u-boot/arch/powerpc/include/asm/immap_85xx.h

3180 lines
107 KiB
C
Raw Normal View History

/*
* MPC85xx Internal Memory Map
*
powerpc/mpc85xx:Add BSC9131/BSC9130/BSC9231 Processor Support - BSC9131 is integrated device that targets Femto base station market. It combines Power Architecture e500v2 and DSP StarCore SC3850 core technologies with MAPLE-B2F baseband acceleration processing elements. - BSC9130 is exactly same as BSC9131 except that the max e500v2 core and DSP core frequencies are 800M(these are 1G in case of 9131). - BSC9231 is similar to BSC9131 except no MAPLE The BSC9131 SoC includes the following function and features: . Power Architecture subsystem including a e500 processor with 256-Kbyte shared L2 cache . StarCore SC3850 DSP subsystem with a 512-Kbyte private L2 cache . The Multi Accelerator Platform Engine for Femto BaseStation Baseband Processing (MAPLE-B2F) . A multi-standard baseband algorithm accelerator for Channel Decoding/Encoding, Fourier Transforms, UMTS chip rate processing, LTE UP/DL Channel processing, and CRC algorithms . Consists of accelerators for Convolution, Filtering, Turbo Encoding, Turbo Decoding, Viterbi decoding, Chiprate processing, and Matrix Inversion operations . DDR3/3L memory interface with 32-bit data width without ECC and 16-bit with ECC, up to 400-MHz clock/800 MHz data rate . Dedicated security engine featuring trusted boot . DMA controller . OCNDMA with four bidirectional channels . Interfaces . Two triple-speed Gigabit Ethernet controllers featuring network acceleration including IEEE 1588. v2 hardware support and virtualization (eTSEC) . eTSEC 1 supports RGMII/RMII . eTSEC 2 supports RGMII . High-speed USB 2.0 host and device controller with ULPI interface . Enhanced secure digital (SD/MMC) host controller (eSDHC) . Antenna interface controller (AIC), supporting three industry standard JESD207/three custom ADI RF interfaces (two dual port and one single port) and three MAXIM's MaxPHY serial interfaces . ADI lanes support both full duplex FDD support and half duplex TDD support . Universal Subscriber Identity Module (USIM) interface that facilitates communication to SIM cards or Eurochip pre-paid phone cards . TDM with one TDM port . Two DUART, four eSPI, and two I2C controllers . Integrated Flash memory controller (IFC) . TDM with 256 channels . GPIO . Sixteen 32-bit timers The DSP portion of the SoC consists of DSP core (SC3850) and various accelerators pertaining to DSP operations. This patch takes care of code pertaining to power side functionality only. Signed-off-by: Ramneek Mehresh <ramneek.mehresh@freescale.com> Signed-off-by: Priyanka Jain <Priyanka.Jain@freescale.com> Signed-off-by: Akhil Goyal <Akhil.Goyal@freescale.com> Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com> Signed-off-by: Rajan Srivastava <rajan.srivastava@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
2012-04-24 20:16:49 +00:00
* Copyright 2007-2012 Freescale Semiconductor, Inc.
*
* Copyright(c) 2002,2003 Motorola Inc.
* Xianghua Xiao (x.xiao@motorola.com)
*
* SPDX-License-Identifier: GPL-2.0+
*/
#ifndef __IMMAP_85xx__
#define __IMMAP_85xx__
#include <asm/types.h>
#include <asm/fsl_dma.h>
#include <asm/fsl_i2c.h>
#include <fsl_ifc.h>
#include <fsl_sec.h>
#include <fsl_sfp.h>
#include <asm/fsl_lbc.h>
#include <asm/fsl_fman.h>
#include <fsl_immap.h>
typedef struct ccsr_local {
u32 ccsrbarh; /* CCSR Base Addr High */
u32 ccsrbarl; /* CCSR Base Addr Low */
u32 ccsrar; /* CCSR Attr */
#define CCSRAR_C 0x80000000 /* Commit */
u8 res1[4];
u32 altcbarh; /* Alternate Configuration Base Addr High */
u32 altcbarl; /* Alternate Configuration Base Addr Low */
u32 altcar; /* Alternate Configuration Attr */
u8 res2[4];
u32 bstrh; /* Boot space translation high */
u32 bstrl; /* Boot space translation Low */
u32 bstrar; /* Boot space translation attributes */
u8 res3[0xbd4];
struct {
u32 lawbarh; /* LAWn base addr high */
u32 lawbarl; /* LAWn base addr low */
u32 lawar; /* LAWn attributes */
u8 res4[4];
} law[32];
u8 res35[0x204];
} ccsr_local_t;
/* Local-Access Registers & ECM Registers */
typedef struct ccsr_local_ecm {
u32 ccsrbar; /* CCSR Base Addr */
u8 res1[4];
u32 altcbar; /* Alternate Configuration Base Addr */
u8 res2[4];
u32 altcar; /* Alternate Configuration Attr */
u8 res3[12];
u32 bptr; /* Boot Page Translation */
u8 res4[3044];
u32 lawbar0; /* Local Access Window 0 Base Addr */
u8 res5[4];
u32 lawar0; /* Local Access Window 0 Attrs */
u8 res6[20];
u32 lawbar1; /* Local Access Window 1 Base Addr */
u8 res7[4];
u32 lawar1; /* Local Access Window 1 Attrs */
u8 res8[20];
u32 lawbar2; /* Local Access Window 2 Base Addr */
u8 res9[4];
u32 lawar2; /* Local Access Window 2 Attrs */
u8 res10[20];
u32 lawbar3; /* Local Access Window 3 Base Addr */
u8 res11[4];
u32 lawar3; /* Local Access Window 3 Attrs */
u8 res12[20];
u32 lawbar4; /* Local Access Window 4 Base Addr */
u8 res13[4];
u32 lawar4; /* Local Access Window 4 Attrs */
u8 res14[20];
u32 lawbar5; /* Local Access Window 5 Base Addr */
u8 res15[4];
u32 lawar5; /* Local Access Window 5 Attrs */
u8 res16[20];
u32 lawbar6; /* Local Access Window 6 Base Addr */
u8 res17[4];
u32 lawar6; /* Local Access Window 6 Attrs */
u8 res18[20];
u32 lawbar7; /* Local Access Window 7 Base Addr */
u8 res19[4];
u32 lawar7; /* Local Access Window 7 Attrs */
u8 res19_8a[20];
u32 lawbar8; /* Local Access Window 8 Base Addr */
u8 res19_8b[4];
u32 lawar8; /* Local Access Window 8 Attrs */
u8 res19_9a[20];
u32 lawbar9; /* Local Access Window 9 Base Addr */
u8 res19_9b[4];
u32 lawar9; /* Local Access Window 9 Attrs */
u8 res19_10a[20];
u32 lawbar10; /* Local Access Window 10 Base Addr */
u8 res19_10b[4];
u32 lawar10; /* Local Access Window 10 Attrs */
u8 res19_11a[20];
u32 lawbar11; /* Local Access Window 11 Base Addr */
u8 res19_11b[4];
u32 lawar11; /* Local Access Window 11 Attrs */
u8 res20[652];
u32 eebacr; /* ECM CCB Addr Configuration */
u8 res21[12];
u32 eebpcr; /* ECM CCB Port Configuration */
u8 res22[3564];
u32 eedr; /* ECM Error Detect */
u8 res23[4];
u32 eeer; /* ECM Error Enable */
u32 eeatr; /* ECM Error Attrs Capture */
u32 eeadr; /* ECM Error Addr Capture */
u8 res24[492];
} ccsr_local_ecm_t;
#define DDR_EOR_RD_BDW_OPT_DIS 0x80000000 /* Read BDW Opt. disable */
#define DDR_EOR_ADDR_HASH_EN 0x40000000 /* Address hash enabled */
/* I2C Registers */
typedef struct ccsr_i2c {
struct fsl_i2c i2c[1];
u8 res[4096 - 1 * sizeof(struct fsl_i2c)];
} ccsr_i2c_t;
#if defined(CONFIG_MPC8540) \
|| defined(CONFIG_MPC8541) \
|| defined(CONFIG_MPC8548) \
|| defined(CONFIG_MPC8555)
/* DUART Registers */
typedef struct ccsr_duart {
u8 res1[1280];
/* URBR1, UTHR1, UDLB1 with the same addr */
u8 urbr1_uthr1_udlb1;
/* UIER1, UDMB1 with the same addr01 */
u8 uier1_udmb1;
/* UIIR1, UFCR1, UAFR1 with the same addr */
u8 uiir1_ufcr1_uafr1;
u8 ulcr1; /* UART1 Line Control */
u8 umcr1; /* UART1 Modem Control */
u8 ulsr1; /* UART1 Line Status */
u8 umsr1; /* UART1 Modem Status */
u8 uscr1; /* UART1 Scratch */
u8 res2[8];
u8 udsr1; /* UART1 DMA Status */
u8 res3[239];
/* URBR2, UTHR2, UDLB2 with the same addr */
u8 urbr2_uthr2_udlb2;
/* UIER2, UDMB2 with the same addr */
u8 uier2_udmb2;
/* UIIR2, UFCR2, UAFR2 with the same addr */
u8 uiir2_ufcr2_uafr2;
u8 ulcr2; /* UART2 Line Control */
u8 umcr2; /* UART2 Modem Control */
u8 ulsr2; /* UART2 Line Status */
u8 umsr2; /* UART2 Modem Status */
u8 uscr2; /* UART2 Scratch */
u8 res4[8];
u8 udsr2; /* UART2 DMA Status */
u8 res5[2543];
} ccsr_duart_t;
#else /* MPC8560 uses UART on its CPM */
typedef struct ccsr_duart {
u8 res[4096];
} ccsr_duart_t;
#endif
/* eSPI Registers */
typedef struct ccsr_espi {
u32 mode; /* eSPI mode */
u32 event; /* eSPI event */
u32 mask; /* eSPI mask */
u32 com; /* eSPI command */
u32 tx; /* eSPI transmit FIFO access */
u32 rx; /* eSPI receive FIFO access */
u8 res1[8]; /* reserved */
u32 csmode[4]; /* 0x2c: sSPI CS0/1/2/3 mode */
u8 res2[4048]; /* fill up to 0x1000 */
} ccsr_espi_t;
/* PCI Registers */
typedef struct ccsr_pcix {
u32 cfg_addr; /* PCIX Configuration Addr */
u32 cfg_data; /* PCIX Configuration Data */
u32 int_ack; /* PCIX IRQ Acknowledge */
u8 res000c[52];
u32 liodn_base; /* PCIX LIODN base register */
u8 res0044[2996];
u32 ipver1; /* PCIX IP block revision register 1 */
u32 ipver2; /* PCIX IP block revision register 2 */
u32 potar0; /* PCIX Outbound Transaction Addr 0 */
u32 potear0; /* PCIX Outbound Translation Extended Addr 0 */
u32 powbar0; /* PCIX Outbound Window Base Addr 0 */
u32 powbear0; /* PCIX Outbound Window Base Extended Addr 0 */
u32 powar0; /* PCIX Outbound Window Attrs 0 */
u8 res2[12];
u32 potar1; /* PCIX Outbound Transaction Addr 1 */
u32 potear1; /* PCIX Outbound Translation Extended Addr 1 */
u32 powbar1; /* PCIX Outbound Window Base Addr 1 */
u32 powbear1; /* PCIX Outbound Window Base Extended Addr 1 */
u32 powar1; /* PCIX Outbound Window Attrs 1 */
u8 res3[12];
u32 potar2; /* PCIX Outbound Transaction Addr 2 */
u32 potear2; /* PCIX Outbound Translation Extended Addr 2 */
u32 powbar2; /* PCIX Outbound Window Base Addr 2 */
u32 powbear2; /* PCIX Outbound Window Base Extended Addr 2 */
u32 powar2; /* PCIX Outbound Window Attrs 2 */
u8 res4[12];
u32 potar3; /* PCIX Outbound Transaction Addr 3 */
u32 potear3; /* PCIX Outbound Translation Extended Addr 3 */
u32 powbar3; /* PCIX Outbound Window Base Addr 3 */
u32 powbear3; /* PCIX Outbound Window Base Extended Addr 3 */
u32 powar3; /* PCIX Outbound Window Attrs 3 */
u8 res5[12];
u32 potar4; /* PCIX Outbound Transaction Addr 4 */
u32 potear4; /* PCIX Outbound Translation Extended Addr 4 */
u32 powbar4; /* PCIX Outbound Window Base Addr 4 */
u32 powbear4; /* PCIX Outbound Window Base Extended Addr 4 */
u32 powar4; /* PCIX Outbound Window Attrs 4 */
u8 res6[268];
u32 pitar3; /* PCIX Inbound Translation Addr 3 */
u32 pitear3; /* PCIX Inbound Translation Extended Addr 3 */
u32 piwbar3; /* PCIX Inbound Window Base Addr 3 */
u32 piwbear3; /* PCIX Inbound Window Base Extended Addr 3 */
u32 piwar3; /* PCIX Inbound Window Attrs 3 */
u8 res7[12];
u32 pitar2; /* PCIX Inbound Translation Addr 2 */
u32 pitear2; /* PCIX Inbound Translation Extended Addr 2 */
u32 piwbar2; /* PCIX Inbound Window Base Addr 2 */
u32 piwbear2; /* PCIX Inbound Window Base Extended Addr 2 */
u32 piwar2; /* PCIX Inbound Window Attrs 2 */
u8 res8[12];
u32 pitar1; /* PCIX Inbound Translation Addr 1 */
u32 pitear1; /* PCIX Inbound Translation Extended Addr 1 */
u32 piwbar1; /* PCIX Inbound Window Base Addr 1 */
u8 res9[4];
u32 piwar1; /* PCIX Inbound Window Attrs 1 */
u8 res10[12];
u32 pedr; /* PCIX Error Detect */
u32 pecdr; /* PCIX Error Capture Disable */
u32 peer; /* PCIX Error Enable */
u32 peattrcr; /* PCIX Error Attrs Capture */
u32 peaddrcr; /* PCIX Error Addr Capture */
u32 peextaddrcr; /* PCIX Error Extended Addr Capture */
u32 pedlcr; /* PCIX Error Data Low Capture */
u32 pedhcr; /* PCIX Error Error Data High Capture */
u32 gas_timr; /* PCIX Gasket Timer */
u8 res11[476];
} ccsr_pcix_t;
#define PCIX_COMMAND 0x62
#define POWAR_EN 0x80000000
#define POWAR_IO_READ 0x00080000
#define POWAR_MEM_READ 0x00040000
#define POWAR_IO_WRITE 0x00008000
#define POWAR_MEM_WRITE 0x00004000
#define POWAR_MEM_512M 0x0000001c
#define POWAR_IO_1M 0x00000013
#define PIWAR_EN 0x80000000
#define PIWAR_PF 0x20000000
#define PIWAR_LOCAL 0x00f00000
#define PIWAR_READ_SNOOP 0x00050000
#define PIWAR_WRITE_SNOOP 0x00005000
#define PIWAR_MEM_2G 0x0000001e
typedef struct ccsr_gpio {
u32 gpdir;
u32 gpodr;
u32 gpdat;
u32 gpier;
u32 gpimr;
u32 gpicr;
} ccsr_gpio_t;
/* L2 Cache Registers */
typedef struct ccsr_l2cache {
u32 l2ctl; /* L2 configuration 0 */
u8 res1[12];
u32 l2cewar0; /* L2 cache external write addr 0 */
u8 res2[4];
u32 l2cewcr0; /* L2 cache external write control 0 */
u8 res3[4];
u32 l2cewar1; /* L2 cache external write addr 1 */
u8 res4[4];
u32 l2cewcr1; /* L2 cache external write control 1 */
u8 res5[4];
u32 l2cewar2; /* L2 cache external write addr 2 */
u8 res6[4];
u32 l2cewcr2; /* L2 cache external write control 2 */
u8 res7[4];
u32 l2cewar3; /* L2 cache external write addr 3 */
u8 res8[4];
u32 l2cewcr3; /* L2 cache external write control 3 */
u8 res9[180];
u32 l2srbar0; /* L2 memory-mapped SRAM base addr 0 */
u8 res10[4];
u32 l2srbar1; /* L2 memory-mapped SRAM base addr 1 */
u8 res11[3316];
u32 l2errinjhi; /* L2 error injection mask high */
u32 l2errinjlo; /* L2 error injection mask low */
u32 l2errinjctl; /* L2 error injection tag/ECC control */
u8 res12[20];
u32 l2captdatahi; /* L2 error data high capture */
u32 l2captdatalo; /* L2 error data low capture */
u32 l2captecc; /* L2 error ECC capture */
u8 res13[20];
u32 l2errdet; /* L2 error detect */
u32 l2errdis; /* L2 error disable */
u32 l2errinten; /* L2 error interrupt enable */
u32 l2errattr; /* L2 error attributes capture */
u32 l2erraddr; /* L2 error addr capture */
u8 res14[4];
u32 l2errctl; /* L2 error control */
u8 res15[420];
} ccsr_l2cache_t;
#define MPC85xx_L2CTL_L2E 0x80000000
#define MPC85xx_L2CTL_L2SRAM_ENTIRE 0x00010000
#define MPC85xx_L2ERRDIS_MBECC 0x00000008
#define MPC85xx_L2ERRDIS_SBECC 0x00000004
/* DMA Registers */
typedef struct ccsr_dma {
u8 res1[256];
struct fsl_dma dma[4];
u32 dgsr; /* DMA General Status */
u8 res2[11516];
} ccsr_dma_t;
/* tsec */
typedef struct ccsr_tsec {
u8 res1[16];
u32 ievent; /* IRQ Event */
u32 imask; /* IRQ Mask */
u32 edis; /* Error Disabled */
u8 res2[4];
u32 ecntrl; /* Ethernet Control */
u32 minflr; /* Minimum Frame Len */
u32 ptv; /* Pause Time Value */
u32 dmactrl; /* DMA Control */
u32 tbipa; /* TBI PHY Addr */
u8 res3[88];
u32 fifo_tx_thr; /* FIFO transmit threshold */
u8 res4[8];
u32 fifo_tx_starve; /* FIFO transmit starve */
u32 fifo_tx_starve_shutoff; /* FIFO transmit starve shutoff */
u8 res5[96];
u32 tctrl; /* TX Control */
u32 tstat; /* TX Status */
u8 res6[4];
u32 tbdlen; /* TX Buffer Desc Data Len */
u8 res7[16];
u32 ctbptrh; /* Current TX Buffer Desc Ptr High */
u32 ctbptr; /* Current TX Buffer Desc Ptr */
u8 res8[88];
u32 tbptrh; /* TX Buffer Desc Ptr High */
u32 tbptr; /* TX Buffer Desc Ptr Low */
u8 res9[120];
u32 tbaseh; /* TX Desc Base Addr High */
u32 tbase; /* TX Desc Base Addr */
u8 res10[168];
u32 ostbd; /* Out-of-Sequence(OOS) TX Buffer Desc */
u32 ostbdp; /* OOS TX Data Buffer Ptr */
u32 os32tbdp; /* OOS 32 Bytes TX Data Buffer Ptr Low */
u32 os32iptrh; /* OOS 32 Bytes TX Insert Ptr High */
u32 os32iptrl; /* OOS 32 Bytes TX Insert Ptr Low */
u32 os32tbdr; /* OOS 32 Bytes TX Reserved */
u32 os32iil; /* OOS 32 Bytes TX Insert Idx/Len */
u8 res11[52];
u32 rctrl; /* RX Control */
u32 rstat; /* RX Status */
u8 res12[4];
u32 rbdlen; /* RxBD Data Len */
u8 res13[16];
u32 crbptrh; /* Current RX Buffer Desc Ptr High */
u32 crbptr; /* Current RX Buffer Desc Ptr */
u8 res14[24];
u32 mrblr; /* Maximum RX Buffer Len */
u32 mrblr2r3; /* Maximum RX Buffer Len R2R3 */
u8 res15[56];
u32 rbptrh; /* RX Buffer Desc Ptr High 0 */
u32 rbptr; /* RX Buffer Desc Ptr */
u32 rbptrh1; /* RX Buffer Desc Ptr High 1 */
u32 rbptrl1; /* RX Buffer Desc Ptr Low 1 */
u32 rbptrh2; /* RX Buffer Desc Ptr High 2 */
u32 rbptrl2; /* RX Buffer Desc Ptr Low 2 */
u32 rbptrh3; /* RX Buffer Desc Ptr High 3 */
u32 rbptrl3; /* RX Buffer Desc Ptr Low 3 */
u8 res16[96];
u32 rbaseh; /* RX Desc Base Addr High 0 */
u32 rbase; /* RX Desc Base Addr */
u32 rbaseh1; /* RX Desc Base Addr High 1 */
u32 rbasel1; /* RX Desc Base Addr Low 1 */
u32 rbaseh2; /* RX Desc Base Addr High 2 */
u32 rbasel2; /* RX Desc Base Addr Low 2 */
u32 rbaseh3; /* RX Desc Base Addr High 3 */
u32 rbasel3; /* RX Desc Base Addr Low 3 */
u8 res17[224];
u32 maccfg1; /* MAC Configuration 1 */
u32 maccfg2; /* MAC Configuration 2 */
u32 ipgifg; /* Inter Packet Gap/Inter Frame Gap */
u32 hafdup; /* Half Duplex */
u32 maxfrm; /* Maximum Frame Len */
u8 res18[12];
u32 miimcfg; /* MII Management Configuration */
u32 miimcom; /* MII Management Cmd */
u32 miimadd; /* MII Management Addr */
u32 miimcon; /* MII Management Control */
u32 miimstat; /* MII Management Status */
u32 miimind; /* MII Management Indicator */
u8 res19[4];
u32 ifstat; /* Interface Status */
u32 macstnaddr1; /* Station Addr Part 1 */
u32 macstnaddr2; /* Station Addr Part 2 */
u8 res20[312];
u32 tr64; /* TX & RX 64-byte Frame Counter */
u32 tr127; /* TX & RX 65-127 byte Frame Counter */
u32 tr255; /* TX & RX 128-255 byte Frame Counter */
u32 tr511; /* TX & RX 256-511 byte Frame Counter */
u32 tr1k; /* TX & RX 512-1023 byte Frame Counter */
u32 trmax; /* TX & RX 1024-1518 byte Frame Counter */
u32 trmgv; /* TX & RX 1519-1522 byte Good VLAN Frame */
u32 rbyt; /* RX Byte Counter */
u32 rpkt; /* RX Packet Counter */
u32 rfcs; /* RX FCS Error Counter */
u32 rmca; /* RX Multicast Packet Counter */
u32 rbca; /* RX Broadcast Packet Counter */
u32 rxcf; /* RX Control Frame Packet Counter */
u32 rxpf; /* RX Pause Frame Packet Counter */
u32 rxuo; /* RX Unknown OP Code Counter */
u32 raln; /* RX Alignment Error Counter */
u32 rflr; /* RX Frame Len Error Counter */
u32 rcde; /* RX Code Error Counter */
u32 rcse; /* RX Carrier Sense Error Counter */
u32 rund; /* RX Undersize Packet Counter */
u32 rovr; /* RX Oversize Packet Counter */
u32 rfrg; /* RX Fragments Counter */
u32 rjbr; /* RX Jabber Counter */
u32 rdrp; /* RX Drop Counter */
u32 tbyt; /* TX Byte Counter Counter */
u32 tpkt; /* TX Packet Counter */
u32 tmca; /* TX Multicast Packet Counter */
u32 tbca; /* TX Broadcast Packet Counter */
u32 txpf; /* TX Pause Control Frame Counter */
u32 tdfr; /* TX Deferral Packet Counter */
u32 tedf; /* TX Excessive Deferral Packet Counter */
u32 tscl; /* TX Single Collision Packet Counter */
u32 tmcl; /* TX Multiple Collision Packet Counter */
u32 tlcl; /* TX Late Collision Packet Counter */
u32 txcl; /* TX Excessive Collision Packet Counter */
u32 tncl; /* TX Total Collision Counter */
u8 res21[4];
u32 tdrp; /* TX Drop Frame Counter */
u32 tjbr; /* TX Jabber Frame Counter */
u32 tfcs; /* TX FCS Error Counter */
u32 txcf; /* TX Control Frame Counter */
u32 tovr; /* TX Oversize Frame Counter */
u32 tund; /* TX Undersize Frame Counter */
u32 tfrg; /* TX Fragments Frame Counter */
u32 car1; /* Carry One */
u32 car2; /* Carry Two */
u32 cam1; /* Carry Mask One */
u32 cam2; /* Carry Mask Two */
u8 res22[192];
u32 iaddr0; /* Indivdual addr 0 */
u32 iaddr1; /* Indivdual addr 1 */
u32 iaddr2; /* Indivdual addr 2 */
u32 iaddr3; /* Indivdual addr 3 */
u32 iaddr4; /* Indivdual addr 4 */
u32 iaddr5; /* Indivdual addr 5 */
u32 iaddr6; /* Indivdual addr 6 */
u32 iaddr7; /* Indivdual addr 7 */
u8 res23[96];
u32 gaddr0; /* Global addr 0 */
u32 gaddr1; /* Global addr 1 */
u32 gaddr2; /* Global addr 2 */
u32 gaddr3; /* Global addr 3 */
u32 gaddr4; /* Global addr 4 */
u32 gaddr5; /* Global addr 5 */
u32 gaddr6; /* Global addr 6 */
u32 gaddr7; /* Global addr 7 */
u8 res24[96];
u32 pmd0; /* Pattern Match Data */
u8 res25[4];
u32 pmask0; /* Pattern Mask */
u8 res26[4];
u32 pcntrl0; /* Pattern Match Control */
u8 res27[4];
u32 pattrb0; /* Pattern Match Attrs */
u32 pattrbeli0; /* Pattern Match Attrs Extract Len & Idx */
u32 pmd1; /* Pattern Match Data */
u8 res28[4];
u32 pmask1; /* Pattern Mask */
u8 res29[4];
u32 pcntrl1; /* Pattern Match Control */
u8 res30[4];
u32 pattrb1; /* Pattern Match Attrs */
u32 pattrbeli1; /* Pattern Match Attrs Extract Len & Idx */
u32 pmd2; /* Pattern Match Data */
u8 res31[4];
u32 pmask2; /* Pattern Mask */
u8 res32[4];
u32 pcntrl2; /* Pattern Match Control */
u8 res33[4];
u32 pattrb2; /* Pattern Match Attrs */
u32 pattrbeli2; /* Pattern Match Attrs Extract Len & Idx */
u32 pmd3; /* Pattern Match Data */
u8 res34[4];
u32 pmask3; /* Pattern Mask */
u8 res35[4];
u32 pcntrl3; /* Pattern Match Control */
u8 res36[4];
u32 pattrb3; /* Pattern Match Attrs */
u32 pattrbeli3; /* Pattern Match Attrs Extract Len & Idx */
u32 pmd4; /* Pattern Match Data */
u8 res37[4];
u32 pmask4; /* Pattern Mask */
u8 res38[4];
u32 pcntrl4; /* Pattern Match Control */
u8 res39[4];
u32 pattrb4; /* Pattern Match Attrs */
u32 pattrbeli4; /* Pattern Match Attrs Extract Len & Idx */
u32 pmd5; /* Pattern Match Data */
u8 res40[4];
u32 pmask5; /* Pattern Mask */
u8 res41[4];
u32 pcntrl5; /* Pattern Match Control */
u8 res42[4];
u32 pattrb5; /* Pattern Match Attrs */
u32 pattrbeli5; /* Pattern Match Attrs Extract Len & Idx */
u32 pmd6; /* Pattern Match Data */
u8 res43[4];
u32 pmask6; /* Pattern Mask */
u8 res44[4];
u32 pcntrl6; /* Pattern Match Control */
u8 res45[4];
u32 pattrb6; /* Pattern Match Attrs */
u32 pattrbeli6; /* Pattern Match Attrs Extract Len & Idx */
u32 pmd7; /* Pattern Match Data */
u8 res46[4];
u32 pmask7; /* Pattern Mask */
u8 res47[4];
u32 pcntrl7; /* Pattern Match Control */
u8 res48[4];
u32 pattrb7; /* Pattern Match Attrs */
u32 pattrbeli7; /* Pattern Match Attrs Extract Len & Idx */
u32 pmd8; /* Pattern Match Data */
u8 res49[4];
u32 pmask8; /* Pattern Mask */
u8 res50[4];
u32 pcntrl8; /* Pattern Match Control */
u8 res51[4];
u32 pattrb8; /* Pattern Match Attrs */
u32 pattrbeli8; /* Pattern Match Attrs Extract Len & Idx */
u32 pmd9; /* Pattern Match Data */
u8 res52[4];
u32 pmask9; /* Pattern Mask */
u8 res53[4];
u32 pcntrl9; /* Pattern Match Control */
u8 res54[4];
u32 pattrb9; /* Pattern Match Attrs */
u32 pattrbeli9; /* Pattern Match Attrs Extract Len & Idx */
u32 pmd10; /* Pattern Match Data */
u8 res55[4];
u32 pmask10; /* Pattern Mask */
u8 res56[4];
u32 pcntrl10; /* Pattern Match Control */
u8 res57[4];
u32 pattrb10; /* Pattern Match Attrs */
u32 pattrbeli10; /* Pattern Match Attrs Extract Len & Idx */
u32 pmd11; /* Pattern Match Data */
u8 res58[4];
u32 pmask11; /* Pattern Mask */
u8 res59[4];
u32 pcntrl11; /* Pattern Match Control */
u8 res60[4];
u32 pattrb11; /* Pattern Match Attrs */
u32 pattrbeli11; /* Pattern Match Attrs Extract Len & Idx */
u32 pmd12; /* Pattern Match Data */
u8 res61[4];
u32 pmask12; /* Pattern Mask */
u8 res62[4];
u32 pcntrl12; /* Pattern Match Control */
u8 res63[4];
u32 pattrb12; /* Pattern Match Attrs */
u32 pattrbeli12; /* Pattern Match Attrs Extract Len & Idx */
u32 pmd13; /* Pattern Match Data */
u8 res64[4];
u32 pmask13; /* Pattern Mask */
u8 res65[4];
u32 pcntrl13; /* Pattern Match Control */
u8 res66[4];
u32 pattrb13; /* Pattern Match Attrs */
u32 pattrbeli13; /* Pattern Match Attrs Extract Len & Idx */
u32 pmd14; /* Pattern Match Data */
u8 res67[4];
u32 pmask14; /* Pattern Mask */
u8 res68[4];
u32 pcntrl14; /* Pattern Match Control */
u8 res69[4];
u32 pattrb14; /* Pattern Match Attrs */
u32 pattrbeli14; /* Pattern Match Attrs Extract Len & Idx */
u32 pmd15; /* Pattern Match Data */
u8 res70[4];
u32 pmask15; /* Pattern Mask */
u8 res71[4];
u32 pcntrl15; /* Pattern Match Control */
u8 res72[4];
u32 pattrb15; /* Pattern Match Attrs */
u32 pattrbeli15; /* Pattern Match Attrs Extract Len & Idx */
u8 res73[248];
u32 attr; /* Attrs */
u32 attreli; /* Attrs Extract Len & Idx */
u8 res74[1024];
} ccsr_tsec_t;
/* PIC Registers */
typedef struct ccsr_pic {
u8 res1[64];
u32 ipidr0; /* Interprocessor IRQ Dispatch 0 */
u8 res2[12];
u32 ipidr1; /* Interprocessor IRQ Dispatch 1 */
u8 res3[12];
u32 ipidr2; /* Interprocessor IRQ Dispatch 2 */
u8 res4[12];
u32 ipidr3; /* Interprocessor IRQ Dispatch 3 */
u8 res5[12];
u32 ctpr; /* Current Task Priority */
u8 res6[12];
u32 whoami; /* Who Am I */
u8 res7[12];
u32 iack; /* IRQ Acknowledge */
u8 res8[12];
u32 eoi; /* End Of IRQ */
u8 res9[3916];
u32 frr; /* Feature Reporting */
u8 res10[28];
u32 gcr; /* Global Configuration */
#define MPC85xx_PICGCR_RST 0x80000000
#define MPC85xx_PICGCR_M 0x20000000
u8 res11[92];
u32 vir; /* Vendor Identification */
u8 res12[12];
u32 pir; /* Processor Initialization */
u8 res13[12];
u32 ipivpr0; /* IPI Vector/Priority 0 */
u8 res14[12];
u32 ipivpr1; /* IPI Vector/Priority 1 */
u8 res15[12];
u32 ipivpr2; /* IPI Vector/Priority 2 */
u8 res16[12];
u32 ipivpr3; /* IPI Vector/Priority 3 */
u8 res17[12];
u32 svr; /* Spurious Vector */
u8 res18[12];
u32 tfrr; /* Timer Frequency Reporting */
u8 res19[12];
u32 gtccr0; /* Global Timer Current Count 0 */
u8 res20[12];
u32 gtbcr0; /* Global Timer Base Count 0 */
u8 res21[12];
u32 gtvpr0; /* Global Timer Vector/Priority 0 */
u8 res22[12];
u32 gtdr0; /* Global Timer Destination 0 */
u8 res23[12];
u32 gtccr1; /* Global Timer Current Count 1 */
u8 res24[12];
u32 gtbcr1; /* Global Timer Base Count 1 */
u8 res25[12];
u32 gtvpr1; /* Global Timer Vector/Priority 1 */
u8 res26[12];
u32 gtdr1; /* Global Timer Destination 1 */
u8 res27[12];
u32 gtccr2; /* Global Timer Current Count 2 */
u8 res28[12];
u32 gtbcr2; /* Global Timer Base Count 2 */
u8 res29[12];
u32 gtvpr2; /* Global Timer Vector/Priority 2 */
u8 res30[12];
u32 gtdr2; /* Global Timer Destination 2 */
u8 res31[12];
u32 gtccr3; /* Global Timer Current Count 3 */
u8 res32[12];
u32 gtbcr3; /* Global Timer Base Count 3 */
u8 res33[12];
u32 gtvpr3; /* Global Timer Vector/Priority 3 */
u8 res34[12];
u32 gtdr3; /* Global Timer Destination 3 */
u8 res35[268];
u32 tcr; /* Timer Control */
u8 res36[12];
u32 irqsr0; /* IRQ_OUT Summary 0 */
u8 res37[12];
u32 irqsr1; /* IRQ_OUT Summary 1 */
u8 res38[12];
u32 cisr0; /* Critical IRQ Summary 0 */
u8 res39[12];
u32 cisr1; /* Critical IRQ Summary 1 */
u8 res40[188];
u32 msgr0; /* Message 0 */
u8 res41[12];
u32 msgr1; /* Message 1 */
u8 res42[12];
u32 msgr2; /* Message 2 */
u8 res43[12];
u32 msgr3; /* Message 3 */
u8 res44[204];
u32 mer; /* Message Enable */
u8 res45[12];
u32 msr; /* Message Status */
u8 res46[60140];
u32 eivpr0; /* External IRQ Vector/Priority 0 */
u8 res47[12];
u32 eidr0; /* External IRQ Destination 0 */
u8 res48[12];
u32 eivpr1; /* External IRQ Vector/Priority 1 */
u8 res49[12];
u32 eidr1; /* External IRQ Destination 1 */
u8 res50[12];
u32 eivpr2; /* External IRQ Vector/Priority 2 */
u8 res51[12];
u32 eidr2; /* External IRQ Destination 2 */
u8 res52[12];
u32 eivpr3; /* External IRQ Vector/Priority 3 */
u8 res53[12];
u32 eidr3; /* External IRQ Destination 3 */
u8 res54[12];
u32 eivpr4; /* External IRQ Vector/Priority 4 */
u8 res55[12];
u32 eidr4; /* External IRQ Destination 4 */
u8 res56[12];
u32 eivpr5; /* External IRQ Vector/Priority 5 */
u8 res57[12];
u32 eidr5; /* External IRQ Destination 5 */
u8 res58[12];
u32 eivpr6; /* External IRQ Vector/Priority 6 */
u8 res59[12];
u32 eidr6; /* External IRQ Destination 6 */
u8 res60[12];
u32 eivpr7; /* External IRQ Vector/Priority 7 */
u8 res61[12];
u32 eidr7; /* External IRQ Destination 7 */
u8 res62[12];
u32 eivpr8; /* External IRQ Vector/Priority 8 */
u8 res63[12];
u32 eidr8; /* External IRQ Destination 8 */
u8 res64[12];
u32 eivpr9; /* External IRQ Vector/Priority 9 */
u8 res65[12];
u32 eidr9; /* External IRQ Destination 9 */
u8 res66[12];
u32 eivpr10; /* External IRQ Vector/Priority 10 */
u8 res67[12];
u32 eidr10; /* External IRQ Destination 10 */
u8 res68[12];
u32 eivpr11; /* External IRQ Vector/Priority 11 */
u8 res69[12];
u32 eidr11; /* External IRQ Destination 11 */
u8 res70[140];
u32 iivpr0; /* Internal IRQ Vector/Priority 0 */
u8 res71[12];
u32 iidr0; /* Internal IRQ Destination 0 */
u8 res72[12];
u32 iivpr1; /* Internal IRQ Vector/Priority 1 */
u8 res73[12];
u32 iidr1; /* Internal IRQ Destination 1 */
u8 res74[12];
u32 iivpr2; /* Internal IRQ Vector/Priority 2 */
u8 res75[12];
u32 iidr2; /* Internal IRQ Destination 2 */
u8 res76[12];
u32 iivpr3; /* Internal IRQ Vector/Priority 3 */
u8 res77[12];
u32 iidr3; /* Internal IRQ Destination 3 */
u8 res78[12];
u32 iivpr4; /* Internal IRQ Vector/Priority 4 */
u8 res79[12];
u32 iidr4; /* Internal IRQ Destination 4 */
u8 res80[12];
u32 iivpr5; /* Internal IRQ Vector/Priority 5 */
u8 res81[12];
u32 iidr5; /* Internal IRQ Destination 5 */
u8 res82[12];
u32 iivpr6; /* Internal IRQ Vector/Priority 6 */
u8 res83[12];
u32 iidr6; /* Internal IRQ Destination 6 */
u8 res84[12];
u32 iivpr7; /* Internal IRQ Vector/Priority 7 */
u8 res85[12];
u32 iidr7; /* Internal IRQ Destination 7 */
u8 res86[12];
u32 iivpr8; /* Internal IRQ Vector/Priority 8 */
u8 res87[12];
u32 iidr8; /* Internal IRQ Destination 8 */
u8 res88[12];
u32 iivpr9; /* Internal IRQ Vector/Priority 9 */
u8 res89[12];
u32 iidr9; /* Internal IRQ Destination 9 */
u8 res90[12];
u32 iivpr10; /* Internal IRQ Vector/Priority 10 */
u8 res91[12];
u32 iidr10; /* Internal IRQ Destination 10 */
u8 res92[12];
u32 iivpr11; /* Internal IRQ Vector/Priority 11 */
u8 res93[12];
u32 iidr11; /* Internal IRQ Destination 11 */
u8 res94[12];
u32 iivpr12; /* Internal IRQ Vector/Priority 12 */
u8 res95[12];
u32 iidr12; /* Internal IRQ Destination 12 */
u8 res96[12];
u32 iivpr13; /* Internal IRQ Vector/Priority 13 */
u8 res97[12];
u32 iidr13; /* Internal IRQ Destination 13 */
u8 res98[12];
u32 iivpr14; /* Internal IRQ Vector/Priority 14 */
u8 res99[12];
u32 iidr14; /* Internal IRQ Destination 14 */
u8 res100[12];
u32 iivpr15; /* Internal IRQ Vector/Priority 15 */
u8 res101[12];
u32 iidr15; /* Internal IRQ Destination 15 */
u8 res102[12];
u32 iivpr16; /* Internal IRQ Vector/Priority 16 */
u8 res103[12];
u32 iidr16; /* Internal IRQ Destination 16 */
u8 res104[12];
u32 iivpr17; /* Internal IRQ Vector/Priority 17 */
u8 res105[12];
u32 iidr17; /* Internal IRQ Destination 17 */
u8 res106[12];
u32 iivpr18; /* Internal IRQ Vector/Priority 18 */
u8 res107[12];
u32 iidr18; /* Internal IRQ Destination 18 */
u8 res108[12];
u32 iivpr19; /* Internal IRQ Vector/Priority 19 */
u8 res109[12];
u32 iidr19; /* Internal IRQ Destination 19 */
u8 res110[12];
u32 iivpr20; /* Internal IRQ Vector/Priority 20 */
u8 res111[12];
u32 iidr20; /* Internal IRQ Destination 20 */
u8 res112[12];
u32 iivpr21; /* Internal IRQ Vector/Priority 21 */
u8 res113[12];
u32 iidr21; /* Internal IRQ Destination 21 */
u8 res114[12];
u32 iivpr22; /* Internal IRQ Vector/Priority 22 */
u8 res115[12];
u32 iidr22; /* Internal IRQ Destination 22 */
u8 res116[12];
u32 iivpr23; /* Internal IRQ Vector/Priority 23 */
u8 res117[12];
u32 iidr23; /* Internal IRQ Destination 23 */
u8 res118[12];
u32 iivpr24; /* Internal IRQ Vector/Priority 24 */
u8 res119[12];
u32 iidr24; /* Internal IRQ Destination 24 */
u8 res120[12];
u32 iivpr25; /* Internal IRQ Vector/Priority 25 */
u8 res121[12];
u32 iidr25; /* Internal IRQ Destination 25 */
u8 res122[12];
u32 iivpr26; /* Internal IRQ Vector/Priority 26 */
u8 res123[12];
u32 iidr26; /* Internal IRQ Destination 26 */
u8 res124[12];
u32 iivpr27; /* Internal IRQ Vector/Priority 27 */
u8 res125[12];
u32 iidr27; /* Internal IRQ Destination 27 */
u8 res126[12];
u32 iivpr28; /* Internal IRQ Vector/Priority 28 */
u8 res127[12];
u32 iidr28; /* Internal IRQ Destination 28 */
u8 res128[12];
u32 iivpr29; /* Internal IRQ Vector/Priority 29 */
u8 res129[12];
u32 iidr29; /* Internal IRQ Destination 29 */
u8 res130[12];
u32 iivpr30; /* Internal IRQ Vector/Priority 30 */
u8 res131[12];
u32 iidr30; /* Internal IRQ Destination 30 */
u8 res132[12];
u32 iivpr31; /* Internal IRQ Vector/Priority 31 */
u8 res133[12];
u32 iidr31; /* Internal IRQ Destination 31 */
u8 res134[4108];
u32 mivpr0; /* Messaging IRQ Vector/Priority 0 */
u8 res135[12];
u32 midr0; /* Messaging IRQ Destination 0 */
u8 res136[12];
u32 mivpr1; /* Messaging IRQ Vector/Priority 1 */
u8 res137[12];
u32 midr1; /* Messaging IRQ Destination 1 */
u8 res138[12];
u32 mivpr2; /* Messaging IRQ Vector/Priority 2 */
u8 res139[12];
u32 midr2; /* Messaging IRQ Destination 2 */
u8 res140[12];
u32 mivpr3; /* Messaging IRQ Vector/Priority 3 */
u8 res141[12];
u32 midr3; /* Messaging IRQ Destination 3 */
u8 res142[59852];
u32 ipi0dr0; /* Processor 0 Interprocessor IRQ Dispatch 0 */
u8 res143[12];
u32 ipi0dr1; /* Processor 0 Interprocessor IRQ Dispatch 1 */
u8 res144[12];
u32 ipi0dr2; /* Processor 0 Interprocessor IRQ Dispatch 2 */
u8 res145[12];
u32 ipi0dr3; /* Processor 0 Interprocessor IRQ Dispatch 3 */
u8 res146[12];
u32 ctpr0; /* Current Task Priority for Processor 0 */
u8 res147[12];
u32 whoami0; /* Who Am I for Processor 0 */
u8 res148[12];
u32 iack0; /* IRQ Acknowledge for Processor 0 */
u8 res149[12];
u32 eoi0; /* End Of IRQ for Processor 0 */
u8 res150[130892];
} ccsr_pic_t;
/* CPM Block */
#ifndef CONFIG_CPM2
typedef struct ccsr_cpm {
u8 res[262144];
} ccsr_cpm_t;
#else
/*
* DPARM
* General SIU
*/
typedef struct ccsr_cpm_siu {
u8 res1[80];
u32 smaer;
u32 smser;
u32 smevr;
u8 res2[4];
u32 lmaer;
u32 lmser;
u32 lmevr;
u8 res3[2964];
} ccsr_cpm_siu_t;
/* IRQ Controller */
typedef struct ccsr_cpm_intctl {
u16 sicr;
u8 res1[2];
u32 sivec;
u32 sipnrh;
u32 sipnrl;
u32 siprr;
u32 scprrh;
u32 scprrl;
u32 simrh;
u32 simrl;
u32 siexr;
u8 res2[88];
u32 sccr;
u8 res3[124];
} ccsr_cpm_intctl_t;
/* input/output port */
typedef struct ccsr_cpm_iop {
u32 pdira;
u32 ppara;
u32 psora;
u32 podra;
u32 pdata;
u8 res1[12];
u32 pdirb;
u32 pparb;
u32 psorb;
u32 podrb;
u32 pdatb;
u8 res2[12];
u32 pdirc;
u32 pparc;
u32 psorc;
u32 podrc;
u32 pdatc;
u8 res3[12];
u32 pdird;
u32 ppard;
u32 psord;
u32 podrd;
u32 pdatd;
u8 res4[12];
} ccsr_cpm_iop_t;
/* CPM timers */
typedef struct ccsr_cpm_timer {
u8 tgcr1;
u8 res1[3];
u8 tgcr2;
u8 res2[11];
u16 tmr1;
u16 tmr2;
u16 trr1;
u16 trr2;
u16 tcr1;
u16 tcr2;
u16 tcn1;
u16 tcn2;
u16 tmr3;
u16 tmr4;
u16 trr3;
u16 trr4;
u16 tcr3;
u16 tcr4;
u16 tcn3;
u16 tcn4;
u16 ter1;
u16 ter2;
u16 ter3;
u16 ter4;
u8 res3[608];
} ccsr_cpm_timer_t;
/* SDMA */
typedef struct ccsr_cpm_sdma {
u8 sdsr;
u8 res1[3];
u8 sdmr;
u8 res2[739];
} ccsr_cpm_sdma_t;
/* FCC1 */
typedef struct ccsr_cpm_fcc1 {
u32 gfmr;
u32 fpsmr;
u16 ftodr;
u8 res1[2];
u16 fdsr;
u8 res2[2];
u16 fcce;
u8 res3[2];
u16 fccm;
u8 res4[2];
u8 fccs;
u8 res5[3];
u8 ftirr_phy[4];
} ccsr_cpm_fcc1_t;
/* FCC2 */
typedef struct ccsr_cpm_fcc2 {
u32 gfmr;
u32 fpsmr;
u16 ftodr;
u8 res1[2];
u16 fdsr;
u8 res2[2];
u16 fcce;
u8 res3[2];
u16 fccm;
u8 res4[2];
u8 fccs;
u8 res5[3];
u8 ftirr_phy[4];
} ccsr_cpm_fcc2_t;
/* FCC3 */
typedef struct ccsr_cpm_fcc3 {
u32 gfmr;
u32 fpsmr;
u16 ftodr;
u8 res1[2];
u16 fdsr;
u8 res2[2];
u16 fcce;
u8 res3[2];
u16 fccm;
u8 res4[2];
u8 fccs;
u8 res5[3];
u8 res[36];
} ccsr_cpm_fcc3_t;
/* FCC1 extended */
typedef struct ccsr_cpm_fcc1_ext {
u32 firper;
u32 firer;
u32 firsr_h;
u32 firsr_l;
u8 gfemr;
u8 res[15];
} ccsr_cpm_fcc1_ext_t;
/* FCC2 extended */
typedef struct ccsr_cpm_fcc2_ext {
u32 firper;
u32 firer;
u32 firsr_h;
u32 firsr_l;
u8 gfemr;
u8 res[31];
} ccsr_cpm_fcc2_ext_t;
/* FCC3 extended */
typedef struct ccsr_cpm_fcc3_ext {
u8 gfemr;
u8 res[47];
} ccsr_cpm_fcc3_ext_t;
/* TC layers */
typedef struct ccsr_cpm_tmp1 {
u8 res[496];
} ccsr_cpm_tmp1_t;
/* BRGs:5,6,7,8 */
typedef struct ccsr_cpm_brg2 {
u32 brgc5;
u32 brgc6;
u32 brgc7;
u32 brgc8;
u8 res[608];
} ccsr_cpm_brg2_t;
/* I2C */
typedef struct ccsr_cpm_i2c {
u8 i2mod;
u8 res1[3];
u8 i2add;
u8 res2[3];
u8 i2brg;
u8 res3[3];
u8 i2com;
u8 res4[3];
u8 i2cer;
u8 res5[3];
u8 i2cmr;
u8 res6[331];
} ccsr_cpm_i2c_t;
/* CPM core */
typedef struct ccsr_cpm_cp {
u32 cpcr;
u32 rccr;
u8 res1[14];
u16 rter;
u8 res2[2];
u16 rtmr;
u16 rtscr;
u8 res3[2];
u32 rtsr;
u8 res4[12];
} ccsr_cpm_cp_t;
/* BRGs:1,2,3,4 */
typedef struct ccsr_cpm_brg1 {
u32 brgc1;
u32 brgc2;
u32 brgc3;
u32 brgc4;
} ccsr_cpm_brg1_t;
/* SCC1-SCC4 */
typedef struct ccsr_cpm_scc {
u32 gsmrl;
u32 gsmrh;
u16 psmr;
u8 res1[2];
u16 todr;
u16 dsr;
u16 scce;
u8 res2[2];
u16 sccm;
u8 res3;
u8 sccs;
u8 res4[8];
} ccsr_cpm_scc_t;
typedef struct ccsr_cpm_tmp2 {
u8 res[32];
} ccsr_cpm_tmp2_t;
/* SPI */
typedef struct ccsr_cpm_spi {
u16 spmode;
u8 res1[4];
u8 spie;
u8 res2[3];
u8 spim;
u8 res3[2];
u8 spcom;
u8 res4[82];
} ccsr_cpm_spi_t;
/* CPM MUX */
typedef struct ccsr_cpm_mux {
u8 cmxsi1cr;
u8 res1;
u8 cmxsi2cr;
u8 res2;
u32 cmxfcr;
u32 cmxscr;
u8 res3[2];
u16 cmxuar;
u8 res4[16];
} ccsr_cpm_mux_t;
/* SI,MCC,etc */
typedef struct ccsr_cpm_tmp3 {
u8 res[58592];
} ccsr_cpm_tmp3_t;
typedef struct ccsr_cpm_iram {
u32 iram[8192];
u8 res[98304];
} ccsr_cpm_iram_t;
typedef struct ccsr_cpm {
/* Some references are into the unique & known dpram spaces,
* others are from the generic base.
*/
#define im_dprambase im_dpram1
u8 im_dpram1[16*1024];
u8 res1[16*1024];
u8 im_dpram2[16*1024];
u8 res2[16*1024];
ccsr_cpm_siu_t im_cpm_siu; /* SIU Configuration */
ccsr_cpm_intctl_t im_cpm_intctl; /* IRQ Controller */
ccsr_cpm_iop_t im_cpm_iop; /* IO Port control/status */
ccsr_cpm_timer_t im_cpm_timer; /* CPM timers */
ccsr_cpm_sdma_t im_cpm_sdma; /* SDMA control/status */
ccsr_cpm_fcc1_t im_cpm_fcc1;
ccsr_cpm_fcc2_t im_cpm_fcc2;
ccsr_cpm_fcc3_t im_cpm_fcc3;
ccsr_cpm_fcc1_ext_t im_cpm_fcc1_ext;
ccsr_cpm_fcc2_ext_t im_cpm_fcc2_ext;
ccsr_cpm_fcc3_ext_t im_cpm_fcc3_ext;
ccsr_cpm_tmp1_t im_cpm_tmp1;
ccsr_cpm_brg2_t im_cpm_brg2;
ccsr_cpm_i2c_t im_cpm_i2c;
ccsr_cpm_cp_t im_cpm_cp;
ccsr_cpm_brg1_t im_cpm_brg1;
ccsr_cpm_scc_t im_cpm_scc[4];
ccsr_cpm_tmp2_t im_cpm_tmp2;
ccsr_cpm_spi_t im_cpm_spi;
ccsr_cpm_mux_t im_cpm_mux;
ccsr_cpm_tmp3_t im_cpm_tmp3;
ccsr_cpm_iram_t im_cpm_iram;
} ccsr_cpm_t;
#endif
#ifdef CONFIG_SYS_SRIO
/* Architectural regsiters */
struct rio_arch {
u32 didcar; /* Device Identity CAR */
u32 dicar; /* Device Information CAR */
u32 aidcar; /* Assembly Identity CAR */
u32 aicar; /* Assembly Information CAR */
u32 pefcar; /* Processing Element Features CAR */
u8 res0[4];
u32 socar; /* Source Operations CAR */
u32 docar; /* Destination Operations CAR */
u8 res1[32];
u32 mcsr; /* Mailbox CSR */
u32 pwdcsr; /* Port-Write and Doorbell CSR */
u8 res2[4];
u32 pellccsr; /* Processing Element Logic Layer CCSR */
u8 res3[12];
u32 lcsbacsr; /* Local Configuration Space BACSR */
u32 bdidcsr; /* Base Device ID CSR */
u8 res4[4];
u32 hbdidlcsr; /* Host Base Device ID Lock CSR */
u32 ctcsr; /* Component Tag CSR */
};
/* Extended Features Space: 1x/4x LP-Serial Port registers */
struct rio_lp_serial_port {
u32 plmreqcsr; /* Port Link Maintenance Request CSR */
u32 plmrespcsr; /* Port Link Maintenance Response CS */
u32 plascsr; /* Port Local Ackid Status CSR */
u8 res0[12];
u32 pescsr; /* Port Error and Status CSR */
u32 pccsr; /* Port Control CSR */
};
/* Extended Features Space: 1x/4x LP-Serial registers */
struct rio_lp_serial {
u32 pmbh0csr; /* Port Maintenance Block Header 0 CSR */
u8 res0[28];
u32 pltoccsr; /* Port Link Time-out CCSR */
u32 prtoccsr; /* Port Response Time-out CCSR */
u8 res1[20];
u32 pgccsr; /* Port General CSR */
struct rio_lp_serial_port port[CONFIG_SYS_FSL_SRIO_MAX_PORTS];
};
/* Logical error reporting registers */
struct rio_logical_err {
u32 erbh; /* Error Reporting Block Header Register */
u8 res0[4];
u32 ltledcsr; /* Logical/Transport layer error DCSR */
u32 ltleecsr; /* Logical/Transport layer error ECSR */
u8 res1[4];
u32 ltlaccsr; /* Logical/Transport layer ACCSR */
u32 ltldidccsr; /* Logical/Transport layer DID CCSR */
u32 ltlcccsr; /* Logical/Transport layer control CCSR */
};
/* Physical error reporting port registers */
struct rio_phys_err_port {
u32 edcsr; /* Port error detect CSR */
u32 erecsr; /* Port error rate enable CSR */
u32 ecacsr; /* Port error capture attributes CSR */
u32 pcseccsr0; /* Port packet/control symbol ECCSR 0 */
u32 peccsr[3]; /* Port error capture CSR */
u8 res0[12];
u32 ercsr; /* Port error rate CSR */
u32 ertcsr; /* Port error rate threshold CSR */
u8 res1[16];
};
/* Physical error reporting registers */
struct rio_phys_err {
struct rio_phys_err_port port[CONFIG_SYS_FSL_SRIO_MAX_PORTS];
};
/* Implementation Space: General Port-Common */
struct rio_impl_common {
u8 res0[4];
u32 llcr; /* Logical Layer Configuration Register */
u8 res1[8];
u32 epwisr; /* Error / Port-Write Interrupt SR */
u8 res2[12];
u32 lretcr; /* Logical Retry Error Threshold CR */
u8 res3[92];
u32 pretcr; /* Physical Retry Erorr Threshold CR */
u8 res4[124];
};
/* Implementation Space: Port Specific */
struct rio_impl_port_spec {
u32 adidcsr; /* Port Alt. Device ID CSR */
u8 res0[28];
u32 ptaacr; /* Port Pass-Through/Accept-All CR */
u32 lopttlcr;
u8 res1[8];
u32 iecsr; /* Port Implementation Error CSR */
u8 res2[12];
u32 pcr; /* Port Phsyical Configuration Register */
u8 res3[20];
u32 slcsr; /* Port Serial Link CSR */
u8 res4[4];
u32 sleicr; /* Port Serial Link Error Injection */
u32 a0txcr; /* Port Arbitration 0 Tx CR */
u32 a1txcr; /* Port Arbitration 1 Tx CR */
u32 a2txcr; /* Port Arbitration 2 Tx CR */
u32 mreqtxbacr[3]; /* Port Request Tx Buffer ACR */
u32 mrspfctxbacr; /* Port Response/Flow Control Tx Buffer ACR */
};
/* Implementation Space: register */
struct rio_implement {
struct rio_impl_common com;
struct rio_impl_port_spec port[CONFIG_SYS_FSL_SRIO_MAX_PORTS];
};
/* Revision Control Register */
struct rio_rev_ctrl {
u32 ipbrr[2]; /* IP Block Revision Register */
};
struct rio_atmu_row {
u32 rowtar; /* RapidIO Outbound Window TAR */
u32 rowtear; /* RapidIO Outbound Window TEAR */
u32 rowbar;
u8 res0[4];
u32 rowar; /* RapidIO Outbound Attributes Register */
u32 rowsr[3]; /* Port RapidIO outbound window segment register */
};
struct rio_atmu_riw {
u32 riwtar; /* RapidIO Inbound Window Translation AR */
u8 res0[4];
u32 riwbar; /* RapidIO Inbound Window Base AR */
u8 res1[4];
u32 riwar; /* RapidIO Inbound Attributes Register */
u8 res2[12];
};
/* ATMU window registers */
struct rio_atmu_win {
struct rio_atmu_row outbw[CONFIG_SYS_FSL_SRIO_OB_WIN_NUM];
u8 res0[64];
struct rio_atmu_riw inbw[CONFIG_SYS_FSL_SRIO_IB_WIN_NUM];
};
struct rio_atmu {
struct rio_atmu_win port[CONFIG_SYS_FSL_SRIO_MAX_PORTS];
};
#ifdef CONFIG_SYS_FSL_RMU
struct rio_msg {
u32 omr; /* Outbound Mode Register */
u32 osr; /* Outbound Status Register */
u32 eodqdpar; /* Extended Outbound DQ DPAR */
u32 odqdpar; /* Outbound Descriptor Queue DPAR */
u32 eosar; /* Extended Outbound Unit Source AR */
u32 osar; /* Outbound Unit Source AR */
u32 odpr; /* Outbound Destination Port Register */
u32 odatr; /* Outbound Destination Attributes Register */
u32 odcr; /* Outbound Doubleword Count Register */
u32 eodqepar; /* Extended Outbound DQ EPAR */
u32 odqepar; /* Outbound Descriptor Queue EPAR */
u32 oretr; /* Outbound Retry Error Threshold Register */
u32 omgr; /* Outbound Multicast Group Register */
u32 omlr; /* Outbound Multicast List Register */
u8 res0[40];
u32 imr; /* Outbound Mode Register */
u32 isr; /* Inbound Status Register */
u32 eidqdpar; /* Extended Inbound Descriptor Queue DPAR */
u32 idqdpar; /* Inbound Descriptor Queue DPAR */
u32 eifqepar; /* Extended Inbound Frame Queue EPAR */
u32 ifqepar; /* Inbound Frame Queue EPAR */
u32 imirir; /* Inbound Maximum Interrutp RIR */
u8 res1[4];
u32 eihqepar; /* Extended inbound message header queue EPAR */
u32 ihqepar; /* Inbound message header queue EPAR */
u8 res2[120];
};
struct rio_dbell {
u32 odmr; /* Outbound Doorbell Mode Register */
u32 odsr; /* Outbound Doorbell Status Register */
u8 res0[16];
u32 oddpr; /* Outbound Doorbell Destination Port */
u32 oddatr; /* Outbound Doorbell Destination AR */
u8 res1[12];
u32 oddretr; /* Outbound Doorbell Retry Threshold CR */
u8 res2[48];
u32 idmr; /* Inbound Doorbell Mode Register */
u32 idsr; /* Inbound Doorbell Status Register */
u32 iedqdpar; /* Extended Inbound Doorbell Queue DPAR */
u32 iqdpar; /* Inbound Doorbell Queue DPAR */
u32 iedqepar; /* Extended Inbound Doorbell Queue EPAR */
u32 idqepar; /* Inbound Doorbell Queue EPAR */
u32 idmirir; /* Inbound Doorbell Max Interrupt RIR */
};
struct rio_pw {
u32 pwmr; /* Port-Write Mode Register */
u32 pwsr; /* Port-Write Status Register */
u32 epwqbar; /* Extended Port-Write Queue BAR */
u32 pwqbar; /* Port-Write Queue Base Address Register */
};
#endif
#ifdef CONFIG_SYS_FSL_SRIO_LIODN
struct rio_liodn {
u32 plbr;
u8 res0[28];
u32 plaor;
u8 res1[12];
u32 pludr;
u32 plldr;
u8 res2[456];
};
#endif
/* RapidIO Registers */
struct ccsr_rio {
struct rio_arch arch;
u8 res0[144];
struct rio_lp_serial lp_serial;
u8 res1[1152];
struct rio_logical_err logical_err;
u8 res2[32];
struct rio_phys_err phys_err;
u8 res3[63808];
struct rio_implement impl;
u8 res4[2552];
struct rio_rev_ctrl rev;
struct rio_atmu atmu;
#ifdef CONFIG_SYS_FSL_RMU
u8 res5[8192];
struct rio_msg msg[CONFIG_SYS_FSL_SRIO_MSG_UNIT_NUM];
u8 res6[512];
struct rio_dbell dbell;
u8 res7[100];
struct rio_pw pw;
#endif
#ifdef CONFIG_SYS_FSL_SRIO_LIODN
u8 res5[8192];
struct rio_liodn liodn[CONFIG_SYS_FSL_SRIO_MAX_PORTS];
#endif
};
#endif
/* Quick Engine Block Pin Muxing Registers */
typedef struct par_io {
u32 cpodr;
u32 cpdat;
u32 cpdir1;
u32 cpdir2;
u32 cppar1;
u32 cppar2;
u8 res[8];
} par_io_t;
#ifdef CONFIG_SYS_FSL_CPC
/*
* Define a single offset that is the start of all the CPC register
* blocks - if there is more than one CPC, we expect these to be
* contiguous 4k regions
*/
typedef struct cpc_corenet {
u32 cpccsr0; /* Config/status reg */
u32 res1;
u32 cpccfg0; /* Configuration register */
u32 res2;
u32 cpcewcr0; /* External Write reg 0 */
u32 cpcewabr0; /* External write base reg 0 */
u32 res3[2];
u32 cpcewcr1; /* External Write reg 1 */
u32 cpcewabr1; /* External write base reg 1 */
u32 res4[54];
u32 cpcsrcr1; /* SRAM control reg 1 */
u32 cpcsrcr0; /* SRAM control reg 0 */
u32 res5[62];
struct {
u32 id; /* partition ID */
u32 res;
u32 alloc; /* partition allocation */
u32 way; /* partition way */
} partition_regs[16];
u32 res6[704];
u32 cpcerrinjhi; /* Error injection high */
u32 cpcerrinjlo; /* Error injection lo */
u32 cpcerrinjctl; /* Error injection control */
u32 res7[5];
u32 cpccaptdatahi; /* capture data high */
u32 cpccaptdatalo; /* capture data low */
u32 cpcaptecc; /* capture ECC */
u32 res8[5];
u32 cpcerrdet; /* error detect */
u32 cpcerrdis; /* error disable */
u32 cpcerrinten; /* errir interrupt enable */
u32 cpcerrattr; /* error attribute */
u32 cpcerreaddr; /* error extended address */
u32 cpcerraddr; /* error address */
u32 cpcerrctl; /* error control */
u32 res9[41]; /* pad out to 4k */
u32 cpchdbcr0; /* hardware debug control register 0 */
u32 res10[63]; /* pad out to 4k */
} cpc_corenet_t;
#define CPC_CSR0_CE 0x80000000 /* Cache Enable */
#define CPC_CSR0_PE 0x40000000 /* Enable ECC */
#define CPC_CSR0_FI 0x00200000 /* Cache Flash Invalidate */
#define CPC_CSR0_WT 0x00080000 /* Write-through mode */
#define CPC_CSR0_FL 0x00000800 /* Hardware cache flush */
#define CPC_CSR0_LFC 0x00000400 /* Cache Lock Flash Clear */
#define CPC_CFG0_SZ_MASK 0x00003fff
#define CPC_CFG0_SZ_K(x) ((x & CPC_CFG0_SZ_MASK) << 6)
#define CPC_CFG0_NUM_WAYS(x) (((x >> 14) & 0x1f) + 1)
#define CPC_CFG0_LINE_SZ(x) ((((x >> 23) & 0x3) + 1) * 32)
#define CPC_SRCR1_SRBARU_MASK 0x0000ffff
#define CPC_SRCR1_SRBARU(x) (((unsigned long long)x >> 32) \
& CPC_SRCR1_SRBARU_MASK)
#define CPC_SRCR0_SRBARL_MASK 0xffff8000
#define CPC_SRCR0_SRBARL(x) (x & CPC_SRCR0_SRBARL_MASK)
#define CPC_SRCR0_INTLVEN 0x00000100
#define CPC_SRCR0_SRAMSZ_1_WAY 0x00000000
#define CPC_SRCR0_SRAMSZ_2_WAY 0x00000002
#define CPC_SRCR0_SRAMSZ_4_WAY 0x00000004
#define CPC_SRCR0_SRAMSZ_8_WAY 0x00000006
#define CPC_SRCR0_SRAMSZ_16_WAY 0x00000008
#define CPC_SRCR0_SRAMSZ_32_WAY 0x0000000a
#define CPC_SRCR0_SRAMEN 0x00000001
#define CPC_ERRDIS_TMHITDIS 0x00000080 /* multi-way hit disable */
#define CPC_HDBCR0_CDQ_SPEC_DIS 0x08000000
#define CPC_HDBCR0_TAG_ECC_SCRUB_DIS 0x01000000
#define CPC_HDBCR0_DATA_ECC_SCRUB_DIS 0x00400000
#define CPC_HDBCR0_SPLRU_LEVEL_EN 0x003c0000
#endif /* CONFIG_SYS_FSL_CPC */
/* Global Utilities Block */
#ifdef CONFIG_FSL_CORENET
typedef struct ccsr_gur {
u32 porsr1; /* POR status 1 */
u32 porsr2; /* POR status 2 */
#ifdef CONFIG_SYS_FSL_SINGLE_SOURCE_CLK
#define FSL_DCFG_PORSR1_SYSCLK_SHIFT 15
#define FSL_DCFG_PORSR1_SYSCLK_MASK 0x1
#define FSL_DCFG_PORSR1_SYSCLK_SINGLE_ENDED 0x1
#define FSL_DCFG_PORSR1_SYSCLK_DIFF 0x0
#endif
u8 res_008[0x20-0x8];
u32 gpporcr1; /* General-purpose POR configuration */
u32 gpporcr2; /* General-purpose POR configuration 2 */
u32 dcfg_fusesr; /* Fuse status register */
#define FSL_CORENET_DCFG_FUSESR_VID_SHIFT 25
#define FSL_CORENET_DCFG_FUSESR_VID_MASK 0x1F
#define FSL_CORENET_DCFG_FUSESR_ALTVID_SHIFT 20
#define FSL_CORENET_DCFG_FUSESR_ALTVID_MASK 0x1F
u8 res_02c[0x70-0x2c];
u32 devdisr; /* Device disable control */
powerpc/mpc85xx: Add T4240 SoC Add support for Freescale T4240 SoC. Feature of T4240 are (incomplete list): 12 dual-threaded e6500 cores built on Power Architecture® technology Arranged as clusters of four cores sharing a 2 MB L2 cache. Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture v2.06-compliant) Three levels of instruction: user, supervisor, and hypervisor 1.5 MB CoreNet Platform Cache (CPC) Hierarchical interconnect fabric CoreNet fabric supporting coherent and non-coherent transactions with prioritization and bandwidth allocation amongst CoreNet end-points 1.6 Tbps coherent read bandwidth Queue Manager (QMan) fabric supporting packet-level queue management and quality of service scheduling Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Memory prefetch engine (PMan) Data Path Acceleration Architecture (DPAA) incorporating acceleration for the following functions: Packet parsing, classification, and distribution (Frame Manager 1.1) Queue management for scheduling, packet sequencing, and congestion management (Queue Manager 1.1) Hardware buffer management for buffer allocation and de-allocation (BMan 1.1) Cryptography acceleration (SEC 5.0) at up to 40 Gbps RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0) 32 SerDes lanes at up to 10.3125 GHz Ethernet interfaces Up to four 10 Gbps Ethernet MACs Up to sixteen 1 Gbps Ethernet MACs Maximum configuration of 4 x 10 GE + 8 x 1 GE High-speed peripheral interfaces Four PCI Express 2.0/3.0 controllers Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with Type 11 messaging and Type 9 data streaming support Interlaken look-aside interface for serial TCAM connection Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Four I2C controllers Four 2-pin or two 4-pin UARTs Integrated Flash controller supporting NAND and NOR flash Two eight-channel DMA engines Support for hardware virtualization and partitioning enforcement QorIQ Platform's Trust Architecture 1.1 Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:19 +00:00
u32 devdisr2; /* Device disable control 2 */
u32 devdisr3; /* Device disable control 3 */
u32 devdisr4; /* Device disable control 4 */
#ifdef CONFIG_SYS_FSL_QORIQ_CHASSIS2
u32 devdisr5; /* Device disable control 5 */
#define FSL_CORENET_DEVDISR_PBL 0x80000000
#define FSL_CORENET_DEVDISR_PMAN 0x40000000
#define FSL_CORENET_DEVDISR_ESDHC 0x20000000
#define FSL_CORENET_DEVDISR_DMA1 0x00800000
#define FSL_CORENET_DEVDISR_DMA2 0x00400000
#define FSL_CORENET_DEVDISR_USB1 0x00080000
#define FSL_CORENET_DEVDISR_USB2 0x00040000
#define FSL_CORENET_DEVDISR_SATA1 0x00008000
#define FSL_CORENET_DEVDISR_SATA2 0x00004000
#define FSL_CORENET_DEVDISR_PME 0x00000800
#define FSL_CORENET_DEVDISR_SEC 0x00000200
#define FSL_CORENET_DEVDISR_RMU 0x00000080
#define FSL_CORENET_DEVDISR_DCE 0x00000040
#define FSL_CORENET_DEVDISR2_DTSEC1_1 0x80000000
#define FSL_CORENET_DEVDISR2_DTSEC1_2 0x40000000
#define FSL_CORENET_DEVDISR2_DTSEC1_3 0x20000000
#define FSL_CORENET_DEVDISR2_DTSEC1_4 0x10000000
#define FSL_CORENET_DEVDISR2_DTSEC1_5 0x08000000
#define FSL_CORENET_DEVDISR2_DTSEC1_6 0x04000000
#define FSL_CORENET_DEVDISR2_DTSEC1_9 0x00800000
#define FSL_CORENET_DEVDISR2_DTSEC1_10 0x00400000
#ifdef CONFIG_FSL_FM_10GEC_REGULAR_NOTATION
#define FSL_CORENET_DEVDISR2_10GEC1_1 0x80000000
#define FSL_CORENET_DEVDISR2_10GEC1_2 0x40000000
#else
powerpc/mpc85xx: Add T4240 SoC Add support for Freescale T4240 SoC. Feature of T4240 are (incomplete list): 12 dual-threaded e6500 cores built on Power Architecture® technology Arranged as clusters of four cores sharing a 2 MB L2 cache. Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture v2.06-compliant) Three levels of instruction: user, supervisor, and hypervisor 1.5 MB CoreNet Platform Cache (CPC) Hierarchical interconnect fabric CoreNet fabric supporting coherent and non-coherent transactions with prioritization and bandwidth allocation amongst CoreNet end-points 1.6 Tbps coherent read bandwidth Queue Manager (QMan) fabric supporting packet-level queue management and quality of service scheduling Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Memory prefetch engine (PMan) Data Path Acceleration Architecture (DPAA) incorporating acceleration for the following functions: Packet parsing, classification, and distribution (Frame Manager 1.1) Queue management for scheduling, packet sequencing, and congestion management (Queue Manager 1.1) Hardware buffer management for buffer allocation and de-allocation (BMan 1.1) Cryptography acceleration (SEC 5.0) at up to 40 Gbps RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0) 32 SerDes lanes at up to 10.3125 GHz Ethernet interfaces Up to four 10 Gbps Ethernet MACs Up to sixteen 1 Gbps Ethernet MACs Maximum configuration of 4 x 10 GE + 8 x 1 GE High-speed peripheral interfaces Four PCI Express 2.0/3.0 controllers Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with Type 11 messaging and Type 9 data streaming support Interlaken look-aside interface for serial TCAM connection Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Four I2C controllers Four 2-pin or two 4-pin UARTs Integrated Flash controller supporting NAND and NOR flash Two eight-channel DMA engines Support for hardware virtualization and partitioning enforcement QorIQ Platform's Trust Architecture 1.1 Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:19 +00:00
#define FSL_CORENET_DEVDISR2_10GEC1_1 0x00800000
#define FSL_CORENET_DEVDISR2_10GEC1_2 0x00400000
#define FSL_CORENET_DEVDISR2_10GEC1_3 0x80000000
#define FSL_CORENET_DEVDISR2_10GEC1_4 0x40000000
#endif
powerpc/mpc85xx: Add T4240 SoC Add support for Freescale T4240 SoC. Feature of T4240 are (incomplete list): 12 dual-threaded e6500 cores built on Power Architecture® technology Arranged as clusters of four cores sharing a 2 MB L2 cache. Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture v2.06-compliant) Three levels of instruction: user, supervisor, and hypervisor 1.5 MB CoreNet Platform Cache (CPC) Hierarchical interconnect fabric CoreNet fabric supporting coherent and non-coherent transactions with prioritization and bandwidth allocation amongst CoreNet end-points 1.6 Tbps coherent read bandwidth Queue Manager (QMan) fabric supporting packet-level queue management and quality of service scheduling Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Memory prefetch engine (PMan) Data Path Acceleration Architecture (DPAA) incorporating acceleration for the following functions: Packet parsing, classification, and distribution (Frame Manager 1.1) Queue management for scheduling, packet sequencing, and congestion management (Queue Manager 1.1) Hardware buffer management for buffer allocation and de-allocation (BMan 1.1) Cryptography acceleration (SEC 5.0) at up to 40 Gbps RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0) 32 SerDes lanes at up to 10.3125 GHz Ethernet interfaces Up to four 10 Gbps Ethernet MACs Up to sixteen 1 Gbps Ethernet MACs Maximum configuration of 4 x 10 GE + 8 x 1 GE High-speed peripheral interfaces Four PCI Express 2.0/3.0 controllers Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with Type 11 messaging and Type 9 data streaming support Interlaken look-aside interface for serial TCAM connection Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Four I2C controllers Four 2-pin or two 4-pin UARTs Integrated Flash controller supporting NAND and NOR flash Two eight-channel DMA engines Support for hardware virtualization and partitioning enforcement QorIQ Platform's Trust Architecture 1.1 Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:19 +00:00
#define FSL_CORENET_DEVDISR2_DTSEC2_1 0x00080000
#define FSL_CORENET_DEVDISR2_DTSEC2_2 0x00040000
#define FSL_CORENET_DEVDISR2_DTSEC2_3 0x00020000
#define FSL_CORENET_DEVDISR2_DTSEC2_4 0x00010000
#define FSL_CORENET_DEVDISR2_DTSEC2_5 0x00008000
#define FSL_CORENET_DEVDISR2_DTSEC2_6 0x00004000
#define FSL_CORENET_DEVDISR2_DTSEC2_9 0x00000800
#define FSL_CORENET_DEVDISR2_DTSEC2_10 0x00000400
#define FSL_CORENET_DEVDISR2_10GEC2_1 0x00000800
#define FSL_CORENET_DEVDISR2_10GEC2_2 0x00000400
#define FSL_CORENET_DEVDISR2_FM1 0x00000080
#define FSL_CORENET_DEVDISR2_FM2 0x00000040
powerpc/mpc85xx: Add B4860 and variant SoCs Add support for Freescale B4860 and variant SoCs. Features of B4860 are (incomplete list): Six fully-programmable StarCore SC3900 FVP subsystems, divided into three clusters-each core runs up to 1.2 GHz, with an architecture highly optimized for wireless base station applications Four dual-thread e6500 Power Architecture processors organized in one cluster-each core runs up to 1.8 GHz Two DDR3/3L controllers for high-speed, industry-standard memory interface each runs at up to 1866.67 MHz MAPLE-B3 hardware acceleration-for forward error correction schemes including Turbo or Viterbi decoding, Turbo encoding and rate matching, MIMO MMSE equalization scheme, matrix operations, CRC insertion and check, DFT/iDFT and FFT/iFFT calculations, PUSCH/PDSCH acceleration, and UMTS chip rate acceleration CoreNet fabric that fully supports coherency using MESI protocol between the e6500 cores, SC3900 FVP cores, memories and external interfaces. CoreNet fabric interconnect runs at 667 MHz and supports coherent and non-coherent out of order transactions with prioritization and bandwidth allocation amongst CoreNet endpoints. Data Path Acceleration Architecture, which includes the following: Frame Manager (FMan), which supports in-line packet parsing and general classification to enable policing and QoS-based packet distribution Queue Manager (QMan) and Buffer Manager (BMan), which allow offloading of queue management, task management, load distribution, flow ordering, buffer management, and allocation tasks from the cores Security engine (SEC 5.3)-crypto-acceleration for protocols such as IPsec, SSL, and 802.16 RapidIO manager (RMAN) - Support SRIO types 8, 9, 10, and 11 (inbound and outbound). Supports types 5, 6 (outbound only) Large internal cache memory with snooping and stashing capabilities for bandwidth saving and high utilization of processor elements. The 9856-Kbyte internal memory space includes the following: 32 Kbyte L1 ICache per e6500/SC3900 core 32 Kbyte L1 DCache per e6500/SC3900 core 2048 Kbyte unified L2 cache for each SC3900 FVP cluster 2048 Kbyte unified L2 cache for the e6500 cluster Two 512 Kbyte shared L3 CoreNet platform caches (CPC) Sixteen 10-GHz SerDes lanes serving: Two Serial RapidIO interfaces. Each supports up to 4 lanes and a total of up to 8 lanes Up to 8-lanes Common Public Radio Interface (CPRI) controller for glue- less antenna connection Two 10-Gbit Ethernet controllers (10GEC) Six 1G/2.5-Gbit Ethernet controllers for network communications PCI Express controller Debug (Aurora) Two OCeaN DMAs Various system peripherals 182 32-bit timers Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:20 +00:00
#define FSL_CORENET_DEVDISR2_CPRI 0x00000008
powerpc/mpc85xx: Add T4240 SoC Add support for Freescale T4240 SoC. Feature of T4240 are (incomplete list): 12 dual-threaded e6500 cores built on Power Architecture® technology Arranged as clusters of four cores sharing a 2 MB L2 cache. Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture v2.06-compliant) Three levels of instruction: user, supervisor, and hypervisor 1.5 MB CoreNet Platform Cache (CPC) Hierarchical interconnect fabric CoreNet fabric supporting coherent and non-coherent transactions with prioritization and bandwidth allocation amongst CoreNet end-points 1.6 Tbps coherent read bandwidth Queue Manager (QMan) fabric supporting packet-level queue management and quality of service scheduling Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Memory prefetch engine (PMan) Data Path Acceleration Architecture (DPAA) incorporating acceleration for the following functions: Packet parsing, classification, and distribution (Frame Manager 1.1) Queue management for scheduling, packet sequencing, and congestion management (Queue Manager 1.1) Hardware buffer management for buffer allocation and de-allocation (BMan 1.1) Cryptography acceleration (SEC 5.0) at up to 40 Gbps RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0) 32 SerDes lanes at up to 10.3125 GHz Ethernet interfaces Up to four 10 Gbps Ethernet MACs Up to sixteen 1 Gbps Ethernet MACs Maximum configuration of 4 x 10 GE + 8 x 1 GE High-speed peripheral interfaces Four PCI Express 2.0/3.0 controllers Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with Type 11 messaging and Type 9 data streaming support Interlaken look-aside interface for serial TCAM connection Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Four I2C controllers Four 2-pin or two 4-pin UARTs Integrated Flash controller supporting NAND and NOR flash Two eight-channel DMA engines Support for hardware virtualization and partitioning enforcement QorIQ Platform's Trust Architecture 1.1 Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:19 +00:00
#define FSL_CORENET_DEVDISR3_PCIE1 0x80000000
#define FSL_CORENET_DEVDISR3_PCIE2 0x40000000
#define FSL_CORENET_DEVDISR3_PCIE3 0x20000000
#define FSL_CORENET_DEVDISR3_PCIE4 0x10000000
#define FSL_CORENET_DEVDISR3_SRIO1 0x08000000
#define FSL_CORENET_DEVDISR3_SRIO2 0x04000000
#define FSL_CORENET_DEVDISR3_QMAN 0x00080000
#define FSL_CORENET_DEVDISR3_BMAN 0x00040000
#define FSL_CORENET_DEVDISR3_LA1 0x00008000
powerpc/mpc85xx: Add B4860 and variant SoCs Add support for Freescale B4860 and variant SoCs. Features of B4860 are (incomplete list): Six fully-programmable StarCore SC3900 FVP subsystems, divided into three clusters-each core runs up to 1.2 GHz, with an architecture highly optimized for wireless base station applications Four dual-thread e6500 Power Architecture processors organized in one cluster-each core runs up to 1.8 GHz Two DDR3/3L controllers for high-speed, industry-standard memory interface each runs at up to 1866.67 MHz MAPLE-B3 hardware acceleration-for forward error correction schemes including Turbo or Viterbi decoding, Turbo encoding and rate matching, MIMO MMSE equalization scheme, matrix operations, CRC insertion and check, DFT/iDFT and FFT/iFFT calculations, PUSCH/PDSCH acceleration, and UMTS chip rate acceleration CoreNet fabric that fully supports coherency using MESI protocol between the e6500 cores, SC3900 FVP cores, memories and external interfaces. CoreNet fabric interconnect runs at 667 MHz and supports coherent and non-coherent out of order transactions with prioritization and bandwidth allocation amongst CoreNet endpoints. Data Path Acceleration Architecture, which includes the following: Frame Manager (FMan), which supports in-line packet parsing and general classification to enable policing and QoS-based packet distribution Queue Manager (QMan) and Buffer Manager (BMan), which allow offloading of queue management, task management, load distribution, flow ordering, buffer management, and allocation tasks from the cores Security engine (SEC 5.3)-crypto-acceleration for protocols such as IPsec, SSL, and 802.16 RapidIO manager (RMAN) - Support SRIO types 8, 9, 10, and 11 (inbound and outbound). Supports types 5, 6 (outbound only) Large internal cache memory with snooping and stashing capabilities for bandwidth saving and high utilization of processor elements. The 9856-Kbyte internal memory space includes the following: 32 Kbyte L1 ICache per e6500/SC3900 core 32 Kbyte L1 DCache per e6500/SC3900 core 2048 Kbyte unified L2 cache for each SC3900 FVP cluster 2048 Kbyte unified L2 cache for the e6500 cluster Two 512 Kbyte shared L3 CoreNet platform caches (CPC) Sixteen 10-GHz SerDes lanes serving: Two Serial RapidIO interfaces. Each supports up to 4 lanes and a total of up to 8 lanes Up to 8-lanes Common Public Radio Interface (CPRI) controller for glue- less antenna connection Two 10-Gbit Ethernet controllers (10GEC) Six 1G/2.5-Gbit Ethernet controllers for network communications PCI Express controller Debug (Aurora) Two OCeaN DMAs Various system peripherals 182 32-bit timers Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:20 +00:00
#define FSL_CORENET_DEVDISR3_MAPLE1 0x00000800
#define FSL_CORENET_DEVDISR3_MAPLE2 0x00000400
#define FSL_CORENET_DEVDISR3_MAPLE3 0x00000200
powerpc/mpc85xx: Add T4240 SoC Add support for Freescale T4240 SoC. Feature of T4240 are (incomplete list): 12 dual-threaded e6500 cores built on Power Architecture® technology Arranged as clusters of four cores sharing a 2 MB L2 cache. Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture v2.06-compliant) Three levels of instruction: user, supervisor, and hypervisor 1.5 MB CoreNet Platform Cache (CPC) Hierarchical interconnect fabric CoreNet fabric supporting coherent and non-coherent transactions with prioritization and bandwidth allocation amongst CoreNet end-points 1.6 Tbps coherent read bandwidth Queue Manager (QMan) fabric supporting packet-level queue management and quality of service scheduling Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Memory prefetch engine (PMan) Data Path Acceleration Architecture (DPAA) incorporating acceleration for the following functions: Packet parsing, classification, and distribution (Frame Manager 1.1) Queue management for scheduling, packet sequencing, and congestion management (Queue Manager 1.1) Hardware buffer management for buffer allocation and de-allocation (BMan 1.1) Cryptography acceleration (SEC 5.0) at up to 40 Gbps RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0) 32 SerDes lanes at up to 10.3125 GHz Ethernet interfaces Up to four 10 Gbps Ethernet MACs Up to sixteen 1 Gbps Ethernet MACs Maximum configuration of 4 x 10 GE + 8 x 1 GE High-speed peripheral interfaces Four PCI Express 2.0/3.0 controllers Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with Type 11 messaging and Type 9 data streaming support Interlaken look-aside interface for serial TCAM connection Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Four I2C controllers Four 2-pin or two 4-pin UARTs Integrated Flash controller supporting NAND and NOR flash Two eight-channel DMA engines Support for hardware virtualization and partitioning enforcement QorIQ Platform's Trust Architecture 1.1 Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:19 +00:00
#define FSL_CORENET_DEVDISR4_I2C1 0x80000000
#define FSL_CORENET_DEVDISR4_I2C2 0x40000000
#define FSL_CORENET_DEVDISR4_DUART1 0x20000000
#define FSL_CORENET_DEVDISR4_DUART2 0x10000000
#define FSL_CORENET_DEVDISR4_ESPI 0x08000000
#define FSL_CORENET_DEVDISR5_DDR1 0x80000000
#define FSL_CORENET_DEVDISR5_DDR2 0x40000000
#define FSL_CORENET_DEVDISR5_DDR3 0x20000000
#define FSL_CORENET_DEVDISR5_CPC1 0x08000000
#define FSL_CORENET_DEVDISR5_CPC2 0x04000000
#define FSL_CORENET_DEVDISR5_CPC3 0x02000000
#define FSL_CORENET_DEVDISR5_IFC 0x00800000
#define FSL_CORENET_DEVDISR5_GPIO 0x00400000
#define FSL_CORENET_DEVDISR5_DBG 0x00200000
#define FSL_CORENET_DEVDISR5_NAL 0x00100000
powerpc/mpc85xx: Add B4860 and variant SoCs Add support for Freescale B4860 and variant SoCs. Features of B4860 are (incomplete list): Six fully-programmable StarCore SC3900 FVP subsystems, divided into three clusters-each core runs up to 1.2 GHz, with an architecture highly optimized for wireless base station applications Four dual-thread e6500 Power Architecture processors organized in one cluster-each core runs up to 1.8 GHz Two DDR3/3L controllers for high-speed, industry-standard memory interface each runs at up to 1866.67 MHz MAPLE-B3 hardware acceleration-for forward error correction schemes including Turbo or Viterbi decoding, Turbo encoding and rate matching, MIMO MMSE equalization scheme, matrix operations, CRC insertion and check, DFT/iDFT and FFT/iFFT calculations, PUSCH/PDSCH acceleration, and UMTS chip rate acceleration CoreNet fabric that fully supports coherency using MESI protocol between the e6500 cores, SC3900 FVP cores, memories and external interfaces. CoreNet fabric interconnect runs at 667 MHz and supports coherent and non-coherent out of order transactions with prioritization and bandwidth allocation amongst CoreNet endpoints. Data Path Acceleration Architecture, which includes the following: Frame Manager (FMan), which supports in-line packet parsing and general classification to enable policing and QoS-based packet distribution Queue Manager (QMan) and Buffer Manager (BMan), which allow offloading of queue management, task management, load distribution, flow ordering, buffer management, and allocation tasks from the cores Security engine (SEC 5.3)-crypto-acceleration for protocols such as IPsec, SSL, and 802.16 RapidIO manager (RMAN) - Support SRIO types 8, 9, 10, and 11 (inbound and outbound). Supports types 5, 6 (outbound only) Large internal cache memory with snooping and stashing capabilities for bandwidth saving and high utilization of processor elements. The 9856-Kbyte internal memory space includes the following: 32 Kbyte L1 ICache per e6500/SC3900 core 32 Kbyte L1 DCache per e6500/SC3900 core 2048 Kbyte unified L2 cache for each SC3900 FVP cluster 2048 Kbyte unified L2 cache for the e6500 cluster Two 512 Kbyte shared L3 CoreNet platform caches (CPC) Sixteen 10-GHz SerDes lanes serving: Two Serial RapidIO interfaces. Each supports up to 4 lanes and a total of up to 8 lanes Up to 8-lanes Common Public Radio Interface (CPRI) controller for glue- less antenna connection Two 10-Gbit Ethernet controllers (10GEC) Six 1G/2.5-Gbit Ethernet controllers for network communications PCI Express controller Debug (Aurora) Two OCeaN DMAs Various system peripherals 182 32-bit timers Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:20 +00:00
#define FSL_CORENET_DEVDISR5_TIMERS 0x00020000
powerpc/mpc85xx: Add T4240 SoC Add support for Freescale T4240 SoC. Feature of T4240 are (incomplete list): 12 dual-threaded e6500 cores built on Power Architecture® technology Arranged as clusters of four cores sharing a 2 MB L2 cache. Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture v2.06-compliant) Three levels of instruction: user, supervisor, and hypervisor 1.5 MB CoreNet Platform Cache (CPC) Hierarchical interconnect fabric CoreNet fabric supporting coherent and non-coherent transactions with prioritization and bandwidth allocation amongst CoreNet end-points 1.6 Tbps coherent read bandwidth Queue Manager (QMan) fabric supporting packet-level queue management and quality of service scheduling Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Memory prefetch engine (PMan) Data Path Acceleration Architecture (DPAA) incorporating acceleration for the following functions: Packet parsing, classification, and distribution (Frame Manager 1.1) Queue management for scheduling, packet sequencing, and congestion management (Queue Manager 1.1) Hardware buffer management for buffer allocation and de-allocation (BMan 1.1) Cryptography acceleration (SEC 5.0) at up to 40 Gbps RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0) 32 SerDes lanes at up to 10.3125 GHz Ethernet interfaces Up to four 10 Gbps Ethernet MACs Up to sixteen 1 Gbps Ethernet MACs Maximum configuration of 4 x 10 GE + 8 x 1 GE High-speed peripheral interfaces Four PCI Express 2.0/3.0 controllers Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with Type 11 messaging and Type 9 data streaming support Interlaken look-aside interface for serial TCAM connection Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Four I2C controllers Four 2-pin or two 4-pin UARTs Integrated Flash controller supporting NAND and NOR flash Two eight-channel DMA engines Support for hardware virtualization and partitioning enforcement QorIQ Platform's Trust Architecture 1.1 Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:19 +00:00
#define FSL_CORENET_NUM_DEVDISR 5
#else
#define FSL_CORENET_DEVDISR_PCIE1 0x80000000
#define FSL_CORENET_DEVDISR_PCIE2 0x40000000
#define FSL_CORENET_DEVDISR_PCIE3 0x20000000
#define FSL_CORENET_DEVDISR_PCIE4 0x10000000
#define FSL_CORENET_DEVDISR_RMU 0x08000000
#define FSL_CORENET_DEVDISR_SRIO1 0x04000000
#define FSL_CORENET_DEVDISR_SRIO2 0x02000000
#define FSL_CORENET_DEVDISR_DMA1 0x00400000
#define FSL_CORENET_DEVDISR_DMA2 0x00200000
#define FSL_CORENET_DEVDISR_DDR1 0x00100000
#define FSL_CORENET_DEVDISR_DDR2 0x00080000
#define FSL_CORENET_DEVDISR_DBG 0x00010000
#define FSL_CORENET_DEVDISR_NAL 0x00008000
#define FSL_CORENET_DEVDISR_SATA1 0x00004000
#define FSL_CORENET_DEVDISR_SATA2 0x00002000
#define FSL_CORENET_DEVDISR_ELBC 0x00001000
#define FSL_CORENET_DEVDISR_USB1 0x00000800
#define FSL_CORENET_DEVDISR_USB2 0x00000400
#define FSL_CORENET_DEVDISR_ESDHC 0x00000100
#define FSL_CORENET_DEVDISR_GPIO 0x00000080
#define FSL_CORENET_DEVDISR_ESPI 0x00000040
#define FSL_CORENET_DEVDISR_I2C1 0x00000020
#define FSL_CORENET_DEVDISR_I2C2 0x00000010
#define FSL_CORENET_DEVDISR_DUART1 0x00000002
#define FSL_CORENET_DEVDISR_DUART2 0x00000001
#define FSL_CORENET_DEVDISR2_PME 0x80000000
#define FSL_CORENET_DEVDISR2_SEC 0x40000000
#define FSL_CORENET_DEVDISR2_QMBM 0x08000000
#define FSL_CORENET_DEVDISR2_FM1 0x02000000
#define FSL_CORENET_DEVDISR2_10GEC1 0x01000000
#define FSL_CORENET_DEVDISR2_DTSEC1_1 0x00800000
#define FSL_CORENET_DEVDISR2_DTSEC1_2 0x00400000
#define FSL_CORENET_DEVDISR2_DTSEC1_3 0x00200000
#define FSL_CORENET_DEVDISR2_DTSEC1_4 0x00100000
#define FSL_CORENET_DEVDISR2_DTSEC1_5 0x00080000
#define FSL_CORENET_DEVDISR2_FM2 0x00020000
#define FSL_CORENET_DEVDISR2_10GEC2 0x00010000
#define FSL_CORENET_DEVDISR2_DTSEC2_1 0x00008000
#define FSL_CORENET_DEVDISR2_DTSEC2_2 0x00004000
#define FSL_CORENET_DEVDISR2_DTSEC2_3 0x00002000
#define FSL_CORENET_DEVDISR2_DTSEC2_4 0x00001000
#define FSL_CORENET_DEVDISR2_DTSEC2_5 0x00000800
#define FSL_CORENET_NUM_DEVDISR 2
u32 powmgtcsr; /* Power management status & control */
powerpc/mpc85xx: Add T4240 SoC Add support for Freescale T4240 SoC. Feature of T4240 are (incomplete list): 12 dual-threaded e6500 cores built on Power Architecture® technology Arranged as clusters of four cores sharing a 2 MB L2 cache. Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture v2.06-compliant) Three levels of instruction: user, supervisor, and hypervisor 1.5 MB CoreNet Platform Cache (CPC) Hierarchical interconnect fabric CoreNet fabric supporting coherent and non-coherent transactions with prioritization and bandwidth allocation amongst CoreNet end-points 1.6 Tbps coherent read bandwidth Queue Manager (QMan) fabric supporting packet-level queue management and quality of service scheduling Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Memory prefetch engine (PMan) Data Path Acceleration Architecture (DPAA) incorporating acceleration for the following functions: Packet parsing, classification, and distribution (Frame Manager 1.1) Queue management for scheduling, packet sequencing, and congestion management (Queue Manager 1.1) Hardware buffer management for buffer allocation and de-allocation (BMan 1.1) Cryptography acceleration (SEC 5.0) at up to 40 Gbps RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0) 32 SerDes lanes at up to 10.3125 GHz Ethernet interfaces Up to four 10 Gbps Ethernet MACs Up to sixteen 1 Gbps Ethernet MACs Maximum configuration of 4 x 10 GE + 8 x 1 GE High-speed peripheral interfaces Four PCI Express 2.0/3.0 controllers Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with Type 11 messaging and Type 9 data streaming support Interlaken look-aside interface for serial TCAM connection Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Four I2C controllers Four 2-pin or two 4-pin UARTs Integrated Flash controller supporting NAND and NOR flash Two eight-channel DMA engines Support for hardware virtualization and partitioning enforcement QorIQ Platform's Trust Architecture 1.1 Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:19 +00:00
#endif
u8 res8[12];
u32 coredisru; /* uppper portion for support of 64 cores */
u32 coredisrl; /* lower portion for support of 64 cores */
u8 res9[8];
u32 pvr; /* Processor version */
u32 svr; /* System version */
u8 res10[8];
u32 rstcr; /* Reset control */
u32 rstrqpblsr; /* Reset request preboot loader status */
u8 res11[8];
u32 rstrqmr1; /* Reset request mask */
#ifdef CONFIG_SYS_FSL_QORIQ_CHASSIS2
#define FSL_CORENET_RSTRQMR1_SRDS_RST_MSK 0x00000800
#endif
u8 res12[4];
u32 rstrqsr1; /* Reset request status */
u8 res13[4];
u8 res14[4];
u32 rstrqwdtmrl; /* Reset request WDT mask */
u8 res15[4];
u32 rstrqwdtsrl; /* Reset request WDT status */
u8 res16[4];
u32 brrl; /* Boot release */
u8 res17[24];
u32 rcwsr[16]; /* Reset control word status */
#ifdef CONFIG_SYS_FSL_QORIQ_CHASSIS2
#define FSL_CORENET_RCWSR0_MEM_PLL_RAT_SHIFT 16
/* use reserved bits 18~23 as scratch space to host DDR PLL ratio */
#define FSL_CORENET_RCWSR0_MEM_PLL_RAT_RESV_SHIFT 8
#define FSL_CORENET_RCWSR0_MEM_PLL_RAT_MASK 0x3f
#if defined(CONFIG_PPC_T4240) || defined(CONFIG_PPC_T4160) || \
defined(CONFIG_PPC_T4080)
#define FSL_CORENET2_RCWSR4_SRDS1_PRTCL 0xfc000000
#define FSL_CORENET2_RCWSR4_SRDS1_PRTCL_SHIFT 26
#define FSL_CORENET2_RCWSR4_SRDS2_PRTCL 0x00fe0000
#define FSL_CORENET2_RCWSR4_SRDS2_PRTCL_SHIFT 17
#define FSL_CORENET2_RCWSR4_SRDS3_PRTCL 0x0000f800
#define FSL_CORENET2_RCWSR4_SRDS3_PRTCL_SHIFT 11
#define FSL_CORENET2_RCWSR4_SRDS4_PRTCL 0x000000f8
#define FSL_CORENET2_RCWSR4_SRDS4_PRTCL_SHIFT 3
#define FSL_CORENET_RCWSR6_BOOT_LOC 0x0f800000
#elif defined(CONFIG_PPC_B4860) || defined(CONFIG_PPC_B4420)
powerpc/mpc85xx: Add B4860 and variant SoCs Add support for Freescale B4860 and variant SoCs. Features of B4860 are (incomplete list): Six fully-programmable StarCore SC3900 FVP subsystems, divided into three clusters-each core runs up to 1.2 GHz, with an architecture highly optimized for wireless base station applications Four dual-thread e6500 Power Architecture processors organized in one cluster-each core runs up to 1.8 GHz Two DDR3/3L controllers for high-speed, industry-standard memory interface each runs at up to 1866.67 MHz MAPLE-B3 hardware acceleration-for forward error correction schemes including Turbo or Viterbi decoding, Turbo encoding and rate matching, MIMO MMSE equalization scheme, matrix operations, CRC insertion and check, DFT/iDFT and FFT/iFFT calculations, PUSCH/PDSCH acceleration, and UMTS chip rate acceleration CoreNet fabric that fully supports coherency using MESI protocol between the e6500 cores, SC3900 FVP cores, memories and external interfaces. CoreNet fabric interconnect runs at 667 MHz and supports coherent and non-coherent out of order transactions with prioritization and bandwidth allocation amongst CoreNet endpoints. Data Path Acceleration Architecture, which includes the following: Frame Manager (FMan), which supports in-line packet parsing and general classification to enable policing and QoS-based packet distribution Queue Manager (QMan) and Buffer Manager (BMan), which allow offloading of queue management, task management, load distribution, flow ordering, buffer management, and allocation tasks from the cores Security engine (SEC 5.3)-crypto-acceleration for protocols such as IPsec, SSL, and 802.16 RapidIO manager (RMAN) - Support SRIO types 8, 9, 10, and 11 (inbound and outbound). Supports types 5, 6 (outbound only) Large internal cache memory with snooping and stashing capabilities for bandwidth saving and high utilization of processor elements. The 9856-Kbyte internal memory space includes the following: 32 Kbyte L1 ICache per e6500/SC3900 core 32 Kbyte L1 DCache per e6500/SC3900 core 2048 Kbyte unified L2 cache for each SC3900 FVP cluster 2048 Kbyte unified L2 cache for the e6500 cluster Two 512 Kbyte shared L3 CoreNet platform caches (CPC) Sixteen 10-GHz SerDes lanes serving: Two Serial RapidIO interfaces. Each supports up to 4 lanes and a total of up to 8 lanes Up to 8-lanes Common Public Radio Interface (CPRI) controller for glue- less antenna connection Two 10-Gbit Ethernet controllers (10GEC) Six 1G/2.5-Gbit Ethernet controllers for network communications PCI Express controller Debug (Aurora) Two OCeaN DMAs Various system peripherals 182 32-bit timers Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:20 +00:00
#define FSL_CORENET2_RCWSR4_SRDS1_PRTCL 0xfe000000
#define FSL_CORENET2_RCWSR4_SRDS1_PRTCL_SHIFT 25
#define FSL_CORENET2_RCWSR4_SRDS2_PRTCL 0x00ff0000
#define FSL_CORENET2_RCWSR4_SRDS2_PRTCL_SHIFT 16
#define FSL_CORENET_RCWSR6_BOOT_LOC 0x0f800000
#elif defined(CONFIG_PPC_T1040) || defined(CONFIG_PPC_T1042) ||\
defined(CONFIG_PPC_T1020) || defined(CONFIG_PPC_T1022)
#define FSL_CORENET2_RCWSR4_SRDS1_PRTCL 0xff000000
#define FSL_CORENET2_RCWSR4_SRDS1_PRTCL_SHIFT 24
#define FSL_CORENET2_RCWSR4_SRDS2_PRTCL 0x00fe0000
#define FSL_CORENET2_RCWSR4_SRDS2_PRTCL_SHIFT 17
#define FSL_CORENET_RCWSR13_EC1 0x30000000 /* bits 418..419 */
#define FSL_CORENET_RCWSR13_EC1_FM1_DTSEC4_RGMII 0x00000000
#define FSL_CORENET_RCWSR13_EC1_FM1_GPIO 0x10000000
#define FSL_CORENET_RCWSR13_EC1_FM1_DTSEC4_MII 0x20000000
#define FSL_CORENET_RCWSR13_EC2 0x0c000000 /* bits 420..421 */
#define FSL_CORENET_RCWSR13_EC2_FM1_DTSEC5_RGMII 0x00000000
#define FSL_CORENET_RCWSR13_EC2_FM1_GPIO 0x10000000
#define FSL_CORENET_RCWSR13_EC2_FM1_DTSEC5_MII 0x20000000
#define FSL_CORENET_RCWSR13_MAC2_GMII_SEL 0x00000080
#define FSL_CORENET_RCWSR13_MAC2_GMII_SEL_L2_SWITCH 0x00000000
#define FSL_CORENET_RCWSR13_MAC2_GMII_SEL_ENET_PORT 0x80000000
#define CONFIG_SYS_FSL_SCFG_PIXCLKCR_OFFSET 0x28
#define PXCKEN_MASK 0x80000000
#define PXCK_MASK 0x00FF0000
#define PXCK_BITS_START 16
powerpc/mpc85xx: Add T1024/T1023 SoC support Add support for Freescale T1024/T1023 SoC. The T1024 SoC includes the following function and features: - Two 64-bit Power architecture e5500 cores, up to 1.4GHz - private 256KB L2 cache each core and shared 256KB CoreNet platform cache (CPC) - 32-/64-bit DDR3L/DDR4 SDRAM memory controller with ECC and interleaving support - Data Path Acceleration Architecture (DPAA) incorporating acceleration - Four MAC for 1G/2.5G/10G network interfaces (RGMII, SGMII, QSGMII, XFI) - High-speed peripheral interfaces - Three PCI Express 2.0 controllers - Additional peripheral interfaces - One SATA 2.0 controller - Two USB 2.0 controllers with integrated PHY - Enhanced secure digital host controller (SD/eSDHC/eMMC) - Enhanced serial peripheral interface (eSPI) - Four I2C controllers - Four 2-pin UARTs or two 4-pin UARTs - Integrated Flash Controller supporting NAND and NOR flash - Two 8-channel DMA engines - Multicore programmable interrupt controller (PIC) - LCD interface (DIU) with 12 bit dual data rate - QUICC Engine block supporting TDM, HDLC, and UART - Deep Sleep power implementaion (wakeup from GPIO/Timer/Ethernet/USB) - Support for hardware virtualization and partitioning enforcement - QorIQ Platform's Trust Architecture 2.0 Differences between T1024 and T1023: Feature T1024 T1023 QUICC Engine: yes no DIU: yes no Deep Sleep: yes no I2C controller: 4 3 DDR: 64-bit 32-bit IFC: 32-bit 28-bit Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Reviewed-by: York Sun <yorksun@freescale.com>
2014-11-24 09:11:54 +00:00
#elif defined(CONFIG_PPC_T1024) || defined(CONFIG_PPC_T1023) || \
defined(CONFIG_PPC_T1014) || defined(CONFIG_PPC_T1013)
#define FSL_CORENET2_RCWSR4_SRDS1_PRTCL 0xff800000
#define FSL_CORENET2_RCWSR4_SRDS1_PRTCL_SHIFT 23
#define FSL_CORENET_RCWSR6_BOOT_LOC 0x0f800000
#define FSL_CORENET_RCWSR13_EC1 0x30000000 /* bits 418..419 */
#define FSL_CORENET_RCWSR13_EC1_RGMII 0x00000000
#define FSL_CORENET_RCWSR13_EC1_GPIO 0x10000000
#define FSL_CORENET_RCWSR13_EC2 0x0c000000
#define FSL_CORENET_RCWSR13_EC2_RGMII 0x08000000
#define CONFIG_SYS_FSL_SCFG_PIXCLKCR_OFFSET 0x28
#define CONFIG_SYS_FSL_SCFG_IODSECR1_OFFSET 0xd00
powerpc/mpc85xx: Add T1024/T1023 SoC support Add support for Freescale T1024/T1023 SoC. The T1024 SoC includes the following function and features: - Two 64-bit Power architecture e5500 cores, up to 1.4GHz - private 256KB L2 cache each core and shared 256KB CoreNet platform cache (CPC) - 32-/64-bit DDR3L/DDR4 SDRAM memory controller with ECC and interleaving support - Data Path Acceleration Architecture (DPAA) incorporating acceleration - Four MAC for 1G/2.5G/10G network interfaces (RGMII, SGMII, QSGMII, XFI) - High-speed peripheral interfaces - Three PCI Express 2.0 controllers - Additional peripheral interfaces - One SATA 2.0 controller - Two USB 2.0 controllers with integrated PHY - Enhanced secure digital host controller (SD/eSDHC/eMMC) - Enhanced serial peripheral interface (eSPI) - Four I2C controllers - Four 2-pin UARTs or two 4-pin UARTs - Integrated Flash Controller supporting NAND and NOR flash - Two 8-channel DMA engines - Multicore programmable interrupt controller (PIC) - LCD interface (DIU) with 12 bit dual data rate - QUICC Engine block supporting TDM, HDLC, and UART - Deep Sleep power implementaion (wakeup from GPIO/Timer/Ethernet/USB) - Support for hardware virtualization and partitioning enforcement - QorIQ Platform's Trust Architecture 2.0 Differences between T1024 and T1023: Feature T1024 T1023 QUICC Engine: yes no DIU: yes no Deep Sleep: yes no I2C controller: 4 3 DDR: 64-bit 32-bit IFC: 32-bit 28-bit Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Reviewed-by: York Sun <yorksun@freescale.com>
2014-11-24 09:11:54 +00:00
#define PXCKEN_MASK 0x80000000
#define PXCK_MASK 0x00FF0000
#define PXCK_BITS_START 16
powerpc/mpc85xx: Add T2080/T2081 SoC support Add support for Freescale T2080/T2081 SoC. T2080 includes the following functions and features: - Four dual-threads 64-bit Power architecture e6500 cores, up to 1.8GHz - 2MB L2 cache and 512KB CoreNet platform cache (CPC) - Hierarchical interconnect fabric - One 32-/64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving - Data Path Acceleration Architecture (DPAA) incorporating acceleration - 16 SerDes lanes up to 10.3125 GHz - 8 mEMACs for network interfaces (four 1Gbps MACs and four 10Gbps/1Gbps MACs) - High-speed peripheral interfaces - Four PCI Express controllers (two PCIe 2.0 and two PCIe 3.0 with SR-IOV) - Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz - Additional peripheral interfaces - Two serial ATA (SATA 2.0) controllers - Two high-speed USB 2.0 controllers with integrated PHY - Enhanced secure digital host controller (SD/SDHC/SDXC/eMMC) - Enhanced serial peripheral interface (eSPI) - Four I2C controllers - Four 2-pin UARTs or two 4-pin UARTs - Integrated Flash Controller supporting NAND and NOR flash - Three eight-channel DMA engines - Support for hardware virtualization and partitioning enforcement - QorIQ Platform's Trust Architecture 2.0 Differences between T2080 and T2081: Feature T2080 T2081 1G Ethernet numbers: 8 6 10G Ethernet numbers: 4 2 SerDes lanes: 16 8 Serial RapidIO,RMan: 2 no SATA Controller: 2 no Aurora: yes no SoC Package: 896-pins 780-pins Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Acked-by: York Sun <yorksun@freescale.com>
2013-11-22 09:39:10 +00:00
#elif defined(CONFIG_PPC_T2080) || defined(CONFIG_PPC_T2081)
#define FSL_CORENET2_RCWSR4_SRDS1_PRTCL 0xff000000
#define FSL_CORENET2_RCWSR4_SRDS1_PRTCL_SHIFT 24
#define FSL_CORENET2_RCWSR4_SRDS2_PRTCL 0x00ff0000
#define FSL_CORENET2_RCWSR4_SRDS2_PRTCL_SHIFT 16
#define FSL_CORENET_RCWSR6_BOOT_LOC 0x0f800000
powerpc/mpc85xx: Add T4240 SoC Add support for Freescale T4240 SoC. Feature of T4240 are (incomplete list): 12 dual-threaded e6500 cores built on Power Architecture® technology Arranged as clusters of four cores sharing a 2 MB L2 cache. Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture v2.06-compliant) Three levels of instruction: user, supervisor, and hypervisor 1.5 MB CoreNet Platform Cache (CPC) Hierarchical interconnect fabric CoreNet fabric supporting coherent and non-coherent transactions with prioritization and bandwidth allocation amongst CoreNet end-points 1.6 Tbps coherent read bandwidth Queue Manager (QMan) fabric supporting packet-level queue management and quality of service scheduling Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Memory prefetch engine (PMan) Data Path Acceleration Architecture (DPAA) incorporating acceleration for the following functions: Packet parsing, classification, and distribution (Frame Manager 1.1) Queue management for scheduling, packet sequencing, and congestion management (Queue Manager 1.1) Hardware buffer management for buffer allocation and de-allocation (BMan 1.1) Cryptography acceleration (SEC 5.0) at up to 40 Gbps RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0) 32 SerDes lanes at up to 10.3125 GHz Ethernet interfaces Up to four 10 Gbps Ethernet MACs Up to sixteen 1 Gbps Ethernet MACs Maximum configuration of 4 x 10 GE + 8 x 1 GE High-speed peripheral interfaces Four PCI Express 2.0/3.0 controllers Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with Type 11 messaging and Type 9 data streaming support Interlaken look-aside interface for serial TCAM connection Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Four I2C controllers Four 2-pin or two 4-pin UARTs Integrated Flash controller supporting NAND and NOR flash Two eight-channel DMA engines Support for hardware virtualization and partitioning enforcement QorIQ Platform's Trust Architecture 1.1 Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:19 +00:00
#endif
#define FSL_CORENET2_RCWSR5_SRDS_PLL_PD_S1_PLL1 0x00800000
#define FSL_CORENET2_RCWSR5_SRDS_PLL_PD_S1_PLL2 0x00400000
#define FSL_CORENET2_RCWSR5_SRDS_PLL_PD_S2_PLL1 0x00200000
#define FSL_CORENET2_RCWSR5_SRDS_PLL_PD_S2_PLL2 0x00100000
#define FSL_CORENET2_RCWSR5_SRDS_PLL_PD_S3_PLL1 0x00080000
#define FSL_CORENET2_RCWSR5_SRDS_PLL_PD_S3_PLL2 0x00040000
#define FSL_CORENET2_RCWSR5_SRDS_PLL_PD_S4_PLL1 0x00020000
#define FSL_CORENET2_RCWSR5_SRDS_PLL_PD_S4_PLL2 0x00010000
#define FSL_CORENET2_RCWSR5_DDR_REFCLK_SEL_SHIFT 4
#define FSL_CORENET2_RCWSR5_DDR_REFCLK_SEL_MASK 0x00000011
#define FSL_CORENET2_RCWSR5_DDR_REFCLK_SINGLE_CLK 1
#else /* CONFIG_SYS_FSL_QORIQ_CHASSIS2 */
#define FSL_CORENET_RCWSR0_MEM_PLL_RAT_SHIFT 17
#define FSL_CORENET_RCWSR0_MEM_PLL_RAT_MASK 0x1f
#define FSL_CORENET_RCWSR4_SRDS_PRTCL 0xfc000000
#define FSL_CORENET_RCWSR5_DDR_SYNC 0x00000080
#define FSL_CORENET_RCWSR5_DDR_SYNC_SHIFT 7
#define FSL_CORENET_RCWSR5_SRDS_EN 0x00002000
powerpc/85xx: Add P5040 processor support Add support for the Freescale P5040 SOC, which is similar to the P5020. Features of the P5040 are: Four P5040 single-threaded e5500 cores built Up to 2.4 GHz with 64-bit ISA support Three levels of instruction: user, supervisor, hypervisor CoreNet platform cache (CPC) 2.0 MB configures as dual 1 MB blocks hierarchical interconnect fabric Two 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Up to 1600MT/s Memory pre-fetch engine DPAA incorporating acceleration for the following functions Packet parsing, classification, and distribution (FMAN) Queue management for scheduling, packet sequencing and congestion management (QMAN) Hardware buffer management for buffer allocation and de-allocation (BMAN) Cryptography acceleration (SEC 5.2) at up to 40 Gbps SerDes 20 lanes at up to 5 Gbps Supports SGMII, XAUI, PCIe rev1.1/2.0, SATA Ethernet interfaces Two 10 Gbps Ethernet MACs Ten 1 Gbps Ethernet MACs High-speed peripheral interfaces Two PCI Express 2.0/3.0 controllers Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Two I2C controllers Four UARTs Integrated flash controller supporting NAND and NOR flash DMA Dual four channel Support for hardware virtualization and partitioning enforcement Extra privileged level for hypervisor support QorIQ Trust Architecture 1.1 Secure boot, secure debug, tamper detection, volatile key storage Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-05 11:09:19 +00:00
#define FSL_CORENET_RCWSR5_SRDS2_EN 0x00001000
#define FSL_CORENET_RCWSR6_BOOT_LOC 0x0f800000
#define FSL_CORENET_RCWSRn_SRDS_LPD_B2 0x3c000000 /* bits 162..165 */
#define FSL_CORENET_RCWSRn_SRDS_LPD_B3 0x003c0000 /* bits 170..173 */
#endif /* CONFIG_SYS_FSL_QORIQ_CHASSIS2 */
#define FSL_CORENET_RCWSR7_MCK_TO_PLAT_RAT 0x00400000
#define FSL_CORENET_RCWSR8_HOST_AGT_B1 0x00e00000
#define FSL_CORENET_RCWSR8_HOST_AGT_B2 0x00100000
#define FSL_CORENET_RCWSR11_EC1 0x00c00000 /* bits 360..361 */
#ifdef CONFIG_PPC_P4080
powerpc/85xx: Add support for FMan ethernet in Independent mode The Frame Manager (FMan) on QorIQ SoCs with DPAA (datapath acceleration architecture) is the ethernet contoller block. Normally it is utilized via Queue Manager (Qman) and Buffer Manager (Bman). However for boot usage the FMan supports a mode similar to QE or CPM ethernet collers called Independent mode. Additionally the FMan block supports multiple 1g and 10g interfaces as a single entity in the system rather than each controller being managed uniquely. This means we have to initialize all of Fman regardless of the number of interfaces we utilize. Different SoCs support different combinations of the number of FMan as well as the number of 1g & 10g interfaces support per Fman. We add support for the following SoCs: * P1023 - 1 Fman, 2x1g * P4080 - 2 Fman, each Fman has 4x1g and 1x10g * P204x/P3041/P5020 - 1 Fman, 5x1g, 1x10g Signed-off-by: Dave Liu <daveliu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Dai Haruki <dai.haruki@freescale.com> Signed-off-by: Kim Phillips <kim.phillips@freescale.com> Signed-off-by: Ioana Radulescu <ruxandra.radulescu@freescale.com> Signed-off-by: Lei Xu <B33228@freescale.com> Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Scott Wood <scottwood@freescale.com> Signed-off-by: Shaohui Xie <b21989@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
2011-04-13 13:37:44 +00:00
#define FSL_CORENET_RCWSR11_EC1_FM1_DTSEC1 0x00000000
#define FSL_CORENET_RCWSR11_EC1_FM1_USB1 0x00800000
#define FSL_CORENET_RCWSR11_EC2 0x001c0000 /* bits 363..365 */
powerpc/85xx: Add support for FMan ethernet in Independent mode The Frame Manager (FMan) on QorIQ SoCs with DPAA (datapath acceleration architecture) is the ethernet contoller block. Normally it is utilized via Queue Manager (Qman) and Buffer Manager (Bman). However for boot usage the FMan supports a mode similar to QE or CPM ethernet collers called Independent mode. Additionally the FMan block supports multiple 1g and 10g interfaces as a single entity in the system rather than each controller being managed uniquely. This means we have to initialize all of Fman regardless of the number of interfaces we utilize. Different SoCs support different combinations of the number of FMan as well as the number of 1g & 10g interfaces support per Fman. We add support for the following SoCs: * P1023 - 1 Fman, 2x1g * P4080 - 2 Fman, each Fman has 4x1g and 1x10g * P204x/P3041/P5020 - 1 Fman, 5x1g, 1x10g Signed-off-by: Dave Liu <daveliu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Dai Haruki <dai.haruki@freescale.com> Signed-off-by: Kim Phillips <kim.phillips@freescale.com> Signed-off-by: Ioana Radulescu <ruxandra.radulescu@freescale.com> Signed-off-by: Lei Xu <B33228@freescale.com> Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Scott Wood <scottwood@freescale.com> Signed-off-by: Shaohui Xie <b21989@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
2011-04-13 13:37:44 +00:00
#define FSL_CORENET_RCWSR11_EC2_FM2_DTSEC1 0x00000000
#define FSL_CORENET_RCWSR11_EC2_FM1_DTSEC2 0x00080000
#define FSL_CORENET_RCWSR11_EC2_USB2 0x00100000
#endif
#if defined(CONFIG_PPC_P2041) \
powerpc/85xx: Add support for FMan ethernet in Independent mode The Frame Manager (FMan) on QorIQ SoCs with DPAA (datapath acceleration architecture) is the ethernet contoller block. Normally it is utilized via Queue Manager (Qman) and Buffer Manager (Bman). However for boot usage the FMan supports a mode similar to QE or CPM ethernet collers called Independent mode. Additionally the FMan block supports multiple 1g and 10g interfaces as a single entity in the system rather than each controller being managed uniquely. This means we have to initialize all of Fman regardless of the number of interfaces we utilize. Different SoCs support different combinations of the number of FMan as well as the number of 1g & 10g interfaces support per Fman. We add support for the following SoCs: * P1023 - 1 Fman, 2x1g * P4080 - 2 Fman, each Fman has 4x1g and 1x10g * P204x/P3041/P5020 - 1 Fman, 5x1g, 1x10g Signed-off-by: Dave Liu <daveliu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Dai Haruki <dai.haruki@freescale.com> Signed-off-by: Kim Phillips <kim.phillips@freescale.com> Signed-off-by: Ioana Radulescu <ruxandra.radulescu@freescale.com> Signed-off-by: Lei Xu <B33228@freescale.com> Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Scott Wood <scottwood@freescale.com> Signed-off-by: Shaohui Xie <b21989@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
2011-04-13 13:37:44 +00:00
|| defined(CONFIG_PPC_P3041) || defined(CONFIG_PPC_P5020)
#define FSL_CORENET_RCWSR11_EC1_FM1_DTSEC4_RGMII 0x00000000
#define FSL_CORENET_RCWSR11_EC1_FM1_DTSEC4_MII 0x00800000
#define FSL_CORENET_RCWSR11_EC1_FM1_DTSEC4_NONE 0x00c00000
#define FSL_CORENET_RCWSR11_EC2 0x00180000 /* bits 363..364 */
#define FSL_CORENET_RCWSR11_EC2_FM1_DTSEC5_RGMII 0x00000000
#define FSL_CORENET_RCWSR11_EC2_FM1_DTSEC5_MII 0x00100000
#define FSL_CORENET_RCWSR11_EC2_FM1_DTSEC5_NONE 0x00180000
powerpc/85xx: Add P5040 processor support Add support for the Freescale P5040 SOC, which is similar to the P5020. Features of the P5040 are: Four P5040 single-threaded e5500 cores built Up to 2.4 GHz with 64-bit ISA support Three levels of instruction: user, supervisor, hypervisor CoreNet platform cache (CPC) 2.0 MB configures as dual 1 MB blocks hierarchical interconnect fabric Two 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Up to 1600MT/s Memory pre-fetch engine DPAA incorporating acceleration for the following functions Packet parsing, classification, and distribution (FMAN) Queue management for scheduling, packet sequencing and congestion management (QMAN) Hardware buffer management for buffer allocation and de-allocation (BMAN) Cryptography acceleration (SEC 5.2) at up to 40 Gbps SerDes 20 lanes at up to 5 Gbps Supports SGMII, XAUI, PCIe rev1.1/2.0, SATA Ethernet interfaces Two 10 Gbps Ethernet MACs Ten 1 Gbps Ethernet MACs High-speed peripheral interfaces Two PCI Express 2.0/3.0 controllers Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Two I2C controllers Four UARTs Integrated flash controller supporting NAND and NOR flash DMA Dual four channel Support for hardware virtualization and partitioning enforcement Extra privileged level for hypervisor support QorIQ Trust Architecture 1.1 Secure boot, secure debug, tamper detection, volatile key storage Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-05 11:09:19 +00:00
#endif
#if defined(CONFIG_PPC_P5040)
#define FSL_CORENET_RCWSR11_EC1_FM1_DTSEC5_RGMII 0x00000000
#define FSL_CORENET_RCWSR11_EC1_FM1_DTSEC5_MII 0x00800000
#define FSL_CORENET_RCWSR11_EC1_FM1_DTSEC5_NONE 0x00c00000
#define FSL_CORENET_RCWSR11_EC2 0x00180000 /* bits 363..364 */
#define FSL_CORENET_RCWSR11_EC2_FM2_DTSEC5_RGMII 0x00000000
#define FSL_CORENET_RCWSR11_EC2_FM2_DTSEC5_MII 0x00100000
#define FSL_CORENET_RCWSR11_EC2_FM2_DTSEC5_NONE 0x00180000
powerpc/mpc85xx: Add T4240 SoC Add support for Freescale T4240 SoC. Feature of T4240 are (incomplete list): 12 dual-threaded e6500 cores built on Power Architecture® technology Arranged as clusters of four cores sharing a 2 MB L2 cache. Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture v2.06-compliant) Three levels of instruction: user, supervisor, and hypervisor 1.5 MB CoreNet Platform Cache (CPC) Hierarchical interconnect fabric CoreNet fabric supporting coherent and non-coherent transactions with prioritization and bandwidth allocation amongst CoreNet end-points 1.6 Tbps coherent read bandwidth Queue Manager (QMan) fabric supporting packet-level queue management and quality of service scheduling Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Memory prefetch engine (PMan) Data Path Acceleration Architecture (DPAA) incorporating acceleration for the following functions: Packet parsing, classification, and distribution (Frame Manager 1.1) Queue management for scheduling, packet sequencing, and congestion management (Queue Manager 1.1) Hardware buffer management for buffer allocation and de-allocation (BMan 1.1) Cryptography acceleration (SEC 5.0) at up to 40 Gbps RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0) 32 SerDes lanes at up to 10.3125 GHz Ethernet interfaces Up to four 10 Gbps Ethernet MACs Up to sixteen 1 Gbps Ethernet MACs Maximum configuration of 4 x 10 GE + 8 x 1 GE High-speed peripheral interfaces Four PCI Express 2.0/3.0 controllers Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with Type 11 messaging and Type 9 data streaming support Interlaken look-aside interface for serial TCAM connection Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Four I2C controllers Four 2-pin or two 4-pin UARTs Integrated Flash controller supporting NAND and NOR flash Two eight-channel DMA engines Support for hardware virtualization and partitioning enforcement QorIQ Platform's Trust Architecture 1.1 Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:19 +00:00
#endif
#if defined(CONFIG_PPC_T4240) || defined(CONFIG_PPC_T4160) || \
defined(CONFIG_PPC_T4080)
powerpc/mpc85xx: Add T4240 SoC Add support for Freescale T4240 SoC. Feature of T4240 are (incomplete list): 12 dual-threaded e6500 cores built on Power Architecture® technology Arranged as clusters of four cores sharing a 2 MB L2 cache. Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture v2.06-compliant) Three levels of instruction: user, supervisor, and hypervisor 1.5 MB CoreNet Platform Cache (CPC) Hierarchical interconnect fabric CoreNet fabric supporting coherent and non-coherent transactions with prioritization and bandwidth allocation amongst CoreNet end-points 1.6 Tbps coherent read bandwidth Queue Manager (QMan) fabric supporting packet-level queue management and quality of service scheduling Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Memory prefetch engine (PMan) Data Path Acceleration Architecture (DPAA) incorporating acceleration for the following functions: Packet parsing, classification, and distribution (Frame Manager 1.1) Queue management for scheduling, packet sequencing, and congestion management (Queue Manager 1.1) Hardware buffer management for buffer allocation and de-allocation (BMan 1.1) Cryptography acceleration (SEC 5.0) at up to 40 Gbps RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0) 32 SerDes lanes at up to 10.3125 GHz Ethernet interfaces Up to four 10 Gbps Ethernet MACs Up to sixteen 1 Gbps Ethernet MACs Maximum configuration of 4 x 10 GE + 8 x 1 GE High-speed peripheral interfaces Four PCI Express 2.0/3.0 controllers Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with Type 11 messaging and Type 9 data streaming support Interlaken look-aside interface for serial TCAM connection Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Four I2C controllers Four 2-pin or two 4-pin UARTs Integrated Flash controller supporting NAND and NOR flash Two eight-channel DMA engines Support for hardware virtualization and partitioning enforcement QorIQ Platform's Trust Architecture 1.1 Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:19 +00:00
#define FSL_CORENET_RCWSR13_EC1 0x60000000 /* bits 417..418 */
#define FSL_CORENET_RCWSR13_EC1_FM2_DTSEC5_RGMII 0x00000000
#define FSL_CORENET_RCWSR13_EC1_FM2_GPIO 0x40000000
#define FSL_CORENET_RCWSR13_EC2 0x18000000 /* bits 419..420 */
#define FSL_CORENET_RCWSR13_EC2_FM1_DTSEC5_RGMII 0x00000000
#define FSL_CORENET_RCWSR13_EC2_FM1_DTSEC6_RGMII 0x08000000
#define FSL_CORENET_RCWSR13_EC2_FM1_GPIO 0x10000000
powerpc/mpc85xx: Add T2080/T2081 SoC support Add support for Freescale T2080/T2081 SoC. T2080 includes the following functions and features: - Four dual-threads 64-bit Power architecture e6500 cores, up to 1.8GHz - 2MB L2 cache and 512KB CoreNet platform cache (CPC) - Hierarchical interconnect fabric - One 32-/64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving - Data Path Acceleration Architecture (DPAA) incorporating acceleration - 16 SerDes lanes up to 10.3125 GHz - 8 mEMACs for network interfaces (four 1Gbps MACs and four 10Gbps/1Gbps MACs) - High-speed peripheral interfaces - Four PCI Express controllers (two PCIe 2.0 and two PCIe 3.0 with SR-IOV) - Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz - Additional peripheral interfaces - Two serial ATA (SATA 2.0) controllers - Two high-speed USB 2.0 controllers with integrated PHY - Enhanced secure digital host controller (SD/SDHC/SDXC/eMMC) - Enhanced serial peripheral interface (eSPI) - Four I2C controllers - Four 2-pin UARTs or two 4-pin UARTs - Integrated Flash Controller supporting NAND and NOR flash - Three eight-channel DMA engines - Support for hardware virtualization and partitioning enforcement - QorIQ Platform's Trust Architecture 2.0 Differences between T2080 and T2081: Feature T2080 T2081 1G Ethernet numbers: 8 6 10G Ethernet numbers: 4 2 SerDes lanes: 16 8 Serial RapidIO,RMan: 2 no SATA Controller: 2 no Aurora: yes no SoC Package: 896-pins 780-pins Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Acked-by: York Sun <yorksun@freescale.com>
2013-11-22 09:39:10 +00:00
#endif
#if defined(CONFIG_PPC_T2080) || defined(CONFIG_PPC_T2081)
#define FSL_CORENET_RCWSR13_EC1 0x60000000 /* bits 417..418 */
#define FSL_CORENET_RCWSR13_EC1_DTSEC3_RGMII 0x00000000
#define FSL_CORENET_RCWSR13_EC1_GPIO 0x40000000
#define FSL_CORENET_RCWSR13_EC2 0x18000000 /* bits 419..420 */
#define FSL_CORENET_RCWSR13_EC2_DTSEC4_RGMII 0x00000000
#define FSL_CORENET_RCWSR13_EC2_DTSEC10_RGMII 0x08000000
#define FSL_CORENET_RCWSR13_EC2_GPIO 0x10000000
powerpc/85xx: Add support for FMan ethernet in Independent mode The Frame Manager (FMan) on QorIQ SoCs with DPAA (datapath acceleration architecture) is the ethernet contoller block. Normally it is utilized via Queue Manager (Qman) and Buffer Manager (Bman). However for boot usage the FMan supports a mode similar to QE or CPM ethernet collers called Independent mode. Additionally the FMan block supports multiple 1g and 10g interfaces as a single entity in the system rather than each controller being managed uniquely. This means we have to initialize all of Fman regardless of the number of interfaces we utilize. Different SoCs support different combinations of the number of FMan as well as the number of 1g & 10g interfaces support per Fman. We add support for the following SoCs: * P1023 - 1 Fman, 2x1g * P4080 - 2 Fman, each Fman has 4x1g and 1x10g * P204x/P3041/P5020 - 1 Fman, 5x1g, 1x10g Signed-off-by: Dave Liu <daveliu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Dai Haruki <dai.haruki@freescale.com> Signed-off-by: Kim Phillips <kim.phillips@freescale.com> Signed-off-by: Ioana Radulescu <ruxandra.radulescu@freescale.com> Signed-off-by: Lei Xu <B33228@freescale.com> Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Scott Wood <scottwood@freescale.com> Signed-off-by: Shaohui Xie <b21989@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
2011-04-13 13:37:44 +00:00
#endif
u8 res18[192];
u32 scratchrw[4]; /* Scratch Read/Write */
u8 res19[240];
u32 scratchw1r[4]; /* Scratch Read (Write once) */
u8 res20[240];
u32 scrtsr[8]; /* Core reset status */
u8 res21[224];
u32 pex1liodnr; /* PCI Express 1 LIODN */
u32 pex2liodnr; /* PCI Express 2 LIODN */
u32 pex3liodnr; /* PCI Express 3 LIODN */
u32 pex4liodnr; /* PCI Express 4 LIODN */
u32 rio1liodnr; /* RIO 1 LIODN */
u32 rio2liodnr; /* RIO 2 LIODN */
u32 rio3liodnr; /* RIO 3 LIODN */
u32 rio4liodnr; /* RIO 4 LIODN */
u32 usb1liodnr; /* USB 1 LIODN */
u32 usb2liodnr; /* USB 2 LIODN */
u32 usb3liodnr; /* USB 3 LIODN */
u32 usb4liodnr; /* USB 4 LIODN */
u32 sdmmc1liodnr; /* SD/MMC 1 LIODN */
u32 sdmmc2liodnr; /* SD/MMC 2 LIODN */
u32 sdmmc3liodnr; /* SD/MMC 3 LIODN */
u32 sdmmc4liodnr; /* SD/MMC 4 LIODN */
u32 rio1maintliodnr;/* RIO 1 Maintenance LIODN */
u32 rio2maintliodnr;/* RIO 2 Maintenance LIODN */
u32 rio3maintliodnr;/* RIO 3 Maintenance LIODN */
u32 rio4maintliodnr;/* RIO 4 Maintenance LIODN */
u32 sata1liodnr; /* SATA 1 LIODN */
u32 sata2liodnr; /* SATA 2 LIODN */
u32 sata3liodnr; /* SATA 3 LIODN */
u32 sata4liodnr; /* SATA 4 LIODN */
u8 res22[20];
u32 tdmliodnr; /* TDM LIODN */
u32 qeliodnr; /* QE LIODN */
u8 res_57c[4];
u32 dma1liodnr; /* DMA 1 LIODN */
u32 dma2liodnr; /* DMA 2 LIODN */
u32 dma3liodnr; /* DMA 3 LIODN */
u32 dma4liodnr; /* DMA 4 LIODN */
u8 res23[48];
u8 res24[64];
u32 pblsr; /* Preboot loader status */
u32 pamubypenr; /* PAMU bypass enable */
#define FSL_CORENET_PAMU_BYPASS 0xffff0000
u32 dmacr1; /* DMA control */
u8 res25[4];
u32 gensr1; /* General status */
u8 res26[12];
u32 gencr1; /* General control */
u8 res27[12];
u8 res28[4];
u32 cgensrl; /* Core general status */
u8 res29[8];
u8 res30[4];
u32 cgencrl; /* Core general control */
u8 res31[184];
u32 sriopstecr; /* SRIO prescaler timer enable control */
u32 dcsrcr; /* DCSR Control register */
u8 res31a[56];
u32 tp_ityp[64]; /* Topology Initiator Type Register */
struct {
u32 upper;
u32 lower;
} tp_cluster[16]; /* Core Cluster n Topology Register */
u8 res32[1344];
u32 pmuxcr; /* Pin multiplexing control */
u8 res33[60];
u32 iovselsr; /* I/O voltage selection status */
u8 res34[28];
u32 ddrclkdr; /* DDR clock disable */
u8 res35;
u32 elbcclkdr; /* eLBC clock disable */
u8 res36[20];
u32 sdhcpcr; /* eSDHC polarity configuration */
u8 res37[380];
} ccsr_gur_t;
#define TP_ITYP_AV 0x00000001 /* Initiator available */
#define TP_ITYP_TYPE(x) (((x) & 0x6) >> 1) /* Initiator Type */
#define TP_ITYP_TYPE_OTHER 0x0
#define TP_ITYP_TYPE_PPC 0x1 /* PowerPC */
#define TP_ITYP_TYPE_SC 0x2 /* StarCore DSP */
#define TP_ITYP_TYPE_HA 0x3 /* HW Accelerator */
#define TP_ITYP_THDS(x) (((x) & 0x18) >> 3) /* # threads */
#define TP_ITYP_VER(x) (((x) & 0xe0) >> 5) /* Initiator Version */
#define TP_CLUSTER_EOC 0x80000000 /* end of clusters */
#define TP_CLUSTER_INIT_MASK 0x0000003f /* initiator mask */
#define TP_INIT_PER_CLUSTER 4
#define FSL_CORENET_DCSR_SZ_MASK 0x00000003
#define FSL_CORENET_DCSR_SZ_4M 0x0
#define FSL_CORENET_DCSR_SZ_1G 0x3
/*
* On p4080 we have an LIODN for msg unit (rmu) but not maintenance
* everything after has RMan thus msg unit LIODN is used for maintenance
*/
#define rmuliodnr rio1maintliodnr
typedef struct ccsr_clk {
struct {
u32 clkcncsr; /* core cluster n clock control status */
u8 res_004[0x0c];
u32 clkcgnhwacsr;/* clock generator n hardware accelerator */
u8 res_014[0x0c];
} clkcsr[12];
u8 res_100[0x680]; /* 0x100 */
struct {
u32 pllcngsr;
u8 res10[0x1c];
} pllcgsr[12];
u8 res21[0x280];
u32 pllpgsr; /* 0xc00 Platform PLL General Status */
u8 res16[0x1c];
u32 plldgsr; /* 0xc20 DDR PLL General Status */
u8 res17[0x3dc];
} ccsr_clk_t;
#ifdef CONFIG_SYS_FSL_QORIQ_CHASSIS2
typedef struct ccsr_rcpm {
u8 res_00[12];
u32 tph10sr0; /* Thread PH10 Status Register */
u8 res_10[12];
u32 tph10setr0; /* Thread PH10 Set Control Register */
u8 res_20[12];
u32 tph10clrr0; /* Thread PH10 Clear Control Register */
u8 res_30[12];
u32 tph10psr0; /* Thread PH10 Previous Status Register */
u8 res_40[12];
u32 twaitsr0; /* Thread Wait Status Register */
u8 res_50[96];
u32 pcph15sr; /* Physical Core PH15 Status Register */
u32 pcph15setr; /* Physical Core PH15 Set Control Register */
u32 pcph15clrr; /* Physical Core PH15 Clear Control Register */
u32 pcph15psr; /* Physical Core PH15 Prev Status Register */
u8 res_c0[16];
u32 pcph20sr; /* Physical Core PH20 Status Register */
u32 pcph20setr; /* Physical Core PH20 Set Control Register */
u32 pcph20clrr; /* Physical Core PH20 Clear Control Register */
u32 pcph20psr; /* Physical Core PH20 Prev Status Register */
u32 pcpw20sr; /* Physical Core PW20 Status Register */
u8 res_e0[12];
u32 pcph30sr; /* Physical Core PH30 Status Register */
u32 pcph30setr; /* Physical Core PH30 Set Control Register */
u32 pcph30clrr; /* Physical Core PH30 Clear Control Register */
u32 pcph30psr; /* Physical Core PH30 Prev Status Register */
u8 res_100[32];
u32 ippwrgatecr; /* IP Power Gating Control Register */
u8 res_124[12];
u32 powmgtcsr; /* Power Management Control & Status Reg */
u8 res_134[12];
u32 ippdexpcr[4]; /* IP Powerdown Exception Control Reg */
u8 res_150[12];
u32 tpmimr0; /* Thread PM Interrupt Mask Reg */
u8 res_160[12];
u32 tpmcimr0; /* Thread PM Crit Interrupt Mask Reg */
u8 res_170[12];
u32 tpmmcmr0; /* Thread PM Machine Check Interrupt Mask Reg */
u8 res_180[12];
u32 tpmnmimr0; /* Thread PM NMI Mask Reg */
u8 res_190[12];
u32 tmcpmaskcr0; /* Thread Machine Check Mask Control Reg */
u32 pctbenr; /* Physical Core Time Base Enable Reg */
u32 pctbclkselr; /* Physical Core Time Base Clock Select */
u32 tbclkdivr; /* Time Base Clock Divider Register */
u8 res_1ac[4];
u32 ttbhltcr[4]; /* Thread Time Base Halt Control Register */
u32 clpcl10sr; /* Cluster PCL10 Status Register */
u32 clpcl10setr; /* Cluster PCL30 Set Control Register */
u32 clpcl10clrr; /* Cluster PCL30 Clear Control Register */
u32 clpcl10psr; /* Cluster PCL30 Prev Status Register */
u32 cddslpsetr; /* Core Domain Deep Sleep Set Register */
u32 cddslpclrr; /* Core Domain Deep Sleep Clear Register */
u32 cdpwroksetr; /* Core Domain Power OK Set Register */
u32 cdpwrokclrr; /* Core Domain Power OK Clear Register */
u32 cdpwrensr; /* Core Domain Power Enable Status Register */
u32 cddslsr; /* Core Domain Deep Sleep Status Register */
u8 res_1e8[8];
u32 dslpcntcr[8]; /* Deep Sleep Counter Cfg Register */
u8 res_300[3568];
} ccsr_rcpm_t;
#define ctbenrl pctbenr
#else
typedef struct ccsr_rcpm {
u8 res1[4];
u32 cdozsrl; /* Core Doze Status */
u8 res2[4];
u32 cdozcrl; /* Core Doze Control */
u8 res3[4];
u32 cnapsrl; /* Core Nap Status */
u8 res4[4];
u32 cnapcrl; /* Core Nap Control */
u8 res5[4];
u32 cdozpsrl; /* Core Doze Previous Status */
u8 res6[4];
u32 cdozpcrl; /* Core Doze Previous Control */
u8 res7[4];
u32 cwaitsrl; /* Core Wait Status */
u8 res8[8];
u32 powmgtcsr; /* Power Mangement Control & Status */
u8 res9[12];
u32 ippdexpcr0; /* IP Powerdown Exception Control 0 */
u8 res10[12];
u8 res11[4];
u32 cpmimrl; /* Core PM IRQ Masking */
u8 res12[4];
u32 cpmcimrl; /* Core PM Critical IRQ Masking */
u8 res13[4];
u32 cpmmcimrl; /* Core PM Machine Check IRQ Masking */
u8 res14[4];
u32 cpmnmimrl; /* Core PM NMI Masking */
u8 res15[4];
u32 ctbenrl; /* Core Time Base Enable */
u8 res16[4];
u32 ctbclkselrl; /* Core Time Base Clock Select */
u8 res17[4];
u32 ctbhltcrl; /* Core Time Base Halt Control */
u8 res18[0xf68];
} ccsr_rcpm_t;
#endif /* CONFIG_SYS_FSL_QORIQ_CHASSIS2 */
#else
typedef struct ccsr_gur {
u32 porpllsr; /* POR PLL ratio status */
#ifdef CONFIG_MPC8536
#define MPC85xx_PORPLLSR_DDR_RATIO 0x3e000000
#define MPC85xx_PORPLLSR_DDR_RATIO_SHIFT 25
#elif defined(CONFIG_PPC_C29X)
#define MPC85xx_PORPLLSR_DDR_RATIO 0x00003f00
#define MPC85xx_PORPLLSR_DDR_RATIO_SHIFT (9 - ((gur->pordevsr2 \
& MPC85xx_PORDEVSR2_DDR_SPD_0) \
>> MPC85xx_PORDEVSR2_DDR_SPD_0_SHIFT))
#else
powerpc/mpc85xx: Add BSC9132/BSC9232 processor support The BSC9132 is a highly integrated device that targets the evolving Microcell, Picocell, and Enterprise-Femto base station market subsegments. The BSC9132 device combines Power Architecture e500 and DSP StarCore SC3850 core technologies with MAPLE-B2P baseband acceleration processing elements to address the need for a high performance, low cost, integrated solution that handles all required processing layers without the need for an external device except for an RF transceiver or, in a Micro base station configuration, a host device that handles the L3/L4 and handover between sectors. The BSC9132 SoC includes the following function and features: - Power Architecture subsystem including two e500 processors with 512-Kbyte shared L2 cache - Two StarCore SC3850 DSP subsystems, each with a 512-Kbyte private L2 cache - 32 Kbyte of shared M3 memory - The Multi Accelerator Platform Engine for Pico BaseStation Baseband Processing (MAPLE-B2P) - Two DDR3/3L memory interfaces with 32-bit data width (40 bits including ECC), up to 1333 MHz data rate - Dedicated security engine featuring trusted boot - Two DMA controllers - OCNDMA with four bidirectional channels - SysDMA with sixteen bidirectional channels - Interfaces - Four-lane SerDes PHY - PCI Express controller complies with the PEX Specification-Rev 2.0 - Two Common Public Radio Interface (CPRI) controller lanes - High-speed USB 2.0 host and device controller with ULPI interface - Enhanced secure digital (SD/MMC) host controller (eSDHC) - Antenna interface controller (AIC), supporting four industry standard JESD207/four custom ADI RF interfaces - ADI lanes support both full duplex FDD support & half duplex TDD - Universal Subscriber Identity Module (USIM) interface that facilitates communication to SIM cards or Eurochip pre-paid phone cards - Two DUART, two eSPI, and two I2C controllers - Integrated Flash memory controller (IFC) - GPIO - Sixteen 32-bit timers Signed-off-by: Naveen Burmi <NaveenBurmi@freescale.com> Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2013-01-23 17:59:57 +00:00
#if defined(CONFIG_BSC9131) || defined(CONFIG_BSC9132)
powerpc/mpc85xx:Add BSC9131/BSC9130/BSC9231 Processor Support - BSC9131 is integrated device that targets Femto base station market. It combines Power Architecture e500v2 and DSP StarCore SC3850 core technologies with MAPLE-B2F baseband acceleration processing elements. - BSC9130 is exactly same as BSC9131 except that the max e500v2 core and DSP core frequencies are 800M(these are 1G in case of 9131). - BSC9231 is similar to BSC9131 except no MAPLE The BSC9131 SoC includes the following function and features: . Power Architecture subsystem including a e500 processor with 256-Kbyte shared L2 cache . StarCore SC3850 DSP subsystem with a 512-Kbyte private L2 cache . The Multi Accelerator Platform Engine for Femto BaseStation Baseband Processing (MAPLE-B2F) . A multi-standard baseband algorithm accelerator for Channel Decoding/Encoding, Fourier Transforms, UMTS chip rate processing, LTE UP/DL Channel processing, and CRC algorithms . Consists of accelerators for Convolution, Filtering, Turbo Encoding, Turbo Decoding, Viterbi decoding, Chiprate processing, and Matrix Inversion operations . DDR3/3L memory interface with 32-bit data width without ECC and 16-bit with ECC, up to 400-MHz clock/800 MHz data rate . Dedicated security engine featuring trusted boot . DMA controller . OCNDMA with four bidirectional channels . Interfaces . Two triple-speed Gigabit Ethernet controllers featuring network acceleration including IEEE 1588. v2 hardware support and virtualization (eTSEC) . eTSEC 1 supports RGMII/RMII . eTSEC 2 supports RGMII . High-speed USB 2.0 host and device controller with ULPI interface . Enhanced secure digital (SD/MMC) host controller (eSDHC) . Antenna interface controller (AIC), supporting three industry standard JESD207/three custom ADI RF interfaces (two dual port and one single port) and three MAXIM's MaxPHY serial interfaces . ADI lanes support both full duplex FDD support and half duplex TDD support . Universal Subscriber Identity Module (USIM) interface that facilitates communication to SIM cards or Eurochip pre-paid phone cards . TDM with one TDM port . Two DUART, four eSPI, and two I2C controllers . Integrated Flash memory controller (IFC) . TDM with 256 channels . GPIO . Sixteen 32-bit timers The DSP portion of the SoC consists of DSP core (SC3850) and various accelerators pertaining to DSP operations. This patch takes care of code pertaining to power side functionality only. Signed-off-by: Ramneek Mehresh <ramneek.mehresh@freescale.com> Signed-off-by: Priyanka Jain <Priyanka.Jain@freescale.com> Signed-off-by: Akhil Goyal <Akhil.Goyal@freescale.com> Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com> Signed-off-by: Rajan Srivastava <rajan.srivastava@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
2012-04-24 20:16:49 +00:00
#define MPC85xx_PORPLLSR_DDR_RATIO 0x00003f00
#else
#define MPC85xx_PORPLLSR_DDR_RATIO 0x00003e00
powerpc/mpc85xx:Add BSC9131/BSC9130/BSC9231 Processor Support - BSC9131 is integrated device that targets Femto base station market. It combines Power Architecture e500v2 and DSP StarCore SC3850 core technologies with MAPLE-B2F baseband acceleration processing elements. - BSC9130 is exactly same as BSC9131 except that the max e500v2 core and DSP core frequencies are 800M(these are 1G in case of 9131). - BSC9231 is similar to BSC9131 except no MAPLE The BSC9131 SoC includes the following function and features: . Power Architecture subsystem including a e500 processor with 256-Kbyte shared L2 cache . StarCore SC3850 DSP subsystem with a 512-Kbyte private L2 cache . The Multi Accelerator Platform Engine for Femto BaseStation Baseband Processing (MAPLE-B2F) . A multi-standard baseband algorithm accelerator for Channel Decoding/Encoding, Fourier Transforms, UMTS chip rate processing, LTE UP/DL Channel processing, and CRC algorithms . Consists of accelerators for Convolution, Filtering, Turbo Encoding, Turbo Decoding, Viterbi decoding, Chiprate processing, and Matrix Inversion operations . DDR3/3L memory interface with 32-bit data width without ECC and 16-bit with ECC, up to 400-MHz clock/800 MHz data rate . Dedicated security engine featuring trusted boot . DMA controller . OCNDMA with four bidirectional channels . Interfaces . Two triple-speed Gigabit Ethernet controllers featuring network acceleration including IEEE 1588. v2 hardware support and virtualization (eTSEC) . eTSEC 1 supports RGMII/RMII . eTSEC 2 supports RGMII . High-speed USB 2.0 host and device controller with ULPI interface . Enhanced secure digital (SD/MMC) host controller (eSDHC) . Antenna interface controller (AIC), supporting three industry standard JESD207/three custom ADI RF interfaces (two dual port and one single port) and three MAXIM's MaxPHY serial interfaces . ADI lanes support both full duplex FDD support and half duplex TDD support . Universal Subscriber Identity Module (USIM) interface that facilitates communication to SIM cards or Eurochip pre-paid phone cards . TDM with one TDM port . Two DUART, four eSPI, and two I2C controllers . Integrated Flash memory controller (IFC) . TDM with 256 channels . GPIO . Sixteen 32-bit timers The DSP portion of the SoC consists of DSP core (SC3850) and various accelerators pertaining to DSP operations. This patch takes care of code pertaining to power side functionality only. Signed-off-by: Ramneek Mehresh <ramneek.mehresh@freescale.com> Signed-off-by: Priyanka Jain <Priyanka.Jain@freescale.com> Signed-off-by: Akhil Goyal <Akhil.Goyal@freescale.com> Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com> Signed-off-by: Rajan Srivastava <rajan.srivastava@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
2012-04-24 20:16:49 +00:00
#endif
#define MPC85xx_PORPLLSR_DDR_RATIO_SHIFT 9
#endif
#define MPC85xx_PORPLLSR_QE_RATIO 0x3e000000
#define MPC85xx_PORPLLSR_QE_RATIO_SHIFT 25
#define MPC85xx_PORPLLSR_PLAT_RATIO 0x0000003e
#define MPC85xx_PORPLLSR_PLAT_RATIO_SHIFT 1
u32 porbmsr; /* POR boot mode status */
#define MPC85xx_PORBMSR_HA 0x00070000
#define MPC85xx_PORBMSR_HA_SHIFT 16
#define MPC85xx_PORBMSR_ROMLOC_SHIFT 24
powerpc/mpc85xx: Add BSC9132/BSC9232 processor support The BSC9132 is a highly integrated device that targets the evolving Microcell, Picocell, and Enterprise-Femto base station market subsegments. The BSC9132 device combines Power Architecture e500 and DSP StarCore SC3850 core technologies with MAPLE-B2P baseband acceleration processing elements to address the need for a high performance, low cost, integrated solution that handles all required processing layers without the need for an external device except for an RF transceiver or, in a Micro base station configuration, a host device that handles the L3/L4 and handover between sectors. The BSC9132 SoC includes the following function and features: - Power Architecture subsystem including two e500 processors with 512-Kbyte shared L2 cache - Two StarCore SC3850 DSP subsystems, each with a 512-Kbyte private L2 cache - 32 Kbyte of shared M3 memory - The Multi Accelerator Platform Engine for Pico BaseStation Baseband Processing (MAPLE-B2P) - Two DDR3/3L memory interfaces with 32-bit data width (40 bits including ECC), up to 1333 MHz data rate - Dedicated security engine featuring trusted boot - Two DMA controllers - OCNDMA with four bidirectional channels - SysDMA with sixteen bidirectional channels - Interfaces - Four-lane SerDes PHY - PCI Express controller complies with the PEX Specification-Rev 2.0 - Two Common Public Radio Interface (CPRI) controller lanes - High-speed USB 2.0 host and device controller with ULPI interface - Enhanced secure digital (SD/MMC) host controller (eSDHC) - Antenna interface controller (AIC), supporting four industry standard JESD207/four custom ADI RF interfaces - ADI lanes support both full duplex FDD support & half duplex TDD - Universal Subscriber Identity Module (USIM) interface that facilitates communication to SIM cards or Eurochip pre-paid phone cards - Two DUART, two eSPI, and two I2C controllers - Integrated Flash memory controller (IFC) - GPIO - Sixteen 32-bit timers Signed-off-by: Naveen Burmi <NaveenBurmi@freescale.com> Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2013-01-23 17:59:57 +00:00
#define PORBMSR_ROMLOC_SPI 0x6
#define PORBMSR_ROMLOC_SDHC 0x7
#define PORBMSR_ROMLOC_NAND_2K 0x9
#define PORBMSR_ROMLOC_NOR 0xf
u32 porimpscr; /* POR I/O impedance status & control */
u32 pordevsr; /* POR I/O device status regsiter */
#if defined(CONFIG_P1017) || defined(CONFIG_P1023)
#define MPC85xx_PORDEVSR_SGMII1_DIS 0x10000000
#define MPC85xx_PORDEVSR_SGMII2_DIS 0x08000000
powerpc/85xx: Add support for FMan ethernet in Independent mode The Frame Manager (FMan) on QorIQ SoCs with DPAA (datapath acceleration architecture) is the ethernet contoller block. Normally it is utilized via Queue Manager (Qman) and Buffer Manager (Bman). However for boot usage the FMan supports a mode similar to QE or CPM ethernet collers called Independent mode. Additionally the FMan block supports multiple 1g and 10g interfaces as a single entity in the system rather than each controller being managed uniquely. This means we have to initialize all of Fman regardless of the number of interfaces we utilize. Different SoCs support different combinations of the number of FMan as well as the number of 1g & 10g interfaces support per Fman. We add support for the following SoCs: * P1023 - 1 Fman, 2x1g * P4080 - 2 Fman, each Fman has 4x1g and 1x10g * P204x/P3041/P5020 - 1 Fman, 5x1g, 1x10g Signed-off-by: Dave Liu <daveliu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Dai Haruki <dai.haruki@freescale.com> Signed-off-by: Kim Phillips <kim.phillips@freescale.com> Signed-off-by: Ioana Radulescu <ruxandra.radulescu@freescale.com> Signed-off-by: Lei Xu <B33228@freescale.com> Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Scott Wood <scottwood@freescale.com> Signed-off-by: Shaohui Xie <b21989@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
2011-04-13 13:37:44 +00:00
#define MPC85xx_PORDEVSR_TSEC1_PRTC 0x02000000
#else
#define MPC85xx_PORDEVSR_SGMII1_DIS 0x20000000
#define MPC85xx_PORDEVSR_SGMII2_DIS 0x10000000
#endif
#define MPC85xx_PORDEVSR_SGMII3_DIS 0x08000000
#define MPC85xx_PORDEVSR_SGMII4_DIS 0x04000000
#define MPC85xx_PORDEVSR_SRDS2_IO_SEL 0x38000000
#define MPC85xx_PORDEVSR_PCI1 0x00800000
#if defined(CONFIG_P1013) || defined(CONFIG_P1022)
#define MPC85xx_PORDEVSR_IO_SEL 0x007c0000
#define MPC85xx_PORDEVSR_IO_SEL_SHIFT 18
#elif defined(CONFIG_P1017) || defined(CONFIG_P1023)
#define MPC85xx_PORDEVSR_IO_SEL 0x00600000
#define MPC85xx_PORDEVSR_IO_SEL_SHIFT 21
#else
#if defined(CONFIG_P1010)
#define MPC85xx_PORDEVSR_IO_SEL 0x00600000
#define MPC85xx_PORDEVSR_IO_SEL_SHIFT 21
powerpc/mpc85xx: Add BSC9132/BSC9232 processor support The BSC9132 is a highly integrated device that targets the evolving Microcell, Picocell, and Enterprise-Femto base station market subsegments. The BSC9132 device combines Power Architecture e500 and DSP StarCore SC3850 core technologies with MAPLE-B2P baseband acceleration processing elements to address the need for a high performance, low cost, integrated solution that handles all required processing layers without the need for an external device except for an RF transceiver or, in a Micro base station configuration, a host device that handles the L3/L4 and handover between sectors. The BSC9132 SoC includes the following function and features: - Power Architecture subsystem including two e500 processors with 512-Kbyte shared L2 cache - Two StarCore SC3850 DSP subsystems, each with a 512-Kbyte private L2 cache - 32 Kbyte of shared M3 memory - The Multi Accelerator Platform Engine for Pico BaseStation Baseband Processing (MAPLE-B2P) - Two DDR3/3L memory interfaces with 32-bit data width (40 bits including ECC), up to 1333 MHz data rate - Dedicated security engine featuring trusted boot - Two DMA controllers - OCNDMA with four bidirectional channels - SysDMA with sixteen bidirectional channels - Interfaces - Four-lane SerDes PHY - PCI Express controller complies with the PEX Specification-Rev 2.0 - Two Common Public Radio Interface (CPRI) controller lanes - High-speed USB 2.0 host and device controller with ULPI interface - Enhanced secure digital (SD/MMC) host controller (eSDHC) - Antenna interface controller (AIC), supporting four industry standard JESD207/four custom ADI RF interfaces - ADI lanes support both full duplex FDD support & half duplex TDD - Universal Subscriber Identity Module (USIM) interface that facilitates communication to SIM cards or Eurochip pre-paid phone cards - Two DUART, two eSPI, and two I2C controllers - Integrated Flash memory controller (IFC) - GPIO - Sixteen 32-bit timers Signed-off-by: Naveen Burmi <NaveenBurmi@freescale.com> Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2013-01-23 17:59:57 +00:00
#elif defined(CONFIG_BSC9132)
#define MPC85xx_PORDEVSR_IO_SEL 0x00FE0000
#define MPC85xx_PORDEVSR_IO_SEL_SHIFT 17
#elif defined(CONFIG_PPC_C29X)
#define MPC85xx_PORDEVSR_IO_SEL 0x00e00000
#define MPC85xx_PORDEVSR_IO_SEL_SHIFT 21
#else
#define MPC85xx_PORDEVSR_IO_SEL 0x00780000
#define MPC85xx_PORDEVSR_IO_SEL_SHIFT 19
#endif /* if defined(CONFIG_P1010) */
#endif
#define MPC85xx_PORDEVSR_PCI2_ARB 0x00040000
#define MPC85xx_PORDEVSR_PCI1_ARB 0x00020000
#define MPC85xx_PORDEVSR_PCI1_PCI32 0x00010000
#define MPC85xx_PORDEVSR_PCI1_SPD 0x00008000
#define MPC85xx_PORDEVSR_PCI2_SPD 0x00004000
#define MPC85xx_PORDEVSR_DRAM_RTYPE 0x00000060
#define MPC85xx_PORDEVSR_RIO_CTLS 0x00000008
#define MPC85xx_PORDEVSR_RIO_DEV_ID 0x00000007
u32 pordbgmsr; /* POR debug mode status */
u32 pordevsr2; /* POR I/O device status 2 */
#if defined(CONFIG_PPC_C29X)
#define MPC85xx_PORDEVSR2_DDR_SPD_0 0x00000008
#define MPC85xx_PORDEVSR2_DDR_SPD_0_SHIFT 3
#endif
/* The 8544 RM says this is bit 26, but it's really bit 24 */
#define MPC85xx_PORDEVSR2_SEC_CFG 0x00000080
u8 res1[8];
u32 gpporcr; /* General-purpose POR configuration */
u8 res2[12];
#if defined(CONFIG_MPC8536)
u32 gencfgr; /* General Configuration Register */
#define MPC85xx_GENCFGR_SDHC_WP_INV 0x20000000
#else
u32 gpiocr; /* GPIO control */
#endif
u8 res3[12];
#if defined(CONFIG_MPC8569)
u32 plppar1; /* Platform port pin assignment 1 */
u32 plppar2; /* Platform port pin assignment 2 */
u32 plpdir1; /* Platform port pin direction 1 */
u32 plpdir2; /* Platform port pin direction 2 */
#else
u32 gpoutdr; /* General-purpose output data */
u8 res4[12];
#endif
u32 gpindr; /* General-purpose input data */
u8 res5[12];
u32 pmuxcr; /* Alt. function signal multiplex control */
#if defined(CONFIG_P1010) || defined(CONFIG_P1014)
#define MPC85xx_PMUXCR_TSEC1_0_1588 0x40000000
#define MPC85xx_PMUXCR_TSEC1_0_RES 0xC0000000
#define MPC85xx_PMUXCR_TSEC1_1_1588_TRIG 0x10000000
#define MPC85xx_PMUXCR_TSEC1_1_GPIO_12 0x20000000
#define MPC85xx_PMUXCR_TSEC1_1_RES 0x30000000
#define MPC85xx_PMUXCR_TSEC1_2_DMA 0x04000000
#define MPC85xx_PMUXCR_TSEC1_2_GPIO 0x08000000
#define MPC85xx_PMUXCR_TSEC1_2_RES 0x0C000000
#define MPC85xx_PMUXCR_TSEC1_3_RES 0x01000000
#define MPC85xx_PMUXCR_TSEC1_3_GPIO_15 0x02000000
#define MPC85xx_PMUXCR_IFC_ADDR16_SDHC 0x00400000
#define MPC85xx_PMUXCR_IFC_ADDR16_USB 0x00800000
#define MPC85xx_PMUXCR_IFC_ADDR16_IFC_CS2 0x00C00000
#define MPC85xx_PMUXCR_IFC_ADDR17_18_SDHC 0x00100000
#define MPC85xx_PMUXCR_IFC_ADDR17_18_USB 0x00200000
#define MPC85xx_PMUXCR_IFC_ADDR17_18_DMA 0x00300000
#define MPC85xx_PMUXCR_IFC_ADDR19_SDHC_DATA 0x00040000
#define MPC85xx_PMUXCR_IFC_ADDR19_USB 0x00080000
#define MPC85xx_PMUXCR_IFC_ADDR19_DMA 0x000C0000
#define MPC85xx_PMUXCR_IFC_ADDR20_21_SDHC_DATA 0x00010000
#define MPC85xx_PMUXCR_IFC_ADDR20_21_USB 0x00020000
#define MPC85xx_PMUXCR_IFC_ADDR20_21_RES 0x00030000
#define MPC85xx_PMUXCR_IFC_ADDR22_SDHC 0x00004000
#define MPC85xx_PMUXCR_IFC_ADDR22_USB 0x00008000
#define MPC85xx_PMUXCR_IFC_ADDR22_RES 0x0000C000
#define MPC85xx_PMUXCR_IFC_ADDR23_SDHC 0x00001000
#define MPC85xx_PMUXCR_IFC_ADDR23_USB 0x00002000
#define MPC85xx_PMUXCR_IFC_ADDR23_RES 0x00003000
#define MPC85xx_PMUXCR_IFC_ADDR24_SDHC 0x00000400
#define MPC85xx_PMUXCR_IFC_ADDR24_USB 0x00000800
#define MPC85xx_PMUXCR_IFC_ADDR24_RES 0x00000C00
#define MPC85xx_PMUXCR_IFC_PAR_PERR_RES 0x00000300
#define MPC85xx_PMUXCR_IFC_PAR_PERR_USB 0x00000200
#define MPC85xx_PMUXCR_LCLK_RES 0x00000040
#define MPC85xx_PMUXCR_LCLK_USB 0x00000080
#define MPC85xx_PMUXCR_LCLK_IFC_CS3 0x000000C0
#define MPC85xx_PMUXCR_SPI_RES 0x00000030
#define MPC85xx_PMUXCR_SPI_GPIO 0x00000020
#define MPC85xx_PMUXCR_CAN1_UART 0x00000004
#define MPC85xx_PMUXCR_CAN1_TDM 0x00000008
#define MPC85xx_PMUXCR_CAN1_RES 0x0000000C
#define MPC85xx_PMUXCR_CAN2_UART 0x00000001
#define MPC85xx_PMUXCR_CAN2_TDM 0x00000002
#define MPC85xx_PMUXCR_CAN2_RES 0x00000003
#endif
#if defined(CONFIG_P1017) || defined(CONFIG_P1023)
#define MPC85xx_PMUXCR_TSEC1_1 0x10000000
#else
#define MPC85xx_PMUXCR_SD_DATA 0x80000000
#define MPC85xx_PMUXCR_SDHC_CD 0x40000000
#define MPC85xx_PMUXCR_SDHC_WP 0x20000000
#define MPC85xx_PMUXCR_ELBC_OFF_USB2_ON 0x01000000
#define MPC85xx_PMUXCR_TDM_ENA 0x00800000
#define MPC85xx_PMUXCR_QE0 0x00008000
#define MPC85xx_PMUXCR_QE1 0x00004000
#define MPC85xx_PMUXCR_QE2 0x00002000
#define MPC85xx_PMUXCR_QE3 0x00001000
#define MPC85xx_PMUXCR_QE4 0x00000800
#define MPC85xx_PMUXCR_QE5 0x00000400
#define MPC85xx_PMUXCR_QE6 0x00000200
#define MPC85xx_PMUXCR_QE7 0x00000100
#define MPC85xx_PMUXCR_QE8 0x00000080
#define MPC85xx_PMUXCR_QE9 0x00000040
#define MPC85xx_PMUXCR_QE10 0x00000020
#define MPC85xx_PMUXCR_QE11 0x00000010
#define MPC85xx_PMUXCR_QE12 0x00000008
#endif
#if defined(CONFIG_P1013) || defined(CONFIG_P1022)
#define MPC85xx_PMUXCR_TDM_MASK 0x0001cc00
#define MPC85xx_PMUXCR_TDM 0x00014800
#define MPC85xx_PMUXCR_SPI_MASK 0x00600000
#define MPC85xx_PMUXCR_SPI 0x00000000
powerpc/mpc85xx:Add BSC9131/BSC9130/BSC9231 Processor Support - BSC9131 is integrated device that targets Femto base station market. It combines Power Architecture e500v2 and DSP StarCore SC3850 core technologies with MAPLE-B2F baseband acceleration processing elements. - BSC9130 is exactly same as BSC9131 except that the max e500v2 core and DSP core frequencies are 800M(these are 1G in case of 9131). - BSC9231 is similar to BSC9131 except no MAPLE The BSC9131 SoC includes the following function and features: . Power Architecture subsystem including a e500 processor with 256-Kbyte shared L2 cache . StarCore SC3850 DSP subsystem with a 512-Kbyte private L2 cache . The Multi Accelerator Platform Engine for Femto BaseStation Baseband Processing (MAPLE-B2F) . A multi-standard baseband algorithm accelerator for Channel Decoding/Encoding, Fourier Transforms, UMTS chip rate processing, LTE UP/DL Channel processing, and CRC algorithms . Consists of accelerators for Convolution, Filtering, Turbo Encoding, Turbo Decoding, Viterbi decoding, Chiprate processing, and Matrix Inversion operations . DDR3/3L memory interface with 32-bit data width without ECC and 16-bit with ECC, up to 400-MHz clock/800 MHz data rate . Dedicated security engine featuring trusted boot . DMA controller . OCNDMA with four bidirectional channels . Interfaces . Two triple-speed Gigabit Ethernet controllers featuring network acceleration including IEEE 1588. v2 hardware support and virtualization (eTSEC) . eTSEC 1 supports RGMII/RMII . eTSEC 2 supports RGMII . High-speed USB 2.0 host and device controller with ULPI interface . Enhanced secure digital (SD/MMC) host controller (eSDHC) . Antenna interface controller (AIC), supporting three industry standard JESD207/three custom ADI RF interfaces (two dual port and one single port) and three MAXIM's MaxPHY serial interfaces . ADI lanes support both full duplex FDD support and half duplex TDD support . Universal Subscriber Identity Module (USIM) interface that facilitates communication to SIM cards or Eurochip pre-paid phone cards . TDM with one TDM port . Two DUART, four eSPI, and two I2C controllers . Integrated Flash memory controller (IFC) . TDM with 256 channels . GPIO . Sixteen 32-bit timers The DSP portion of the SoC consists of DSP core (SC3850) and various accelerators pertaining to DSP operations. This patch takes care of code pertaining to power side functionality only. Signed-off-by: Ramneek Mehresh <ramneek.mehresh@freescale.com> Signed-off-by: Priyanka Jain <Priyanka.Jain@freescale.com> Signed-off-by: Akhil Goyal <Akhil.Goyal@freescale.com> Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com> Signed-off-by: Rajan Srivastava <rajan.srivastava@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
2012-04-24 20:16:49 +00:00
#endif
#if defined(CONFIG_BSC9131)
#define MPC85xx_PMUXCR_TSEC2_DMA_GPIO_IRQ 0x40000000
#define MPC85xx_PMUXCR_TSEC2_USB 0xC0000000
#define MPC85xx_PMUXCR_TSEC2_1588_PPS 0x10000000
#define MPC85xx_PMUXCR_TSEC2_1588_RSVD 0x30000000
#define MPC85xx_PMUXCR_IFC_AD_GPIO 0x04000000
#define MPC85xx_PMUXCR_IFC_AD_GPIO_MASK 0x0C000000
#define MPC85xx_PMUXCR_IFC_AD15_GPIO 0x01000000
#define MPC85xx_PMUXCR_IFC_AD15_TIMER2 0x02000000
#define MPC85xx_PMUXCR_IFC_AD16_GPO8 0x00400000
#define MPC85xx_PMUXCR_IFC_AD16_MSRCID0 0x00800000
#define MPC85xx_PMUXCR_IFC_AD17_GPO 0x00100000
#define MPC85xx_PMUXCR_IFC_AD17_GPO_MASK 0x00300000
#define MPC85xx_PMUXCR_IFC_AD17_MSRCID_DSP 0x00200000
#define MPC85xx_PMUXCR_IFC_CS2_GPO65 0x00040000
#define MPC85xx_PMUXCR_IFC_CS2_DSP_TDI 0x00080000
#define MPC85xx_PMUXCR_SDHC_USIM 0x00010000
#define MPC85xx_PMUXCR_SDHC_TDM_RFS_RCK 0x00020000
#define MPC85xx_PMUXCR_SDHC_GPIO77 0x00030000
#define MPC85xx_PMUXCR_SDHC_RESV 0x00004000
#define MPC85xx_PMUXCR_SDHC_TDM_TXD_RXD 0x00008000
#define MPC85xx_PMUXCR_SDHC_GPIO_TIMER4 0x0000C000
#define MPC85xx_PMUXCR_USB_CLK_UART_SIN 0x00001000
#define MPC85xx_PMUXCR_USB_CLK_GPIO69 0x00002000
#define MPC85xx_PMUXCR_USB_CLK_TIMER3 0x00003000
#define MPC85xx_PMUXCR_USB_UART_GPIO0 0x00000400
#define MPC85xx_PMUXCR_USB_RSVD 0x00000C00
#define MPC85xx_PMUXCR_USB_GPIO62_TRIG_IN 0x00000800
#define MPC85xx_PMUXCR_USB_D1_2_IIC2_SDA_SCL 0x00000100
#define MPC85xx_PMUXCR_USB_D1_2_GPIO71_72 0x00000200
#define MPC85xx_PMUXCR_USB_D1_2_RSVD 0x00000300
#define MPC85xx_PMUXCR_USB_DIR_GPIO2 0x00000040
#define MPC85xx_PMUXCR_USB_DIR_TIMER1 0x00000080
#define MPC85xx_PMUXCR_USB_DIR_MCP_B 0x000000C0
#define MPC85xx_PMUXCR_SPI1_UART3 0x00000010
#define MPC85xx_PMUXCR_SPI1_SIM 0x00000020
#define MPC85xx_PMUXCR_SPI1_CKSTP_IN_GPO74 0x00000030
#define MPC85xx_PMUXCR_SPI1_CS2_CKSTP_OUT_B 0x00000004
#define MPC85xx_PMUXCR_SPI1_CS2_dbg_adi1_rxen 0x00000008
#define MPC85xx_PMUXCR_SPI1_CS2_GPO75 0x0000000C
#define MPC85xx_PMUXCR_SPI1_CS3_ANT_TCXO_PWM 0x00000001
#define MPC85xx_PMUXCR_SPI1_CS3_dbg_adi2_rxen 0x00000002
#define MPC85xx_PMUXCR_SPI1_CS3_GPO76 0x00000003
powerpc/mpc85xx: Add BSC9132/BSC9232 processor support The BSC9132 is a highly integrated device that targets the evolving Microcell, Picocell, and Enterprise-Femto base station market subsegments. The BSC9132 device combines Power Architecture e500 and DSP StarCore SC3850 core technologies with MAPLE-B2P baseband acceleration processing elements to address the need for a high performance, low cost, integrated solution that handles all required processing layers without the need for an external device except for an RF transceiver or, in a Micro base station configuration, a host device that handles the L3/L4 and handover between sectors. The BSC9132 SoC includes the following function and features: - Power Architecture subsystem including two e500 processors with 512-Kbyte shared L2 cache - Two StarCore SC3850 DSP subsystems, each with a 512-Kbyte private L2 cache - 32 Kbyte of shared M3 memory - The Multi Accelerator Platform Engine for Pico BaseStation Baseband Processing (MAPLE-B2P) - Two DDR3/3L memory interfaces with 32-bit data width (40 bits including ECC), up to 1333 MHz data rate - Dedicated security engine featuring trusted boot - Two DMA controllers - OCNDMA with four bidirectional channels - SysDMA with sixteen bidirectional channels - Interfaces - Four-lane SerDes PHY - PCI Express controller complies with the PEX Specification-Rev 2.0 - Two Common Public Radio Interface (CPRI) controller lanes - High-speed USB 2.0 host and device controller with ULPI interface - Enhanced secure digital (SD/MMC) host controller (eSDHC) - Antenna interface controller (AIC), supporting four industry standard JESD207/four custom ADI RF interfaces - ADI lanes support both full duplex FDD support & half duplex TDD - Universal Subscriber Identity Module (USIM) interface that facilitates communication to SIM cards or Eurochip pre-paid phone cards - Two DUART, two eSPI, and two I2C controllers - Integrated Flash memory controller (IFC) - GPIO - Sixteen 32-bit timers Signed-off-by: Naveen Burmi <NaveenBurmi@freescale.com> Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2013-01-23 17:59:57 +00:00
#endif
#ifdef CONFIG_BSC9132
#define MPC85xx_PMUXCR0_SIM_SEL_MASK 0x0003b000
#define MPC85xx_PMUXCR0_SIM_SEL 0x00014000
#endif
#if defined(CONFIG_PPC_C29X)
#define MPC85xx_PMUXCR_SPI_MASK 0x00000300
#define MPC85xx_PMUXCR_SPI 0x00000000
#define MPC85xx_PMUXCR_SPI_GPIO 0x00000100
#endif
u32 pmuxcr2; /* Alt. function signal multiplex control 2 */
#if defined(CONFIG_P1010) || defined(CONFIG_P1014)
#define MPC85xx_PMUXCR2_UART_GPIO 0x40000000
#define MPC85xx_PMUXCR2_UART_TDM 0x80000000
#define MPC85xx_PMUXCR2_UART_RES 0xC0000000
#define MPC85xx_PMUXCR2_IRQ2_TRIG_IN 0x10000000
#define MPC85xx_PMUXCR2_IRQ2_RES 0x30000000
#define MPC85xx_PMUXCR2_IRQ3_SRESET 0x04000000
#define MPC85xx_PMUXCR2_IRQ3_RES 0x0C000000
#define MPC85xx_PMUXCR2_GPIO01_DRVVBUS 0x01000000
#define MPC85xx_PMUXCR2_GPIO01_RES 0x03000000
#define MPC85xx_PMUXCR2_GPIO23_CKSTP 0x00400000
#define MPC85xx_PMUXCR2_GPIO23_RES 0x00800000
#define MPC85xx_PMUXCR2_GPIO23_USB 0x00C00000
#define MPC85xx_PMUXCR2_GPIO4_MCP 0x00100000
#define MPC85xx_PMUXCR2_GPIO4_RES 0x00200000
#define MPC85xx_PMUXCR2_GPIO4_CLK_OUT 0x00300000
#define MPC85xx_PMUXCR2_GPIO5_UDE 0x00040000
#define MPC85xx_PMUXCR2_GPIO5_RES 0x00080000
#define MPC85xx_PMUXCR2_READY_ASLEEP 0x00020000
#define MPC85xx_PMUXCR2_DDR_ECC_MUX 0x00010000
#define MPC85xx_PMUXCR2_DEBUG_PORT_EXPOSE 0x00008000
#define MPC85xx_PMUXCR2_POST_EXPOSE 0x00004000
#define MPC85xx_PMUXCR2_DEBUG_MUX_SEL_USBPHY 0x00002000
#define MPC85xx_PMUXCR2_PLL_LKDT_EXPOSE 0x00001000
#endif
#if defined(CONFIG_P1013) || defined(CONFIG_P1022)
#define MPC85xx_PMUXCR2_ETSECUSB_MASK 0x001f8000
#define MPC85xx_PMUXCR2_USB 0x00150000
#endif
powerpc/mpc85xx: Add BSC9132/BSC9232 processor support The BSC9132 is a highly integrated device that targets the evolving Microcell, Picocell, and Enterprise-Femto base station market subsegments. The BSC9132 device combines Power Architecture e500 and DSP StarCore SC3850 core technologies with MAPLE-B2P baseband acceleration processing elements to address the need for a high performance, low cost, integrated solution that handles all required processing layers without the need for an external device except for an RF transceiver or, in a Micro base station configuration, a host device that handles the L3/L4 and handover between sectors. The BSC9132 SoC includes the following function and features: - Power Architecture subsystem including two e500 processors with 512-Kbyte shared L2 cache - Two StarCore SC3850 DSP subsystems, each with a 512-Kbyte private L2 cache - 32 Kbyte of shared M3 memory - The Multi Accelerator Platform Engine for Pico BaseStation Baseband Processing (MAPLE-B2P) - Two DDR3/3L memory interfaces with 32-bit data width (40 bits including ECC), up to 1333 MHz data rate - Dedicated security engine featuring trusted boot - Two DMA controllers - OCNDMA with four bidirectional channels - SysDMA with sixteen bidirectional channels - Interfaces - Four-lane SerDes PHY - PCI Express controller complies with the PEX Specification-Rev 2.0 - Two Common Public Radio Interface (CPRI) controller lanes - High-speed USB 2.0 host and device controller with ULPI interface - Enhanced secure digital (SD/MMC) host controller (eSDHC) - Antenna interface controller (AIC), supporting four industry standard JESD207/four custom ADI RF interfaces - ADI lanes support both full duplex FDD support & half duplex TDD - Universal Subscriber Identity Module (USIM) interface that facilitates communication to SIM cards or Eurochip pre-paid phone cards - Two DUART, two eSPI, and two I2C controllers - Integrated Flash memory controller (IFC) - GPIO - Sixteen 32-bit timers Signed-off-by: Naveen Burmi <NaveenBurmi@freescale.com> Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2013-01-23 17:59:57 +00:00
#if defined(CONFIG_BSC9131) || defined(CONFIG_BSC9132)
powerpc/mpc85xx:Add BSC9131/BSC9130/BSC9231 Processor Support - BSC9131 is integrated device that targets Femto base station market. It combines Power Architecture e500v2 and DSP StarCore SC3850 core technologies with MAPLE-B2F baseband acceleration processing elements. - BSC9130 is exactly same as BSC9131 except that the max e500v2 core and DSP core frequencies are 800M(these are 1G in case of 9131). - BSC9231 is similar to BSC9131 except no MAPLE The BSC9131 SoC includes the following function and features: . Power Architecture subsystem including a e500 processor with 256-Kbyte shared L2 cache . StarCore SC3850 DSP subsystem with a 512-Kbyte private L2 cache . The Multi Accelerator Platform Engine for Femto BaseStation Baseband Processing (MAPLE-B2F) . A multi-standard baseband algorithm accelerator for Channel Decoding/Encoding, Fourier Transforms, UMTS chip rate processing, LTE UP/DL Channel processing, and CRC algorithms . Consists of accelerators for Convolution, Filtering, Turbo Encoding, Turbo Decoding, Viterbi decoding, Chiprate processing, and Matrix Inversion operations . DDR3/3L memory interface with 32-bit data width without ECC and 16-bit with ECC, up to 400-MHz clock/800 MHz data rate . Dedicated security engine featuring trusted boot . DMA controller . OCNDMA with four bidirectional channels . Interfaces . Two triple-speed Gigabit Ethernet controllers featuring network acceleration including IEEE 1588. v2 hardware support and virtualization (eTSEC) . eTSEC 1 supports RGMII/RMII . eTSEC 2 supports RGMII . High-speed USB 2.0 host and device controller with ULPI interface . Enhanced secure digital (SD/MMC) host controller (eSDHC) . Antenna interface controller (AIC), supporting three industry standard JESD207/three custom ADI RF interfaces (two dual port and one single port) and three MAXIM's MaxPHY serial interfaces . ADI lanes support both full duplex FDD support and half duplex TDD support . Universal Subscriber Identity Module (USIM) interface that facilitates communication to SIM cards or Eurochip pre-paid phone cards . TDM with one TDM port . Two DUART, four eSPI, and two I2C controllers . Integrated Flash memory controller (IFC) . TDM with 256 channels . GPIO . Sixteen 32-bit timers The DSP portion of the SoC consists of DSP core (SC3850) and various accelerators pertaining to DSP operations. This patch takes care of code pertaining to power side functionality only. Signed-off-by: Ramneek Mehresh <ramneek.mehresh@freescale.com> Signed-off-by: Priyanka Jain <Priyanka.Jain@freescale.com> Signed-off-by: Akhil Goyal <Akhil.Goyal@freescale.com> Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com> Signed-off-by: Rajan Srivastava <rajan.srivastava@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
2012-04-24 20:16:49 +00:00
#if defined(CONFIG_BSC9131)
#define MPC85xx_PMUXCR2_UART_CTS_B0_SIM_PD 0X40000000
#define MPC85xx_PMUXCR2_UART_CTS_B0_DSP_TMS 0X80000000
#define MPC85xx_PMUXCR2_UART_CTS_B0_GPIO42 0xC0000000
#define MPC85xx_PMUXCR2_UART_RTS_B0_PWM2 0x10000000
#define MPC85xx_PMUXCR2_UART_RTS_B0_DSP_TCK 0x20000000
#define MPC85xx_PMUXCR2_UART_RTS_B0_GPIO43 0x30000000
#define MPC85xx_PMUXCR2_UART_CTS_B1_SIM_PD 0x04000000
#define MPC85xx_PMUXCR2_UART_CTS_B1_SRESET_B 0x08000000
#define MPC85xx_PMUXCR2_UART_CTS_B1_GPIO44 0x0C000000
#define MPC85xx_PMUXCR2_UART_RTS_B1_PPS_LED 0x01000000
#define MPC85xx_PMUXCR2_UART_RTS_B1_RSVD 0x02000000
#define MPC85xx_PMUXCR2_UART_RTS_B1_GPIO45 0x03000000
#define MPC85xx_PMUXCR2_TRIG_OUT_ASLEEP 0x00400000
#define MPC85xx_PMUXCR2_TRIG_OUT_DSP_TRST_B 0x00800000
#define MPC85xx_PMUXCR2_ANT1_TIMER5 0x00100000
#define MPC85xx_PMUXCR2_ANT1_TSEC_1588 0x00200000
#define MPC85xx_PMUXCR2_ANT1_GPIO95_19 0x00300000
#define MPC85xx_PMUXCR2_ANT1_TX_RX_FRAME_MAX3_LOCK 0x00040000
#define MPC85xx_PMUXCR2_ANT1_TX_RX_FRAME_RSVD 0x00080000
#define MPC85xx_PMUXCR2_ANT1_TX_RX_FRAME_GPIO80_20 0x000C0000
#define MPC85xx_PMUXCR2_ANT1_DIO0_3_SPI3_CS0 0x00010000
#define MPC85xx_PMUXCR2_ANT1_DIO0_3_ANT2_DO_3 0x00020000
#define MPC85xx_PMUXCR2_ANT1_DIO0_3_GPIO81_84 0x00030000
#define MPC85xx_PMUXCR2_ANT1_DIO4_7_SPI4 0x00004000
#define MPC85xx_PMUXCR2_ANT1_DIO4_7_ANT2_DO4_7 0x00008000
#define MPC85xx_PMUXCR2_ANT1_DIO4_7_GPIO85_88 0x0000C000
#define MPC85xx_PMUXCR2_ANT1_DIO8_9_MAX2_1_LOCK 0x00001000
#define MPC85xx_PMUXCR2_ANT1_DIO8_9_ANT2_DO8_9 0x00002000
#define MPC85xx_PMUXCR2_ANT1_DIO8_9_GPIO21_22 0x00003000
#define MPC85xx_PMUXCR2_ANT1_DIO10_11_TIMER6_7 0x00000400
#define MPC85xx_PMUXCR2_ANT1_DIO10_11_ANT2_DO10_11 0x00000800
#define MPC85xx_PMUXCR2_ANT1_DIO10_11_GPIO23_24 0x00000C00
#define MPC85xx_PMUXCR2_ANT2_RSVD 0x00000100
#define MPC85xx_PMUXCR2_ANT2_GPO90_91_DMA 0x00000300
#define MPC85xx_PMUXCR2_ANT2_ENABLE_DIO0_10_USB 0x00000040
#define MPC85xx_PMUXCR2_ANT2_ENABLE_DIO0_10_GPIO 0x000000C0
#define MPC85xx_PMUXCR2_ANT2_DIO11_RSVD 0x00000010
#define MPC85xx_PMUXCR2_ANT2_DIO11_TIMER8 0x00000020
#define MPC85xx_PMUXCR2_ANT2_DIO11_GPIO61 0x00000030
#define MPC85xx_PMUXCR2_ANT3_AGC_GPO53 0x00000004
#define MPC85xx_PMUXCR2_ANT3_DO_TDM 0x00000001
#define MPC85xx_PMUXCR2_ANT3_DO_GPIO46_49 0x00000002
powerpc/mpc85xx: Add BSC9132/BSC9232 processor support The BSC9132 is a highly integrated device that targets the evolving Microcell, Picocell, and Enterprise-Femto base station market subsegments. The BSC9132 device combines Power Architecture e500 and DSP StarCore SC3850 core technologies with MAPLE-B2P baseband acceleration processing elements to address the need for a high performance, low cost, integrated solution that handles all required processing layers without the need for an external device except for an RF transceiver or, in a Micro base station configuration, a host device that handles the L3/L4 and handover between sectors. The BSC9132 SoC includes the following function and features: - Power Architecture subsystem including two e500 processors with 512-Kbyte shared L2 cache - Two StarCore SC3850 DSP subsystems, each with a 512-Kbyte private L2 cache - 32 Kbyte of shared M3 memory - The Multi Accelerator Platform Engine for Pico BaseStation Baseband Processing (MAPLE-B2P) - Two DDR3/3L memory interfaces with 32-bit data width (40 bits including ECC), up to 1333 MHz data rate - Dedicated security engine featuring trusted boot - Two DMA controllers - OCNDMA with four bidirectional channels - SysDMA with sixteen bidirectional channels - Interfaces - Four-lane SerDes PHY - PCI Express controller complies with the PEX Specification-Rev 2.0 - Two Common Public Radio Interface (CPRI) controller lanes - High-speed USB 2.0 host and device controller with ULPI interface - Enhanced secure digital (SD/MMC) host controller (eSDHC) - Antenna interface controller (AIC), supporting four industry standard JESD207/four custom ADI RF interfaces - ADI lanes support both full duplex FDD support & half duplex TDD - Universal Subscriber Identity Module (USIM) interface that facilitates communication to SIM cards or Eurochip pre-paid phone cards - Two DUART, two eSPI, and two I2C controllers - Integrated Flash memory controller (IFC) - GPIO - Sixteen 32-bit timers Signed-off-by: Naveen Burmi <NaveenBurmi@freescale.com> Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2013-01-23 17:59:57 +00:00
#endif
powerpc/mpc85xx:Add BSC9131/BSC9130/BSC9231 Processor Support - BSC9131 is integrated device that targets Femto base station market. It combines Power Architecture e500v2 and DSP StarCore SC3850 core technologies with MAPLE-B2F baseband acceleration processing elements. - BSC9130 is exactly same as BSC9131 except that the max e500v2 core and DSP core frequencies are 800M(these are 1G in case of 9131). - BSC9231 is similar to BSC9131 except no MAPLE The BSC9131 SoC includes the following function and features: . Power Architecture subsystem including a e500 processor with 256-Kbyte shared L2 cache . StarCore SC3850 DSP subsystem with a 512-Kbyte private L2 cache . The Multi Accelerator Platform Engine for Femto BaseStation Baseband Processing (MAPLE-B2F) . A multi-standard baseband algorithm accelerator for Channel Decoding/Encoding, Fourier Transforms, UMTS chip rate processing, LTE UP/DL Channel processing, and CRC algorithms . Consists of accelerators for Convolution, Filtering, Turbo Encoding, Turbo Decoding, Viterbi decoding, Chiprate processing, and Matrix Inversion operations . DDR3/3L memory interface with 32-bit data width without ECC and 16-bit with ECC, up to 400-MHz clock/800 MHz data rate . Dedicated security engine featuring trusted boot . DMA controller . OCNDMA with four bidirectional channels . Interfaces . Two triple-speed Gigabit Ethernet controllers featuring network acceleration including IEEE 1588. v2 hardware support and virtualization (eTSEC) . eTSEC 1 supports RGMII/RMII . eTSEC 2 supports RGMII . High-speed USB 2.0 host and device controller with ULPI interface . Enhanced secure digital (SD/MMC) host controller (eSDHC) . Antenna interface controller (AIC), supporting three industry standard JESD207/three custom ADI RF interfaces (two dual port and one single port) and three MAXIM's MaxPHY serial interfaces . ADI lanes support both full duplex FDD support and half duplex TDD support . Universal Subscriber Identity Module (USIM) interface that facilitates communication to SIM cards or Eurochip pre-paid phone cards . TDM with one TDM port . Two DUART, four eSPI, and two I2C controllers . Integrated Flash memory controller (IFC) . TDM with 256 channels . GPIO . Sixteen 32-bit timers The DSP portion of the SoC consists of DSP core (SC3850) and various accelerators pertaining to DSP operations. This patch takes care of code pertaining to power side functionality only. Signed-off-by: Ramneek Mehresh <ramneek.mehresh@freescale.com> Signed-off-by: Priyanka Jain <Priyanka.Jain@freescale.com> Signed-off-by: Akhil Goyal <Akhil.Goyal@freescale.com> Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com> Signed-off-by: Rajan Srivastava <rajan.srivastava@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
2012-04-24 20:16:49 +00:00
u32 pmuxcr3;
powerpc/mpc85xx: Add BSC9132/BSC9232 processor support The BSC9132 is a highly integrated device that targets the evolving Microcell, Picocell, and Enterprise-Femto base station market subsegments. The BSC9132 device combines Power Architecture e500 and DSP StarCore SC3850 core technologies with MAPLE-B2P baseband acceleration processing elements to address the need for a high performance, low cost, integrated solution that handles all required processing layers without the need for an external device except for an RF transceiver or, in a Micro base station configuration, a host device that handles the L3/L4 and handover between sectors. The BSC9132 SoC includes the following function and features: - Power Architecture subsystem including two e500 processors with 512-Kbyte shared L2 cache - Two StarCore SC3850 DSP subsystems, each with a 512-Kbyte private L2 cache - 32 Kbyte of shared M3 memory - The Multi Accelerator Platform Engine for Pico BaseStation Baseband Processing (MAPLE-B2P) - Two DDR3/3L memory interfaces with 32-bit data width (40 bits including ECC), up to 1333 MHz data rate - Dedicated security engine featuring trusted boot - Two DMA controllers - OCNDMA with four bidirectional channels - SysDMA with sixteen bidirectional channels - Interfaces - Four-lane SerDes PHY - PCI Express controller complies with the PEX Specification-Rev 2.0 - Two Common Public Radio Interface (CPRI) controller lanes - High-speed USB 2.0 host and device controller with ULPI interface - Enhanced secure digital (SD/MMC) host controller (eSDHC) - Antenna interface controller (AIC), supporting four industry standard JESD207/four custom ADI RF interfaces - ADI lanes support both full duplex FDD support & half duplex TDD - Universal Subscriber Identity Module (USIM) interface that facilitates communication to SIM cards or Eurochip pre-paid phone cards - Two DUART, two eSPI, and two I2C controllers - Integrated Flash memory controller (IFC) - GPIO - Sixteen 32-bit timers Signed-off-by: Naveen Burmi <NaveenBurmi@freescale.com> Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2013-01-23 17:59:57 +00:00
#if defined(CONFIG_BSC9131)
powerpc/mpc85xx:Add BSC9131/BSC9130/BSC9231 Processor Support - BSC9131 is integrated device that targets Femto base station market. It combines Power Architecture e500v2 and DSP StarCore SC3850 core technologies with MAPLE-B2F baseband acceleration processing elements. - BSC9130 is exactly same as BSC9131 except that the max e500v2 core and DSP core frequencies are 800M(these are 1G in case of 9131). - BSC9231 is similar to BSC9131 except no MAPLE The BSC9131 SoC includes the following function and features: . Power Architecture subsystem including a e500 processor with 256-Kbyte shared L2 cache . StarCore SC3850 DSP subsystem with a 512-Kbyte private L2 cache . The Multi Accelerator Platform Engine for Femto BaseStation Baseband Processing (MAPLE-B2F) . A multi-standard baseband algorithm accelerator for Channel Decoding/Encoding, Fourier Transforms, UMTS chip rate processing, LTE UP/DL Channel processing, and CRC algorithms . Consists of accelerators for Convolution, Filtering, Turbo Encoding, Turbo Decoding, Viterbi decoding, Chiprate processing, and Matrix Inversion operations . DDR3/3L memory interface with 32-bit data width without ECC and 16-bit with ECC, up to 400-MHz clock/800 MHz data rate . Dedicated security engine featuring trusted boot . DMA controller . OCNDMA with four bidirectional channels . Interfaces . Two triple-speed Gigabit Ethernet controllers featuring network acceleration including IEEE 1588. v2 hardware support and virtualization (eTSEC) . eTSEC 1 supports RGMII/RMII . eTSEC 2 supports RGMII . High-speed USB 2.0 host and device controller with ULPI interface . Enhanced secure digital (SD/MMC) host controller (eSDHC) . Antenna interface controller (AIC), supporting three industry standard JESD207/three custom ADI RF interfaces (two dual port and one single port) and three MAXIM's MaxPHY serial interfaces . ADI lanes support both full duplex FDD support and half duplex TDD support . Universal Subscriber Identity Module (USIM) interface that facilitates communication to SIM cards or Eurochip pre-paid phone cards . TDM with one TDM port . Two DUART, four eSPI, and two I2C controllers . Integrated Flash memory controller (IFC) . TDM with 256 channels . GPIO . Sixteen 32-bit timers The DSP portion of the SoC consists of DSP core (SC3850) and various accelerators pertaining to DSP operations. This patch takes care of code pertaining to power side functionality only. Signed-off-by: Ramneek Mehresh <ramneek.mehresh@freescale.com> Signed-off-by: Priyanka Jain <Priyanka.Jain@freescale.com> Signed-off-by: Akhil Goyal <Akhil.Goyal@freescale.com> Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com> Signed-off-by: Rajan Srivastava <rajan.srivastava@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
2012-04-24 20:16:49 +00:00
#define MPC85xx_PMUXCR3_ANT3_DO4_5_TDM 0x40000000
#define MPC85xx_PMUXCR3_ANT3_DO4_5_GPIO_50_51 0x80000000
#define MPC85xx_PMUXCR3_ANT3_DO6_7_TRIG_IN_SRESET_B 0x10000000
#define MPC85xx_PMUXCR3_ANT3_DO6_7_GPIO_52_53 0x20000000
#define MPC85xx_PMUXCR3_ANT3_DO8_MCP_B 0x04000000
#define MPC85xx_PMUXCR3_ANT3_DO8_GPIO54 0x08000000
#define MPC85xx_PMUXCR3_ANT3_DO9_10_CKSTP_IN_OUT 0x01000000
#define MPC85xx_PMUXCR3_ANT3_DO9_10_GPIO55_56 0x02000000
#define MPC85xx_PMUXCR3_ANT3_DO11_IRQ_OUT 0x00400000
#define MPC85xx_PMUXCR3_ANT3_DO11_GPIO57 0x00800000
#define MPC85xx_PMUXCR3_SPI2_CS2_GPO93 0x00100000
#define MPC85xx_PMUXCR3_SPI2_CS3_GPO94 0x00040000
#define MPC85xx_PMUXCR3_ANT2_AGC_RSVD 0x00010000
#define MPC85xx_PMUXCR3_ANT2_GPO89 0x00030000
powerpc/mpc85xx: Add BSC9132/BSC9232 processor support The BSC9132 is a highly integrated device that targets the evolving Microcell, Picocell, and Enterprise-Femto base station market subsegments. The BSC9132 device combines Power Architecture e500 and DSP StarCore SC3850 core technologies with MAPLE-B2P baseband acceleration processing elements to address the need for a high performance, low cost, integrated solution that handles all required processing layers without the need for an external device except for an RF transceiver or, in a Micro base station configuration, a host device that handles the L3/L4 and handover between sectors. The BSC9132 SoC includes the following function and features: - Power Architecture subsystem including two e500 processors with 512-Kbyte shared L2 cache - Two StarCore SC3850 DSP subsystems, each with a 512-Kbyte private L2 cache - 32 Kbyte of shared M3 memory - The Multi Accelerator Platform Engine for Pico BaseStation Baseband Processing (MAPLE-B2P) - Two DDR3/3L memory interfaces with 32-bit data width (40 bits including ECC), up to 1333 MHz data rate - Dedicated security engine featuring trusted boot - Two DMA controllers - OCNDMA with four bidirectional channels - SysDMA with sixteen bidirectional channels - Interfaces - Four-lane SerDes PHY - PCI Express controller complies with the PEX Specification-Rev 2.0 - Two Common Public Radio Interface (CPRI) controller lanes - High-speed USB 2.0 host and device controller with ULPI interface - Enhanced secure digital (SD/MMC) host controller (eSDHC) - Antenna interface controller (AIC), supporting four industry standard JESD207/four custom ADI RF interfaces - ADI lanes support both full duplex FDD support & half duplex TDD - Universal Subscriber Identity Module (USIM) interface that facilitates communication to SIM cards or Eurochip pre-paid phone cards - Two DUART, two eSPI, and two I2C controllers - Integrated Flash memory controller (IFC) - GPIO - Sixteen 32-bit timers Signed-off-by: Naveen Burmi <NaveenBurmi@freescale.com> Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2013-01-23 17:59:57 +00:00
#endif
#ifdef CONFIG_BSC9132
#define MPC85xx_PMUXCR3_USB_SEL_MASK 0x0000ff00
#define MPC85xx_PMUXCR3_UART2_SEL 0x00005000
#define MPC85xx_PMUXCR3_UART3_SEL_MASK 0xc0000000
#define MPC85xx_PMUXCR3_UART3_SEL 0x40000000
#endif
powerpc/mpc85xx:Add BSC9131/BSC9130/BSC9231 Processor Support - BSC9131 is integrated device that targets Femto base station market. It combines Power Architecture e500v2 and DSP StarCore SC3850 core technologies with MAPLE-B2F baseband acceleration processing elements. - BSC9130 is exactly same as BSC9131 except that the max e500v2 core and DSP core frequencies are 800M(these are 1G in case of 9131). - BSC9231 is similar to BSC9131 except no MAPLE The BSC9131 SoC includes the following function and features: . Power Architecture subsystem including a e500 processor with 256-Kbyte shared L2 cache . StarCore SC3850 DSP subsystem with a 512-Kbyte private L2 cache . The Multi Accelerator Platform Engine for Femto BaseStation Baseband Processing (MAPLE-B2F) . A multi-standard baseband algorithm accelerator for Channel Decoding/Encoding, Fourier Transforms, UMTS chip rate processing, LTE UP/DL Channel processing, and CRC algorithms . Consists of accelerators for Convolution, Filtering, Turbo Encoding, Turbo Decoding, Viterbi decoding, Chiprate processing, and Matrix Inversion operations . DDR3/3L memory interface with 32-bit data width without ECC and 16-bit with ECC, up to 400-MHz clock/800 MHz data rate . Dedicated security engine featuring trusted boot . DMA controller . OCNDMA with four bidirectional channels . Interfaces . Two triple-speed Gigabit Ethernet controllers featuring network acceleration including IEEE 1588. v2 hardware support and virtualization (eTSEC) . eTSEC 1 supports RGMII/RMII . eTSEC 2 supports RGMII . High-speed USB 2.0 host and device controller with ULPI interface . Enhanced secure digital (SD/MMC) host controller (eSDHC) . Antenna interface controller (AIC), supporting three industry standard JESD207/three custom ADI RF interfaces (two dual port and one single port) and three MAXIM's MaxPHY serial interfaces . ADI lanes support both full duplex FDD support and half duplex TDD support . Universal Subscriber Identity Module (USIM) interface that facilitates communication to SIM cards or Eurochip pre-paid phone cards . TDM with one TDM port . Two DUART, four eSPI, and two I2C controllers . Integrated Flash memory controller (IFC) . TDM with 256 channels . GPIO . Sixteen 32-bit timers The DSP portion of the SoC consists of DSP core (SC3850) and various accelerators pertaining to DSP operations. This patch takes care of code pertaining to power side functionality only. Signed-off-by: Ramneek Mehresh <ramneek.mehresh@freescale.com> Signed-off-by: Priyanka Jain <Priyanka.Jain@freescale.com> Signed-off-by: Akhil Goyal <Akhil.Goyal@freescale.com> Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com> Signed-off-by: Rajan Srivastava <rajan.srivastava@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
2012-04-24 20:16:49 +00:00
u32 pmuxcr4;
#else
u8 res6[8];
powerpc/mpc85xx:Add BSC9131/BSC9130/BSC9231 Processor Support - BSC9131 is integrated device that targets Femto base station market. It combines Power Architecture e500v2 and DSP StarCore SC3850 core technologies with MAPLE-B2F baseband acceleration processing elements. - BSC9130 is exactly same as BSC9131 except that the max e500v2 core and DSP core frequencies are 800M(these are 1G in case of 9131). - BSC9231 is similar to BSC9131 except no MAPLE The BSC9131 SoC includes the following function and features: . Power Architecture subsystem including a e500 processor with 256-Kbyte shared L2 cache . StarCore SC3850 DSP subsystem with a 512-Kbyte private L2 cache . The Multi Accelerator Platform Engine for Femto BaseStation Baseband Processing (MAPLE-B2F) . A multi-standard baseband algorithm accelerator for Channel Decoding/Encoding, Fourier Transforms, UMTS chip rate processing, LTE UP/DL Channel processing, and CRC algorithms . Consists of accelerators for Convolution, Filtering, Turbo Encoding, Turbo Decoding, Viterbi decoding, Chiprate processing, and Matrix Inversion operations . DDR3/3L memory interface with 32-bit data width without ECC and 16-bit with ECC, up to 400-MHz clock/800 MHz data rate . Dedicated security engine featuring trusted boot . DMA controller . OCNDMA with four bidirectional channels . Interfaces . Two triple-speed Gigabit Ethernet controllers featuring network acceleration including IEEE 1588. v2 hardware support and virtualization (eTSEC) . eTSEC 1 supports RGMII/RMII . eTSEC 2 supports RGMII . High-speed USB 2.0 host and device controller with ULPI interface . Enhanced secure digital (SD/MMC) host controller (eSDHC) . Antenna interface controller (AIC), supporting three industry standard JESD207/three custom ADI RF interfaces (two dual port and one single port) and three MAXIM's MaxPHY serial interfaces . ADI lanes support both full duplex FDD support and half duplex TDD support . Universal Subscriber Identity Module (USIM) interface that facilitates communication to SIM cards or Eurochip pre-paid phone cards . TDM with one TDM port . Two DUART, four eSPI, and two I2C controllers . Integrated Flash memory controller (IFC) . TDM with 256 channels . GPIO . Sixteen 32-bit timers The DSP portion of the SoC consists of DSP core (SC3850) and various accelerators pertaining to DSP operations. This patch takes care of code pertaining to power side functionality only. Signed-off-by: Ramneek Mehresh <ramneek.mehresh@freescale.com> Signed-off-by: Priyanka Jain <Priyanka.Jain@freescale.com> Signed-off-by: Akhil Goyal <Akhil.Goyal@freescale.com> Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com> Signed-off-by: Rajan Srivastava <rajan.srivastava@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
2012-04-24 20:16:49 +00:00
#endif
u32 devdisr; /* Device disable control */
#define MPC85xx_DEVDISR_PCI1 0x80000000
#define MPC85xx_DEVDISR_PCI2 0x40000000
#define MPC85xx_DEVDISR_PCIE 0x20000000
#define MPC85xx_DEVDISR_LBC 0x08000000
#define MPC85xx_DEVDISR_PCIE2 0x04000000
#define MPC85xx_DEVDISR_PCIE3 0x02000000
#define MPC85xx_DEVDISR_SEC 0x01000000
#define MPC85xx_DEVDISR_SRIO 0x00080000
#define MPC85xx_DEVDISR_RMSG 0x00040000
#define MPC85xx_DEVDISR_DDR 0x00010000
#define MPC85xx_DEVDISR_CPU 0x00008000
#define MPC85xx_DEVDISR_CPU0 MPC85xx_DEVDISR_CPU
#define MPC85xx_DEVDISR_TB 0x00004000
#define MPC85xx_DEVDISR_TB0 MPC85xx_DEVDISR_TB
#define MPC85xx_DEVDISR_CPU1 0x00002000
#define MPC85xx_DEVDISR_TB1 0x00001000
#define MPC85xx_DEVDISR_DMA 0x00000400
#define MPC85xx_DEVDISR_TSEC1 0x00000080
#define MPC85xx_DEVDISR_TSEC2 0x00000040
#define MPC85xx_DEVDISR_TSEC3 0x00000020
#define MPC85xx_DEVDISR_TSEC4 0x00000010
#define MPC85xx_DEVDISR_I2C 0x00000004
#define MPC85xx_DEVDISR_DUART 0x00000002
u8 res7[12];
u32 powmgtcsr; /* Power management status & control */
u8 res8[12];
u32 mcpsumr; /* Machine check summary */
u8 res9[12];
u32 pvr; /* Processor version */
u32 svr; /* System version */
u8 res10[8];
u32 rstcr; /* Reset control */
#if defined(CONFIG_MPC8568)||defined(CONFIG_MPC8569)
u8 res11a[76];
par_io_t qe_par_io[7];
u8 res11b[1600];
#elif defined(CONFIG_P1012) || defined(CONFIG_P1021) || defined(CONFIG_P1025)
u8 res11a[12];
u32 iovselsr;
u8 res11b[60];
par_io_t qe_par_io[3];
u8 res11c[1496];
#else
u8 res11a[1868];
#endif
u32 clkdvdr; /* Clock Divide register */
u8 res12[1532];
u32 clkocr; /* Clock out select */
u8 res13[12];
u32 ddrdllcr; /* DDR DLL control */
u8 res14[12];
u32 lbcdllcr; /* LBC DLL control */
powerpc/mpc85xx:Add BSC9131/BSC9130/BSC9231 Processor Support - BSC9131 is integrated device that targets Femto base station market. It combines Power Architecture e500v2 and DSP StarCore SC3850 core technologies with MAPLE-B2F baseband acceleration processing elements. - BSC9130 is exactly same as BSC9131 except that the max e500v2 core and DSP core frequencies are 800M(these are 1G in case of 9131). - BSC9231 is similar to BSC9131 except no MAPLE The BSC9131 SoC includes the following function and features: . Power Architecture subsystem including a e500 processor with 256-Kbyte shared L2 cache . StarCore SC3850 DSP subsystem with a 512-Kbyte private L2 cache . The Multi Accelerator Platform Engine for Femto BaseStation Baseband Processing (MAPLE-B2F) . A multi-standard baseband algorithm accelerator for Channel Decoding/Encoding, Fourier Transforms, UMTS chip rate processing, LTE UP/DL Channel processing, and CRC algorithms . Consists of accelerators for Convolution, Filtering, Turbo Encoding, Turbo Decoding, Viterbi decoding, Chiprate processing, and Matrix Inversion operations . DDR3/3L memory interface with 32-bit data width without ECC and 16-bit with ECC, up to 400-MHz clock/800 MHz data rate . Dedicated security engine featuring trusted boot . DMA controller . OCNDMA with four bidirectional channels . Interfaces . Two triple-speed Gigabit Ethernet controllers featuring network acceleration including IEEE 1588. v2 hardware support and virtualization (eTSEC) . eTSEC 1 supports RGMII/RMII . eTSEC 2 supports RGMII . High-speed USB 2.0 host and device controller with ULPI interface . Enhanced secure digital (SD/MMC) host controller (eSDHC) . Antenna interface controller (AIC), supporting three industry standard JESD207/three custom ADI RF interfaces (two dual port and one single port) and three MAXIM's MaxPHY serial interfaces . ADI lanes support both full duplex FDD support and half duplex TDD support . Universal Subscriber Identity Module (USIM) interface that facilitates communication to SIM cards or Eurochip pre-paid phone cards . TDM with one TDM port . Two DUART, four eSPI, and two I2C controllers . Integrated Flash memory controller (IFC) . TDM with 256 channels . GPIO . Sixteen 32-bit timers The DSP portion of the SoC consists of DSP core (SC3850) and various accelerators pertaining to DSP operations. This patch takes care of code pertaining to power side functionality only. Signed-off-by: Ramneek Mehresh <ramneek.mehresh@freescale.com> Signed-off-by: Priyanka Jain <Priyanka.Jain@freescale.com> Signed-off-by: Akhil Goyal <Akhil.Goyal@freescale.com> Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com> Signed-off-by: Rajan Srivastava <rajan.srivastava@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
2012-04-24 20:16:49 +00:00
#if defined(CONFIG_BSC9131)
u8 res15[12];
u32 halt_req_mask;
#define HALTED_TO_HALT_REQ_MASK_0 0x80000000
u8 res18[232];
#else
u8 res15[248];
powerpc/mpc85xx:Add BSC9131/BSC9130/BSC9231 Processor Support - BSC9131 is integrated device that targets Femto base station market. It combines Power Architecture e500v2 and DSP StarCore SC3850 core technologies with MAPLE-B2F baseband acceleration processing elements. - BSC9130 is exactly same as BSC9131 except that the max e500v2 core and DSP core frequencies are 800M(these are 1G in case of 9131). - BSC9231 is similar to BSC9131 except no MAPLE The BSC9131 SoC includes the following function and features: . Power Architecture subsystem including a e500 processor with 256-Kbyte shared L2 cache . StarCore SC3850 DSP subsystem with a 512-Kbyte private L2 cache . The Multi Accelerator Platform Engine for Femto BaseStation Baseband Processing (MAPLE-B2F) . A multi-standard baseband algorithm accelerator for Channel Decoding/Encoding, Fourier Transforms, UMTS chip rate processing, LTE UP/DL Channel processing, and CRC algorithms . Consists of accelerators for Convolution, Filtering, Turbo Encoding, Turbo Decoding, Viterbi decoding, Chiprate processing, and Matrix Inversion operations . DDR3/3L memory interface with 32-bit data width without ECC and 16-bit with ECC, up to 400-MHz clock/800 MHz data rate . Dedicated security engine featuring trusted boot . DMA controller . OCNDMA with four bidirectional channels . Interfaces . Two triple-speed Gigabit Ethernet controllers featuring network acceleration including IEEE 1588. v2 hardware support and virtualization (eTSEC) . eTSEC 1 supports RGMII/RMII . eTSEC 2 supports RGMII . High-speed USB 2.0 host and device controller with ULPI interface . Enhanced secure digital (SD/MMC) host controller (eSDHC) . Antenna interface controller (AIC), supporting three industry standard JESD207/three custom ADI RF interfaces (two dual port and one single port) and three MAXIM's MaxPHY serial interfaces . ADI lanes support both full duplex FDD support and half duplex TDD support . Universal Subscriber Identity Module (USIM) interface that facilitates communication to SIM cards or Eurochip pre-paid phone cards . TDM with one TDM port . Two DUART, four eSPI, and two I2C controllers . Integrated Flash memory controller (IFC) . TDM with 256 channels . GPIO . Sixteen 32-bit timers The DSP portion of the SoC consists of DSP core (SC3850) and various accelerators pertaining to DSP operations. This patch takes care of code pertaining to power side functionality only. Signed-off-by: Ramneek Mehresh <ramneek.mehresh@freescale.com> Signed-off-by: Priyanka Jain <Priyanka.Jain@freescale.com> Signed-off-by: Akhil Goyal <Akhil.Goyal@freescale.com> Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com> Signed-off-by: Rajan Srivastava <rajan.srivastava@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
2012-04-24 20:16:49 +00:00
#endif
u32 lbiuiplldcr0; /* LBIU PLL Debug Reg 0 */
u32 lbiuiplldcr1; /* LBIU PLL Debug Reg 1 */
u32 ddrioovcr; /* DDR IO Override Control */
u32 tsec12ioovcr; /* eTSEC 1/2 IO override control */
u32 tsec34ioovcr; /* eTSEC 3/4 IO override control */
u8 res16[52];
u32 sdhcdcr; /* SDHC debug control register */
u8 res17[61592];
} ccsr_gur_t;
#endif
#define SDHCDCR_CD_INV 0x80000000 /* invert SDHC card detect */
#ifdef CONFIG_SYS_FSL_QORIQ_CHASSIS2
#define MAX_SERDES 4
#define SRDS_MAX_LANES 8
#define SRDS_MAX_BANK 2
typedef struct serdes_corenet {
struct {
u32 rstctl; /* Reset Control Register */
#define SRDS_RSTCTL_RST 0x80000000
#define SRDS_RSTCTL_RSTDONE 0x40000000
#define SRDS_RSTCTL_RSTERR 0x20000000
#define SRDS_RSTCTL_SWRST 0x10000000
#define SRDS_RSTCTL_SDEN 0x00000020
#define SRDS_RSTCTL_SDRST_B 0x00000040
#define SRDS_RSTCTL_PLLRST_B 0x00000080
#define SRDS_RSTCTL_RSTERR_SHIFT 29
u32 pllcr0; /* PLL Control Register 0 */
#define SRDS_PLLCR0_POFF 0x80000000
#define SRDS_PLLCR0_RFCK_SEL_MASK 0x70000000
#define SRDS_PLLCR0_RFCK_SEL_100 0x00000000
#define SRDS_PLLCR0_RFCK_SEL_125 0x10000000
#define SRDS_PLLCR0_RFCK_SEL_156_25 0x20000000
#define SRDS_PLLCR0_RFCK_SEL_150 0x30000000
#define SRDS_PLLCR0_RFCK_SEL_161_13 0x40000000
#define SRDS_PLLCR0_RFCK_SEL_122_88 0x50000000
#define SRDS_PLLCR0_PLL_LCK 0x00800000
#define SRDS_PLLCR0_DCBIAS_OUT_EN 0x02000000
#define SRDS_PLLCR0_FRATE_SEL_MASK 0x000f0000
#define SRDS_PLLCR0_FRATE_SEL_5 0x00000000
#define SRDS_PLLCR0_FRATE_SEL_4_9152 0x00030000
#define SRDS_PLLCR0_FRATE_SEL_3_75 0x00050000
#define SRDS_PLLCR0_FRATE_SEL_5_15 0x00060000
#define SRDS_PLLCR0_FRATE_SEL_4 0x00070000
#define SRDS_PLLCR0_FRATE_SEL_3_125 0x00090000
#define SRDS_PLLCR0_FRATE_SEL_3_0 0x000a0000
#define SRDS_PLLCR0_FRATE_SEL_3_072 0x000c0000
#define SRDS_PLLCR0_DCBIAS_OVRD 0x000000F0
#define SRDS_PLLCR0_DCBIAS_OVRD_SHIFT 4
u32 pllcr1; /* PLL Control Register 1 */
#define SRDS_PLLCR1_BCAP_EN 0x20000000
#define SRDS_PLLCR1_BCAP_OVD 0x10000000
#define SRDS_PLLCR1_PLL_FCAP 0x001F8000
#define SRDS_PLLCR1_PLL_FCAP_SHIFT 15
#define SRDS_PLLCR1_PLL_BWSEL 0x08000000
#define SRDS_PLLCR1_BYP_CAL 0x02000000
u32 pllsr2; /* At 0x00c, PLL Status Register 2 */
#define SRDS_PLLSR2_BCAP_EN 0x00800000
#define SRDS_PLLSR2_BCAP_EN_SHIFT 23
#define SRDS_PLLSR2_FCAP 0x003F0000
#define SRDS_PLLSR2_FCAP_SHIFT 16
#define SRDS_PLLSR2_DCBIAS 0x000F0000
#define SRDS_PLLSR2_DCBIAS_SHIFT 16
u32 pllcr3;
u32 pllcr4;
u8 res_18[0x20-0x18];
} bank[2];
u8 res_40[0x90-0x40];
u32 srdstcalcr; /* 0x90 TX Calibration Control */
u8 res_94[0xa0-0x94];
u32 srdsrcalcr; /* 0xa0 RX Calibration Control */
u8 res_a4[0xb0-0xa4];
u32 srdsgr0; /* 0xb0 General Register 0 */
u8 res_b4[0xe0-0xb4];
u32 srdspccr0; /* 0xe0 Protocol Converter Config 0 */
u32 srdspccr1; /* 0xe4 Protocol Converter Config 1 */
u32 srdspccr2; /* 0xe8 Protocol Converter Config 2 */
u32 srdspccr3; /* 0xec Protocol Converter Config 3 */
u32 srdspccr4; /* 0xf0 Protocol Converter Config 4 */
u8 res_f4[0x100-0xf4];
struct {
u32 lnpssr; /* 0x100, 0x120, ..., 0x1e0 */
u8 res_104[0x120-0x104];
} srdslnpssr[8];
u8 res_200[0x800-0x200];
struct {
u32 gcr0; /* 0x800 General Control Register 0 */
u32 gcr1; /* 0x804 General Control Register 1 */
u32 gcr2; /* 0x808 General Control Register 2 */
u32 res_80c;
u32 recr0; /* 0x810 Receive Equalization Control */
u32 res_814;
u32 tecr0; /* 0x818 Transmit Equalization Control */
u32 res_81c;
u32 ttlcr0; /* 0x820 Transition Tracking Loop Ctrl 0 */
u8 res_824[0x840-0x824];
} lane[8]; /* Lane A, B, C, D, E, F, G, H */
u8 res_a00[0x1000-0xa00]; /* from 0xa00 to 0xfff */
} serdes_corenet_t;
#else /* CONFIG_SYS_FSL_QORIQ_CHASSIS2 */
#define SRDS_MAX_LANES 18
#define SRDS_MAX_BANK 3
typedef struct serdes_corenet {
struct {
u32 rstctl; /* Reset Control Register */
#define SRDS_RSTCTL_RST 0x80000000
#define SRDS_RSTCTL_RSTDONE 0x40000000
#define SRDS_RSTCTL_RSTERR 0x20000000
#define SRDS_RSTCTL_SDPD 0x00000020
u32 pllcr0; /* PLL Control Register 0 */
#define SRDS_PLLCR0_RFCK_SEL_MASK 0x70000000
powerpc/85xx: Add P5040 processor support Add support for the Freescale P5040 SOC, which is similar to the P5020. Features of the P5040 are: Four P5040 single-threaded e5500 cores built Up to 2.4 GHz with 64-bit ISA support Three levels of instruction: user, supervisor, hypervisor CoreNet platform cache (CPC) 2.0 MB configures as dual 1 MB blocks hierarchical interconnect fabric Two 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Up to 1600MT/s Memory pre-fetch engine DPAA incorporating acceleration for the following functions Packet parsing, classification, and distribution (FMAN) Queue management for scheduling, packet sequencing and congestion management (QMAN) Hardware buffer management for buffer allocation and de-allocation (BMAN) Cryptography acceleration (SEC 5.2) at up to 40 Gbps SerDes 20 lanes at up to 5 Gbps Supports SGMII, XAUI, PCIe rev1.1/2.0, SATA Ethernet interfaces Two 10 Gbps Ethernet MACs Ten 1 Gbps Ethernet MACs High-speed peripheral interfaces Two PCI Express 2.0/3.0 controllers Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Two I2C controllers Four UARTs Integrated flash controller supporting NAND and NOR flash DMA Dual four channel Support for hardware virtualization and partitioning enforcement Extra privileged level for hypervisor support QorIQ Trust Architecture 1.1 Secure boot, secure debug, tamper detection, volatile key storage Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-05 11:09:19 +00:00
#define SRDS_PLLCR0_PVCOCNT_EN 0x02000000
#define SRDS_PLLCR0_RFCK_SEL_100 0x00000000
#define SRDS_PLLCR0_RFCK_SEL_125 0x10000000
#define SRDS_PLLCR0_RFCK_SEL_156_25 0x20000000
#define SRDS_PLLCR0_RFCK_SEL_150 0x30000000
#define SRDS_PLLCR0_RFCK_SEL_161_13 0x40000000
#define SRDS_PLLCR0_FRATE_SEL_MASK 0x00030000
#define SRDS_PLLCR0_FRATE_SEL_5 0x00000000
#define SRDS_PLLCR0_FRATE_SEL_6_25 0x00010000
u32 pllcr1; /* PLL Control Register 1 */
#define SRDS_PLLCR1_PLL_BWSEL 0x08000000
u32 res[5];
} bank[3];
u32 res1[12];
u32 srdstcalcr; /* TX Calibration Control */
u32 res2[3];
u32 srdsrcalcr; /* RX Calibration Control */
u32 res3[3];
u32 srdsgr0; /* General Register 0 */
u32 res4[11];
u32 srdspccr0; /* Protocol Converter Config 0 */
u32 srdspccr1; /* Protocol Converter Config 1 */
u32 srdspccr2; /* Protocol Converter Config 2 */
#define SRDS_PCCR2_RST_XGMII1 0x00800000
#define SRDS_PCCR2_RST_XGMII2 0x00400000
u32 res5[197];
struct serdes_lane {
u32 gcr0; /* General Control Register 0 */
#define SRDS_GCR0_RRST 0x00400000
#define SRDS_GCR0_1STLANE 0x00010000
powerpc/85xx: Add P5040 processor support Add support for the Freescale P5040 SOC, which is similar to the P5020. Features of the P5040 are: Four P5040 single-threaded e5500 cores built Up to 2.4 GHz with 64-bit ISA support Three levels of instruction: user, supervisor, hypervisor CoreNet platform cache (CPC) 2.0 MB configures as dual 1 MB blocks hierarchical interconnect fabric Two 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Up to 1600MT/s Memory pre-fetch engine DPAA incorporating acceleration for the following functions Packet parsing, classification, and distribution (FMAN) Queue management for scheduling, packet sequencing and congestion management (QMAN) Hardware buffer management for buffer allocation and de-allocation (BMAN) Cryptography acceleration (SEC 5.2) at up to 40 Gbps SerDes 20 lanes at up to 5 Gbps Supports SGMII, XAUI, PCIe rev1.1/2.0, SATA Ethernet interfaces Two 10 Gbps Ethernet MACs Ten 1 Gbps Ethernet MACs High-speed peripheral interfaces Two PCI Express 2.0/3.0 controllers Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Two I2C controllers Four UARTs Integrated flash controller supporting NAND and NOR flash DMA Dual four channel Support for hardware virtualization and partitioning enforcement Extra privileged level for hypervisor support QorIQ Trust Architecture 1.1 Secure boot, secure debug, tamper detection, volatile key storage Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-05 11:09:19 +00:00
#define SRDS_GCR0_UOTHL 0x00100000
u32 gcr1; /* General Control Register 1 */
#define SRDS_GCR1_REIDL_CTL_MASK 0x001f0000
#define SRDS_GCR1_REIDL_CTL_PCIE 0x00100000
#define SRDS_GCR1_REIDL_CTL_SRIO 0x00000000
#define SRDS_GCR1_REIDL_CTL_SGMII 0x00040000
#define SRDS_GCR1_OPAD_CTL 0x04000000
u32 res1[4];
u32 tecr0; /* TX Equalization Control Reg 0 */
#define SRDS_TECR0_TEQ_TYPE_MASK 0x30000000
#define SRDS_TECR0_TEQ_TYPE_2LVL 0x10000000
u32 res3;
u32 ttlcr0; /* Transition Tracking Loop Ctrl 0 */
#define SRDS_TTLCR0_FLT_SEL_MASK 0x3f000000
#define SRDS_TTLCR0_FLT_SEL_KFR_26 0x10000000
#define SRDS_TTLCR0_FLT_SEL_KPH_28 0x08000000
#define SRDS_TTLCR0_FLT_SEL_750PPM 0x03000000
#define SRDS_TTLCR0_PM_DIS 0x00004000
#define SRDS_TTLCR0_FREQOVD_EN 0x00000001
u32 res4[7];
} lane[24];
u32 res6[384];
} serdes_corenet_t;
#endif /* CONFIG_SYS_FSL_QORIQ_CHASSIS2 */
enum {
FSL_SRDS_B1_LANE_A = 0,
FSL_SRDS_B1_LANE_B = 1,
FSL_SRDS_B1_LANE_C = 2,
FSL_SRDS_B1_LANE_D = 3,
FSL_SRDS_B1_LANE_E = 4,
FSL_SRDS_B1_LANE_F = 5,
FSL_SRDS_B1_LANE_G = 6,
FSL_SRDS_B1_LANE_H = 7,
FSL_SRDS_B1_LANE_I = 8,
FSL_SRDS_B1_LANE_J = 9,
FSL_SRDS_B2_LANE_A = 16,
FSL_SRDS_B2_LANE_B = 17,
FSL_SRDS_B2_LANE_C = 18,
FSL_SRDS_B2_LANE_D = 19,
FSL_SRDS_B3_LANE_A = 20,
FSL_SRDS_B3_LANE_B = 21,
FSL_SRDS_B3_LANE_C = 22,
FSL_SRDS_B3_LANE_D = 23,
};
typedef struct ccsr_qman {
#ifdef CONFIG_SYS_FSL_QMAN_V3
u8 res0[0x200];
#else
struct {
u32 qcsp_lio_cfg; /* 0x0 - SW Portal n LIO cfg */
u32 qcsp_io_cfg; /* 0x4 - SW Portal n IO cfg */
u32 res;
u32 qcsp_dd_cfg; /* 0xc - SW Portal n Dynamic Debug cfg */
} qcsp[32];
#endif
/* Not actually reserved, but irrelevant to u-boot */
u8 res[0xbf8 - 0x200];
u32 ip_rev_1;
u32 ip_rev_2;
u32 fqd_bare; /* FQD Extended Base Addr Register */
u32 fqd_bar; /* FQD Base Addr Register */
u8 res1[0x8];
u32 fqd_ar; /* FQD Attributes Register */
u8 res2[0xc];
u32 pfdr_bare; /* PFDR Extended Base Addr Register */
u32 pfdr_bar; /* PFDR Base Addr Register */
u8 res3[0x8];
u32 pfdr_ar; /* PFDR Attributes Register */
u8 res4[0x4c];
u32 qcsp_bare; /* QCSP Extended Base Addr Register */
u32 qcsp_bar; /* QCSP Base Addr Register */
u8 res5[0x78];
u32 ci_sched_cfg; /* Initiator Scheduling Configuration */
u32 srcidr; /* Source ID Register */
u32 liodnr; /* LIODN Register */
u8 res6[4];
u32 ci_rlm_cfg; /* Initiator Read Latency Monitor Cfg */
u32 ci_rlm_avg; /* Initiator Read Latency Monitor Avg */
u8 res7[0x2e8];
#ifdef CONFIG_SYS_FSL_QMAN_V3
struct {
u32 qcsp_lio_cfg; /* 0x0 - SW Portal n LIO cfg */
u32 qcsp_io_cfg; /* 0x4 - SW Portal n IO cfg */
u32 res;
u32 qcsp_dd_cfg; /* 0xc - SW Portal n Dynamic Debug cfg*/
} qcsp[50];
#endif
} ccsr_qman_t;
typedef struct ccsr_bman {
/* Not actually reserved, but irrelevant to u-boot */
u8 res[0xbf8];
u32 ip_rev_1;
u32 ip_rev_2;
u32 fbpr_bare; /* FBPR Extended Base Addr Register */
u32 fbpr_bar; /* FBPR Base Addr Register */
u8 res1[0x8];
u32 fbpr_ar; /* FBPR Attributes Register */
u8 res2[0xf0];
u32 srcidr; /* Source ID Register */
u32 liodnr; /* LIODN Register */
u8 res7[0x2f4];
} ccsr_bman_t;
typedef struct ccsr_pme {
u8 res0[0x804];
u32 liodnbr; /* LIODN Base Register */
u8 res1[0x1f8];
u32 srcidr; /* Source ID Register */
u8 res2[8];
u32 liodnr; /* LIODN Register */
u8 res3[0x1e8];
u32 pm_ip_rev_1; /* PME IP Block Revision Reg 1*/
u32 pm_ip_rev_2; /* PME IP Block Revision Reg 1*/
u8 res4[0x400];
} ccsr_pme_t;
#ifdef CONFIG_SYS_FSL_RAID_ENGINE
struct ccsr_raide {
u8 res0[0x543];
u32 liodnbr; /* LIODN Base Register */
u8 res1[0xab8];
struct {
struct {
u32 cfg0; /* cfg register 0 */
u32 cfg1; /* cfg register 1 */
u8 res1[0x3f8];
} ring[2];
u8 res[0x800];
} jq[2];
};
#endif
#ifdef CONFIG_SYS_DPAA_RMAN
struct ccsr_rman {
u8 res0[0xf64];
u32 mmliodnbr; /* Message Manager LIODN Base Register */
u32 mmitar; /* RMAN Inbound Translation Address Register */
u32 mmitdr; /* RMAN Inbound Translation Data Register */
u8 res4[0x1f090];
};
#endif
#ifdef CONFIG_SYS_PMAN
struct ccsr_pman {
u8 res_00[0x40];
u32 poes1; /* PMAN Operation Error Status Register 1 */
u32 poes2; /* PMAN Operation Error Status Register 2 */
u32 poeah; /* PMAN Operation Error Address High */
u32 poeal; /* PMAN Operation Error Address Low */
u8 res_50[0x50];
u32 pr1; /* PMAN Revision Register 1 */
u32 pr2; /* PMAN Revision Register 2 */
u8 res_a8[0x8];
u32 pcap; /* PMAN Capabilities Register */
u8 res_b4[0xc];
u32 pc1; /* PMAN Control Register 1 */
u32 pc2; /* PMAN Control Register 2 */
u32 pc3; /* PMAN Control Register 3 */
u32 pc4; /* PMAN Control Register 4 */
u32 pc5; /* PMAN Control Register 5 */
u32 pc6; /* PMAN Control Register 6 */
u8 res_d8[0x8];
u32 ppa1; /* PMAN Prefetch Attributes Register 1 */
u32 ppa2; /* PMAN Prefetch Attributes Register 2 */
u8 res_e8[0x8];
u32 pics; /* PMAN Interrupt Control and Status */
u8 res_f4[0xf0c];
};
#endif
#ifdef CONFIG_FSL_CORENET
#define CONFIG_SYS_FSL_CORENET_CCM_OFFSET 0x0000
#ifdef CONFIG_SYS_PMAN
#define CONFIG_SYS_FSL_CORENET_PMAN1_OFFSET 0x4000
#define CONFIG_SYS_FSL_CORENET_PMAN2_OFFSET 0x5000
#define CONFIG_SYS_FSL_CORENET_PMAN3_OFFSET 0x6000
#endif
#define CONFIG_SYS_MPC8xxx_DDR_OFFSET 0x8000
#define CONFIG_SYS_MPC8xxx_DDR2_OFFSET 0x9000
#define CONFIG_SYS_MPC8xxx_DDR3_OFFSET 0xA000
#define CONFIG_SYS_FSL_CORENET_CLK_OFFSET 0xE1000
#define CONFIG_SYS_FSL_CORENET_RCPM_OFFSET 0xE2000
#ifdef CONFIG_SYS_FSL_SFP_VER_3_0
/* In SFPv3, OSPR register is now at offset 0x200.
* * So directly mapping sfp register map to this address */
#define CONFIG_SYS_OSPR_OFFSET 0x200
#define CONFIG_SYS_SFP_OFFSET (0xE8000 + CONFIG_SYS_OSPR_OFFSET)
#else
#define CONFIG_SYS_SFP_OFFSET 0xE8000
#endif
#define CONFIG_SYS_FSL_CORENET_SERDES_OFFSET 0xEA000
powerpc/85xx: Add P5040 processor support Add support for the Freescale P5040 SOC, which is similar to the P5020. Features of the P5040 are: Four P5040 single-threaded e5500 cores built Up to 2.4 GHz with 64-bit ISA support Three levels of instruction: user, supervisor, hypervisor CoreNet platform cache (CPC) 2.0 MB configures as dual 1 MB blocks hierarchical interconnect fabric Two 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Up to 1600MT/s Memory pre-fetch engine DPAA incorporating acceleration for the following functions Packet parsing, classification, and distribution (FMAN) Queue management for scheduling, packet sequencing and congestion management (QMAN) Hardware buffer management for buffer allocation and de-allocation (BMAN) Cryptography acceleration (SEC 5.2) at up to 40 Gbps SerDes 20 lanes at up to 5 Gbps Supports SGMII, XAUI, PCIe rev1.1/2.0, SATA Ethernet interfaces Two 10 Gbps Ethernet MACs Ten 1 Gbps Ethernet MACs High-speed peripheral interfaces Two PCI Express 2.0/3.0 controllers Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Two I2C controllers Four UARTs Integrated flash controller supporting NAND and NOR flash DMA Dual four channel Support for hardware virtualization and partitioning enforcement Extra privileged level for hypervisor support QorIQ Trust Architecture 1.1 Secure boot, secure debug, tamper detection, volatile key storage Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-05 11:09:19 +00:00
#define CONFIG_SYS_FSL_CORENET_SERDES2_OFFSET 0xEB000
#define CONFIG_SYS_FSL_CORENET_SERDES3_OFFSET 0xEC000
#define CONFIG_SYS_FSL_CORENET_SERDES4_OFFSET 0xED000
#define CONFIG_SYS_FSL_CPC_OFFSET 0x10000
#define CONFIG_SYS_FSL_SCFG_OFFSET 0xFC000
#define CONFIG_SYS_MPC85xx_DMA1_OFFSET 0x100000
#define CONFIG_SYS_MPC85xx_DMA2_OFFSET 0x101000
powerpc/mpc85xx: Add T2080/T2081 SoC support Add support for Freescale T2080/T2081 SoC. T2080 includes the following functions and features: - Four dual-threads 64-bit Power architecture e6500 cores, up to 1.8GHz - 2MB L2 cache and 512KB CoreNet platform cache (CPC) - Hierarchical interconnect fabric - One 32-/64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving - Data Path Acceleration Architecture (DPAA) incorporating acceleration - 16 SerDes lanes up to 10.3125 GHz - 8 mEMACs for network interfaces (four 1Gbps MACs and four 10Gbps/1Gbps MACs) - High-speed peripheral interfaces - Four PCI Express controllers (two PCIe 2.0 and two PCIe 3.0 with SR-IOV) - Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz - Additional peripheral interfaces - Two serial ATA (SATA 2.0) controllers - Two high-speed USB 2.0 controllers with integrated PHY - Enhanced secure digital host controller (SD/SDHC/SDXC/eMMC) - Enhanced serial peripheral interface (eSPI) - Four I2C controllers - Four 2-pin UARTs or two 4-pin UARTs - Integrated Flash Controller supporting NAND and NOR flash - Three eight-channel DMA engines - Support for hardware virtualization and partitioning enforcement - QorIQ Platform's Trust Architecture 2.0 Differences between T2080 and T2081: Feature T2080 T2081 1G Ethernet numbers: 8 6 10G Ethernet numbers: 4 2 SerDes lanes: 16 8 Serial RapidIO,RMan: 2 no SATA Controller: 2 no Aurora: yes no SoC Package: 896-pins 780-pins Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Acked-by: York Sun <yorksun@freescale.com>
2013-11-22 09:39:10 +00:00
#define CONFIG_SYS_MPC85xx_DMA3_OFFSET 0x102000
#define CONFIG_SYS_MPC85xx_DMA_OFFSET CONFIG_SYS_MPC85xx_DMA1_OFFSET
#define CONFIG_SYS_MPC85xx_ESPI_OFFSET 0x110000
#define CONFIG_SYS_MPC85xx_ESDHC_OFFSET 0x114000
#define CONFIG_SYS_MPC85xx_LBC_OFFSET 0x124000
#define CONFIG_SYS_MPC85xx_IFC_OFFSET 0x124000
#define CONFIG_SYS_MPC85xx_GPIO_OFFSET 0x130000
#define CONFIG_SYS_MPC85xx_TDM_OFFSET 0x185000
#define CONFIG_SYS_MPC85xx_QE_OFFSET 0x140000
#define CONFIG_SYS_FSL_CORENET_RMAN_OFFSET 0x1e0000
#if defined(CONFIG_SYS_FSL_QORIQ_CHASSIS2) && !defined(CONFIG_PPC_B4860)\
&& !defined(CONFIG_PPC_B4420)
powerpc/mpc85xx: Add T4240 SoC Add support for Freescale T4240 SoC. Feature of T4240 are (incomplete list): 12 dual-threaded e6500 cores built on Power Architecture® technology Arranged as clusters of four cores sharing a 2 MB L2 cache. Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture v2.06-compliant) Three levels of instruction: user, supervisor, and hypervisor 1.5 MB CoreNet Platform Cache (CPC) Hierarchical interconnect fabric CoreNet fabric supporting coherent and non-coherent transactions with prioritization and bandwidth allocation amongst CoreNet end-points 1.6 Tbps coherent read bandwidth Queue Manager (QMan) fabric supporting packet-level queue management and quality of service scheduling Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Memory prefetch engine (PMan) Data Path Acceleration Architecture (DPAA) incorporating acceleration for the following functions: Packet parsing, classification, and distribution (Frame Manager 1.1) Queue management for scheduling, packet sequencing, and congestion management (Queue Manager 1.1) Hardware buffer management for buffer allocation and de-allocation (BMan 1.1) Cryptography acceleration (SEC 5.0) at up to 40 Gbps RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0) 32 SerDes lanes at up to 10.3125 GHz Ethernet interfaces Up to four 10 Gbps Ethernet MACs Up to sixteen 1 Gbps Ethernet MACs Maximum configuration of 4 x 10 GE + 8 x 1 GE High-speed peripheral interfaces Four PCI Express 2.0/3.0 controllers Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with Type 11 messaging and Type 9 data streaming support Interlaken look-aside interface for serial TCAM connection Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Four I2C controllers Four 2-pin or two 4-pin UARTs Integrated Flash controller supporting NAND and NOR flash Two eight-channel DMA engines Support for hardware virtualization and partitioning enforcement QorIQ Platform's Trust Architecture 1.1 Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:19 +00:00
#define CONFIG_SYS_MPC85xx_PCIE1_OFFSET 0x240000
#define CONFIG_SYS_MPC85xx_PCIE2_OFFSET 0x250000
#define CONFIG_SYS_MPC85xx_PCIE3_OFFSET 0x260000
#define CONFIG_SYS_MPC85xx_PCIE4_OFFSET 0x270000
#else
#define CONFIG_SYS_MPC85xx_PCIE1_OFFSET 0x200000
#define CONFIG_SYS_MPC85xx_PCIE2_OFFSET 0x201000
#define CONFIG_SYS_MPC85xx_PCIE3_OFFSET 0x202000
#define CONFIG_SYS_MPC85xx_PCIE4_OFFSET 0x203000
powerpc/mpc85xx: Add T4240 SoC Add support for Freescale T4240 SoC. Feature of T4240 are (incomplete list): 12 dual-threaded e6500 cores built on Power Architecture® technology Arranged as clusters of four cores sharing a 2 MB L2 cache. Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture v2.06-compliant) Three levels of instruction: user, supervisor, and hypervisor 1.5 MB CoreNet Platform Cache (CPC) Hierarchical interconnect fabric CoreNet fabric supporting coherent and non-coherent transactions with prioritization and bandwidth allocation amongst CoreNet end-points 1.6 Tbps coherent read bandwidth Queue Manager (QMan) fabric supporting packet-level queue management and quality of service scheduling Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Memory prefetch engine (PMan) Data Path Acceleration Architecture (DPAA) incorporating acceleration for the following functions: Packet parsing, classification, and distribution (Frame Manager 1.1) Queue management for scheduling, packet sequencing, and congestion management (Queue Manager 1.1) Hardware buffer management for buffer allocation and de-allocation (BMan 1.1) Cryptography acceleration (SEC 5.0) at up to 40 Gbps RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0) 32 SerDes lanes at up to 10.3125 GHz Ethernet interfaces Up to four 10 Gbps Ethernet MACs Up to sixteen 1 Gbps Ethernet MACs Maximum configuration of 4 x 10 GE + 8 x 1 GE High-speed peripheral interfaces Four PCI Express 2.0/3.0 controllers Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with Type 11 messaging and Type 9 data streaming support Interlaken look-aside interface for serial TCAM connection Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Four I2C controllers Four 2-pin or two 4-pin UARTs Integrated Flash controller supporting NAND and NOR flash Two eight-channel DMA engines Support for hardware virtualization and partitioning enforcement QorIQ Platform's Trust Architecture 1.1 Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:19 +00:00
#endif
#define CONFIG_SYS_MPC85xx_USB1_OFFSET 0x210000
#define CONFIG_SYS_MPC85xx_USB2_OFFSET 0x211000
#define CONFIG_SYS_MPC85xx_USB1_PHY_OFFSET 0x214000
#define CONFIG_SYS_MPC85xx_USB2_PHY_OFFSET 0x214100
#define CONFIG_SYS_MPC85xx_SATA1_OFFSET 0x220000
#define CONFIG_SYS_MPC85xx_SATA2_OFFSET 0x221000
#define CONFIG_SYS_FSL_SEC_OFFSET 0x300000
#define CONFIG_SYS_FSL_JR0_OFFSET 0x301000
#define CONFIG_SYS_SEC_MON_OFFSET 0x314000
#define CONFIG_SYS_FSL_CORENET_PME_OFFSET 0x316000
#define CONFIG_SYS_FSL_QMAN_OFFSET 0x318000
#define CONFIG_SYS_FSL_BMAN_OFFSET 0x31a000
#define CONFIG_SYS_FSL_RAID_ENGINE_OFFSET 0x320000
#define CONFIG_SYS_FSL_FM1_OFFSET 0x400000
#define CONFIG_SYS_FSL_FM1_RX0_1G_OFFSET 0x488000
#define CONFIG_SYS_FSL_FM1_RX1_1G_OFFSET 0x489000
#define CONFIG_SYS_FSL_FM1_RX2_1G_OFFSET 0x48a000
#define CONFIG_SYS_FSL_FM1_RX3_1G_OFFSET 0x48b000
#define CONFIG_SYS_FSL_FM1_RX4_1G_OFFSET 0x48c000
#define CONFIG_SYS_FSL_FM1_RX5_1G_OFFSET 0x48d000
#define CONFIG_SYS_FSL_FM1_RX0_10G_OFFSET 0x490000
#define CONFIG_SYS_FSL_FM1_RX1_10G_OFFSET 0x491000
#define CONFIG_SYS_FSL_FM1_DTSEC1_OFFSET 0x4e0000
#define CONFIG_SYS_FSL_FM2_OFFSET 0x500000
#define CONFIG_SYS_FSL_FM2_RX0_1G_OFFSET 0x588000
#define CONFIG_SYS_FSL_FM2_RX1_1G_OFFSET 0x589000
#define CONFIG_SYS_FSL_FM2_RX2_1G_OFFSET 0x58a000
#define CONFIG_SYS_FSL_FM2_RX3_1G_OFFSET 0x58b000
#define CONFIG_SYS_FSL_FM2_RX4_1G_OFFSET 0x58c000
#define CONFIG_SYS_FSL_FM2_RX5_1G_OFFSET 0x58d000
#define CONFIG_SYS_FSL_FM2_RX0_10G_OFFSET 0x590000
#define CONFIG_SYS_FSL_FM2_RX1_10G_OFFSET 0x591000
#define CONFIG_SYS_FSL_CLUSTER_1_L2_OFFSET 0xC20000
#else
#define CONFIG_SYS_MPC85xx_ECM_OFFSET 0x0000
#define CONFIG_SYS_MPC8xxx_DDR_OFFSET 0x2000
#define CONFIG_SYS_MPC85xx_LBC_OFFSET 0x5000
#define CONFIG_SYS_MPC8xxx_DDR2_OFFSET 0x6000
#define CONFIG_SYS_MPC85xx_ESPI_OFFSET 0x7000
#define CONFIG_SYS_MPC85xx_PCI1_OFFSET 0x8000
#define CONFIG_SYS_MPC85xx_PCIX_OFFSET 0x8000
#define CONFIG_SYS_MPC85xx_PCI2_OFFSET 0x9000
#define CONFIG_SYS_MPC85xx_PCIX2_OFFSET 0x9000
#define CONFIG_SYS_MPC85xx_PCIE1_OFFSET 0xa000
#define CONFIG_SYS_MPC85xx_PCIE2_OFFSET 0x9000
#if defined(CONFIG_MPC8572) || defined(CONFIG_P2020)
#define CONFIG_SYS_MPC85xx_PCIE3_OFFSET 0x8000
#else
#define CONFIG_SYS_MPC85xx_PCIE3_OFFSET 0xb000
#endif
#define CONFIG_SYS_MPC85xx_GPIO_OFFSET 0xF000
#define CONFIG_SYS_MPC85xx_SATA1_OFFSET 0x18000
#define CONFIG_SYS_MPC85xx_SATA2_OFFSET 0x19000
powerpc/85xx: Add support for Integrated Flash Controller (IFC) The Integrated Flash Controller (IFC) is used to access the external NAND Flash, NOR Flash, EPROM, SRAM and Generic ASIC memories.Four chip selects are provided in IFC so that maximum of four Flash devices can be hooked, but only one can be accessed at a given time. Features supported by IFC are, - Functional muxing of pins between NAND, NOR and GPCM - Support memory banks of size 64KByte to 4 GBytes - Write protection capability (only for NAND and NOR) - Provision of Software Reset - Flexible Timing programmability for every chip select - NAND Machine - x8/ x16 NAND Flash Interface - SLC and MLC NAND Flash devices support with configurable page sizes of upto 4KB - Internal SRAM of 9KB which is directly mapped and availble at boot time for NAND Boot - Configurable block size - Boot chip select (CS0) available at system reset - NOR Machine - Data bus width of 8/16/32 - Compatible with asynchronous NOR Flash - Directly memory mapped - Supports address data multiplexed (ADM) NOR device - Boot chip select (CS0) available at system reset - GPCM Machine (NORMAL GPCM Mode) - Support for x8/16/32 bit device - Compatible with general purpose addressable device e.g. SRAM, ROM - External clock is supported with programmable division ratio - GPCM Machine (Generic ASIC Mode) - Support for x8/16/32 bit device - Address and Data are shared on I/O bus - Following Address and Data sequences can be supported on I/O bus - 32 bit I/O: AD - 16 bit I/O: AADD - 8 bit I/O : AAAADDDD - Configurable Even/Odd Parity on Address/Data bus supported Signed-off-by: Dipen Dudhat <Dipen.Dudhat@freescale.com> Acked-by: Scott Wood <scottwood@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
2011-01-20 10:59:35 +00:00
#define CONFIG_SYS_MPC85xx_IFC_OFFSET 0x1e000
#define CONFIG_SYS_MPC85xx_L2_OFFSET 0x20000
#define CONFIG_SYS_MPC85xx_DMA_OFFSET 0x21000
#define CONFIG_SYS_MPC85xx_USB1_OFFSET 0x22000
#define CONFIG_SYS_MPC85xx_USB2_OFFSET 0x23000
#ifdef CONFIG_TSECV2
#define CONFIG_SYS_TSEC1_OFFSET 0xB0000
#elif defined(CONFIG_TSECV2_1)
#define CONFIG_SYS_TSEC1_OFFSET 0x10000
#else
#define CONFIG_SYS_TSEC1_OFFSET 0x24000
#endif
#define CONFIG_SYS_MDIO1_OFFSET 0x24000
#define CONFIG_SYS_MPC85xx_ESDHC_OFFSET 0x2e000
#if defined(CONFIG_PPC_C29X)
#define CONFIG_SYS_FSL_SEC_OFFSET 0x80000
#define CONFIG_SYS_FSL_JR0_OFFSET 0x81000
#else
#define CONFIG_SYS_FSL_SEC_OFFSET 0x30000
#define CONFIG_SYS_FSL_JR0_OFFSET 0x31000
#endif
#define CONFIG_SYS_MPC85xx_SERDES2_OFFSET 0xE3100
#define CONFIG_SYS_MPC85xx_SERDES1_OFFSET 0xE3000
#define CONFIG_SYS_SEC_MON_OFFSET 0xE6000
#define CONFIG_SYS_SFP_OFFSET 0xE7000
#define CONFIG_SYS_MPC85xx_CPM_OFFSET 0x80000
#define CONFIG_SYS_FSL_QMAN_OFFSET 0x88000
#define CONFIG_SYS_FSL_BMAN_OFFSET 0x8a000
#define CONFIG_SYS_FSL_FM1_OFFSET 0x100000
#define CONFIG_SYS_FSL_FM1_RX0_1G_OFFSET 0x188000
#define CONFIG_SYS_FSL_FM1_RX1_1G_OFFSET 0x189000
#define CONFIG_SYS_FSL_FM1_DTSEC1_OFFSET 0x1e0000
#endif
#define CONFIG_SYS_MPC85xx_PIC_OFFSET 0x40000
#define CONFIG_SYS_MPC85xx_GUTS_OFFSET 0xE0000
#define CONFIG_SYS_FSL_SRIO_OFFSET 0xC0000
#if defined(CONFIG_BSC9132)
#define CONFIG_SYS_FSL_DSP_CCSR_DDR_OFFSET 0x10000
#define CONFIG_SYS_FSL_DSP_CCSR_DDR_ADDR \
(CONFIG_SYS_FSL_DSP_CCSRBAR + CONFIG_SYS_FSL_DSP_CCSR_DDR_OFFSET)
#endif
#define CONFIG_SYS_FSL_CPC_ADDR \
(CONFIG_SYS_CCSRBAR + CONFIG_SYS_FSL_CPC_OFFSET)
#define CONFIG_SYS_FSL_SCFG_ADDR \
(CONFIG_SYS_CCSRBAR + CONFIG_SYS_FSL_SCFG_OFFSET)
#define CONFIG_SYS_FSL_SCFG_PIXCLK_ADDR \
(CONFIG_SYS_FSL_SCFG_ADDR + CONFIG_SYS_FSL_SCFG_PIXCLKCR_OFFSET)
#define CONFIG_SYS_FSL_SCFG_IODSECR1_ADDR \
(CONFIG_SYS_FSL_SCFG_ADDR + CONFIG_SYS_FSL_SCFG_IODSECR1_OFFSET)
#define CONFIG_SYS_FSL_QMAN_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_QMAN_OFFSET)
#define CONFIG_SYS_FSL_BMAN_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_BMAN_OFFSET)
#define CONFIG_SYS_FSL_CORENET_PME_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_CORENET_PME_OFFSET)
#define CONFIG_SYS_FSL_RAID_ENGINE_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_RAID_ENGINE_OFFSET)
#define CONFIG_SYS_FSL_CORENET_RMAN_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_CORENET_RMAN_OFFSET)
#define CONFIG_SYS_MPC85xx_GUTS_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_GUTS_OFFSET)
#define CONFIG_SYS_FSL_CORENET_CCM_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_CORENET_CCM_OFFSET)
#define CONFIG_SYS_FSL_CORENET_CLK_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_CORENET_CLK_OFFSET)
#define CONFIG_SYS_FSL_CORENET_RCPM_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_CORENET_RCPM_OFFSET)
#define CONFIG_SYS_MPC85xx_ECM_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_ECM_OFFSET)
#define CONFIG_SYS_FSL_DDR_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC8xxx_DDR_OFFSET)
#define CONFIG_SYS_FSL_DDR2_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC8xxx_DDR2_OFFSET)
#define CONFIG_SYS_FSL_DDR3_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC8xxx_DDR3_OFFSET)
#define CONFIG_SYS_LBC_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_LBC_OFFSET)
powerpc/85xx: Add support for Integrated Flash Controller (IFC) The Integrated Flash Controller (IFC) is used to access the external NAND Flash, NOR Flash, EPROM, SRAM and Generic ASIC memories.Four chip selects are provided in IFC so that maximum of four Flash devices can be hooked, but only one can be accessed at a given time. Features supported by IFC are, - Functional muxing of pins between NAND, NOR and GPCM - Support memory banks of size 64KByte to 4 GBytes - Write protection capability (only for NAND and NOR) - Provision of Software Reset - Flexible Timing programmability for every chip select - NAND Machine - x8/ x16 NAND Flash Interface - SLC and MLC NAND Flash devices support with configurable page sizes of upto 4KB - Internal SRAM of 9KB which is directly mapped and availble at boot time for NAND Boot - Configurable block size - Boot chip select (CS0) available at system reset - NOR Machine - Data bus width of 8/16/32 - Compatible with asynchronous NOR Flash - Directly memory mapped - Supports address data multiplexed (ADM) NOR device - Boot chip select (CS0) available at system reset - GPCM Machine (NORMAL GPCM Mode) - Support for x8/16/32 bit device - Compatible with general purpose addressable device e.g. SRAM, ROM - External clock is supported with programmable division ratio - GPCM Machine (Generic ASIC Mode) - Support for x8/16/32 bit device - Address and Data are shared on I/O bus - Following Address and Data sequences can be supported on I/O bus - 32 bit I/O: AD - 16 bit I/O: AADD - 8 bit I/O : AAAADDDD - Configurable Even/Odd Parity on Address/Data bus supported Signed-off-by: Dipen Dudhat <Dipen.Dudhat@freescale.com> Acked-by: Scott Wood <scottwood@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
2011-01-20 10:59:35 +00:00
#define CONFIG_SYS_IFC_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_IFC_OFFSET)
#define CONFIG_SYS_MPC85xx_ESPI_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_ESPI_OFFSET)
#define CONFIG_SYS_MPC85xx_PCIX_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_PCIX_OFFSET)
#define CONFIG_SYS_MPC85xx_PCIX2_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_PCIX2_OFFSET)
#define CONFIG_SYS_MPC85xx_GPIO_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_GPIO_OFFSET)
#define CONFIG_SYS_MPC85xx_SATA1_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_SATA1_OFFSET)
#define CONFIG_SYS_MPC85xx_SATA2_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_SATA2_OFFSET)
#define CONFIG_SYS_MPC85xx_L2_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_L2_OFFSET)
#define CONFIG_SYS_MPC85xx_DMA_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_DMA_OFFSET)
#define CONFIG_SYS_MPC85xx_ESDHC_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_ESDHC_OFFSET)
#define CONFIG_SYS_MPC8xxx_PIC_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_PIC_OFFSET)
#define CONFIG_SYS_MPC85xx_CPM_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_CPM_OFFSET)
#define CONFIG_SYS_MPC85xx_SERDES1_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_SERDES1_OFFSET)
#define CONFIG_SYS_MPC85xx_SERDES2_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_SERDES2_OFFSET)
#define CONFIG_SYS_FSL_CORENET_SERDES_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_CORENET_SERDES_OFFSET)
powerpc/85xx: Add P5040 processor support Add support for the Freescale P5040 SOC, which is similar to the P5020. Features of the P5040 are: Four P5040 single-threaded e5500 cores built Up to 2.4 GHz with 64-bit ISA support Three levels of instruction: user, supervisor, hypervisor CoreNet platform cache (CPC) 2.0 MB configures as dual 1 MB blocks hierarchical interconnect fabric Two 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Up to 1600MT/s Memory pre-fetch engine DPAA incorporating acceleration for the following functions Packet parsing, classification, and distribution (FMAN) Queue management for scheduling, packet sequencing and congestion management (QMAN) Hardware buffer management for buffer allocation and de-allocation (BMAN) Cryptography acceleration (SEC 5.2) at up to 40 Gbps SerDes 20 lanes at up to 5 Gbps Supports SGMII, XAUI, PCIe rev1.1/2.0, SATA Ethernet interfaces Two 10 Gbps Ethernet MACs Ten 1 Gbps Ethernet MACs High-speed peripheral interfaces Two PCI Express 2.0/3.0 controllers Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Two I2C controllers Four UARTs Integrated flash controller supporting NAND and NOR flash DMA Dual four channel Support for hardware virtualization and partitioning enforcement Extra privileged level for hypervisor support QorIQ Trust Architecture 1.1 Secure boot, secure debug, tamper detection, volatile key storage Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-05 11:09:19 +00:00
#define CONFIG_SYS_FSL_CORENET_SERDES2_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_CORENET_SERDES2_OFFSET)
#define CONFIG_SYS_FSL_CORENET_SERDES3_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_CORENET_SERDES3_OFFSET)
#define CONFIG_SYS_FSL_CORENET_SERDES4_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_CORENET_SERDES4_OFFSET)
#define CONFIG_SYS_MPC85xx_USB1_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_USB1_OFFSET)
#define CONFIG_SYS_MPC85xx_USB2_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_USB2_OFFSET)
#define CONFIG_SYS_MPC85xx_USB1_PHY_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_USB1_PHY_OFFSET)
#define CONFIG_SYS_MPC85xx_USB2_PHY_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_USB2_PHY_OFFSET)
#define CONFIG_SYS_FSL_SEC_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_SEC_OFFSET)
#define CONFIG_SYS_FSL_JR0_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_JR0_OFFSET)
#define CONFIG_SYS_FSL_FM1_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_FM1_OFFSET)
#define CONFIG_SYS_FSL_FM1_DTSEC1_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_FM1_DTSEC1_OFFSET)
#define CONFIG_SYS_FSL_FM2_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_FM2_OFFSET)
#define CONFIG_SYS_FSL_SRIO_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_SRIO_OFFSET)
#define CONFIG_SYS_PCI1_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_PCI1_OFFSET)
#define CONFIG_SYS_PCI2_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_PCI2_OFFSET)
#define CONFIG_SYS_PCIE1_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_PCIE1_OFFSET)
#define CONFIG_SYS_PCIE2_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_PCIE2_OFFSET)
#define CONFIG_SYS_PCIE3_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_PCIE3_OFFSET)
#define CONFIG_SYS_PCIE4_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_PCIE4_OFFSET)
#define CONFIG_SYS_SFP_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_SFP_OFFSET)
#define CONFIG_SYS_SEC_MON_ADDR \
(CONFIG_SYS_IMMR + CONFIG_SYS_SEC_MON_OFFSET)
#define TSEC_BASE_ADDR (CONFIG_SYS_IMMR + CONFIG_SYS_TSEC1_OFFSET)
#define MDIO_BASE_ADDR (CONFIG_SYS_IMMR + CONFIG_SYS_MDIO1_OFFSET)
#ifdef CONFIG_SYS_FSL_QORIQ_CHASSIS2
struct ccsr_cluster_l2 {
u32 l2csr0; /* 0x000 L2 cache control and status register 0 */
u32 l2csr1; /* 0x004 L2 cache control and status register 1 */
u32 l2cfg0; /* 0x008 L2 cache configuration register 0 */
u8 res_0c[500];/* 0x00c - 0x1ff */
u32 l2pir0; /* 0x200 L2 cache partitioning ID register 0 */
u8 res_204[4];
u32 l2par0; /* 0x208 L2 cache partitioning allocation register 0 */
u32 l2pwr0; /* 0x20c L2 cache partitioning way register 0 */
u32 l2pir1; /* 0x210 L2 cache partitioning ID register 1 */
u8 res_214[4];
u32 l2par1; /* 0x218 L2 cache partitioning allocation register 1 */
u32 l2pwr1; /* 0x21c L2 cache partitioning way register 1 */
u32 u2pir2; /* 0x220 L2 cache partitioning ID register 2 */
u8 res_224[4];
u32 l2par2; /* 0x228 L2 cache partitioning allocation register 2 */
u32 l2pwr2; /* 0x22c L2 cache partitioning way register 2 */
u32 l2pir3; /* 0x230 L2 cache partitioning ID register 3 */
u8 res_234[4];
u32 l2par3; /* 0x238 L2 cache partitining allocation register 3 */
u32 l2pwr3; /* 0x23c L2 cache partitining way register 3 */
u32 l2pir4; /* 0x240 L2 cache partitioning ID register 3 */
u8 res244[4];
u32 l2par4; /* 0x248 L2 cache partitioning allocation register 3 */
u32 l2pwr4; /* 0x24c L2 cache partitioning way register 3 */
u32 l2pir5; /* 0x250 L2 cache partitioning ID register 3 */
u8 res_254[4];
u32 l2par5; /* 0x258 L2 cache partitioning allocation register 3 */
u32 l2pwr5; /* 0x25c L2 cache partitioning way register 3 */
u32 l2pir6; /* 0x260 L2 cache partitioning ID register 3 */
u8 res_264[4];
u32 l2par6; /* 0x268 L2 cache partitioning allocation register 3 */
u32 l2pwr6; /* 0x26c L2 cache partitioning way register 3 */
u32 l2pir7; /* 0x270 L2 cache partitioning ID register 3 */
u8 res274[4];
u32 l2par7; /* 0x278 L2 cache partitioning allocation register 3 */
u32 l2pwr7; /* 0x27c L2 cache partitioning way register 3 */
u8 res_280[0xb80]; /* 0x280 - 0xdff */
u32 l2errinjhi; /* 0xe00 L2 cache error injection mask high */
u32 l2errinjlo; /* 0xe04 L2 cache error injection mask low */
u32 l2errinjctl;/* 0xe08 L2 cache error injection control */
u8 res_e0c[20]; /* 0xe0c - 0x01f */
u32 l2captdatahi; /* 0xe20 L2 cache error capture data high */
u32 l2captdatalo; /* 0xe24 L2 cache error capture data low */
u32 l2captecc; /* 0xe28 L2 cache error capture ECC syndrome */
u8 res_e2c[20]; /* 0xe2c - 0xe3f */
u32 l2errdet; /* 0xe40 L2 cache error detect */
u32 l2errdis; /* 0xe44 L2 cache error disable */
u32 l2errinten; /* 0xe48 L2 cache error interrupt enable */
u32 l2errattr; /* 0xe4c L2 cache error attribute */
u32 l2erreaddr; /* 0xe50 L2 cache error extended address */
u32 l2erraddr; /* 0xe54 L2 cache error address */
u32 l2errctl; /* 0xe58 L2 cache error control */
};
#define CONFIG_SYS_FSL_CLUSTER_1_L2 \
(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_CLUSTER_1_L2_OFFSET)
#endif /* CONFIG_SYS_FSL_QORIQ_CHASSIS2 */
#define CONFIG_SYS_DCSR_DCFG_OFFSET 0X20000
struct dcsr_dcfg_regs {
u8 res_0[0x520];
u32 ecccr1;
#define DCSR_DCFG_ECC_DISABLE_USB1 0x00008000
#define DCSR_DCFG_ECC_DISABLE_USB2 0x00004000
u8 res_524[0x1000 - 0x524]; /* 0x524 - 0x1000 */
};
#define CONFIG_SYS_MPC85xx_SCFG \
(CONFIG_SYS_IMMR + CONFIG_SYS_MPC85xx_SCFG_OFFSET)
#define CONFIG_SYS_MPC85xx_SCFG_OFFSET 0xfc000
/* The supplement configuration unit register */
struct ccsr_scfg {
u32 dpslpcr; /* 0x000 Deep Sleep Control register */
u32 usb1dpslpcsr;/* 0x004 USB1 Deep Sleep Control Status register */
u32 usb2dpslpcsr;/* 0x008 USB2 Deep Sleep Control Status register */
u32 fmclkdpslpcr;/* 0x00c FM Clock Deep Sleep Control register */
u32 res1[4];
u32 esgmiiselcr;/* 0x020 Ethernet Switch SGMII Select Control reg */
u32 res2;
u32 pixclkcr; /* 0x028 Pixel Clock Control register */
u32 res3[245];
u32 qeioclkcr; /* 0x400 QUICC Engine IO Clock Control register */
u32 emiiocr; /* 0x404 EMI MDIO Control Register */
u32 sdhciovselcr;/* 0x408 SDHC IO VSEL Control register */
u32 qmifrstcr; /* 0x40c QMAN Interface Reset Control register */
u32 res4[60];
u32 sparecr[8]; /* 0x500 Spare Control register(0-7) */
};
#endif /*__IMMAP_85xx__*/