two cameras to the same window to accomplish \"split screen\""
category = "3D Rendering"
wasm = true
2020-05-01 20:12:47 +00:00
[ [ example ] ]
name = "texture"
path = "examples/3d/texture.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-05-01 20:12:47 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . texture ]
name = "Texture"
description = "Shows configuration of texture materials"
category = "3D Rendering"
wasm = true
2022-06-06 17:52:09 +00:00
[ [ example ] ]
name = "transparency_3d"
path = "examples/3d/transparency_3d.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-06-06 17:52:09 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . transparency_3d ]
name = "Transparency in 3D"
description = "Demonstrates transparency in 3d"
category = "3D Rendering"
wasm = true
`StandardMaterial` Light Transmission (#8015)
# Objective
<img width="1920" alt="Screenshot 2023-04-26 at 01 07 34"
src="https://user-images.githubusercontent.com/418473/234467578-0f34187b-5863-4ea1-88e9-7a6bb8ce8da3.png">
This PR adds both diffuse and specular light transmission capabilities
to the `StandardMaterial`, with support for screen space refractions.
This enables realistically representing a wide range of real-world
materials, such as:
- Glass; (Including frosted glass)
- Transparent and translucent plastics;
- Various liquids and gels;
- Gemstones;
- Marble;
- Wax;
- Paper;
- Leaves;
- Porcelain.
Unlike existing support for transparency, light transmission does not
rely on fixed function alpha blending, and therefore works with both
`AlphaMode::Opaque` and `AlphaMode::Mask` materials.
## Solution
- Introduces a number of transmission related fields in the
`StandardMaterial`;
- For specular transmission:
- Adds logic to take a view main texture snapshot after the opaque
phase; (in order to perform screen space refractions)
- Introduces a new `Transmissive3d` phase to the renderer, to which all
meshes with `transmission > 0.0` materials are sent.
- Calculates a light exit point (of the approximate mesh volume) using
`ior` and `thickness` properties
- Samples the snapshot texture with an adaptive number of taps across a
`roughness`-controlled radius enabling “blurry” refractions
- For diffuse transmission:
- Approximates transmitted diffuse light by using a second, flipped +
displaced, diffuse-only Lambertian lobe for each light source.
## To Do
- [x] Figure out where `fresnel_mix()` is taking place, if at all, and
where `dielectric_specular` is being calculated, if at all, and update
them to use the `ior` value (Not a blocker, just a nice-to-have for more
correct BSDF)
- To the _best of my knowledge, this is now taking place, after
964340cdd. The fresnel mix is actually "split" into two parts in our
implementation, one `(1 - fresnel(...))` in the transmission, and
`fresnel()` in the light implementations. A surface with more
reflectance now will produce slightly dimmer transmission towards the
grazing angle, as more of the light gets reflected.
- [x] Add `transmission_texture`
- [x] Add `diffuse_transmission_texture`
- [x] Add `thickness_texture`
- [x] Add `attenuation_distance` and `attenuation_color`
- [x] Connect values to glTF loader
- [x] `transmission` and `transmission_texture`
- [x] `thickness` and `thickness_texture`
- [x] `ior`
- [ ] `diffuse_transmission` and `diffuse_transmission_texture` (needs
upstream support in `gltf` crate, not a blocker)
- [x] Add support for multiple screen space refraction “steps”
- [x] Conditionally create no transmission snapshot texture at all if
`steps == 0`
- [x] Conditionally enable/disable screen space refraction transmission
snapshots
- [x] Read from depth pre-pass to prevent refracting pixels in front of
the light exit point
- [x] Use `interleaved_gradient_noise()` function for sampling blur in a
way that benefits from TAA
- [x] Drill down a TAA `#define`, tweak some aspects of the effect
conditionally based on it
- [x] Remove const array that's crashing under HLSL (unless a new `naga`
release with https://github.com/gfx-rs/naga/pull/2496 comes out before
we merge this)
- [ ] Look into alternatives to the `switch` hack for dynamically
indexing the const array (might not be needed, compilers seem to be
decent at expanding it)
- [ ] Add pipeline keys for gating transmission (do we really want/need
this?)
- [x] Tweak some material field/function names?
## A Note on Texture Packing
_This was originally added as a comment to the
`specular_transmission_texture`, `thickness_texture` and
`diffuse_transmission_texture` documentation, I removed it since it was
more confusing than helpful, and will likely be made redundant/will need
to be updated once we have a better infrastructure for preprocessing
assets_
Due to how channels are mapped, you can more efficiently use a single
shared texture image
for configuring the following:
- R - `specular_transmission_texture`
- G - `thickness_texture`
- B - _unused_
- A - `diffuse_transmission_texture`
The `KHR_materials_diffuse_transmission` glTF extension also defines a
`diffuseTransmissionColorTexture`,
that _we don't currently support_. One might choose to pack the
intensity and color textures together,
using RGB for the color and A for the intensity, in which case this
packing advice doesn't really apply.
---
## Changelog
- Added a new `Transmissive3d` render phase for rendering specular
transmissive materials with screen space refractions
- Added rendering support for transmitted environment map light on the
`StandardMaterial` as a fallback for screen space refractions
- Added `diffuse_transmission`, `specular_transmission`, `thickness`,
`ior`, `attenuation_distance` and `attenuation_color` to the
`StandardMaterial`
- Added `diffuse_transmission_texture`, `specular_transmission_texture`,
`thickness_texture` to the `StandardMaterial`, gated behind a new
`pbr_transmission_textures` cargo feature (off by default, for maximum
hardware compatibility)
- Added `Camera3d::screen_space_specular_transmission_steps` for
controlling the number of “layers of transparency” rendered for
transmissive objects
- Added a `TransmittedShadowReceiver` component for enabling shadows in
(diffusely) transmitted light. (disabled by default, as it requires
carefully setting up the `thickness` to avoid self-shadow artifacts)
- Added support for the `KHR_materials_transmission`,
`KHR_materials_ior` and `KHR_materials_volume` glTF extensions
- Renamed items related to temporal jitter for greater consistency
## Migration Guide
- `SsaoPipelineKey::temporal_noise` has been renamed to
`SsaoPipelineKey::temporal_jitter`
- The `TAA` shader def (controlled by the presence of the
`TemporalAntiAliasSettings` component in the camera) has been replaced
with the `TEMPORAL_JITTER` shader def (controlled by the presence of the
`TemporalJitter` component in the camera)
- `MeshPipelineKey::TAA` has been replaced by
`MeshPipelineKey::TEMPORAL_JITTER`
- The `TEMPORAL_NOISE` shader def has been consolidated with
`TEMPORAL_JITTER`
2023-10-31 20:59:02 +00:00
[ [ example ] ]
name = "transmission"
path = "examples/3d/transmission.rs"
[ package . metadata . example . transmission ]
name = "Transmission"
description = "Showcases light transmission in the PBR material"
category = "3D Rendering"
wasm = true
2022-04-12 19:27:30 +00:00
[ [ example ] ]
name = "two_passes"
path = "examples/3d/two_passes.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-04-12 19:27:30 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . two_passes ]
name = "Two Passes"
description = "Renders two 3d passes to the same window from different perspectives"
category = "3D Rendering"
wasm = true
2021-01-01 20:58:49 +00:00
[ [ example ] ]
name = "update_gltf_scene"
path = "examples/3d/update_gltf_scene.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-01-01 20:58:49 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . update_gltf_scene ]
name = "Update glTF Scene"
description = "Update a scene from a glTF file, either by spawning the scene as a child of another entity, or by accessing the entities of the scene"
category = "3D Rendering"
wasm = true
2022-05-05 00:46:32 +00:00
[ [ example ] ]
name = "vertex_colors"
path = "examples/3d/vertex_colors.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-05-05 00:46:32 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . vertex_colors ]
name = "Vertex Colors"
description = "Shows the use of vertex colors"
category = "3D Rendering"
wasm = true
2021-03-04 01:23:24 +00:00
[ [ example ] ]
name = "wireframe"
path = "examples/3d/wireframe.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-03-04 01:23:24 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . wireframe ]
name = "Wireframe"
description = "Showcases wireframe rendering"
category = "3D Rendering"
2023-05-29 15:32:11 +00:00
wasm = false
2022-06-25 20:23:24 +00:00
Implement lightmaps. (#10231)
![Screenshot](https://i.imgur.com/A4KzWFq.png)
# Objective
Lightmaps, textures that store baked global illumination, have been a
mainstay of real-time graphics for decades. Bevy currently has no
support for them, so this pull request implements them.
## Solution
The new `Lightmap` component can be attached to any entity that contains
a `Handle<Mesh>` and a `StandardMaterial`. When present, it will be
applied in the PBR shader. Because multiple lightmaps are frequently
packed into atlases, each lightmap may have its own UV boundaries within
its texture. An `exposure` field is also provided, to control the
brightness of the lightmap.
Note that this PR doesn't provide any way to bake the lightmaps. That
can be done with [The Lightmapper] or another solution, such as Unity's
Bakery.
---
## Changelog
### Added
* A new component, `Lightmap`, is available, for baked global
illumination. If your mesh has a second UV channel (UV1), and you attach
this component to the entity with that mesh, Bevy will apply the texture
referenced in the lightmap.
[The Lightmapper]: https://github.com/Naxela/The_Lightmapper
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-01-02 20:38:47 +00:00
[ [ example ] ]
name = "lightmaps"
path = "examples/3d/lightmaps.rs"
doc-scrape-examples = true
[ package . metadata . example . lightmaps ]
name = "Lightmaps"
description = "Rendering a scene with baked lightmaps"
category = "3D Rendering"
wasm = false
2023-03-03 15:08:54 +00:00
[ [ example ] ]
name = "no_prepass"
path = "tests/3d/no_prepass.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-03-03 15:08:54 +00:00
[ package . metadata . example . no_prepass ]
hidden = true
2022-03-29 18:31:13 +00:00
# Animation
2022-04-02 22:36:02 +00:00
[ [ example ] ]
name = "animated_fox"
path = "examples/animation/animated_fox.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-04-02 22:36:02 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . animated_fox ]
name = "Animated Fox"
description = "Plays an animation from a skinned glTF"
category = "Animation"
wasm = true
Add morph targets (#8158)
# Objective
- Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF
- Supersedes #3722
- Fixes #6814
[Morph targets][1] (also known as shape interpolation, shape keys, or
blend shapes) allow animating individual vertices with fine grained
controls. This is typically used for facial expressions. By specifying
multiple poses as vertex offset, and providing a set of weight of each
pose, it is possible to define surprisingly realistic transitions
between poses. Blending between multiple poses also allow composition.
Morph targets are part of the [gltf standard][2] and are a feature of
Unity and Unreal, and babylone.js, it is only natural to implement them
in bevy.
## Solution
This implementation of morph targets uses a 3d texture where each pixel
is a component of an animated attribute. Each layer is a different
target. We use a 2d texture for each target, because the number of
attribute×components×animated vertices is expected to always exceed the
maximum pixel row size limit of webGL2. It copies fairly closely the way
skinning is implemented on the CPU side, while on the GPU side, the
shader morph target implementation is a relatively trivial detail.
We add an optional `morph_texture` to the `Mesh` struct. The
`morph_texture` is built through a method that accepts an iterator over
attribute buffers.
The `MorphWeights` component, user-accessible, controls the blend of
poses used by mesh instances (so that multiple copy of the same mesh may
have different weights), all the weights are uploaded to a uniform
buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256
poses.
More literature:
* Old babylone.js implementation (vertex attribute-based):
https://www.eternalcoding.com/dev-log-1-morph-targets/
* Babylone.js implementation (similar to ours):
https://www.youtube.com/watch?v=LBPRmGgU0PE
* GPU gems 3:
https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits
* Development discord thread
https://discord.com/channels/691052431525675048/1083325980615114772
https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4
https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258
## Acknowledgements
* Thanks to `storytold` for sponsoring the feature
* Thanks to `superdump` and `james7132` for guidance and help figuring
out stuff
## Future work
- Handling of less and more attributes (eg: animated uv, animated
arbitrary attributes)
- Dynamic pose allocation (so that zero-weighted poses aren't uploaded
to GPU for example, enables much more total poses)
- Better animation API, see #8357
----
## Changelog
- Add morph targets to bevy meshes
- Support up to 64 poses per mesh of individually up to 116508 vertices,
animation currently strictly limited to the position, normal and tangent
attributes.
- Load a morph target using `Mesh::set_morph_targets`
- Add `VisitMorphTargets` and `VisitMorphAttributes` traits to
`bevy_render`, this allows defining morph targets (a fairly complex and
nested data structure) through iterators (ie: single copy instead of
passing around buffers), see documentation of those traits for details
- Add `MorphWeights` component exported by `bevy_render`
- `MorphWeights` control mesh's morph target weights, blending between
various poses defined as morph targets.
- `MorphWeights` are directly inherited by direct children (single level
of hierarchy) of an entity. This allows controlling several mesh
primitives through a unique entity _as per GLTF spec_.
- Add `MorphTargetNames` component, naming each indices of loaded morph
targets.
- Load morph targets weights and buffers in `bevy_gltf`
- handle morph targets animations in `bevy_animation` (previously, it
was a `warn!` log)
- Add the `MorphStressTest.gltf` asset for morph targets testing, taken
from the glTF samples repo, CC0.
- Add morph target manipulation to `scene_viewer`
- Separate the animation code in `scene_viewer` from the rest of the
code, reducing `#[cfg(feature)]` noise
- Add the `morph_targets.rs` example to show off how to manipulate morph
targets, loading `MorpStressTest.gltf`
## Migration Guide
- (very specialized, unlikely to be touched by 3rd parties)
- `MeshPipeline` now has a single `mesh_layouts` field rather than
separate `mesh_layout` and `skinned_mesh_layout` fields. You should
handle all possible mesh bind group layouts in your implementation
- You should also handle properly the new `MORPH_TARGETS` shader def and
mesh pipeline key. A new function is exposed to make this easier:
`setup_moprh_and_skinning_defs`
- The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are
now accessed through the `get` method.
[1]: https://en.wikipedia.org/wiki/Morph_target_animation
[2]:
https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets
---------
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
[ [ example ] ]
name = "morph_targets"
path = "examples/animation/morph_targets.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Add morph targets (#8158)
# Objective
- Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF
- Supersedes #3722
- Fixes #6814
[Morph targets][1] (also known as shape interpolation, shape keys, or
blend shapes) allow animating individual vertices with fine grained
controls. This is typically used for facial expressions. By specifying
multiple poses as vertex offset, and providing a set of weight of each
pose, it is possible to define surprisingly realistic transitions
between poses. Blending between multiple poses also allow composition.
Morph targets are part of the [gltf standard][2] and are a feature of
Unity and Unreal, and babylone.js, it is only natural to implement them
in bevy.
## Solution
This implementation of morph targets uses a 3d texture where each pixel
is a component of an animated attribute. Each layer is a different
target. We use a 2d texture for each target, because the number of
attribute×components×animated vertices is expected to always exceed the
maximum pixel row size limit of webGL2. It copies fairly closely the way
skinning is implemented on the CPU side, while on the GPU side, the
shader morph target implementation is a relatively trivial detail.
We add an optional `morph_texture` to the `Mesh` struct. The
`morph_texture` is built through a method that accepts an iterator over
attribute buffers.
The `MorphWeights` component, user-accessible, controls the blend of
poses used by mesh instances (so that multiple copy of the same mesh may
have different weights), all the weights are uploaded to a uniform
buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256
poses.
More literature:
* Old babylone.js implementation (vertex attribute-based):
https://www.eternalcoding.com/dev-log-1-morph-targets/
* Babylone.js implementation (similar to ours):
https://www.youtube.com/watch?v=LBPRmGgU0PE
* GPU gems 3:
https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits
* Development discord thread
https://discord.com/channels/691052431525675048/1083325980615114772
https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4
https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258
## Acknowledgements
* Thanks to `storytold` for sponsoring the feature
* Thanks to `superdump` and `james7132` for guidance and help figuring
out stuff
## Future work
- Handling of less and more attributes (eg: animated uv, animated
arbitrary attributes)
- Dynamic pose allocation (so that zero-weighted poses aren't uploaded
to GPU for example, enables much more total poses)
- Better animation API, see #8357
----
## Changelog
- Add morph targets to bevy meshes
- Support up to 64 poses per mesh of individually up to 116508 vertices,
animation currently strictly limited to the position, normal and tangent
attributes.
- Load a morph target using `Mesh::set_morph_targets`
- Add `VisitMorphTargets` and `VisitMorphAttributes` traits to
`bevy_render`, this allows defining morph targets (a fairly complex and
nested data structure) through iterators (ie: single copy instead of
passing around buffers), see documentation of those traits for details
- Add `MorphWeights` component exported by `bevy_render`
- `MorphWeights` control mesh's morph target weights, blending between
various poses defined as morph targets.
- `MorphWeights` are directly inherited by direct children (single level
of hierarchy) of an entity. This allows controlling several mesh
primitives through a unique entity _as per GLTF spec_.
- Add `MorphTargetNames` component, naming each indices of loaded morph
targets.
- Load morph targets weights and buffers in `bevy_gltf`
- handle morph targets animations in `bevy_animation` (previously, it
was a `warn!` log)
- Add the `MorphStressTest.gltf` asset for morph targets testing, taken
from the glTF samples repo, CC0.
- Add morph target manipulation to `scene_viewer`
- Separate the animation code in `scene_viewer` from the rest of the
code, reducing `#[cfg(feature)]` noise
- Add the `morph_targets.rs` example to show off how to manipulate morph
targets, loading `MorpStressTest.gltf`
## Migration Guide
- (very specialized, unlikely to be touched by 3rd parties)
- `MeshPipeline` now has a single `mesh_layouts` field rather than
separate `mesh_layout` and `skinned_mesh_layout` fields. You should
handle all possible mesh bind group layouts in your implementation
- You should also handle properly the new `MORPH_TARGETS` shader def and
mesh pipeline key. A new function is exposed to make this easier:
`setup_moprh_and_skinning_defs`
- The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are
now accessed through the `get` method.
[1]: https://en.wikipedia.org/wiki/Morph_target_animation
[2]:
https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets
---------
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
[ package . metadata . example . morph_targets ]
name = "Morph Targets"
description = "Plays an animation from a glTF file with meshes with morph targets"
category = "Animation"
wasm = true
2022-04-07 23:53:43 +00:00
[ [ example ] ]
name = "animated_transform"
path = "examples/animation/animated_transform.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-04-07 23:53:43 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . animated_transform ]
name = "Animated Transform"
description = "Create and play an animation defined by code that operates on the `Transform` component"
category = "Animation"
wasm = true
2023-04-17 16:16:56 +00:00
[ [ example ] ]
name = "cubic_curve"
path = "examples/animation/cubic_curve.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-04-17 16:16:56 +00:00
[ package . metadata . example . cubic_curve ]
name = "Cubic Curve"
description = "Bezier curve example showing a cube following a cubic curve"
category = "Animation"
wasm = true
2022-03-29 18:31:13 +00:00
[ [ example ] ]
name = "custom_skinned_mesh"
path = "examples/animation/custom_skinned_mesh.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-03-29 18:31:13 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . custom_skinned_mesh ]
name = "Custom Skinned Mesh"
description = "Skinned mesh example with mesh and joints data defined in code"
category = "Animation"
wasm = true
2022-03-29 18:31:13 +00:00
[ [ example ] ]
name = "gltf_skinned_mesh"
path = "examples/animation/gltf_skinned_mesh.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-03-29 18:31:13 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . gltf_skinned_mesh ]
name = "glTF Skinned Mesh"
description = "Skinned mesh example with mesh and joints data loaded from a glTF file"
category = "Animation"
wasm = true
2021-02-22 04:50:05 +00:00
# Application
2020-11-09 21:04:27 +00:00
[ [ example ] ]
name = "custom_loop"
path = "examples/app/custom_loop.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-11-09 21:04:27 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . custom_loop ]
name = "Custom Loop"
description = "Demonstrates how to create a custom runner (to update an app manually)"
category = "Application"
wasm = false
2021-01-01 21:31:22 +00:00
[ [ example ] ]
name = "drag_and_drop"
path = "examples/app/drag_and_drop.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-01-01 21:31:22 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . drag_and_drop ]
name = "Drag and Drop"
description = "An example that shows how to handle drag and drop in an app"
category = "Application"
wasm = false
2020-05-01 20:12:47 +00:00
[ [ example ] ]
name = "empty"
path = "examples/app/empty.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-05-01 20:12:47 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . empty ]
name = "Empty"
description = "An empty application (does nothing)"
category = "Application"
wasm = false
2020-11-13 01:23:57 +00:00
[ [ example ] ]
2021-02-22 04:50:05 +00:00
name = "empty_defaults"
path = "examples/app/empty_defaults.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-11-13 01:23:57 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . empty_defaults ]
name = "Empty with Defaults"
description = "An empty application with default plugins"
category = "Application"
wasm = true
2020-05-01 20:12:47 +00:00
[ [ example ] ]
name = "headless"
path = "examples/app/headless.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-05-01 20:12:47 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . headless ]
name = "Headless"
description = "An application that runs without default plugins"
category = "Application"
wasm = false
2021-02-22 04:50:05 +00:00
[ [ example ] ]
name = "logs"
path = "examples/app/logs.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-02-22 04:50:05 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . logs ]
name = "Logs"
description = "Illustrate how to use generate log output"
category = "Application"
wasm = true
2024-01-15 15:26:13 +00:00
[ [ example ] ]
name = "log_layers"
path = "examples/app/log_layers.rs"
[ package . metadata . example . log_layers ]
name = "Log layers"
description = "Illustrate how to add custom log layers"
category = "Application"
wasm = false
2020-05-03 08:30:10 +00:00
[ [ example ] ]
name = "plugin"
path = "examples/app/plugin.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-05-03 08:30:10 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . plugin ]
name = "Plugin"
description = "Demonstrates the creation and registration of a custom plugin"
category = "Application"
wasm = true
2020-10-29 20:04:28 +00:00
[ [ example ] ]
name = "plugin_group"
path = "examples/app/plugin_group.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-10-29 20:04:28 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . plugin_group ]
name = "Plugin Group"
description = "Demonstrates the creation and registration of a custom plugin group"
category = "Application"
wasm = true
2020-08-21 05:37:19 +00:00
[ [ example ] ]
name = "return_after_run"
path = "examples/app/return_after_run.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-08-21 05:37:19 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . return_after_run ]
name = "Return after Run"
description = "Show how to return to main after the Bevy app has exited"
category = "Application"
wasm = false
2020-08-14 17:15:29 +00:00
[ [ example ] ]
name = "thread_pool_resources"
path = "examples/app/thread_pool_resources.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-08-14 17:15:29 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . thread_pool_resources ]
name = "Thread Pool Resources"
description = "Creates and customizes the internal thread pool"
category = "Application"
wasm = false
2022-01-08 10:39:43 +00:00
[ [ example ] ]
2022-07-11 14:11:32 +00:00
name = "no_renderer"
path = "examples/app/no_renderer.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-01-08 10:39:43 +00:00
2022-07-11 14:11:32 +00:00
[ package . metadata . example . no_renderer ]
name = "No Renderer"
description = "An application that runs with default plugins and displays an empty window, but without an actual renderer"
2022-06-25 20:23:24 +00:00
category = "Application"
wasm = false
2021-12-15 00:15:47 +00:00
[ [ example ] ]
name = "without_winit"
path = "examples/app/without_winit.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-12-15 00:15:47 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . without_winit ]
name = "Without Winit"
description = "Create an application without winit (runs single time, no event loop)"
category = "Application"
wasm = false
2021-02-22 04:50:05 +00:00
# Assets
2020-05-17 03:18:30 +00:00
[ [ example ] ]
name = "asset_loading"
path = "examples/asset/asset_loading.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-05-17 03:18:30 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . asset_loading ]
name = "Asset Loading"
description = "Demonstrates various methods to load assets"
category = "Assets"
2023-05-25 21:57:04 +00:00
wasm = false
2022-06-25 20:23:24 +00:00
Added Method to Allow Pipelined Asset Loading (#10565)
# Objective
- Fixes #10518
## Solution
I've added a method to `LoadContext`, `load_direct_with_reader`, which
mirrors the behaviour of `load_direct` with a single key difference: it
is provided with the `Reader` by the caller, rather than getting it from
the contained `AssetServer`. This allows for an `AssetLoader` to process
its `Reader` stream, and then directly hand the results off to the
`LoadContext` to handle further loading. The outer `AssetLoader` can
control how the `Reader` is interpreted by providing a relevant
`AssetPath`.
For example, a Gzip decompression loader could process the asset
`images/my_image.png.gz` by decompressing the bytes, then handing the
decompressed result to the `LoadContext` with the new path
`images/my_image.png.gz/my_image.png`. This intuitively reflects the
nature of contained assets, whilst avoiding unintended behaviour, since
the generated path cannot be a real file path (a file and folder of the
same name cannot coexist in most file-systems).
```rust
#[derive(Asset, TypePath)]
pub struct GzAsset {
pub uncompressed: ErasedLoadedAsset,
}
#[derive(Default)]
pub struct GzAssetLoader;
impl AssetLoader for GzAssetLoader {
type Asset = GzAsset;
type Settings = ();
type Error = GzAssetLoaderError;
fn load<'a>(
&'a self,
reader: &'a mut Reader,
_settings: &'a (),
load_context: &'a mut LoadContext,
) -> BoxedFuture<'a, Result<Self::Asset, Self::Error>> {
Box::pin(async move {
let compressed_path = load_context.path();
let file_name = compressed_path
.file_name()
.ok_or(GzAssetLoaderError::IndeterminateFilePath)?
.to_string_lossy();
let uncompressed_file_name = file_name
.strip_suffix(".gz")
.ok_or(GzAssetLoaderError::IndeterminateFilePath)?;
let contained_path = compressed_path.join(uncompressed_file_name);
let mut bytes_compressed = Vec::new();
reader.read_to_end(&mut bytes_compressed).await?;
let mut decoder = GzDecoder::new(bytes_compressed.as_slice());
let mut bytes_uncompressed = Vec::new();
decoder.read_to_end(&mut bytes_uncompressed)?;
// Now that we have decompressed the asset, let's pass it back to the
// context to continue loading
let mut reader = VecReader::new(bytes_uncompressed);
let uncompressed = load_context
.load_direct_with_reader(&mut reader, contained_path)
.await?;
Ok(GzAsset { uncompressed })
})
}
fn extensions(&self) -> &[&str] {
&["gz"]
}
}
```
Because this example is so prudent, I've included an
`asset_decompression` example which implements this exact behaviour:
```rust
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.init_asset::<GzAsset>()
.init_asset_loader::<GzAssetLoader>()
.add_systems(Startup, setup)
.add_systems(Update, decompress::<Image>)
.run();
}
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
commands.spawn(Camera2dBundle::default());
commands.spawn((
Compressed::<Image> {
compressed: asset_server.load("data/compressed_image.png.gz"),
..default()
},
Sprite::default(),
TransformBundle::default(),
VisibilityBundle::default(),
));
}
fn decompress<A: Asset>(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut compressed_assets: ResMut<Assets<GzAsset>>,
query: Query<(Entity, &Compressed<A>)>,
) {
for (entity, Compressed { compressed, .. }) in query.iter() {
let Some(GzAsset { uncompressed }) = compressed_assets.remove(compressed) else {
continue;
};
let uncompressed = uncompressed.take::<A>().unwrap();
commands
.entity(entity)
.remove::<Compressed<A>>()
.insert(asset_server.add(uncompressed));
}
}
```
A key limitation to this design is how to type the internally loaded
asset, since the example `GzAssetLoader` is unaware of the internal
asset type `A`. As such, in this example I store the contained asset as
an `ErasedLoadedAsset`, and leave it up to the consumer of the `GzAsset`
to handle typing the final result, which is the purpose of the
`decompress` system. This limitation can be worked around by providing
type information to the `GzAssetLoader`, such as `GzAssetLoader<Image,
ImageAssetLoader>`, but this would require registering the asset loader
for every possible decompression target.
Aside from this limitation, nested asset containerisation works as an
end user would expect; if the user registers a `TarAssetLoader`, and a
`GzAssetLoader`, then they can load assets with compound
containerisation, such as `images.tar.gz`.
---
## Changelog
- Added `LoadContext::load_direct_with_reader`
- Added `asset_decompression` example
## Notes
- While I believe my implementation of a Gzip asset loader is
reasonable, I haven't included it as a public feature of `bevy_asset` to
keep the scope of this PR as focussed as possible.
- I have included `flate2` as a `dev-dependency` for the example; it is
not included in the main dependency graph.
2023-11-16 17:47:31 +00:00
[ [ example ] ]
name = "asset_decompression"
path = "examples/asset/asset_decompression.rs"
doc-scrape-examples = true
[ package . metadata . example . asset_decompression ]
name = "Asset Decompression"
description = "Demonstrates loading a compressed asset"
category = "Assets"
wasm = false
2020-10-01 18:31:06 +00:00
[ [ example ] ]
2020-10-18 20:48:15 +00:00
name = "custom_asset"
path = "examples/asset/custom_asset.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-10-01 18:31:06 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . custom_asset ]
name = "Custom Asset"
description = "Implements a custom asset loader"
category = "Assets"
wasm = true
2020-12-18 19:34:44 +00:00
[ [ example ] ]
Bevy Asset V2 (#8624)
# Bevy Asset V2 Proposal
## Why Does Bevy Need A New Asset System?
Asset pipelines are a central part of the gamedev process. Bevy's
current asset system is missing a number of features that make it
non-viable for many classes of gamedev. After plenty of discussions and
[a long community feedback
period](https://github.com/bevyengine/bevy/discussions/3972), we've
identified a number missing features:
* **Asset Preprocessing**: it should be possible to "preprocess" /
"compile" / "crunch" assets at "development time" rather than when the
game starts up. This enables offloading expensive work from deployed
apps, faster asset loading, less runtime memory usage, etc.
* **Per-Asset Loader Settings**: Individual assets cannot define their
own loaders that override the defaults. Additionally, they cannot
provide per-asset settings to their loaders. This is a huge limitation,
as many asset types don't provide all information necessary for Bevy
_inside_ the asset. For example, a raw PNG image says nothing about how
it should be sampled (ex: linear vs nearest).
* **Asset `.meta` files**: assets should have configuration files stored
adjacent to the asset in question, which allows the user to configure
asset-type-specific settings. These settings should be accessible during
the pre-processing phase. Modifying a `.meta` file should trigger a
re-processing / re-load of the asset. It should be possible to configure
asset loaders from the meta file.
* **Processed Asset Hot Reloading**: Changes to processed assets (or
their dependencies) should result in re-processing them and re-loading
the results in live Bevy Apps.
* **Asset Dependency Tracking**: The current bevy_asset has no good way
to wait for asset dependencies to load. It punts this as an exercise for
consumers of the loader apis, which is unreasonable and error prone.
There should be easy, ergonomic ways to wait for assets to load and
block some logic on an asset's entire dependency tree loading.
* **Runtime Asset Loading**: it should be (optionally) possible to load
arbitrary assets dynamically at runtime. This necessitates being able to
deploy and run the asset server alongside Bevy Apps on _all platforms_.
For example, we should be able to invoke the shader compiler at runtime,
stream scenes from sources like the internet, etc. To keep deployed
binaries (and startup times) small, the runtime asset server
configuration should be configurable with different settings compared to
the "pre processor asset server".
* **Multiple Backends**: It should be possible to load assets from
arbitrary sources (filesystems, the internet, remote asset serves, etc).
* **Asset Packing**: It should be possible to deploy assets in
compressed "packs", which makes it easier and more efficient to
distribute assets with Bevy Apps.
* **Asset Handoff**: It should be possible to hold a "live" asset
handle, which correlates to runtime data, without actually holding the
asset in memory. Ex: it must be possible to hold a reference to a GPU
mesh generated from a "mesh asset" without keeping the mesh data in CPU
memory
* **Per-Platform Processed Assets**: Different platforms and app
distributions have different capabilities and requirements. Some
platforms need lower asset resolutions or different asset formats to
operate within the hardware constraints of the platform. It should be
possible to define per-platform asset processing profiles. And it should
be possible to deploy only the assets required for a given platform.
These features have architectural implications that are significant
enough to require a full rewrite. The current Bevy Asset implementation
got us this far, but it can take us no farther. This PR defines a brand
new asset system that implements most of these features, while laying
the foundations for the remaining features to be built.
## Bevy Asset V2
Here is a quick overview of the features introduced in this PR.
* **Asset Preprocessing**: Preprocess assets at development time into
more efficient (and configurable) representations
* **Dependency Aware**: Dependencies required to process an asset are
tracked. If an asset's processed dependency changes, it will be
reprocessed
* **Hot Reprocessing/Reloading**: detect changes to asset source files,
reprocess them if they have changed, and then hot-reload them in Bevy
Apps.
* **Only Process Changes**: Assets are only re-processed when their
source file (or meta file) has changed. This uses hashing and timestamps
to avoid processing assets that haven't changed.
* **Transactional and Reliable**: Uses write-ahead logging (a technique
commonly used by databases) to recover from crashes / forced-exits.
Whenever possible it avoids full-reprocessing / only uncompleted
transactions will be reprocessed. When the processor is running in
parallel with a Bevy App, processor asset writes block Bevy App asset
reads. Reading metadata + asset bytes is guaranteed to be transactional
/ correctly paired.
* **Portable / Run anywhere / Database-free**: The processor does not
rely on an in-memory database (although it uses some database techniques
for reliability). This is important because pretty much all in-memory
databases have unsupported platforms or build complications.
* **Configure Processor Defaults Per File Type**: You can say "use this
processor for all files of this type".
* **Custom Processors**: The `Processor` trait is flexible and
unopinionated. It can be implemented by downstream plugins.
* **LoadAndSave Processors**: Most asset processing scenarios can be
expressed as "run AssetLoader A, save the results using AssetSaver X,
and then load the result using AssetLoader B". For example, load this
png image using `PngImageLoader`, which produces an `Image` asset and
then save it using `CompressedImageSaver` (which also produces an
`Image` asset, but in a compressed format), which takes an `Image` asset
as input. This means if you have an `AssetLoader` for an asset, you are
already half way there! It also means that you can share AssetSavers
across multiple loaders. Because `CompressedImageSaver` accepts Bevy's
generic Image asset as input, it means you can also use it with some
future `JpegImageLoader`.
* **Loader and Saver Settings**: Asset Loaders and Savers can now define
their own settings types, which are passed in as input when an asset is
loaded / saved. Each asset can define its own settings.
* **Asset `.meta` files**: configure asset loaders, their settings,
enable/disable processing, and configure processor settings
* **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex:
if an asset contains a `Handle<Image>`) are tracked by the asset server.
An event is emitted when an asset and all of its dependencies have been
loaded
* **Unprocessed Asset Loading**: Assets do not require preprocessing.
They can be loaded directly. A processed asset is just a "normal" asset
with some extra metadata. Asset Loaders don't need to know or care about
whether or not an asset was processed.
* **Async Asset IO**: Asset readers/writers use async non-blocking
interfaces. Note that because Rust doesn't yet support async traits,
there is a bit of manual Boxing / Future boilerplate. This will
hopefully be removed in the near future when Rust gets async traits.
* **Pluggable Asset Readers and Writers**: Arbitrary asset source
readers/writers are supported, both by the processor and the asset
server.
* **Better Asset Handles**
* **Single Arc Tree**: Asset Handles now use a single arc tree that
represents the lifetime of the asset. This makes their implementation
simpler, more efficient, and allows us to cheaply attach metadata to
handles. Ex: the AssetPath of a handle is now directly accessible on the
handle itself!
* **Const Typed Handles**: typed handles can be constructed in a const
context. No more weird "const untyped converted to typed at runtime"
patterns!
* **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed
`Handle<T>` is now much smaller in memory and `AssetId<T>` is even
smaller.
* **Weak Handle Usage Reduction**: In general Handles are now considered
to be "strong". Bevy features that previously used "weak `Handle<T>`"
have been ported to `AssetId<T>`, which makes it statically clear that
the features do not hold strong handles (while retaining strong type
information). Currently Handle::Weak still exists, but it is very
possible that we can remove that entirely.
* **Efficient / Dense Asset Ids**: Assets now have efficient dense
runtime asset ids, which means we can avoid expensive hash lookups.
Assets are stored in Vecs instead of HashMaps. There are now typed and
untyped ids, which means we no longer need to store dynamic type
information in the ID for typed handles. "AssetPathId" (which was a
nightmare from a performance and correctness standpoint) has been
entirely removed in favor of dense ids (which are retrieved for a path
on load)
* **Direct Asset Loading, with Dependency Tracking**: Assets that are
defined at runtime can still have their dependencies tracked by the
Asset Server (ex: if you create a material at runtime, you can still
wait for its textures to load). This is accomplished via the (currently
optional) "asset dependency visitor" trait. This system can also be used
to define a set of assets to load, then wait for those assets to load.
* **Async folder loading**: Folder loading also uses this system and
immediately returns a handle to the LoadedFolder asset, which means
folder loading no longer blocks on directory traversals.
* **Improved Loader Interface**: Loaders now have a specific "top level
asset type", which makes returning the top-level asset simpler and
statically typed.
* **Basic Image Settings and Processing**: Image assets can now be
processed into the gpu-friendly Basic Universal format. The ImageLoader
now has a setting to define what format the image should be loaded as.
Note that this is just a minimal MVP ... plenty of additional work to do
here. To demo this, enable the `basis-universal` feature and turn on
asset processing.
* **Simpler Audio Play / AudioSink API**: Asset handle providers are
cloneable, which means the Audio resource can mint its own handles. This
means you can now do `let sink_handle = audio.play(music)` instead of
`let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that
this might still be replaced by
https://github.com/bevyengine/bevy/pull/8424.
**Removed Handle Casting From Engine Features**: Ex: FontAtlases no
longer use casting between handle types
## Using The New Asset System
### Normal Unprocessed Asset Loading
By default the `AssetPlugin` does not use processing. It behaves pretty
much the same way as the old system.
If you are defining a custom asset, first derive `Asset`:
```rust
#[derive(Asset)]
struct Thing {
value: String,
}
```
Initialize the asset:
```rust
app.init_asset:<Thing>()
```
Implement a new `AssetLoader` for it:
```rust
#[derive(Default)]
struct ThingLoader;
#[derive(Serialize, Deserialize, Default)]
pub struct ThingSettings {
some_setting: bool,
}
impl AssetLoader for ThingLoader {
type Asset = Thing;
type Settings = ThingSettings;
fn load<'a>(
&'a self,
reader: &'a mut Reader,
settings: &'a ThingSettings,
load_context: &'a mut LoadContext,
) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> {
Box::pin(async move {
let mut bytes = Vec::new();
reader.read_to_end(&mut bytes).await?;
// convert bytes to value somehow
Ok(Thing {
value
})
})
}
fn extensions(&self) -> &[&str] {
&["thing"]
}
}
```
Note that this interface will get much cleaner once Rust gets support
for async traits. `Reader` is an async futures_io::AsyncRead. You can
stream bytes as they come in or read them all into a `Vec<u8>`,
depending on the context. You can use `let handle =
load_context.load(path)` to kick off a dependency load, retrieve a
handle, and register the dependency for the asset.
Then just register the loader in your Bevy app:
```rust
app.init_asset_loader::<ThingLoader>()
```
Now just add your `Thing` asset files into the `assets` folder and load
them like this:
```rust
fn system(asset_server: Res<AssetServer>) {
let handle = Handle<Thing> = asset_server.load("cool.thing");
}
```
You can check load states directly via the asset server:
```rust
if asset_server.load_state(&handle) == LoadState::Loaded { }
```
You can also listen for events:
```rust
fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) {
for event in events.iter() {
if event.is_loaded_with_dependencies(&handle) {
}
}
}
```
Note the new `AssetEvent::LoadedWithDependencies`, which only fires when
the asset is loaded _and_ all dependencies (and their dependencies) have
loaded.
Unlike the old asset system, for a given asset path all `Handle<T>`
values point to the same underlying Arc. This means Handles can cheaply
hold more asset information, such as the AssetPath:
```rust
// prints the AssetPath of the handle
info!("{:?}", handle.path())
```
### Processed Assets
Asset processing can be enabled via the `AssetPlugin`. When developing
Bevy Apps with processed assets, do this:
```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))
```
This runs the `AssetProcessor` in the background with hot-reloading. It
reads assets from the `assets` folder, processes them, and writes them
to the `.imported_assets` folder. Asset loads in the Bevy App will wait
for a processed version of the asset to become available. If an asset in
the `assets` folder changes, it will be reprocessed and hot-reloaded in
the Bevy App.
When deploying processed Bevy apps, do this:
```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed()))
```
This does not run the `AssetProcessor` in the background. It behaves
like `AssetPlugin::unprocessed()`, but reads assets from
`.imported_assets`.
When the `AssetProcessor` is running, it will populate sibling `.meta`
files for assets in the `assets` folder. Meta files for assets that do
not have a processor configured look like this:
```rust
(
meta_format_version: "1.0",
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: FromExtension,
),
),
)
```
This is metadata for an image asset. For example, if you have
`assets/my_sprite.png`, this could be the metadata stored at
`assets/my_sprite.png.meta`. Meta files are totally optional. If no
metadata exists, the default settings will be used.
In short, this file says "load this asset with the ImageLoader and use
the file extension to determine the image type". This type of meta file
is supported in all AssetPlugin modes. If in `Unprocessed` mode, the
asset (with the meta settings) will be loaded directly. If in
`ProcessedDev` mode, the asset file will be copied directly to the
`.imported_assets` folder. The meta will also be copied directly to the
`.imported_assets` folder, but with one addition:
```rust
(
meta_format_version: "1.0",
processed_info: Some((
hash: 12415480888597742505,
full_hash: 14344495437905856884,
process_dependencies: [],
)),
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: FromExtension,
),
),
)
```
`processed_info` contains `hash` (a direct hash of the asset and meta
bytes), `full_hash` (a hash of `hash` and the hashes of all
`process_dependencies`), and `process_dependencies` (the `path` and
`full_hash` of every process_dependency). A "process dependency" is an
asset dependency that is _directly_ used when processing the asset.
Images do not have process dependencies, so this is empty.
When the processor is enabled, you can use the `Process` metadata
config:
```rust
(
meta_format_version: "1.0",
asset: Process(
processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>",
settings: (
loader_settings: (
format: FromExtension,
),
saver_settings: (
generate_mipmaps: true,
),
),
),
)
```
This configures the asset to use the `LoadAndSave` processor, which runs
an AssetLoader and feeds the result into an AssetSaver (which saves the
given Asset and defines a loader to load it with). (for terseness
LoadAndSave will likely get a shorter/friendlier type name when [Stable
Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common
processor type, but arbitrary processors are supported.
`CompressedImageSaver` saves an `Image` in the Basis Universal format
and configures the ImageLoader to load it as basis universal. The
`AssetProcessor` will read this meta, run it through the LoadAndSave
processor, and write the basis-universal version of the image to
`.imported_assets`. The final metadata will look like this:
```rust
(
meta_format_version: "1.0",
processed_info: Some((
hash: 905599590923828066,
full_hash: 9948823010183819117,
process_dependencies: [],
)),
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: Format(Basis),
),
),
)
```
To try basis-universal processing out in Bevy examples, (for example
`sprite.rs`), change `add_plugins(DefaultPlugins)` to
`add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run
with the `basis-universal` feature enabled: `cargo run
--features=basis-universal --example sprite`.
To create a custom processor, there are two main paths:
1. Use the `LoadAndSave` processor with an existing `AssetLoader`.
Implement the `AssetSaver` trait, register the processor using
`asset_processor.register_processor::<LoadAndSave<ImageLoader,
CompressedImageSaver>>(image_saver.into())`.
2. Implement the `Process` trait directly and register it using:
`asset_processor.register_processor(thing_processor)`.
You can configure default processors for file extensions like this:
```rust
asset_processor.set_default_processor::<ThingProcessor>("thing")
```
There is one more metadata type to be aware of:
```rust
(
meta_format_version: "1.0",
asset: Ignore,
)
```
This will ignore the asset during processing / prevent it from being
written to `.imported_assets`.
The AssetProcessor stores a transaction log at `.imported_assets/log`
and uses it to gracefully recover from unexpected stops. This means you
can force-quit the processor (and Bevy Apps running the processor in
parallel) at arbitrary times!
`.imported_assets` is "local state". It should _not_ be checked into
source control. It should also be considered "read only". In practice,
you _can_ modify processed assets and processed metadata if you really
need to test something. But those modifications will not be represented
in the hashes of the assets, so the processed state will be "out of
sync" with the source assets. The processor _will not_ fix this for you.
Either revert the change after you have tested it, or delete the
processed files so they can be re-populated.
## Open Questions
There are a number of open questions to be discussed. We should decide
if they need to be addressed in this PR and if so, how we will address
them:
### Implied Dependencies vs Dependency Enumeration
There are currently two ways to populate asset dependencies:
* **Implied via AssetLoaders**: if an AssetLoader loads an asset (and
retrieves a handle), a dependency is added to the list.
* **Explicit via the optional Asset::visit_dependencies**: if
`server.load_asset(my_asset)` is called, it will call
`my_asset.visit_dependencies`, which will grab dependencies that have
been manually defined for the asset via the Asset trait impl (which can
be derived).
This means that defining explicit dependencies is optional for "loaded
assets". And the list of dependencies is always accurate because loaders
can only produce Handles if they register dependencies. If an asset was
loaded with an AssetLoader, it only uses the implied dependencies. If an
asset was created at runtime and added with
`asset_server.load_asset(MyAsset)`, it will use
`Asset::visit_dependencies`.
However this can create a behavior mismatch between loaded assets and
equivalent "created at runtime" assets if `Assets::visit_dependencies`
doesn't exactly match the dependencies produced by the AssetLoader. This
behavior mismatch can be resolved by completely removing "implied loader
dependencies" and requiring `Asset::visit_dependencies` to supply
dependency data. But this creates two problems:
* It makes defining loaded assets harder and more error prone: Devs must
remember to manually annotate asset dependencies with `#[dependency]`
when deriving `Asset`. For more complicated assets (such as scenes), the
derive likely wouldn't be sufficient and a manual `visit_dependencies`
impl would be required.
* Removes the ability to immediately kick off dependency loads: When
AssetLoaders retrieve a Handle, they also immediately kick off an asset
load for the handle, which means it can start loading in parallel
_before_ the asset finishes loading. For large assets, this could be
significant. (although this could be mitigated for processed assets if
we store dependencies in the processed meta file and load them ahead of
time)
### Eager ProcessorDev Asset Loading
I made a controversial call in the interest of fast startup times ("time
to first pixel") for the "processor dev mode configuration". When
initializing the AssetProcessor, current processed versions of unchanged
assets are yielded immediately, even if their dependencies haven't been
checked yet for reprocessing. This means that
non-current-state-of-filesystem-but-previously-valid assets might be
returned to the App first, then hot-reloaded if/when their dependencies
change and the asset is reprocessed.
Is this behavior desirable? There is largely one alternative: do not
yield an asset from the processor to the app until all of its
dependencies have been checked for changes. In some common cases (load
dependency has not changed since last run) this will increase startup
time. The main question is "by how much" and is that slower startup time
worth it in the interest of only yielding assets that are true to the
current state of the filesystem. Should this be configurable? I'm
starting to think we should only yield an asset after its (historical)
dependencies have been checked for changes + processed as necessary, but
I'm curious what you all think.
### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs?
In this implementation AssetPaths are the only canonical asset
identifier (just like the previous Bevy Asset system and Godot). Moving
assets will result in re-scans (and currently reprocessing, although
reprocessing can easily be avoided with some changes). Asset
renames/moves will break code and assets that rely on specific paths,
unless those paths are fixed up.
Do we want / need "stable asset uuids"? Introducing them is very
possible:
1. Generate a UUID and include it in .meta files
2. Support UUID in AssetPath
3. Generate "asset indices" which are loaded on startup and map UUIDs to
paths.
4 (maybe). Consider only supporting UUIDs for processed assets so we can
generate quick-to-load indices instead of scanning meta files.
The main "pro" is that assets referencing UUIDs don't need to be
migrated when a path changes. The main "con" is that UUIDs cannot be
"lazily resolved" like paths. They need a full view of all assets to
answer the question "does this UUID exist". Which means UUIDs require
the AssetProcessor to fully finish startup scans before saying an asset
doesnt exist. And they essentially require asset pre-processing to use
in apps, because scanning all asset metadata files at runtime to resolve
a UUID is not viable for medium-to-large apps. It really requires a
pre-generated UUID index, which must be loaded before querying for
assets.
I personally think this should be investigated in a separate PR. Paths
aren't going anywhere ... _everyone_ uses filesystems (and
filesystem-like apis) to manage their asset source files. I consider
them permanent canonical asset information. Additionally, they behave
well for both processed and unprocessed asset modes. Given that Bevy is
supporting both, this feels like the right canonical ID to start with.
UUIDS (and maybe even other indexed-identifier types) can be added later
as necessary.
### Folder / File Naming Conventions
All asset processing config currently lives in the `.imported_assets`
folder. The processor transaction log is in `.imported_assets/log`.
Processed assets are added to `.imported_assets/Default`, which will
make migrating to processed asset profiles (ex: a
`.imported_assets/Mobile` profile) a non-breaking change. It also allows
us to create top-level files like `.imported_assets/log` without it
being interpreted as an asset. Meta files currently have a `.meta`
suffix. Do we like these names and conventions?
### Should the `AssetPlugin::processed_dev` configuration enable
`watch_for_changes` automatically?
Currently it does (which I think makes sense), but it does make it the
only configuration that enables watch_for_changes by default.
### Discuss on_loaded High Level Interface:
This PR includes a very rough "proof of concept" `on_loaded` system
adapter that uses the `LoadedWithDependencies` event in combination with
`asset_server.load_asset` dependency tracking to support this pattern
```rust
fn main() {
App::new()
.init_asset::<MyAssets>()
.add_systems(Update, on_loaded(create_array_texture))
.run();
}
#[derive(Asset, Clone)]
struct MyAssets {
#[dependency]
picture_of_my_cat: Handle<Image>,
#[dependency]
picture_of_my_other_cat: Handle<Image>,
}
impl FromWorld for ArrayTexture {
fn from_world(world: &mut World) -> Self {
picture_of_my_cat: server.load("meow.png"),
picture_of_my_other_cat: server.load("meeeeeeeow.png"),
}
}
fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) {
commands.spawn(SpriteBundle {
texture: my_assets.picture_of_my_cat.clone(),
..default()
});
commands.spawn(SpriteBundle {
texture: my_assets.picture_of_my_other_cat.clone(),
..default()
});
}
```
The implementation is _very_ rough. And it is currently unsafe because
`bevy_ecs` doesn't expose some internals to do this safely from inside
`bevy_asset`. There are plenty of unanswered questions like:
* "do we add a Loadable" derive? (effectively automate the FromWorld
implementation above)
* Should `MyAssets` even be an Asset? (largely implemented this way
because it elegantly builds on `server.load_asset(MyAsset { .. })`
dependency tracking).
We should think hard about what our ideal API looks like (and if this is
a pattern we want to support). Not necessarily something we need to
solve in this PR. The current `on_loaded` impl should probably be
removed from this PR before merging.
## Clarifying Questions
### What about Assets as Entities?
This Bevy Asset V2 proposal implementation initially stored Assets as
ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used
`Entity` as the asset id and Asset values were just ECS components.
There are plenty of compelling reasons to do this:
1. Easier to inline assets in Bevy Scenes (as they are "just" normal
entities + components)
2. More flexible queries: use the power of the ECS to filter assets (ex:
`Query<Mesh, With<Tree>>`).
3. Extensible. Users can add arbitrary component data to assets.
4. Things like "component visualization tools" work out of the box to
visualize asset data.
However Assets as Entities has a ton of caveats right now:
* We need to be able to allocate entity ids without a direct World
reference (aka rework id allocator in Entities ... i worked around this
in my prototypes by just pre allocating big chunks of entities)
* We want asset change events in addition to ECS change tracking ... how
do we populate them when mutations can come from anywhere? Do we use
Changed queries? This would require iterating over the change data for
all assets every frame. Is this acceptable or should we implement a new
"event based" component change detection option?
* Reconciling manually created assets with asset-system managed assets
has some nuance (ex: are they "loaded" / do they also have that
component metadata?)
* "how do we handle "static" / default entity handles" (ties in to the
Entity Indices discussion:
https://github.com/bevyengine/bevy/discussions/8319). This is necessary
for things like "built in" assets and default handles in things like
SpriteBundle.
* Storing asset information as a component makes it easy to "invalidate"
asset state by removing the component (or forcing modifications).
Ideally we have ways to lock this down (some combination of Rust type
privacy and ECS validation)
In practice, how we store and identify assets is a reasonably
superficial change (porting off of Assets as Entities and implementing
dedicated storage + ids took less than a day). So once we sort out the
remaining challenges the flip should be straightforward. Additionally, I
do still have "Assets as Entities" in my commit history, so we can reuse
that work. I personally think "assets as entities" is a good endgame,
but it also doesn't provide _significant_ value at the moment and it
certainly isn't ready yet with the current state of things.
### Why not Distill?
[Distill](https://github.com/amethyst/distill) is a high quality fully
featured asset system built in Rust. It is very natural to ask "why not
just use Distill?".
It is also worth calling out that for awhile, [we planned on adopting
Distill / I signed off on
it](https://github.com/bevyengine/bevy/issues/708).
However I think Bevy has a number of constraints that make Distill
adoption suboptimal:
* **Architectural Simplicity:**
* Distill's processor requires an in-memory database (lmdb) and RPC
networked API (using Cap'n Proto). Each of these introduces API
complexity that increases maintenance burden and "code grokability".
Ignoring tests, documentation, and examples, Distill has 24,237 lines of
Rust code (including generated code for RPC + database interactions). If
you ignore generated code, it has 11,499 lines.
* Bevy builds the AssetProcessor and AssetServer using pluggable
AssetReader/AssetWriter Rust traits with simple io interfaces. They do
not necessitate databases or RPC interfaces (although Readers/Writers
could use them if that is desired). Bevy Asset V2 (at the time of
writing this PR) is 5,384 lines of Rust code (ignoring tests,
documentation, and examples). Grain of salt: Distill does have more
features currently (ex: Asset Packing, GUIDS, remote-out-of-process
asset processor). I do plan to implement these features in Bevy Asset V2
and I personally highly doubt they will meaningfully close the 6115
lines-of-code gap.
* This complexity gap (which while illustrated by lines of code, is much
bigger than just that) is noteworthy to me. Bevy should be hackable and
there are pillars of Distill that are very hard to understand and
extend. This is a matter of opinion (and Bevy Asset V2 also has
complicated areas), but I think Bevy Asset V2 is much more approachable
for the average developer.
* Necessary disclaimer: counting lines of code is an extremely rough
complexity metric. Read the code and form your own opinions.
* **Optional Asset Processing:** Not all Bevy Apps (or Bevy App
developers) need / want asset preprocessing. Processing increases the
complexity of the development environment by introducing things like
meta files, imported asset storage, running processors in the
background, waiting for processing to finish, etc. Distill _requires_
preprocessing to work. With Bevy Asset V2 processing is fully opt-in.
The AssetServer isn't directly aware of asset processors at all.
AssetLoaders only care about converting bytes to runtime Assets ... they
don't know or care if the bytes were pre-processed or not. Processing is
"elegantly" (forgive my self-congratulatory phrasing) layered on top and
builds on the existing Asset system primitives.
* **Direct Filesystem Access to Processed Asset State:** Distill stores
processed assets in a database. This makes debugging / inspecting the
processed outputs harder (either requires special tooling to query the
database or they need to be "deployed" to be inspected). Bevy Asset V2,
on the other hand, stores processed assets in the filesystem (by default
... this is configurable). This makes interacting with the processed
state more natural. Note that both Godot and Unity's new asset system
store processed assets in the filesystem.
* **Portability**: Because Distill's processor uses lmdb and RPC
networking, it cannot be run on certain platforms (ex: lmdb is a
non-rust dependency that cannot run on the web, some platforms don't
support running network servers). Bevy should be able to process assets
everywhere (ex: run the Bevy Editor on the web, compile + process
shaders on mobile, etc). Distill does partially mitigate this problem by
supporting "streaming" assets via the RPC protocol, but this is not a
full solve from my perspective. And Bevy Asset V2 can (in theory) also
stream assets (without requiring RPC, although this isn't implemented
yet)
Note that I _do_ still think Distill would be a solid asset system for
Bevy. But I think the approach in this PR is a better solve for Bevy's
specific "asset system requirements".
### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the
point?
"True async file io" has limited / spotty platform support. async-fs
(and the rust async ecosystem generally ... ex Tokio) currently use
async wrappers over std::fs that offload blocking requests to separate
threads. This may feel unsatisfying, but it _does_ still provide value
because it prevents our task pools from blocking on file system
operations (which would prevent progress when there are many tasks to
do, but all threads in a pool are currently blocking on file system
ops).
Additionally, using async APIs for our AssetReaders and AssetWriters
also provides value because we can later add support for "true async
file io" for platforms that support it. _And_ we can implement other
"true async io" asset backends (such as networked asset io).
## Draft TODO
- [x] Fill in missing filesystem event APIs: file removed event (which
is expressed as dangling RenameFrom events in some cases), file/folder
renamed event
- [x] Assets without loaders are not moved to the processed folder. This
breaks things like referenced `.bin` files for GLTFs. This should be
configurable per-non-asset-type.
- [x] Initial implementation of Reflect and FromReflect for Handle. The
"deserialization" parity bar is low here as this only worked with static
UUIDs in the old impl ... this is a non-trivial problem. Either we add a
Handle::AssetPath variant that gets "upgraded" to a strong handle on
scene load or we use a separate AssetRef type for Bevy scenes (which is
converted to a runtime Handle on load). This deserves its own discussion
in a different pr.
- [x] Populate read_asset_bytes hash when run by the processor (a bit of
a special case .. when run by the processor the processed meta will
contain the hash so we don't need to compute it on the spot, but we
don't want/need to read the meta when run by the main AssetServer)
- [x] Delay hot reloading: currently filesystem events are handled
immediately, which creates timing issues in some cases. For example hot
reloading images can sometimes break because the image isn't finished
writing. We should add a delay, likely similar to the [implementation in
this PR](https://github.com/bevyengine/bevy/pull/8503).
- [x] Port old platform-specific AssetIo implementations to the new
AssetReader interface (currently missing Android and web)
- [x] Resolve on_loaded unsafety (either by removing the API entirely or
removing the unsafe)
- [x] Runtime loader setting overrides
- [x] Remove remaining unwraps that should be error-handled. There are
number of TODOs here
- [x] Pretty AssetPath Display impl
- [x] Document more APIs
- [x] Resolve spurious "reloading because it has changed" events (to
repro run load_gltf with `processed_dev()`)
- [x] load_dependency hot reloading currently only works for processed
assets. If processing is disabled, load_dependency changes are not hot
reloaded.
- [x] Replace AssetInfo dependency load/fail counters with
`loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from
(potentially) breaking counters. Storing this will also enable
"dependency reloaded" events (see [Next Steps](#next-steps))
- [x] Re-add filesystem watcher cargo feature gate (currently it is not
optional)
- [ ] Migration Guide
- [ ] Changelog
## Followup TODO
- [ ] Replace "eager unchanged processed asset loading" behavior with
"don't returned unchanged processed asset until dependencies have been
checked".
- [ ] Add true `Ignore` AssetAction that does not copy the asset to the
imported_assets folder.
- [ ] Finish "live asset unloading" (ex: free up CPU asset memory after
uploading an image to the GPU), rethink RenderAssets, and port renderer
features. The `Assets` collection uses `Option<T>` for asset storage to
support its removal. (1) the Option might not actually be necessary ...
might be able to just remove from the collection entirely (2) need to
finalize removal apis
- [ ] Try replacing the "channel based" asset id recycling with
something a bit more efficient (ex: we might be able to use raw atomic
ints with some cleverness)
- [ ] Consider adding UUIDs to processed assets (scoped just to helping
identify moved assets ... not exposed to load queries ... see [Next
Steps](#next-steps))
- [ ] Store "last modified" source asset and meta timestamps in
processed meta files to enable skipping expensive hashing when the file
wasn't changed
- [ ] Fix "slow loop" handle drop fix
- [ ] Migrate to TypeName
- [x] Handle "loader preregistration". See #9429
## Next Steps
* **Configurable per-type defaults for AssetMeta**: It should be
possible to add configuration like "all png image meta should default to
using nearest sampling" (currently this hard-coded per-loader/processor
Settings::default() impls). Also see the "Folder Meta" bullet point.
* **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical
asset ids" discussion in [Open Questions](#open-questions) and the
relevant bullet point in [Draft TODO](#draft-todo). Even without
canonical ids, folder renames could avoid reprocessing in some cases.
* **Multiple Asset Sources**: Expand AssetPath to support "asset source
names" and support multiple AssetReaders in the asset server (ex:
`webserver://some_path/image.png` backed by an Http webserver
AssetReader). The "default" asset reader would use normal
`some_path/image.png` paths. Ideally this works in combination with
multiple AssetWatchers for hot-reloading
* **Stable Type Names**: this pr removes the TypeUuid requirement from
assets in favor of `std::any::type_name`. This makes defining assets
easier (no need to generate a new uuid / use weird proc macro syntax).
It also makes reading meta files easier (because things have "friendly
names"). We also use type names for components in scene files. If they
are good enough for components, they are good enough for assets. And
consistency across Bevy pillars is desirable. However,
`std::any::type_name` is not guaranteed to be stable (although in
practice it is). We've developed a [stable type
path](https://github.com/bevyengine/bevy/pull/7184) to resolve this,
which should be adopted when it is ready.
* **Command Line Interface**: It should be possible to run the asset
processor in a separate process from the command line. This will also
require building a network-server-backed AssetReader to communicate
between the app and the processor. We've been planning to build a "bevy
cli" for awhile. This seems like a good excuse to build it.
* **Asset Packing**: This is largely an additive feature, so it made
sense to me to punt this until we've laid the foundations in this PR.
* **Per-Platform Processed Assets**: It should be possible to generate
assets for multiple platforms by supporting multiple "processor
profiles" per asset (ex: compress with format X on PC and Y on iOS). I
think there should probably be arbitrary "profiles" (which can be
separate from actual platforms), which are then assigned to a given
platform when generating the final asset distribution for that platform.
Ex: maybe devs want a "Mobile" profile that is shared between iOS and
Android. Or a "LowEnd" profile shared between web and mobile.
* **Versioning and Migrations**: Assets, Loaders, Savers, and Processors
need to have versions to determine if their schema is valid. If an asset
/ loader version is incompatible with the current version expected at
runtime, the processor should be able to migrate them. I think we should
try using Bevy Reflect for this, as it would allow us to load the old
version as a dynamic Reflect type without actually having the old Rust
type. It would also allow us to define "patches" to migrate between
versions (Bevy Reflect devs are currently working on patching). The
`.meta` file already has its own format version. Migrating that to new
versions should also be possible.
* **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write
type) currently used by AssetPath can still result in String clones that
aren't actually necessary (cloning an Owned Cow clones the contents).
Bevy's asset system requires cloning AssetPaths in a number of places,
which result in actual clones of the internal Strings. This is not
efficient. AssetPath internals should be reworked to exhibit truer
cow-like-behavior that reduces String clones to the absolute minimum.
* **Consider processor-less processing**: In theory the AssetServer
could run processors "inline" even if the background AssetProcessor is
disabled. If we decide this is actually desirable, we could add this.
But I don't think its a priority in the short or medium term.
* **Pre-emptive dependency loading**: We could encode dependencies in
processed meta files, which could then be used by the Asset Server to
kick of dependency loads as early as possible (prior to starting the
actual asset load). Is this desirable? How much time would this save in
practice?
* **Optimize Processor With UntypedAssetIds**: The processor exclusively
uses AssetPath to identify assets currently. It might be possible to
swap these out for UntypedAssetIds in some places, which are smaller /
cheaper to hash and compare.
* **One to Many Asset Processing**: An asset source file that produces
many assets currently must be processed into a single "processed" asset
source. If labeled assets can be written separately they can each have
their own configured savers _and_ they could be loaded more granularly.
Definitely worth exploring!
* **Automatically Track "Runtime-only" Asset Dependencies**: Right now,
tracking "created at runtime" asset dependencies requires adding them
via `asset_server.load_asset(StandardMaterial::default())`. I think with
some cleverness we could also do this for
`materials.add(StandardMaterial::default())`, making tracking work
"everywhere". There are challenges here relating to change detection /
ensuring the server is made aware of dependency changes. This could be
expensive in some cases.
* **"Dependency Changed" events**: Some assets have runtime artifacts
that need to be re-generated when one of their dependencies change (ex:
regenerate a material's bind group when a Texture needs to change). We
are generating the dependency graph so we can definitely produce these
events. Buuuuut generating these events will have a cost / they could be
high frequency for some assets, so we might want this to be opt-in for
specific cases.
* **Investigate Storing More Information In Handles**: Handles can now
store arbitrary information, which makes it cheaper and easier to
access. How much should we move into them? Canonical asset load states
(via atomics)? (`handle.is_loaded()` would be very cool). Should we
store the entire asset and remove the `Assets<T>` collection?
(`Arc<RwLock<Option<Image>>>`?)
* **Support processing and loading files without extensions**: This is a
pretty arbitrary restriction and could be supported with very minimal
changes.
* **Folder Meta**: It would be nice if we could define per folder
processor configuration defaults (likely in a `.meta` or `.folder_meta`
file). Things like "default to linear filtering for all Images in this
folder".
* **Replace async_broadcast with event-listener?** This might be
approximately drop-in for some uses and it feels more light weight
* **Support Running the AssetProcessor on the Web**: Most of the hard
work is done here, but there are some easy straggling TODOs (make the
transaction log an interface instead of a direct file writer so we can
write a web storage backend, implement an AssetReader/AssetWriter that
reads/writes to something like LocalStorage).
* **Consider identifying and preventing circular dependencies**: This is
especially important for "processor dependencies", as processing will
silently never finish in these cases.
* **Built-in/Inlined Asset Hot Reloading**: This PR regresses
"built-in/inlined" asset hot reloading (previously provided by the
DebugAssetServer). I'm intentionally punting this because I think it can
be cleanly implemented with "multiple asset sources" by registering a
"debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset
paths) in combination with an AssetWatcher for that asset source and
support for "manually loading pats with asset bytes instead of
AssetReaders". The old DebugAssetServer was quite nasty and I'd love to
avoid that hackery going forward.
* **Investigate ways to remove double-parsing meta files**: Parsing meta
files currently involves parsing once with "minimal" versions of the
meta file to extract the type name of the loader/processor config, then
parsing again to parse the "full" meta. This is suboptimal. We should be
able to define custom deserializers that (1) assume the loader/processor
type name comes first (2) dynamically looks up the loader/processor
registrations to deserialize settings in-line (similar to components in
the bevy scene format). Another alternative: deserialize as dynamic
Reflect objects and then convert.
* **More runtime loading configuration**: Support using the Handle type
as a hint to select an asset loader (instead of relying on AssetPath
extensions)
* **More high level Processor trait implementations**: For example, it
might be worth adding support for arbitrary chains of "asset transforms"
that modify an in-memory asset representation between loading and
saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by
a `flip_normals` transform, then save the mesh to an efficient
compressed format).
* **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO
item](#draft-todo) for context)
* **Explore High Level Load Interfaces**: See [this
discussion](#discuss-on_loaded-high-level-interface) for one prototype.
* **Asset Streaming**: It would be great if we could stream Assets (ex:
stream a long video file piece by piece)
* **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than
they need to be because they have a Uuid enum variant. If we implement
an "id exchanging" system that trades Uuids for "efficient runtime ids",
we can cut down on the size of AssetIds, making them more efficient.
This has some open design questions, such as how to spawn entities with
"default" handle values (as these wouldn't have access to the exchange
api in the current system).
* **Asset Path Fixup Tooling**: Assets that inline asset paths inside
them will break when an asset moves. The asset system provides the
functionality to detect when paths break. We should build a framework
that enables formats to define "path migrations". This is especially
important for scene files. For editor-generated files, we should also
consider using UUIDs (see other bullet point) to avoid the need to
migrate in these cases.
---------
Co-authored-by: BeastLe9enD <beastle9end@outlook.de>
Co-authored-by: Mike <mike.hsu@gmail.com>
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2023-09-07 02:07:27 +00:00
name = "custom_asset_reader"
path = "examples/asset/custom_asset_reader.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-12-18 19:34:44 +00:00
Bevy Asset V2 (#8624)
# Bevy Asset V2 Proposal
## Why Does Bevy Need A New Asset System?
Asset pipelines are a central part of the gamedev process. Bevy's
current asset system is missing a number of features that make it
non-viable for many classes of gamedev. After plenty of discussions and
[a long community feedback
period](https://github.com/bevyengine/bevy/discussions/3972), we've
identified a number missing features:
* **Asset Preprocessing**: it should be possible to "preprocess" /
"compile" / "crunch" assets at "development time" rather than when the
game starts up. This enables offloading expensive work from deployed
apps, faster asset loading, less runtime memory usage, etc.
* **Per-Asset Loader Settings**: Individual assets cannot define their
own loaders that override the defaults. Additionally, they cannot
provide per-asset settings to their loaders. This is a huge limitation,
as many asset types don't provide all information necessary for Bevy
_inside_ the asset. For example, a raw PNG image says nothing about how
it should be sampled (ex: linear vs nearest).
* **Asset `.meta` files**: assets should have configuration files stored
adjacent to the asset in question, which allows the user to configure
asset-type-specific settings. These settings should be accessible during
the pre-processing phase. Modifying a `.meta` file should trigger a
re-processing / re-load of the asset. It should be possible to configure
asset loaders from the meta file.
* **Processed Asset Hot Reloading**: Changes to processed assets (or
their dependencies) should result in re-processing them and re-loading
the results in live Bevy Apps.
* **Asset Dependency Tracking**: The current bevy_asset has no good way
to wait for asset dependencies to load. It punts this as an exercise for
consumers of the loader apis, which is unreasonable and error prone.
There should be easy, ergonomic ways to wait for assets to load and
block some logic on an asset's entire dependency tree loading.
* **Runtime Asset Loading**: it should be (optionally) possible to load
arbitrary assets dynamically at runtime. This necessitates being able to
deploy and run the asset server alongside Bevy Apps on _all platforms_.
For example, we should be able to invoke the shader compiler at runtime,
stream scenes from sources like the internet, etc. To keep deployed
binaries (and startup times) small, the runtime asset server
configuration should be configurable with different settings compared to
the "pre processor asset server".
* **Multiple Backends**: It should be possible to load assets from
arbitrary sources (filesystems, the internet, remote asset serves, etc).
* **Asset Packing**: It should be possible to deploy assets in
compressed "packs", which makes it easier and more efficient to
distribute assets with Bevy Apps.
* **Asset Handoff**: It should be possible to hold a "live" asset
handle, which correlates to runtime data, without actually holding the
asset in memory. Ex: it must be possible to hold a reference to a GPU
mesh generated from a "mesh asset" without keeping the mesh data in CPU
memory
* **Per-Platform Processed Assets**: Different platforms and app
distributions have different capabilities and requirements. Some
platforms need lower asset resolutions or different asset formats to
operate within the hardware constraints of the platform. It should be
possible to define per-platform asset processing profiles. And it should
be possible to deploy only the assets required for a given platform.
These features have architectural implications that are significant
enough to require a full rewrite. The current Bevy Asset implementation
got us this far, but it can take us no farther. This PR defines a brand
new asset system that implements most of these features, while laying
the foundations for the remaining features to be built.
## Bevy Asset V2
Here is a quick overview of the features introduced in this PR.
* **Asset Preprocessing**: Preprocess assets at development time into
more efficient (and configurable) representations
* **Dependency Aware**: Dependencies required to process an asset are
tracked. If an asset's processed dependency changes, it will be
reprocessed
* **Hot Reprocessing/Reloading**: detect changes to asset source files,
reprocess them if they have changed, and then hot-reload them in Bevy
Apps.
* **Only Process Changes**: Assets are only re-processed when their
source file (or meta file) has changed. This uses hashing and timestamps
to avoid processing assets that haven't changed.
* **Transactional and Reliable**: Uses write-ahead logging (a technique
commonly used by databases) to recover from crashes / forced-exits.
Whenever possible it avoids full-reprocessing / only uncompleted
transactions will be reprocessed. When the processor is running in
parallel with a Bevy App, processor asset writes block Bevy App asset
reads. Reading metadata + asset bytes is guaranteed to be transactional
/ correctly paired.
* **Portable / Run anywhere / Database-free**: The processor does not
rely on an in-memory database (although it uses some database techniques
for reliability). This is important because pretty much all in-memory
databases have unsupported platforms or build complications.
* **Configure Processor Defaults Per File Type**: You can say "use this
processor for all files of this type".
* **Custom Processors**: The `Processor` trait is flexible and
unopinionated. It can be implemented by downstream plugins.
* **LoadAndSave Processors**: Most asset processing scenarios can be
expressed as "run AssetLoader A, save the results using AssetSaver X,
and then load the result using AssetLoader B". For example, load this
png image using `PngImageLoader`, which produces an `Image` asset and
then save it using `CompressedImageSaver` (which also produces an
`Image` asset, but in a compressed format), which takes an `Image` asset
as input. This means if you have an `AssetLoader` for an asset, you are
already half way there! It also means that you can share AssetSavers
across multiple loaders. Because `CompressedImageSaver` accepts Bevy's
generic Image asset as input, it means you can also use it with some
future `JpegImageLoader`.
* **Loader and Saver Settings**: Asset Loaders and Savers can now define
their own settings types, which are passed in as input when an asset is
loaded / saved. Each asset can define its own settings.
* **Asset `.meta` files**: configure asset loaders, their settings,
enable/disable processing, and configure processor settings
* **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex:
if an asset contains a `Handle<Image>`) are tracked by the asset server.
An event is emitted when an asset and all of its dependencies have been
loaded
* **Unprocessed Asset Loading**: Assets do not require preprocessing.
They can be loaded directly. A processed asset is just a "normal" asset
with some extra metadata. Asset Loaders don't need to know or care about
whether or not an asset was processed.
* **Async Asset IO**: Asset readers/writers use async non-blocking
interfaces. Note that because Rust doesn't yet support async traits,
there is a bit of manual Boxing / Future boilerplate. This will
hopefully be removed in the near future when Rust gets async traits.
* **Pluggable Asset Readers and Writers**: Arbitrary asset source
readers/writers are supported, both by the processor and the asset
server.
* **Better Asset Handles**
* **Single Arc Tree**: Asset Handles now use a single arc tree that
represents the lifetime of the asset. This makes their implementation
simpler, more efficient, and allows us to cheaply attach metadata to
handles. Ex: the AssetPath of a handle is now directly accessible on the
handle itself!
* **Const Typed Handles**: typed handles can be constructed in a const
context. No more weird "const untyped converted to typed at runtime"
patterns!
* **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed
`Handle<T>` is now much smaller in memory and `AssetId<T>` is even
smaller.
* **Weak Handle Usage Reduction**: In general Handles are now considered
to be "strong". Bevy features that previously used "weak `Handle<T>`"
have been ported to `AssetId<T>`, which makes it statically clear that
the features do not hold strong handles (while retaining strong type
information). Currently Handle::Weak still exists, but it is very
possible that we can remove that entirely.
* **Efficient / Dense Asset Ids**: Assets now have efficient dense
runtime asset ids, which means we can avoid expensive hash lookups.
Assets are stored in Vecs instead of HashMaps. There are now typed and
untyped ids, which means we no longer need to store dynamic type
information in the ID for typed handles. "AssetPathId" (which was a
nightmare from a performance and correctness standpoint) has been
entirely removed in favor of dense ids (which are retrieved for a path
on load)
* **Direct Asset Loading, with Dependency Tracking**: Assets that are
defined at runtime can still have their dependencies tracked by the
Asset Server (ex: if you create a material at runtime, you can still
wait for its textures to load). This is accomplished via the (currently
optional) "asset dependency visitor" trait. This system can also be used
to define a set of assets to load, then wait for those assets to load.
* **Async folder loading**: Folder loading also uses this system and
immediately returns a handle to the LoadedFolder asset, which means
folder loading no longer blocks on directory traversals.
* **Improved Loader Interface**: Loaders now have a specific "top level
asset type", which makes returning the top-level asset simpler and
statically typed.
* **Basic Image Settings and Processing**: Image assets can now be
processed into the gpu-friendly Basic Universal format. The ImageLoader
now has a setting to define what format the image should be loaded as.
Note that this is just a minimal MVP ... plenty of additional work to do
here. To demo this, enable the `basis-universal` feature and turn on
asset processing.
* **Simpler Audio Play / AudioSink API**: Asset handle providers are
cloneable, which means the Audio resource can mint its own handles. This
means you can now do `let sink_handle = audio.play(music)` instead of
`let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that
this might still be replaced by
https://github.com/bevyengine/bevy/pull/8424.
**Removed Handle Casting From Engine Features**: Ex: FontAtlases no
longer use casting between handle types
## Using The New Asset System
### Normal Unprocessed Asset Loading
By default the `AssetPlugin` does not use processing. It behaves pretty
much the same way as the old system.
If you are defining a custom asset, first derive `Asset`:
```rust
#[derive(Asset)]
struct Thing {
value: String,
}
```
Initialize the asset:
```rust
app.init_asset:<Thing>()
```
Implement a new `AssetLoader` for it:
```rust
#[derive(Default)]
struct ThingLoader;
#[derive(Serialize, Deserialize, Default)]
pub struct ThingSettings {
some_setting: bool,
}
impl AssetLoader for ThingLoader {
type Asset = Thing;
type Settings = ThingSettings;
fn load<'a>(
&'a self,
reader: &'a mut Reader,
settings: &'a ThingSettings,
load_context: &'a mut LoadContext,
) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> {
Box::pin(async move {
let mut bytes = Vec::new();
reader.read_to_end(&mut bytes).await?;
// convert bytes to value somehow
Ok(Thing {
value
})
})
}
fn extensions(&self) -> &[&str] {
&["thing"]
}
}
```
Note that this interface will get much cleaner once Rust gets support
for async traits. `Reader` is an async futures_io::AsyncRead. You can
stream bytes as they come in or read them all into a `Vec<u8>`,
depending on the context. You can use `let handle =
load_context.load(path)` to kick off a dependency load, retrieve a
handle, and register the dependency for the asset.
Then just register the loader in your Bevy app:
```rust
app.init_asset_loader::<ThingLoader>()
```
Now just add your `Thing` asset files into the `assets` folder and load
them like this:
```rust
fn system(asset_server: Res<AssetServer>) {
let handle = Handle<Thing> = asset_server.load("cool.thing");
}
```
You can check load states directly via the asset server:
```rust
if asset_server.load_state(&handle) == LoadState::Loaded { }
```
You can also listen for events:
```rust
fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) {
for event in events.iter() {
if event.is_loaded_with_dependencies(&handle) {
}
}
}
```
Note the new `AssetEvent::LoadedWithDependencies`, which only fires when
the asset is loaded _and_ all dependencies (and their dependencies) have
loaded.
Unlike the old asset system, for a given asset path all `Handle<T>`
values point to the same underlying Arc. This means Handles can cheaply
hold more asset information, such as the AssetPath:
```rust
// prints the AssetPath of the handle
info!("{:?}", handle.path())
```
### Processed Assets
Asset processing can be enabled via the `AssetPlugin`. When developing
Bevy Apps with processed assets, do this:
```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))
```
This runs the `AssetProcessor` in the background with hot-reloading. It
reads assets from the `assets` folder, processes them, and writes them
to the `.imported_assets` folder. Asset loads in the Bevy App will wait
for a processed version of the asset to become available. If an asset in
the `assets` folder changes, it will be reprocessed and hot-reloaded in
the Bevy App.
When deploying processed Bevy apps, do this:
```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed()))
```
This does not run the `AssetProcessor` in the background. It behaves
like `AssetPlugin::unprocessed()`, but reads assets from
`.imported_assets`.
When the `AssetProcessor` is running, it will populate sibling `.meta`
files for assets in the `assets` folder. Meta files for assets that do
not have a processor configured look like this:
```rust
(
meta_format_version: "1.0",
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: FromExtension,
),
),
)
```
This is metadata for an image asset. For example, if you have
`assets/my_sprite.png`, this could be the metadata stored at
`assets/my_sprite.png.meta`. Meta files are totally optional. If no
metadata exists, the default settings will be used.
In short, this file says "load this asset with the ImageLoader and use
the file extension to determine the image type". This type of meta file
is supported in all AssetPlugin modes. If in `Unprocessed` mode, the
asset (with the meta settings) will be loaded directly. If in
`ProcessedDev` mode, the asset file will be copied directly to the
`.imported_assets` folder. The meta will also be copied directly to the
`.imported_assets` folder, but with one addition:
```rust
(
meta_format_version: "1.0",
processed_info: Some((
hash: 12415480888597742505,
full_hash: 14344495437905856884,
process_dependencies: [],
)),
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: FromExtension,
),
),
)
```
`processed_info` contains `hash` (a direct hash of the asset and meta
bytes), `full_hash` (a hash of `hash` and the hashes of all
`process_dependencies`), and `process_dependencies` (the `path` and
`full_hash` of every process_dependency). A "process dependency" is an
asset dependency that is _directly_ used when processing the asset.
Images do not have process dependencies, so this is empty.
When the processor is enabled, you can use the `Process` metadata
config:
```rust
(
meta_format_version: "1.0",
asset: Process(
processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>",
settings: (
loader_settings: (
format: FromExtension,
),
saver_settings: (
generate_mipmaps: true,
),
),
),
)
```
This configures the asset to use the `LoadAndSave` processor, which runs
an AssetLoader and feeds the result into an AssetSaver (which saves the
given Asset and defines a loader to load it with). (for terseness
LoadAndSave will likely get a shorter/friendlier type name when [Stable
Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common
processor type, but arbitrary processors are supported.
`CompressedImageSaver` saves an `Image` in the Basis Universal format
and configures the ImageLoader to load it as basis universal. The
`AssetProcessor` will read this meta, run it through the LoadAndSave
processor, and write the basis-universal version of the image to
`.imported_assets`. The final metadata will look like this:
```rust
(
meta_format_version: "1.0",
processed_info: Some((
hash: 905599590923828066,
full_hash: 9948823010183819117,
process_dependencies: [],
)),
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: Format(Basis),
),
),
)
```
To try basis-universal processing out in Bevy examples, (for example
`sprite.rs`), change `add_plugins(DefaultPlugins)` to
`add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run
with the `basis-universal` feature enabled: `cargo run
--features=basis-universal --example sprite`.
To create a custom processor, there are two main paths:
1. Use the `LoadAndSave` processor with an existing `AssetLoader`.
Implement the `AssetSaver` trait, register the processor using
`asset_processor.register_processor::<LoadAndSave<ImageLoader,
CompressedImageSaver>>(image_saver.into())`.
2. Implement the `Process` trait directly and register it using:
`asset_processor.register_processor(thing_processor)`.
You can configure default processors for file extensions like this:
```rust
asset_processor.set_default_processor::<ThingProcessor>("thing")
```
There is one more metadata type to be aware of:
```rust
(
meta_format_version: "1.0",
asset: Ignore,
)
```
This will ignore the asset during processing / prevent it from being
written to `.imported_assets`.
The AssetProcessor stores a transaction log at `.imported_assets/log`
and uses it to gracefully recover from unexpected stops. This means you
can force-quit the processor (and Bevy Apps running the processor in
parallel) at arbitrary times!
`.imported_assets` is "local state". It should _not_ be checked into
source control. It should also be considered "read only". In practice,
you _can_ modify processed assets and processed metadata if you really
need to test something. But those modifications will not be represented
in the hashes of the assets, so the processed state will be "out of
sync" with the source assets. The processor _will not_ fix this for you.
Either revert the change after you have tested it, or delete the
processed files so they can be re-populated.
## Open Questions
There are a number of open questions to be discussed. We should decide
if they need to be addressed in this PR and if so, how we will address
them:
### Implied Dependencies vs Dependency Enumeration
There are currently two ways to populate asset dependencies:
* **Implied via AssetLoaders**: if an AssetLoader loads an asset (and
retrieves a handle), a dependency is added to the list.
* **Explicit via the optional Asset::visit_dependencies**: if
`server.load_asset(my_asset)` is called, it will call
`my_asset.visit_dependencies`, which will grab dependencies that have
been manually defined for the asset via the Asset trait impl (which can
be derived).
This means that defining explicit dependencies is optional for "loaded
assets". And the list of dependencies is always accurate because loaders
can only produce Handles if they register dependencies. If an asset was
loaded with an AssetLoader, it only uses the implied dependencies. If an
asset was created at runtime and added with
`asset_server.load_asset(MyAsset)`, it will use
`Asset::visit_dependencies`.
However this can create a behavior mismatch between loaded assets and
equivalent "created at runtime" assets if `Assets::visit_dependencies`
doesn't exactly match the dependencies produced by the AssetLoader. This
behavior mismatch can be resolved by completely removing "implied loader
dependencies" and requiring `Asset::visit_dependencies` to supply
dependency data. But this creates two problems:
* It makes defining loaded assets harder and more error prone: Devs must
remember to manually annotate asset dependencies with `#[dependency]`
when deriving `Asset`. For more complicated assets (such as scenes), the
derive likely wouldn't be sufficient and a manual `visit_dependencies`
impl would be required.
* Removes the ability to immediately kick off dependency loads: When
AssetLoaders retrieve a Handle, they also immediately kick off an asset
load for the handle, which means it can start loading in parallel
_before_ the asset finishes loading. For large assets, this could be
significant. (although this could be mitigated for processed assets if
we store dependencies in the processed meta file and load them ahead of
time)
### Eager ProcessorDev Asset Loading
I made a controversial call in the interest of fast startup times ("time
to first pixel") for the "processor dev mode configuration". When
initializing the AssetProcessor, current processed versions of unchanged
assets are yielded immediately, even if their dependencies haven't been
checked yet for reprocessing. This means that
non-current-state-of-filesystem-but-previously-valid assets might be
returned to the App first, then hot-reloaded if/when their dependencies
change and the asset is reprocessed.
Is this behavior desirable? There is largely one alternative: do not
yield an asset from the processor to the app until all of its
dependencies have been checked for changes. In some common cases (load
dependency has not changed since last run) this will increase startup
time. The main question is "by how much" and is that slower startup time
worth it in the interest of only yielding assets that are true to the
current state of the filesystem. Should this be configurable? I'm
starting to think we should only yield an asset after its (historical)
dependencies have been checked for changes + processed as necessary, but
I'm curious what you all think.
### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs?
In this implementation AssetPaths are the only canonical asset
identifier (just like the previous Bevy Asset system and Godot). Moving
assets will result in re-scans (and currently reprocessing, although
reprocessing can easily be avoided with some changes). Asset
renames/moves will break code and assets that rely on specific paths,
unless those paths are fixed up.
Do we want / need "stable asset uuids"? Introducing them is very
possible:
1. Generate a UUID and include it in .meta files
2. Support UUID in AssetPath
3. Generate "asset indices" which are loaded on startup and map UUIDs to
paths.
4 (maybe). Consider only supporting UUIDs for processed assets so we can
generate quick-to-load indices instead of scanning meta files.
The main "pro" is that assets referencing UUIDs don't need to be
migrated when a path changes. The main "con" is that UUIDs cannot be
"lazily resolved" like paths. They need a full view of all assets to
answer the question "does this UUID exist". Which means UUIDs require
the AssetProcessor to fully finish startup scans before saying an asset
doesnt exist. And they essentially require asset pre-processing to use
in apps, because scanning all asset metadata files at runtime to resolve
a UUID is not viable for medium-to-large apps. It really requires a
pre-generated UUID index, which must be loaded before querying for
assets.
I personally think this should be investigated in a separate PR. Paths
aren't going anywhere ... _everyone_ uses filesystems (and
filesystem-like apis) to manage their asset source files. I consider
them permanent canonical asset information. Additionally, they behave
well for both processed and unprocessed asset modes. Given that Bevy is
supporting both, this feels like the right canonical ID to start with.
UUIDS (and maybe even other indexed-identifier types) can be added later
as necessary.
### Folder / File Naming Conventions
All asset processing config currently lives in the `.imported_assets`
folder. The processor transaction log is in `.imported_assets/log`.
Processed assets are added to `.imported_assets/Default`, which will
make migrating to processed asset profiles (ex: a
`.imported_assets/Mobile` profile) a non-breaking change. It also allows
us to create top-level files like `.imported_assets/log` without it
being interpreted as an asset. Meta files currently have a `.meta`
suffix. Do we like these names and conventions?
### Should the `AssetPlugin::processed_dev` configuration enable
`watch_for_changes` automatically?
Currently it does (which I think makes sense), but it does make it the
only configuration that enables watch_for_changes by default.
### Discuss on_loaded High Level Interface:
This PR includes a very rough "proof of concept" `on_loaded` system
adapter that uses the `LoadedWithDependencies` event in combination with
`asset_server.load_asset` dependency tracking to support this pattern
```rust
fn main() {
App::new()
.init_asset::<MyAssets>()
.add_systems(Update, on_loaded(create_array_texture))
.run();
}
#[derive(Asset, Clone)]
struct MyAssets {
#[dependency]
picture_of_my_cat: Handle<Image>,
#[dependency]
picture_of_my_other_cat: Handle<Image>,
}
impl FromWorld for ArrayTexture {
fn from_world(world: &mut World) -> Self {
picture_of_my_cat: server.load("meow.png"),
picture_of_my_other_cat: server.load("meeeeeeeow.png"),
}
}
fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) {
commands.spawn(SpriteBundle {
texture: my_assets.picture_of_my_cat.clone(),
..default()
});
commands.spawn(SpriteBundle {
texture: my_assets.picture_of_my_other_cat.clone(),
..default()
});
}
```
The implementation is _very_ rough. And it is currently unsafe because
`bevy_ecs` doesn't expose some internals to do this safely from inside
`bevy_asset`. There are plenty of unanswered questions like:
* "do we add a Loadable" derive? (effectively automate the FromWorld
implementation above)
* Should `MyAssets` even be an Asset? (largely implemented this way
because it elegantly builds on `server.load_asset(MyAsset { .. })`
dependency tracking).
We should think hard about what our ideal API looks like (and if this is
a pattern we want to support). Not necessarily something we need to
solve in this PR. The current `on_loaded` impl should probably be
removed from this PR before merging.
## Clarifying Questions
### What about Assets as Entities?
This Bevy Asset V2 proposal implementation initially stored Assets as
ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used
`Entity` as the asset id and Asset values were just ECS components.
There are plenty of compelling reasons to do this:
1. Easier to inline assets in Bevy Scenes (as they are "just" normal
entities + components)
2. More flexible queries: use the power of the ECS to filter assets (ex:
`Query<Mesh, With<Tree>>`).
3. Extensible. Users can add arbitrary component data to assets.
4. Things like "component visualization tools" work out of the box to
visualize asset data.
However Assets as Entities has a ton of caveats right now:
* We need to be able to allocate entity ids without a direct World
reference (aka rework id allocator in Entities ... i worked around this
in my prototypes by just pre allocating big chunks of entities)
* We want asset change events in addition to ECS change tracking ... how
do we populate them when mutations can come from anywhere? Do we use
Changed queries? This would require iterating over the change data for
all assets every frame. Is this acceptable or should we implement a new
"event based" component change detection option?
* Reconciling manually created assets with asset-system managed assets
has some nuance (ex: are they "loaded" / do they also have that
component metadata?)
* "how do we handle "static" / default entity handles" (ties in to the
Entity Indices discussion:
https://github.com/bevyengine/bevy/discussions/8319). This is necessary
for things like "built in" assets and default handles in things like
SpriteBundle.
* Storing asset information as a component makes it easy to "invalidate"
asset state by removing the component (or forcing modifications).
Ideally we have ways to lock this down (some combination of Rust type
privacy and ECS validation)
In practice, how we store and identify assets is a reasonably
superficial change (porting off of Assets as Entities and implementing
dedicated storage + ids took less than a day). So once we sort out the
remaining challenges the flip should be straightforward. Additionally, I
do still have "Assets as Entities" in my commit history, so we can reuse
that work. I personally think "assets as entities" is a good endgame,
but it also doesn't provide _significant_ value at the moment and it
certainly isn't ready yet with the current state of things.
### Why not Distill?
[Distill](https://github.com/amethyst/distill) is a high quality fully
featured asset system built in Rust. It is very natural to ask "why not
just use Distill?".
It is also worth calling out that for awhile, [we planned on adopting
Distill / I signed off on
it](https://github.com/bevyengine/bevy/issues/708).
However I think Bevy has a number of constraints that make Distill
adoption suboptimal:
* **Architectural Simplicity:**
* Distill's processor requires an in-memory database (lmdb) and RPC
networked API (using Cap'n Proto). Each of these introduces API
complexity that increases maintenance burden and "code grokability".
Ignoring tests, documentation, and examples, Distill has 24,237 lines of
Rust code (including generated code for RPC + database interactions). If
you ignore generated code, it has 11,499 lines.
* Bevy builds the AssetProcessor and AssetServer using pluggable
AssetReader/AssetWriter Rust traits with simple io interfaces. They do
not necessitate databases or RPC interfaces (although Readers/Writers
could use them if that is desired). Bevy Asset V2 (at the time of
writing this PR) is 5,384 lines of Rust code (ignoring tests,
documentation, and examples). Grain of salt: Distill does have more
features currently (ex: Asset Packing, GUIDS, remote-out-of-process
asset processor). I do plan to implement these features in Bevy Asset V2
and I personally highly doubt they will meaningfully close the 6115
lines-of-code gap.
* This complexity gap (which while illustrated by lines of code, is much
bigger than just that) is noteworthy to me. Bevy should be hackable and
there are pillars of Distill that are very hard to understand and
extend. This is a matter of opinion (and Bevy Asset V2 also has
complicated areas), but I think Bevy Asset V2 is much more approachable
for the average developer.
* Necessary disclaimer: counting lines of code is an extremely rough
complexity metric. Read the code and form your own opinions.
* **Optional Asset Processing:** Not all Bevy Apps (or Bevy App
developers) need / want asset preprocessing. Processing increases the
complexity of the development environment by introducing things like
meta files, imported asset storage, running processors in the
background, waiting for processing to finish, etc. Distill _requires_
preprocessing to work. With Bevy Asset V2 processing is fully opt-in.
The AssetServer isn't directly aware of asset processors at all.
AssetLoaders only care about converting bytes to runtime Assets ... they
don't know or care if the bytes were pre-processed or not. Processing is
"elegantly" (forgive my self-congratulatory phrasing) layered on top and
builds on the existing Asset system primitives.
* **Direct Filesystem Access to Processed Asset State:** Distill stores
processed assets in a database. This makes debugging / inspecting the
processed outputs harder (either requires special tooling to query the
database or they need to be "deployed" to be inspected). Bevy Asset V2,
on the other hand, stores processed assets in the filesystem (by default
... this is configurable). This makes interacting with the processed
state more natural. Note that both Godot and Unity's new asset system
store processed assets in the filesystem.
* **Portability**: Because Distill's processor uses lmdb and RPC
networking, it cannot be run on certain platforms (ex: lmdb is a
non-rust dependency that cannot run on the web, some platforms don't
support running network servers). Bevy should be able to process assets
everywhere (ex: run the Bevy Editor on the web, compile + process
shaders on mobile, etc). Distill does partially mitigate this problem by
supporting "streaming" assets via the RPC protocol, but this is not a
full solve from my perspective. And Bevy Asset V2 can (in theory) also
stream assets (without requiring RPC, although this isn't implemented
yet)
Note that I _do_ still think Distill would be a solid asset system for
Bevy. But I think the approach in this PR is a better solve for Bevy's
specific "asset system requirements".
### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the
point?
"True async file io" has limited / spotty platform support. async-fs
(and the rust async ecosystem generally ... ex Tokio) currently use
async wrappers over std::fs that offload blocking requests to separate
threads. This may feel unsatisfying, but it _does_ still provide value
because it prevents our task pools from blocking on file system
operations (which would prevent progress when there are many tasks to
do, but all threads in a pool are currently blocking on file system
ops).
Additionally, using async APIs for our AssetReaders and AssetWriters
also provides value because we can later add support for "true async
file io" for platforms that support it. _And_ we can implement other
"true async io" asset backends (such as networked asset io).
## Draft TODO
- [x] Fill in missing filesystem event APIs: file removed event (which
is expressed as dangling RenameFrom events in some cases), file/folder
renamed event
- [x] Assets without loaders are not moved to the processed folder. This
breaks things like referenced `.bin` files for GLTFs. This should be
configurable per-non-asset-type.
- [x] Initial implementation of Reflect and FromReflect for Handle. The
"deserialization" parity bar is low here as this only worked with static
UUIDs in the old impl ... this is a non-trivial problem. Either we add a
Handle::AssetPath variant that gets "upgraded" to a strong handle on
scene load or we use a separate AssetRef type for Bevy scenes (which is
converted to a runtime Handle on load). This deserves its own discussion
in a different pr.
- [x] Populate read_asset_bytes hash when run by the processor (a bit of
a special case .. when run by the processor the processed meta will
contain the hash so we don't need to compute it on the spot, but we
don't want/need to read the meta when run by the main AssetServer)
- [x] Delay hot reloading: currently filesystem events are handled
immediately, which creates timing issues in some cases. For example hot
reloading images can sometimes break because the image isn't finished
writing. We should add a delay, likely similar to the [implementation in
this PR](https://github.com/bevyengine/bevy/pull/8503).
- [x] Port old platform-specific AssetIo implementations to the new
AssetReader interface (currently missing Android and web)
- [x] Resolve on_loaded unsafety (either by removing the API entirely or
removing the unsafe)
- [x] Runtime loader setting overrides
- [x] Remove remaining unwraps that should be error-handled. There are
number of TODOs here
- [x] Pretty AssetPath Display impl
- [x] Document more APIs
- [x] Resolve spurious "reloading because it has changed" events (to
repro run load_gltf with `processed_dev()`)
- [x] load_dependency hot reloading currently only works for processed
assets. If processing is disabled, load_dependency changes are not hot
reloaded.
- [x] Replace AssetInfo dependency load/fail counters with
`loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from
(potentially) breaking counters. Storing this will also enable
"dependency reloaded" events (see [Next Steps](#next-steps))
- [x] Re-add filesystem watcher cargo feature gate (currently it is not
optional)
- [ ] Migration Guide
- [ ] Changelog
## Followup TODO
- [ ] Replace "eager unchanged processed asset loading" behavior with
"don't returned unchanged processed asset until dependencies have been
checked".
- [ ] Add true `Ignore` AssetAction that does not copy the asset to the
imported_assets folder.
- [ ] Finish "live asset unloading" (ex: free up CPU asset memory after
uploading an image to the GPU), rethink RenderAssets, and port renderer
features. The `Assets` collection uses `Option<T>` for asset storage to
support its removal. (1) the Option might not actually be necessary ...
might be able to just remove from the collection entirely (2) need to
finalize removal apis
- [ ] Try replacing the "channel based" asset id recycling with
something a bit more efficient (ex: we might be able to use raw atomic
ints with some cleverness)
- [ ] Consider adding UUIDs to processed assets (scoped just to helping
identify moved assets ... not exposed to load queries ... see [Next
Steps](#next-steps))
- [ ] Store "last modified" source asset and meta timestamps in
processed meta files to enable skipping expensive hashing when the file
wasn't changed
- [ ] Fix "slow loop" handle drop fix
- [ ] Migrate to TypeName
- [x] Handle "loader preregistration". See #9429
## Next Steps
* **Configurable per-type defaults for AssetMeta**: It should be
possible to add configuration like "all png image meta should default to
using nearest sampling" (currently this hard-coded per-loader/processor
Settings::default() impls). Also see the "Folder Meta" bullet point.
* **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical
asset ids" discussion in [Open Questions](#open-questions) and the
relevant bullet point in [Draft TODO](#draft-todo). Even without
canonical ids, folder renames could avoid reprocessing in some cases.
* **Multiple Asset Sources**: Expand AssetPath to support "asset source
names" and support multiple AssetReaders in the asset server (ex:
`webserver://some_path/image.png` backed by an Http webserver
AssetReader). The "default" asset reader would use normal
`some_path/image.png` paths. Ideally this works in combination with
multiple AssetWatchers for hot-reloading
* **Stable Type Names**: this pr removes the TypeUuid requirement from
assets in favor of `std::any::type_name`. This makes defining assets
easier (no need to generate a new uuid / use weird proc macro syntax).
It also makes reading meta files easier (because things have "friendly
names"). We also use type names for components in scene files. If they
are good enough for components, they are good enough for assets. And
consistency across Bevy pillars is desirable. However,
`std::any::type_name` is not guaranteed to be stable (although in
practice it is). We've developed a [stable type
path](https://github.com/bevyengine/bevy/pull/7184) to resolve this,
which should be adopted when it is ready.
* **Command Line Interface**: It should be possible to run the asset
processor in a separate process from the command line. This will also
require building a network-server-backed AssetReader to communicate
between the app and the processor. We've been planning to build a "bevy
cli" for awhile. This seems like a good excuse to build it.
* **Asset Packing**: This is largely an additive feature, so it made
sense to me to punt this until we've laid the foundations in this PR.
* **Per-Platform Processed Assets**: It should be possible to generate
assets for multiple platforms by supporting multiple "processor
profiles" per asset (ex: compress with format X on PC and Y on iOS). I
think there should probably be arbitrary "profiles" (which can be
separate from actual platforms), which are then assigned to a given
platform when generating the final asset distribution for that platform.
Ex: maybe devs want a "Mobile" profile that is shared between iOS and
Android. Or a "LowEnd" profile shared between web and mobile.
* **Versioning and Migrations**: Assets, Loaders, Savers, and Processors
need to have versions to determine if their schema is valid. If an asset
/ loader version is incompatible with the current version expected at
runtime, the processor should be able to migrate them. I think we should
try using Bevy Reflect for this, as it would allow us to load the old
version as a dynamic Reflect type without actually having the old Rust
type. It would also allow us to define "patches" to migrate between
versions (Bevy Reflect devs are currently working on patching). The
`.meta` file already has its own format version. Migrating that to new
versions should also be possible.
* **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write
type) currently used by AssetPath can still result in String clones that
aren't actually necessary (cloning an Owned Cow clones the contents).
Bevy's asset system requires cloning AssetPaths in a number of places,
which result in actual clones of the internal Strings. This is not
efficient. AssetPath internals should be reworked to exhibit truer
cow-like-behavior that reduces String clones to the absolute minimum.
* **Consider processor-less processing**: In theory the AssetServer
could run processors "inline" even if the background AssetProcessor is
disabled. If we decide this is actually desirable, we could add this.
But I don't think its a priority in the short or medium term.
* **Pre-emptive dependency loading**: We could encode dependencies in
processed meta files, which could then be used by the Asset Server to
kick of dependency loads as early as possible (prior to starting the
actual asset load). Is this desirable? How much time would this save in
practice?
* **Optimize Processor With UntypedAssetIds**: The processor exclusively
uses AssetPath to identify assets currently. It might be possible to
swap these out for UntypedAssetIds in some places, which are smaller /
cheaper to hash and compare.
* **One to Many Asset Processing**: An asset source file that produces
many assets currently must be processed into a single "processed" asset
source. If labeled assets can be written separately they can each have
their own configured savers _and_ they could be loaded more granularly.
Definitely worth exploring!
* **Automatically Track "Runtime-only" Asset Dependencies**: Right now,
tracking "created at runtime" asset dependencies requires adding them
via `asset_server.load_asset(StandardMaterial::default())`. I think with
some cleverness we could also do this for
`materials.add(StandardMaterial::default())`, making tracking work
"everywhere". There are challenges here relating to change detection /
ensuring the server is made aware of dependency changes. This could be
expensive in some cases.
* **"Dependency Changed" events**: Some assets have runtime artifacts
that need to be re-generated when one of their dependencies change (ex:
regenerate a material's bind group when a Texture needs to change). We
are generating the dependency graph so we can definitely produce these
events. Buuuuut generating these events will have a cost / they could be
high frequency for some assets, so we might want this to be opt-in for
specific cases.
* **Investigate Storing More Information In Handles**: Handles can now
store arbitrary information, which makes it cheaper and easier to
access. How much should we move into them? Canonical asset load states
(via atomics)? (`handle.is_loaded()` would be very cool). Should we
store the entire asset and remove the `Assets<T>` collection?
(`Arc<RwLock<Option<Image>>>`?)
* **Support processing and loading files without extensions**: This is a
pretty arbitrary restriction and could be supported with very minimal
changes.
* **Folder Meta**: It would be nice if we could define per folder
processor configuration defaults (likely in a `.meta` or `.folder_meta`
file). Things like "default to linear filtering for all Images in this
folder".
* **Replace async_broadcast with event-listener?** This might be
approximately drop-in for some uses and it feels more light weight
* **Support Running the AssetProcessor on the Web**: Most of the hard
work is done here, but there are some easy straggling TODOs (make the
transaction log an interface instead of a direct file writer so we can
write a web storage backend, implement an AssetReader/AssetWriter that
reads/writes to something like LocalStorage).
* **Consider identifying and preventing circular dependencies**: This is
especially important for "processor dependencies", as processing will
silently never finish in these cases.
* **Built-in/Inlined Asset Hot Reloading**: This PR regresses
"built-in/inlined" asset hot reloading (previously provided by the
DebugAssetServer). I'm intentionally punting this because I think it can
be cleanly implemented with "multiple asset sources" by registering a
"debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset
paths) in combination with an AssetWatcher for that asset source and
support for "manually loading pats with asset bytes instead of
AssetReaders". The old DebugAssetServer was quite nasty and I'd love to
avoid that hackery going forward.
* **Investigate ways to remove double-parsing meta files**: Parsing meta
files currently involves parsing once with "minimal" versions of the
meta file to extract the type name of the loader/processor config, then
parsing again to parse the "full" meta. This is suboptimal. We should be
able to define custom deserializers that (1) assume the loader/processor
type name comes first (2) dynamically looks up the loader/processor
registrations to deserialize settings in-line (similar to components in
the bevy scene format). Another alternative: deserialize as dynamic
Reflect objects and then convert.
* **More runtime loading configuration**: Support using the Handle type
as a hint to select an asset loader (instead of relying on AssetPath
extensions)
* **More high level Processor trait implementations**: For example, it
might be worth adding support for arbitrary chains of "asset transforms"
that modify an in-memory asset representation between loading and
saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by
a `flip_normals` transform, then save the mesh to an efficient
compressed format).
* **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO
item](#draft-todo) for context)
* **Explore High Level Load Interfaces**: See [this
discussion](#discuss-on_loaded-high-level-interface) for one prototype.
* **Asset Streaming**: It would be great if we could stream Assets (ex:
stream a long video file piece by piece)
* **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than
they need to be because they have a Uuid enum variant. If we implement
an "id exchanging" system that trades Uuids for "efficient runtime ids",
we can cut down on the size of AssetIds, making them more efficient.
This has some open design questions, such as how to spawn entities with
"default" handle values (as these wouldn't have access to the exchange
api in the current system).
* **Asset Path Fixup Tooling**: Assets that inline asset paths inside
them will break when an asset moves. The asset system provides the
functionality to detect when paths break. We should build a framework
that enables formats to define "path migrations". This is especially
important for scene files. For editor-generated files, we should also
consider using UUIDs (see other bullet point) to avoid the need to
migrate in these cases.
---------
Co-authored-by: BeastLe9enD <beastle9end@outlook.de>
Co-authored-by: Mike <mike.hsu@gmail.com>
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2023-09-07 02:07:27 +00:00
[ package . metadata . example . custom_asset_reader ]
2022-06-25 20:23:24 +00:00
name = "Custom Asset IO"
Bevy Asset V2 (#8624)
# Bevy Asset V2 Proposal
## Why Does Bevy Need A New Asset System?
Asset pipelines are a central part of the gamedev process. Bevy's
current asset system is missing a number of features that make it
non-viable for many classes of gamedev. After plenty of discussions and
[a long community feedback
period](https://github.com/bevyengine/bevy/discussions/3972), we've
identified a number missing features:
* **Asset Preprocessing**: it should be possible to "preprocess" /
"compile" / "crunch" assets at "development time" rather than when the
game starts up. This enables offloading expensive work from deployed
apps, faster asset loading, less runtime memory usage, etc.
* **Per-Asset Loader Settings**: Individual assets cannot define their
own loaders that override the defaults. Additionally, they cannot
provide per-asset settings to their loaders. This is a huge limitation,
as many asset types don't provide all information necessary for Bevy
_inside_ the asset. For example, a raw PNG image says nothing about how
it should be sampled (ex: linear vs nearest).
* **Asset `.meta` files**: assets should have configuration files stored
adjacent to the asset in question, which allows the user to configure
asset-type-specific settings. These settings should be accessible during
the pre-processing phase. Modifying a `.meta` file should trigger a
re-processing / re-load of the asset. It should be possible to configure
asset loaders from the meta file.
* **Processed Asset Hot Reloading**: Changes to processed assets (or
their dependencies) should result in re-processing them and re-loading
the results in live Bevy Apps.
* **Asset Dependency Tracking**: The current bevy_asset has no good way
to wait for asset dependencies to load. It punts this as an exercise for
consumers of the loader apis, which is unreasonable and error prone.
There should be easy, ergonomic ways to wait for assets to load and
block some logic on an asset's entire dependency tree loading.
* **Runtime Asset Loading**: it should be (optionally) possible to load
arbitrary assets dynamically at runtime. This necessitates being able to
deploy and run the asset server alongside Bevy Apps on _all platforms_.
For example, we should be able to invoke the shader compiler at runtime,
stream scenes from sources like the internet, etc. To keep deployed
binaries (and startup times) small, the runtime asset server
configuration should be configurable with different settings compared to
the "pre processor asset server".
* **Multiple Backends**: It should be possible to load assets from
arbitrary sources (filesystems, the internet, remote asset serves, etc).
* **Asset Packing**: It should be possible to deploy assets in
compressed "packs", which makes it easier and more efficient to
distribute assets with Bevy Apps.
* **Asset Handoff**: It should be possible to hold a "live" asset
handle, which correlates to runtime data, without actually holding the
asset in memory. Ex: it must be possible to hold a reference to a GPU
mesh generated from a "mesh asset" without keeping the mesh data in CPU
memory
* **Per-Platform Processed Assets**: Different platforms and app
distributions have different capabilities and requirements. Some
platforms need lower asset resolutions or different asset formats to
operate within the hardware constraints of the platform. It should be
possible to define per-platform asset processing profiles. And it should
be possible to deploy only the assets required for a given platform.
These features have architectural implications that are significant
enough to require a full rewrite. The current Bevy Asset implementation
got us this far, but it can take us no farther. This PR defines a brand
new asset system that implements most of these features, while laying
the foundations for the remaining features to be built.
## Bevy Asset V2
Here is a quick overview of the features introduced in this PR.
* **Asset Preprocessing**: Preprocess assets at development time into
more efficient (and configurable) representations
* **Dependency Aware**: Dependencies required to process an asset are
tracked. If an asset's processed dependency changes, it will be
reprocessed
* **Hot Reprocessing/Reloading**: detect changes to asset source files,
reprocess them if they have changed, and then hot-reload them in Bevy
Apps.
* **Only Process Changes**: Assets are only re-processed when their
source file (or meta file) has changed. This uses hashing and timestamps
to avoid processing assets that haven't changed.
* **Transactional and Reliable**: Uses write-ahead logging (a technique
commonly used by databases) to recover from crashes / forced-exits.
Whenever possible it avoids full-reprocessing / only uncompleted
transactions will be reprocessed. When the processor is running in
parallel with a Bevy App, processor asset writes block Bevy App asset
reads. Reading metadata + asset bytes is guaranteed to be transactional
/ correctly paired.
* **Portable / Run anywhere / Database-free**: The processor does not
rely on an in-memory database (although it uses some database techniques
for reliability). This is important because pretty much all in-memory
databases have unsupported platforms or build complications.
* **Configure Processor Defaults Per File Type**: You can say "use this
processor for all files of this type".
* **Custom Processors**: The `Processor` trait is flexible and
unopinionated. It can be implemented by downstream plugins.
* **LoadAndSave Processors**: Most asset processing scenarios can be
expressed as "run AssetLoader A, save the results using AssetSaver X,
and then load the result using AssetLoader B". For example, load this
png image using `PngImageLoader`, which produces an `Image` asset and
then save it using `CompressedImageSaver` (which also produces an
`Image` asset, but in a compressed format), which takes an `Image` asset
as input. This means if you have an `AssetLoader` for an asset, you are
already half way there! It also means that you can share AssetSavers
across multiple loaders. Because `CompressedImageSaver` accepts Bevy's
generic Image asset as input, it means you can also use it with some
future `JpegImageLoader`.
* **Loader and Saver Settings**: Asset Loaders and Savers can now define
their own settings types, which are passed in as input when an asset is
loaded / saved. Each asset can define its own settings.
* **Asset `.meta` files**: configure asset loaders, their settings,
enable/disable processing, and configure processor settings
* **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex:
if an asset contains a `Handle<Image>`) are tracked by the asset server.
An event is emitted when an asset and all of its dependencies have been
loaded
* **Unprocessed Asset Loading**: Assets do not require preprocessing.
They can be loaded directly. A processed asset is just a "normal" asset
with some extra metadata. Asset Loaders don't need to know or care about
whether or not an asset was processed.
* **Async Asset IO**: Asset readers/writers use async non-blocking
interfaces. Note that because Rust doesn't yet support async traits,
there is a bit of manual Boxing / Future boilerplate. This will
hopefully be removed in the near future when Rust gets async traits.
* **Pluggable Asset Readers and Writers**: Arbitrary asset source
readers/writers are supported, both by the processor and the asset
server.
* **Better Asset Handles**
* **Single Arc Tree**: Asset Handles now use a single arc tree that
represents the lifetime of the asset. This makes their implementation
simpler, more efficient, and allows us to cheaply attach metadata to
handles. Ex: the AssetPath of a handle is now directly accessible on the
handle itself!
* **Const Typed Handles**: typed handles can be constructed in a const
context. No more weird "const untyped converted to typed at runtime"
patterns!
* **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed
`Handle<T>` is now much smaller in memory and `AssetId<T>` is even
smaller.
* **Weak Handle Usage Reduction**: In general Handles are now considered
to be "strong". Bevy features that previously used "weak `Handle<T>`"
have been ported to `AssetId<T>`, which makes it statically clear that
the features do not hold strong handles (while retaining strong type
information). Currently Handle::Weak still exists, but it is very
possible that we can remove that entirely.
* **Efficient / Dense Asset Ids**: Assets now have efficient dense
runtime asset ids, which means we can avoid expensive hash lookups.
Assets are stored in Vecs instead of HashMaps. There are now typed and
untyped ids, which means we no longer need to store dynamic type
information in the ID for typed handles. "AssetPathId" (which was a
nightmare from a performance and correctness standpoint) has been
entirely removed in favor of dense ids (which are retrieved for a path
on load)
* **Direct Asset Loading, with Dependency Tracking**: Assets that are
defined at runtime can still have their dependencies tracked by the
Asset Server (ex: if you create a material at runtime, you can still
wait for its textures to load). This is accomplished via the (currently
optional) "asset dependency visitor" trait. This system can also be used
to define a set of assets to load, then wait for those assets to load.
* **Async folder loading**: Folder loading also uses this system and
immediately returns a handle to the LoadedFolder asset, which means
folder loading no longer blocks on directory traversals.
* **Improved Loader Interface**: Loaders now have a specific "top level
asset type", which makes returning the top-level asset simpler and
statically typed.
* **Basic Image Settings and Processing**: Image assets can now be
processed into the gpu-friendly Basic Universal format. The ImageLoader
now has a setting to define what format the image should be loaded as.
Note that this is just a minimal MVP ... plenty of additional work to do
here. To demo this, enable the `basis-universal` feature and turn on
asset processing.
* **Simpler Audio Play / AudioSink API**: Asset handle providers are
cloneable, which means the Audio resource can mint its own handles. This
means you can now do `let sink_handle = audio.play(music)` instead of
`let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that
this might still be replaced by
https://github.com/bevyengine/bevy/pull/8424.
**Removed Handle Casting From Engine Features**: Ex: FontAtlases no
longer use casting between handle types
## Using The New Asset System
### Normal Unprocessed Asset Loading
By default the `AssetPlugin` does not use processing. It behaves pretty
much the same way as the old system.
If you are defining a custom asset, first derive `Asset`:
```rust
#[derive(Asset)]
struct Thing {
value: String,
}
```
Initialize the asset:
```rust
app.init_asset:<Thing>()
```
Implement a new `AssetLoader` for it:
```rust
#[derive(Default)]
struct ThingLoader;
#[derive(Serialize, Deserialize, Default)]
pub struct ThingSettings {
some_setting: bool,
}
impl AssetLoader for ThingLoader {
type Asset = Thing;
type Settings = ThingSettings;
fn load<'a>(
&'a self,
reader: &'a mut Reader,
settings: &'a ThingSettings,
load_context: &'a mut LoadContext,
) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> {
Box::pin(async move {
let mut bytes = Vec::new();
reader.read_to_end(&mut bytes).await?;
// convert bytes to value somehow
Ok(Thing {
value
})
})
}
fn extensions(&self) -> &[&str] {
&["thing"]
}
}
```
Note that this interface will get much cleaner once Rust gets support
for async traits. `Reader` is an async futures_io::AsyncRead. You can
stream bytes as they come in or read them all into a `Vec<u8>`,
depending on the context. You can use `let handle =
load_context.load(path)` to kick off a dependency load, retrieve a
handle, and register the dependency for the asset.
Then just register the loader in your Bevy app:
```rust
app.init_asset_loader::<ThingLoader>()
```
Now just add your `Thing` asset files into the `assets` folder and load
them like this:
```rust
fn system(asset_server: Res<AssetServer>) {
let handle = Handle<Thing> = asset_server.load("cool.thing");
}
```
You can check load states directly via the asset server:
```rust
if asset_server.load_state(&handle) == LoadState::Loaded { }
```
You can also listen for events:
```rust
fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) {
for event in events.iter() {
if event.is_loaded_with_dependencies(&handle) {
}
}
}
```
Note the new `AssetEvent::LoadedWithDependencies`, which only fires when
the asset is loaded _and_ all dependencies (and their dependencies) have
loaded.
Unlike the old asset system, for a given asset path all `Handle<T>`
values point to the same underlying Arc. This means Handles can cheaply
hold more asset information, such as the AssetPath:
```rust
// prints the AssetPath of the handle
info!("{:?}", handle.path())
```
### Processed Assets
Asset processing can be enabled via the `AssetPlugin`. When developing
Bevy Apps with processed assets, do this:
```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))
```
This runs the `AssetProcessor` in the background with hot-reloading. It
reads assets from the `assets` folder, processes them, and writes them
to the `.imported_assets` folder. Asset loads in the Bevy App will wait
for a processed version of the asset to become available. If an asset in
the `assets` folder changes, it will be reprocessed and hot-reloaded in
the Bevy App.
When deploying processed Bevy apps, do this:
```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed()))
```
This does not run the `AssetProcessor` in the background. It behaves
like `AssetPlugin::unprocessed()`, but reads assets from
`.imported_assets`.
When the `AssetProcessor` is running, it will populate sibling `.meta`
files for assets in the `assets` folder. Meta files for assets that do
not have a processor configured look like this:
```rust
(
meta_format_version: "1.0",
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: FromExtension,
),
),
)
```
This is metadata for an image asset. For example, if you have
`assets/my_sprite.png`, this could be the metadata stored at
`assets/my_sprite.png.meta`. Meta files are totally optional. If no
metadata exists, the default settings will be used.
In short, this file says "load this asset with the ImageLoader and use
the file extension to determine the image type". This type of meta file
is supported in all AssetPlugin modes. If in `Unprocessed` mode, the
asset (with the meta settings) will be loaded directly. If in
`ProcessedDev` mode, the asset file will be copied directly to the
`.imported_assets` folder. The meta will also be copied directly to the
`.imported_assets` folder, but with one addition:
```rust
(
meta_format_version: "1.0",
processed_info: Some((
hash: 12415480888597742505,
full_hash: 14344495437905856884,
process_dependencies: [],
)),
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: FromExtension,
),
),
)
```
`processed_info` contains `hash` (a direct hash of the asset and meta
bytes), `full_hash` (a hash of `hash` and the hashes of all
`process_dependencies`), and `process_dependencies` (the `path` and
`full_hash` of every process_dependency). A "process dependency" is an
asset dependency that is _directly_ used when processing the asset.
Images do not have process dependencies, so this is empty.
When the processor is enabled, you can use the `Process` metadata
config:
```rust
(
meta_format_version: "1.0",
asset: Process(
processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>",
settings: (
loader_settings: (
format: FromExtension,
),
saver_settings: (
generate_mipmaps: true,
),
),
),
)
```
This configures the asset to use the `LoadAndSave` processor, which runs
an AssetLoader and feeds the result into an AssetSaver (which saves the
given Asset and defines a loader to load it with). (for terseness
LoadAndSave will likely get a shorter/friendlier type name when [Stable
Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common
processor type, but arbitrary processors are supported.
`CompressedImageSaver` saves an `Image` in the Basis Universal format
and configures the ImageLoader to load it as basis universal. The
`AssetProcessor` will read this meta, run it through the LoadAndSave
processor, and write the basis-universal version of the image to
`.imported_assets`. The final metadata will look like this:
```rust
(
meta_format_version: "1.0",
processed_info: Some((
hash: 905599590923828066,
full_hash: 9948823010183819117,
process_dependencies: [],
)),
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: Format(Basis),
),
),
)
```
To try basis-universal processing out in Bevy examples, (for example
`sprite.rs`), change `add_plugins(DefaultPlugins)` to
`add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run
with the `basis-universal` feature enabled: `cargo run
--features=basis-universal --example sprite`.
To create a custom processor, there are two main paths:
1. Use the `LoadAndSave` processor with an existing `AssetLoader`.
Implement the `AssetSaver` trait, register the processor using
`asset_processor.register_processor::<LoadAndSave<ImageLoader,
CompressedImageSaver>>(image_saver.into())`.
2. Implement the `Process` trait directly and register it using:
`asset_processor.register_processor(thing_processor)`.
You can configure default processors for file extensions like this:
```rust
asset_processor.set_default_processor::<ThingProcessor>("thing")
```
There is one more metadata type to be aware of:
```rust
(
meta_format_version: "1.0",
asset: Ignore,
)
```
This will ignore the asset during processing / prevent it from being
written to `.imported_assets`.
The AssetProcessor stores a transaction log at `.imported_assets/log`
and uses it to gracefully recover from unexpected stops. This means you
can force-quit the processor (and Bevy Apps running the processor in
parallel) at arbitrary times!
`.imported_assets` is "local state". It should _not_ be checked into
source control. It should also be considered "read only". In practice,
you _can_ modify processed assets and processed metadata if you really
need to test something. But those modifications will not be represented
in the hashes of the assets, so the processed state will be "out of
sync" with the source assets. The processor _will not_ fix this for you.
Either revert the change after you have tested it, or delete the
processed files so they can be re-populated.
## Open Questions
There are a number of open questions to be discussed. We should decide
if they need to be addressed in this PR and if so, how we will address
them:
### Implied Dependencies vs Dependency Enumeration
There are currently two ways to populate asset dependencies:
* **Implied via AssetLoaders**: if an AssetLoader loads an asset (and
retrieves a handle), a dependency is added to the list.
* **Explicit via the optional Asset::visit_dependencies**: if
`server.load_asset(my_asset)` is called, it will call
`my_asset.visit_dependencies`, which will grab dependencies that have
been manually defined for the asset via the Asset trait impl (which can
be derived).
This means that defining explicit dependencies is optional for "loaded
assets". And the list of dependencies is always accurate because loaders
can only produce Handles if they register dependencies. If an asset was
loaded with an AssetLoader, it only uses the implied dependencies. If an
asset was created at runtime and added with
`asset_server.load_asset(MyAsset)`, it will use
`Asset::visit_dependencies`.
However this can create a behavior mismatch between loaded assets and
equivalent "created at runtime" assets if `Assets::visit_dependencies`
doesn't exactly match the dependencies produced by the AssetLoader. This
behavior mismatch can be resolved by completely removing "implied loader
dependencies" and requiring `Asset::visit_dependencies` to supply
dependency data. But this creates two problems:
* It makes defining loaded assets harder and more error prone: Devs must
remember to manually annotate asset dependencies with `#[dependency]`
when deriving `Asset`. For more complicated assets (such as scenes), the
derive likely wouldn't be sufficient and a manual `visit_dependencies`
impl would be required.
* Removes the ability to immediately kick off dependency loads: When
AssetLoaders retrieve a Handle, they also immediately kick off an asset
load for the handle, which means it can start loading in parallel
_before_ the asset finishes loading. For large assets, this could be
significant. (although this could be mitigated for processed assets if
we store dependencies in the processed meta file and load them ahead of
time)
### Eager ProcessorDev Asset Loading
I made a controversial call in the interest of fast startup times ("time
to first pixel") for the "processor dev mode configuration". When
initializing the AssetProcessor, current processed versions of unchanged
assets are yielded immediately, even if their dependencies haven't been
checked yet for reprocessing. This means that
non-current-state-of-filesystem-but-previously-valid assets might be
returned to the App first, then hot-reloaded if/when their dependencies
change and the asset is reprocessed.
Is this behavior desirable? There is largely one alternative: do not
yield an asset from the processor to the app until all of its
dependencies have been checked for changes. In some common cases (load
dependency has not changed since last run) this will increase startup
time. The main question is "by how much" and is that slower startup time
worth it in the interest of only yielding assets that are true to the
current state of the filesystem. Should this be configurable? I'm
starting to think we should only yield an asset after its (historical)
dependencies have been checked for changes + processed as necessary, but
I'm curious what you all think.
### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs?
In this implementation AssetPaths are the only canonical asset
identifier (just like the previous Bevy Asset system and Godot). Moving
assets will result in re-scans (and currently reprocessing, although
reprocessing can easily be avoided with some changes). Asset
renames/moves will break code and assets that rely on specific paths,
unless those paths are fixed up.
Do we want / need "stable asset uuids"? Introducing them is very
possible:
1. Generate a UUID and include it in .meta files
2. Support UUID in AssetPath
3. Generate "asset indices" which are loaded on startup and map UUIDs to
paths.
4 (maybe). Consider only supporting UUIDs for processed assets so we can
generate quick-to-load indices instead of scanning meta files.
The main "pro" is that assets referencing UUIDs don't need to be
migrated when a path changes. The main "con" is that UUIDs cannot be
"lazily resolved" like paths. They need a full view of all assets to
answer the question "does this UUID exist". Which means UUIDs require
the AssetProcessor to fully finish startup scans before saying an asset
doesnt exist. And they essentially require asset pre-processing to use
in apps, because scanning all asset metadata files at runtime to resolve
a UUID is not viable for medium-to-large apps. It really requires a
pre-generated UUID index, which must be loaded before querying for
assets.
I personally think this should be investigated in a separate PR. Paths
aren't going anywhere ... _everyone_ uses filesystems (and
filesystem-like apis) to manage their asset source files. I consider
them permanent canonical asset information. Additionally, they behave
well for both processed and unprocessed asset modes. Given that Bevy is
supporting both, this feels like the right canonical ID to start with.
UUIDS (and maybe even other indexed-identifier types) can be added later
as necessary.
### Folder / File Naming Conventions
All asset processing config currently lives in the `.imported_assets`
folder. The processor transaction log is in `.imported_assets/log`.
Processed assets are added to `.imported_assets/Default`, which will
make migrating to processed asset profiles (ex: a
`.imported_assets/Mobile` profile) a non-breaking change. It also allows
us to create top-level files like `.imported_assets/log` without it
being interpreted as an asset. Meta files currently have a `.meta`
suffix. Do we like these names and conventions?
### Should the `AssetPlugin::processed_dev` configuration enable
`watch_for_changes` automatically?
Currently it does (which I think makes sense), but it does make it the
only configuration that enables watch_for_changes by default.
### Discuss on_loaded High Level Interface:
This PR includes a very rough "proof of concept" `on_loaded` system
adapter that uses the `LoadedWithDependencies` event in combination with
`asset_server.load_asset` dependency tracking to support this pattern
```rust
fn main() {
App::new()
.init_asset::<MyAssets>()
.add_systems(Update, on_loaded(create_array_texture))
.run();
}
#[derive(Asset, Clone)]
struct MyAssets {
#[dependency]
picture_of_my_cat: Handle<Image>,
#[dependency]
picture_of_my_other_cat: Handle<Image>,
}
impl FromWorld for ArrayTexture {
fn from_world(world: &mut World) -> Self {
picture_of_my_cat: server.load("meow.png"),
picture_of_my_other_cat: server.load("meeeeeeeow.png"),
}
}
fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) {
commands.spawn(SpriteBundle {
texture: my_assets.picture_of_my_cat.clone(),
..default()
});
commands.spawn(SpriteBundle {
texture: my_assets.picture_of_my_other_cat.clone(),
..default()
});
}
```
The implementation is _very_ rough. And it is currently unsafe because
`bevy_ecs` doesn't expose some internals to do this safely from inside
`bevy_asset`. There are plenty of unanswered questions like:
* "do we add a Loadable" derive? (effectively automate the FromWorld
implementation above)
* Should `MyAssets` even be an Asset? (largely implemented this way
because it elegantly builds on `server.load_asset(MyAsset { .. })`
dependency tracking).
We should think hard about what our ideal API looks like (and if this is
a pattern we want to support). Not necessarily something we need to
solve in this PR. The current `on_loaded` impl should probably be
removed from this PR before merging.
## Clarifying Questions
### What about Assets as Entities?
This Bevy Asset V2 proposal implementation initially stored Assets as
ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used
`Entity` as the asset id and Asset values were just ECS components.
There are plenty of compelling reasons to do this:
1. Easier to inline assets in Bevy Scenes (as they are "just" normal
entities + components)
2. More flexible queries: use the power of the ECS to filter assets (ex:
`Query<Mesh, With<Tree>>`).
3. Extensible. Users can add arbitrary component data to assets.
4. Things like "component visualization tools" work out of the box to
visualize asset data.
However Assets as Entities has a ton of caveats right now:
* We need to be able to allocate entity ids without a direct World
reference (aka rework id allocator in Entities ... i worked around this
in my prototypes by just pre allocating big chunks of entities)
* We want asset change events in addition to ECS change tracking ... how
do we populate them when mutations can come from anywhere? Do we use
Changed queries? This would require iterating over the change data for
all assets every frame. Is this acceptable or should we implement a new
"event based" component change detection option?
* Reconciling manually created assets with asset-system managed assets
has some nuance (ex: are they "loaded" / do they also have that
component metadata?)
* "how do we handle "static" / default entity handles" (ties in to the
Entity Indices discussion:
https://github.com/bevyengine/bevy/discussions/8319). This is necessary
for things like "built in" assets and default handles in things like
SpriteBundle.
* Storing asset information as a component makes it easy to "invalidate"
asset state by removing the component (or forcing modifications).
Ideally we have ways to lock this down (some combination of Rust type
privacy and ECS validation)
In practice, how we store and identify assets is a reasonably
superficial change (porting off of Assets as Entities and implementing
dedicated storage + ids took less than a day). So once we sort out the
remaining challenges the flip should be straightforward. Additionally, I
do still have "Assets as Entities" in my commit history, so we can reuse
that work. I personally think "assets as entities" is a good endgame,
but it also doesn't provide _significant_ value at the moment and it
certainly isn't ready yet with the current state of things.
### Why not Distill?
[Distill](https://github.com/amethyst/distill) is a high quality fully
featured asset system built in Rust. It is very natural to ask "why not
just use Distill?".
It is also worth calling out that for awhile, [we planned on adopting
Distill / I signed off on
it](https://github.com/bevyengine/bevy/issues/708).
However I think Bevy has a number of constraints that make Distill
adoption suboptimal:
* **Architectural Simplicity:**
* Distill's processor requires an in-memory database (lmdb) and RPC
networked API (using Cap'n Proto). Each of these introduces API
complexity that increases maintenance burden and "code grokability".
Ignoring tests, documentation, and examples, Distill has 24,237 lines of
Rust code (including generated code for RPC + database interactions). If
you ignore generated code, it has 11,499 lines.
* Bevy builds the AssetProcessor and AssetServer using pluggable
AssetReader/AssetWriter Rust traits with simple io interfaces. They do
not necessitate databases or RPC interfaces (although Readers/Writers
could use them if that is desired). Bevy Asset V2 (at the time of
writing this PR) is 5,384 lines of Rust code (ignoring tests,
documentation, and examples). Grain of salt: Distill does have more
features currently (ex: Asset Packing, GUIDS, remote-out-of-process
asset processor). I do plan to implement these features in Bevy Asset V2
and I personally highly doubt they will meaningfully close the 6115
lines-of-code gap.
* This complexity gap (which while illustrated by lines of code, is much
bigger than just that) is noteworthy to me. Bevy should be hackable and
there are pillars of Distill that are very hard to understand and
extend. This is a matter of opinion (and Bevy Asset V2 also has
complicated areas), but I think Bevy Asset V2 is much more approachable
for the average developer.
* Necessary disclaimer: counting lines of code is an extremely rough
complexity metric. Read the code and form your own opinions.
* **Optional Asset Processing:** Not all Bevy Apps (or Bevy App
developers) need / want asset preprocessing. Processing increases the
complexity of the development environment by introducing things like
meta files, imported asset storage, running processors in the
background, waiting for processing to finish, etc. Distill _requires_
preprocessing to work. With Bevy Asset V2 processing is fully opt-in.
The AssetServer isn't directly aware of asset processors at all.
AssetLoaders only care about converting bytes to runtime Assets ... they
don't know or care if the bytes were pre-processed or not. Processing is
"elegantly" (forgive my self-congratulatory phrasing) layered on top and
builds on the existing Asset system primitives.
* **Direct Filesystem Access to Processed Asset State:** Distill stores
processed assets in a database. This makes debugging / inspecting the
processed outputs harder (either requires special tooling to query the
database or they need to be "deployed" to be inspected). Bevy Asset V2,
on the other hand, stores processed assets in the filesystem (by default
... this is configurable). This makes interacting with the processed
state more natural. Note that both Godot and Unity's new asset system
store processed assets in the filesystem.
* **Portability**: Because Distill's processor uses lmdb and RPC
networking, it cannot be run on certain platforms (ex: lmdb is a
non-rust dependency that cannot run on the web, some platforms don't
support running network servers). Bevy should be able to process assets
everywhere (ex: run the Bevy Editor on the web, compile + process
shaders on mobile, etc). Distill does partially mitigate this problem by
supporting "streaming" assets via the RPC protocol, but this is not a
full solve from my perspective. And Bevy Asset V2 can (in theory) also
stream assets (without requiring RPC, although this isn't implemented
yet)
Note that I _do_ still think Distill would be a solid asset system for
Bevy. But I think the approach in this PR is a better solve for Bevy's
specific "asset system requirements".
### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the
point?
"True async file io" has limited / spotty platform support. async-fs
(and the rust async ecosystem generally ... ex Tokio) currently use
async wrappers over std::fs that offload blocking requests to separate
threads. This may feel unsatisfying, but it _does_ still provide value
because it prevents our task pools from blocking on file system
operations (which would prevent progress when there are many tasks to
do, but all threads in a pool are currently blocking on file system
ops).
Additionally, using async APIs for our AssetReaders and AssetWriters
also provides value because we can later add support for "true async
file io" for platforms that support it. _And_ we can implement other
"true async io" asset backends (such as networked asset io).
## Draft TODO
- [x] Fill in missing filesystem event APIs: file removed event (which
is expressed as dangling RenameFrom events in some cases), file/folder
renamed event
- [x] Assets without loaders are not moved to the processed folder. This
breaks things like referenced `.bin` files for GLTFs. This should be
configurable per-non-asset-type.
- [x] Initial implementation of Reflect and FromReflect for Handle. The
"deserialization" parity bar is low here as this only worked with static
UUIDs in the old impl ... this is a non-trivial problem. Either we add a
Handle::AssetPath variant that gets "upgraded" to a strong handle on
scene load or we use a separate AssetRef type for Bevy scenes (which is
converted to a runtime Handle on load). This deserves its own discussion
in a different pr.
- [x] Populate read_asset_bytes hash when run by the processor (a bit of
a special case .. when run by the processor the processed meta will
contain the hash so we don't need to compute it on the spot, but we
don't want/need to read the meta when run by the main AssetServer)
- [x] Delay hot reloading: currently filesystem events are handled
immediately, which creates timing issues in some cases. For example hot
reloading images can sometimes break because the image isn't finished
writing. We should add a delay, likely similar to the [implementation in
this PR](https://github.com/bevyengine/bevy/pull/8503).
- [x] Port old platform-specific AssetIo implementations to the new
AssetReader interface (currently missing Android and web)
- [x] Resolve on_loaded unsafety (either by removing the API entirely or
removing the unsafe)
- [x] Runtime loader setting overrides
- [x] Remove remaining unwraps that should be error-handled. There are
number of TODOs here
- [x] Pretty AssetPath Display impl
- [x] Document more APIs
- [x] Resolve spurious "reloading because it has changed" events (to
repro run load_gltf with `processed_dev()`)
- [x] load_dependency hot reloading currently only works for processed
assets. If processing is disabled, load_dependency changes are not hot
reloaded.
- [x] Replace AssetInfo dependency load/fail counters with
`loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from
(potentially) breaking counters. Storing this will also enable
"dependency reloaded" events (see [Next Steps](#next-steps))
- [x] Re-add filesystem watcher cargo feature gate (currently it is not
optional)
- [ ] Migration Guide
- [ ] Changelog
## Followup TODO
- [ ] Replace "eager unchanged processed asset loading" behavior with
"don't returned unchanged processed asset until dependencies have been
checked".
- [ ] Add true `Ignore` AssetAction that does not copy the asset to the
imported_assets folder.
- [ ] Finish "live asset unloading" (ex: free up CPU asset memory after
uploading an image to the GPU), rethink RenderAssets, and port renderer
features. The `Assets` collection uses `Option<T>` for asset storage to
support its removal. (1) the Option might not actually be necessary ...
might be able to just remove from the collection entirely (2) need to
finalize removal apis
- [ ] Try replacing the "channel based" asset id recycling with
something a bit more efficient (ex: we might be able to use raw atomic
ints with some cleverness)
- [ ] Consider adding UUIDs to processed assets (scoped just to helping
identify moved assets ... not exposed to load queries ... see [Next
Steps](#next-steps))
- [ ] Store "last modified" source asset and meta timestamps in
processed meta files to enable skipping expensive hashing when the file
wasn't changed
- [ ] Fix "slow loop" handle drop fix
- [ ] Migrate to TypeName
- [x] Handle "loader preregistration". See #9429
## Next Steps
* **Configurable per-type defaults for AssetMeta**: It should be
possible to add configuration like "all png image meta should default to
using nearest sampling" (currently this hard-coded per-loader/processor
Settings::default() impls). Also see the "Folder Meta" bullet point.
* **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical
asset ids" discussion in [Open Questions](#open-questions) and the
relevant bullet point in [Draft TODO](#draft-todo). Even without
canonical ids, folder renames could avoid reprocessing in some cases.
* **Multiple Asset Sources**: Expand AssetPath to support "asset source
names" and support multiple AssetReaders in the asset server (ex:
`webserver://some_path/image.png` backed by an Http webserver
AssetReader). The "default" asset reader would use normal
`some_path/image.png` paths. Ideally this works in combination with
multiple AssetWatchers for hot-reloading
* **Stable Type Names**: this pr removes the TypeUuid requirement from
assets in favor of `std::any::type_name`. This makes defining assets
easier (no need to generate a new uuid / use weird proc macro syntax).
It also makes reading meta files easier (because things have "friendly
names"). We also use type names for components in scene files. If they
are good enough for components, they are good enough for assets. And
consistency across Bevy pillars is desirable. However,
`std::any::type_name` is not guaranteed to be stable (although in
practice it is). We've developed a [stable type
path](https://github.com/bevyengine/bevy/pull/7184) to resolve this,
which should be adopted when it is ready.
* **Command Line Interface**: It should be possible to run the asset
processor in a separate process from the command line. This will also
require building a network-server-backed AssetReader to communicate
between the app and the processor. We've been planning to build a "bevy
cli" for awhile. This seems like a good excuse to build it.
* **Asset Packing**: This is largely an additive feature, so it made
sense to me to punt this until we've laid the foundations in this PR.
* **Per-Platform Processed Assets**: It should be possible to generate
assets for multiple platforms by supporting multiple "processor
profiles" per asset (ex: compress with format X on PC and Y on iOS). I
think there should probably be arbitrary "profiles" (which can be
separate from actual platforms), which are then assigned to a given
platform when generating the final asset distribution for that platform.
Ex: maybe devs want a "Mobile" profile that is shared between iOS and
Android. Or a "LowEnd" profile shared between web and mobile.
* **Versioning and Migrations**: Assets, Loaders, Savers, and Processors
need to have versions to determine if their schema is valid. If an asset
/ loader version is incompatible with the current version expected at
runtime, the processor should be able to migrate them. I think we should
try using Bevy Reflect for this, as it would allow us to load the old
version as a dynamic Reflect type without actually having the old Rust
type. It would also allow us to define "patches" to migrate between
versions (Bevy Reflect devs are currently working on patching). The
`.meta` file already has its own format version. Migrating that to new
versions should also be possible.
* **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write
type) currently used by AssetPath can still result in String clones that
aren't actually necessary (cloning an Owned Cow clones the contents).
Bevy's asset system requires cloning AssetPaths in a number of places,
which result in actual clones of the internal Strings. This is not
efficient. AssetPath internals should be reworked to exhibit truer
cow-like-behavior that reduces String clones to the absolute minimum.
* **Consider processor-less processing**: In theory the AssetServer
could run processors "inline" even if the background AssetProcessor is
disabled. If we decide this is actually desirable, we could add this.
But I don't think its a priority in the short or medium term.
* **Pre-emptive dependency loading**: We could encode dependencies in
processed meta files, which could then be used by the Asset Server to
kick of dependency loads as early as possible (prior to starting the
actual asset load). Is this desirable? How much time would this save in
practice?
* **Optimize Processor With UntypedAssetIds**: The processor exclusively
uses AssetPath to identify assets currently. It might be possible to
swap these out for UntypedAssetIds in some places, which are smaller /
cheaper to hash and compare.
* **One to Many Asset Processing**: An asset source file that produces
many assets currently must be processed into a single "processed" asset
source. If labeled assets can be written separately they can each have
their own configured savers _and_ they could be loaded more granularly.
Definitely worth exploring!
* **Automatically Track "Runtime-only" Asset Dependencies**: Right now,
tracking "created at runtime" asset dependencies requires adding them
via `asset_server.load_asset(StandardMaterial::default())`. I think with
some cleverness we could also do this for
`materials.add(StandardMaterial::default())`, making tracking work
"everywhere". There are challenges here relating to change detection /
ensuring the server is made aware of dependency changes. This could be
expensive in some cases.
* **"Dependency Changed" events**: Some assets have runtime artifacts
that need to be re-generated when one of their dependencies change (ex:
regenerate a material's bind group when a Texture needs to change). We
are generating the dependency graph so we can definitely produce these
events. Buuuuut generating these events will have a cost / they could be
high frequency for some assets, so we might want this to be opt-in for
specific cases.
* **Investigate Storing More Information In Handles**: Handles can now
store arbitrary information, which makes it cheaper and easier to
access. How much should we move into them? Canonical asset load states
(via atomics)? (`handle.is_loaded()` would be very cool). Should we
store the entire asset and remove the `Assets<T>` collection?
(`Arc<RwLock<Option<Image>>>`?)
* **Support processing and loading files without extensions**: This is a
pretty arbitrary restriction and could be supported with very minimal
changes.
* **Folder Meta**: It would be nice if we could define per folder
processor configuration defaults (likely in a `.meta` or `.folder_meta`
file). Things like "default to linear filtering for all Images in this
folder".
* **Replace async_broadcast with event-listener?** This might be
approximately drop-in for some uses and it feels more light weight
* **Support Running the AssetProcessor on the Web**: Most of the hard
work is done here, but there are some easy straggling TODOs (make the
transaction log an interface instead of a direct file writer so we can
write a web storage backend, implement an AssetReader/AssetWriter that
reads/writes to something like LocalStorage).
* **Consider identifying and preventing circular dependencies**: This is
especially important for "processor dependencies", as processing will
silently never finish in these cases.
* **Built-in/Inlined Asset Hot Reloading**: This PR regresses
"built-in/inlined" asset hot reloading (previously provided by the
DebugAssetServer). I'm intentionally punting this because I think it can
be cleanly implemented with "multiple asset sources" by registering a
"debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset
paths) in combination with an AssetWatcher for that asset source and
support for "manually loading pats with asset bytes instead of
AssetReaders". The old DebugAssetServer was quite nasty and I'd love to
avoid that hackery going forward.
* **Investigate ways to remove double-parsing meta files**: Parsing meta
files currently involves parsing once with "minimal" versions of the
meta file to extract the type name of the loader/processor config, then
parsing again to parse the "full" meta. This is suboptimal. We should be
able to define custom deserializers that (1) assume the loader/processor
type name comes first (2) dynamically looks up the loader/processor
registrations to deserialize settings in-line (similar to components in
the bevy scene format). Another alternative: deserialize as dynamic
Reflect objects and then convert.
* **More runtime loading configuration**: Support using the Handle type
as a hint to select an asset loader (instead of relying on AssetPath
extensions)
* **More high level Processor trait implementations**: For example, it
might be worth adding support for arbitrary chains of "asset transforms"
that modify an in-memory asset representation between loading and
saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by
a `flip_normals` transform, then save the mesh to an efficient
compressed format).
* **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO
item](#draft-todo) for context)
* **Explore High Level Load Interfaces**: See [this
discussion](#discuss-on_loaded-high-level-interface) for one prototype.
* **Asset Streaming**: It would be great if we could stream Assets (ex:
stream a long video file piece by piece)
* **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than
they need to be because they have a Uuid enum variant. If we implement
an "id exchanging" system that trades Uuids for "efficient runtime ids",
we can cut down on the size of AssetIds, making them more efficient.
This has some open design questions, such as how to spawn entities with
"default" handle values (as these wouldn't have access to the exchange
api in the current system).
* **Asset Path Fixup Tooling**: Assets that inline asset paths inside
them will break when an asset moves. The asset system provides the
functionality to detect when paths break. We should build a framework
that enables formats to define "path migrations". This is especially
important for scene files. For editor-generated files, we should also
consider using UUIDs (see other bullet point) to avoid the need to
migrate in these cases.
---------
Co-authored-by: BeastLe9enD <beastle9end@outlook.de>
Co-authored-by: Mike <mike.hsu@gmail.com>
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2023-09-07 02:07:27 +00:00
description = "Implements a custom AssetReader"
2022-06-25 20:23:24 +00:00
category = "Assets"
wasm = true
2021-02-22 04:50:05 +00:00
[ [ example ] ]
name = "hot_asset_reloading"
path = "examples/asset/hot_asset_reloading.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Multiple Asset Sources (#9885)
This adds support for **Multiple Asset Sources**. You can now register a
named `AssetSource`, which you can load assets from like you normally
would:
```rust
let shader: Handle<Shader> = asset_server.load("custom_source://path/to/shader.wgsl");
```
Notice that `AssetPath` now supports `some_source://` syntax. This can
now be accessed through the `asset_path.source()` accessor.
Asset source names _are not required_. If one is not specified, the
default asset source will be used:
```rust
let shader: Handle<Shader> = asset_server.load("path/to/shader.wgsl");
```
The behavior of the default asset source has not changed. Ex: the
`assets` folder is still the default.
As referenced in #9714
## Why?
**Multiple Asset Sources** enables a number of often-asked-for
scenarios:
* **Loading some assets from other locations on disk**: you could create
a `config` asset source that reads from the OS-default config folder
(not implemented in this PR)
* **Loading some assets from a remote server**: you could register a new
`remote` asset source that reads some assets from a remote http server
(not implemented in this PR)
* **Improved "Binary Embedded" Assets**: we can use this system for
"embedded-in-binary assets", which allows us to replace the old
`load_internal_asset!` approach, which couldn't support asset
processing, didn't support hot-reloading _well_, and didn't make
embedded assets accessible to the `AssetServer` (implemented in this pr)
## Adding New Asset Sources
An `AssetSource` is "just" a collection of `AssetReader`, `AssetWriter`,
and `AssetWatcher` entries. You can configure new asset sources like
this:
```rust
app.register_asset_source(
"other",
AssetSource::build()
.with_reader(|| Box::new(FileAssetReader::new("other")))
)
)
```
Note that `AssetSource` construction _must_ be repeatable, which is why
a closure is accepted.
`AssetSourceBuilder` supports `with_reader`, `with_writer`,
`with_watcher`, `with_processed_reader`, `with_processed_writer`, and
`with_processed_watcher`.
Note that the "asset source" system replaces the old "asset providers"
system.
## Processing Multiple Sources
The `AssetProcessor` now supports multiple asset sources! Processed
assets can refer to assets in other sources and everything "just works".
Each `AssetSource` defines an unprocessed and processed `AssetReader` /
`AssetWriter`.
Currently this is all or nothing for a given `AssetSource`. A given
source is either processed or it is not. Later we might want to add
support for "lazy asset processing", where an `AssetSource` (such as a
remote server) can be configured to only process assets that are
directly referenced by local assets (in order to save local disk space
and avoid doing extra work).
## A new `AssetSource`: `embedded`
One of the big features motivating **Multiple Asset Sources** was
improving our "embedded-in-binary" asset loading. To prove out the
**Multiple Asset Sources** implementation, I chose to build a new
`embedded` `AssetSource`, which replaces the old `load_interal_asset!`
system.
The old `load_internal_asset!` approach had a number of issues:
* The `AssetServer` was not aware of (or capable of loading) internal
assets.
* Because internal assets weren't visible to the `AssetServer`, they
could not be processed (or used by assets that are processed). This
would prevent things "preprocessing shaders that depend on built in Bevy
shaders", which is something we desperately need to start doing.
* Each "internal asset" needed a UUID to be defined in-code to reference
it. This was very manual and toilsome.
The new `embedded` `AssetSource` enables the following pattern:
```rust
// Called in `crates/bevy_pbr/src/render/mesh.rs`
embedded_asset!(app, "mesh.wgsl");
// later in the app
let shader: Handle<Shader> = asset_server.load("embedded://bevy_pbr/render/mesh.wgsl");
```
Notice that this always treats the crate name as the "root path", and it
trims out the `src` path for brevity. This is generally predictable, but
if you need to debug you can use the new `embedded_path!` macro to get a
`PathBuf` that matches the one used by `embedded_asset`.
You can also reference embedded assets in arbitrary assets, such as WGSL
shaders:
```rust
#import "embedded://bevy_pbr/render/mesh.wgsl"
```
This also makes `embedded` assets go through the "normal" asset
lifecycle. They are only loaded when they are actually used!
We are also discussing implicitly converting asset paths to/from shader
modules, so in the future (not in this PR) you might be able to load it
like this:
```rust
#import bevy_pbr::render::mesh::Vertex
```
Compare that to the old system!
```rust
pub const MESH_SHADER_HANDLE: Handle<Shader> = Handle::weak_from_u128(3252377289100772450);
load_internal_asset!(app, MESH_SHADER_HANDLE, "mesh.wgsl", Shader::from_wgsl);
// The mesh asset is the _only_ accessible via MESH_SHADER_HANDLE and _cannot_ be loaded via the AssetServer.
```
## Hot Reloading `embedded`
You can enable `embedded` hot reloading by enabling the
`embedded_watcher` cargo feature:
```
cargo run --features=embedded_watcher
```
## Improved Hot Reloading Workflow
First: the `filesystem_watcher` cargo feature has been renamed to
`file_watcher` for brevity (and to match the `FileAssetReader` naming
convention).
More importantly, hot asset reloading is no longer configured in-code by
default. If you enable any asset watcher feature (such as `file_watcher`
or `rust_source_watcher`), asset watching will be automatically enabled.
This removes the need to _also_ enable hot reloading in your app code.
That means you can replace this:
```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::default().watch_for_changes()))
```
with this:
```rust
app.add_plugins(DefaultPlugins)
```
If you want to hot reload assets in your app during development, just
run your app like this:
```
cargo run --features=file_watcher
```
This means you can use the same code for development and deployment! To
deploy an app, just don't include the watcher feature
```
cargo build --release
```
My intent is to move to this approach for pretty much all dev workflows.
In a future PR I would like to replace `AssetMode::ProcessedDev` with a
`runtime-processor` cargo feature. We could then group all common "dev"
cargo features under a single `dev` feature:
```sh
# this would enable file_watcher, embedded_watcher, runtime-processor, and more
cargo run --features=dev
```
## AssetMode
`AssetPlugin::Unprocessed`, `AssetPlugin::Processed`, and
`AssetPlugin::ProcessedDev` have been replaced with an `AssetMode` field
on `AssetPlugin`.
```rust
// before
app.add_plugins(DefaultPlugins.set(AssetPlugin::Processed { /* fields here */ })
// after
app.add_plugins(DefaultPlugins.set(AssetPlugin { mode: AssetMode::Processed, ..default() })
```
This aligns `AssetPlugin` with our other struct-like plugins. The old
"source" and "destination" `AssetProvider` fields in the enum variants
have been replaced by the "asset source" system. You no longer need to
configure the AssetPlugin to "point" to custom asset providers.
## AssetServerMode
To improve the implementation of **Multiple Asset Sources**,
`AssetServer` was made aware of whether or not it is using "processed"
or "unprocessed" assets. You can check that like this:
```rust
if asset_server.mode() == AssetServerMode::Processed {
/* do something */
}
```
Note that this refactor should also prepare the way for building "one to
many processed output files", as it makes the server aware of whether it
is loading from processed or unprocessed sources. Meaning we can store
and read processed and unprocessed assets differently!
## AssetPath can now refer to folders
The "file only" restriction has been removed from `AssetPath`. The
`AssetServer::load_folder` API now accepts an `AssetPath` instead of a
`Path`, meaning you can load folders from other asset sources!
## Improved AssetPath Parsing
AssetPath parsing was reworked to support sources, improve error
messages, and to enable parsing with a single pass over the string.
`AssetPath::new` was replaced by `AssetPath::parse` and
`AssetPath::try_parse`.
## AssetWatcher broken out from AssetReader
`AssetReader` is no longer responsible for constructing `AssetWatcher`.
This has been moved to `AssetSourceBuilder`.
## Duplicate Event Debouncing
Asset V2 already debounced duplicate filesystem events, but this was
_input_ events. Multiple input event types can produce the same _output_
`AssetSourceEvent`. Now that we have `embedded_watcher`, which does
expensive file io on events, it made sense to debounce output events
too, so I added that! This will also benefit the AssetProcessor by
preventing integrity checks for duplicate events (and helps keep the
noise down in trace logs).
## Next Steps
* **Port Built-in Shaders**: Currently the primary (and essentially
only) user of `load_interal_asset` in Bevy's source code is "built-in
shaders". I chose not to do that in this PR for a few reasons:
1. We need to add the ability to pass shader defs in to shaders via meta
files. Some shaders (such as MESH_VIEW_TYPES) need to pass shader def
values in that are defined in code.
2. We need to revisit the current shader module naming system. I think
we _probably_ want to imply modules from source structure (at least by
default). Ideally in a way that can losslessly convert asset paths
to/from shader modules (to enable the asset system to resolve modules
using the asset server).
3. I want to keep this change set minimal / get this merged first.
* **Deprecate `load_internal_asset`**: we can't do that until we do (1)
and (2)
* **Relative Asset Paths**: This PR significantly increases the need for
relative asset paths (which was already pretty high). Currently when
loading dependencies, it is assumed to be an absolute path, which means
if in an `AssetLoader` you call `context.load("some/path/image.png")` it
will assume that is the "default" asset source, _even if the current
asset is in a different asset source_. This will cause breakage for
AssetLoaders that are not designed to add the current source to whatever
paths are being used. AssetLoaders should generally not need to be aware
of the name of their current asset source, or need to think about the
"current asset source" generally. We should build apis that support
relative asset paths and then encourage using relative paths as much as
possible (both via api design and docs). Relative paths are also
important because they will allow developers to move folders around
(even across providers) without reprocessing, provided there is no path
breakage.
2023-10-13 23:17:32 +00:00
required-features = [ "file_watcher" ]
2021-02-22 04:50:05 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . hot_asset_reloading ]
name = "Hot Reloading of Assets"
description = "Demonstrates automatic reloading of assets when modified on disk"
category = "Assets"
2023-11-16 01:50:25 +00:00
wasm = false
2022-06-25 20:23:24 +00:00
Bevy Asset V2 (#8624)
# Bevy Asset V2 Proposal
## Why Does Bevy Need A New Asset System?
Asset pipelines are a central part of the gamedev process. Bevy's
current asset system is missing a number of features that make it
non-viable for many classes of gamedev. After plenty of discussions and
[a long community feedback
period](https://github.com/bevyengine/bevy/discussions/3972), we've
identified a number missing features:
* **Asset Preprocessing**: it should be possible to "preprocess" /
"compile" / "crunch" assets at "development time" rather than when the
game starts up. This enables offloading expensive work from deployed
apps, faster asset loading, less runtime memory usage, etc.
* **Per-Asset Loader Settings**: Individual assets cannot define their
own loaders that override the defaults. Additionally, they cannot
provide per-asset settings to their loaders. This is a huge limitation,
as many asset types don't provide all information necessary for Bevy
_inside_ the asset. For example, a raw PNG image says nothing about how
it should be sampled (ex: linear vs nearest).
* **Asset `.meta` files**: assets should have configuration files stored
adjacent to the asset in question, which allows the user to configure
asset-type-specific settings. These settings should be accessible during
the pre-processing phase. Modifying a `.meta` file should trigger a
re-processing / re-load of the asset. It should be possible to configure
asset loaders from the meta file.
* **Processed Asset Hot Reloading**: Changes to processed assets (or
their dependencies) should result in re-processing them and re-loading
the results in live Bevy Apps.
* **Asset Dependency Tracking**: The current bevy_asset has no good way
to wait for asset dependencies to load. It punts this as an exercise for
consumers of the loader apis, which is unreasonable and error prone.
There should be easy, ergonomic ways to wait for assets to load and
block some logic on an asset's entire dependency tree loading.
* **Runtime Asset Loading**: it should be (optionally) possible to load
arbitrary assets dynamically at runtime. This necessitates being able to
deploy and run the asset server alongside Bevy Apps on _all platforms_.
For example, we should be able to invoke the shader compiler at runtime,
stream scenes from sources like the internet, etc. To keep deployed
binaries (and startup times) small, the runtime asset server
configuration should be configurable with different settings compared to
the "pre processor asset server".
* **Multiple Backends**: It should be possible to load assets from
arbitrary sources (filesystems, the internet, remote asset serves, etc).
* **Asset Packing**: It should be possible to deploy assets in
compressed "packs", which makes it easier and more efficient to
distribute assets with Bevy Apps.
* **Asset Handoff**: It should be possible to hold a "live" asset
handle, which correlates to runtime data, without actually holding the
asset in memory. Ex: it must be possible to hold a reference to a GPU
mesh generated from a "mesh asset" without keeping the mesh data in CPU
memory
* **Per-Platform Processed Assets**: Different platforms and app
distributions have different capabilities and requirements. Some
platforms need lower asset resolutions or different asset formats to
operate within the hardware constraints of the platform. It should be
possible to define per-platform asset processing profiles. And it should
be possible to deploy only the assets required for a given platform.
These features have architectural implications that are significant
enough to require a full rewrite. The current Bevy Asset implementation
got us this far, but it can take us no farther. This PR defines a brand
new asset system that implements most of these features, while laying
the foundations for the remaining features to be built.
## Bevy Asset V2
Here is a quick overview of the features introduced in this PR.
* **Asset Preprocessing**: Preprocess assets at development time into
more efficient (and configurable) representations
* **Dependency Aware**: Dependencies required to process an asset are
tracked. If an asset's processed dependency changes, it will be
reprocessed
* **Hot Reprocessing/Reloading**: detect changes to asset source files,
reprocess them if they have changed, and then hot-reload them in Bevy
Apps.
* **Only Process Changes**: Assets are only re-processed when their
source file (or meta file) has changed. This uses hashing and timestamps
to avoid processing assets that haven't changed.
* **Transactional and Reliable**: Uses write-ahead logging (a technique
commonly used by databases) to recover from crashes / forced-exits.
Whenever possible it avoids full-reprocessing / only uncompleted
transactions will be reprocessed. When the processor is running in
parallel with a Bevy App, processor asset writes block Bevy App asset
reads. Reading metadata + asset bytes is guaranteed to be transactional
/ correctly paired.
* **Portable / Run anywhere / Database-free**: The processor does not
rely on an in-memory database (although it uses some database techniques
for reliability). This is important because pretty much all in-memory
databases have unsupported platforms or build complications.
* **Configure Processor Defaults Per File Type**: You can say "use this
processor for all files of this type".
* **Custom Processors**: The `Processor` trait is flexible and
unopinionated. It can be implemented by downstream plugins.
* **LoadAndSave Processors**: Most asset processing scenarios can be
expressed as "run AssetLoader A, save the results using AssetSaver X,
and then load the result using AssetLoader B". For example, load this
png image using `PngImageLoader`, which produces an `Image` asset and
then save it using `CompressedImageSaver` (which also produces an
`Image` asset, but in a compressed format), which takes an `Image` asset
as input. This means if you have an `AssetLoader` for an asset, you are
already half way there! It also means that you can share AssetSavers
across multiple loaders. Because `CompressedImageSaver` accepts Bevy's
generic Image asset as input, it means you can also use it with some
future `JpegImageLoader`.
* **Loader and Saver Settings**: Asset Loaders and Savers can now define
their own settings types, which are passed in as input when an asset is
loaded / saved. Each asset can define its own settings.
* **Asset `.meta` files**: configure asset loaders, their settings,
enable/disable processing, and configure processor settings
* **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex:
if an asset contains a `Handle<Image>`) are tracked by the asset server.
An event is emitted when an asset and all of its dependencies have been
loaded
* **Unprocessed Asset Loading**: Assets do not require preprocessing.
They can be loaded directly. A processed asset is just a "normal" asset
with some extra metadata. Asset Loaders don't need to know or care about
whether or not an asset was processed.
* **Async Asset IO**: Asset readers/writers use async non-blocking
interfaces. Note that because Rust doesn't yet support async traits,
there is a bit of manual Boxing / Future boilerplate. This will
hopefully be removed in the near future when Rust gets async traits.
* **Pluggable Asset Readers and Writers**: Arbitrary asset source
readers/writers are supported, both by the processor and the asset
server.
* **Better Asset Handles**
* **Single Arc Tree**: Asset Handles now use a single arc tree that
represents the lifetime of the asset. This makes their implementation
simpler, more efficient, and allows us to cheaply attach metadata to
handles. Ex: the AssetPath of a handle is now directly accessible on the
handle itself!
* **Const Typed Handles**: typed handles can be constructed in a const
context. No more weird "const untyped converted to typed at runtime"
patterns!
* **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed
`Handle<T>` is now much smaller in memory and `AssetId<T>` is even
smaller.
* **Weak Handle Usage Reduction**: In general Handles are now considered
to be "strong". Bevy features that previously used "weak `Handle<T>`"
have been ported to `AssetId<T>`, which makes it statically clear that
the features do not hold strong handles (while retaining strong type
information). Currently Handle::Weak still exists, but it is very
possible that we can remove that entirely.
* **Efficient / Dense Asset Ids**: Assets now have efficient dense
runtime asset ids, which means we can avoid expensive hash lookups.
Assets are stored in Vecs instead of HashMaps. There are now typed and
untyped ids, which means we no longer need to store dynamic type
information in the ID for typed handles. "AssetPathId" (which was a
nightmare from a performance and correctness standpoint) has been
entirely removed in favor of dense ids (which are retrieved for a path
on load)
* **Direct Asset Loading, with Dependency Tracking**: Assets that are
defined at runtime can still have their dependencies tracked by the
Asset Server (ex: if you create a material at runtime, you can still
wait for its textures to load). This is accomplished via the (currently
optional) "asset dependency visitor" trait. This system can also be used
to define a set of assets to load, then wait for those assets to load.
* **Async folder loading**: Folder loading also uses this system and
immediately returns a handle to the LoadedFolder asset, which means
folder loading no longer blocks on directory traversals.
* **Improved Loader Interface**: Loaders now have a specific "top level
asset type", which makes returning the top-level asset simpler and
statically typed.
* **Basic Image Settings and Processing**: Image assets can now be
processed into the gpu-friendly Basic Universal format. The ImageLoader
now has a setting to define what format the image should be loaded as.
Note that this is just a minimal MVP ... plenty of additional work to do
here. To demo this, enable the `basis-universal` feature and turn on
asset processing.
* **Simpler Audio Play / AudioSink API**: Asset handle providers are
cloneable, which means the Audio resource can mint its own handles. This
means you can now do `let sink_handle = audio.play(music)` instead of
`let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that
this might still be replaced by
https://github.com/bevyengine/bevy/pull/8424.
**Removed Handle Casting From Engine Features**: Ex: FontAtlases no
longer use casting between handle types
## Using The New Asset System
### Normal Unprocessed Asset Loading
By default the `AssetPlugin` does not use processing. It behaves pretty
much the same way as the old system.
If you are defining a custom asset, first derive `Asset`:
```rust
#[derive(Asset)]
struct Thing {
value: String,
}
```
Initialize the asset:
```rust
app.init_asset:<Thing>()
```
Implement a new `AssetLoader` for it:
```rust
#[derive(Default)]
struct ThingLoader;
#[derive(Serialize, Deserialize, Default)]
pub struct ThingSettings {
some_setting: bool,
}
impl AssetLoader for ThingLoader {
type Asset = Thing;
type Settings = ThingSettings;
fn load<'a>(
&'a self,
reader: &'a mut Reader,
settings: &'a ThingSettings,
load_context: &'a mut LoadContext,
) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> {
Box::pin(async move {
let mut bytes = Vec::new();
reader.read_to_end(&mut bytes).await?;
// convert bytes to value somehow
Ok(Thing {
value
})
})
}
fn extensions(&self) -> &[&str] {
&["thing"]
}
}
```
Note that this interface will get much cleaner once Rust gets support
for async traits. `Reader` is an async futures_io::AsyncRead. You can
stream bytes as they come in or read them all into a `Vec<u8>`,
depending on the context. You can use `let handle =
load_context.load(path)` to kick off a dependency load, retrieve a
handle, and register the dependency for the asset.
Then just register the loader in your Bevy app:
```rust
app.init_asset_loader::<ThingLoader>()
```
Now just add your `Thing` asset files into the `assets` folder and load
them like this:
```rust
fn system(asset_server: Res<AssetServer>) {
let handle = Handle<Thing> = asset_server.load("cool.thing");
}
```
You can check load states directly via the asset server:
```rust
if asset_server.load_state(&handle) == LoadState::Loaded { }
```
You can also listen for events:
```rust
fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) {
for event in events.iter() {
if event.is_loaded_with_dependencies(&handle) {
}
}
}
```
Note the new `AssetEvent::LoadedWithDependencies`, which only fires when
the asset is loaded _and_ all dependencies (and their dependencies) have
loaded.
Unlike the old asset system, for a given asset path all `Handle<T>`
values point to the same underlying Arc. This means Handles can cheaply
hold more asset information, such as the AssetPath:
```rust
// prints the AssetPath of the handle
info!("{:?}", handle.path())
```
### Processed Assets
Asset processing can be enabled via the `AssetPlugin`. When developing
Bevy Apps with processed assets, do this:
```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))
```
This runs the `AssetProcessor` in the background with hot-reloading. It
reads assets from the `assets` folder, processes them, and writes them
to the `.imported_assets` folder. Asset loads in the Bevy App will wait
for a processed version of the asset to become available. If an asset in
the `assets` folder changes, it will be reprocessed and hot-reloaded in
the Bevy App.
When deploying processed Bevy apps, do this:
```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed()))
```
This does not run the `AssetProcessor` in the background. It behaves
like `AssetPlugin::unprocessed()`, but reads assets from
`.imported_assets`.
When the `AssetProcessor` is running, it will populate sibling `.meta`
files for assets in the `assets` folder. Meta files for assets that do
not have a processor configured look like this:
```rust
(
meta_format_version: "1.0",
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: FromExtension,
),
),
)
```
This is metadata for an image asset. For example, if you have
`assets/my_sprite.png`, this could be the metadata stored at
`assets/my_sprite.png.meta`. Meta files are totally optional. If no
metadata exists, the default settings will be used.
In short, this file says "load this asset with the ImageLoader and use
the file extension to determine the image type". This type of meta file
is supported in all AssetPlugin modes. If in `Unprocessed` mode, the
asset (with the meta settings) will be loaded directly. If in
`ProcessedDev` mode, the asset file will be copied directly to the
`.imported_assets` folder. The meta will also be copied directly to the
`.imported_assets` folder, but with one addition:
```rust
(
meta_format_version: "1.0",
processed_info: Some((
hash: 12415480888597742505,
full_hash: 14344495437905856884,
process_dependencies: [],
)),
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: FromExtension,
),
),
)
```
`processed_info` contains `hash` (a direct hash of the asset and meta
bytes), `full_hash` (a hash of `hash` and the hashes of all
`process_dependencies`), and `process_dependencies` (the `path` and
`full_hash` of every process_dependency). A "process dependency" is an
asset dependency that is _directly_ used when processing the asset.
Images do not have process dependencies, so this is empty.
When the processor is enabled, you can use the `Process` metadata
config:
```rust
(
meta_format_version: "1.0",
asset: Process(
processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>",
settings: (
loader_settings: (
format: FromExtension,
),
saver_settings: (
generate_mipmaps: true,
),
),
),
)
```
This configures the asset to use the `LoadAndSave` processor, which runs
an AssetLoader and feeds the result into an AssetSaver (which saves the
given Asset and defines a loader to load it with). (for terseness
LoadAndSave will likely get a shorter/friendlier type name when [Stable
Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common
processor type, but arbitrary processors are supported.
`CompressedImageSaver` saves an `Image` in the Basis Universal format
and configures the ImageLoader to load it as basis universal. The
`AssetProcessor` will read this meta, run it through the LoadAndSave
processor, and write the basis-universal version of the image to
`.imported_assets`. The final metadata will look like this:
```rust
(
meta_format_version: "1.0",
processed_info: Some((
hash: 905599590923828066,
full_hash: 9948823010183819117,
process_dependencies: [],
)),
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: Format(Basis),
),
),
)
```
To try basis-universal processing out in Bevy examples, (for example
`sprite.rs`), change `add_plugins(DefaultPlugins)` to
`add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run
with the `basis-universal` feature enabled: `cargo run
--features=basis-universal --example sprite`.
To create a custom processor, there are two main paths:
1. Use the `LoadAndSave` processor with an existing `AssetLoader`.
Implement the `AssetSaver` trait, register the processor using
`asset_processor.register_processor::<LoadAndSave<ImageLoader,
CompressedImageSaver>>(image_saver.into())`.
2. Implement the `Process` trait directly and register it using:
`asset_processor.register_processor(thing_processor)`.
You can configure default processors for file extensions like this:
```rust
asset_processor.set_default_processor::<ThingProcessor>("thing")
```
There is one more metadata type to be aware of:
```rust
(
meta_format_version: "1.0",
asset: Ignore,
)
```
This will ignore the asset during processing / prevent it from being
written to `.imported_assets`.
The AssetProcessor stores a transaction log at `.imported_assets/log`
and uses it to gracefully recover from unexpected stops. This means you
can force-quit the processor (and Bevy Apps running the processor in
parallel) at arbitrary times!
`.imported_assets` is "local state". It should _not_ be checked into
source control. It should also be considered "read only". In practice,
you _can_ modify processed assets and processed metadata if you really
need to test something. But those modifications will not be represented
in the hashes of the assets, so the processed state will be "out of
sync" with the source assets. The processor _will not_ fix this for you.
Either revert the change after you have tested it, or delete the
processed files so they can be re-populated.
## Open Questions
There are a number of open questions to be discussed. We should decide
if they need to be addressed in this PR and if so, how we will address
them:
### Implied Dependencies vs Dependency Enumeration
There are currently two ways to populate asset dependencies:
* **Implied via AssetLoaders**: if an AssetLoader loads an asset (and
retrieves a handle), a dependency is added to the list.
* **Explicit via the optional Asset::visit_dependencies**: if
`server.load_asset(my_asset)` is called, it will call
`my_asset.visit_dependencies`, which will grab dependencies that have
been manually defined for the asset via the Asset trait impl (which can
be derived).
This means that defining explicit dependencies is optional for "loaded
assets". And the list of dependencies is always accurate because loaders
can only produce Handles if they register dependencies. If an asset was
loaded with an AssetLoader, it only uses the implied dependencies. If an
asset was created at runtime and added with
`asset_server.load_asset(MyAsset)`, it will use
`Asset::visit_dependencies`.
However this can create a behavior mismatch between loaded assets and
equivalent "created at runtime" assets if `Assets::visit_dependencies`
doesn't exactly match the dependencies produced by the AssetLoader. This
behavior mismatch can be resolved by completely removing "implied loader
dependencies" and requiring `Asset::visit_dependencies` to supply
dependency data. But this creates two problems:
* It makes defining loaded assets harder and more error prone: Devs must
remember to manually annotate asset dependencies with `#[dependency]`
when deriving `Asset`. For more complicated assets (such as scenes), the
derive likely wouldn't be sufficient and a manual `visit_dependencies`
impl would be required.
* Removes the ability to immediately kick off dependency loads: When
AssetLoaders retrieve a Handle, they also immediately kick off an asset
load for the handle, which means it can start loading in parallel
_before_ the asset finishes loading. For large assets, this could be
significant. (although this could be mitigated for processed assets if
we store dependencies in the processed meta file and load them ahead of
time)
### Eager ProcessorDev Asset Loading
I made a controversial call in the interest of fast startup times ("time
to first pixel") for the "processor dev mode configuration". When
initializing the AssetProcessor, current processed versions of unchanged
assets are yielded immediately, even if their dependencies haven't been
checked yet for reprocessing. This means that
non-current-state-of-filesystem-but-previously-valid assets might be
returned to the App first, then hot-reloaded if/when their dependencies
change and the asset is reprocessed.
Is this behavior desirable? There is largely one alternative: do not
yield an asset from the processor to the app until all of its
dependencies have been checked for changes. In some common cases (load
dependency has not changed since last run) this will increase startup
time. The main question is "by how much" and is that slower startup time
worth it in the interest of only yielding assets that are true to the
current state of the filesystem. Should this be configurable? I'm
starting to think we should only yield an asset after its (historical)
dependencies have been checked for changes + processed as necessary, but
I'm curious what you all think.
### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs?
In this implementation AssetPaths are the only canonical asset
identifier (just like the previous Bevy Asset system and Godot). Moving
assets will result in re-scans (and currently reprocessing, although
reprocessing can easily be avoided with some changes). Asset
renames/moves will break code and assets that rely on specific paths,
unless those paths are fixed up.
Do we want / need "stable asset uuids"? Introducing them is very
possible:
1. Generate a UUID and include it in .meta files
2. Support UUID in AssetPath
3. Generate "asset indices" which are loaded on startup and map UUIDs to
paths.
4 (maybe). Consider only supporting UUIDs for processed assets so we can
generate quick-to-load indices instead of scanning meta files.
The main "pro" is that assets referencing UUIDs don't need to be
migrated when a path changes. The main "con" is that UUIDs cannot be
"lazily resolved" like paths. They need a full view of all assets to
answer the question "does this UUID exist". Which means UUIDs require
the AssetProcessor to fully finish startup scans before saying an asset
doesnt exist. And they essentially require asset pre-processing to use
in apps, because scanning all asset metadata files at runtime to resolve
a UUID is not viable for medium-to-large apps. It really requires a
pre-generated UUID index, which must be loaded before querying for
assets.
I personally think this should be investigated in a separate PR. Paths
aren't going anywhere ... _everyone_ uses filesystems (and
filesystem-like apis) to manage their asset source files. I consider
them permanent canonical asset information. Additionally, they behave
well for both processed and unprocessed asset modes. Given that Bevy is
supporting both, this feels like the right canonical ID to start with.
UUIDS (and maybe even other indexed-identifier types) can be added later
as necessary.
### Folder / File Naming Conventions
All asset processing config currently lives in the `.imported_assets`
folder. The processor transaction log is in `.imported_assets/log`.
Processed assets are added to `.imported_assets/Default`, which will
make migrating to processed asset profiles (ex: a
`.imported_assets/Mobile` profile) a non-breaking change. It also allows
us to create top-level files like `.imported_assets/log` without it
being interpreted as an asset. Meta files currently have a `.meta`
suffix. Do we like these names and conventions?
### Should the `AssetPlugin::processed_dev` configuration enable
`watch_for_changes` automatically?
Currently it does (which I think makes sense), but it does make it the
only configuration that enables watch_for_changes by default.
### Discuss on_loaded High Level Interface:
This PR includes a very rough "proof of concept" `on_loaded` system
adapter that uses the `LoadedWithDependencies` event in combination with
`asset_server.load_asset` dependency tracking to support this pattern
```rust
fn main() {
App::new()
.init_asset::<MyAssets>()
.add_systems(Update, on_loaded(create_array_texture))
.run();
}
#[derive(Asset, Clone)]
struct MyAssets {
#[dependency]
picture_of_my_cat: Handle<Image>,
#[dependency]
picture_of_my_other_cat: Handle<Image>,
}
impl FromWorld for ArrayTexture {
fn from_world(world: &mut World) -> Self {
picture_of_my_cat: server.load("meow.png"),
picture_of_my_other_cat: server.load("meeeeeeeow.png"),
}
}
fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) {
commands.spawn(SpriteBundle {
texture: my_assets.picture_of_my_cat.clone(),
..default()
});
commands.spawn(SpriteBundle {
texture: my_assets.picture_of_my_other_cat.clone(),
..default()
});
}
```
The implementation is _very_ rough. And it is currently unsafe because
`bevy_ecs` doesn't expose some internals to do this safely from inside
`bevy_asset`. There are plenty of unanswered questions like:
* "do we add a Loadable" derive? (effectively automate the FromWorld
implementation above)
* Should `MyAssets` even be an Asset? (largely implemented this way
because it elegantly builds on `server.load_asset(MyAsset { .. })`
dependency tracking).
We should think hard about what our ideal API looks like (and if this is
a pattern we want to support). Not necessarily something we need to
solve in this PR. The current `on_loaded` impl should probably be
removed from this PR before merging.
## Clarifying Questions
### What about Assets as Entities?
This Bevy Asset V2 proposal implementation initially stored Assets as
ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used
`Entity` as the asset id and Asset values were just ECS components.
There are plenty of compelling reasons to do this:
1. Easier to inline assets in Bevy Scenes (as they are "just" normal
entities + components)
2. More flexible queries: use the power of the ECS to filter assets (ex:
`Query<Mesh, With<Tree>>`).
3. Extensible. Users can add arbitrary component data to assets.
4. Things like "component visualization tools" work out of the box to
visualize asset data.
However Assets as Entities has a ton of caveats right now:
* We need to be able to allocate entity ids without a direct World
reference (aka rework id allocator in Entities ... i worked around this
in my prototypes by just pre allocating big chunks of entities)
* We want asset change events in addition to ECS change tracking ... how
do we populate them when mutations can come from anywhere? Do we use
Changed queries? This would require iterating over the change data for
all assets every frame. Is this acceptable or should we implement a new
"event based" component change detection option?
* Reconciling manually created assets with asset-system managed assets
has some nuance (ex: are they "loaded" / do they also have that
component metadata?)
* "how do we handle "static" / default entity handles" (ties in to the
Entity Indices discussion:
https://github.com/bevyengine/bevy/discussions/8319). This is necessary
for things like "built in" assets and default handles in things like
SpriteBundle.
* Storing asset information as a component makes it easy to "invalidate"
asset state by removing the component (or forcing modifications).
Ideally we have ways to lock this down (some combination of Rust type
privacy and ECS validation)
In practice, how we store and identify assets is a reasonably
superficial change (porting off of Assets as Entities and implementing
dedicated storage + ids took less than a day). So once we sort out the
remaining challenges the flip should be straightforward. Additionally, I
do still have "Assets as Entities" in my commit history, so we can reuse
that work. I personally think "assets as entities" is a good endgame,
but it also doesn't provide _significant_ value at the moment and it
certainly isn't ready yet with the current state of things.
### Why not Distill?
[Distill](https://github.com/amethyst/distill) is a high quality fully
featured asset system built in Rust. It is very natural to ask "why not
just use Distill?".
It is also worth calling out that for awhile, [we planned on adopting
Distill / I signed off on
it](https://github.com/bevyengine/bevy/issues/708).
However I think Bevy has a number of constraints that make Distill
adoption suboptimal:
* **Architectural Simplicity:**
* Distill's processor requires an in-memory database (lmdb) and RPC
networked API (using Cap'n Proto). Each of these introduces API
complexity that increases maintenance burden and "code grokability".
Ignoring tests, documentation, and examples, Distill has 24,237 lines of
Rust code (including generated code for RPC + database interactions). If
you ignore generated code, it has 11,499 lines.
* Bevy builds the AssetProcessor and AssetServer using pluggable
AssetReader/AssetWriter Rust traits with simple io interfaces. They do
not necessitate databases or RPC interfaces (although Readers/Writers
could use them if that is desired). Bevy Asset V2 (at the time of
writing this PR) is 5,384 lines of Rust code (ignoring tests,
documentation, and examples). Grain of salt: Distill does have more
features currently (ex: Asset Packing, GUIDS, remote-out-of-process
asset processor). I do plan to implement these features in Bevy Asset V2
and I personally highly doubt they will meaningfully close the 6115
lines-of-code gap.
* This complexity gap (which while illustrated by lines of code, is much
bigger than just that) is noteworthy to me. Bevy should be hackable and
there are pillars of Distill that are very hard to understand and
extend. This is a matter of opinion (and Bevy Asset V2 also has
complicated areas), but I think Bevy Asset V2 is much more approachable
for the average developer.
* Necessary disclaimer: counting lines of code is an extremely rough
complexity metric. Read the code and form your own opinions.
* **Optional Asset Processing:** Not all Bevy Apps (or Bevy App
developers) need / want asset preprocessing. Processing increases the
complexity of the development environment by introducing things like
meta files, imported asset storage, running processors in the
background, waiting for processing to finish, etc. Distill _requires_
preprocessing to work. With Bevy Asset V2 processing is fully opt-in.
The AssetServer isn't directly aware of asset processors at all.
AssetLoaders only care about converting bytes to runtime Assets ... they
don't know or care if the bytes were pre-processed or not. Processing is
"elegantly" (forgive my self-congratulatory phrasing) layered on top and
builds on the existing Asset system primitives.
* **Direct Filesystem Access to Processed Asset State:** Distill stores
processed assets in a database. This makes debugging / inspecting the
processed outputs harder (either requires special tooling to query the
database or they need to be "deployed" to be inspected). Bevy Asset V2,
on the other hand, stores processed assets in the filesystem (by default
... this is configurable). This makes interacting with the processed
state more natural. Note that both Godot and Unity's new asset system
store processed assets in the filesystem.
* **Portability**: Because Distill's processor uses lmdb and RPC
networking, it cannot be run on certain platforms (ex: lmdb is a
non-rust dependency that cannot run on the web, some platforms don't
support running network servers). Bevy should be able to process assets
everywhere (ex: run the Bevy Editor on the web, compile + process
shaders on mobile, etc). Distill does partially mitigate this problem by
supporting "streaming" assets via the RPC protocol, but this is not a
full solve from my perspective. And Bevy Asset V2 can (in theory) also
stream assets (without requiring RPC, although this isn't implemented
yet)
Note that I _do_ still think Distill would be a solid asset system for
Bevy. But I think the approach in this PR is a better solve for Bevy's
specific "asset system requirements".
### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the
point?
"True async file io" has limited / spotty platform support. async-fs
(and the rust async ecosystem generally ... ex Tokio) currently use
async wrappers over std::fs that offload blocking requests to separate
threads. This may feel unsatisfying, but it _does_ still provide value
because it prevents our task pools from blocking on file system
operations (which would prevent progress when there are many tasks to
do, but all threads in a pool are currently blocking on file system
ops).
Additionally, using async APIs for our AssetReaders and AssetWriters
also provides value because we can later add support for "true async
file io" for platforms that support it. _And_ we can implement other
"true async io" asset backends (such as networked asset io).
## Draft TODO
- [x] Fill in missing filesystem event APIs: file removed event (which
is expressed as dangling RenameFrom events in some cases), file/folder
renamed event
- [x] Assets without loaders are not moved to the processed folder. This
breaks things like referenced `.bin` files for GLTFs. This should be
configurable per-non-asset-type.
- [x] Initial implementation of Reflect and FromReflect for Handle. The
"deserialization" parity bar is low here as this only worked with static
UUIDs in the old impl ... this is a non-trivial problem. Either we add a
Handle::AssetPath variant that gets "upgraded" to a strong handle on
scene load or we use a separate AssetRef type for Bevy scenes (which is
converted to a runtime Handle on load). This deserves its own discussion
in a different pr.
- [x] Populate read_asset_bytes hash when run by the processor (a bit of
a special case .. when run by the processor the processed meta will
contain the hash so we don't need to compute it on the spot, but we
don't want/need to read the meta when run by the main AssetServer)
- [x] Delay hot reloading: currently filesystem events are handled
immediately, which creates timing issues in some cases. For example hot
reloading images can sometimes break because the image isn't finished
writing. We should add a delay, likely similar to the [implementation in
this PR](https://github.com/bevyengine/bevy/pull/8503).
- [x] Port old platform-specific AssetIo implementations to the new
AssetReader interface (currently missing Android and web)
- [x] Resolve on_loaded unsafety (either by removing the API entirely or
removing the unsafe)
- [x] Runtime loader setting overrides
- [x] Remove remaining unwraps that should be error-handled. There are
number of TODOs here
- [x] Pretty AssetPath Display impl
- [x] Document more APIs
- [x] Resolve spurious "reloading because it has changed" events (to
repro run load_gltf with `processed_dev()`)
- [x] load_dependency hot reloading currently only works for processed
assets. If processing is disabled, load_dependency changes are not hot
reloaded.
- [x] Replace AssetInfo dependency load/fail counters with
`loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from
(potentially) breaking counters. Storing this will also enable
"dependency reloaded" events (see [Next Steps](#next-steps))
- [x] Re-add filesystem watcher cargo feature gate (currently it is not
optional)
- [ ] Migration Guide
- [ ] Changelog
## Followup TODO
- [ ] Replace "eager unchanged processed asset loading" behavior with
"don't returned unchanged processed asset until dependencies have been
checked".
- [ ] Add true `Ignore` AssetAction that does not copy the asset to the
imported_assets folder.
- [ ] Finish "live asset unloading" (ex: free up CPU asset memory after
uploading an image to the GPU), rethink RenderAssets, and port renderer
features. The `Assets` collection uses `Option<T>` for asset storage to
support its removal. (1) the Option might not actually be necessary ...
might be able to just remove from the collection entirely (2) need to
finalize removal apis
- [ ] Try replacing the "channel based" asset id recycling with
something a bit more efficient (ex: we might be able to use raw atomic
ints with some cleverness)
- [ ] Consider adding UUIDs to processed assets (scoped just to helping
identify moved assets ... not exposed to load queries ... see [Next
Steps](#next-steps))
- [ ] Store "last modified" source asset and meta timestamps in
processed meta files to enable skipping expensive hashing when the file
wasn't changed
- [ ] Fix "slow loop" handle drop fix
- [ ] Migrate to TypeName
- [x] Handle "loader preregistration". See #9429
## Next Steps
* **Configurable per-type defaults for AssetMeta**: It should be
possible to add configuration like "all png image meta should default to
using nearest sampling" (currently this hard-coded per-loader/processor
Settings::default() impls). Also see the "Folder Meta" bullet point.
* **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical
asset ids" discussion in [Open Questions](#open-questions) and the
relevant bullet point in [Draft TODO](#draft-todo). Even without
canonical ids, folder renames could avoid reprocessing in some cases.
* **Multiple Asset Sources**: Expand AssetPath to support "asset source
names" and support multiple AssetReaders in the asset server (ex:
`webserver://some_path/image.png` backed by an Http webserver
AssetReader). The "default" asset reader would use normal
`some_path/image.png` paths. Ideally this works in combination with
multiple AssetWatchers for hot-reloading
* **Stable Type Names**: this pr removes the TypeUuid requirement from
assets in favor of `std::any::type_name`. This makes defining assets
easier (no need to generate a new uuid / use weird proc macro syntax).
It also makes reading meta files easier (because things have "friendly
names"). We also use type names for components in scene files. If they
are good enough for components, they are good enough for assets. And
consistency across Bevy pillars is desirable. However,
`std::any::type_name` is not guaranteed to be stable (although in
practice it is). We've developed a [stable type
path](https://github.com/bevyengine/bevy/pull/7184) to resolve this,
which should be adopted when it is ready.
* **Command Line Interface**: It should be possible to run the asset
processor in a separate process from the command line. This will also
require building a network-server-backed AssetReader to communicate
between the app and the processor. We've been planning to build a "bevy
cli" for awhile. This seems like a good excuse to build it.
* **Asset Packing**: This is largely an additive feature, so it made
sense to me to punt this until we've laid the foundations in this PR.
* **Per-Platform Processed Assets**: It should be possible to generate
assets for multiple platforms by supporting multiple "processor
profiles" per asset (ex: compress with format X on PC and Y on iOS). I
think there should probably be arbitrary "profiles" (which can be
separate from actual platforms), which are then assigned to a given
platform when generating the final asset distribution for that platform.
Ex: maybe devs want a "Mobile" profile that is shared between iOS and
Android. Or a "LowEnd" profile shared between web and mobile.
* **Versioning and Migrations**: Assets, Loaders, Savers, and Processors
need to have versions to determine if their schema is valid. If an asset
/ loader version is incompatible with the current version expected at
runtime, the processor should be able to migrate them. I think we should
try using Bevy Reflect for this, as it would allow us to load the old
version as a dynamic Reflect type without actually having the old Rust
type. It would also allow us to define "patches" to migrate between
versions (Bevy Reflect devs are currently working on patching). The
`.meta` file already has its own format version. Migrating that to new
versions should also be possible.
* **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write
type) currently used by AssetPath can still result in String clones that
aren't actually necessary (cloning an Owned Cow clones the contents).
Bevy's asset system requires cloning AssetPaths in a number of places,
which result in actual clones of the internal Strings. This is not
efficient. AssetPath internals should be reworked to exhibit truer
cow-like-behavior that reduces String clones to the absolute minimum.
* **Consider processor-less processing**: In theory the AssetServer
could run processors "inline" even if the background AssetProcessor is
disabled. If we decide this is actually desirable, we could add this.
But I don't think its a priority in the short or medium term.
* **Pre-emptive dependency loading**: We could encode dependencies in
processed meta files, which could then be used by the Asset Server to
kick of dependency loads as early as possible (prior to starting the
actual asset load). Is this desirable? How much time would this save in
practice?
* **Optimize Processor With UntypedAssetIds**: The processor exclusively
uses AssetPath to identify assets currently. It might be possible to
swap these out for UntypedAssetIds in some places, which are smaller /
cheaper to hash and compare.
* **One to Many Asset Processing**: An asset source file that produces
many assets currently must be processed into a single "processed" asset
source. If labeled assets can be written separately they can each have
their own configured savers _and_ they could be loaded more granularly.
Definitely worth exploring!
* **Automatically Track "Runtime-only" Asset Dependencies**: Right now,
tracking "created at runtime" asset dependencies requires adding them
via `asset_server.load_asset(StandardMaterial::default())`. I think with
some cleverness we could also do this for
`materials.add(StandardMaterial::default())`, making tracking work
"everywhere". There are challenges here relating to change detection /
ensuring the server is made aware of dependency changes. This could be
expensive in some cases.
* **"Dependency Changed" events**: Some assets have runtime artifacts
that need to be re-generated when one of their dependencies change (ex:
regenerate a material's bind group when a Texture needs to change). We
are generating the dependency graph so we can definitely produce these
events. Buuuuut generating these events will have a cost / they could be
high frequency for some assets, so we might want this to be opt-in for
specific cases.
* **Investigate Storing More Information In Handles**: Handles can now
store arbitrary information, which makes it cheaper and easier to
access. How much should we move into them? Canonical asset load states
(via atomics)? (`handle.is_loaded()` would be very cool). Should we
store the entire asset and remove the `Assets<T>` collection?
(`Arc<RwLock<Option<Image>>>`?)
* **Support processing and loading files without extensions**: This is a
pretty arbitrary restriction and could be supported with very minimal
changes.
* **Folder Meta**: It would be nice if we could define per folder
processor configuration defaults (likely in a `.meta` or `.folder_meta`
file). Things like "default to linear filtering for all Images in this
folder".
* **Replace async_broadcast with event-listener?** This might be
approximately drop-in for some uses and it feels more light weight
* **Support Running the AssetProcessor on the Web**: Most of the hard
work is done here, but there are some easy straggling TODOs (make the
transaction log an interface instead of a direct file writer so we can
write a web storage backend, implement an AssetReader/AssetWriter that
reads/writes to something like LocalStorage).
* **Consider identifying and preventing circular dependencies**: This is
especially important for "processor dependencies", as processing will
silently never finish in these cases.
* **Built-in/Inlined Asset Hot Reloading**: This PR regresses
"built-in/inlined" asset hot reloading (previously provided by the
DebugAssetServer). I'm intentionally punting this because I think it can
be cleanly implemented with "multiple asset sources" by registering a
"debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset
paths) in combination with an AssetWatcher for that asset source and
support for "manually loading pats with asset bytes instead of
AssetReaders". The old DebugAssetServer was quite nasty and I'd love to
avoid that hackery going forward.
* **Investigate ways to remove double-parsing meta files**: Parsing meta
files currently involves parsing once with "minimal" versions of the
meta file to extract the type name of the loader/processor config, then
parsing again to parse the "full" meta. This is suboptimal. We should be
able to define custom deserializers that (1) assume the loader/processor
type name comes first (2) dynamically looks up the loader/processor
registrations to deserialize settings in-line (similar to components in
the bevy scene format). Another alternative: deserialize as dynamic
Reflect objects and then convert.
* **More runtime loading configuration**: Support using the Handle type
as a hint to select an asset loader (instead of relying on AssetPath
extensions)
* **More high level Processor trait implementations**: For example, it
might be worth adding support for arbitrary chains of "asset transforms"
that modify an in-memory asset representation between loading and
saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by
a `flip_normals` transform, then save the mesh to an efficient
compressed format).
* **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO
item](#draft-todo) for context)
* **Explore High Level Load Interfaces**: See [this
discussion](#discuss-on_loaded-high-level-interface) for one prototype.
* **Asset Streaming**: It would be great if we could stream Assets (ex:
stream a long video file piece by piece)
* **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than
they need to be because they have a Uuid enum variant. If we implement
an "id exchanging" system that trades Uuids for "efficient runtime ids",
we can cut down on the size of AssetIds, making them more efficient.
This has some open design questions, such as how to spawn entities with
"default" handle values (as these wouldn't have access to the exchange
api in the current system).
* **Asset Path Fixup Tooling**: Assets that inline asset paths inside
them will break when an asset moves. The asset system provides the
functionality to detect when paths break. We should build a framework
that enables formats to define "path migrations". This is especially
important for scene files. For editor-generated files, we should also
consider using UUIDs (see other bullet point) to avoid the need to
migrate in these cases.
---------
Co-authored-by: BeastLe9enD <beastle9end@outlook.de>
Co-authored-by: Mike <mike.hsu@gmail.com>
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2023-09-07 02:07:27 +00:00
[ [ example ] ]
name = "asset_processing"
2023-10-25 19:37:03 +00:00
path = "examples/asset/processing/asset_processing.rs"
Bevy Asset V2 (#8624)
# Bevy Asset V2 Proposal
## Why Does Bevy Need A New Asset System?
Asset pipelines are a central part of the gamedev process. Bevy's
current asset system is missing a number of features that make it
non-viable for many classes of gamedev. After plenty of discussions and
[a long community feedback
period](https://github.com/bevyengine/bevy/discussions/3972), we've
identified a number missing features:
* **Asset Preprocessing**: it should be possible to "preprocess" /
"compile" / "crunch" assets at "development time" rather than when the
game starts up. This enables offloading expensive work from deployed
apps, faster asset loading, less runtime memory usage, etc.
* **Per-Asset Loader Settings**: Individual assets cannot define their
own loaders that override the defaults. Additionally, they cannot
provide per-asset settings to their loaders. This is a huge limitation,
as many asset types don't provide all information necessary for Bevy
_inside_ the asset. For example, a raw PNG image says nothing about how
it should be sampled (ex: linear vs nearest).
* **Asset `.meta` files**: assets should have configuration files stored
adjacent to the asset in question, which allows the user to configure
asset-type-specific settings. These settings should be accessible during
the pre-processing phase. Modifying a `.meta` file should trigger a
re-processing / re-load of the asset. It should be possible to configure
asset loaders from the meta file.
* **Processed Asset Hot Reloading**: Changes to processed assets (or
their dependencies) should result in re-processing them and re-loading
the results in live Bevy Apps.
* **Asset Dependency Tracking**: The current bevy_asset has no good way
to wait for asset dependencies to load. It punts this as an exercise for
consumers of the loader apis, which is unreasonable and error prone.
There should be easy, ergonomic ways to wait for assets to load and
block some logic on an asset's entire dependency tree loading.
* **Runtime Asset Loading**: it should be (optionally) possible to load
arbitrary assets dynamically at runtime. This necessitates being able to
deploy and run the asset server alongside Bevy Apps on _all platforms_.
For example, we should be able to invoke the shader compiler at runtime,
stream scenes from sources like the internet, etc. To keep deployed
binaries (and startup times) small, the runtime asset server
configuration should be configurable with different settings compared to
the "pre processor asset server".
* **Multiple Backends**: It should be possible to load assets from
arbitrary sources (filesystems, the internet, remote asset serves, etc).
* **Asset Packing**: It should be possible to deploy assets in
compressed "packs", which makes it easier and more efficient to
distribute assets with Bevy Apps.
* **Asset Handoff**: It should be possible to hold a "live" asset
handle, which correlates to runtime data, without actually holding the
asset in memory. Ex: it must be possible to hold a reference to a GPU
mesh generated from a "mesh asset" without keeping the mesh data in CPU
memory
* **Per-Platform Processed Assets**: Different platforms and app
distributions have different capabilities and requirements. Some
platforms need lower asset resolutions or different asset formats to
operate within the hardware constraints of the platform. It should be
possible to define per-platform asset processing profiles. And it should
be possible to deploy only the assets required for a given platform.
These features have architectural implications that are significant
enough to require a full rewrite. The current Bevy Asset implementation
got us this far, but it can take us no farther. This PR defines a brand
new asset system that implements most of these features, while laying
the foundations for the remaining features to be built.
## Bevy Asset V2
Here is a quick overview of the features introduced in this PR.
* **Asset Preprocessing**: Preprocess assets at development time into
more efficient (and configurable) representations
* **Dependency Aware**: Dependencies required to process an asset are
tracked. If an asset's processed dependency changes, it will be
reprocessed
* **Hot Reprocessing/Reloading**: detect changes to asset source files,
reprocess them if they have changed, and then hot-reload them in Bevy
Apps.
* **Only Process Changes**: Assets are only re-processed when their
source file (or meta file) has changed. This uses hashing and timestamps
to avoid processing assets that haven't changed.
* **Transactional and Reliable**: Uses write-ahead logging (a technique
commonly used by databases) to recover from crashes / forced-exits.
Whenever possible it avoids full-reprocessing / only uncompleted
transactions will be reprocessed. When the processor is running in
parallel with a Bevy App, processor asset writes block Bevy App asset
reads. Reading metadata + asset bytes is guaranteed to be transactional
/ correctly paired.
* **Portable / Run anywhere / Database-free**: The processor does not
rely on an in-memory database (although it uses some database techniques
for reliability). This is important because pretty much all in-memory
databases have unsupported platforms or build complications.
* **Configure Processor Defaults Per File Type**: You can say "use this
processor for all files of this type".
* **Custom Processors**: The `Processor` trait is flexible and
unopinionated. It can be implemented by downstream plugins.
* **LoadAndSave Processors**: Most asset processing scenarios can be
expressed as "run AssetLoader A, save the results using AssetSaver X,
and then load the result using AssetLoader B". For example, load this
png image using `PngImageLoader`, which produces an `Image` asset and
then save it using `CompressedImageSaver` (which also produces an
`Image` asset, but in a compressed format), which takes an `Image` asset
as input. This means if you have an `AssetLoader` for an asset, you are
already half way there! It also means that you can share AssetSavers
across multiple loaders. Because `CompressedImageSaver` accepts Bevy's
generic Image asset as input, it means you can also use it with some
future `JpegImageLoader`.
* **Loader and Saver Settings**: Asset Loaders and Savers can now define
their own settings types, which are passed in as input when an asset is
loaded / saved. Each asset can define its own settings.
* **Asset `.meta` files**: configure asset loaders, their settings,
enable/disable processing, and configure processor settings
* **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex:
if an asset contains a `Handle<Image>`) are tracked by the asset server.
An event is emitted when an asset and all of its dependencies have been
loaded
* **Unprocessed Asset Loading**: Assets do not require preprocessing.
They can be loaded directly. A processed asset is just a "normal" asset
with some extra metadata. Asset Loaders don't need to know or care about
whether or not an asset was processed.
* **Async Asset IO**: Asset readers/writers use async non-blocking
interfaces. Note that because Rust doesn't yet support async traits,
there is a bit of manual Boxing / Future boilerplate. This will
hopefully be removed in the near future when Rust gets async traits.
* **Pluggable Asset Readers and Writers**: Arbitrary asset source
readers/writers are supported, both by the processor and the asset
server.
* **Better Asset Handles**
* **Single Arc Tree**: Asset Handles now use a single arc tree that
represents the lifetime of the asset. This makes their implementation
simpler, more efficient, and allows us to cheaply attach metadata to
handles. Ex: the AssetPath of a handle is now directly accessible on the
handle itself!
* **Const Typed Handles**: typed handles can be constructed in a const
context. No more weird "const untyped converted to typed at runtime"
patterns!
* **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed
`Handle<T>` is now much smaller in memory and `AssetId<T>` is even
smaller.
* **Weak Handle Usage Reduction**: In general Handles are now considered
to be "strong". Bevy features that previously used "weak `Handle<T>`"
have been ported to `AssetId<T>`, which makes it statically clear that
the features do not hold strong handles (while retaining strong type
information). Currently Handle::Weak still exists, but it is very
possible that we can remove that entirely.
* **Efficient / Dense Asset Ids**: Assets now have efficient dense
runtime asset ids, which means we can avoid expensive hash lookups.
Assets are stored in Vecs instead of HashMaps. There are now typed and
untyped ids, which means we no longer need to store dynamic type
information in the ID for typed handles. "AssetPathId" (which was a
nightmare from a performance and correctness standpoint) has been
entirely removed in favor of dense ids (which are retrieved for a path
on load)
* **Direct Asset Loading, with Dependency Tracking**: Assets that are
defined at runtime can still have their dependencies tracked by the
Asset Server (ex: if you create a material at runtime, you can still
wait for its textures to load). This is accomplished via the (currently
optional) "asset dependency visitor" trait. This system can also be used
to define a set of assets to load, then wait for those assets to load.
* **Async folder loading**: Folder loading also uses this system and
immediately returns a handle to the LoadedFolder asset, which means
folder loading no longer blocks on directory traversals.
* **Improved Loader Interface**: Loaders now have a specific "top level
asset type", which makes returning the top-level asset simpler and
statically typed.
* **Basic Image Settings and Processing**: Image assets can now be
processed into the gpu-friendly Basic Universal format. The ImageLoader
now has a setting to define what format the image should be loaded as.
Note that this is just a minimal MVP ... plenty of additional work to do
here. To demo this, enable the `basis-universal` feature and turn on
asset processing.
* **Simpler Audio Play / AudioSink API**: Asset handle providers are
cloneable, which means the Audio resource can mint its own handles. This
means you can now do `let sink_handle = audio.play(music)` instead of
`let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that
this might still be replaced by
https://github.com/bevyengine/bevy/pull/8424.
**Removed Handle Casting From Engine Features**: Ex: FontAtlases no
longer use casting between handle types
## Using The New Asset System
### Normal Unprocessed Asset Loading
By default the `AssetPlugin` does not use processing. It behaves pretty
much the same way as the old system.
If you are defining a custom asset, first derive `Asset`:
```rust
#[derive(Asset)]
struct Thing {
value: String,
}
```
Initialize the asset:
```rust
app.init_asset:<Thing>()
```
Implement a new `AssetLoader` for it:
```rust
#[derive(Default)]
struct ThingLoader;
#[derive(Serialize, Deserialize, Default)]
pub struct ThingSettings {
some_setting: bool,
}
impl AssetLoader for ThingLoader {
type Asset = Thing;
type Settings = ThingSettings;
fn load<'a>(
&'a self,
reader: &'a mut Reader,
settings: &'a ThingSettings,
load_context: &'a mut LoadContext,
) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> {
Box::pin(async move {
let mut bytes = Vec::new();
reader.read_to_end(&mut bytes).await?;
// convert bytes to value somehow
Ok(Thing {
value
})
})
}
fn extensions(&self) -> &[&str] {
&["thing"]
}
}
```
Note that this interface will get much cleaner once Rust gets support
for async traits. `Reader` is an async futures_io::AsyncRead. You can
stream bytes as they come in or read them all into a `Vec<u8>`,
depending on the context. You can use `let handle =
load_context.load(path)` to kick off a dependency load, retrieve a
handle, and register the dependency for the asset.
Then just register the loader in your Bevy app:
```rust
app.init_asset_loader::<ThingLoader>()
```
Now just add your `Thing` asset files into the `assets` folder and load
them like this:
```rust
fn system(asset_server: Res<AssetServer>) {
let handle = Handle<Thing> = asset_server.load("cool.thing");
}
```
You can check load states directly via the asset server:
```rust
if asset_server.load_state(&handle) == LoadState::Loaded { }
```
You can also listen for events:
```rust
fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) {
for event in events.iter() {
if event.is_loaded_with_dependencies(&handle) {
}
}
}
```
Note the new `AssetEvent::LoadedWithDependencies`, which only fires when
the asset is loaded _and_ all dependencies (and their dependencies) have
loaded.
Unlike the old asset system, for a given asset path all `Handle<T>`
values point to the same underlying Arc. This means Handles can cheaply
hold more asset information, such as the AssetPath:
```rust
// prints the AssetPath of the handle
info!("{:?}", handle.path())
```
### Processed Assets
Asset processing can be enabled via the `AssetPlugin`. When developing
Bevy Apps with processed assets, do this:
```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))
```
This runs the `AssetProcessor` in the background with hot-reloading. It
reads assets from the `assets` folder, processes them, and writes them
to the `.imported_assets` folder. Asset loads in the Bevy App will wait
for a processed version of the asset to become available. If an asset in
the `assets` folder changes, it will be reprocessed and hot-reloaded in
the Bevy App.
When deploying processed Bevy apps, do this:
```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed()))
```
This does not run the `AssetProcessor` in the background. It behaves
like `AssetPlugin::unprocessed()`, but reads assets from
`.imported_assets`.
When the `AssetProcessor` is running, it will populate sibling `.meta`
files for assets in the `assets` folder. Meta files for assets that do
not have a processor configured look like this:
```rust
(
meta_format_version: "1.0",
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: FromExtension,
),
),
)
```
This is metadata for an image asset. For example, if you have
`assets/my_sprite.png`, this could be the metadata stored at
`assets/my_sprite.png.meta`. Meta files are totally optional. If no
metadata exists, the default settings will be used.
In short, this file says "load this asset with the ImageLoader and use
the file extension to determine the image type". This type of meta file
is supported in all AssetPlugin modes. If in `Unprocessed` mode, the
asset (with the meta settings) will be loaded directly. If in
`ProcessedDev` mode, the asset file will be copied directly to the
`.imported_assets` folder. The meta will also be copied directly to the
`.imported_assets` folder, but with one addition:
```rust
(
meta_format_version: "1.0",
processed_info: Some((
hash: 12415480888597742505,
full_hash: 14344495437905856884,
process_dependencies: [],
)),
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: FromExtension,
),
),
)
```
`processed_info` contains `hash` (a direct hash of the asset and meta
bytes), `full_hash` (a hash of `hash` and the hashes of all
`process_dependencies`), and `process_dependencies` (the `path` and
`full_hash` of every process_dependency). A "process dependency" is an
asset dependency that is _directly_ used when processing the asset.
Images do not have process dependencies, so this is empty.
When the processor is enabled, you can use the `Process` metadata
config:
```rust
(
meta_format_version: "1.0",
asset: Process(
processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>",
settings: (
loader_settings: (
format: FromExtension,
),
saver_settings: (
generate_mipmaps: true,
),
),
),
)
```
This configures the asset to use the `LoadAndSave` processor, which runs
an AssetLoader and feeds the result into an AssetSaver (which saves the
given Asset and defines a loader to load it with). (for terseness
LoadAndSave will likely get a shorter/friendlier type name when [Stable
Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common
processor type, but arbitrary processors are supported.
`CompressedImageSaver` saves an `Image` in the Basis Universal format
and configures the ImageLoader to load it as basis universal. The
`AssetProcessor` will read this meta, run it through the LoadAndSave
processor, and write the basis-universal version of the image to
`.imported_assets`. The final metadata will look like this:
```rust
(
meta_format_version: "1.0",
processed_info: Some((
hash: 905599590923828066,
full_hash: 9948823010183819117,
process_dependencies: [],
)),
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: Format(Basis),
),
),
)
```
To try basis-universal processing out in Bevy examples, (for example
`sprite.rs`), change `add_plugins(DefaultPlugins)` to
`add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run
with the `basis-universal` feature enabled: `cargo run
--features=basis-universal --example sprite`.
To create a custom processor, there are two main paths:
1. Use the `LoadAndSave` processor with an existing `AssetLoader`.
Implement the `AssetSaver` trait, register the processor using
`asset_processor.register_processor::<LoadAndSave<ImageLoader,
CompressedImageSaver>>(image_saver.into())`.
2. Implement the `Process` trait directly and register it using:
`asset_processor.register_processor(thing_processor)`.
You can configure default processors for file extensions like this:
```rust
asset_processor.set_default_processor::<ThingProcessor>("thing")
```
There is one more metadata type to be aware of:
```rust
(
meta_format_version: "1.0",
asset: Ignore,
)
```
This will ignore the asset during processing / prevent it from being
written to `.imported_assets`.
The AssetProcessor stores a transaction log at `.imported_assets/log`
and uses it to gracefully recover from unexpected stops. This means you
can force-quit the processor (and Bevy Apps running the processor in
parallel) at arbitrary times!
`.imported_assets` is "local state". It should _not_ be checked into
source control. It should also be considered "read only". In practice,
you _can_ modify processed assets and processed metadata if you really
need to test something. But those modifications will not be represented
in the hashes of the assets, so the processed state will be "out of
sync" with the source assets. The processor _will not_ fix this for you.
Either revert the change after you have tested it, or delete the
processed files so they can be re-populated.
## Open Questions
There are a number of open questions to be discussed. We should decide
if they need to be addressed in this PR and if so, how we will address
them:
### Implied Dependencies vs Dependency Enumeration
There are currently two ways to populate asset dependencies:
* **Implied via AssetLoaders**: if an AssetLoader loads an asset (and
retrieves a handle), a dependency is added to the list.
* **Explicit via the optional Asset::visit_dependencies**: if
`server.load_asset(my_asset)` is called, it will call
`my_asset.visit_dependencies`, which will grab dependencies that have
been manually defined for the asset via the Asset trait impl (which can
be derived).
This means that defining explicit dependencies is optional for "loaded
assets". And the list of dependencies is always accurate because loaders
can only produce Handles if they register dependencies. If an asset was
loaded with an AssetLoader, it only uses the implied dependencies. If an
asset was created at runtime and added with
`asset_server.load_asset(MyAsset)`, it will use
`Asset::visit_dependencies`.
However this can create a behavior mismatch between loaded assets and
equivalent "created at runtime" assets if `Assets::visit_dependencies`
doesn't exactly match the dependencies produced by the AssetLoader. This
behavior mismatch can be resolved by completely removing "implied loader
dependencies" and requiring `Asset::visit_dependencies` to supply
dependency data. But this creates two problems:
* It makes defining loaded assets harder and more error prone: Devs must
remember to manually annotate asset dependencies with `#[dependency]`
when deriving `Asset`. For more complicated assets (such as scenes), the
derive likely wouldn't be sufficient and a manual `visit_dependencies`
impl would be required.
* Removes the ability to immediately kick off dependency loads: When
AssetLoaders retrieve a Handle, they also immediately kick off an asset
load for the handle, which means it can start loading in parallel
_before_ the asset finishes loading. For large assets, this could be
significant. (although this could be mitigated for processed assets if
we store dependencies in the processed meta file and load them ahead of
time)
### Eager ProcessorDev Asset Loading
I made a controversial call in the interest of fast startup times ("time
to first pixel") for the "processor dev mode configuration". When
initializing the AssetProcessor, current processed versions of unchanged
assets are yielded immediately, even if their dependencies haven't been
checked yet for reprocessing. This means that
non-current-state-of-filesystem-but-previously-valid assets might be
returned to the App first, then hot-reloaded if/when their dependencies
change and the asset is reprocessed.
Is this behavior desirable? There is largely one alternative: do not
yield an asset from the processor to the app until all of its
dependencies have been checked for changes. In some common cases (load
dependency has not changed since last run) this will increase startup
time. The main question is "by how much" and is that slower startup time
worth it in the interest of only yielding assets that are true to the
current state of the filesystem. Should this be configurable? I'm
starting to think we should only yield an asset after its (historical)
dependencies have been checked for changes + processed as necessary, but
I'm curious what you all think.
### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs?
In this implementation AssetPaths are the only canonical asset
identifier (just like the previous Bevy Asset system and Godot). Moving
assets will result in re-scans (and currently reprocessing, although
reprocessing can easily be avoided with some changes). Asset
renames/moves will break code and assets that rely on specific paths,
unless those paths are fixed up.
Do we want / need "stable asset uuids"? Introducing them is very
possible:
1. Generate a UUID and include it in .meta files
2. Support UUID in AssetPath
3. Generate "asset indices" which are loaded on startup and map UUIDs to
paths.
4 (maybe). Consider only supporting UUIDs for processed assets so we can
generate quick-to-load indices instead of scanning meta files.
The main "pro" is that assets referencing UUIDs don't need to be
migrated when a path changes. The main "con" is that UUIDs cannot be
"lazily resolved" like paths. They need a full view of all assets to
answer the question "does this UUID exist". Which means UUIDs require
the AssetProcessor to fully finish startup scans before saying an asset
doesnt exist. And they essentially require asset pre-processing to use
in apps, because scanning all asset metadata files at runtime to resolve
a UUID is not viable for medium-to-large apps. It really requires a
pre-generated UUID index, which must be loaded before querying for
assets.
I personally think this should be investigated in a separate PR. Paths
aren't going anywhere ... _everyone_ uses filesystems (and
filesystem-like apis) to manage their asset source files. I consider
them permanent canonical asset information. Additionally, they behave
well for both processed and unprocessed asset modes. Given that Bevy is
supporting both, this feels like the right canonical ID to start with.
UUIDS (and maybe even other indexed-identifier types) can be added later
as necessary.
### Folder / File Naming Conventions
All asset processing config currently lives in the `.imported_assets`
folder. The processor transaction log is in `.imported_assets/log`.
Processed assets are added to `.imported_assets/Default`, which will
make migrating to processed asset profiles (ex: a
`.imported_assets/Mobile` profile) a non-breaking change. It also allows
us to create top-level files like `.imported_assets/log` without it
being interpreted as an asset. Meta files currently have a `.meta`
suffix. Do we like these names and conventions?
### Should the `AssetPlugin::processed_dev` configuration enable
`watch_for_changes` automatically?
Currently it does (which I think makes sense), but it does make it the
only configuration that enables watch_for_changes by default.
### Discuss on_loaded High Level Interface:
This PR includes a very rough "proof of concept" `on_loaded` system
adapter that uses the `LoadedWithDependencies` event in combination with
`asset_server.load_asset` dependency tracking to support this pattern
```rust
fn main() {
App::new()
.init_asset::<MyAssets>()
.add_systems(Update, on_loaded(create_array_texture))
.run();
}
#[derive(Asset, Clone)]
struct MyAssets {
#[dependency]
picture_of_my_cat: Handle<Image>,
#[dependency]
picture_of_my_other_cat: Handle<Image>,
}
impl FromWorld for ArrayTexture {
fn from_world(world: &mut World) -> Self {
picture_of_my_cat: server.load("meow.png"),
picture_of_my_other_cat: server.load("meeeeeeeow.png"),
}
}
fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) {
commands.spawn(SpriteBundle {
texture: my_assets.picture_of_my_cat.clone(),
..default()
});
commands.spawn(SpriteBundle {
texture: my_assets.picture_of_my_other_cat.clone(),
..default()
});
}
```
The implementation is _very_ rough. And it is currently unsafe because
`bevy_ecs` doesn't expose some internals to do this safely from inside
`bevy_asset`. There are plenty of unanswered questions like:
* "do we add a Loadable" derive? (effectively automate the FromWorld
implementation above)
* Should `MyAssets` even be an Asset? (largely implemented this way
because it elegantly builds on `server.load_asset(MyAsset { .. })`
dependency tracking).
We should think hard about what our ideal API looks like (and if this is
a pattern we want to support). Not necessarily something we need to
solve in this PR. The current `on_loaded` impl should probably be
removed from this PR before merging.
## Clarifying Questions
### What about Assets as Entities?
This Bevy Asset V2 proposal implementation initially stored Assets as
ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used
`Entity` as the asset id and Asset values were just ECS components.
There are plenty of compelling reasons to do this:
1. Easier to inline assets in Bevy Scenes (as they are "just" normal
entities + components)
2. More flexible queries: use the power of the ECS to filter assets (ex:
`Query<Mesh, With<Tree>>`).
3. Extensible. Users can add arbitrary component data to assets.
4. Things like "component visualization tools" work out of the box to
visualize asset data.
However Assets as Entities has a ton of caveats right now:
* We need to be able to allocate entity ids without a direct World
reference (aka rework id allocator in Entities ... i worked around this
in my prototypes by just pre allocating big chunks of entities)
* We want asset change events in addition to ECS change tracking ... how
do we populate them when mutations can come from anywhere? Do we use
Changed queries? This would require iterating over the change data for
all assets every frame. Is this acceptable or should we implement a new
"event based" component change detection option?
* Reconciling manually created assets with asset-system managed assets
has some nuance (ex: are they "loaded" / do they also have that
component metadata?)
* "how do we handle "static" / default entity handles" (ties in to the
Entity Indices discussion:
https://github.com/bevyengine/bevy/discussions/8319). This is necessary
for things like "built in" assets and default handles in things like
SpriteBundle.
* Storing asset information as a component makes it easy to "invalidate"
asset state by removing the component (or forcing modifications).
Ideally we have ways to lock this down (some combination of Rust type
privacy and ECS validation)
In practice, how we store and identify assets is a reasonably
superficial change (porting off of Assets as Entities and implementing
dedicated storage + ids took less than a day). So once we sort out the
remaining challenges the flip should be straightforward. Additionally, I
do still have "Assets as Entities" in my commit history, so we can reuse
that work. I personally think "assets as entities" is a good endgame,
but it also doesn't provide _significant_ value at the moment and it
certainly isn't ready yet with the current state of things.
### Why not Distill?
[Distill](https://github.com/amethyst/distill) is a high quality fully
featured asset system built in Rust. It is very natural to ask "why not
just use Distill?".
It is also worth calling out that for awhile, [we planned on adopting
Distill / I signed off on
it](https://github.com/bevyengine/bevy/issues/708).
However I think Bevy has a number of constraints that make Distill
adoption suboptimal:
* **Architectural Simplicity:**
* Distill's processor requires an in-memory database (lmdb) and RPC
networked API (using Cap'n Proto). Each of these introduces API
complexity that increases maintenance burden and "code grokability".
Ignoring tests, documentation, and examples, Distill has 24,237 lines of
Rust code (including generated code for RPC + database interactions). If
you ignore generated code, it has 11,499 lines.
* Bevy builds the AssetProcessor and AssetServer using pluggable
AssetReader/AssetWriter Rust traits with simple io interfaces. They do
not necessitate databases or RPC interfaces (although Readers/Writers
could use them if that is desired). Bevy Asset V2 (at the time of
writing this PR) is 5,384 lines of Rust code (ignoring tests,
documentation, and examples). Grain of salt: Distill does have more
features currently (ex: Asset Packing, GUIDS, remote-out-of-process
asset processor). I do plan to implement these features in Bevy Asset V2
and I personally highly doubt they will meaningfully close the 6115
lines-of-code gap.
* This complexity gap (which while illustrated by lines of code, is much
bigger than just that) is noteworthy to me. Bevy should be hackable and
there are pillars of Distill that are very hard to understand and
extend. This is a matter of opinion (and Bevy Asset V2 also has
complicated areas), but I think Bevy Asset V2 is much more approachable
for the average developer.
* Necessary disclaimer: counting lines of code is an extremely rough
complexity metric. Read the code and form your own opinions.
* **Optional Asset Processing:** Not all Bevy Apps (or Bevy App
developers) need / want asset preprocessing. Processing increases the
complexity of the development environment by introducing things like
meta files, imported asset storage, running processors in the
background, waiting for processing to finish, etc. Distill _requires_
preprocessing to work. With Bevy Asset V2 processing is fully opt-in.
The AssetServer isn't directly aware of asset processors at all.
AssetLoaders only care about converting bytes to runtime Assets ... they
don't know or care if the bytes were pre-processed or not. Processing is
"elegantly" (forgive my self-congratulatory phrasing) layered on top and
builds on the existing Asset system primitives.
* **Direct Filesystem Access to Processed Asset State:** Distill stores
processed assets in a database. This makes debugging / inspecting the
processed outputs harder (either requires special tooling to query the
database or they need to be "deployed" to be inspected). Bevy Asset V2,
on the other hand, stores processed assets in the filesystem (by default
... this is configurable). This makes interacting with the processed
state more natural. Note that both Godot and Unity's new asset system
store processed assets in the filesystem.
* **Portability**: Because Distill's processor uses lmdb and RPC
networking, it cannot be run on certain platforms (ex: lmdb is a
non-rust dependency that cannot run on the web, some platforms don't
support running network servers). Bevy should be able to process assets
everywhere (ex: run the Bevy Editor on the web, compile + process
shaders on mobile, etc). Distill does partially mitigate this problem by
supporting "streaming" assets via the RPC protocol, but this is not a
full solve from my perspective. And Bevy Asset V2 can (in theory) also
stream assets (without requiring RPC, although this isn't implemented
yet)
Note that I _do_ still think Distill would be a solid asset system for
Bevy. But I think the approach in this PR is a better solve for Bevy's
specific "asset system requirements".
### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the
point?
"True async file io" has limited / spotty platform support. async-fs
(and the rust async ecosystem generally ... ex Tokio) currently use
async wrappers over std::fs that offload blocking requests to separate
threads. This may feel unsatisfying, but it _does_ still provide value
because it prevents our task pools from blocking on file system
operations (which would prevent progress when there are many tasks to
do, but all threads in a pool are currently blocking on file system
ops).
Additionally, using async APIs for our AssetReaders and AssetWriters
also provides value because we can later add support for "true async
file io" for platforms that support it. _And_ we can implement other
"true async io" asset backends (such as networked asset io).
## Draft TODO
- [x] Fill in missing filesystem event APIs: file removed event (which
is expressed as dangling RenameFrom events in some cases), file/folder
renamed event
- [x] Assets without loaders are not moved to the processed folder. This
breaks things like referenced `.bin` files for GLTFs. This should be
configurable per-non-asset-type.
- [x] Initial implementation of Reflect and FromReflect for Handle. The
"deserialization" parity bar is low here as this only worked with static
UUIDs in the old impl ... this is a non-trivial problem. Either we add a
Handle::AssetPath variant that gets "upgraded" to a strong handle on
scene load or we use a separate AssetRef type for Bevy scenes (which is
converted to a runtime Handle on load). This deserves its own discussion
in a different pr.
- [x] Populate read_asset_bytes hash when run by the processor (a bit of
a special case .. when run by the processor the processed meta will
contain the hash so we don't need to compute it on the spot, but we
don't want/need to read the meta when run by the main AssetServer)
- [x] Delay hot reloading: currently filesystem events are handled
immediately, which creates timing issues in some cases. For example hot
reloading images can sometimes break because the image isn't finished
writing. We should add a delay, likely similar to the [implementation in
this PR](https://github.com/bevyengine/bevy/pull/8503).
- [x] Port old platform-specific AssetIo implementations to the new
AssetReader interface (currently missing Android and web)
- [x] Resolve on_loaded unsafety (either by removing the API entirely or
removing the unsafe)
- [x] Runtime loader setting overrides
- [x] Remove remaining unwraps that should be error-handled. There are
number of TODOs here
- [x] Pretty AssetPath Display impl
- [x] Document more APIs
- [x] Resolve spurious "reloading because it has changed" events (to
repro run load_gltf with `processed_dev()`)
- [x] load_dependency hot reloading currently only works for processed
assets. If processing is disabled, load_dependency changes are not hot
reloaded.
- [x] Replace AssetInfo dependency load/fail counters with
`loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from
(potentially) breaking counters. Storing this will also enable
"dependency reloaded" events (see [Next Steps](#next-steps))
- [x] Re-add filesystem watcher cargo feature gate (currently it is not
optional)
- [ ] Migration Guide
- [ ] Changelog
## Followup TODO
- [ ] Replace "eager unchanged processed asset loading" behavior with
"don't returned unchanged processed asset until dependencies have been
checked".
- [ ] Add true `Ignore` AssetAction that does not copy the asset to the
imported_assets folder.
- [ ] Finish "live asset unloading" (ex: free up CPU asset memory after
uploading an image to the GPU), rethink RenderAssets, and port renderer
features. The `Assets` collection uses `Option<T>` for asset storage to
support its removal. (1) the Option might not actually be necessary ...
might be able to just remove from the collection entirely (2) need to
finalize removal apis
- [ ] Try replacing the "channel based" asset id recycling with
something a bit more efficient (ex: we might be able to use raw atomic
ints with some cleverness)
- [ ] Consider adding UUIDs to processed assets (scoped just to helping
identify moved assets ... not exposed to load queries ... see [Next
Steps](#next-steps))
- [ ] Store "last modified" source asset and meta timestamps in
processed meta files to enable skipping expensive hashing when the file
wasn't changed
- [ ] Fix "slow loop" handle drop fix
- [ ] Migrate to TypeName
- [x] Handle "loader preregistration". See #9429
## Next Steps
* **Configurable per-type defaults for AssetMeta**: It should be
possible to add configuration like "all png image meta should default to
using nearest sampling" (currently this hard-coded per-loader/processor
Settings::default() impls). Also see the "Folder Meta" bullet point.
* **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical
asset ids" discussion in [Open Questions](#open-questions) and the
relevant bullet point in [Draft TODO](#draft-todo). Even without
canonical ids, folder renames could avoid reprocessing in some cases.
* **Multiple Asset Sources**: Expand AssetPath to support "asset source
names" and support multiple AssetReaders in the asset server (ex:
`webserver://some_path/image.png` backed by an Http webserver
AssetReader). The "default" asset reader would use normal
`some_path/image.png` paths. Ideally this works in combination with
multiple AssetWatchers for hot-reloading
* **Stable Type Names**: this pr removes the TypeUuid requirement from
assets in favor of `std::any::type_name`. This makes defining assets
easier (no need to generate a new uuid / use weird proc macro syntax).
It also makes reading meta files easier (because things have "friendly
names"). We also use type names for components in scene files. If they
are good enough for components, they are good enough for assets. And
consistency across Bevy pillars is desirable. However,
`std::any::type_name` is not guaranteed to be stable (although in
practice it is). We've developed a [stable type
path](https://github.com/bevyengine/bevy/pull/7184) to resolve this,
which should be adopted when it is ready.
* **Command Line Interface**: It should be possible to run the asset
processor in a separate process from the command line. This will also
require building a network-server-backed AssetReader to communicate
between the app and the processor. We've been planning to build a "bevy
cli" for awhile. This seems like a good excuse to build it.
* **Asset Packing**: This is largely an additive feature, so it made
sense to me to punt this until we've laid the foundations in this PR.
* **Per-Platform Processed Assets**: It should be possible to generate
assets for multiple platforms by supporting multiple "processor
profiles" per asset (ex: compress with format X on PC and Y on iOS). I
think there should probably be arbitrary "profiles" (which can be
separate from actual platforms), which are then assigned to a given
platform when generating the final asset distribution for that platform.
Ex: maybe devs want a "Mobile" profile that is shared between iOS and
Android. Or a "LowEnd" profile shared between web and mobile.
* **Versioning and Migrations**: Assets, Loaders, Savers, and Processors
need to have versions to determine if their schema is valid. If an asset
/ loader version is incompatible with the current version expected at
runtime, the processor should be able to migrate them. I think we should
try using Bevy Reflect for this, as it would allow us to load the old
version as a dynamic Reflect type without actually having the old Rust
type. It would also allow us to define "patches" to migrate between
versions (Bevy Reflect devs are currently working on patching). The
`.meta` file already has its own format version. Migrating that to new
versions should also be possible.
* **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write
type) currently used by AssetPath can still result in String clones that
aren't actually necessary (cloning an Owned Cow clones the contents).
Bevy's asset system requires cloning AssetPaths in a number of places,
which result in actual clones of the internal Strings. This is not
efficient. AssetPath internals should be reworked to exhibit truer
cow-like-behavior that reduces String clones to the absolute minimum.
* **Consider processor-less processing**: In theory the AssetServer
could run processors "inline" even if the background AssetProcessor is
disabled. If we decide this is actually desirable, we could add this.
But I don't think its a priority in the short or medium term.
* **Pre-emptive dependency loading**: We could encode dependencies in
processed meta files, which could then be used by the Asset Server to
kick of dependency loads as early as possible (prior to starting the
actual asset load). Is this desirable? How much time would this save in
practice?
* **Optimize Processor With UntypedAssetIds**: The processor exclusively
uses AssetPath to identify assets currently. It might be possible to
swap these out for UntypedAssetIds in some places, which are smaller /
cheaper to hash and compare.
* **One to Many Asset Processing**: An asset source file that produces
many assets currently must be processed into a single "processed" asset
source. If labeled assets can be written separately they can each have
their own configured savers _and_ they could be loaded more granularly.
Definitely worth exploring!
* **Automatically Track "Runtime-only" Asset Dependencies**: Right now,
tracking "created at runtime" asset dependencies requires adding them
via `asset_server.load_asset(StandardMaterial::default())`. I think with
some cleverness we could also do this for
`materials.add(StandardMaterial::default())`, making tracking work
"everywhere". There are challenges here relating to change detection /
ensuring the server is made aware of dependency changes. This could be
expensive in some cases.
* **"Dependency Changed" events**: Some assets have runtime artifacts
that need to be re-generated when one of their dependencies change (ex:
regenerate a material's bind group when a Texture needs to change). We
are generating the dependency graph so we can definitely produce these
events. Buuuuut generating these events will have a cost / they could be
high frequency for some assets, so we might want this to be opt-in for
specific cases.
* **Investigate Storing More Information In Handles**: Handles can now
store arbitrary information, which makes it cheaper and easier to
access. How much should we move into them? Canonical asset load states
(via atomics)? (`handle.is_loaded()` would be very cool). Should we
store the entire asset and remove the `Assets<T>` collection?
(`Arc<RwLock<Option<Image>>>`?)
* **Support processing and loading files without extensions**: This is a
pretty arbitrary restriction and could be supported with very minimal
changes.
* **Folder Meta**: It would be nice if we could define per folder
processor configuration defaults (likely in a `.meta` or `.folder_meta`
file). Things like "default to linear filtering for all Images in this
folder".
* **Replace async_broadcast with event-listener?** This might be
approximately drop-in for some uses and it feels more light weight
* **Support Running the AssetProcessor on the Web**: Most of the hard
work is done here, but there are some easy straggling TODOs (make the
transaction log an interface instead of a direct file writer so we can
write a web storage backend, implement an AssetReader/AssetWriter that
reads/writes to something like LocalStorage).
* **Consider identifying and preventing circular dependencies**: This is
especially important for "processor dependencies", as processing will
silently never finish in these cases.
* **Built-in/Inlined Asset Hot Reloading**: This PR regresses
"built-in/inlined" asset hot reloading (previously provided by the
DebugAssetServer). I'm intentionally punting this because I think it can
be cleanly implemented with "multiple asset sources" by registering a
"debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset
paths) in combination with an AssetWatcher for that asset source and
support for "manually loading pats with asset bytes instead of
AssetReaders". The old DebugAssetServer was quite nasty and I'd love to
avoid that hackery going forward.
* **Investigate ways to remove double-parsing meta files**: Parsing meta
files currently involves parsing once with "minimal" versions of the
meta file to extract the type name of the loader/processor config, then
parsing again to parse the "full" meta. This is suboptimal. We should be
able to define custom deserializers that (1) assume the loader/processor
type name comes first (2) dynamically looks up the loader/processor
registrations to deserialize settings in-line (similar to components in
the bevy scene format). Another alternative: deserialize as dynamic
Reflect objects and then convert.
* **More runtime loading configuration**: Support using the Handle type
as a hint to select an asset loader (instead of relying on AssetPath
extensions)
* **More high level Processor trait implementations**: For example, it
might be worth adding support for arbitrary chains of "asset transforms"
that modify an in-memory asset representation between loading and
saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by
a `flip_normals` transform, then save the mesh to an efficient
compressed format).
* **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO
item](#draft-todo) for context)
* **Explore High Level Load Interfaces**: See [this
discussion](#discuss-on_loaded-high-level-interface) for one prototype.
* **Asset Streaming**: It would be great if we could stream Assets (ex:
stream a long video file piece by piece)
* **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than
they need to be because they have a Uuid enum variant. If we implement
an "id exchanging" system that trades Uuids for "efficient runtime ids",
we can cut down on the size of AssetIds, making them more efficient.
This has some open design questions, such as how to spawn entities with
"default" handle values (as these wouldn't have access to the exchange
api in the current system).
* **Asset Path Fixup Tooling**: Assets that inline asset paths inside
them will break when an asset moves. The asset system provides the
functionality to detect when paths break. We should build a framework
that enables formats to define "path migrations". This is especially
important for scene files. For editor-generated files, we should also
consider using UUIDs (see other bullet point) to avoid the need to
migrate in these cases.
---------
Co-authored-by: BeastLe9enD <beastle9end@outlook.de>
Co-authored-by: Mike <mike.hsu@gmail.com>
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2023-09-07 02:07:27 +00:00
doc-scrape-examples = true
2023-10-20 20:50:26 +00:00
required-features = [ "file_watcher" , "asset_processor" ]
Bevy Asset V2 (#8624)
# Bevy Asset V2 Proposal
## Why Does Bevy Need A New Asset System?
Asset pipelines are a central part of the gamedev process. Bevy's
current asset system is missing a number of features that make it
non-viable for many classes of gamedev. After plenty of discussions and
[a long community feedback
period](https://github.com/bevyengine/bevy/discussions/3972), we've
identified a number missing features:
* **Asset Preprocessing**: it should be possible to "preprocess" /
"compile" / "crunch" assets at "development time" rather than when the
game starts up. This enables offloading expensive work from deployed
apps, faster asset loading, less runtime memory usage, etc.
* **Per-Asset Loader Settings**: Individual assets cannot define their
own loaders that override the defaults. Additionally, they cannot
provide per-asset settings to their loaders. This is a huge limitation,
as many asset types don't provide all information necessary for Bevy
_inside_ the asset. For example, a raw PNG image says nothing about how
it should be sampled (ex: linear vs nearest).
* **Asset `.meta` files**: assets should have configuration files stored
adjacent to the asset in question, which allows the user to configure
asset-type-specific settings. These settings should be accessible during
the pre-processing phase. Modifying a `.meta` file should trigger a
re-processing / re-load of the asset. It should be possible to configure
asset loaders from the meta file.
* **Processed Asset Hot Reloading**: Changes to processed assets (or
their dependencies) should result in re-processing them and re-loading
the results in live Bevy Apps.
* **Asset Dependency Tracking**: The current bevy_asset has no good way
to wait for asset dependencies to load. It punts this as an exercise for
consumers of the loader apis, which is unreasonable and error prone.
There should be easy, ergonomic ways to wait for assets to load and
block some logic on an asset's entire dependency tree loading.
* **Runtime Asset Loading**: it should be (optionally) possible to load
arbitrary assets dynamically at runtime. This necessitates being able to
deploy and run the asset server alongside Bevy Apps on _all platforms_.
For example, we should be able to invoke the shader compiler at runtime,
stream scenes from sources like the internet, etc. To keep deployed
binaries (and startup times) small, the runtime asset server
configuration should be configurable with different settings compared to
the "pre processor asset server".
* **Multiple Backends**: It should be possible to load assets from
arbitrary sources (filesystems, the internet, remote asset serves, etc).
* **Asset Packing**: It should be possible to deploy assets in
compressed "packs", which makes it easier and more efficient to
distribute assets with Bevy Apps.
* **Asset Handoff**: It should be possible to hold a "live" asset
handle, which correlates to runtime data, without actually holding the
asset in memory. Ex: it must be possible to hold a reference to a GPU
mesh generated from a "mesh asset" without keeping the mesh data in CPU
memory
* **Per-Platform Processed Assets**: Different platforms and app
distributions have different capabilities and requirements. Some
platforms need lower asset resolutions or different asset formats to
operate within the hardware constraints of the platform. It should be
possible to define per-platform asset processing profiles. And it should
be possible to deploy only the assets required for a given platform.
These features have architectural implications that are significant
enough to require a full rewrite. The current Bevy Asset implementation
got us this far, but it can take us no farther. This PR defines a brand
new asset system that implements most of these features, while laying
the foundations for the remaining features to be built.
## Bevy Asset V2
Here is a quick overview of the features introduced in this PR.
* **Asset Preprocessing**: Preprocess assets at development time into
more efficient (and configurable) representations
* **Dependency Aware**: Dependencies required to process an asset are
tracked. If an asset's processed dependency changes, it will be
reprocessed
* **Hot Reprocessing/Reloading**: detect changes to asset source files,
reprocess them if they have changed, and then hot-reload them in Bevy
Apps.
* **Only Process Changes**: Assets are only re-processed when their
source file (or meta file) has changed. This uses hashing and timestamps
to avoid processing assets that haven't changed.
* **Transactional and Reliable**: Uses write-ahead logging (a technique
commonly used by databases) to recover from crashes / forced-exits.
Whenever possible it avoids full-reprocessing / only uncompleted
transactions will be reprocessed. When the processor is running in
parallel with a Bevy App, processor asset writes block Bevy App asset
reads. Reading metadata + asset bytes is guaranteed to be transactional
/ correctly paired.
* **Portable / Run anywhere / Database-free**: The processor does not
rely on an in-memory database (although it uses some database techniques
for reliability). This is important because pretty much all in-memory
databases have unsupported platforms or build complications.
* **Configure Processor Defaults Per File Type**: You can say "use this
processor for all files of this type".
* **Custom Processors**: The `Processor` trait is flexible and
unopinionated. It can be implemented by downstream plugins.
* **LoadAndSave Processors**: Most asset processing scenarios can be
expressed as "run AssetLoader A, save the results using AssetSaver X,
and then load the result using AssetLoader B". For example, load this
png image using `PngImageLoader`, which produces an `Image` asset and
then save it using `CompressedImageSaver` (which also produces an
`Image` asset, but in a compressed format), which takes an `Image` asset
as input. This means if you have an `AssetLoader` for an asset, you are
already half way there! It also means that you can share AssetSavers
across multiple loaders. Because `CompressedImageSaver` accepts Bevy's
generic Image asset as input, it means you can also use it with some
future `JpegImageLoader`.
* **Loader and Saver Settings**: Asset Loaders and Savers can now define
their own settings types, which are passed in as input when an asset is
loaded / saved. Each asset can define its own settings.
* **Asset `.meta` files**: configure asset loaders, their settings,
enable/disable processing, and configure processor settings
* **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex:
if an asset contains a `Handle<Image>`) are tracked by the asset server.
An event is emitted when an asset and all of its dependencies have been
loaded
* **Unprocessed Asset Loading**: Assets do not require preprocessing.
They can be loaded directly. A processed asset is just a "normal" asset
with some extra metadata. Asset Loaders don't need to know or care about
whether or not an asset was processed.
* **Async Asset IO**: Asset readers/writers use async non-blocking
interfaces. Note that because Rust doesn't yet support async traits,
there is a bit of manual Boxing / Future boilerplate. This will
hopefully be removed in the near future when Rust gets async traits.
* **Pluggable Asset Readers and Writers**: Arbitrary asset source
readers/writers are supported, both by the processor and the asset
server.
* **Better Asset Handles**
* **Single Arc Tree**: Asset Handles now use a single arc tree that
represents the lifetime of the asset. This makes their implementation
simpler, more efficient, and allows us to cheaply attach metadata to
handles. Ex: the AssetPath of a handle is now directly accessible on the
handle itself!
* **Const Typed Handles**: typed handles can be constructed in a const
context. No more weird "const untyped converted to typed at runtime"
patterns!
* **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed
`Handle<T>` is now much smaller in memory and `AssetId<T>` is even
smaller.
* **Weak Handle Usage Reduction**: In general Handles are now considered
to be "strong". Bevy features that previously used "weak `Handle<T>`"
have been ported to `AssetId<T>`, which makes it statically clear that
the features do not hold strong handles (while retaining strong type
information). Currently Handle::Weak still exists, but it is very
possible that we can remove that entirely.
* **Efficient / Dense Asset Ids**: Assets now have efficient dense
runtime asset ids, which means we can avoid expensive hash lookups.
Assets are stored in Vecs instead of HashMaps. There are now typed and
untyped ids, which means we no longer need to store dynamic type
information in the ID for typed handles. "AssetPathId" (which was a
nightmare from a performance and correctness standpoint) has been
entirely removed in favor of dense ids (which are retrieved for a path
on load)
* **Direct Asset Loading, with Dependency Tracking**: Assets that are
defined at runtime can still have their dependencies tracked by the
Asset Server (ex: if you create a material at runtime, you can still
wait for its textures to load). This is accomplished via the (currently
optional) "asset dependency visitor" trait. This system can also be used
to define a set of assets to load, then wait for those assets to load.
* **Async folder loading**: Folder loading also uses this system and
immediately returns a handle to the LoadedFolder asset, which means
folder loading no longer blocks on directory traversals.
* **Improved Loader Interface**: Loaders now have a specific "top level
asset type", which makes returning the top-level asset simpler and
statically typed.
* **Basic Image Settings and Processing**: Image assets can now be
processed into the gpu-friendly Basic Universal format. The ImageLoader
now has a setting to define what format the image should be loaded as.
Note that this is just a minimal MVP ... plenty of additional work to do
here. To demo this, enable the `basis-universal` feature and turn on
asset processing.
* **Simpler Audio Play / AudioSink API**: Asset handle providers are
cloneable, which means the Audio resource can mint its own handles. This
means you can now do `let sink_handle = audio.play(music)` instead of
`let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that
this might still be replaced by
https://github.com/bevyengine/bevy/pull/8424.
**Removed Handle Casting From Engine Features**: Ex: FontAtlases no
longer use casting between handle types
## Using The New Asset System
### Normal Unprocessed Asset Loading
By default the `AssetPlugin` does not use processing. It behaves pretty
much the same way as the old system.
If you are defining a custom asset, first derive `Asset`:
```rust
#[derive(Asset)]
struct Thing {
value: String,
}
```
Initialize the asset:
```rust
app.init_asset:<Thing>()
```
Implement a new `AssetLoader` for it:
```rust
#[derive(Default)]
struct ThingLoader;
#[derive(Serialize, Deserialize, Default)]
pub struct ThingSettings {
some_setting: bool,
}
impl AssetLoader for ThingLoader {
type Asset = Thing;
type Settings = ThingSettings;
fn load<'a>(
&'a self,
reader: &'a mut Reader,
settings: &'a ThingSettings,
load_context: &'a mut LoadContext,
) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> {
Box::pin(async move {
let mut bytes = Vec::new();
reader.read_to_end(&mut bytes).await?;
// convert bytes to value somehow
Ok(Thing {
value
})
})
}
fn extensions(&self) -> &[&str] {
&["thing"]
}
}
```
Note that this interface will get much cleaner once Rust gets support
for async traits. `Reader` is an async futures_io::AsyncRead. You can
stream bytes as they come in or read them all into a `Vec<u8>`,
depending on the context. You can use `let handle =
load_context.load(path)` to kick off a dependency load, retrieve a
handle, and register the dependency for the asset.
Then just register the loader in your Bevy app:
```rust
app.init_asset_loader::<ThingLoader>()
```
Now just add your `Thing` asset files into the `assets` folder and load
them like this:
```rust
fn system(asset_server: Res<AssetServer>) {
let handle = Handle<Thing> = asset_server.load("cool.thing");
}
```
You can check load states directly via the asset server:
```rust
if asset_server.load_state(&handle) == LoadState::Loaded { }
```
You can also listen for events:
```rust
fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) {
for event in events.iter() {
if event.is_loaded_with_dependencies(&handle) {
}
}
}
```
Note the new `AssetEvent::LoadedWithDependencies`, which only fires when
the asset is loaded _and_ all dependencies (and their dependencies) have
loaded.
Unlike the old asset system, for a given asset path all `Handle<T>`
values point to the same underlying Arc. This means Handles can cheaply
hold more asset information, such as the AssetPath:
```rust
// prints the AssetPath of the handle
info!("{:?}", handle.path())
```
### Processed Assets
Asset processing can be enabled via the `AssetPlugin`. When developing
Bevy Apps with processed assets, do this:
```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))
```
This runs the `AssetProcessor` in the background with hot-reloading. It
reads assets from the `assets` folder, processes them, and writes them
to the `.imported_assets` folder. Asset loads in the Bevy App will wait
for a processed version of the asset to become available. If an asset in
the `assets` folder changes, it will be reprocessed and hot-reloaded in
the Bevy App.
When deploying processed Bevy apps, do this:
```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed()))
```
This does not run the `AssetProcessor` in the background. It behaves
like `AssetPlugin::unprocessed()`, but reads assets from
`.imported_assets`.
When the `AssetProcessor` is running, it will populate sibling `.meta`
files for assets in the `assets` folder. Meta files for assets that do
not have a processor configured look like this:
```rust
(
meta_format_version: "1.0",
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: FromExtension,
),
),
)
```
This is metadata for an image asset. For example, if you have
`assets/my_sprite.png`, this could be the metadata stored at
`assets/my_sprite.png.meta`. Meta files are totally optional. If no
metadata exists, the default settings will be used.
In short, this file says "load this asset with the ImageLoader and use
the file extension to determine the image type". This type of meta file
is supported in all AssetPlugin modes. If in `Unprocessed` mode, the
asset (with the meta settings) will be loaded directly. If in
`ProcessedDev` mode, the asset file will be copied directly to the
`.imported_assets` folder. The meta will also be copied directly to the
`.imported_assets` folder, but with one addition:
```rust
(
meta_format_version: "1.0",
processed_info: Some((
hash: 12415480888597742505,
full_hash: 14344495437905856884,
process_dependencies: [],
)),
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: FromExtension,
),
),
)
```
`processed_info` contains `hash` (a direct hash of the asset and meta
bytes), `full_hash` (a hash of `hash` and the hashes of all
`process_dependencies`), and `process_dependencies` (the `path` and
`full_hash` of every process_dependency). A "process dependency" is an
asset dependency that is _directly_ used when processing the asset.
Images do not have process dependencies, so this is empty.
When the processor is enabled, you can use the `Process` metadata
config:
```rust
(
meta_format_version: "1.0",
asset: Process(
processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>",
settings: (
loader_settings: (
format: FromExtension,
),
saver_settings: (
generate_mipmaps: true,
),
),
),
)
```
This configures the asset to use the `LoadAndSave` processor, which runs
an AssetLoader and feeds the result into an AssetSaver (which saves the
given Asset and defines a loader to load it with). (for terseness
LoadAndSave will likely get a shorter/friendlier type name when [Stable
Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common
processor type, but arbitrary processors are supported.
`CompressedImageSaver` saves an `Image` in the Basis Universal format
and configures the ImageLoader to load it as basis universal. The
`AssetProcessor` will read this meta, run it through the LoadAndSave
processor, and write the basis-universal version of the image to
`.imported_assets`. The final metadata will look like this:
```rust
(
meta_format_version: "1.0",
processed_info: Some((
hash: 905599590923828066,
full_hash: 9948823010183819117,
process_dependencies: [],
)),
asset: Load(
loader: "bevy_render::texture::image_loader::ImageLoader",
settings: (
format: Format(Basis),
),
),
)
```
To try basis-universal processing out in Bevy examples, (for example
`sprite.rs`), change `add_plugins(DefaultPlugins)` to
`add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run
with the `basis-universal` feature enabled: `cargo run
--features=basis-universal --example sprite`.
To create a custom processor, there are two main paths:
1. Use the `LoadAndSave` processor with an existing `AssetLoader`.
Implement the `AssetSaver` trait, register the processor using
`asset_processor.register_processor::<LoadAndSave<ImageLoader,
CompressedImageSaver>>(image_saver.into())`.
2. Implement the `Process` trait directly and register it using:
`asset_processor.register_processor(thing_processor)`.
You can configure default processors for file extensions like this:
```rust
asset_processor.set_default_processor::<ThingProcessor>("thing")
```
There is one more metadata type to be aware of:
```rust
(
meta_format_version: "1.0",
asset: Ignore,
)
```
This will ignore the asset during processing / prevent it from being
written to `.imported_assets`.
The AssetProcessor stores a transaction log at `.imported_assets/log`
and uses it to gracefully recover from unexpected stops. This means you
can force-quit the processor (and Bevy Apps running the processor in
parallel) at arbitrary times!
`.imported_assets` is "local state". It should _not_ be checked into
source control. It should also be considered "read only". In practice,
you _can_ modify processed assets and processed metadata if you really
need to test something. But those modifications will not be represented
in the hashes of the assets, so the processed state will be "out of
sync" with the source assets. The processor _will not_ fix this for you.
Either revert the change after you have tested it, or delete the
processed files so they can be re-populated.
## Open Questions
There are a number of open questions to be discussed. We should decide
if they need to be addressed in this PR and if so, how we will address
them:
### Implied Dependencies vs Dependency Enumeration
There are currently two ways to populate asset dependencies:
* **Implied via AssetLoaders**: if an AssetLoader loads an asset (and
retrieves a handle), a dependency is added to the list.
* **Explicit via the optional Asset::visit_dependencies**: if
`server.load_asset(my_asset)` is called, it will call
`my_asset.visit_dependencies`, which will grab dependencies that have
been manually defined for the asset via the Asset trait impl (which can
be derived).
This means that defining explicit dependencies is optional for "loaded
assets". And the list of dependencies is always accurate because loaders
can only produce Handles if they register dependencies. If an asset was
loaded with an AssetLoader, it only uses the implied dependencies. If an
asset was created at runtime and added with
`asset_server.load_asset(MyAsset)`, it will use
`Asset::visit_dependencies`.
However this can create a behavior mismatch between loaded assets and
equivalent "created at runtime" assets if `Assets::visit_dependencies`
doesn't exactly match the dependencies produced by the AssetLoader. This
behavior mismatch can be resolved by completely removing "implied loader
dependencies" and requiring `Asset::visit_dependencies` to supply
dependency data. But this creates two problems:
* It makes defining loaded assets harder and more error prone: Devs must
remember to manually annotate asset dependencies with `#[dependency]`
when deriving `Asset`. For more complicated assets (such as scenes), the
derive likely wouldn't be sufficient and a manual `visit_dependencies`
impl would be required.
* Removes the ability to immediately kick off dependency loads: When
AssetLoaders retrieve a Handle, they also immediately kick off an asset
load for the handle, which means it can start loading in parallel
_before_ the asset finishes loading. For large assets, this could be
significant. (although this could be mitigated for processed assets if
we store dependencies in the processed meta file and load them ahead of
time)
### Eager ProcessorDev Asset Loading
I made a controversial call in the interest of fast startup times ("time
to first pixel") for the "processor dev mode configuration". When
initializing the AssetProcessor, current processed versions of unchanged
assets are yielded immediately, even if their dependencies haven't been
checked yet for reprocessing. This means that
non-current-state-of-filesystem-but-previously-valid assets might be
returned to the App first, then hot-reloaded if/when their dependencies
change and the asset is reprocessed.
Is this behavior desirable? There is largely one alternative: do not
yield an asset from the processor to the app until all of its
dependencies have been checked for changes. In some common cases (load
dependency has not changed since last run) this will increase startup
time. The main question is "by how much" and is that slower startup time
worth it in the interest of only yielding assets that are true to the
current state of the filesystem. Should this be configurable? I'm
starting to think we should only yield an asset after its (historical)
dependencies have been checked for changes + processed as necessary, but
I'm curious what you all think.
### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs?
In this implementation AssetPaths are the only canonical asset
identifier (just like the previous Bevy Asset system and Godot). Moving
assets will result in re-scans (and currently reprocessing, although
reprocessing can easily be avoided with some changes). Asset
renames/moves will break code and assets that rely on specific paths,
unless those paths are fixed up.
Do we want / need "stable asset uuids"? Introducing them is very
possible:
1. Generate a UUID and include it in .meta files
2. Support UUID in AssetPath
3. Generate "asset indices" which are loaded on startup and map UUIDs to
paths.
4 (maybe). Consider only supporting UUIDs for processed assets so we can
generate quick-to-load indices instead of scanning meta files.
The main "pro" is that assets referencing UUIDs don't need to be
migrated when a path changes. The main "con" is that UUIDs cannot be
"lazily resolved" like paths. They need a full view of all assets to
answer the question "does this UUID exist". Which means UUIDs require
the AssetProcessor to fully finish startup scans before saying an asset
doesnt exist. And they essentially require asset pre-processing to use
in apps, because scanning all asset metadata files at runtime to resolve
a UUID is not viable for medium-to-large apps. It really requires a
pre-generated UUID index, which must be loaded before querying for
assets.
I personally think this should be investigated in a separate PR. Paths
aren't going anywhere ... _everyone_ uses filesystems (and
filesystem-like apis) to manage their asset source files. I consider
them permanent canonical asset information. Additionally, they behave
well for both processed and unprocessed asset modes. Given that Bevy is
supporting both, this feels like the right canonical ID to start with.
UUIDS (and maybe even other indexed-identifier types) can be added later
as necessary.
### Folder / File Naming Conventions
All asset processing config currently lives in the `.imported_assets`
folder. The processor transaction log is in `.imported_assets/log`.
Processed assets are added to `.imported_assets/Default`, which will
make migrating to processed asset profiles (ex: a
`.imported_assets/Mobile` profile) a non-breaking change. It also allows
us to create top-level files like `.imported_assets/log` without it
being interpreted as an asset. Meta files currently have a `.meta`
suffix. Do we like these names and conventions?
### Should the `AssetPlugin::processed_dev` configuration enable
`watch_for_changes` automatically?
Currently it does (which I think makes sense), but it does make it the
only configuration that enables watch_for_changes by default.
### Discuss on_loaded High Level Interface:
This PR includes a very rough "proof of concept" `on_loaded` system
adapter that uses the `LoadedWithDependencies` event in combination with
`asset_server.load_asset` dependency tracking to support this pattern
```rust
fn main() {
App::new()
.init_asset::<MyAssets>()
.add_systems(Update, on_loaded(create_array_texture))
.run();
}
#[derive(Asset, Clone)]
struct MyAssets {
#[dependency]
picture_of_my_cat: Handle<Image>,
#[dependency]
picture_of_my_other_cat: Handle<Image>,
}
impl FromWorld for ArrayTexture {
fn from_world(world: &mut World) -> Self {
picture_of_my_cat: server.load("meow.png"),
picture_of_my_other_cat: server.load("meeeeeeeow.png"),
}
}
fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) {
commands.spawn(SpriteBundle {
texture: my_assets.picture_of_my_cat.clone(),
..default()
});
commands.spawn(SpriteBundle {
texture: my_assets.picture_of_my_other_cat.clone(),
..default()
});
}
```
The implementation is _very_ rough. And it is currently unsafe because
`bevy_ecs` doesn't expose some internals to do this safely from inside
`bevy_asset`. There are plenty of unanswered questions like:
* "do we add a Loadable" derive? (effectively automate the FromWorld
implementation above)
* Should `MyAssets` even be an Asset? (largely implemented this way
because it elegantly builds on `server.load_asset(MyAsset { .. })`
dependency tracking).
We should think hard about what our ideal API looks like (and if this is
a pattern we want to support). Not necessarily something we need to
solve in this PR. The current `on_loaded` impl should probably be
removed from this PR before merging.
## Clarifying Questions
### What about Assets as Entities?
This Bevy Asset V2 proposal implementation initially stored Assets as
ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used
`Entity` as the asset id and Asset values were just ECS components.
There are plenty of compelling reasons to do this:
1. Easier to inline assets in Bevy Scenes (as they are "just" normal
entities + components)
2. More flexible queries: use the power of the ECS to filter assets (ex:
`Query<Mesh, With<Tree>>`).
3. Extensible. Users can add arbitrary component data to assets.
4. Things like "component visualization tools" work out of the box to
visualize asset data.
However Assets as Entities has a ton of caveats right now:
* We need to be able to allocate entity ids without a direct World
reference (aka rework id allocator in Entities ... i worked around this
in my prototypes by just pre allocating big chunks of entities)
* We want asset change events in addition to ECS change tracking ... how
do we populate them when mutations can come from anywhere? Do we use
Changed queries? This would require iterating over the change data for
all assets every frame. Is this acceptable or should we implement a new
"event based" component change detection option?
* Reconciling manually created assets with asset-system managed assets
has some nuance (ex: are they "loaded" / do they also have that
component metadata?)
* "how do we handle "static" / default entity handles" (ties in to the
Entity Indices discussion:
https://github.com/bevyengine/bevy/discussions/8319). This is necessary
for things like "built in" assets and default handles in things like
SpriteBundle.
* Storing asset information as a component makes it easy to "invalidate"
asset state by removing the component (or forcing modifications).
Ideally we have ways to lock this down (some combination of Rust type
privacy and ECS validation)
In practice, how we store and identify assets is a reasonably
superficial change (porting off of Assets as Entities and implementing
dedicated storage + ids took less than a day). So once we sort out the
remaining challenges the flip should be straightforward. Additionally, I
do still have "Assets as Entities" in my commit history, so we can reuse
that work. I personally think "assets as entities" is a good endgame,
but it also doesn't provide _significant_ value at the moment and it
certainly isn't ready yet with the current state of things.
### Why not Distill?
[Distill](https://github.com/amethyst/distill) is a high quality fully
featured asset system built in Rust. It is very natural to ask "why not
just use Distill?".
It is also worth calling out that for awhile, [we planned on adopting
Distill / I signed off on
it](https://github.com/bevyengine/bevy/issues/708).
However I think Bevy has a number of constraints that make Distill
adoption suboptimal:
* **Architectural Simplicity:**
* Distill's processor requires an in-memory database (lmdb) and RPC
networked API (using Cap'n Proto). Each of these introduces API
complexity that increases maintenance burden and "code grokability".
Ignoring tests, documentation, and examples, Distill has 24,237 lines of
Rust code (including generated code for RPC + database interactions). If
you ignore generated code, it has 11,499 lines.
* Bevy builds the AssetProcessor and AssetServer using pluggable
AssetReader/AssetWriter Rust traits with simple io interfaces. They do
not necessitate databases or RPC interfaces (although Readers/Writers
could use them if that is desired). Bevy Asset V2 (at the time of
writing this PR) is 5,384 lines of Rust code (ignoring tests,
documentation, and examples). Grain of salt: Distill does have more
features currently (ex: Asset Packing, GUIDS, remote-out-of-process
asset processor). I do plan to implement these features in Bevy Asset V2
and I personally highly doubt they will meaningfully close the 6115
lines-of-code gap.
* This complexity gap (which while illustrated by lines of code, is much
bigger than just that) is noteworthy to me. Bevy should be hackable and
there are pillars of Distill that are very hard to understand and
extend. This is a matter of opinion (and Bevy Asset V2 also has
complicated areas), but I think Bevy Asset V2 is much more approachable
for the average developer.
* Necessary disclaimer: counting lines of code is an extremely rough
complexity metric. Read the code and form your own opinions.
* **Optional Asset Processing:** Not all Bevy Apps (or Bevy App
developers) need / want asset preprocessing. Processing increases the
complexity of the development environment by introducing things like
meta files, imported asset storage, running processors in the
background, waiting for processing to finish, etc. Distill _requires_
preprocessing to work. With Bevy Asset V2 processing is fully opt-in.
The AssetServer isn't directly aware of asset processors at all.
AssetLoaders only care about converting bytes to runtime Assets ... they
don't know or care if the bytes were pre-processed or not. Processing is
"elegantly" (forgive my self-congratulatory phrasing) layered on top and
builds on the existing Asset system primitives.
* **Direct Filesystem Access to Processed Asset State:** Distill stores
processed assets in a database. This makes debugging / inspecting the
processed outputs harder (either requires special tooling to query the
database or they need to be "deployed" to be inspected). Bevy Asset V2,
on the other hand, stores processed assets in the filesystem (by default
... this is configurable). This makes interacting with the processed
state more natural. Note that both Godot and Unity's new asset system
store processed assets in the filesystem.
* **Portability**: Because Distill's processor uses lmdb and RPC
networking, it cannot be run on certain platforms (ex: lmdb is a
non-rust dependency that cannot run on the web, some platforms don't
support running network servers). Bevy should be able to process assets
everywhere (ex: run the Bevy Editor on the web, compile + process
shaders on mobile, etc). Distill does partially mitigate this problem by
supporting "streaming" assets via the RPC protocol, but this is not a
full solve from my perspective. And Bevy Asset V2 can (in theory) also
stream assets (without requiring RPC, although this isn't implemented
yet)
Note that I _do_ still think Distill would be a solid asset system for
Bevy. But I think the approach in this PR is a better solve for Bevy's
specific "asset system requirements".
### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the
point?
"True async file io" has limited / spotty platform support. async-fs
(and the rust async ecosystem generally ... ex Tokio) currently use
async wrappers over std::fs that offload blocking requests to separate
threads. This may feel unsatisfying, but it _does_ still provide value
because it prevents our task pools from blocking on file system
operations (which would prevent progress when there are many tasks to
do, but all threads in a pool are currently blocking on file system
ops).
Additionally, using async APIs for our AssetReaders and AssetWriters
also provides value because we can later add support for "true async
file io" for platforms that support it. _And_ we can implement other
"true async io" asset backends (such as networked asset io).
## Draft TODO
- [x] Fill in missing filesystem event APIs: file removed event (which
is expressed as dangling RenameFrom events in some cases), file/folder
renamed event
- [x] Assets without loaders are not moved to the processed folder. This
breaks things like referenced `.bin` files for GLTFs. This should be
configurable per-non-asset-type.
- [x] Initial implementation of Reflect and FromReflect for Handle. The
"deserialization" parity bar is low here as this only worked with static
UUIDs in the old impl ... this is a non-trivial problem. Either we add a
Handle::AssetPath variant that gets "upgraded" to a strong handle on
scene load or we use a separate AssetRef type for Bevy scenes (which is
converted to a runtime Handle on load). This deserves its own discussion
in a different pr.
- [x] Populate read_asset_bytes hash when run by the processor (a bit of
a special case .. when run by the processor the processed meta will
contain the hash so we don't need to compute it on the spot, but we
don't want/need to read the meta when run by the main AssetServer)
- [x] Delay hot reloading: currently filesystem events are handled
immediately, which creates timing issues in some cases. For example hot
reloading images can sometimes break because the image isn't finished
writing. We should add a delay, likely similar to the [implementation in
this PR](https://github.com/bevyengine/bevy/pull/8503).
- [x] Port old platform-specific AssetIo implementations to the new
AssetReader interface (currently missing Android and web)
- [x] Resolve on_loaded unsafety (either by removing the API entirely or
removing the unsafe)
- [x] Runtime loader setting overrides
- [x] Remove remaining unwraps that should be error-handled. There are
number of TODOs here
- [x] Pretty AssetPath Display impl
- [x] Document more APIs
- [x] Resolve spurious "reloading because it has changed" events (to
repro run load_gltf with `processed_dev()`)
- [x] load_dependency hot reloading currently only works for processed
assets. If processing is disabled, load_dependency changes are not hot
reloaded.
- [x] Replace AssetInfo dependency load/fail counters with
`loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from
(potentially) breaking counters. Storing this will also enable
"dependency reloaded" events (see [Next Steps](#next-steps))
- [x] Re-add filesystem watcher cargo feature gate (currently it is not
optional)
- [ ] Migration Guide
- [ ] Changelog
## Followup TODO
- [ ] Replace "eager unchanged processed asset loading" behavior with
"don't returned unchanged processed asset until dependencies have been
checked".
- [ ] Add true `Ignore` AssetAction that does not copy the asset to the
imported_assets folder.
- [ ] Finish "live asset unloading" (ex: free up CPU asset memory after
uploading an image to the GPU), rethink RenderAssets, and port renderer
features. The `Assets` collection uses `Option<T>` for asset storage to
support its removal. (1) the Option might not actually be necessary ...
might be able to just remove from the collection entirely (2) need to
finalize removal apis
- [ ] Try replacing the "channel based" asset id recycling with
something a bit more efficient (ex: we might be able to use raw atomic
ints with some cleverness)
- [ ] Consider adding UUIDs to processed assets (scoped just to helping
identify moved assets ... not exposed to load queries ... see [Next
Steps](#next-steps))
- [ ] Store "last modified" source asset and meta timestamps in
processed meta files to enable skipping expensive hashing when the file
wasn't changed
- [ ] Fix "slow loop" handle drop fix
- [ ] Migrate to TypeName
- [x] Handle "loader preregistration". See #9429
## Next Steps
* **Configurable per-type defaults for AssetMeta**: It should be
possible to add configuration like "all png image meta should default to
using nearest sampling" (currently this hard-coded per-loader/processor
Settings::default() impls). Also see the "Folder Meta" bullet point.
* **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical
asset ids" discussion in [Open Questions](#open-questions) and the
relevant bullet point in [Draft TODO](#draft-todo). Even without
canonical ids, folder renames could avoid reprocessing in some cases.
* **Multiple Asset Sources**: Expand AssetPath to support "asset source
names" and support multiple AssetReaders in the asset server (ex:
`webserver://some_path/image.png` backed by an Http webserver
AssetReader). The "default" asset reader would use normal
`some_path/image.png` paths. Ideally this works in combination with
multiple AssetWatchers for hot-reloading
* **Stable Type Names**: this pr removes the TypeUuid requirement from
assets in favor of `std::any::type_name`. This makes defining assets
easier (no need to generate a new uuid / use weird proc macro syntax).
It also makes reading meta files easier (because things have "friendly
names"). We also use type names for components in scene files. If they
are good enough for components, they are good enough for assets. And
consistency across Bevy pillars is desirable. However,
`std::any::type_name` is not guaranteed to be stable (although in
practice it is). We've developed a [stable type
path](https://github.com/bevyengine/bevy/pull/7184) to resolve this,
which should be adopted when it is ready.
* **Command Line Interface**: It should be possible to run the asset
processor in a separate process from the command line. This will also
require building a network-server-backed AssetReader to communicate
between the app and the processor. We've been planning to build a "bevy
cli" for awhile. This seems like a good excuse to build it.
* **Asset Packing**: This is largely an additive feature, so it made
sense to me to punt this until we've laid the foundations in this PR.
* **Per-Platform Processed Assets**: It should be possible to generate
assets for multiple platforms by supporting multiple "processor
profiles" per asset (ex: compress with format X on PC and Y on iOS). I
think there should probably be arbitrary "profiles" (which can be
separate from actual platforms), which are then assigned to a given
platform when generating the final asset distribution for that platform.
Ex: maybe devs want a "Mobile" profile that is shared between iOS and
Android. Or a "LowEnd" profile shared between web and mobile.
* **Versioning and Migrations**: Assets, Loaders, Savers, and Processors
need to have versions to determine if their schema is valid. If an asset
/ loader version is incompatible with the current version expected at
runtime, the processor should be able to migrate them. I think we should
try using Bevy Reflect for this, as it would allow us to load the old
version as a dynamic Reflect type without actually having the old Rust
type. It would also allow us to define "patches" to migrate between
versions (Bevy Reflect devs are currently working on patching). The
`.meta` file already has its own format version. Migrating that to new
versions should also be possible.
* **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write
type) currently used by AssetPath can still result in String clones that
aren't actually necessary (cloning an Owned Cow clones the contents).
Bevy's asset system requires cloning AssetPaths in a number of places,
which result in actual clones of the internal Strings. This is not
efficient. AssetPath internals should be reworked to exhibit truer
cow-like-behavior that reduces String clones to the absolute minimum.
* **Consider processor-less processing**: In theory the AssetServer
could run processors "inline" even if the background AssetProcessor is
disabled. If we decide this is actually desirable, we could add this.
But I don't think its a priority in the short or medium term.
* **Pre-emptive dependency loading**: We could encode dependencies in
processed meta files, which could then be used by the Asset Server to
kick of dependency loads as early as possible (prior to starting the
actual asset load). Is this desirable? How much time would this save in
practice?
* **Optimize Processor With UntypedAssetIds**: The processor exclusively
uses AssetPath to identify assets currently. It might be possible to
swap these out for UntypedAssetIds in some places, which are smaller /
cheaper to hash and compare.
* **One to Many Asset Processing**: An asset source file that produces
many assets currently must be processed into a single "processed" asset
source. If labeled assets can be written separately they can each have
their own configured savers _and_ they could be loaded more granularly.
Definitely worth exploring!
* **Automatically Track "Runtime-only" Asset Dependencies**: Right now,
tracking "created at runtime" asset dependencies requires adding them
via `asset_server.load_asset(StandardMaterial::default())`. I think with
some cleverness we could also do this for
`materials.add(StandardMaterial::default())`, making tracking work
"everywhere". There are challenges here relating to change detection /
ensuring the server is made aware of dependency changes. This could be
expensive in some cases.
* **"Dependency Changed" events**: Some assets have runtime artifacts
that need to be re-generated when one of their dependencies change (ex:
regenerate a material's bind group when a Texture needs to change). We
are generating the dependency graph so we can definitely produce these
events. Buuuuut generating these events will have a cost / they could be
high frequency for some assets, so we might want this to be opt-in for
specific cases.
* **Investigate Storing More Information In Handles**: Handles can now
store arbitrary information, which makes it cheaper and easier to
access. How much should we move into them? Canonical asset load states
(via atomics)? (`handle.is_loaded()` would be very cool). Should we
store the entire asset and remove the `Assets<T>` collection?
(`Arc<RwLock<Option<Image>>>`?)
* **Support processing and loading files without extensions**: This is a
pretty arbitrary restriction and could be supported with very minimal
changes.
* **Folder Meta**: It would be nice if we could define per folder
processor configuration defaults (likely in a `.meta` or `.folder_meta`
file). Things like "default to linear filtering for all Images in this
folder".
* **Replace async_broadcast with event-listener?** This might be
approximately drop-in for some uses and it feels more light weight
* **Support Running the AssetProcessor on the Web**: Most of the hard
work is done here, but there are some easy straggling TODOs (make the
transaction log an interface instead of a direct file writer so we can
write a web storage backend, implement an AssetReader/AssetWriter that
reads/writes to something like LocalStorage).
* **Consider identifying and preventing circular dependencies**: This is
especially important for "processor dependencies", as processing will
silently never finish in these cases.
* **Built-in/Inlined Asset Hot Reloading**: This PR regresses
"built-in/inlined" asset hot reloading (previously provided by the
DebugAssetServer). I'm intentionally punting this because I think it can
be cleanly implemented with "multiple asset sources" by registering a
"debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset
paths) in combination with an AssetWatcher for that asset source and
support for "manually loading pats with asset bytes instead of
AssetReaders". The old DebugAssetServer was quite nasty and I'd love to
avoid that hackery going forward.
* **Investigate ways to remove double-parsing meta files**: Parsing meta
files currently involves parsing once with "minimal" versions of the
meta file to extract the type name of the loader/processor config, then
parsing again to parse the "full" meta. This is suboptimal. We should be
able to define custom deserializers that (1) assume the loader/processor
type name comes first (2) dynamically looks up the loader/processor
registrations to deserialize settings in-line (similar to components in
the bevy scene format). Another alternative: deserialize as dynamic
Reflect objects and then convert.
* **More runtime loading configuration**: Support using the Handle type
as a hint to select an asset loader (instead of relying on AssetPath
extensions)
* **More high level Processor trait implementations**: For example, it
might be worth adding support for arbitrary chains of "asset transforms"
that modify an in-memory asset representation between loading and
saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by
a `flip_normals` transform, then save the mesh to an efficient
compressed format).
* **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO
item](#draft-todo) for context)
* **Explore High Level Load Interfaces**: See [this
discussion](#discuss-on_loaded-high-level-interface) for one prototype.
* **Asset Streaming**: It would be great if we could stream Assets (ex:
stream a long video file piece by piece)
* **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than
they need to be because they have a Uuid enum variant. If we implement
an "id exchanging" system that trades Uuids for "efficient runtime ids",
we can cut down on the size of AssetIds, making them more efficient.
This has some open design questions, such as how to spawn entities with
"default" handle values (as these wouldn't have access to the exchange
api in the current system).
* **Asset Path Fixup Tooling**: Assets that inline asset paths inside
them will break when an asset moves. The asset system provides the
functionality to detect when paths break. We should build a framework
that enables formats to define "path migrations". This is especially
important for scene files. For editor-generated files, we should also
consider using UUIDs (see other bullet point) to avoid the need to
migrate in these cases.
---------
Co-authored-by: BeastLe9enD <beastle9end@outlook.de>
Co-authored-by: Mike <mike.hsu@gmail.com>
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2023-09-07 02:07:27 +00:00
[ package . metadata . example . asset_processing ]
name = "Asset Processing"
description = "Demonstrates how to process and load custom assets"
category = "Assets"
wasm = false
2021-05-23 20:13:55 +00:00
# Async Tasks
[ [ example ] ]
name = "async_compute"
path = "examples/async_tasks/async_compute.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-05-23 20:13:55 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . async_compute ]
name = "Async Compute"
description = "How to use `AsyncComputeTaskPool` to complete longer running tasks"
category = "Async Tasks"
wasm = false
2022-02-05 01:52:47 +00:00
[ [ example ] ]
name = "external_source_external_thread"
path = "examples/async_tasks/external_source_external_thread.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-02-05 01:52:47 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . external_source_external_thread ]
name = "External Source of Data on an External Thread"
description = "How to use an external thread to run an infinite task and communicate with a channel"
category = "Async Tasks"
wasm = false
2021-02-22 04:50:05 +00:00
# Audio
2020-07-16 20:46:51 +00:00
[ [ example ] ]
name = "audio"
path = "examples/audio/audio.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-07-16 20:46:51 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . audio ]
name = "Audio"
description = "Shows how to load and play an audio file"
category = "Audio"
wasm = true
2022-03-01 01:12:11 +00:00
[ [ example ] ]
name = "audio_control"
path = "examples/audio/audio_control.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-03-01 01:12:11 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . audio_control ]
name = "Audio Control"
description = "Shows how to load and play an audio file, and control how it's played"
category = "Audio"
wasm = true
2023-01-17 22:42:00 +00:00
[ [ example ] ]
name = "decodable"
path = "examples/audio/decodable.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-01-17 22:42:00 +00:00
[ package . metadata . example . decodable ]
name = "Decodable"
description = "Shows how to create and register a custom audio source by implementing the `Decodable` type."
category = "Audio"
wasm = true
2023-02-20 15:31:07 +00:00
[ [ example ] ]
name = "spatial_audio_2d"
path = "examples/audio/spatial_audio_2d.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-02-20 15:31:07 +00:00
[ package . metadata . example . spatial_audio_2d ]
name = "Spatial Audio 2D"
description = "Shows how to play spatial audio, and moving the emitter in 2D"
category = "Audio"
wasm = true
[ [ example ] ]
name = "spatial_audio_3d"
path = "examples/audio/spatial_audio_3d.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-02-20 15:31:07 +00:00
[ package . metadata . example . spatial_audio_3d ]
name = "Spatial Audio 3D"
description = "Shows how to play spatial audio, and moving the emitter in 3D"
category = "Audio"
wasm = true
2023-07-29 22:29:41 +00:00
[ [ example ] ]
name = "pitch"
path = "examples/audio/pitch.rs"
[ package . metadata . example . pitch ]
name = "Pitch"
description = "Shows how to directly play a simple pitch"
category = "Audio"
wasm = true
2021-02-22 04:50:05 +00:00
# Diagnostics
[ [ example ] ]
name = "log_diagnostics"
path = "examples/diagnostics/log_diagnostics.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-02-22 04:50:05 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . log_diagnostics ]
name = "Log Diagnostics"
description = "Add a plugin that logs diagnostics, like frames per second (FPS), to the console"
category = "Diagnostics"
wasm = true
2020-05-04 21:14:49 +00:00
[ [ example ] ]
name = "custom_diagnostic"
path = "examples/diagnostics/custom_diagnostic.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-05-04 21:14:49 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . custom_diagnostic ]
name = "Custom Diagnostic"
description = "Shows how to create a custom diagnostic"
category = "Diagnostics"
wasm = true
2021-02-22 04:50:05 +00:00
# ECS (Entity Component System)
2020-05-04 21:14:49 +00:00
[ [ example ] ]
2021-02-22 04:50:05 +00:00
name = "ecs_guide"
path = "examples/ecs/ecs_guide.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-05-04 21:14:49 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . ecs_guide ]
name = "ECS Guide"
description = "Full guide to Bevy's ECS"
category = "ECS (Entity Component System)"
wasm = false
2023-06-02 14:04:13 +00:00
[ package . metadata . example . apply_deferred ]
2023-02-28 00:19:44 +00:00
name = "Apply System Buffers"
2023-06-02 14:04:13 +00:00
description = "Show how to use `apply_deferred` system"
2023-02-28 00:19:44 +00:00
category = "ECS (Entity Component System)"
wasm = false
2020-12-31 22:29:08 +00:00
[ [ example ] ]
2021-07-12 20:09:43 +00:00
name = "component_change_detection"
path = "examples/ecs/component_change_detection.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-12-31 22:29:08 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . component_change_detection ]
name = "Component Change Detection"
description = "Change detection on components"
category = "ECS (Entity Component System)"
wasm = false
Implement `WorldQuery` derive macro (#2713)
# Objective
- Closes #786
- Closes #2252
- Closes #2588
This PR implements a derive macro that allows users to define their queries as structs with named fields.
## Example
```rust
#[derive(WorldQuery)]
#[world_query(derive(Debug))]
struct NumQuery<'w, T: Component, P: Component> {
entity: Entity,
u: UNumQuery<'w>,
generic: GenericQuery<'w, T, P>,
}
#[derive(WorldQuery)]
#[world_query(derive(Debug))]
struct UNumQuery<'w> {
u_16: &'w u16,
u_32_opt: Option<&'w u32>,
}
#[derive(WorldQuery)]
#[world_query(derive(Debug))]
struct GenericQuery<'w, T: Component, P: Component> {
generic: (&'w T, &'w P),
}
#[derive(WorldQuery)]
#[world_query(filter)]
struct NumQueryFilter<T: Component, P: Component> {
_u_16: With<u16>,
_u_32: With<u32>,
_or: Or<(With<i16>, Changed<u16>, Added<u32>)>,
_generic_tuple: (With<T>, With<P>),
_without: Without<Option<u16>>,
_tp: PhantomData<(T, P)>,
}
fn print_nums_readonly(query: Query<NumQuery<u64, i64>, NumQueryFilter<u64, i64>>) {
for num in query.iter() {
println!("{:#?}", num);
}
}
#[derive(WorldQuery)]
#[world_query(mutable, derive(Debug))]
struct MutNumQuery<'w, T: Component, P: Component> {
i_16: &'w mut i16,
i_32_opt: Option<&'w mut i32>,
}
fn print_nums(mut query: Query<MutNumQuery, NumQueryFilter<u64, i64>>) {
for num in query.iter_mut() {
println!("{:#?}", num);
}
}
```
## TODOs:
- [x] Add support for `&T` and `&mut T`
- [x] Test
- [x] Add support for optional types
- [x] Test
- [x] Add support for `Entity`
- [x] Test
- [x] Add support for nested `WorldQuery`
- [x] Test
- [x] Add support for tuples
- [x] Test
- [x] Add support for generics
- [x] Test
- [x] Add support for query filters
- [x] Test
- [x] Add support for `PhantomData`
- [x] Test
- [x] Refactor `read_world_query_field_type_info`
- [x] Properly document `readonly` attribute for nested queries and the static assertions that guarantee safety
- [x] Test that we never implement `ReadOnlyFetch` for types that need mutable access
- [x] Test that we insert static assertions for nested `WorldQuery` that a user marked as readonly
2022-02-24 00:19:49 +00:00
[ [ example ] ]
name = "custom_query_param"
path = "examples/ecs/custom_query_param.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Implement `WorldQuery` derive macro (#2713)
# Objective
- Closes #786
- Closes #2252
- Closes #2588
This PR implements a derive macro that allows users to define their queries as structs with named fields.
## Example
```rust
#[derive(WorldQuery)]
#[world_query(derive(Debug))]
struct NumQuery<'w, T: Component, P: Component> {
entity: Entity,
u: UNumQuery<'w>,
generic: GenericQuery<'w, T, P>,
}
#[derive(WorldQuery)]
#[world_query(derive(Debug))]
struct UNumQuery<'w> {
u_16: &'w u16,
u_32_opt: Option<&'w u32>,
}
#[derive(WorldQuery)]
#[world_query(derive(Debug))]
struct GenericQuery<'w, T: Component, P: Component> {
generic: (&'w T, &'w P),
}
#[derive(WorldQuery)]
#[world_query(filter)]
struct NumQueryFilter<T: Component, P: Component> {
_u_16: With<u16>,
_u_32: With<u32>,
_or: Or<(With<i16>, Changed<u16>, Added<u32>)>,
_generic_tuple: (With<T>, With<P>),
_without: Without<Option<u16>>,
_tp: PhantomData<(T, P)>,
}
fn print_nums_readonly(query: Query<NumQuery<u64, i64>, NumQueryFilter<u64, i64>>) {
for num in query.iter() {
println!("{:#?}", num);
}
}
#[derive(WorldQuery)]
#[world_query(mutable, derive(Debug))]
struct MutNumQuery<'w, T: Component, P: Component> {
i_16: &'w mut i16,
i_32_opt: Option<&'w mut i32>,
}
fn print_nums(mut query: Query<MutNumQuery, NumQueryFilter<u64, i64>>) {
for num in query.iter_mut() {
println!("{:#?}", num);
}
}
```
## TODOs:
- [x] Add support for `&T` and `&mut T`
- [x] Test
- [x] Add support for optional types
- [x] Test
- [x] Add support for `Entity`
- [x] Test
- [x] Add support for nested `WorldQuery`
- [x] Test
- [x] Add support for tuples
- [x] Test
- [x] Add support for generics
- [x] Test
- [x] Add support for query filters
- [x] Test
- [x] Add support for `PhantomData`
- [x] Test
- [x] Refactor `read_world_query_field_type_info`
- [x] Properly document `readonly` attribute for nested queries and the static assertions that guarantee safety
- [x] Test that we never implement `ReadOnlyFetch` for types that need mutable access
- [x] Test that we insert static assertions for nested `WorldQuery` that a user marked as readonly
2022-02-24 00:19:49 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . custom_query_param ]
name = "Custom Query Parameters"
description = "Groups commonly used compound queries and query filters into a single type"
category = "ECS (Entity Component System)"
wasm = false
Dynamic queries and builder API (#9774)
# Objective
Expand the existing `Query` API to support more dynamic use cases i.e.
scripting.
## Prior Art
- #6390
- #8308
- #10037
## Solution
- Create a `QueryBuilder` with runtime methods to define the set of
component accesses for a built query.
- Create new `WorldQueryData` implementations `FilteredEntityMut` and
`FilteredEntityRef` as variants of `EntityMut` and `EntityRef` that
provide run time checked access to the components included in a given
query.
- Add new methods to `Query` to create "query lens" with a subset of the
access of the initial query.
### Query Builder
The `QueryBuilder` API allows you to define a query at runtime. At it's
most basic use it will simply create a query with the corresponding type
signature:
```rust
let query = QueryBuilder::<Entity, With<A>>::new(&mut world).build();
// is equivalent to
let query = QueryState::<Entity, With<A>>::new(&mut world);
```
Before calling `.build()` you also have the opportunity to add
additional accesses and filters. Here is a simple example where we add
additional filter terms:
```rust
let entity_a = world.spawn((A(0), B(0))).id();
let entity_b = world.spawn((A(0), C(0))).id();
let mut query_a = QueryBuilder::<Entity>::new(&mut world)
.with::<A>()
.without::<C>()
.build();
assert_eq!(entity_a, query_a.single(&world));
```
This alone is useful in that allows you to decide which archetypes your
query will match at runtime. However it is also very limited, consider a
case like the following:
```rust
let query_a = QueryBuilder::<&A>::new(&mut world)
// Add an additional access
.data::<&B>()
.build();
```
This will grant the query an additional read access to component B
however we have no way of accessing the data while iterating as the type
signature still only includes &A. For an even more concrete example of
this consider dynamic components:
```rust
let query_a = QueryBuilder::<Entity>::new(&mut world)
// Adding a filter is easy since it doesn't need be read later
.with_id(component_id_a)
// How do I access the data of this component?
.ref_id(component_id_b)
.build();
```
With this in mind the `QueryBuilder` API seems somewhat incomplete by
itself, we need some way method of accessing the components dynamically.
So here's one:
### Query Transmutation
If the problem is not having the component in the type signature why not
just add it? This PR also adds transmute methods to `QueryBuilder` and
`QueryState`. Here's a simple example:
```rust
world.spawn(A(0));
world.spawn((A(1), B(0)));
let mut query = QueryBuilder::<()>::new(&mut world)
.with::<B>()
.transmute::<&A>()
.build();
query.iter(&world).for_each(|a| assert_eq!(a.0, 1));
```
The `QueryState` and `QueryBuilder` transmute methods look quite similar
but are different in one respect. Transmuting a builder will always
succeed as it will just add the additional accesses needed for the new
terms if they weren't already included. Transmuting a `QueryState` will
panic in the case that the new type signature would give it access it
didn't already have, for example:
```rust
let query = QueryState::<&A, Option<&B>>::new(&mut world);
/// This is fine, the access for Option<&A> is less restrictive than &A
query.transmute::<Option<&A>>(&world);
/// Oh no, this would allow access to &B on entities that might not have it, so it panics
query.transmute::<&B>(&world);
/// This is right out
query.transmute::<&C>(&world);
```
This is quite an appealing API to also have available on `Query` however
it does pose one additional wrinkle: In order to to change the iterator
we need to create a new `QueryState` to back it. `Query` doesn't own
it's own state though, it just borrows it, so we need a place to borrow
it from. This is why `QueryLens` exists, it is a place to store the new
state so it can be borrowed when you call `.query()` leaving you with an
API like this:
```rust
fn function_that_takes_a_query(query: &Query<&A>) {
// ...
}
fn system(query: Query<(&A, &B)>) {
let lens = query.transmute_lens::<&A>();
let q = lens.query();
function_that_takes_a_query(&q);
}
```
Now you may be thinking: Hey, wait a second, you introduced the problem
with dynamic components and then described a solution that only works
for static components! Ok, you got me, I guess we need a bit more:
### Filtered Entity References
Currently the only way you can access dynamic components on entities
through a query is with either `EntityMut` or `EntityRef`, however these
can access all components and so conflict with all other accesses. This
PR introduces `FilteredEntityMut` and `FilteredEntityRef` as
alternatives that have additional runtime checking to prevent accessing
components that you shouldn't. This way you can build a query with a
`QueryBuilder` and actually access the components you asked for:
```rust
let mut query = QueryBuilder::<FilteredEntityRef>::new(&mut world)
.ref_id(component_id_a)
.with(component_id_b)
.build();
let entity_ref = query.single(&world);
// Returns Some(Ptr) as we have that component and are allowed to read it
let a = entity_ref.get_by_id(component_id_a);
// Will return None even though the entity does have the component, as we are not allowed to read it
let b = entity_ref.get_by_id(component_id_b);
```
For the most part these new structs have the exact same methods as their
non-filtered equivalents.
Putting all of this together we can do some truly dynamic ECS queries,
check out the `dynamic` example to see it in action:
```
Commands:
comp, c Create new components
spawn, s Spawn entities
query, q Query for entities
Enter a command with no parameters for usage.
> c A, B, C, Data 4
Component A created with id: 0
Component B created with id: 1
Component C created with id: 2
Component Data created with id: 3
> s A, B, Data 1
Entity spawned with id: 0v0
> s A, C, Data 0
Entity spawned with id: 1v0
> q &Data
0v0: Data: [1, 0, 0, 0]
1v0: Data: [0, 0, 0, 0]
> q B, &mut Data
0v0: Data: [2, 1, 1, 1]
> q B || C, &Data
0v0: Data: [2, 1, 1, 1]
1v0: Data: [0, 0, 0, 0]
```
## Changelog
- Add new `transmute_lens` methods to `Query`.
- Add new types `QueryBuilder`, `FilteredEntityMut`, `FilteredEntityRef`
and `QueryLens`
- `update_archetype_component_access` has been removed, archetype
component accesses are now determined by the accesses set in
`update_component_access`
- Added method `set_access` to `WorldQuery`, this is called before
`update_component_access` for queries that have a restricted set of
accesses, such as those built by `QueryBuilder` or `QueryLens`. This is
primarily used by the `FilteredEntity*` variants and has an empty trait
implementation.
- Added method `get_state` to `WorldQuery` as a fallible version of
`init_state` when you don't have `&mut World` access.
## Future Work
Improve performance of `FilteredEntityMut` and `FilteredEntityRef`,
currently they have to determine the accesses a query has in a given
archetype during iteration which is far from ideal, especially since we
already did the work when matching the archetype in the first place. To
avoid making more internal API changes I have left it out of this PR.
---------
Co-authored-by: Mike Hsu <mike.hsu@gmail.com>
2024-01-16 19:16:49 +00:00
[ [ example ] ]
name = "dynamic"
path = "examples/ecs/dynamic.rs"
doc-scrape-examples = true
[ package . metadata . example . dynamic ]
name = "Dynamic ECS"
description = "Dynamically create components, spawn entities with those components and query those components"
category = "ECS (Entity Component System)"
wasm = false
2020-05-01 20:12:47 +00:00
[ [ example ] ]
name = "event"
path = "examples/ecs/event.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-05-01 20:12:47 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . event ]
name = "Event"
description = "Illustrates event creation, activation, and reception"
category = "ECS (Entity Component System)"
wasm = false
2020-12-13 02:04:42 +00:00
[ [ example ] ]
name = "fixed_timestep"
path = "examples/ecs/fixed_timestep.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-12-13 02:04:42 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . fixed_timestep ]
name = "Fixed Timestep"
description = "Shows how to create systems that run every fixed timestep, rather than every tick"
category = "ECS (Entity Component System)"
wasm = false
2022-02-08 16:24:46 +00:00
[ [ example ] ]
name = "generic_system"
path = "examples/ecs/generic_system.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-02-08 16:24:46 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . generic_system ]
name = "Generic System"
description = "Shows how to create systems that can be reused with different types"
category = "ECS (Entity Component System)"
wasm = false
2021-02-22 04:50:05 +00:00
[ [ example ] ]
name = "hierarchy"
path = "examples/ecs/hierarchy.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-02-22 04:50:05 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . hierarchy ]
name = "Hierarchy"
description = "Creates a hierarchy of parents and children entities"
category = "ECS (Entity Component System)"
wasm = false
Add a method `iter_combinations` on query to iterate over combinations of query results (#1763)
Related to [discussion on discord](https://discord.com/channels/691052431525675048/742569353878437978/824731187724681289)
With const generics, it is now possible to write generic iterator over multiple entities at once.
This enables patterns of query iterations like
```rust
for [e1, e2, e3] in query.iter_combinations() {
// do something with relation of all three entities
}
```
The compiler is able to infer the correct iterator for given size of array, so either of those work
```rust
for [e1, e2] in query.iter_combinations() { ... }
for [e1, e2, e3] in query.iter_combinations() { ... }
```
This feature can be very useful for systems like collision detection.
When you ask for permutations of size K of N entities:
- if K == N, you get one result of all entities
- if K < N, you get all possible subsets of N with size K, without repetition
- if K > N, the result set is empty (no permutation of size K exist)
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-05-17 23:33:47 +00:00
[ [ example ] ]
name = "iter_combinations"
path = "examples/ecs/iter_combinations.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Add a method `iter_combinations` on query to iterate over combinations of query results (#1763)
Related to [discussion on discord](https://discord.com/channels/691052431525675048/742569353878437978/824731187724681289)
With const generics, it is now possible to write generic iterator over multiple entities at once.
This enables patterns of query iterations like
```rust
for [e1, e2, e3] in query.iter_combinations() {
// do something with relation of all three entities
}
```
The compiler is able to infer the correct iterator for given size of array, so either of those work
```rust
for [e1, e2] in query.iter_combinations() { ... }
for [e1, e2, e3] in query.iter_combinations() { ... }
```
This feature can be very useful for systems like collision detection.
When you ask for permutations of size K of N entities:
- if K == N, you get one result of all entities
- if K < N, you get all possible subsets of N with size K, without repetition
- if K > N, the result set is empty (no permutation of size K exist)
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-05-17 23:33:47 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . iter_combinations ]
name = "Iter Combinations"
description = "Shows how to iterate over combinations of query results"
category = "ECS (Entity Component System)"
wasm = true
2023-09-19 20:17:05 +00:00
[ [ example ] ]
name = "one_shot_systems"
path = "examples/ecs/one_shot_systems.rs"
[ package . metadata . example . one_shot_systems ]
name = "One Shot Systems"
description = "Shows how to flexibly run systems without scheduling them"
category = "ECS (Entity Component System)"
wasm = false
2021-02-22 04:50:05 +00:00
[ [ example ] ]
name = "parallel_query"
path = "examples/ecs/parallel_query.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-02-22 04:50:05 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . parallel_query ]
name = "Parallel Query"
description = "Illustrates parallel queries with `ParallelIterator`"
category = "ECS (Entity Component System)"
wasm = false
2021-02-22 04:50:05 +00:00
[ [ example ] ]
name = "removal_detection"
path = "examples/ecs/removal_detection.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-02-22 04:50:05 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . removal_detection ]
name = "Removal Detection"
Migrate engine to Schedule v3 (#7267)
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR.
# Objective
- Followup #6587.
- Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45
## Solution
- [x] Remove old scheduling module
- [x] Migrate new methods to no longer use extension methods
- [x] Fix compiler errors
- [x] Fix benchmarks
- [x] Fix examples
- [x] Fix docs
- [x] Fix tests
## Changelog
### Added
- a large number of methods on `App` to work with schedules ergonomically
- the `CoreSchedule` enum
- `App::add_extract_system` via the `RenderingAppExtension` trait extension method
- the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms`
### Removed
- stages, and all code that mentions stages
- states have been dramatically simplified, and no longer use a stack
- `RunCriteriaLabel`
- `AsSystemLabel` trait
- `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition)
- systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world
- `RunCriteriaLabel`
- `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear.
### Changed
- `System::default_labels` is now `System::default_system_sets`.
- `App::add_default_labels` is now `App::add_default_sets`
- `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet`
- `App::add_system_set` was renamed to `App::add_systems`
- The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum
- `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)`
- `SystemLabel` trait was replaced by `SystemSet`
- `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>`
- The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq`
- Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria.
- Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied.
- `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`.
- `bevy_pbr::add_clusters` is no longer an exclusive system
- the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling`
- `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread.
## Migration Guide
- Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)`
- Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed.
- The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved.
- Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior.
- Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you.
- For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with
- `add_system(my_system.in_set(CoreSet::PostUpdate)`
- When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages
- Run criteria have been renamed to run conditions. These can now be combined with each other and with states.
- Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow.
- For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label.
- Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default.
- Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually.
- Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior.
- the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity
- `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl.
- Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings.
- `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds.
- `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool.
- States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set`
## TODO
- [x] remove dead methods on App and World
- [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule`
- [x] avoid adding the default system set at inappropriate times
- [x] remove any accidental cycles in the default plugins schedule
- [x] migrate benchmarks
- [x] expose explicit labels for the built-in command flush points
- [x] migrate engine code
- [x] remove all mentions of stages from the docs
- [x] verify docs for States
- [x] fix uses of exclusive systems that use .end / .at_start / .before_commands
- [x] migrate RenderStage and AssetStage
- [x] migrate examples
- [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub)
- [x] ensure that on_enter schedules are run at least once before the main app
- [x] re-enable opt-in to execution order ambiguities
- [x] revert change to `update_bounds` to ensure it runs in `PostUpdate`
- [x] test all examples
- [x] unbreak directional lights
- [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples)
- [x] game menu example shows loading screen and menu simultaneously
- [x] display settings menu is a blank screen
- [x] `without_winit` example panics
- [x] ensure all tests pass
- [x] SubApp doc test fails
- [x] runs_spawn_local tasks fails
- [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120)
## Points of Difficulty and Controversy
**Reviewers, please give feedback on these and look closely**
1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup.
2. The outer schedule controls which schedule is run when `App::update` is called.
3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes.
4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset.
5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order
6. Implemetnation strategy for fixed timesteps
7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks.
8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements.
## Future Work (ideally before 0.10)
- Rename schedule_v3 module to schedule or scheduling
- Add a derive macro to states, and likely a `EnumIter` trait of some form
- Figure out what exactly to do with the "systems added should basically work by default" problem
- Improve ergonomics for working with fixed timesteps and states
- Polish FixedTime API to match Time
- Rebase and merge #7415
- Resolve all internal ambiguities (blocked on better tools, especially #7442)
- Add "base sets" to replace the removed default sets.
2023-02-06 02:04:50 +00:00
description = "Query for entities that had a specific component removed earlier in the current frame"
2022-06-25 20:23:24 +00:00
category = "ECS (Entity Component System)"
wasm = false
2023-02-18 05:32:59 +00:00
[ [ example ] ]
name = "run_conditions"
path = "examples/ecs/run_conditions.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-02-18 05:32:59 +00:00
[ package . metadata . example . run_conditions ]
name = "Run Conditions"
description = "Run systems only when one or multiple conditions are met"
category = "ECS (Entity Component System)"
wasm = false
2020-05-01 20:12:47 +00:00
[ [ example ] ]
name = "startup_system"
path = "examples/ecs/startup_system.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-05-01 20:12:47 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . startup_system ]
name = "Startup System"
description = "Demonstrates a startup system (one that runs once when the app starts up)"
category = "ECS (Entity Component System)"
wasm = false
2020-12-13 02:04:42 +00:00
[ [ example ] ]
name = "state"
path = "examples/ecs/state.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-12-13 02:04:42 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . state ]
name = "State"
description = "Illustrates how to use States to control transitioning from a Menu state to an InGame state"
category = "ECS (Entity Component System)"
wasm = false
2020-11-17 02:18:00 +00:00
[ [ example ] ]
2022-10-11 15:21:12 +00:00
name = "system_piping"
path = "examples/ecs/system_piping.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-11-17 02:18:00 +00:00
2022-10-11 15:21:12 +00:00
[ package . metadata . example . system_piping ]
name = "System Piping"
description = "Pipe the output of one system into a second, allowing you to handle any errors gracefully"
2022-06-25 20:23:24 +00:00
category = "ECS (Entity Component System)"
wasm = false
2022-04-27 18:02:07 +00:00
[ [ example ] ]
name = "system_closure"
path = "examples/ecs/system_closure.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-04-27 18:02:07 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . system_closure ]
name = "System Closure"
description = "Show how to use closures as systems, and how to configure `Local` variables by capturing external state"
category = "ECS (Entity Component System)"
wasm = false
2021-03-03 03:11:11 +00:00
[ [ example ] ]
name = "system_param"
path = "examples/ecs/system_param.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-03-03 03:11:11 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . system_param ]
name = "System Parameter"
description = "Illustrates creating custom system parameters with `SystemParam`"
category = "ECS (Entity Component System)"
wasm = false
2023-10-28 16:05:03 +00:00
# Time
Unify `FixedTime` and `Time` while fixing several problems (#8964)
# Objective
Current `FixedTime` and `Time` have several problems. This pull aims to
fix many of them at once.
- If there is a longer pause between app updates, time will jump forward
a lot at once and fixed time will iterate on `FixedUpdate` for a large
number of steps. If the pause is merely seconds, then this will just
mean jerkiness and possible unexpected behaviour in gameplay. If the
pause is hours/days as with OS suspend, the game will appear to freeze
until it has caught up with real time.
- If calculating a fixed step takes longer than specified fixed step
period, the game will enter a death spiral where rendering each frame
takes longer and longer due to more and more fixed step updates being
run per frame and the game appears to freeze.
- There is no way to see current fixed step elapsed time inside fixed
steps. In order to track this, the game designer needs to add a custom
system inside `FixedUpdate` that calculates elapsed or step count in a
resource.
- Access to delta time inside fixed step is `FixedStep::period` rather
than `Time::delta`. This, coupled with the issue that `Time::elapsed`
isn't available at all for fixed steps, makes it that time requiring
systems are either implemented to be run in `FixedUpdate` or `Update`,
but rarely work in both.
- Fixes #8800
- Fixes #8543
- Fixes #7439
- Fixes #5692
## Solution
- Create a generic `Time<T>` clock that has no processing logic but
which can be instantiated for multiple usages. This is also exposed for
users to add custom clocks.
- Create three standard clocks, `Time<Real>`, `Time<Virtual>` and
`Time<Fixed>`, all of which contain their individual logic.
- Create one "default" clock, which is just `Time` (or `Time<()>`),
which will be overwritten from `Time<Virtual>` on each update, and
`Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do
not care specifically which time they track can work both in `Update`
and `FixedUpdate` without changes and the behaviour is intuitive.
- Add `max_delta` to virtual time update, which limits how much can be
added to virtual time by a single update. This fixes both the behaviour
after a long freeze, and also the death spiral by limiting how many
fixed timestep iterations there can be per update. Possible future work
could be adding `max_accumulator` to add a sort of "leaky bucket" time
processing to possibly smooth out jumps in time while keeping frame rate
stable.
- Many minor tweaks and clarifications to the time functions and their
documentation.
## Changelog
- `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are
moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match
`Time` API
- `FixedTime` is now `Time<Fixed>` and matches `Time` API.
- `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds.
- `Time` inside `FixedUpdate` now reflects fixed timestep time, making
systems portable between `Update ` and `FixedUpdate`.
- `Time::pause()`, `Time::set_relative_speed()` and related methods must
now be called as `Time<Virtual>::pause()` etc.
- There is a new `max_delta` setting in `Time<Virtual>` that limits how
much the clock can jump by a single update. The default value is 0.25
seconds.
- Removed `on_fixed_timer()` condition as `on_timer()` does the right
thing inside `FixedUpdate` now.
## Migration Guide
- Change all `Res<Time>` instances that access `raw_delta()`,
`raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`,
`elapsed()`, etc.
- Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>`
and use `delta()`.
- The default timestep has been changed from 60 Hz to 64 Hz. If you wish
to restore the old behaviour, use
`app.insert_resource(Time::<Fixed>::from_hz(60.0))`.
- Change `app.insert_resource(FixedTime::new(duration))` to
`app.insert_resource(Time::<Fixed>::from_duration(duration))`
- Change `app.insert_resource(FixedTime::new_from_secs(secs))` to
`app.insert_resource(Time::<Fixed>::from_seconds(secs))`
- Change `system.on_fixed_timer(duration)` to
`system.on_timer(duration)`. Timers in systems placed in `FixedUpdate`
schedule automatically use the fixed time clock.
- Change `ResMut<Time>` calls to `pause()`, `is_paused()`,
`set_relative_speed()` and related methods to `ResMut<Time<Virtual>>`
calls. The API is the same, with the exception that `relative_speed()`
will return the actual last ste relative speed, while
`effective_relative_speed()` returns 0.0 if the time is paused and
corresponds to the speed that was set when the update for the current
frame started.
## Todo
- [x] Update pull name and description
- [x] Top level documentation on usage
- [x] Fix examples
- [x] Decide on default `max_delta` value
- [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed`
good?
- [x] Decide if the three clock inner structures should be in prelude
- [x] Decide on best way to configure values at startup: is manually
inserting a new clock instance okay, or should there be config struct
separately?
- [x] Fix links in docs
- [x] Decide what should be public and what not
- [x] Decide how `wrap_period` should be handled when it is changed
- [x] ~~Add toggles to disable setting the clock as default?~~ No,
separate pull if needed.
- [x] Add tests
- [x] Reformat, ensure adheres to conventions etc.
- [x] Build documentation and see that it looks correct
## Contributors
Huge thanks to @alice-i-cecile and @maniwani while building this pull.
It was a shared effort!
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com>
Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
[ [ example ] ]
name = "time"
2023-10-28 16:05:03 +00:00
path = "examples/time/time.rs"
Unify `FixedTime` and `Time` while fixing several problems (#8964)
# Objective
Current `FixedTime` and `Time` have several problems. This pull aims to
fix many of them at once.
- If there is a longer pause between app updates, time will jump forward
a lot at once and fixed time will iterate on `FixedUpdate` for a large
number of steps. If the pause is merely seconds, then this will just
mean jerkiness and possible unexpected behaviour in gameplay. If the
pause is hours/days as with OS suspend, the game will appear to freeze
until it has caught up with real time.
- If calculating a fixed step takes longer than specified fixed step
period, the game will enter a death spiral where rendering each frame
takes longer and longer due to more and more fixed step updates being
run per frame and the game appears to freeze.
- There is no way to see current fixed step elapsed time inside fixed
steps. In order to track this, the game designer needs to add a custom
system inside `FixedUpdate` that calculates elapsed or step count in a
resource.
- Access to delta time inside fixed step is `FixedStep::period` rather
than `Time::delta`. This, coupled with the issue that `Time::elapsed`
isn't available at all for fixed steps, makes it that time requiring
systems are either implemented to be run in `FixedUpdate` or `Update`,
but rarely work in both.
- Fixes #8800
- Fixes #8543
- Fixes #7439
- Fixes #5692
## Solution
- Create a generic `Time<T>` clock that has no processing logic but
which can be instantiated for multiple usages. This is also exposed for
users to add custom clocks.
- Create three standard clocks, `Time<Real>`, `Time<Virtual>` and
`Time<Fixed>`, all of which contain their individual logic.
- Create one "default" clock, which is just `Time` (or `Time<()>`),
which will be overwritten from `Time<Virtual>` on each update, and
`Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do
not care specifically which time they track can work both in `Update`
and `FixedUpdate` without changes and the behaviour is intuitive.
- Add `max_delta` to virtual time update, which limits how much can be
added to virtual time by a single update. This fixes both the behaviour
after a long freeze, and also the death spiral by limiting how many
fixed timestep iterations there can be per update. Possible future work
could be adding `max_accumulator` to add a sort of "leaky bucket" time
processing to possibly smooth out jumps in time while keeping frame rate
stable.
- Many minor tweaks and clarifications to the time functions and their
documentation.
## Changelog
- `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are
moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match
`Time` API
- `FixedTime` is now `Time<Fixed>` and matches `Time` API.
- `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds.
- `Time` inside `FixedUpdate` now reflects fixed timestep time, making
systems portable between `Update ` and `FixedUpdate`.
- `Time::pause()`, `Time::set_relative_speed()` and related methods must
now be called as `Time<Virtual>::pause()` etc.
- There is a new `max_delta` setting in `Time<Virtual>` that limits how
much the clock can jump by a single update. The default value is 0.25
seconds.
- Removed `on_fixed_timer()` condition as `on_timer()` does the right
thing inside `FixedUpdate` now.
## Migration Guide
- Change all `Res<Time>` instances that access `raw_delta()`,
`raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`,
`elapsed()`, etc.
- Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>`
and use `delta()`.
- The default timestep has been changed from 60 Hz to 64 Hz. If you wish
to restore the old behaviour, use
`app.insert_resource(Time::<Fixed>::from_hz(60.0))`.
- Change `app.insert_resource(FixedTime::new(duration))` to
`app.insert_resource(Time::<Fixed>::from_duration(duration))`
- Change `app.insert_resource(FixedTime::new_from_secs(secs))` to
`app.insert_resource(Time::<Fixed>::from_seconds(secs))`
- Change `system.on_fixed_timer(duration)` to
`system.on_timer(duration)`. Timers in systems placed in `FixedUpdate`
schedule automatically use the fixed time clock.
- Change `ResMut<Time>` calls to `pause()`, `is_paused()`,
`set_relative_speed()` and related methods to `ResMut<Time<Virtual>>`
calls. The API is the same, with the exception that `relative_speed()`
will return the actual last ste relative speed, while
`effective_relative_speed()` returns 0.0 if the time is paused and
corresponds to the speed that was set when the update for the current
frame started.
## Todo
- [x] Update pull name and description
- [x] Top level documentation on usage
- [x] Fix examples
- [x] Decide on default `max_delta` value
- [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed`
good?
- [x] Decide if the three clock inner structures should be in prelude
- [x] Decide on best way to configure values at startup: is manually
inserting a new clock instance okay, or should there be config struct
separately?
- [x] Fix links in docs
- [x] Decide what should be public and what not
- [x] Decide how `wrap_period` should be handled when it is changed
- [x] ~~Add toggles to disable setting the clock as default?~~ No,
separate pull if needed.
- [x] Add tests
- [x] Reformat, ensure adheres to conventions etc.
- [x] Build documentation and see that it looks correct
## Contributors
Huge thanks to @alice-i-cecile and @maniwani while building this pull.
It was a shared effort!
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com>
Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
[ package . metadata . example . time ]
name = "Time handling"
description = "Explains how Time is handled in ECS"
2023-10-28 16:05:03 +00:00
category = "Time"
wasm = false
[ [ example ] ]
name = "virtual_time"
path = "examples/time/virtual_time.rs"
[ package . metadata . example . virtual_time ]
name = "Virtual time"
description = "Shows how `Time<Virtual>` can be used to pause, resume, slow down and speed up a game."
category = "Time"
Unify `FixedTime` and `Time` while fixing several problems (#8964)
# Objective
Current `FixedTime` and `Time` have several problems. This pull aims to
fix many of them at once.
- If there is a longer pause between app updates, time will jump forward
a lot at once and fixed time will iterate on `FixedUpdate` for a large
number of steps. If the pause is merely seconds, then this will just
mean jerkiness and possible unexpected behaviour in gameplay. If the
pause is hours/days as with OS suspend, the game will appear to freeze
until it has caught up with real time.
- If calculating a fixed step takes longer than specified fixed step
period, the game will enter a death spiral where rendering each frame
takes longer and longer due to more and more fixed step updates being
run per frame and the game appears to freeze.
- There is no way to see current fixed step elapsed time inside fixed
steps. In order to track this, the game designer needs to add a custom
system inside `FixedUpdate` that calculates elapsed or step count in a
resource.
- Access to delta time inside fixed step is `FixedStep::period` rather
than `Time::delta`. This, coupled with the issue that `Time::elapsed`
isn't available at all for fixed steps, makes it that time requiring
systems are either implemented to be run in `FixedUpdate` or `Update`,
but rarely work in both.
- Fixes #8800
- Fixes #8543
- Fixes #7439
- Fixes #5692
## Solution
- Create a generic `Time<T>` clock that has no processing logic but
which can be instantiated for multiple usages. This is also exposed for
users to add custom clocks.
- Create three standard clocks, `Time<Real>`, `Time<Virtual>` and
`Time<Fixed>`, all of which contain their individual logic.
- Create one "default" clock, which is just `Time` (or `Time<()>`),
which will be overwritten from `Time<Virtual>` on each update, and
`Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do
not care specifically which time they track can work both in `Update`
and `FixedUpdate` without changes and the behaviour is intuitive.
- Add `max_delta` to virtual time update, which limits how much can be
added to virtual time by a single update. This fixes both the behaviour
after a long freeze, and also the death spiral by limiting how many
fixed timestep iterations there can be per update. Possible future work
could be adding `max_accumulator` to add a sort of "leaky bucket" time
processing to possibly smooth out jumps in time while keeping frame rate
stable.
- Many minor tweaks and clarifications to the time functions and their
documentation.
## Changelog
- `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are
moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match
`Time` API
- `FixedTime` is now `Time<Fixed>` and matches `Time` API.
- `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds.
- `Time` inside `FixedUpdate` now reflects fixed timestep time, making
systems portable between `Update ` and `FixedUpdate`.
- `Time::pause()`, `Time::set_relative_speed()` and related methods must
now be called as `Time<Virtual>::pause()` etc.
- There is a new `max_delta` setting in `Time<Virtual>` that limits how
much the clock can jump by a single update. The default value is 0.25
seconds.
- Removed `on_fixed_timer()` condition as `on_timer()` does the right
thing inside `FixedUpdate` now.
## Migration Guide
- Change all `Res<Time>` instances that access `raw_delta()`,
`raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`,
`elapsed()`, etc.
- Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>`
and use `delta()`.
- The default timestep has been changed from 60 Hz to 64 Hz. If you wish
to restore the old behaviour, use
`app.insert_resource(Time::<Fixed>::from_hz(60.0))`.
- Change `app.insert_resource(FixedTime::new(duration))` to
`app.insert_resource(Time::<Fixed>::from_duration(duration))`
- Change `app.insert_resource(FixedTime::new_from_secs(secs))` to
`app.insert_resource(Time::<Fixed>::from_seconds(secs))`
- Change `system.on_fixed_timer(duration)` to
`system.on_timer(duration)`. Timers in systems placed in `FixedUpdate`
schedule automatically use the fixed time clock.
- Change `ResMut<Time>` calls to `pause()`, `is_paused()`,
`set_relative_speed()` and related methods to `ResMut<Time<Virtual>>`
calls. The API is the same, with the exception that `relative_speed()`
will return the actual last ste relative speed, while
`effective_relative_speed()` returns 0.0 if the time is paused and
corresponds to the speed that was set when the update for the current
frame started.
## Todo
- [x] Update pull name and description
- [x] Top level documentation on usage
- [x] Fix examples
- [x] Decide on default `max_delta` value
- [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed`
good?
- [x] Decide if the three clock inner structures should be in prelude
- [x] Decide on best way to configure values at startup: is manually
inserting a new clock instance okay, or should there be config struct
separately?
- [x] Fix links in docs
- [x] Decide what should be public and what not
- [x] Decide how `wrap_period` should be handled when it is changed
- [x] ~~Add toggles to disable setting the clock as default?~~ No,
separate pull if needed.
- [x] Add tests
- [x] Reformat, ensure adheres to conventions etc.
- [x] Build documentation and see that it looks correct
## Contributors
Huge thanks to @alice-i-cecile and @maniwani while building this pull.
It was a shared effort!
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com>
Co-authored-by: Jerome Humbert <djeedai@gmail.com>
2023-10-16 01:57:55 +00:00
wasm = false
2020-11-27 19:39:33 +00:00
[ [ example ] ]
name = "timers"
2023-10-28 16:05:03 +00:00
path = "examples/time/timers.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-11-27 19:39:33 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . timers ]
name = "Timers"
description = "Illustrates ticking `Timer` resources inside systems and handling their state"
2023-10-28 16:05:03 +00:00
category = "Time"
2022-06-25 20:23:24 +00:00
wasm = false
2023-10-28 16:05:03 +00:00
2021-02-22 04:50:05 +00:00
# Games
2021-01-21 22:10:02 +00:00
[ [ example ] ]
name = "alien_cake_addict"
2022-04-10 02:05:21 +00:00
path = "examples/games/alien_cake_addict.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-01-21 22:10:02 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . alien_cake_addict ]
name = "Alien Cake Addict"
description = "Eat the cakes. Eat them all. An example 3D game"
category = "Games"
wasm = true
2020-06-27 04:40:09 +00:00
[ [ example ] ]
name = "breakout"
2022-04-10 02:05:21 +00:00
path = "examples/games/breakout.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-04-10 02:05:21 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . breakout ]
name = "Breakout"
description = "An implementation of the classic game \"Breakout\""
category = "Games"
wasm = true
2022-04-10 02:05:21 +00:00
[ [ example ] ]
name = "contributors"
path = "examples/games/contributors.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-06-27 04:40:09 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . contributors ]
name = "Contributors"
description = "Displays each contributor as a bouncy bevy-ball!"
category = "Games"
wasm = true
2022-01-14 19:09:42 +00:00
[ [ example ] ]
name = "game_menu"
2022-04-10 02:05:21 +00:00
path = "examples/games/game_menu.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-01-14 19:09:42 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . game_menu ]
name = "Game Menu"
description = "A simple game menu"
category = "Games"
wasm = true
2021-02-22 04:50:05 +00:00
# Input
2020-05-01 20:12:47 +00:00
[ [ example ] ]
2021-02-22 04:50:05 +00:00
name = "char_input_events"
path = "examples/input/char_input_events.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-05-01 20:12:47 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . char_input_events ]
name = "Char Input Events"
description = "Prints out all chars as they are inputted"
category = "Input"
wasm = false
2020-05-01 20:12:47 +00:00
[ [ example ] ]
2021-02-22 04:50:05 +00:00
name = "gamepad_input"
path = "examples/input/gamepad_input.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-02-22 04:50:05 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . gamepad_input ]
name = "Gamepad Input"
description = "Shows handling of gamepad input, connections, and disconnections"
category = "Input"
wasm = false
2021-02-22 04:50:05 +00:00
[ [ example ] ]
name = "gamepad_input_events"
path = "examples/input/gamepad_input_events.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-06-05 06:49:36 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . gamepad_input_events ]
name = "Gamepad Input Events"
description = "Iterates and prints gamepad input and connection events"
category = "Input"
2023-04-24 15:28:53 +00:00
wasm = false
[ [ example ] ]
name = "gamepad_rumble"
path = "examples/input/gamepad_rumble.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-04-24 15:28:53 +00:00
[ package . metadata . example . gamepad_rumble ]
name = "Gamepad Rumble"
description = "Shows how to rumble a gamepad using force feedback"
category = "Input"
2022-06-25 20:23:24 +00:00
wasm = false
2020-06-05 06:49:36 +00:00
[ [ example ] ]
name = "keyboard_input"
path = "examples/input/keyboard_input.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-06-05 06:49:36 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . keyboard_input ]
name = "Keyboard Input"
description = "Demonstrates handling a key press/release"
category = "Input"
wasm = false
2021-03-14 21:00:36 +00:00
[ [ example ] ]
name = "keyboard_modifiers"
path = "examples/input/keyboard_modifiers.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-03-14 21:00:36 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . keyboard_modifiers ]
name = "Keyboard Modifiers"
description = "Demonstrates using key modifiers (ctrl, shift)"
category = "Input"
wasm = false
2020-06-05 06:49:36 +00:00
[ [ example ] ]
name = "keyboard_input_events"
path = "examples/input/keyboard_input_events.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-05-01 20:12:47 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . keyboard_input_events ]
name = "Keyboard Input Events"
description = "Prints out all keyboard events"
category = "Input"
wasm = false
2020-11-07 01:15:56 +00:00
[ [ example ] ]
2021-02-22 04:50:05 +00:00
name = "mouse_input"
path = "examples/input/mouse_input.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-09-18 21:43:47 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . mouse_input ]
name = "Mouse Input"
description = "Demonstrates handling a mouse button press/release"
category = "Input"
wasm = false
2020-10-21 17:27:00 +00:00
[ [ example ] ]
2021-02-22 04:50:05 +00:00
name = "mouse_input_events"
path = "examples/input/mouse_input_events.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-10-21 17:27:00 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . mouse_input_events ]
name = "Mouse Input Events"
description = "Prints out all mouse events (buttons, movement, etc.)"
category = "Input"
wasm = false
2022-03-08 17:14:08 +00:00
[ [ example ] ]
name = "mouse_grab"
path = "examples/input/mouse_grab.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-03-08 17:14:08 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . mouse_grab ]
name = "Mouse Grab"
description = "Demonstrates how to grab the mouse, locking the cursor to the app's screen"
category = "Input"
wasm = false
2020-10-18 19:24:01 +00:00
[ [ example ] ]
name = "touch_input"
path = "examples/input/touch_input.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-10-18 19:24:01 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . touch_input ]
name = "Touch Input"
description = "Displays touch presses, releases, and cancels"
category = "Input"
wasm = false
2020-10-18 19:24:01 +00:00
[ [ example ] ]
2020-10-18 20:20:42 +00:00
name = "touch_input_events"
path = "examples/input/touch_input_events.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-10-18 19:24:01 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . touch_input_events ]
name = "Touch Input Events"
description = "Prints out all touch inputs"
category = "Input"
wasm = false
2023-01-29 20:27:29 +00:00
[ [ example ] ]
name = "text_input"
path = "examples/input/text_input.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-01-29 20:27:29 +00:00
[ package . metadata . example . text_input ]
name = "Text Input"
description = "Simple text input with IME support"
category = "Input"
wasm = false
2021-02-22 04:50:05 +00:00
# Reflection
2020-05-01 20:12:47 +00:00
[ [ example ] ]
2020-11-28 00:39:59 +00:00
name = "reflection"
path = "examples/reflection/reflection.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-11-28 00:39:59 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . reflection ]
name = "Reflection"
description = "Demonstrates how reflection in Bevy provides a way to dynamically interact with Rust types"
category = "Reflection"
wasm = false
2020-11-28 00:39:59 +00:00
[ [ example ] ]
name = "generic_reflection"
path = "examples/reflection/generic_reflection.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-11-28 00:39:59 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . generic_reflection ]
name = "Generic Reflection"
description = "Registers concrete instances of generic types that may be used with reflection"
category = "Reflection"
wasm = false
2021-02-22 04:50:05 +00:00
[ [ example ] ]
name = "reflection_types"
path = "examples/reflection/reflection_types.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-02-22 04:50:05 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . reflection_types ]
name = "Reflection Types"
description = "Illustrates the various reflection types available"
category = "Reflection"
wasm = false
2020-11-28 00:39:59 +00:00
[ [ example ] ]
name = "trait_reflection"
path = "examples/reflection/trait_reflection.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-05-01 20:12:47 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . trait_reflection ]
name = "Trait Reflection"
description = "Allows reflection with trait objects"
category = "Reflection"
wasm = false
2021-02-22 04:50:05 +00:00
# Scene
2020-05-22 06:58:11 +00:00
[ [ example ] ]
2020-11-28 00:39:59 +00:00
name = "scene"
path = "examples/scene/scene.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-05-22 06:58:11 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . scene ]
name = "Scene"
description = "Demonstrates loading from and saving scenes to files"
category = "Scene"
wasm = false
2021-02-22 04:50:05 +00:00
# Shaders
2023-02-28 14:24:47 +00:00
[ [ package . metadata . example_category ] ]
2022-06-25 20:23:24 +00:00
name = "Shaders"
description = "" "
These examples demonstrate how to implement different shaders in user code .
A shader in its most common usage is a small program that is run by the GPU per-vertex in a mesh ( a vertex shader ) or per-affected-screen-fragment ( a fragment shader . ) The GPU executes these programs in a highly parallel way .
There are also compute shaders which are used for more general processing leveraging the GPU ' s parallelism .
"" "
Mesh vertex buffer layouts (#3959)
This PR makes a number of changes to how meshes and vertex attributes are handled, which the goal of enabling easy and flexible custom vertex attributes:
* Reworks the `Mesh` type to use the newly added `VertexAttribute` internally
* `VertexAttribute` defines the name, a unique `VertexAttributeId`, and a `VertexFormat`
* `VertexAttributeId` is used to produce consistent sort orders for vertex buffer generation, replacing the more expensive and often surprising "name based sorting"
* Meshes can be used to generate a `MeshVertexBufferLayout`, which defines the layout of the gpu buffer produced by the mesh. `MeshVertexBufferLayouts` can then be used to generate actual `VertexBufferLayouts` according to the requirements of a specific pipeline. This decoupling of "mesh layout" vs "pipeline vertex buffer layout" is what enables custom attributes. We don't need to standardize _mesh layouts_ or contort meshes to meet the needs of a specific pipeline. As long as the mesh has what the pipeline needs, it will work transparently.
* Mesh-based pipelines now specialize on `&MeshVertexBufferLayout` via the new `SpecializedMeshPipeline` trait (which behaves like `SpecializedPipeline`, but adds `&MeshVertexBufferLayout`). The integrity of the pipeline cache is maintained because the `MeshVertexBufferLayout` is treated as part of the key (which is fully abstracted from implementers of the trait ... no need to add any additional info to the specialization key).
* Hashing `MeshVertexBufferLayout` is too expensive to do for every entity, every frame. To make this scalable, I added a generalized "pre-hashing" solution to `bevy_utils`: `Hashed<T>` keys and `PreHashMap<K, V>` (which uses `Hashed<T>` internally) . Why didn't I just do the quick and dirty in-place "pre-compute hash and use that u64 as a key in a hashmap" that we've done in the past? Because its wrong! Hashes by themselves aren't enough because two different values can produce the same hash. Re-hashing a hash is even worse! I decided to build a generalized solution because this pattern has come up in the past and we've chosen to do the wrong thing. Now we can do the right thing! This did unfortunately require pulling in `hashbrown` and using that in `bevy_utils`, because avoiding re-hashes requires the `raw_entry_mut` api, which isn't stabilized yet (and may never be ... `entry_ref` has favor now, but also isn't available yet). If std's HashMap ever provides the tools we need, we can move back to that. Note that adding `hashbrown` doesn't increase our dependency count because it was already in our tree. I will probably break these changes out into their own PR.
* Specializing on `MeshVertexBufferLayout` has one non-obvious behavior: it can produce identical pipelines for two different MeshVertexBufferLayouts. To optimize the number of active pipelines / reduce re-binds while drawing, I de-duplicate pipelines post-specialization using the final `VertexBufferLayout` as the key. For example, consider a pipeline that needs the layout `(position, normal)` and is specialized using two meshes: `(position, normal, uv)` and `(position, normal, other_vec2)`. If both of these meshes result in `(position, normal)` specializations, we can use the same pipeline! Now we do. Cool!
To briefly illustrate, this is what the relevant section of `MeshPipeline`'s specialization code looks like now:
```rust
impl SpecializedMeshPipeline for MeshPipeline {
type Key = MeshPipelineKey;
fn specialize(
&self,
key: Self::Key,
layout: &MeshVertexBufferLayout,
) -> RenderPipelineDescriptor {
let mut vertex_attributes = vec![
Mesh::ATTRIBUTE_POSITION.at_shader_location(0),
Mesh::ATTRIBUTE_NORMAL.at_shader_location(1),
Mesh::ATTRIBUTE_UV_0.at_shader_location(2),
];
let mut shader_defs = Vec::new();
if layout.contains(Mesh::ATTRIBUTE_TANGENT) {
shader_defs.push(String::from("VERTEX_TANGENTS"));
vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(3));
}
let vertex_buffer_layout = layout
.get_layout(&vertex_attributes)
.expect("Mesh is missing a vertex attribute");
```
Notice that this is _much_ simpler than it was before. And now any mesh with any layout can be used with this pipeline, provided it has vertex postions, normals, and uvs. We even got to remove `HAS_TANGENTS` from MeshPipelineKey and `has_tangents` from `GpuMesh`, because that information is redundant with `MeshVertexBufferLayout`.
This is still a draft because I still need to:
* Add more docs
* Experiment with adding error handling to mesh pipeline specialization (which would print errors at runtime when a mesh is missing a vertex attribute required by a pipeline). If it doesn't tank perf, we'll keep it.
* Consider breaking out the PreHash / hashbrown changes into a separate PR.
* Add an example illustrating this change
* Verify that the "mesh-specialized pipeline de-duplication code" works properly
Please dont yell at me for not doing these things yet :) Just trying to get this in peoples' hands asap.
Alternative to #3120
Fixes #3030
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-02-23 23:21:13 +00:00
[ [ example ] ]
name = "custom_vertex_attribute"
path = "examples/shader/custom_vertex_attribute.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Mesh vertex buffer layouts (#3959)
This PR makes a number of changes to how meshes and vertex attributes are handled, which the goal of enabling easy and flexible custom vertex attributes:
* Reworks the `Mesh` type to use the newly added `VertexAttribute` internally
* `VertexAttribute` defines the name, a unique `VertexAttributeId`, and a `VertexFormat`
* `VertexAttributeId` is used to produce consistent sort orders for vertex buffer generation, replacing the more expensive and often surprising "name based sorting"
* Meshes can be used to generate a `MeshVertexBufferLayout`, which defines the layout of the gpu buffer produced by the mesh. `MeshVertexBufferLayouts` can then be used to generate actual `VertexBufferLayouts` according to the requirements of a specific pipeline. This decoupling of "mesh layout" vs "pipeline vertex buffer layout" is what enables custom attributes. We don't need to standardize _mesh layouts_ or contort meshes to meet the needs of a specific pipeline. As long as the mesh has what the pipeline needs, it will work transparently.
* Mesh-based pipelines now specialize on `&MeshVertexBufferLayout` via the new `SpecializedMeshPipeline` trait (which behaves like `SpecializedPipeline`, but adds `&MeshVertexBufferLayout`). The integrity of the pipeline cache is maintained because the `MeshVertexBufferLayout` is treated as part of the key (which is fully abstracted from implementers of the trait ... no need to add any additional info to the specialization key).
* Hashing `MeshVertexBufferLayout` is too expensive to do for every entity, every frame. To make this scalable, I added a generalized "pre-hashing" solution to `bevy_utils`: `Hashed<T>` keys and `PreHashMap<K, V>` (which uses `Hashed<T>` internally) . Why didn't I just do the quick and dirty in-place "pre-compute hash and use that u64 as a key in a hashmap" that we've done in the past? Because its wrong! Hashes by themselves aren't enough because two different values can produce the same hash. Re-hashing a hash is even worse! I decided to build a generalized solution because this pattern has come up in the past and we've chosen to do the wrong thing. Now we can do the right thing! This did unfortunately require pulling in `hashbrown` and using that in `bevy_utils`, because avoiding re-hashes requires the `raw_entry_mut` api, which isn't stabilized yet (and may never be ... `entry_ref` has favor now, but also isn't available yet). If std's HashMap ever provides the tools we need, we can move back to that. Note that adding `hashbrown` doesn't increase our dependency count because it was already in our tree. I will probably break these changes out into their own PR.
* Specializing on `MeshVertexBufferLayout` has one non-obvious behavior: it can produce identical pipelines for two different MeshVertexBufferLayouts. To optimize the number of active pipelines / reduce re-binds while drawing, I de-duplicate pipelines post-specialization using the final `VertexBufferLayout` as the key. For example, consider a pipeline that needs the layout `(position, normal)` and is specialized using two meshes: `(position, normal, uv)` and `(position, normal, other_vec2)`. If both of these meshes result in `(position, normal)` specializations, we can use the same pipeline! Now we do. Cool!
To briefly illustrate, this is what the relevant section of `MeshPipeline`'s specialization code looks like now:
```rust
impl SpecializedMeshPipeline for MeshPipeline {
type Key = MeshPipelineKey;
fn specialize(
&self,
key: Self::Key,
layout: &MeshVertexBufferLayout,
) -> RenderPipelineDescriptor {
let mut vertex_attributes = vec![
Mesh::ATTRIBUTE_POSITION.at_shader_location(0),
Mesh::ATTRIBUTE_NORMAL.at_shader_location(1),
Mesh::ATTRIBUTE_UV_0.at_shader_location(2),
];
let mut shader_defs = Vec::new();
if layout.contains(Mesh::ATTRIBUTE_TANGENT) {
shader_defs.push(String::from("VERTEX_TANGENTS"));
vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(3));
}
let vertex_buffer_layout = layout
.get_layout(&vertex_attributes)
.expect("Mesh is missing a vertex attribute");
```
Notice that this is _much_ simpler than it was before. And now any mesh with any layout can be used with this pipeline, provided it has vertex postions, normals, and uvs. We even got to remove `HAS_TANGENTS` from MeshPipelineKey and `has_tangents` from `GpuMesh`, because that information is redundant with `MeshVertexBufferLayout`.
This is still a draft because I still need to:
* Add more docs
* Experiment with adding error handling to mesh pipeline specialization (which would print errors at runtime when a mesh is missing a vertex attribute required by a pipeline). If it doesn't tank perf, we'll keep it.
* Consider breaking out the PreHash / hashbrown changes into a separate PR.
* Add an example illustrating this change
* Verify that the "mesh-specialized pipeline de-duplication code" works properly
Please dont yell at me for not doing these things yet :) Just trying to get this in peoples' hands asap.
Alternative to #3120
Fixes #3030
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-02-23 23:21:13 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . custom_vertex_attribute ]
name = "Custom Vertex Attribute"
description = "A shader that reads a mesh's custom vertex attribute"
category = "Shaders"
wasm = true
2022-06-06 00:06:49 +00:00
[ [ example ] ]
name = "post_processing"
path = "examples/shader/post_processing.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-06-06 00:06:49 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . post_processing ]
2023-03-16 03:22:17 +00:00
name = "Post Processing - Custom Render Pass"
description = "A custom post processing effect, using a custom render pass that runs after the main pass"
category = "Shaders"
wasm = true
2020-05-01 20:12:47 +00:00
[ [ example ] ]
name = "shader_defs"
path = "examples/shader/shader_defs.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-05-01 20:12:47 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . shader_defs ]
name = "Shader Defs"
description = "A shader that uses \"shaders defs\" (a bevy tool to selectively toggle parts of a shader)"
category = "Shaders"
wasm = true
Modular Rendering (#2831)
This changes how render logic is composed to make it much more modular. Previously, all extraction logic was centralized for a given "type" of rendered thing. For example, we extracted meshes into a vector of ExtractedMesh, which contained the mesh and material asset handles, the transform, etc. We looked up bindings for "drawn things" using their index in the `Vec<ExtractedMesh>`. This worked fine for built in rendering, but made it hard to reuse logic for "custom" rendering. It also prevented us from reusing things like "extracted transforms" across contexts.
To make rendering more modular, I made a number of changes:
* Entities now drive rendering:
* We extract "render components" from "app components" and store them _on_ entities. No more centralized uber lists! We now have true "ECS-driven rendering"
* To make this perform well, I implemented #2673 in upstream Bevy for fast batch insertions into specific entities. This was merged into the `pipelined-rendering` branch here: #2815
* Reworked the `Draw` abstraction:
* Generic `PhaseItems`: each draw phase can define its own type of "rendered thing", which can define its own "sort key"
* Ported the 2d, 3d, and shadow phases to the new PhaseItem impl (currently Transparent2d, Transparent3d, and Shadow PhaseItems)
* `Draw` trait and and `DrawFunctions` are now generic on PhaseItem
* Modular / Ergonomic `DrawFunctions` via `RenderCommands`
* RenderCommand is a trait that runs an ECS query and produces one or more RenderPass calls. Types implementing this trait can be composed to create a final DrawFunction. For example the DrawPbr DrawFunction is created from the following DrawCommand tuple. Const generics are used to set specific bind group locations:
```rust
pub type DrawPbr = (
SetPbrPipeline,
SetMeshViewBindGroup<0>,
SetStandardMaterialBindGroup<1>,
SetTransformBindGroup<2>,
DrawMesh,
);
```
* The new `custom_shader_pipelined` example illustrates how the commands above can be reused to create a custom draw function:
```rust
type DrawCustom = (
SetCustomMaterialPipeline,
SetMeshViewBindGroup<0>,
SetTransformBindGroup<2>,
DrawMesh,
);
```
* ExtractComponentPlugin and UniformComponentPlugin:
* Simple, standardized ways to easily extract individual components and write them to GPU buffers
* Ported PBR and Sprite rendering to the new primitives above.
* Removed staging buffer from UniformVec in favor of direct Queue usage
* Makes UniformVec much easier to use and more ergonomic. Completely removes the need for custom render graph nodes in these contexts (see the PbrNode and view Node removals and the much simpler call patterns in the relevant Prepare systems).
* Added a many_cubes_pipelined example to benchmark baseline 3d rendering performance and ensure there were no major regressions during this port. Avoiding regressions was challenging given that the old approach of extracting into centralized vectors is basically the "optimal" approach. However thanks to a various ECS optimizations and render logic rephrasing, we pretty much break even on this benchmark!
* Lifetimeless SystemParams: this will be a bit divisive, but as we continue to embrace "trait driven systems" (ex: ExtractComponentPlugin, UniformComponentPlugin, DrawCommand), the ergonomics of `(Query<'static, 'static, (&'static A, &'static B, &'static)>, Res<'static, C>)` were getting very hard to bear. As a compromise, I added "static type aliases" for the relevant SystemParams. The previous example can now be expressed like this: `(SQuery<(Read<A>, Read<B>)>, SRes<C>)`. If anyone has better ideas / conflicting opinions, please let me know!
* RunSystem trait: a way to define Systems via a trait with a SystemParam associated type. This is used to implement the various plugins mentioned above. I also added SystemParamItem and QueryItem type aliases to make "trait stye" ecs interactions nicer on the eyes (and fingers).
* RenderAsset retrying: ensures that render assets are only created when they are "ready" and allows us to create bind groups directly inside render assets (which significantly simplified the StandardMaterial code). I think ultimately we should swap this out on "asset dependency" events to wait for dependencies to load, but this will require significant asset system changes.
* Updated some built in shaders to account for missing MeshUniform fields
2021-09-23 06:16:11 +00:00
[ [ example ] ]
2021-12-14 03:58:23 +00:00
name = "shader_material"
path = "examples/shader/shader_material.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031)
## New Features
This adds the following to the new renderer:
* **Shader Assets**
* Shaders are assets again! Users no longer need to call `include_str!` for their shaders
* Shader hot-reloading
* **Shader Defs / Shader Preprocessing**
* Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives
* **Bevy RenderPipelineDescriptor and RenderPipelineCache**
* Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization.
* The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering.
* **Pipeline Specialization**
* This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts.
* Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline.
* Specialized pipelines are also hot-reloadable.
* This was the result of experimentation with two different approaches:
1. **"generic immediate mode multi-key hash pipeline specialization"**
* breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together
* the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes)
* the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might).
* this is the approach rafx used last time i checked
2. **"custom key specialization"**
* Pipelines by default are not specialized
* Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type
* This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings.
* Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated.
* I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache
## Callouts
* The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline.
* The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand".
## Next Steps
* Port compute pipelines to the new system
* Add more preprocessor directives (else, elif, import)
* More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . shader_material ]
name = "Material"
description = "A shader and a material that uses it"
category = "Shaders"
wasm = true
2023-11-14 02:18:25 +00:00
[ [ example ] ]
name = "shader_material_2d"
path = "examples/shader/shader_material_2d.rs"
doc-scrape-examples = true
[ package . metadata . example . shader_material_2d ]
name = "Material"
description = "A shader and a material that uses it on a 2d mesh"
category = "Shaders"
wasm = true
2023-10-17 21:28:08 +00:00
[ [ example ] ]
name = "extended_material"
path = "examples/shader/extended_material.rs"
[ package . metadata . example . extended_material ]
name = "Extended Material"
description = "A custom shader that builds on the standard material"
category = "Shaders"
wasm = true
2023-01-19 22:11:13 +00:00
[ [ example ] ]
name = "shader_prepass"
path = "examples/shader/shader_prepass.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-01-19 22:11:13 +00:00
[ package . metadata . example . shader_prepass ]
name = "Material Prepass"
2023-03-02 02:23:06 +00:00
description = "A shader that uses the various textures generated by the prepass"
2023-01-19 22:11:13 +00:00
category = "Shaders"
wasm = false
2022-02-28 22:55:14 +00:00
[ [ example ] ]
name = "shader_material_screenspace_texture"
path = "examples/shader/shader_material_screenspace_texture.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-02-28 22:55:14 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . shader_material_screenspace_texture ]
name = "Material - Screenspace Texture"
description = "A shader that samples a texture with view-independent UV coordinates"
category = "Shaders"
wasm = true
2022-01-05 19:43:11 +00:00
[ [ example ] ]
name = "shader_material_glsl"
path = "examples/shader/shader_material_glsl.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2024-01-20 19:55:19 +00:00
required-features = [ "shader_format_glsl" ]
2022-01-05 19:43:11 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . shader_material_glsl ]
name = "Material - GLSL"
description = "A shader that uses the GLSL shading language"
category = "Shaders"
wasm = true
2022-01-05 19:43:11 +00:00
[ [ example ] ]
name = "shader_instancing"
path = "examples/shader/shader_instancing.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-01-05 19:43:11 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . shader_instancing ]
name = "Instancing"
description = "A shader that renders a mesh multiple times in one draw call"
category = "Shaders"
wasm = true
2022-01-05 19:43:11 +00:00
[ [ example ] ]
name = "animate_shader"
path = "examples/shader/animate_shader.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-01-05 19:43:11 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . animate_shader ]
name = "Animated"
description = "A shader that uses dynamic data like the time since startup"
category = "Shaders"
wasm = true
2022-01-05 19:43:11 +00:00
[ [ example ] ]
name = "compute_shader_game_of_life"
path = "examples/shader/compute_shader_game_of_life.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-01-05 19:43:11 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . compute_shader_game_of_life ]
name = "Compute - Game of Life"
description = "A compute shader that simulates Conway's Game of Life"
category = "Shaders"
wasm = false
2022-06-28 00:58:50 +00:00
[ [ example ] ]
name = "array_texture"
path = "examples/shader/array_texture.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-06-28 00:58:50 +00:00
[ package . metadata . example . array_texture ]
name = "Array Texture"
description = "A shader that shows how to reuse the core bevy PBR shading functionality in a custom material that obtains the base color from an array texture."
category = "Shaders"
wasm = true
2023-01-26 13:18:15 +00:00
[ [ example ] ]
name = "texture_binding_array"
path = "examples/shader/texture_binding_array.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-01-26 13:18:15 +00:00
[ package . metadata . example . texture_binding_array ]
name = "Texture Binding Array (Bindless Textures)"
description = "A shader that shows how to bind and sample multiple textures as a binding array (a.k.a. bindless textures)."
category = "Shaders"
wasm = false
2022-04-10 02:05:21 +00:00
# Stress tests
2023-02-28 14:24:47 +00:00
[ [ package . metadata . example_category ] ]
2022-06-25 20:23:24 +00:00
name = "Stress Tests"
description = "" "
These examples are used to test the performance and stability of various parts of the engine in an isolated way .
Due to the focus on performance it ' s recommended to run the stress tests in release mode :
` ` ` sh
cargo run --release --example < example name >
` ` `
"" "
2022-04-10 02:05:21 +00:00
2020-11-13 02:03:57 +00:00
[ [ example ] ]
name = "bevymark"
2022-04-10 02:05:21 +00:00
path = "examples/stress_tests/bevymark.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-04-10 02:05:21 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . bevymark ]
name = "Bevymark"
description = "A heavy sprite rendering workload to benchmark your system with Bevy"
category = "Stress Tests"
wasm = true
2022-07-04 13:04:15 +00:00
[ [ example ] ]
name = "many_animated_sprites"
path = "examples/stress_tests/many_animated_sprites.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-07-04 13:04:15 +00:00
[ package . metadata . example . many_animated_sprites ]
name = "Many Animated Sprites"
2022-07-14 11:03:13 +00:00
description = "Displays many animated sprites in a grid arrangement with slight offsets to their animation timers. Used for performance testing."
2022-07-04 13:04:15 +00:00
category = "Stress Tests"
wasm = true
2022-07-21 14:39:03 +00:00
[ [ example ] ]
name = "many_buttons"
path = "examples/stress_tests/many_buttons.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-07-21 14:39:03 +00:00
[ package . metadata . example . many_buttons ]
name = "Many Buttons"
description = "Test rendering of many UI elements"
category = "Stress Tests"
wasm = true
2022-04-10 02:05:21 +00:00
[ [ example ] ]
name = "many_cubes"
path = "examples/stress_tests/many_cubes.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-04-10 02:05:21 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . many_cubes ]
name = "Many Cubes"
description = "Simple benchmark to test per-entity draw overhead. Run with the `sphere` argument to test frustum culling"
category = "Stress Tests"
wasm = true
2023-03-20 20:57:54 +00:00
[ [ example ] ]
name = "many_gizmos"
path = "examples/stress_tests/many_gizmos.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-03-20 20:57:54 +00:00
[ package . metadata . example . many_gizmos ]
name = "Many Gizmos"
description = "Test rendering of many gizmos"
category = "Stress Tests"
wasm = true
2022-05-08 02:57:00 +00:00
[ [ example ] ]
name = "many_foxes"
path = "examples/stress_tests/many_foxes.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-05-08 02:57:00 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . many_foxes ]
name = "Many Foxes"
description = "Loads an animated fox model and spawns lots of them. Good for testing skinned mesh performance. Takes an unsigned integer argument for the number of foxes to spawn. Defaults to 1000"
category = "Stress Tests"
2023-03-14 00:01:27 +00:00
wasm = true
[ [ example ] ]
name = "many_glyphs"
path = "examples/stress_tests/many_glyphs.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-03-14 00:01:27 +00:00
[ package . metadata . example . many_glyphs ]
name = "Many Glyphs"
description = "Simple benchmark to test text rendering."
category = "Stress Tests"
2022-06-25 20:23:24 +00:00
wasm = true
2022-04-10 02:05:21 +00:00
[ [ example ] ]
name = "many_lights"
path = "examples/stress_tests/many_lights.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-04-10 02:05:21 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . many_lights ]
name = "Many Lights"
description = "Simple benchmark to test rendering many point lights. Run with `WGPU_SETTINGS_PRIO=webgl2` to restrict to uniform buffers and max 256 lights"
category = "Stress Tests"
wasm = true
2022-04-10 02:05:21 +00:00
[ [ example ] ]
name = "many_sprites"
path = "examples/stress_tests/many_sprites.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-04-10 02:05:21 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . many_sprites ]
name = "Many Sprites"
2022-07-14 11:03:13 +00:00
description = "Displays many sprites in a grid arrangement! Used for performance testing. Use `--colored` to enable color tinted sprites."
2022-06-25 20:23:24 +00:00
category = "Stress Tests"
wasm = true
2022-04-10 02:05:21 +00:00
[ [ example ] ]
name = "transform_hierarchy"
path = "examples/stress_tests/transform_hierarchy.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-04-10 02:05:21 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . transform_hierarchy ]
name = "Transform Hierarchy"
description = "Various test cases for hierarchy and transform propagation performance"
category = "Stress Tests"
2023-05-08 19:02:06 +00:00
wasm = false
2020-11-13 02:03:57 +00:00
2023-03-04 12:29:08 +00:00
[ [ example ] ]
name = "text_pipeline"
path = "examples/stress_tests/text_pipeline.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-03-04 12:29:08 +00:00
[ package . metadata . example . text_pipeline ]
name = "Text Pipeline"
description = "Text Pipeline benchmark"
category = "Stress Tests"
wasm = false
2022-06-25 20:23:24 +00:00
# Tools
2022-03-19 19:14:13 +00:00
[ [ example ] ]
name = "scene_viewer"
2022-12-25 00:23:13 +00:00
path = "examples/tools/scene_viewer/main.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-03-19 19:14:13 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . scene_viewer ]
name = "Scene Viewer"
description = "A simple way to view glTF models with Bevy. Just run `cargo run --release --example scene_viewer /path/to/model.gltf#Scene0`, replacing the path as appropriate. With no arguments it will load the FieldHelmet glTF model from the repository assets subdirectory"
category = "Tools"
wasm = true
2022-09-24 13:21:01 +00:00
[ [ example ] ]
name = "gamepad_viewer"
path = "examples/tools/gamepad_viewer.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-09-24 13:21:01 +00:00
[ package . metadata . example . gamepad_viewer ]
name = "Gamepad Viewer"
description = "Shows a visualization of gamepad buttons, sticks, and triggers"
category = "Tools"
2023-08-09 21:06:16 +00:00
wasm = true
2022-09-24 13:21:01 +00:00
2023-01-31 01:47:00 +00:00
[ [ example ] ]
name = "nondeterministic_system_order"
path = "examples/ecs/nondeterministic_system_order.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-01-31 01:47:00 +00:00
[ package . metadata . example . nondeterministic_system_order ]
name = "Nondeterministic System Order"
2023-04-16 16:55:47 +00:00
description = "Systems run in parallel, but their order isn't always deterministic. Here's how to detect and fix this."
2023-01-31 01:47:00 +00:00
category = "ECS (Entity Component System)"
wasm = false
2022-03-15 05:49:49 +00:00
[ [ example ] ]
name = "3d_rotation"
path = "examples/transforms/3d_rotation.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-03-15 05:49:49 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . 3 d_rotation ]
name = "3D Rotation"
description = "Illustrates how to (constantly) rotate an object around an axis"
category = "Transforms"
wasm = true
2022-03-15 05:49:49 +00:00
[ [ example ] ]
name = "scale"
path = "examples/transforms/scale.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-03-15 05:49:49 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . scale ]
name = "Scale"
description = "Illustrates how to scale an object in each direction"
category = "Transforms"
wasm = true
2022-03-15 05:49:49 +00:00
[ [ example ] ]
name = "transform"
path = "examples/transforms/transform.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-03-15 05:49:49 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . transform ]
name = "Transform"
description = "Shows multiple transformations of objects"
category = "Transforms"
wasm = true
2022-03-15 05:49:49 +00:00
[ [ example ] ]
name = "translation"
path = "examples/transforms/translation.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-03-15 05:49:49 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . translation ]
name = "Translation"
description = "Illustrates how to move an object along an axis"
category = "Transforms"
wasm = true
2021-02-22 04:50:05 +00:00
# UI (User Interface)
2023-06-14 22:43:38 +00:00
[ [ example ] ]
name = "borders"
path = "examples/ui/borders.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-06-14 22:43:38 +00:00
[ package . metadata . example . borders ]
name = "Borders"
description = "Demonstrates how to create a node with a border"
category = "UI (User Interface)"
wasm = true
2020-07-18 21:08:46 +00:00
[ [ example ] ]
name = "button"
path = "examples/ui/button.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-07-18 21:08:46 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . button ]
name = "Button"
description = "Illustrates creating and updating a button"
category = "UI (User Interface)"
wasm = true
2023-06-19 23:19:34 +00:00
[ [ example ] ]
name = "display_and_visibility"
path = "examples/ui/display_and_visibility.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-06-19 23:19:34 +00:00
[ package . metadata . example . display_and_visibility ]
name = "Display and Visibility"
description = "Demonstrates how Display and Visibility work in the UI."
category = "UI (User Interface)"
wasm = true
2022-11-21 12:59:10 +00:00
[ [ example ] ]
name = "window_fallthrough"
path = "examples/ui/window_fallthrough.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-11-21 12:59:10 +00:00
[ package . metadata . example . window_fallthrough ]
name = "Window Fallthrough"
description = "Illustrates how to access `winit::window::Window`'s `hittest` functionality."
category = "UI (User Interface)"
wasm = false
2021-02-22 04:50:05 +00:00
[ [ example ] ]
name = "font_atlas_debug"
path = "examples/ui/font_atlas_debug.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-02-22 04:50:05 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . font_atlas_debug ]
name = "Font Atlas Debug"
description = "Illustrates how FontAtlases are populated (used to optimize text rendering internally)"
category = "UI (User Interface)"
wasm = true
2023-04-17 22:23:52 +00:00
[ [ example ] ]
name = "overflow"
path = "examples/ui/overflow.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-04-17 22:23:52 +00:00
[ package . metadata . example . overflow ]
name = "Overflow"
description = "Simple example demonstrating overflow behavior"
category = "UI (User Interface)"
wasm = true
2023-04-05 23:07:41 +00:00
[ [ example ] ]
name = "overflow_debug"
path = "examples/ui/overflow_debug.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-04-05 23:07:41 +00:00
[ package . metadata . example . overflow_debug ]
name = "Overflow and Clipping Debug"
description = "An example to debug overflow and clipping behavior"
category = "UI (User Interface)"
wasm = true
2023-01-16 17:17:45 +00:00
[ [ example ] ]
name = "relative_cursor_position"
path = "examples/ui/relative_cursor_position.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-01-16 17:17:45 +00:00
[ package . metadata . example . relative_cursor_position ]
name = "Relative Cursor Position"
description = "Showcases the RelativeCursorPosition component"
category = "UI (User Interface)"
wasm = true
2024-01-16 00:39:10 +00:00
[ [ example ] ]
name = "render_ui_to_texture"
path = "examples/ui/render_ui_to_texture.rs"
doc-scrape-examples = true
[ package . metadata . example . render_ui_to_texture ]
name = "Render UI to Texture"
description = "An example of rendering UI as a part of a 3D world"
category = "UI (User Interface)"
wasm = true
2023-04-24 14:28:00 +00:00
[ [ example ] ]
name = "size_constraints"
path = "examples/ui/size_constraints.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-04-24 14:28:00 +00:00
[ package . metadata . example . size_constraints ]
name = "Size Constraints"
description = "Demonstrates how the to use the size constraints to control the size of a UI node."
category = "UI (User Interface)"
wasm = true
2020-05-13 20:09:32 +00:00
[ [ example ] ]
name = "text"
path = "examples/ui/text.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-05-13 20:09:32 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . text ]
name = "Text"
description = "Illustrates creating and updating text"
category = "UI (User Interface)"
wasm = true
2020-11-13 00:21:48 +00:00
[ [ example ] ]
name = "text_debug"
path = "examples/ui/text_debug.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-11-13 00:21:48 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . text_debug ]
name = "Text Debug"
description = "An example for debugging text layout"
category = "UI (User Interface)"
wasm = true
2023-01-27 19:07:48 +00:00
[ [ example ] ]
2023-03-22 08:22:56 +00:00
name = "flex_layout"
path = "examples/ui/flex_layout.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-01-27 19:07:48 +00:00
2023-03-22 08:22:56 +00:00
[ package . metadata . example . flex_layout ]
name = "Flex Layout"
description = "Demonstrates how the AlignItems and JustifyContent properties can be composed to layout nodes and position text"
2023-01-27 19:07:48 +00:00
category = "UI (User Interface)"
2023-04-17 16:21:38 +00:00
wasm = true
2023-04-24 14:22:31 +00:00
[ [ example ] ]
name = "text_wrap_debug"
path = "examples/ui/text_wrap_debug.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-04-24 14:22:31 +00:00
[ package . metadata . example . text_wrap_debug ]
name = "Text Wrap Debug"
description = "Demonstrates text wrapping"
category = "UI (User Interface)"
wasm = true
2023-04-17 16:21:38 +00:00
[ [ example ] ]
name = "grid"
path = "examples/ui/grid.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-04-17 16:21:38 +00:00
[ package . metadata . example . grid ]
name = "CSS Grid"
description = "An example for CSS Grid layout"
2023-04-24 14:22:31 +00:00
2023-04-17 16:21:38 +00:00
category = "UI (User Interface)"
wasm = true
2023-01-27 19:07:48 +00:00
2020-05-01 20:12:47 +00:00
[ [ example ] ]
2022-06-06 17:52:09 +00:00
name = "transparency_ui"
path = "examples/ui/transparency_ui.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-06-06 17:52:09 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . transparency_ui ]
name = "Transparency UI"
description = "Demonstrates transparency for UI"
category = "UI (User Interface)"
wasm = true
Add z-index support with a predictable UI stack (#5877)
# Objective
Add consistent UI rendering and interaction where deep nodes inside two different hierarchies will never render on top of one-another by default and offer an escape hatch (z-index) for nodes to change their depth.
## The problem with current implementation
The current implementation of UI rendering is broken in that regard, mainly because [it sets the Z value of the `Transform` component based on a "global Z" space](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/update.rs#L43) shared by all nodes in the UI. This doesn't account for the fact that each node's final `GlobalTransform` value will be relative to its parent. This effectively makes the depth unpredictable when two deep trees are rendered on top of one-another.
At the moment, it's also up to each part of the UI code to sort all of the UI nodes. The solution that's offered here does the full sorting of UI node entities once and offers the result through a resource so that all systems can use it.
## Solution
### New ZIndex component
This adds a new optional `ZIndex` enum component for nodes which offers two mechanism:
- `ZIndex::Local(i32)`: Overrides the depth of the node relative to its siblings.
- `ZIndex::Global(i32)`: Overrides the depth of the node relative to the UI root. This basically allows any node in the tree to "escape" the parent and be ordered relative to the entire UI.
Note that in the current implementation, omitting `ZIndex` on a node has the same result as adding `ZIndex::Local(0)`. Additionally, the "global" stacking context is essentially a way to add your node to the root stacking context, so using `ZIndex::Local(n)` on a root node (one without parent) will share that space with all nodes using `Index::Global(n)`.
### New UiStack resource
This adds a new `UiStack` resource which is calculated from both hierarchy and `ZIndex` during UI update and contains a vector of all node entities in the UI, ordered by depth (from farthest from camera to closest). This is exposed publicly by the bevy_ui crate with the hope that it can be used for consistent ordering and to reduce the amount of sorting that needs to be done by UI systems (i.e. instead of sorting everything by `global_transform.z` in every system, this array can be iterated over).
### New z_index example
This also adds a new z_index example that showcases the new `ZIndex` component. It's also a good general demo of the new UI stack system, because making this kind of UI was very broken with the old system (e.g. nodes would render on top of each other, not respecting hierarchy or insert order at all).
![image](https://user-images.githubusercontent.com/1060971/189015985-8ea8f989-0e9d-4601-a7e0-4a27a43a53f9.png)
---
## Changelog
- Added the `ZIndex` component to bevy_ui.
- Added the `UiStack` resource to bevy_ui, and added implementation in a new `stack.rs` module.
- Removed the previous Z updating system from bevy_ui, because it was replaced with the above.
- Changed bevy_ui rendering to use UiStack instead of z ordering.
- Changed bevy_ui focus/interaction system to use UiStack instead of z ordering.
- Added a new z_index example.
## ZIndex demo
Here's a demo I wrote to test these features
https://user-images.githubusercontent.com/1060971/188329295-d7beebd6-9aee-43ab-821e-d437df5dbe8a.mp4
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-11-02 22:06:04 +00:00
[ [ example ] ]
name = "z_index"
path = "examples/ui/z_index.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Add z-index support with a predictable UI stack (#5877)
# Objective
Add consistent UI rendering and interaction where deep nodes inside two different hierarchies will never render on top of one-another by default and offer an escape hatch (z-index) for nodes to change their depth.
## The problem with current implementation
The current implementation of UI rendering is broken in that regard, mainly because [it sets the Z value of the `Transform` component based on a "global Z" space](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/update.rs#L43) shared by all nodes in the UI. This doesn't account for the fact that each node's final `GlobalTransform` value will be relative to its parent. This effectively makes the depth unpredictable when two deep trees are rendered on top of one-another.
At the moment, it's also up to each part of the UI code to sort all of the UI nodes. The solution that's offered here does the full sorting of UI node entities once and offers the result through a resource so that all systems can use it.
## Solution
### New ZIndex component
This adds a new optional `ZIndex` enum component for nodes which offers two mechanism:
- `ZIndex::Local(i32)`: Overrides the depth of the node relative to its siblings.
- `ZIndex::Global(i32)`: Overrides the depth of the node relative to the UI root. This basically allows any node in the tree to "escape" the parent and be ordered relative to the entire UI.
Note that in the current implementation, omitting `ZIndex` on a node has the same result as adding `ZIndex::Local(0)`. Additionally, the "global" stacking context is essentially a way to add your node to the root stacking context, so using `ZIndex::Local(n)` on a root node (one without parent) will share that space with all nodes using `Index::Global(n)`.
### New UiStack resource
This adds a new `UiStack` resource which is calculated from both hierarchy and `ZIndex` during UI update and contains a vector of all node entities in the UI, ordered by depth (from farthest from camera to closest). This is exposed publicly by the bevy_ui crate with the hope that it can be used for consistent ordering and to reduce the amount of sorting that needs to be done by UI systems (i.e. instead of sorting everything by `global_transform.z` in every system, this array can be iterated over).
### New z_index example
This also adds a new z_index example that showcases the new `ZIndex` component. It's also a good general demo of the new UI stack system, because making this kind of UI was very broken with the old system (e.g. nodes would render on top of each other, not respecting hierarchy or insert order at all).
![image](https://user-images.githubusercontent.com/1060971/189015985-8ea8f989-0e9d-4601-a7e0-4a27a43a53f9.png)
---
## Changelog
- Added the `ZIndex` component to bevy_ui.
- Added the `UiStack` resource to bevy_ui, and added implementation in a new `stack.rs` module.
- Removed the previous Z updating system from bevy_ui, because it was replaced with the above.
- Changed bevy_ui rendering to use UiStack instead of z ordering.
- Changed bevy_ui focus/interaction system to use UiStack instead of z ordering.
- Added a new z_index example.
## ZIndex demo
Here's a demo I wrote to test these features
https://user-images.githubusercontent.com/1060971/188329295-d7beebd6-9aee-43ab-821e-d437df5dbe8a.mp4
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-11-02 22:06:04 +00:00
[ package . metadata . example . z_index ]
name = "UI Z-Index"
description = "Demonstrates how to control the relative depth (z-position) of UI elements"
category = "UI (User Interface)"
wasm = true
2022-06-25 20:23:24 +00:00
2022-06-06 17:52:09 +00:00
[ [ example ] ]
2020-05-01 20:12:47 +00:00
name = "ui"
path = "examples/ui/ui.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-05-01 20:12:47 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . ui ]
name = "UI"
description = "Illustrates various features of Bevy UI"
category = "UI (User Interface)"
wasm = true
2022-08-29 23:35:53 +00:00
[ [ example ] ]
name = "ui_scaling"
2022-10-19 11:36:26 +00:00
path = "examples/ui/ui_scaling.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-08-29 23:35:53 +00:00
[ package . metadata . example . ui_scaling ]
name = "UI Scaling"
description = "Illustrates how to scale the UI"
category = "UI (User Interface)"
wasm = true
2023-06-19 21:52:02 +00:00
[ [ example ] ]
name = "ui_texture_atlas"
path = "examples/ui/ui_texture_atlas.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-06-19 21:52:02 +00:00
[ package . metadata . example . ui_texture_atlas ]
name = "UI Texture Atlas"
description = "Illustrates how to use TextureAtlases in UI"
category = "UI (User Interface)"
wasm = true
2023-06-14 22:43:38 +00:00
[ [ example ] ]
name = "viewport_debug"
path = "examples/ui/viewport_debug.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-06-14 22:43:38 +00:00
[ package . metadata . example . viewport_debug ]
name = "Viewport Debug"
description = "An example for debugging viewport coordinates"
category = "UI (User Interface)"
wasm = true
2021-02-22 04:50:05 +00:00
# Window
2020-06-25 22:24:27 +00:00
[ [ example ] ]
name = "clear_color"
path = "examples/window/clear_color.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-12-18 19:38:05 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . clear_color ]
name = "Clear Color"
description = "Creates a solid color window"
category = "Window"
wasm = true
Reduce power usage with configurable event loop (#3974)
# Objective
- Reduce power usage for games when not focused.
- Reduce power usage to ~0 when a desktop application is minimized (opt-in).
- Reduce power usage when focused, only updating on a `winit` event, or the user sends a redraw request. (opt-in)
https://user-images.githubusercontent.com/2632925/156904387-ec47d7de-7f06-4c6f-8aaf-1e952c1153a2.mp4
Note resource usage in the Task Manager in the above video.
## Solution
- Added a type `UpdateMode` that allows users to specify how the winit event loop is updated, without exposing winit types.
- Added two fields to `WinitConfig`, both with the `UpdateMode` type. One configures how the application updates when focused, and the other configures how the application behaves when it is not focused. Users can modify this resource manually to set the type of event loop control flow they want.
- For convenience, two functions were added to `WinitConfig`, that provide reasonable presets: `game()` (default) and `desktop_app()`.
- The `game()` preset, which is used by default, is unchanged from current behavior with one exception: when the app is out of focus the app updates at a minimum of 10fps, or every time a winit event is received. This has a huge positive impact on power use and responsiveness on my machine, which will otherwise continue running the app at many hundreds of fps when out of focus or minimized.
- The `desktop_app()` preset is fully reactive, only updating when user input (winit event) is supplied or a `RedrawRequest` event is sent. When the app is out of focus, it only updates on `Window` events - i.e. any winit event that directly interacts with the window. What this means in practice is that the app uses *zero* resources when minimized or not interacted with, but still updates fluidly when the app is out of focus and the user mouses over the application.
- Added a `RedrawRequest` event so users can force an update even if there are no events. This is useful in an application when you want to, say, run an animation even when the user isn't providing input.
- Added an example `low_power` to demonstrate these changes
## Usage
Configuring the event loop:
```rs
use bevy::winit::{WinitConfig};
// ...
.insert_resource(WinitConfig::desktop_app()) // preset
// or
.insert_resource(WinitConfig::game()) // preset
// or
.insert_resource(WinitConfig{ .. }) // manual
```
Requesting a redraw:
```rs
use bevy::window::RequestRedraw;
// ...
fn request_redraw(mut event: EventWriter<RequestRedraw>) {
event.send(RequestRedraw);
}
```
## Other details
- Because we have a single event loop for multiple windows, every time I've mentioned "focused" above, I more precisely mean, "if at least one bevy window is focused".
- Due to a platform bug in winit (https://github.com/rust-windowing/winit/issues/1619), we can't simply use `Window::request_redraw()`. As a workaround, this PR will temporarily set the window mode to `Poll` when a redraw is requested. This is then reset to the user's `WinitConfig` setting on the next frame.
2022-03-07 23:32:05 +00:00
[ [ example ] ]
name = "low_power"
path = "examples/window/low_power.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Reduce power usage with configurable event loop (#3974)
# Objective
- Reduce power usage for games when not focused.
- Reduce power usage to ~0 when a desktop application is minimized (opt-in).
- Reduce power usage when focused, only updating on a `winit` event, or the user sends a redraw request. (opt-in)
https://user-images.githubusercontent.com/2632925/156904387-ec47d7de-7f06-4c6f-8aaf-1e952c1153a2.mp4
Note resource usage in the Task Manager in the above video.
## Solution
- Added a type `UpdateMode` that allows users to specify how the winit event loop is updated, without exposing winit types.
- Added two fields to `WinitConfig`, both with the `UpdateMode` type. One configures how the application updates when focused, and the other configures how the application behaves when it is not focused. Users can modify this resource manually to set the type of event loop control flow they want.
- For convenience, two functions were added to `WinitConfig`, that provide reasonable presets: `game()` (default) and `desktop_app()`.
- The `game()` preset, which is used by default, is unchanged from current behavior with one exception: when the app is out of focus the app updates at a minimum of 10fps, or every time a winit event is received. This has a huge positive impact on power use and responsiveness on my machine, which will otherwise continue running the app at many hundreds of fps when out of focus or minimized.
- The `desktop_app()` preset is fully reactive, only updating when user input (winit event) is supplied or a `RedrawRequest` event is sent. When the app is out of focus, it only updates on `Window` events - i.e. any winit event that directly interacts with the window. What this means in practice is that the app uses *zero* resources when minimized or not interacted with, but still updates fluidly when the app is out of focus and the user mouses over the application.
- Added a `RedrawRequest` event so users can force an update even if there are no events. This is useful in an application when you want to, say, run an animation even when the user isn't providing input.
- Added an example `low_power` to demonstrate these changes
## Usage
Configuring the event loop:
```rs
use bevy::winit::{WinitConfig};
// ...
.insert_resource(WinitConfig::desktop_app()) // preset
// or
.insert_resource(WinitConfig::game()) // preset
// or
.insert_resource(WinitConfig{ .. }) // manual
```
Requesting a redraw:
```rs
use bevy::window::RequestRedraw;
// ...
fn request_redraw(mut event: EventWriter<RequestRedraw>) {
event.send(RequestRedraw);
}
```
## Other details
- Because we have a single event loop for multiple windows, every time I've mentioned "focused" above, I more precisely mean, "if at least one bevy window is focused".
- Due to a platform bug in winit (https://github.com/rust-windowing/winit/issues/1619), we can't simply use `Window::request_redraw()`. As a workaround, this PR will temporarily set the window mode to `Poll` when a redraw is requested. This is then reset to the user's `WinitConfig` setting on the next frame.
2022-03-07 23:32:05 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . low_power ]
name = "Low Power"
description = "Demonstrates settings to reduce power use for bevy applications"
category = "Window"
wasm = true
2021-12-18 19:38:05 +00:00
[ [ example ] ]
name = "multiple_windows"
path = "examples/window/multiple_windows.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-06-25 22:24:27 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . multiple_windows ]
name = "Multiple Windows"
description = "Demonstrates creating multiple windows, and rendering to them"
category = "Window"
wasm = false
2020-12-28 20:26:50 +00:00
[ [ example ] ]
name = "scale_factor_override"
path = "examples/window/scale_factor_override.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-12-28 20:26:50 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . scale_factor_override ]
2022-07-05 16:59:31 +00:00
name = "Scale Factor Override"
2022-06-25 20:23:24 +00:00
description = "Illustrates how to customize the default window settings"
category = "Window"
wasm = true
2023-04-19 21:28:42 +00:00
[ [ example ] ]
name = "screenshot"
path = "examples/window/screenshot.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-04-19 21:28:42 +00:00
[ package . metadata . example . screenshot ]
name = "Screenshot"
description = "Shows how to save screenshots to disk"
category = "Window"
2023-04-28 19:37:11 +00:00
wasm = true
2023-04-19 21:28:42 +00:00
2021-12-08 20:53:35 +00:00
[ [ example ] ]
name = "transparent_window"
path = "examples/window/transparent_window.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2021-12-08 20:53:35 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . transparent_window ]
name = "Transparent Window"
description = "Illustrates making the window transparent and hiding the window decoration"
category = "Window"
wasm = false
2020-07-20 09:05:56 +00:00
[ [ example ] ]
name = "window_settings"
2020-08-21 05:37:19 +00:00
path = "examples/window/window_settings.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2020-09-16 01:05:31 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . window_settings ]
name = "Window Settings"
description = "Demonstrates customizing default window settings"
category = "Window"
wasm = true
Add an example to test small window sizes (#3597)
# Objective
We keep getting issues where things break at small window sizes, e.g #3368 (caused by #3153), #3596 ('caused' by #3545)
## Solution
- Add a test that we can make small windows.
Currently, this fails on my machine with some quite scary vulkan errors:
```
2022-01-08T22:55:13.770261Z ERROR wgpu_hal::vulkan::instance: VALIDATION [VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 (0x7cd0911d)]
Validation Error: [ VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 ] Object 0: handle = 0x1adbd410a60, type = VK_OBJECT_TYPE_DEVICE; | MessageID = 0x7cd0911d | vkCreateSwapchainKHR() called with imageExtent = (225,60), which is outside the bounds returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR(): currentExtent = (225,56), minImageExtent = (225,56), maxImageExtent = (225,56). The Vulkan spec states: imageExtent must be between minImageExtent and maxImageExtent, inclusive, where minImageExtent and maxImageExtent are members of the VkSurfaceCapabilitiesKHR structure returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR for the surface (https://vulkan.lunarg.com/doc/view/1.2.198.1/windows/1.2-extensions/vkspec.html#VUID-VkSwapchainCreateInfoKHR-imageExtent-01274)
2022-01-08T22:55:13.770808Z ERROR wgpu_hal::vulkan::instance: objects: (type: DEVICE, hndl: 0x1adbd410a60, name: ?)
2022-01-08T22:55:13.787403Z ERROR wgpu_hal::vulkan::instance: VALIDATION [VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 (0x7cd0911d)]
Validation Error: [ VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 ] Object 0: handle = 0x1adbd410a60, type = VK_OBJECT_TYPE_DEVICE; | MessageID = 0x7cd0911d | vkCreateSwapchainKHR() called with imageExtent = (225,56), which is outside the bounds returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR(): currentExtent = (225,52), minImageExtent = (225,52), maxImageExtent = (225,52). The Vulkan spec states: imageExtent must be between minImageExtent and maxImageExtent, inclusive, where minImageExtent and maxImageExtent are members of the VkSurfaceCapabilitiesKHR structure returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR for the surface (https://vulkan.lunarg.com/doc/view/1.2.198.1/windows/1.2-extensions/vkspec.html#VUID-VkSwapchainCreateInfoKHR-imageExtent-01274)
```
etc.
This might be a new issue here, although I'm surprised it's vulkan giving this error; wgpu should stop it if this is illegal.
2022-04-26 22:15:24 +00:00
[ [ example ] ]
name = "resizing"
path = "tests/window/resizing.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Add an example to test small window sizes (#3597)
# Objective
We keep getting issues where things break at small window sizes, e.g #3368 (caused by #3153), #3596 ('caused' by #3545)
## Solution
- Add a test that we can make small windows.
Currently, this fails on my machine with some quite scary vulkan errors:
```
2022-01-08T22:55:13.770261Z ERROR wgpu_hal::vulkan::instance: VALIDATION [VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 (0x7cd0911d)]
Validation Error: [ VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 ] Object 0: handle = 0x1adbd410a60, type = VK_OBJECT_TYPE_DEVICE; | MessageID = 0x7cd0911d | vkCreateSwapchainKHR() called with imageExtent = (225,60), which is outside the bounds returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR(): currentExtent = (225,56), minImageExtent = (225,56), maxImageExtent = (225,56). The Vulkan spec states: imageExtent must be between minImageExtent and maxImageExtent, inclusive, where minImageExtent and maxImageExtent are members of the VkSurfaceCapabilitiesKHR structure returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR for the surface (https://vulkan.lunarg.com/doc/view/1.2.198.1/windows/1.2-extensions/vkspec.html#VUID-VkSwapchainCreateInfoKHR-imageExtent-01274)
2022-01-08T22:55:13.770808Z ERROR wgpu_hal::vulkan::instance: objects: (type: DEVICE, hndl: 0x1adbd410a60, name: ?)
2022-01-08T22:55:13.787403Z ERROR wgpu_hal::vulkan::instance: VALIDATION [VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 (0x7cd0911d)]
Validation Error: [ VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 ] Object 0: handle = 0x1adbd410a60, type = VK_OBJECT_TYPE_DEVICE; | MessageID = 0x7cd0911d | vkCreateSwapchainKHR() called with imageExtent = (225,56), which is outside the bounds returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR(): currentExtent = (225,52), minImageExtent = (225,52), maxImageExtent = (225,52). The Vulkan spec states: imageExtent must be between minImageExtent and maxImageExtent, inclusive, where minImageExtent and maxImageExtent are members of the VkSurfaceCapabilitiesKHR structure returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR for the surface (https://vulkan.lunarg.com/doc/view/1.2.198.1/windows/1.2-extensions/vkspec.html#VUID-VkSwapchainCreateInfoKHR-imageExtent-01274)
```
etc.
This might be a new issue here, although I'm surprised it's vulkan giving this error; wgpu should stop it if this is illegal.
2022-04-26 22:15:24 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . resizing ]
hidden = true
Add an example to test small window sizes (#3597)
# Objective
We keep getting issues where things break at small window sizes, e.g #3368 (caused by #3153), #3596 ('caused' by #3545)
## Solution
- Add a test that we can make small windows.
Currently, this fails on my machine with some quite scary vulkan errors:
```
2022-01-08T22:55:13.770261Z ERROR wgpu_hal::vulkan::instance: VALIDATION [VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 (0x7cd0911d)]
Validation Error: [ VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 ] Object 0: handle = 0x1adbd410a60, type = VK_OBJECT_TYPE_DEVICE; | MessageID = 0x7cd0911d | vkCreateSwapchainKHR() called with imageExtent = (225,60), which is outside the bounds returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR(): currentExtent = (225,56), minImageExtent = (225,56), maxImageExtent = (225,56). The Vulkan spec states: imageExtent must be between minImageExtent and maxImageExtent, inclusive, where minImageExtent and maxImageExtent are members of the VkSurfaceCapabilitiesKHR structure returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR for the surface (https://vulkan.lunarg.com/doc/view/1.2.198.1/windows/1.2-extensions/vkspec.html#VUID-VkSwapchainCreateInfoKHR-imageExtent-01274)
2022-01-08T22:55:13.770808Z ERROR wgpu_hal::vulkan::instance: objects: (type: DEVICE, hndl: 0x1adbd410a60, name: ?)
2022-01-08T22:55:13.787403Z ERROR wgpu_hal::vulkan::instance: VALIDATION [VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 (0x7cd0911d)]
Validation Error: [ VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 ] Object 0: handle = 0x1adbd410a60, type = VK_OBJECT_TYPE_DEVICE; | MessageID = 0x7cd0911d | vkCreateSwapchainKHR() called with imageExtent = (225,56), which is outside the bounds returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR(): currentExtent = (225,52), minImageExtent = (225,52), maxImageExtent = (225,52). The Vulkan spec states: imageExtent must be between minImageExtent and maxImageExtent, inclusive, where minImageExtent and maxImageExtent are members of the VkSurfaceCapabilitiesKHR structure returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR for the surface (https://vulkan.lunarg.com/doc/view/1.2.198.1/windows/1.2-extensions/vkspec.html#VUID-VkSwapchainCreateInfoKHR-imageExtent-01274)
```
etc.
This might be a new issue here, although I'm surprised it's vulkan giving this error; wgpu should stop it if this is illegal.
2022-04-26 22:15:24 +00:00
[ [ example ] ]
name = "minimising"
path = "tests/window/minimising.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
Add an example to test small window sizes (#3597)
# Objective
We keep getting issues where things break at small window sizes, e.g #3368 (caused by #3153), #3596 ('caused' by #3545)
## Solution
- Add a test that we can make small windows.
Currently, this fails on my machine with some quite scary vulkan errors:
```
2022-01-08T22:55:13.770261Z ERROR wgpu_hal::vulkan::instance: VALIDATION [VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 (0x7cd0911d)]
Validation Error: [ VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 ] Object 0: handle = 0x1adbd410a60, type = VK_OBJECT_TYPE_DEVICE; | MessageID = 0x7cd0911d | vkCreateSwapchainKHR() called with imageExtent = (225,60), which is outside the bounds returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR(): currentExtent = (225,56), minImageExtent = (225,56), maxImageExtent = (225,56). The Vulkan spec states: imageExtent must be between minImageExtent and maxImageExtent, inclusive, where minImageExtent and maxImageExtent are members of the VkSurfaceCapabilitiesKHR structure returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR for the surface (https://vulkan.lunarg.com/doc/view/1.2.198.1/windows/1.2-extensions/vkspec.html#VUID-VkSwapchainCreateInfoKHR-imageExtent-01274)
2022-01-08T22:55:13.770808Z ERROR wgpu_hal::vulkan::instance: objects: (type: DEVICE, hndl: 0x1adbd410a60, name: ?)
2022-01-08T22:55:13.787403Z ERROR wgpu_hal::vulkan::instance: VALIDATION [VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 (0x7cd0911d)]
Validation Error: [ VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 ] Object 0: handle = 0x1adbd410a60, type = VK_OBJECT_TYPE_DEVICE; | MessageID = 0x7cd0911d | vkCreateSwapchainKHR() called with imageExtent = (225,56), which is outside the bounds returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR(): currentExtent = (225,52), minImageExtent = (225,52), maxImageExtent = (225,52). The Vulkan spec states: imageExtent must be between minImageExtent and maxImageExtent, inclusive, where minImageExtent and maxImageExtent are members of the VkSurfaceCapabilitiesKHR structure returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR for the surface (https://vulkan.lunarg.com/doc/view/1.2.198.1/windows/1.2-extensions/vkspec.html#VUID-VkSwapchainCreateInfoKHR-imageExtent-01274)
```
etc.
This might be a new issue here, although I'm surprised it's vulkan giving this error; wgpu should stop it if this is illegal.
2022-04-26 22:15:24 +00:00
2022-06-25 20:23:24 +00:00
[ package . metadata . example . minimising ]
hidden = true
Add an example to test small window sizes (#3597)
# Objective
We keep getting issues where things break at small window sizes, e.g #3368 (caused by #3153), #3596 ('caused' by #3545)
## Solution
- Add a test that we can make small windows.
Currently, this fails on my machine with some quite scary vulkan errors:
```
2022-01-08T22:55:13.770261Z ERROR wgpu_hal::vulkan::instance: VALIDATION [VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 (0x7cd0911d)]
Validation Error: [ VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 ] Object 0: handle = 0x1adbd410a60, type = VK_OBJECT_TYPE_DEVICE; | MessageID = 0x7cd0911d | vkCreateSwapchainKHR() called with imageExtent = (225,60), which is outside the bounds returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR(): currentExtent = (225,56), minImageExtent = (225,56), maxImageExtent = (225,56). The Vulkan spec states: imageExtent must be between minImageExtent and maxImageExtent, inclusive, where minImageExtent and maxImageExtent are members of the VkSurfaceCapabilitiesKHR structure returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR for the surface (https://vulkan.lunarg.com/doc/view/1.2.198.1/windows/1.2-extensions/vkspec.html#VUID-VkSwapchainCreateInfoKHR-imageExtent-01274)
2022-01-08T22:55:13.770808Z ERROR wgpu_hal::vulkan::instance: objects: (type: DEVICE, hndl: 0x1adbd410a60, name: ?)
2022-01-08T22:55:13.787403Z ERROR wgpu_hal::vulkan::instance: VALIDATION [VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 (0x7cd0911d)]
Validation Error: [ VUID-VkSwapchainCreateInfoKHR-imageExtent-01274 ] Object 0: handle = 0x1adbd410a60, type = VK_OBJECT_TYPE_DEVICE; | MessageID = 0x7cd0911d | vkCreateSwapchainKHR() called with imageExtent = (225,56), which is outside the bounds returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR(): currentExtent = (225,52), minImageExtent = (225,52), maxImageExtent = (225,52). The Vulkan spec states: imageExtent must be between minImageExtent and maxImageExtent, inclusive, where minImageExtent and maxImageExtent are members of the VkSurfaceCapabilitiesKHR structure returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR for the surface (https://vulkan.lunarg.com/doc/view/1.2.198.1/windows/1.2-extensions/vkspec.html#VUID-VkSwapchainCreateInfoKHR-imageExtent-01274)
```
etc.
This might be a new issue here, although I'm surprised it's vulkan giving this error; wgpu should stop it if this is illegal.
2022-04-26 22:15:24 +00:00
2022-08-29 23:56:43 +00:00
[ [ example ] ]
name = "window_resizing"
path = "examples/window/window_resizing.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2022-08-29 23:56:43 +00:00
2023-06-19 22:56:25 +00:00
[ [ example ] ]
name = "fallback_image"
path = "examples/shader/fallback_image.rs"
2023-08-10 00:27:39 +00:00
doc-scrape-examples = true
2023-06-19 22:56:25 +00:00
Implement minimal reflection probes (fixed macOS, iOS, and Android). (#11366)
This pull request re-submits #10057, which was backed out for breaking
macOS, iOS, and Android. I've tested this version on macOS and Android
and on the iOS simulator.
# Objective
This pull request implements *reflection probes*, which generalize
environment maps to allow for multiple environment maps in the same
scene, each of which has an axis-aligned bounding box. This is a
standard feature of physically-based renderers and was inspired by [the
corresponding feature in Blender's Eevee renderer].
## Solution
This is a minimal implementation of reflection probes that allows
artists to define cuboid bounding regions associated with environment
maps. For every view, on every frame, a system builds up a list of the
nearest 4 reflection probes that are within the view's frustum and
supplies that list to the shader. The PBR fragment shader searches
through the list, finds the first containing reflection probe, and uses
it for indirect lighting, falling back to the view's environment map if
none is found. Both forward and deferred renderers are fully supported.
A reflection probe is an entity with a pair of components, *LightProbe*
and *EnvironmentMapLight* (as well as the standard *SpatialBundle*, to
position it in the world). The *LightProbe* component (along with the
*Transform*) defines the bounding region, while the
*EnvironmentMapLight* component specifies the associated diffuse and
specular cubemaps.
A frequent question is "why two components instead of just one?" The
advantages of this setup are:
1. It's readily extensible to other types of light probes, in particular
*irradiance volumes* (also known as ambient cubes or voxel global
illumination), which use the same approach of bounding cuboids. With a
single component that applies to both reflection probes and irradiance
volumes, we can share the logic that implements falloff and blending
between multiple light probes between both of those features.
2. It reduces duplication between the existing *EnvironmentMapLight* and
these new reflection probes. Systems can treat environment maps attached
to cameras the same way they treat environment maps applied to
reflection probes if they wish.
Internally, we gather up all environment maps in the scene and place
them in a cubemap array. At present, this means that all environment
maps must have the same size, mipmap count, and texture format. A
warning is emitted if this restriction is violated. We could potentially
relax this in the future as part of the automatic mipmap generation
work, which could easily do texture format conversion as part of its
preprocessing.
An easy way to generate reflection probe cubemaps is to bake them in
Blender and use the `export-blender-gi` tool that's part of the
[`bevy-baked-gi`] project. This tool takes a `.blend` file containing
baked cubemaps as input and exports cubemap images, pre-filtered with an
embedded fork of the [glTF IBL Sampler], alongside a corresponding
`.scn.ron` file that the scene spawner can use to recreate the
reflection probes.
Note that this is intentionally a minimal implementation, to aid
reviewability. Known issues are:
* Reflection probes are basically unsupported on WebGL 2, because WebGL
2 has no cubemap arrays. (Strictly speaking, you can have precisely one
reflection probe in the scene if you have no other cubemaps anywhere,
but this isn't very useful.)
* Reflection probes have no falloff, so reflections will abruptly change
when objects move from one bounding region to another.
* As mentioned before, all cubemaps in the world of a given type
(diffuse or specular) must have the same size, format, and mipmap count.
Future work includes:
* Blending between multiple reflection probes.
* A falloff/fade-out region so that reflected objects disappear
gradually instead of vanishing all at once.
* Irradiance volumes for voxel-based global illumination. This should
reuse much of the reflection probe logic, as they're both GI techniques
based on cuboid bounding regions.
* Support for WebGL 2, by breaking batches when reflection probes are
used.
These issues notwithstanding, I think it's best to land this with
roughly the current set of functionality, because this patch is useful
as is and adding everything above would make the pull request
significantly larger and harder to review.
---
## Changelog
### Added
* A new *LightProbe* component is available that specifies a bounding
region that an *EnvironmentMapLight* applies to. The combination of a
*LightProbe* and an *EnvironmentMapLight* offers *reflection probe*
functionality similar to that available in other engines.
[the corresponding feature in Blender's Eevee renderer]:
https://docs.blender.org/manual/en/latest/render/eevee/light_probes/reflection_cubemaps.html
[`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi
[glTF IBL Sampler]: https://github.com/KhronosGroup/glTF-IBL-Sampler
2024-01-19 07:33:52 +00:00
[ [ example ] ]
name = "reflection_probes"
path = "examples/3d/reflection_probes.rs"
doc-scrape-examples = true
[ package . metadata . example . reflection_probes ]
name = "Reflection Probes"
description = "Demonstrates reflection probes"
category = "3D Rendering"
wasm = false
2023-06-19 22:56:25 +00:00
[ package . metadata . example . fallback_image ]
hidden = true
2022-08-29 23:56:43 +00:00
[ package . metadata . example . window_resizing ]
name = "Window Resizing"
description = "Demonstrates resizing and responding to resizing a window"
category = "Window"
wasm = true
2023-11-03 22:33:01 +00:00
[ [ example ] ]
name = "ui_material"
path = "examples/ui/ui_material.rs"
doc-scrape-examples = true
[ package . metadata . example . ui_material ]
name = "UI Material"
description = "Demonstrates creating and using custom Ui materials"
category = "UI (User Interface)"
wasm = true
2022-07-25 15:48:13 +00:00
[ profile . wasm-release ]
inherits = "release"
opt-level = "z"
lto = "fat"
codegen-units = 1
2022-12-20 15:59:41 +00:00
[ profile . stress-test ]
inherits = "release"
lto = "fat"
panic = "abort"
2023-08-10 00:27:39 +00:00
[ package . metadata . docs . rs ]
cargo-args = [ "-Zunstable-options" , "-Zrustdoc-scrape-examples" ]