Commit graph

255 commits

Author SHA1 Message Date
Robert Swain
a0a3d8798b ExtractResourcePlugin (#3745)
# Objective

- Add an `ExtractResourcePlugin` for convenience and consistency

## Solution

- Add an `ExtractResourcePlugin` similar to `ExtractComponentPlugin` but for ECS `Resource`s. The system that is executed simply clones the main world resource into a render world resource, if and only if the main world resource was either added or changed since the last execution of the system.
- Add an `ExtractResource` trait with a `fn extract_resource(res: &Self) -> Self` function. This is used by the `ExtractResourcePlugin` to extract the resource
- Add a derive macro for `ExtractResource` on a `Resource` with the `Clone` trait, that simply returns `res.clone()`
- Use `ExtractResourcePlugin` wherever both possible and appropriate
2022-05-30 18:36:03 +00:00
Herbert "TheBracket
a6eb3fa6d6 Apply vertex colors to ColorMaterial and Mesh2D (#4812)
# Objective

- Add Vertex Color support to 2D meshes and ColorMaterial. This extends the work from #4528 (which in turn builds on the excellent tangent handling).

## Solution

- Added `#ifdef` wrapped support for vertex colors in the 2D mesh shader and `ColorMaterial` shader.
- Added an example, `mesh2d_vertex_color_texture` to demonstrate it in action.

![image](https://user-images.githubusercontent.com/14896751/169530930-6ae0c6be-2f69-40e3-a600-ba91d7178bc3.png)


---

## Changelog

- Added optional (ifdef wrapped) vertex color support to the 2dmesh and color material systems.
2022-05-30 16:59:45 +00:00
Teodor Tanasoaia
7cb4d3cb43 Migrate to encase from crevice (#4339)
# Objective

- Unify buffer APIs
- Also see #4272

## Solution

- Replace vendored `crevice` with `encase`

---

## Changelog

Changed `StorageBuffer`
Added `DynamicStorageBuffer`
Replaced `UniformVec` with `UniformBuffer`
Replaced `DynamicUniformVec` with `DynamicUniformBuffer`

## Migration Guide

### `StorageBuffer`

removed `set_body()`, `values()`, `values_mut()`, `clear()`, `push()`, `append()`
added `set()`, `get()`, `get_mut()`

### `UniformVec` -> `UniformBuffer`

renamed `uniform_buffer()` to `buffer()`
removed `len()`, `is_empty()`, `capacity()`, `push()`, `reserve()`, `clear()`, `values()`
added `set()`, `get()`

### `DynamicUniformVec` -> `DynamicUniformBuffer`

renamed `uniform_buffer()` to `buffer()`
removed `capacity()`, `reserve()`


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-05-18 21:09:21 +00:00
Aron Derenyi
2e8dfc02ef Fixing confusing near and far fields in Camera (#4457)
# Objective

- Fixes #4456 

## Solution

- Removed the `near` and `far` fields from the camera and the views.

---

## Changelog

- Removed the `near` and `far` fields from the camera and the views.
- Removed the `ClusterFarZMode::CameraFarPlane` far z mode.

## Migration Guide

- Cameras no longer accept near and far values during initialization
- `ClusterFarZMode::Constant` should be used with the far value instead of `ClusterFarZMode::CameraFarPlane`
2022-05-16 16:37:33 +00:00
Dusty DeWeese
82d849d3dc Add support for vertex colors (#4528)
# Objective

Add support for vertex colors

## Solution

This change is modeled after how vertex tangents are handled, so the shader is conditionally compiled with vertex color support if the mesh has the corresponding attribute set.

Vertex colors are multiplied by the base color. I'm not sure if this is the best for all cases, but may be useful for modifying vertex colors without creating a new mesh.

I chose `VertexFormat::Float32x4`, but I'd prefer 16-bit floats if/when support is added.

## Changelog

### Added
- Vertex colors can be specified using the `Mesh::ATTRIBUTE_COLOR` mesh attribute.
2022-05-05 00:46:32 +00:00
Robert Swain
479f43bbf3 Filter material handles on extraction (#4178)
# Objective

- While optimising many_cubes, I noticed that all material handles are extracted regardless of whether the entity to which the handle belongs is visible or not. As such >100k handles are extracted when only <20k are visible.

## Solution

- Only extract material handles of visible entities.
- This improves `many_cubes -- sphere` from ~42fps to ~48fps. It reduces not only the extraction time but also system commands time. `Handle<StandardMaterial>` extraction and its system commands went from 0.522ms + 3.710ms respectively, to 0.267ms + 0.227ms an 88% reduction for this system for this case. It's very view dependent but...
2022-05-03 18:28:04 +00:00
Christopher Durham
3d4e0066f4 Move float_ord from bevy_core to bevy_utils (#4189)
# Objective

Reduce the catch-all grab-bag of functionality in bevy_core by moving FloatOrd to bevy_utils.

A step in addressing #2931 and splitting bevy_core into more specific locations.

## Solution

Move FloatOrd into bevy_utils. Fix the compile errors.

As a result, bevy_core_pipeline, bevy_pbr, bevy_sprite, bevy_text, and bevy_ui no longer depend on bevy_core (they were only using it for `FloatOrd` previously).
2022-04-27 18:02:05 +00:00
Aevyrie
4aa56050b6 Add infallible resource getters for WorldCell (#4104)
# Objective

- Eliminate all `worldcell.get_resource().unwrap()` cases.
- Provide helpful messages on panic.

## Solution

- Adds infallible resource getters to `WorldCell`, mirroring `World`.
2022-04-25 23:19:13 +00:00
KDecay
7a7f097485 Move Size to bevy_ui (#4285)
# Objective

- Related #4276.
- Part of the splitting process of #3503.

## Solution

- Move `Size` to `bevy_ui`.

## Reasons

- `Size` is only needed in `bevy_ui` (because it needs to use `Val` instead of `f32`), but it's also used as a worse `Vec2`  replacement in other areas.
- `Vec2` is more powerful than `Size` so it should be used whenever possible.
- Discussion in #3503.

## Changelog

### Changed

- The `Size` type got moved from `bevy_math` to `bevy_ui`.

## Migration Guide

- The `Size` type got moved from `bevy::math` to `bevy::ui`. To migrate you just have to import `bevy::ui::Size` instead of `bevy::math::Math` or use the `bevy::prelude` instead.

Co-authored-by: KDecay <KDecayMusic@protonmail.com>
2022-04-25 13:54:46 +00:00
Robert Swain
c5963b4fd5 Use storage buffers for clustered forward point lights (#3989)
# Objective

- Make use of storage buffers, where they are available, for clustered forward bindings to support far more point lights in a scene
- Fixes #3605 
- Based on top of #4079 

This branch on an M1 Max can keep 60fps with about 2150 point lights of radius 1m in the Sponza scene where I've been testing. The bottleneck is mostly assigning lights to clusters which grows faster than linearly (I think 1000 lights was about 1.5ms and 5000 was 7.5ms). I have seen papers and presentations leveraging compute shaders that can get this up to over 1 million. That said, I think any further optimisations should probably be done in a separate PR.

## Solution

- Add `RenderDevice` to the `Material` and `SpecializedMaterial` trait `::key()` functions to allow setting flags on the keys depending on feature/limit availability
- Make `GpuPointLights` and `ViewClusterBuffers` into enums containing `UniformVec` and `StorageBuffer` variants. Implement the necessary API on them to make usage the same for both cases, and the only difference is at initialisation time.
- Appropriate shader defs in the shader code to handle the two cases

## Context on some decisions / open questions

- I'm using `max_storage_buffers_per_shader_stage >= 3` as a check to see if storage buffers are supported. I was thinking about diving into 'binding resource management' but it feels like we don't have enough use cases to understand the problem yet, and it is mostly a separate concern to this PR, so I think it should be handled separately.
- Should `ViewClusterBuffers` and `ViewClusterBindings` be merged, duplicating the count variables into the enum variants?


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-04-07 16:16:35 +00:00
François
8e864fdd18 can specify an anchor for a sprite (#3463)
# Objective

- Fixes #1616, fixes #2225
- Let user specify an anchor for a sprite

## Solution

- Add an enum for an anchor point for most common values, with a variant for a custom point
- Defaults to Center to not change current behaviour


Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
2022-04-04 22:09:59 +00:00
Chris Russell
2b35dbabfd impl Reflect and Debug for Mesh2dHandle (#4368)
# Objective

An entity spawned with `MaterialMesh2dBundle<M>` cannot be saved and spawned using `DynamicScene` because the `Mesh2dHandle` component does not `impl Reflect`.  

## Solution

Add `#[derive(Reflect)]` and `#[reflect(Component)]` to `Mesh2dHandle`, and call `register_type` in `SpritePlugin`.  Also add `#[derive(Debug)]` since I'm touching the `derive`s anyway.
2022-03-30 19:56:17 +00:00
François
f6bc9a022d Sprites - keep color as 4 f32 (#4361)
# Objective

- Fix #4356

## Solution

- Do not reduce the color of sprites to 4 u8
2022-03-30 19:38:24 +00:00
Rob Parrett
7ff3d876fa Clean up duplicated color conversion code (#4360)
# Objective

Cleans up some duplicated color -> u32 conversion code in `bevy_sprite` and `bevy_ui`

## Solution

Use `as_linear_rgba_u32` which was added recently by #4088
2022-03-29 23:03:22 +00:00
Kurt Kühnert
9e450f2827 Compute Pipeline Specialization (#3979)
# Objective

- Fixes #3970
- To support Bevy's shader abstraction(shader defs, shader imports and hot shader reloading) for compute shaders, I have followed carts advice and change the `PipelinenCache` to accommodate both compute and render pipelines.

## Solution

- renamed `RenderPipelineCache` to `PipelineCache`
- Cached Pipelines are now represented by an enum (render, compute)
- split the `SpecializedPipelines` into `SpecializedRenderPipelines` and `SpecializedComputePipelines`
- updated the game of life example

## Open Questions

- should `SpecializedRenderPipelines` and `SpecializedComputePipelines` be merged and how would we do that?
- should the `get_render_pipeline` and `get_compute_pipeline` methods be merged?
- is pipeline specialization for different entry points a good pattern




Co-authored-by: Kurt Kühnert <51823519+Ku95@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-03-23 00:27:26 +00:00
Boxy
024d98457c yeet unsound lifetime annotations on Query methods (#4243)
# Objective
Continuation of #2964 (I really should have checked other methods when I made that PR)

yeet unsound lifetime annotations on `Query` methods.
Example unsoundness:
```rust
use bevy::prelude::*;

fn main() {
    App::new().add_startup_system(bar).add_system(foo).run();
}

pub fn bar(mut cmds: Commands) {
    let e = cmds.spawn().insert(Foo { a: 10 }).id();
    cmds.insert_resource(e);
}

#[derive(Component, Debug, PartialEq, Eq)]
pub struct Foo {
    a: u32,
}
pub fn foo(mut query: Query<&mut Foo>, e: Res<Entity>) {
    dbg!("hi");
    {
        let data: &Foo = query.get(*e).unwrap();
        let data2: Mut<Foo> = query.get_mut(*e).unwrap();
        assert_eq!(data, &*data2); // oops UB
    }

    {
        let data: &Foo = query.single();
        let data2: Mut<Foo> = query.single_mut();
        assert_eq!(data, &*data2); // oops UB
    }

    {
        let data: &Foo = query.get_single().unwrap();
        let data2: Mut<Foo> = query.get_single_mut().unwrap();
        assert_eq!(data, &*data2); // oops UB
    }

    {
        let data: &Foo = query.iter().next().unwrap();
        let data2: Mut<Foo> = query.iter_mut().next().unwrap();
        assert_eq!(data, &*data2); // oops UB
    }

    {
        let mut opt_data: Option<&Foo> = None;
        let mut opt_data_2: Option<Mut<Foo>> = None;
        query.for_each(|data| opt_data = Some(data));
        query.for_each_mut(|data| opt_data_2 = Some(data));
        assert_eq!(opt_data.unwrap(), &*opt_data_2.unwrap()); // oops UB
    }
    dbg!("bye");
}

```

## Solution
yeet unsound lifetime annotations on `Query` methods

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-03-22 02:49:41 +00:00
Robert Swain
0529f633f9 KTX2/DDS/.basis compressed texture support (#3884)
# Objective

- Support compressed textures including 'universal' formats (ETC1S, UASTC) and transcoding of them to 
- Support `.dds`, `.ktx2`, and `.basis` files

## Solution

- Fixes https://github.com/bevyengine/bevy/issues/3608 Look there for more details.
- Note that the functionality is all enabled through non-default features. If it is desirable to enable some by default, I can do that.
- The `basis-universal` crate, used for `.basis` file support and for transcoding, is built on bindings against a C++ library. It's not feasible to rewrite in Rust in a short amount of time. There are no Rust alternatives of which I am aware and it's specialised code. In its current state it doesn't support the wasm target, but I don't know for sure. However, it is possible to build the upstream C++ library with emscripten, so there is perhaps a way to add support for web too with some shenanigans.
- There's no support for transcoding from BasisLZ/ETC1S in KTX2 files as it was quite non-trivial to implement and didn't feel important given people could use `.basis` files for ETC1S.
2022-03-15 22:26:46 +00:00
Alice Cecile
557ab9897a Make get_resource (and friends) infallible (#4047)
# Objective

- In the large majority of cases, users were calling `.unwrap()` immediately after `.get_resource`.
- Attempting to add more helpful error messages here resulted in endless manual boilerplate (see #3899 and the linked PRs).

## Solution

- Add an infallible variant named `.resource` and so on.
- Use these infallible variants over `.get_resource().unwrap()` across the code base.

## Notes

I did not provide equivalent methods on `WorldCell`, in favor of removing it entirely in #3939.

## Migration Guide

Infallible variants of `.get_resource` have been added that implicitly panic, rather than needing to be unwrapped.

Replace `world.get_resource::<Foo>().unwrap()` with `world.resource::<Foo>()`.

## Impact

- `.unwrap` search results before: 1084
- `.unwrap` search results after: 942
- internal `unwrap_or_else` calls added: 4
- trivial unwrap calls removed from tests and code: 146
- uses of the new `try_get_resource` API: 11
- percentage of the time the unwrapping API was used internally: 93%
2022-02-27 22:37:18 +00:00
Carter Anderson
e369a8ad51 Mesh vertex buffer layouts (#3959)
This PR makes a number of changes to how meshes and vertex attributes are handled, which the goal of enabling easy and flexible custom vertex attributes:
* Reworks the `Mesh` type to use the newly added `VertexAttribute` internally
  * `VertexAttribute` defines the name, a unique `VertexAttributeId`, and a `VertexFormat`
  *  `VertexAttributeId` is used to produce consistent sort orders for vertex buffer generation, replacing the more expensive and often surprising "name based sorting"  
  * Meshes can be used to generate a `MeshVertexBufferLayout`, which defines the layout of the gpu buffer produced by the mesh. `MeshVertexBufferLayouts` can then be used to generate actual `VertexBufferLayouts` according to the requirements of a specific pipeline. This decoupling of "mesh layout" vs "pipeline vertex buffer layout" is what enables custom attributes. We don't need to standardize _mesh layouts_ or contort meshes to meet the needs of a specific pipeline. As long as the mesh has what the pipeline needs, it will work transparently. 
* Mesh-based pipelines now specialize on `&MeshVertexBufferLayout` via the new `SpecializedMeshPipeline` trait (which behaves like `SpecializedPipeline`, but adds `&MeshVertexBufferLayout`). The integrity of the pipeline cache is maintained because the `MeshVertexBufferLayout` is treated as part of the key (which is fully abstracted from implementers of the trait ... no need to add any additional info to the specialization key).    
* Hashing `MeshVertexBufferLayout` is too expensive to do for every entity, every frame. To make this scalable, I added a generalized "pre-hashing" solution to `bevy_utils`: `Hashed<T>` keys and `PreHashMap<K, V>` (which uses `Hashed<T>` internally) . Why didn't I just do the quick and dirty in-place "pre-compute hash and use that u64 as a key in a hashmap" that we've done in the past? Because its wrong! Hashes by themselves aren't enough because two different values can produce the same hash. Re-hashing a hash is even worse! I decided to build a generalized solution because this pattern has come up in the past and we've chosen to do the wrong thing. Now we can do the right thing! This did unfortunately require pulling in `hashbrown` and using that in `bevy_utils`, because avoiding re-hashes requires the `raw_entry_mut` api, which isn't stabilized yet (and may never be ... `entry_ref` has favor now, but also isn't available yet). If std's HashMap ever provides the tools we need, we can move back to that. Note that adding `hashbrown` doesn't increase our dependency count because it was already in our tree. I will probably break these changes out into their own PR.
* Specializing on `MeshVertexBufferLayout` has one non-obvious behavior: it can produce identical pipelines for two different MeshVertexBufferLayouts. To optimize the number of active pipelines / reduce re-binds while drawing, I de-duplicate pipelines post-specialization using the final `VertexBufferLayout` as the key.  For example, consider a pipeline that needs the layout `(position, normal)` and is specialized using two meshes: `(position, normal, uv)` and `(position, normal, other_vec2)`. If both of these meshes result in `(position, normal)` specializations, we can use the same pipeline! Now we do. Cool!

To briefly illustrate, this is what the relevant section of `MeshPipeline`'s specialization code looks like now:

```rust
impl SpecializedMeshPipeline for MeshPipeline {
    type Key = MeshPipelineKey;

    fn specialize(
        &self,
        key: Self::Key,
        layout: &MeshVertexBufferLayout,
    ) -> RenderPipelineDescriptor {
        let mut vertex_attributes = vec![
            Mesh::ATTRIBUTE_POSITION.at_shader_location(0),
            Mesh::ATTRIBUTE_NORMAL.at_shader_location(1),
            Mesh::ATTRIBUTE_UV_0.at_shader_location(2),
        ];

        let mut shader_defs = Vec::new();
        if layout.contains(Mesh::ATTRIBUTE_TANGENT) {
            shader_defs.push(String::from("VERTEX_TANGENTS"));
            vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(3));
        }

        let vertex_buffer_layout = layout
            .get_layout(&vertex_attributes)
            .expect("Mesh is missing a vertex attribute");
```

Notice that this is _much_ simpler than it was before. And now any mesh with any layout can be used with this pipeline, provided it has vertex postions, normals, and uvs. We even got to remove `HAS_TANGENTS` from MeshPipelineKey and `has_tangents` from `GpuMesh`, because that information is redundant with `MeshVertexBufferLayout`.

This is still a draft because I still need to:

* Add more docs
* Experiment with adding error handling to mesh pipeline specialization (which would print errors at runtime when a mesh is missing a vertex attribute required by a pipeline). If it doesn't tank perf, we'll keep it.
* Consider breaking out the PreHash / hashbrown changes into a separate PR.
* Add an example illustrating this change
* Verify that the "mesh-specialized pipeline de-duplication code" works properly

Please dont yell at me for not doing these things yet :) Just trying to get this in peoples' hands asap.

Alternative to #3120
Fixes #3030


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-02-23 23:21:13 +00:00
KDecay
544b6dfb86 Change default ColorMaterial color to white (#3981)
# Context

I wanted to add a `texture` to my `ColorMaterial` without explicitly adding a `color`. To do this I used `..Default::default()` which in turn gave me unexpected results. I was expecting that my texture would render without any color modifications, but to my surprise it got rendered in a purple tint (`Color::rgb(1.0, 0.0, 1.0)`). To fix this I had to explicitly define the `color` using `color: Color::WHITE`.

## What I wanted to use

```rust
commands
    .spawn_bundle(MaterialMesh2dBundle {
        mesh: mesh_handle.clone().into(),
        transform: Transform::default().with_scale(Vec3::splat(8.)),
        material: materials.add(ColorMaterial {
            texture: Some(texture_handle.clone()),
            ..Default::default() // here
        }),
        ..Default::default()
    })
```

![image](https://user-images.githubusercontent.com/75334794/154765141-4a8161ce-4ec8-4687-b7d5-18ddf1b58660.png)

## What I had to use instead

```rust
commands
    .spawn_bundle(MaterialMesh2dBundle {
        mesh: mesh_handle.clone().into(),
        transform: Transform::default().with_scale(Vec3::splat(8.)),
        material: materials.add(ColorMaterial {
            texture: Some(texture_handle.clone()),
            color: Color::WHITE, // here
        }),
        ..Default::default()
    })
```

![image](https://user-images.githubusercontent.com/75334794/154765225-f1508b41-9d5b-4f0c-af7b-e89c1a82d85b.png)
2022-02-19 22:12:13 +00:00
Carter Anderson
98938a8555 Internal Asset Hot Reloading (#3966)
Adds "hot reloading" of internal assets, which is normally not possible because they are loaded using `include_str` / direct Asset collection access.

This is accomplished via the following:
* Add a new `debug_asset_server` feature flag
* When that feature flag is enabled, create a second App with a second AssetServer that points to a configured location (by default the `crates` folder). Plugins that want to add hot reloading support for their assets can call the new `app.add_debug_asset::<T>()` and `app.init_debug_asset_loader::<T>()` functions.
* Load "internal" assets using the new `load_internal_asset` macro. By default this is identical to the current "include_str + register in asset collection" approach. But if the `debug_asset_server` feature flag is enabled, it will also load the asset dynamically in the debug asset server using the file path. It will then set up a correlation between the "debug asset" and the "actual asset" by listening for asset change events.

This is an alternative to #3673. The goal was to keep the boilerplate and features flags to a minimum for bevy plugin authors, and allow them to home their shaders near relevant code. 

This is a draft because I haven't done _any_ quality control on this yet. I'll probably rename things and remove a bunch of unwraps. I just got it working and wanted to use it to start a conversation.

Fixes #3660
2022-02-18 22:56:57 +00:00
Carter Anderson
e9f52b9dd2 Move import_path definitions into shader source (#3976)
This enables shaders to (optionally) define their import path inside their source. This has a number of benefits:

1. enables users to define their own custom paths directly in their assets
2. moves the import path "close" to the asset instead of centralized in the plugin definition, which seems "better" to me. 
3. makes "internal hot shader reloading" way more reasonable (see #3966)
4. logically opens the door to importing "parts" of a shader by defining "import_path blocks".

```rust
#define_import_path bevy_pbr::mesh_struct

struct Mesh {
    model: mat4x4<f32>;
    inverse_transpose_model: mat4x4<f32>;
    // 'flags' is a bit field indicating various options. u32 is 32 bits so we have up to 32 options.
    flags: u32;
};

let MESH_FLAGS_SHADOW_RECEIVER_BIT: u32 = 1u;
```
2022-02-18 21:54:03 +00:00
danieleades
d8974e7c3d small and mostly pointless refactoring (#2934)
What is says on the tin.

This has got more to do with making `clippy` slightly more *quiet* than it does with changing anything that might greatly impact readability or performance.

that said, deriving `Default` for a couple of structs is a nice easy win
2022-02-13 22:33:55 +00:00
Jakob Hellermann
d305e4f026 only use unique type UUIDs (#3579)
Out of curiosity I ran `rg -F -I '#[uuid = "' | sort` to see if there were any duplicate UUIDs, and they were. Now there aren't any.
2022-02-12 19:58:02 +00:00
devjobe
9a7852db0f Fix SetSpriteTextureBindGroup to use index (#3896)
# Objective

Fix `SetSpriteTextureBindGroup` to use index instead of hard coded 1.
Fixes #3895 

## Solution

1 -> I


Co-authored-by: devjobe <git@devjobe.com>
2022-02-08 23:18:11 +00:00
Loch Wansbrough
56b0e88b53 Add view transform to view uniform (#3885)
(cherry picked from commit de943381bd2a8b242c94db99e6c7bbd70006d7c3)

# Objective

The view uniform lacks view transform information. The inverse transform is currently provided but this is not sufficient if you do not have access to an `inverse` function (such as in WGSL).

## Solution

Grab the view transform, put it in the view uniform, use the same matrix to compute the inverse as well.
2022-02-08 04:14:34 +00:00
Horváth Bálint
c285a69f76 Add the Inside version to the Collision enum (#2489)
# Objective
I think the 'collide' function inside the 'bevy/crates/bevy_sprite/src/collide_aabb.rs' file should return 'Some' if the two rectangles are fully overlapping or one is inside the other. This can happen on low-end machines when a lot of time passes between two frames because of a stutter, so a bullet for example gets inside its target. I can also think of situations where this is a valid use case even without stutters. 

## Solution
I added an 'Inside' version to the Collision enum declared in the file. And I use it, when the two rectangles are overlapping, but we can't say from which direction it happened. I gave a 'penetration depth' of minus Infinity to these cases, so that this variant only appears, when the two rectangles overlap from each side fully. I am not sure if this is the right thing to do.

Fixes #1980

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-02-01 22:40:25 +00:00
Hennadii Chernyshchyk
458cb7a9e9 Add headless mode (#3439)
# Objective

In this PR I added the ability to opt-out graphical backends. Closes #3155.

## Solution

I turned backends into `Option` ~~and removed panicking sub app API to force users handle the error (was suggested by `@cart`)~~.
2022-01-08 10:39:43 +00:00
davier
c2da7800e3 Add 2d meshes and materials (#3460)
# Objective

The current 2d rendering is specialized to render sprites, we need a generic way to render 2d items, using meshes and materials like we have for 3d.

## Solution

I cloned a good part of `bevy_pbr` into `bevy_sprite/src/mesh2d`, removed lighting and pbr itself, adapted it to 2d rendering, added a `ColorMaterial`, and modified the sprite rendering to break batches around 2d meshes.

~~The PR is a bit crude; I tried to change as little as I could in both the parts copied from 3d and the current sprite rendering to make reviewing easier. In the future, I expect we could make the sprite rendering a normal 2d material, cleanly integrated with the rest.~~ _edit: see <https://github.com/bevyengine/bevy/pull/3460#issuecomment-1003605194>_

## Remaining work

- ~~don't require mesh normals~~ _out of scope_
- ~~add an example~~ _done_
- support 2d meshes & materials in the UI?
- bikeshed names (I didn't think hard about naming, please check if it's fine)

## Remaining questions

- ~~should we add a depth buffer to 2d now that there are 2d meshes?~~ _let's revisit that when we have an opaque render phase_
- ~~should we add MSAA support to the sprites, or remove it from the 2d meshes?~~ _I added MSAA to sprites since it's really needed for 2d meshes_
- ~~how to customize vertex attributes?~~ _#3120_



Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-01-08 01:29:08 +00:00
Michael Dorst
455ab65bce Fix doc_markdown lints in bevy_sprite (#3480)
#3457 adds the `doc_markdown` clippy lint, which checks doc comments to make sure code identifiers are escaped with backticks. This causes a lot of lint errors, so this is one of a number of PR's that will fix those lint errors one crate at a time.

This PR fixes lints in the `bevy_sprite` crate.
2021-12-29 18:49:43 +00:00
François
585d0b8467 remove some mut in queries (#3437)
# Objective

- While reading code, found some queries that are `mut` and not used as such

## Solution

- Remove `mut` when possible


Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
2021-12-26 05:39:46 +00:00
Jakob Hellermann
adb3ad399c make sub_app return an &App and add sub_app_mut() -> &mut App (#3309)
It's sometimes useful to have a reference to an app a sub app at the same time, which is only possible with an immutable reference.
2021-12-24 06:57:30 +00:00
François
79d36e7c28 Prepare crevice for vendored release (#3394)
# Objective

- Our crevice is still called "crevice", which we can't use for a release
- Users would need to use our "crevice" directly to be able to use the derive macro

## Solution

- Rename crevice to bevy_crevice, and crevice-derive to bevy-crevice-derive
- Re-export it from bevy_render, and use it from bevy_render everywhere
- Fix derive macro to work either from bevy_render, from bevy_crevice, or from bevy

## Remaining

- It is currently re-exported as `bevy::render::bevy_crevice`, is it the path we want?
- After a brief suggestion to Cart, I changed the version to follow Bevy version instead of crevice, do we want that?
- Crevice README.md need to be updated
- in the `Cargo.toml`, there are a few things to change. How do we want to change them? How do we keep attributions to original Crevice?
```
authors = ["Lucien Greathouse <me@lpghatguy.com>"]
documentation = "https://docs.rs/crevice"
homepage = "https://github.com/LPGhatguy/crevice"
repository = "https://github.com/LPGhatguy/crevice"
```


Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-12-23 22:49:12 +00:00
François
c61fbcb7db Only bevy_render should depend directly on wgpu (#3393)
# Objective

- Only bevy_render should depend directly on wgpu
- This helps to make sure bevy_render re-exports everything needed from wgpu

## Solution

- Remove bevy_pbr, bevy_sprite and bevy_ui dependency on wgpu


Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
2021-12-20 20:50:52 +00:00
davier
340957994d Implement the Overflow::Hidden style property for UI (#3296)
# Objective

This PR implements the `overflow` style property in `bevy_ui`. When set to `Overflow::Hidden`, the children of that node are clipped so that overflowing parts are not rendered. This is an important building block for UI widgets.

## Solution

Clipping is done on the CPU so that it does not break batching.

The clip regions update was implemented as a separate system for clarity, but it could be merged with the other UI systems to avoid doing an additional tree traversal. (I don't think it's important until we fix the layout performance issues though).

A scrolling list was added to the `ui_pipelined` example to showcase `Overflow::Hidden`. For the sake of simplicity, it can only be scrolled with a mouse.
2021-12-19 05:44:28 +00:00
Vabka
9a89295a17 Update wgpu to 0.12 and naga to 0.8 (#3375)
# Objective

Fixes #3352
Fixes #3208

## Solution

- Update wgpu to 0.12
- Update naga to 0.8
- Resolve compilation errors
- Remove [[block]] from WGSL shaders (because it is depracated and now wgpu cant parse it)
- Replace `elseif` with `else if` in pbr.wgsl
2021-12-19 03:03:06 +00:00
Carter Anderson
ffecb05a0a Replace old renderer with new renderer (#3312)
This makes the [New Bevy Renderer](#2535) the default (and only) renderer. The new renderer isn't _quite_ ready for the final release yet, but I want as many people as possible to start testing it so we can identify bugs and address feedback prior to release.

The examples are all ported over and operational with a few exceptions:

* I removed a good portion of the examples in the `shader` folder. We still have some work to do in order to make these examples possible / ergonomic / worthwhile: #3120 and "high level shader material plugins" are the big ones. This is a temporary measure.
* Temporarily removed the multiple_windows example: doing this properly in the new renderer will require the upcoming "render targets" changes. Same goes for the render_to_texture example.
* Removed z_sort_debug: entity visibility sort info is no longer available in app logic. we could do this on the "render app" side, but i dont consider it a priority.
2021-12-14 03:58:23 +00:00
François
c6fec1f0c2 Fix clippy lints for 1.57 (#3238)
# Objective

- New clippy lints with rust 1.57 are failing

## Solution

- Fixed clippy lints following suggestions
- I ignored clippy in old renderer because there was many and it will be removed soon
2021-12-02 23:40:37 +00:00
Carter Anderson
8009af3879 Merge New Renderer 2021-11-22 23:57:42 -08:00
François
a2ea9279b2 use correct size of pixel instead of 4 (#2977)
# Objective

- Fixes #2919 
- Initial pixel was hard coded and not dependent on texture format
- Replace #2920 as I noticed this needed to be done also on pipeline rendering branch

## Solution

- Replace the hard coded pixel with one using the texture pixel size
2021-10-28 23:10:45 +00:00
Carter Anderson
43e8a156fb Upgrade to wgpu 0.11 (#2933)
Upgrades both the old and new renderer to wgpu 0.11 (and naga 0.7). This builds on @zicklag's work here #2556.

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-10-08 19:55:24 +00:00
Paweł Grabarz
07ed1d053e Implement and require #[derive(Component)] on all component structs (#2254)
This implements the most minimal variant of #1843 - a derive for marker trait. This is a prerequisite to more complicated features like statically defined storage type or opt-out component reflection.

In order to make component struct's purpose explicit and avoid misuse, it must be annotated with `#[derive(Component)]` (manual impl is discouraged for compatibility). Right now this is just a marker trait, but in the future it might be expanded. Making this change early allows us to make further changes later without breaking backward compatibility for derive macro users.

This already prevents a lot of issues, like using bundles in `insert` calls. Primitive types are no longer valid components as well. This can be easily worked around by adding newtype wrappers and deriving `Component` for them.

One funny example of prevented bad code (from our own tests) is when an newtype struct or enum variant is used. Previously, it was possible to write `insert(Newtype)` instead of `insert(Newtype(value))`. That code compiled, because function pointers (in this case newtype struct constructor) implement `Send + Sync + 'static`, so we allowed them to be used as components. This is no longer the case and such invalid code will trigger a compile error.


Co-authored-by: = <=>
Co-authored-by: TheRawMeatball <therawmeatball@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-10-03 19:23:44 +00:00
Mike
99199338ad add_texture returns index to texture (#2864)
If you need to build a texture atlas from an already created texture that is not match a grid, you need to use new_empty and add_texture to create it.  However it is not straight forward to get the index to be used with TextureAtlasSprite. add_texture should be changed to return the index to the texture.

Currently you can do something like this:

```rs
let texture = asset_server.load::<Texture>::("texture.png");
let texture_atlas = TextureAtlas::new_empty(texture, Vec2::new(40.0, 40.0));

texture_atlas.add_texture(Rect { 
  min: Vec2::new(20.0, 20.0),
  max: Vec2::new(40.0, 40.0),
});
let index = (texture_atlas.len() - 1) as u32;

let texture_atlas_sprite = TextureAtlasSprite {
  index,
  Default::default()
};
```

But this is more clear
```rs
let index = texture_atlas.add_texture(Rect { 
  min: Vec2::new(20.0, 20.0),
  max: Vec2::new(40.0, 40.0),
});
```
2021-09-28 20:54:16 +00:00
Lucas Kent
c5717b5a91 Document collide args (#2721)
Fixes https://github.com/bevyengine/bevy/issues/2720#issuecomment-904623168

Possibly we should omit the extra bit in brackets, not sure if its warranted.
2021-08-24 18:07:51 +00:00
François
b724a0f586 Down with the system! (#2496)
# Objective

- Remove all the `.system()` possible.
- Check for remaining missing cases.

## Solution

- Remove all `.system()`, fix compile errors
- 32 calls to `.system()` remains, mostly internals, the few others should be removed after #2446
2021-07-27 23:42:36 +00:00
bjorn3
6d6bc2a8b4 Merge AppBuilder into App (#2531)
This is extracted out of eb8f973646476b4a4926ba644a77e2b3a5772159 and includes some additional changes to remove all references to AppBuilder and fix examples that still used App::build() instead of App::new(). In addition I didn't extract the sub app feature as it isn't ready yet.

You can use `git diff --diff-filter=M eb8f973646476b4a4926ba644a77e2b3a5772159` to find all differences in this PR. The `--diff-filtered=M` filters all files added in the original commit but not in this commit away.

Co-Authored-By: Carter Anderson <mcanders1@gmail.com>
2021-07-27 20:21:06 +00:00
Carter Anderson
4ac2ed7cc6 pipelined rendering proof of concept 2021-07-24 16:43:37 -07:00
Gilbert Röhrbein
10b0b1ad40 docs: add hint that texture atlas padding is between tiles (#2447)
I struggled with some sprite sheet animation which was like drifting from right to left.
This PR documents the current behaviour that the padding which is used on slicing a texture into a texture atlas, is assumed to be only between tiles. In my case I had some padding also on the right side of the texture.
2021-07-12 20:29:28 +00:00
François
c2722f713a expose texture/image conversions as From/TryFrom (#2175)
fixes #2169 

Instead of having custom methods with reduced visibility, implement `From<image::DynamicImage> for Texture` and `TryFrom<Texture> for image::DynamicImage`
2021-06-08 02:26:51 +00:00
Paweł Grabarz
189df30a83 use bytemuck crate instead of Byteable trait (#2183)
This gets rid of multiple unsafe blocks that we had to maintain ourselves, and instead depends on library that's commonly used and supported by the ecosystem. We also get support for glam types for free.

There is still some things to clear up with the `Bytes` trait, but that is a bit more substantial change and can be done separately. Also there are already separate efforts to use `crevice` crate, so I've just added that as a TODO.
2021-05-17 22:29:10 +00:00
Jonas Matser
d1f40148fd Allows a number of clippy lints and fixes 2 (#1999)
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-05-14 20:37:32 +00:00
Federico Rinaldi
b4f80c29ee Add module level documentation for collide_aabb (#2152)
Related to #2105.

Doc comments are present on the `collide` function, but not on the module level.
2021-05-14 18:45:31 +00:00
jak6jak
809877ade6 official 2D examples linked in rustdoc (#2081)
I linked to examples within the rustdoc for the 2d examples as per issue #1934
2021-05-05 18:45:49 +00:00
François
afaf4ad3da update for wgpu 0.8 (#1959)
Changes to get Bevy to compile with wgpu master.

With this, on a Mac:
* 2d examples look fine
* ~~3d examples crash with an error specific to metal about a compilation error~~
* 3d examples work fine after enabling feature `wgpu/cross`


Feature `wgpu/cross` seems to be needed only on some platforms, not sure how to know which. It was introduced in https://github.com/gfx-rs/wgpu-rs/pull/826
2021-05-02 20:45:25 +00:00
Lucas Rocha
b1ed28e17e Hide re-exported docs (#1985)
Solves #1957 

Co-authored-by: caelumLaron <caelum.laron@gmail.com>
2021-04-27 18:29:33 +00:00
Carter Anderson
bf053218bf Disable frustum culling and add warning (#1761)
Frustum culling has some pretty major gaps right now (such as not supporting sprite transform scaling and not taking into account projections). It should be disabled by default until it provides a solid experience across all bevy use cases.
2021-03-25 22:05:28 +00:00
Aaron Winter
b65ec82d46 Frustum Culling (for Sprites) (#1492)
This PR adds two systems to the sprite module that culls Sprites and AtlasSprites that are not within the camera's view.
This is achieved by removing / adding a new  `Viewable` Component dynamically.

Some of the render queries now use a `With<Viewable>` filter to only process the sprites that are actually on screen, which improves performance drastically for scene swith a large amount of sprites off-screen.

https://streamable.com/vvzh2u

This scene shows a map with a 320x320 tiles, with a grid size of 64p.
This is exactly 102400 Sprites in the entire scene.

Without this PR, this scene runs with 1 to 4 FPS.

With this PR..
.. at 720p, there are around 600 visible sprites and runs at ~215 FPS
.. at 1440p there are around 2000 visible sprites and runs at ~135 FPS

The Systems this PR adds take around 1.2ms (with 100K+ sprites in the scene)

Note:
This is only implemented for Sprites and AtlasTextureSprites.
There is no culling for 3D in this PR.

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-03-24 21:29:53 +00:00
François
9ae56e8604 update for rectangle-pack 0.2.1 (fix CI) (#1741)
crate `rectangle-pack` just published version 0.2.1 with a breaking change: c9ecd58f7a

I also opened an issue on their repo so that they are aware of it: https://github.com/chinedufn/rectangle-pack/issues/3
2021-03-23 19:07:33 +00:00
Jonas Matser
cd8025d0a7 Remove remaining camerapos bindings (#1708)
Fixes #1706

@JeanMertz already solved it. I just ran all examples and tests.
2021-03-22 18:10:35 +00:00
Jonas Matser
45b2db7070 Rebase of existing PBR work (#1554)
This is a rebase of StarArawns PBR work from #261 with IngmarBitters work from #1160 cherry-picked on top.

I had to make a few minor changes to make some intermediate commits compile and the end result is not yet 100% what I expected, so there's a bit more work to do.

Co-authored-by: John Mitchell <toasterthegamer@gmail.com>
Co-authored-by: Ingmar Bitter <ingmar.bitter@gmail.com>
2021-03-20 03:22:33 +00:00
Carter Anderson
dd4a196329 Flexible camera bindings (#1689)
Alternative to #1203 and #1611

Camera bindings have historically been "hacked in". They were _required_ in all shaders and only supported a single Mat4. PBR (#1554) requires the CameraView matrix, but adding this using the "hacked" method forced users to either include all possible camera data in a single binding (#1203) or include all possible bindings (#1611).

This approach instead assigns each "active camera" its own RenderResourceBindings, which are populated by CameraNode. The PassNode then retrieves (and initializes) the relevant bind groups for all render pipelines used by visible entities. 

* Enables any number of camera bindings , including zero (with any set or binding number ... set 0 should still be used to avoid rebinds).
* Renames Camera binding to CameraViewProj
* Adds CameraView binding
2021-03-19 20:36:40 +00:00
François
107dd73687 update ColorMaterial when Texture changed (#1461)
fixes #1161, fixes #1243

this adds two systems:
- first is keeping an hashmap of textures and their containing color materials, then listening to events on textures to select color materials that should be updated
- second is chained to send a modified event for all color materials that need updating
2021-03-17 19:53:24 +00:00
François
75ae20dc4a use std clamp instead of Bevy's (#1644)
Rust std's `clamp` has been stabilised in 1.50: https://github.com/rust-lang/rust/issues/44095

This is already the minimum supported version, so no change there 👍
2021-03-13 18:07:14 +00:00
Carter Anderson
b17f8a4bce format comments (#1612)
Uses the new unstable comment formatting features added to rustfmt.toml.
2021-03-11 00:27:30 +00:00
Nathan Stocks
faeccd7a09 Reflection cleanup (#1536)
This is an effort to provide the correct `#[reflect_value(...)]` attributes where they are needed.  

Supersedes #1533 and resolves #1528.

---

I am working under the following assumptions (thanks to @bjorn3 and @Davier for advice here):

- Any `enum` that derives `Reflect` and one or more of { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } needs a `#[reflect_value(...)]` attribute containing the same subset of { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } that is present on the derive.
- Same as above for `struct` and `#[reflect(...)]`, respectively.
- If a `struct` is used as a component, it should also have `#[reflect(Component)]`
- All reflected types should be registered in their plugins

I treated the following as components (added `#[reflect(Component)]` if necessary):
- `bevy_render`
  - `struct RenderLayers`
- `bevy_transform`
  - `struct GlobalTransform`
  - `struct Parent`
  - `struct Transform`
- `bevy_ui`
  - `struct Style`

Not treated as components:
- `bevy_math`
  - `struct Size<T>`
  - `struct Rect<T>`
  - Note: The updates for `Size<T>` and `Rect<T>` in `bevy::math::geometry` required using @Davier's suggestion to add `+ PartialEq` to the trait bound. I then registered the specific types used over in `bevy_ui` such as `Size<Val>`, etc. in `bevy_ui`'s plugin, since `bevy::math` does not contain a plugin.
- `bevy_render`
  - `struct Color`
  - `struct PipelineSpecialization`
  - `struct ShaderSpecialization`
  - `enum PrimitiveTopology`
  - `enum IndexFormat`

Not Addressed:
- I am not searching for components in Bevy that are _not_ reflected. So if there are components that are not reflected that should be reflected, that will need to be figured out in another PR.
- I only added `#[reflect(...)]` or `#[reflect_value(...)]` entries for the set of four traits { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } _if they were derived via `#[derive(...)]`_. I did not look for manual trait implementations of the same set of four, nor did I consider any traits outside the four.  Are those other possibilities something that needs to be looked into?
2021-03-09 23:39:41 +00:00
François
58d687b86d fix flip of contributor bird (#1573)
Since 89217171b4, some birds in example `contributors` where not colored.

Fix is to use `flip_x` of `Sprite` instead of setting `transform.scale.x` to `-1` as described in #1407.


It may be an unintended side effect, as now we can't easily display a colored sprite while changing it's scale from `1` to `-1`, we would have to change it's scale from `1` to `0`, then flip it, then change scale from `0` to `1`.
2021-03-07 19:50:19 +00:00
Carter Anderson
3a2a68852c Bevy ECS V2 (#1525)
# Bevy ECS V2

This is a rewrite of Bevy ECS (basically everything but the new executor/schedule, which are already awesome). The overall goal was to improve the performance and versatility of Bevy ECS. Here is a quick bulleted list of changes before we dive into the details:

* Complete World rewrite
* Multiple component storage types:
    * Tables: fast cache friendly iteration, slower add/removes (previously called Archetypes)
    * Sparse Sets: fast add/remove, slower iteration
* Stateful Queries (caches query results for faster iteration. fragmented iteration is _fast_ now)
* Stateful System Params (caches expensive operations. inspired by @DJMcNab's work in #1364)
* Configurable System Params (users can set configuration when they construct their systems. once again inspired by @DJMcNab's work)
* Archetypes are now "just metadata", component storage is separate
* Archetype Graph (for faster archetype changes)
* Component Metadata
    * Configure component storage type
    * Retrieve information about component size/type/name/layout/send-ness/etc
    * Components are uniquely identified by a densely packed ComponentId
    * TypeIds are now totally optional (which should make implementing scripting easier)
* Super fast "for_each" query iterators
* Merged Resources into World. Resources are now just a special type of component
* EntityRef/EntityMut builder apis (more efficient and more ergonomic)
* Fast bitset-backed `Access<T>` replaces old hashmap-based approach everywhere
* Query conflicts are determined by component access instead of archetype component access (to avoid random failures at runtime)
    * With/Without are still taken into account for conflicts, so this should still be comfy to use
* Much simpler `IntoSystem` impl
* Significantly reduced the amount of hashing throughout the ecs in favor of Sparse Sets (indexed by densely packed ArchetypeId, ComponentId, BundleId, and TableId)
* Safety Improvements
    * Entity reservation uses a normal world reference instead of unsafe transmute
    * QuerySets no longer transmute lifetimes
    * Made traits "unsafe" where relevant
    * More thorough safety docs
* WorldCell
    * Exposes safe mutable access to multiple resources at a time in a World 
* Replaced "catch all" `System::update_archetypes(world: &World)` with `System::new_archetype(archetype: &Archetype)`
* Simpler Bundle implementation
* Replaced slow "remove_bundle_one_by_one" used as fallback for Commands::remove_bundle with fast "remove_bundle_intersection"
* Removed `Mut<T>` query impl. it is better to only support one way: `&mut T` 
* Removed with() from `Flags<T>` in favor of `Option<Flags<T>>`, which allows querying for flags to be "filtered" by default 
* Components now have is_send property (currently only resources support non-send)
* More granular module organization
* New `RemovedComponents<T>` SystemParam that replaces `query.removed::<T>()`
* `world.resource_scope()` for mutable access to resources and world at the same time
* WorldQuery and QueryFilter traits unified. FilterFetch trait added to enable "short circuit" filtering. Auto impled for cases that don't need it
* Significantly slimmed down SystemState in favor of individual SystemParam state
* System Commands changed from `commands: &mut Commands` back to `mut commands: Commands` (to allow Commands to have a World reference)

Fixes #1320

## `World` Rewrite

This is a from-scratch rewrite of `World` that fills the niche that `hecs` used to. Yes, this means Bevy ECS is no longer a "fork" of hecs. We're going out our own!

(the only shared code between the projects is the entity id allocator, which is already basically ideal)

A huge shout out to @SanderMertens (author of [flecs](https://github.com/SanderMertens/flecs)) for sharing some great ideas with me (specifically hybrid ecs storage and archetype graphs). He also helped advise on a number of implementation details.

## Component Storage (The Problem)

Two ECS storage paradigms have gained a lot of traction over the years:

* **Archetypal ECS**: 
    * Stores components in "tables" with static schemas. Each "column" stores components of a given type. Each "row" is an entity.
    * Each "archetype" has its own table. Adding/removing an entity's component changes the archetype.
    * Enables super-fast Query iteration due to its cache-friendly data layout
    * Comes at the cost of more expensive add/remove operations for an Entity's components, because all components need to be copied to the new archetype's "table"
* **Sparse Set ECS**:
    * Stores components of the same type in densely packed arrays, which are sparsely indexed by densely packed unsigned integers (Entity ids)
    * Query iteration is slower than Archetypal ECS because each entity's component could be at any position in the sparse set. This "random access" pattern isn't cache friendly. Additionally, there is an extra layer of indirection because you must first map the entity id to an index in the component array.
    * Adding/removing components is a cheap, constant time operation 

Bevy ECS V1, hecs, legion, flec, and Unity DOTS are all "archetypal ecs-es". I personally think "archetypal" storage is a good default for game engines. An entity's archetype doesn't need to change frequently in general, and it creates "fast by default" query iteration (which is a much more common operation). It is also "self optimizing". Users don't need to think about optimizing component layouts for iteration performance. It "just works" without any extra boilerplate.

Shipyard and EnTT are "sparse set ecs-es". They employ "packing" as a way to work around the "suboptimal by default" iteration performance for specific sets of components. This helps, but I didn't think this was a good choice for a general purpose engine like Bevy because:

1. "packs" conflict with each other. If bevy decides to internally pack the Transform and GlobalTransform components, users are then blocked if they want to pack some custom component with Transform.
2. users need to take manual action to optimize

Developers selecting an ECS framework are stuck with a hard choice. Select an "archetypal" framework with "fast iteration everywhere" but without the ability to cheaply add/remove components, or select a "sparse set" framework to cheaply add/remove components but with slower iteration performance.

## Hybrid Component Storage (The Solution)

In Bevy ECS V2, we get to have our cake and eat it too. It now has _both_ of the component storage types above (and more can be added later if needed):

* **Tables** (aka "archetypal" storage)
    * The default storage. If you don't configure anything, this is what you get
    * Fast iteration by default
    * Slower add/remove operations
* **Sparse Sets**
    * Opt-in
    * Slower iteration
    * Faster add/remove operations

These storage types complement each other perfectly. By default Query iteration is fast. If developers know that they want to add/remove a component at high frequencies, they can set the storage to "sparse set":

```rust
world.register_component(
    ComponentDescriptor:🆕:<MyComponent>(StorageType::SparseSet)
).unwrap();
```

## Archetypes

Archetypes are now "just metadata" ... they no longer store components directly. They do store:

* The `ComponentId`s of each of the Archetype's components (and that component's storage type)
    * Archetypes are uniquely defined by their component layouts
    * For example: entities with "table" components `[A, B, C]` _and_ "sparse set" components `[D, E]` will always be in the same archetype.
* The `TableId` associated with the archetype
    * For now each archetype has exactly one table (which can have no components),
    * There is a 1->Many relationship from Tables->Archetypes. A given table could have any number of archetype components stored in it:
        * Ex: an entity with "table storage" components `[A, B, C]` and "sparse set" components `[D, E]` will share the same `[A, B, C]` table as an entity with `[A, B, C]` table component and `[F]` sparse set components.
        * This 1->Many relationship is how we preserve fast "cache friendly" iteration performance when possible (more on this later)
* A list of entities that are in the archetype and the row id of the table they are in
* ArchetypeComponentIds
    * unique densely packed identifiers for (ArchetypeId, ComponentId) pairs
    * used by the schedule executor for cheap system access control
* "Archetype Graph Edges" (see the next section)  

## The "Archetype Graph"

Archetype changes in Bevy (and a number of other archetypal ecs-es) have historically been expensive to compute. First, you need to allocate a new vector of the entity's current component ids, add or remove components based on the operation performed, sort it (to ensure it is order-independent), then hash it to find the archetype (if it exists). And thats all before we get to the _already_ expensive full copy of all components to the new table storage.

The solution is to build a "graph" of archetypes to cache these results. @SanderMertens first exposed me to the idea (and he got it from @gjroelofs, who came up with it). They propose adding directed edges between archetypes for add/remove component operations. If `ComponentId`s are densely packed, you can use sparse sets to cheaply jump between archetypes.

Bevy takes this one step further by using add/remove `Bundle` edges instead of `Component` edges. Bevy encourages the use of `Bundles` to group add/remove operations. This is largely for "clearer game logic" reasons, but it also helps cut down on the number of archetype changes required. `Bundles` now also have densely-packed `BundleId`s. This allows us to use a _single_ edge for each bundle operation (rather than needing to traverse N edges ... one for each component). Single component operations are also bundles, so this is strictly an improvement over a "component only" graph.

As a result, an operation that used to be _heavy_ (both for allocations and compute) is now two dirt-cheap array lookups and zero allocations.

## Stateful Queries

World queries are now stateful. This allows us to:

1. Cache archetype (and table) matches
    * This resolves another issue with (naive) archetypal ECS: query performance getting worse as the number of archetypes goes up (and fragmentation occurs).
2. Cache Fetch and Filter state
    * The expensive parts of fetch/filter operations (such as hashing the TypeId to find the ComponentId) now only happen once when the Query is first constructed
3. Incrementally build up state
    * When new archetypes are added, we only process the new archetypes (no need to rebuild state for old archetypes)

As a result, the direct `World` query api now looks like this:

```rust
let mut query = world.query::<(&A, &mut B)>();
for (a, mut b) in query.iter_mut(&mut world) {
}
```

Requiring `World` to generate stateful queries (rather than letting the `QueryState` type be constructed separately) allows us to ensure that _all_ queries are properly initialized (and the relevant world state, such as ComponentIds). This enables QueryState to remove branches from its operations that check for initialization status (and also enables query.iter() to take an immutable world reference because it doesn't need to initialize anything in world).

However in systems, this is a non-breaking change. State management is done internally by the relevant SystemParam.

## Stateful SystemParams

Like Queries, `SystemParams` now also cache state. For example, `Query` system params store the "stateful query" state mentioned above. Commands store their internal `CommandQueue`. This means you can now safely use as many separate `Commands` parameters in your system as you want. `Local<T>` system params store their `T` value in their state (instead of in Resources). 

SystemParam state also enabled a significant slim-down of SystemState. It is much nicer to look at now.

Per-SystemParam state naturally insulates us from an "aliased mut" class of errors we have hit in the past (ex: using multiple `Commands` system params).

(credit goes to @DJMcNab for the initial idea and draft pr here #1364)

## Configurable SystemParams

@DJMcNab also had the great idea to make SystemParams configurable. This allows users to provide some initial configuration / values for system parameters (when possible). Most SystemParams have no config (the config type is `()`), but the `Local<T>` param now supports user-provided parameters:

```rust

fn foo(value: Local<usize>) {    
}

app.add_system(foo.system().config(|c| c.0 = Some(10)));
```

## Uber Fast "for_each" Query Iterators

Developers now have the choice to use a fast "for_each" iterator, which yields ~1.5-3x iteration speed improvements for "fragmented iteration", and minor ~1.2x iteration speed improvements for unfragmented iteration. 

```rust
fn system(query: Query<(&A, &mut B)>) {
    // you now have the option to do this for a speed boost
    query.for_each_mut(|(a, mut b)| {
    });

    // however normal iterators are still available
    for (a, mut b) in query.iter_mut() {
    }
}
```

I think in most cases we should continue to encourage "normal" iterators as they are more flexible and more "rust idiomatic". But when that extra "oomf" is needed, it makes sense to use `for_each`.

We should also consider using `for_each` for internal bevy systems to give our users a nice speed boost (but that should be a separate pr).

## Component Metadata

`World` now has a `Components` collection, which is accessible via `world.components()`. This stores mappings from `ComponentId` to `ComponentInfo`, as well as `TypeId` to `ComponentId` mappings (where relevant). `ComponentInfo` stores information about the component, such as ComponentId, TypeId, memory layout, send-ness (currently limited to resources), and storage type.

## Significantly Cheaper `Access<T>`

We used to use `TypeAccess<TypeId>` to manage read/write component/archetype-component access. This was expensive because TypeIds must be hashed and compared individually. The parallel executor got around this by "condensing" type ids into bitset-backed access types. This worked, but it had to be re-generated from the `TypeAccess<TypeId>`sources every time archetypes changed.

This pr removes TypeAccess in favor of faster bitset access everywhere. We can do this thanks to the move to densely packed `ComponentId`s and `ArchetypeComponentId`s.

## Merged Resources into World

Resources had a lot of redundant functionality with Components. They stored typed data, they had access control, they had unique ids, they were queryable via SystemParams, etc. In fact the _only_ major difference between them was that they were unique (and didn't correlate to an entity).

Separate resources also had the downside of requiring a separate set of access controls, which meant the parallel executor needed to compare more bitsets per system and manage more state.

I initially got the "separate resources" idea from `legion`. I think that design was motivated by the fact that it made the direct world query/resource lifetime interactions more manageable. It certainly made our lives easier when using Resources alongside hecs/bevy_ecs. However we already have a construct for safely and ergonomically managing in-world lifetimes: systems (which use `Access<T>` internally).

This pr merges Resources into World:

```rust
world.insert_resource(1);
world.insert_resource(2.0);
let a = world.get_resource::<i32>().unwrap();
let mut b = world.get_resource_mut::<f64>().unwrap();
*b = 3.0;
```

Resources are now just a special kind of component. They have their own ComponentIds (and their own resource TypeId->ComponentId scope, so they don't conflict wit components of the same type). They are stored in a special "resource archetype", which stores components inside the archetype using a new `unique_components` sparse set (note that this sparse set could later be used to implement Tags). This allows us to keep the code size small by reusing existing datastructures (namely Column, Archetype, ComponentFlags, and ComponentInfo). This allows us the executor to use a single `Access<ArchetypeComponentId>` per system. It should also make scripting language integration easier.

_But_ this merge did create problems for people directly interacting with `World`. What if you need mutable access to multiple resources at the same time? `world.get_resource_mut()` borrows World mutably!

## WorldCell

WorldCell applies the `Access<ArchetypeComponentId>` concept to direct world access:

```rust
let world_cell = world.cell();
let a = world_cell.get_resource_mut::<i32>().unwrap();
let b = world_cell.get_resource_mut::<f64>().unwrap();
```

This adds cheap runtime checks (a sparse set lookup of `ArchetypeComponentId` and a counter) to ensure that world accesses do not conflict with each other. Each operation returns a `WorldBorrow<'w, T>` or `WorldBorrowMut<'w, T>` wrapper type, which will release the relevant ArchetypeComponentId resources when dropped.

World caches the access sparse set (and only one cell can exist at a time), so `world.cell()` is a cheap operation. 

WorldCell does _not_ use atomic operations. It is non-send, does a mutable borrow of world to prevent other accesses, and uses a simple `Rc<RefCell<ArchetypeComponentAccess>>` wrapper in each WorldBorrow pointer. 

The api is currently limited to resource access, but it can and should be extended to queries / entity component access.

## Resource Scopes

WorldCell does not yet support component queries, and even when it does there are sometimes legitimate reasons to want a mutable world ref _and_ a mutable resource ref (ex: bevy_render and bevy_scene both need this). In these cases we could always drop down to the unsafe `world.get_resource_unchecked_mut()`, but that is not ideal!

Instead developers can use a "resource scope"

```rust
world.resource_scope(|world: &mut World, a: &mut A| {
})
```

This temporarily removes the `A` resource from `World`, provides mutable pointers to both, and re-adds A to World when finished. Thanks to the move to ComponentIds/sparse sets, this is a cheap operation.

If multiple resources are required, scopes can be nested. We could also consider adding a "resource tuple" to the api if this pattern becomes common and the boilerplate gets nasty.

## Query Conflicts Use ComponentId Instead of ArchetypeComponentId

For safety reasons, systems cannot contain queries that conflict with each other without wrapping them in a QuerySet. On bevy `main`, we use ArchetypeComponentIds to determine conflicts. This is nice because it can take into account filters:

```rust
// these queries will never conflict due to their filters
fn filter_system(a: Query<&mut A, With<B>>, b: Query<&mut B, Without<B>>) {
}
```

But it also has a significant downside:
```rust
// these queries will not conflict _until_ an entity with A, B, and C is spawned
fn maybe_conflicts_system(a: Query<(&mut A, &C)>, b: Query<(&mut A, &B)>) {
}
```

The system above will panic at runtime if an entity with A, B, and C is spawned. This makes it hard to trust that your game logic will run without crashing.

In this pr, I switched to using `ComponentId` instead. This _is_ more constraining. `maybe_conflicts_system` will now always fail, but it will do it consistently at startup. Naively, it would also _disallow_ `filter_system`, which would be a significant downgrade in usability. Bevy has a number of internal systems that rely on disjoint queries and I expect it to be a common pattern in userspace.

To resolve this, I added a new `FilteredAccess<T>` type, which wraps `Access<T>` and adds with/without filters. If two `FilteredAccess` have with/without values that prove they are disjoint, they will no longer conflict.

## EntityRef / EntityMut

World entity operations on `main` require that the user passes in an `entity` id to each operation:

```rust
let entity = world.spawn((A, )); // create a new entity with A
world.get::<A>(entity);
world.insert(entity, (B, C));
world.insert_one(entity, D);
```

This means that each operation needs to look up the entity location / verify its validity. The initial spawn operation also requires a Bundle as input. This can be awkward when no components are required (or one component is required).

These operations have been replaced by `EntityRef` and `EntityMut`, which are "builder-style" wrappers around world that provide read and read/write operations on a single, pre-validated entity:

```rust
// spawn now takes no inputs and returns an EntityMut
let entity = world.spawn()
    .insert(A) // insert a single component into the entity
    .insert_bundle((B, C)) // insert a bundle of components into the entity
    .id() // id returns the Entity id

// Returns EntityMut (or panics if the entity does not exist)
world.entity_mut(entity)
    .insert(D)
    .insert_bundle(SomeBundle::default());
{
    // returns EntityRef (or panics if the entity does not exist)
    let d = world.entity(entity)
        .get::<D>() // gets the D component
        .unwrap();
    // world.get still exists for ergonomics
    let d = world.get::<D>(entity).unwrap();
}

// These variants return Options if you want to check existence instead of panicing 
world.get_entity_mut(entity)
    .unwrap()
    .insert(E);

if let Some(entity_ref) = world.get_entity(entity) {
    let d = entity_ref.get::<D>().unwrap();
}
```

This _does not_ affect the current Commands api or terminology. I think that should be a separate conversation as that is a much larger breaking change.

## Safety Improvements

* Entity reservation in Commands uses a normal world borrow instead of an unsafe transmute
* QuerySets no longer transmutes lifetimes
* Made traits "unsafe" when implementing a trait incorrectly could cause unsafety
* More thorough safety docs

## RemovedComponents SystemParam

The old approach to querying removed components: `query.removed:<T>()` was confusing because it had no connection to the query itself. I replaced it with the following, which is both clearer and allows us to cache the ComponentId mapping in the SystemParamState:

```rust
fn system(removed: RemovedComponents<T>) {
    for entity in removed.iter() {
    }
} 
```

## Simpler Bundle implementation

Bundles are no longer responsible for sorting (or deduping) TypeInfo. They are just a simple ordered list of component types / data. This makes the implementation smaller and opens the door to an easy "nested bundle" implementation in the future (which i might even add in this pr). Duplicate detection is now done once per bundle type by World the first time a bundle is used.

## Unified WorldQuery and QueryFilter types

(don't worry they are still separate type _parameters_ in Queries .. this is a non-breaking change)

WorldQuery and QueryFilter were already basically identical apis. With the addition of `FetchState` and more storage-specific fetch methods, the overlap was even clearer (and the redundancy more painful).

QueryFilters are now just `F: WorldQuery where F::Fetch: FilterFetch`. FilterFetch requires `Fetch<Item = bool>` and adds new "short circuit" variants of fetch methods. This enables a filter tuple like `(With<A>, Without<B>, Changed<C>)` to stop evaluating the filter after the first mismatch is encountered. FilterFetch is automatically implemented for `Fetch` implementations that return bool.

This forces fetch implementations that return things like `(bool, bool, bool)` (such as the filter above) to manually implement FilterFetch and decide whether or not to short-circuit.

## More Granular Modules

World no longer globs all of the internal modules together. It now exports `core`, `system`, and `schedule` separately. I'm also considering exporting `core` submodules directly as that is still pretty "glob-ey" and unorganized (feedback welcome here).

## Remaining Draft Work (to be done in this pr)

* ~~panic on conflicting WorldQuery fetches (&A, &mut A)~~
    * ~~bevy `main` and hecs both currently allow this, but we should protect against it if possible~~
* ~~batch_iter / par_iter (currently stubbed out)~~
* ~~ChangedRes~~
    * ~~I skipped this while we sort out #1313. This pr should be adapted to account for whatever we land on there~~.
* ~~The `Archetypes` and `Tables` collections use hashes of sorted lists of component ids to uniquely identify each archetype/table. This hash is then used as the key in a HashMap to look up the relevant ArchetypeId or TableId. (which doesn't handle hash collisions properly)~~
* ~~It is currently unsafe to generate a Query from "World A", then use it on "World B" (despite the api claiming it is safe). We should probably close this gap. This could be done by adding a randomly generated WorldId to each world, then storing that id in each Query. They could then be compared to each other on each `query.do_thing(&world)` operation. This _does_ add an extra branch to each query operation, so I'm open to other suggestions if people have them.~~
* ~~Nested Bundles (if i find time)~~

## Potential Future Work

* Expand WorldCell to support queries.
* Consider not allocating in the empty archetype on `world.spawn()`
    * ex: return something like EntityMutUninit, which turns into EntityMut after an `insert` or `insert_bundle` op
    * this actually regressed performance last time i tried it, but in theory it should be faster
* Optimize SparseSet::insert (see `PERF` comment on insert)
* Replace SparseArray `Option<T>` with T::MAX to cut down on branching
    * would enable cheaper get_unchecked() operations
* upstream fixedbitset optimizations
    * fixedbitset could be allocation free for small block counts (store blocks in a SmallVec)
    * fixedbitset could have a const constructor 
* Consider implementing Tags (archetype-specific by-value data that affects archetype identity) 
    * ex: ArchetypeA could have `[A, B, C]` table components and `[D(1)]` "tag" component. ArchetypeB could have `[A, B, C]` table components and a `[D(2)]` tag component. The archetypes are different, despite both having D tags because the value inside D is different.
    * this could potentially build on top of the `archetype.unique_components` added in this pr for resource storage.
* Consider reverting `all_tuples` proc macro in favor of the old `macro_rules` implementation
    * all_tuples is more flexible and produces cleaner documentation (the macro_rules version produces weird type parameter orders due to parser constraints)
    * but unfortunately all_tuples also appears to make Rust Analyzer sad/slow when working inside of `bevy_ecs` (does not affect user code)
* Consider "resource queries" and/or "mixed resource and entity component queries" as an alternative to WorldCell
    * this is basically just "systems" so maybe it's not worth it
* Add more world ops
    * `world.clear()`
    * `world.reserve<T: Bundle>(count: usize)`
 * Try using the old archetype allocation strategy (allocate new memory on resize and copy everything over). I expect this to improve batch insertion performance at the cost of unbatched performance. But thats just a guess. I'm not an allocation perf pro :)
 * Adapt Commands apis for consistency with new World apis 

## Benchmarks

key:

* `bevy_old`: bevy `main` branch
* `bevy`: this branch
* `_foreach`: uses an optimized for_each iterator
* ` _sparse`: uses sparse set storage (if unspecified assume table storage)
* `_system`: runs inside a system (if unspecified assume test happens via direct world ops)

### Simple Insert (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109245573-9c3ce100-7795-11eb-9003-bfd41cd5c51f.png)

### Simpler Iter (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109245795-ffc70e80-7795-11eb-92fb-3ffad09aabf7.png)

### Fragment Iter (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109245849-0fdeee00-7796-11eb-8d25-eb6b7a682c48.png)

### Sparse Fragmented Iter

Iterate a query that matches 5 entities from a single matching archetype, but there are 100 unmatching archetypes

![image](https://user-images.githubusercontent.com/2694663/109245916-2b49f900-7796-11eb-9a8f-ed89c203f940.png)
 
### Schedule (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109246428-1fab0200-7797-11eb-8841-1b2161e90fa4.png)

### Add Remove Component (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109246492-39e4e000-7797-11eb-8985-2706bd0495ab.png)


### Add Remove Component Big

Same as the test above, but each entity has 5 "large" matrix components and 1 "large" matrix component is added and removed

![image](https://user-images.githubusercontent.com/2694663/109246517-449f7500-7797-11eb-835e-28b6790daeaa.png)


### Get Component

Looks up a single component value a large number of times

![image](https://user-images.githubusercontent.com/2694663/109246129-87ad1880-7796-11eb-9fcb-c38012aa7c70.png)
2021-03-05 07:54:35 +00:00
Zicklag
89217171b4 Add Sprite Flipping (#1407)
OK, here's my attempt at sprite flipping. There are a couple of points that I need review/help on, but I think the UX is about ideal:

```rust
        .spawn(SpriteBundle {
            material: materials.add(texture_handle.into()),
            sprite: Sprite {
                // Flip the sprite along the x axis
                flip: SpriteFlip { x: true, y: false },
                ..Default::default()
            },
            ..Default::default()
        });
```

Now for the issues. The big issue is that for some reason, when flipping the UVs on the sprite, there is a light "bleeding" or whatever you call it where the UV tries to sample past the texture boundry and ends up clipping. This is only noticed when resizing the window, though. You can see a screenshot below.

![image](https://user-images.githubusercontent.com/25393315/107098172-397aaa00-67d4-11eb-8e02-c90c820cd70e.png)

I am quite baffled why the texture sampling is overrunning like it is and could use some guidance if anybody knows what might be wrong.

The other issue, which I just worked around, is that I had to remove the `#[render_resources(from_self)]` annotation from the Spritesheet because the `SpriteFlip` render resource wasn't being picked up properly in the shader when using it. I'm not sure what the cause of that was, but by removing the annotation and re-organizing the shader inputs accordingly the problem was fixed.

I'm not sure if this is the most efficient way to do this or if there is a better way, but I wanted to try it out if only for the learning experience. Let me know what you think!
2021-03-03 19:26:45 +00:00
Alexander Sepity
c2a427f1a3
Non-string labels (#1423 continued) (#1473)
Non-string labels
2021-02-18 13:20:37 -08:00
Rob Parrett
110ff77db9
Fix regression causing "flipped" sprites to be invisible (#1399)
Regressed in 81809c71ce
2021-02-04 20:17:11 -08:00
François
6b8f8a7ed0
Texture atlas format and conversion (#1365)
* can specify texture format for a texture atlas
* add automatic conversion
2021-02-01 11:30:11 -08:00
Zhixing Zhang
81809c71ce
Update to wgpu-rs 0.7 (#542)
Update to wgpu-rs 0.7
2021-01-31 20:06:42 -08:00
Nathan Jeffords
b8fb462eff
Text2d render quality (#1171)
improve quality of text2d rendering

* remove coordinate tweaking in sprite-sheet shader
* fixes glyph shimmering of animated text
* reposition glyph before passing it to ab_glyph to normalize its rendering

The result of layout of sequence of glyphs causes individuals to have fractional positions, but since glyph renderings are reused for future instances of that glyph, this produces errors. This change accepts the errors but repositions the glyph to "0, 0" in an effort to get the cleanest possible rendering.
2021-01-01 15:36:00 -06:00
Matthias Seiffert
030ccf1984
Derive Clone for SpriteSheetBundle and SpriteBundle (#1177)
* Derive Clone for TextureAtlasSprite and SpriteSheetBundle

* Derive Clone for Sprite and SpriteBundle
2021-01-01 14:52:09 -06:00
Carter Anderson
841755aaf2
Adopt a Fetch pattern for SystemParams (#1074) 2020-12-15 21:57:16 -08:00
Carter Anderson
7ab0eeece0
Break out Visible component from Draw (#1034)
Break out Visible component from Draw
2020-12-09 13:38:48 -08:00
Carter Anderson
704a116778
fix scene loading (#988) 2020-12-03 13:57:36 -08:00
Joshua J. Bouw
b8f8d468db
ChangeTextureAtlasBuilder into expected Builder conventions (#969)
* Change`TextureAtlasBuilder` into expected Builder conventions
2020-12-02 20:54:13 -08:00
Joshua J. Bouw
9f4c8b1b9a
Fix errors and panics to typical Rust conventions (#968)
Fix errors and panics to typical Rust conventions
2020-12-02 11:31:16 -08:00
Carter Anderson
b5ffab7135
Renderer Optimization Round 1 (#958)
* only update global transforms when they (or their ancestors) have changed

* only update render resource nodes when they have changed (quality check plz)

* only update entity mesh specialization when mesh (or mesh component) has changed

* only update sprite size when changed

* remove stale bind groups

* fix setting size of loading sprites

* store unmatched render resource binding results

* reduce state changes

* cargo fmt + clippy

* remove cached "NoMatch" results when new bindings are added to RenderResourceBindings

* inline current_entity in world_builder

* try creating bind groups even when they havent changed

* render_resources_node: update all entities when resized

* fmt
2020-12-01 13:17:48 -08:00
Andre Kuehne
0b818d7b32
Fix collision detection by calculating positive penetration depth. (#966) 2020-12-01 00:33:52 -08:00
Carter Anderson
72b2fc9843
Bevy Reflection (#926)
Bevy Reflection
2020-11-27 16:39:59 -08:00
Duncan
46fac78774
Extend the Texture asset type to support 3D data (#903)
Extend the Texture asset type to support 3D data

Textures are still loaded from images as 2D, but they can be reshaped
according to how the render pipeline would like to use them.

Also add an example of how this can be used with the texture2DArray uniform type.
2020-11-22 12:04:47 -08:00
rod-salazar
85ecab8bb9
Tweaks to TextureAtlasBuilder.finish() (#887)
Tweaks to TextureAtlasBuilder.finish()
2020-11-21 12:55:25 -08:00
Joshua J. Bouw
b4a864ba5a
Replace Bytes with Byteable for TextureAtlasSprite (#874)
Replace Bytes with Byteable for TextureAtlasSprite
2020-11-21 11:48:10 -08:00
bjorn3
d6eb647451
Misc cleanups (#879)
* Remove cfg!(feature = "metal-auto-capture")

This cfg! has existed since the initial commit, but the corresponding
feature has never been part of Cargo.toml

* Remove unnecessary handle_create_window_events call

* Remove EventLoopProxyPtr wrapper

* Remove unnecessary statics

* Fix unrelated deprecation warning to fix CI
2020-11-17 13:40:18 -08:00
Carter Anderson
3a6f6de277
System Inputs, Outputs, Chaining, and Registration Ergo (#876)
System Inputs, Outputs, Chaining, and Registration Ergo
2020-11-16 18:18:00 -08:00
Carter Anderson
7628f4a64e
combine bevy_ecs and bevy_hecs crates. rename XComponents to XBundle (#863)
combine bevy_ecs and bevy_hecs crates. rename XComponents to XBundle
2020-11-15 20:32:23 -08:00
Mariusz Kryński
60fa2d5f93
delegate layout reflection to RenderResourceContext (#691)
* delegate layout reflection to RenderResourceContext
Also:
 * auto-reflect DynamicBindings
 * use RenderPipeline::new, update dynamic_bindings

linting.

* add dynamic binding generation

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2020-11-10 13:20:05 -08:00
Carter Anderson
ebcdc9fb8c
Flexible ECS System Params (#798)
system params can be in any order, faster compiles, remove foreach
2020-11-08 12:34:05 -08:00
Carter Anderson
1d4a95db62
ecs: ergonomic query.iter(), remove locks, add QuerySets (#741) 2020-10-29 23:39:55 -07:00
Carter Anderson
c32e637384
Asset system rework and GLTF scene loading (#693) 2020-10-18 13:48:15 -07:00
David Ackerman
7ba45849f3
Add default for texture format (#675) 2020-10-16 11:44:31 -07:00
M
9c48e5cccb
Add a way to specify padding/ margins between sprites in a TextureAtlas. (#460)
Add a way to specify padding between sprites in a TextureAtlas
2020-10-14 20:49:07 -07:00
Carter Anderson
df64e1fc92
upgrade rectangle pack (#673) 2020-10-12 18:12:17 -07:00
Grayson Burton
354d71cc1f
The Great Debuggening (#632)
The Great Debuggening
2020-10-08 11:43:01 -07:00
Marek Legris
474bb5403e
Transform Rewrite (#374)
Remove individual Translation / Rotation / Scale components in favor of a combined Transform component
2020-09-14 14:00:32 -07:00
Sergey Minakov
52ae217b16
Resize mode for Sprite component (#430)
Adds a 'resize_mode' field for 'Sprite'.
This allows different resize handling based on 'SpriteResizeMode' enum value.
2020-09-08 12:04:22 -07:00
Carter Anderson
413caae7bb resolve errors from latest clippy version 2020-09-07 15:00:03 -07:00
Robbie Davenport
4aabe983ec
Switch usage of std HashMap/HashSet default hasher, to aHash algo (#258)
switch to ahash for HashMaps and HashSets via a new bevy_utils crate
2020-08-28 17:08:51 -07:00
Grant Moyer
e6a57bad25
Fix sprite clipping at same depth (#385) 2020-08-28 16:45:54 -07:00
Xavientois
0ae74a4a4d
Some examples of documentation (#338) 2020-08-24 17:57:10 -07:00
kaflu
2dadc86fb0
Change CullMode to none for sprites (#241)
With `CullMode::Back`, a sprite image that is rotated in x,y plane won't display properly

Co-authored-by: kaflu <kaflu@users.noreply.github.com>
2020-08-21 19:52:31 -07:00
Carter Anderson
7c3b49cb6f upgrade to latest wgpu 2020-08-21 18:36:32 -07:00
Victor "multun" Collod
c38420f1e9 enforce clippy for all target and features 2020-08-16 07:20:06 -07:00
Carter Anderson
3d09459813 add more doc comments and clean up some public exports 2020-08-09 16:13:04 -07:00
Carter Anderson
f963cd41dc app: rename AppPlugin to Plugin 2020-08-07 20:22:17 -07:00
Carter Anderson
ccf81edd8f render: add atlas padding support to work around MSAA artifacts, disable MSAA by default 2020-07-30 14:38:13 -07:00
Carter Anderson
2929197d9b render: add RenderPass queries. move ui to its own pass 2020-07-28 20:11:27 -07:00
Thomas Herzog
4cf0f53eae use TextureFormat for Textures
This commit also inserts debug asserts that texture data roughly respects
the format.
2020-07-26 22:08:15 +02:00
Carter Anderson
0c2e26ddde Revert "ecs: remove &mut requirement on query iterators"
This reverts commit 6dc1d07cbc.
2020-07-21 20:12:15 -07:00
Carter Anderson
6dc1d07cbc ecs: remove &mut requirement on query iterators 2020-07-20 13:59:51 -07:00
Carter Anderson
b5d3f7e794 use right handed coordinate system in 3d 2020-07-20 01:33:30 -07:00
Carter Anderson
19fe299f5a ecs: use Mut<T> tracking pointer everywhere 2020-07-18 02:09:55 -07:00
Carter Anderson
81df34adcf finish up import simplification 2020-07-16 19:38:21 -07:00
Carter Anderson
f742ce3ef2 app: simplify app imports 2020-07-16 18:47:51 -07:00
Carter Anderson
b12c4d0a48 render: simplify imports and cleanup prelude 2020-07-16 18:26:21 -07:00
Carter Anderson
196bde64e3 cargo fmt 2020-07-16 17:23:50 -07:00
Carter Anderson
1110f9b877 create bevy_math crate and move math types there 2020-07-16 17:11:52 -07:00
Carter Anderson
c81ab99dac cargo fmt 2020-07-10 01:37:06 -07:00
Carter Anderson
950e50bbb1 Bevy ECS migration 2020-07-10 01:06:21 -07:00
Carter Anderson
5787bcb2c5 legion: upgrade 2020-06-27 14:32:50 -07:00
Carter Anderson
7441ac1a01 add breakout example game 2020-06-26 22:04:56 -07:00
Carter Anderson
5e1f81037d sprite: add sprite sheet floating point error correction 2020-06-26 13:07:33 -07:00
Carter Anderson
69925f0817 render: multi-window cameras ready to go!
passes now bind camera buffers and cameras can now be assigned non-primary windows
2020-06-25 23:04:08 -07:00
Carter Anderson
92c44320ee ecs: rename EntityArchetype to ComponentSet 2020-06-25 11:21:56 -07:00
Carter Anderson
1ef4fbf005 ui: rework so Nodes now use transforms and z-sort happens 2020-06-25 10:13:00 -07:00
Carter Anderson
75429f4639 render: use left-handed coordinate system and y-up 2020-06-24 15:29:10 -07:00
Carter Anderson
4ba2f72572 render: is_transparent flag. draw transparent object back-to-front and opaque objects front-to-back 2020-06-24 11:35:01 -07:00
Carter Anderson
e921ae0199 sprite: use bevy_transform types in sprite sheet entities 2020-06-22 12:35:33 -07:00
Carter Anderson
f1786ec20a sprite: use bevy_transform types in sprite entities 2020-06-22 12:14:40 -07:00
Carter Anderson
99a3ee6570 fix texture atlas bytes test 2020-06-21 18:26:11 -07:00
Carter Anderson
faacd2778d sprite: add color to TextureAtlasSprite and make Vec3 16 bytes again to account for glsl UBO layout 2020-06-21 17:43:36 -07:00
Carter Anderson
ecea30cadb text: new atlased rendering finally works!
removed old render-to-texture rendering
2020-06-20 12:40:37 -07:00
Carter Anderson
74d0055a3d render: move dynamic_bindings to PipelineSpecialization
This is a temporary step back in ergonomics as we are no longer automatically inferring dynamic bindings from RenderResourceBindings
2020-06-17 18:10:29 -07:00
Carter Anderson
e855995145 cargo fmt 2020-06-15 12:47:35 -07:00
Carter Anderson
f799d3ac93 render: add RenderPipeline and begin moving logic there 2020-06-15 00:08:50 -07:00
Carter Anderson
516cf9ddf0 text: font atlas generation. initial Drawable boilerplate. temporary font atlas debug example 2020-06-13 18:53:31 -07:00
Carter Anderson
fc4160ea41 AssetRenderResourceNodes now consume asset change events. Remove EntitiesWaitingForAssets in favor of DrawState. 2020-06-10 18:54:17 -07:00
Carter Anderson
3d07fbdc81 render: "Immediate Mode" draw api
This replaces Renderable with Draw/RenderPipelines components and makes various aspects of the renderer much simpler and legible
2020-06-09 23:16:48 -07:00
Carter Anderson
1426208e2f remove DrawTargets in favor of PassNodes and in preparation for "immediate mode" drawing api 2020-06-08 14:35:13 -07:00
Carter Anderson
be23f119d5 remove old uniform system 2020-06-07 22:32:55 -07:00
Carter Anderson
62c434274f shader_defs: new leaner shader defs. they are now separate from uniforms 2020-06-07 22:24:53 -07:00
Carter Anderson
fd8f87400d add RenderResources/RenderResource traits to replace Uniforms/Uniform 2020-06-07 19:12:41 -07:00
Carter Anderson
5add29f8cf rename LocalToWorld -> Transform and LocalToParent -> LocalTransform 2020-06-07 13:39:50 -07:00
Carter Anderson
f2b3b909b4 sprite: use rectangle_pack crate for texture atlases. rename guillotiere implementation to DynamicTextureAtlasBuilder 2020-06-07 11:30:04 -07:00
Carter Anderson
6164ea6ecc sprite: dynamically resize atlas during build 2020-06-06 16:16:58 -07:00
Carter Anderson
2705e5cbb4 add texture atlases 2020-06-06 00:12:38 -07:00
Carter Anderson
db6a365b13 saner orthographic projection 2020-06-04 17:09:24 -07:00
Carter Anderson
6eea96366d cargo fmt 2020-06-03 20:08:20 -07:00