Commit graph

160 commits

Author SHA1 Message Date
MiniaczQ
33a5f2b977 transparency_3d example tweaks (#4968)
Fixed a typo, removed unused component, normalized comments added a touch more detail.
2022-06-23 18:36:07 +00:00
François
c6958b3056 add a SceneBundle to spawn a scene (#2424)
# Objective

- Spawning a scene is handled as a special case with a command `spawn_scene` that takes an handle but doesn't let you specify anything else. This is the only handle that works that way.
- Workaround for this have been to add the `spawn_scene` on `ChildBuilder` to be able to specify transform of parent, or to make the `SceneSpawner` available to be able to select entities from a scene by their instance id

## Solution

Add a bundle
```rust
pub struct SceneBundle {
    pub scene: Handle<Scene>,
    pub transform: Transform,
    pub global_transform: GlobalTransform,
    pub instance_id: Option<InstanceId>,
}
```

and instead of 
```rust
commands.spawn_scene(asset_server.load("models/FlightHelmet/FlightHelmet.gltf#Scene0"));
```
you can do
```rust
commands.spawn_bundle(SceneBundle {
    scene: asset_server.load("models/FlightHelmet/FlightHelmet.gltf#Scene0"),
    ..Default::default()
});
```

The scene will be spawned as a child of the entity with the `SceneBundle`

~I would like to remove the command `spawn_scene` in favor of this bundle but didn't do it yet to get feedback first~

Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-06-09 20:34:09 +00:00
Carter Anderson
f28b921209 Add "depth_load_op" configuration to 3d Cameras (#4904)
# Objective

Users should be able to configure depth load operations on cameras. Currently every camera clears depth when it is rendered. But sometimes later passes need to rely on depth from previous passes.

## Solution

This adds the `Camera3d::depth_load_op` field with a new `Camera3dDepthLoadOp` value. This is a custom type because Camera3d uses "reverse-z depth" and this helps us record and document that in a discoverable way. It also gives us more control over reflection + other trait impls, whereas `LoadOp` is owned by the `wgpu` crate.

```rust
commands.spawn_bundle(Camera3dBundle {
    camera_3d: Camera3d {
        depth_load_op: Camera3dDepthLoadOp::Load,
        ..default()
    },
    ..default()
});
```

### two_passes example with the "second pass" camera configured to the default (clear depth to 0.0)

![image](https://user-images.githubusercontent.com/2694663/171743172-46d4fdd5-5090-46ea-abe4-1fbc519f6ee8.png)


### two_passes example with the "second pass" camera configured to "load" the depth
![image](https://user-images.githubusercontent.com/2694663/171743323-74dd9a1d-9c25-4883-98dd-38ca0bed8c17.png)

---

## Changelog

### Added

* `Camera3d` now has a `depth_load_op` field, which can configure the Camera's main 3d pass depth loading behavior.
2022-06-07 22:22:10 +00:00
François
73174730e4 use the default() method in examples instead of Default::default() (#4952)
# Objective

- Use the `..default()` method in examples instead of `..Default::default()`
2022-06-07 02:16:47 +00:00
Wybe Westra
25219a4d18 Add transparency examples (#3695)
Adds examples demonstrating transparency for 2d, 3d and UI.

Fixes #3215.
2022-06-06 17:52:09 +00:00
Carter Anderson
5e2cfb2f19 Camera Driven Viewports (#4898)
# Objective

Users should be able to render cameras to specific areas of a render target, which enables scenarios like split screen, minimaps, etc.

Builds on the new Camera Driven Rendering added here: #4745 
Fixes: #202
Alternative to #1389 and #3626 (which are incompatible with the new Camera Driven Rendering)

## Solution

![image](https://user-images.githubusercontent.com/2694663/171560044-f0694f67-0cd9-4598-83e2-a9658c4fed57.png)


Cameras can now configure an optional "viewport", which defines a rectangle within their render target to draw to. If a `Viewport` is defined, the camera's `CameraProjection`, `View`, and visibility calculations will use the viewport configuration instead of the full render target. 

```rust
// This camera will render to the first half of the primary window (on the left side).
commands.spawn_bundle(Camera3dBundle {
    camera: Camera {
        viewport: Some(Viewport {
            physical_position: UVec2::new(0, 0),
            physical_size: UVec2::new(window.physical_width() / 2, window.physical_height()),
            depth: 0.0..1.0,
        }),
        ..default()
    },
    ..default()
});
```

To account for this, the `Camera` component has received a few adjustments:

* `Camera` now has some new getter functions:
  * `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, `projection_matrix`
*  All computed camera values are now private and live on the `ComputedCameraValues` field (logical/physical width/height, the projection matrix). They are now exposed on `Camera` via getters/setters  This wasn't _needed_ for viewports, but it was long overdue.

---

## Changelog

### Added

* `Camera` components now have a `viewport` field, which can be set to draw to a portion of a render target instead of the full target.
* `Camera` component has some new functions: `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, and `projection_matrix`
* Added a new split_screen example illustrating how to render two cameras to the same scene

## Migration Guide

`Camera::projection_matrix` is no longer a public field. Use the new `Camera::projection_matrix()` method instead:

```rust

// Bevy 0.7
let projection = camera.projection_matrix;

// Bevy 0.8
let projection = camera.projection_matrix();
```
2022-06-05 00:27:49 +00:00
Carter Anderson
f487407e07 Camera Driven Rendering (#4745)
This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier. 

Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915):
![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png)

Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work". 

Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id:
```rust
// main camera (main window)
commands.spawn_bundle(Camera2dBundle::default());

// second camera (other window)
commands.spawn_bundle(Camera2dBundle {
    camera: Camera {
        target: RenderTarget::Window(window_id),
        ..default()
    },
    ..default()
});
```

Rendering to a texture is as simple as pointing the camera at a texture:

```rust
commands.spawn_bundle(Camera2dBundle {
    camera: Camera {
        target: RenderTarget::Texture(image_handle),
        ..default()
    },
    ..default()
});
```

Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`).

```rust
// main pass camera with a default priority of 0
commands.spawn_bundle(Camera2dBundle::default());

commands.spawn_bundle(Camera2dBundle {
    camera: Camera {
        target: RenderTarget::Texture(image_handle.clone()),
        priority: -1,
        ..default()
    },
    ..default()
});

commands.spawn_bundle(SpriteBundle {
    texture: image_handle,
    ..default()
})
```

Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system:

```rust
commands.spawn_bundle(Camera3dBundle::default());

commands.spawn_bundle(Camera2dBundle {
    camera: Camera {
        // this will render 2d entities "on top" of the default 3d camera's render
        priority: 1,
        ..default()
    },
    ..default()
});
```

There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active.

Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections.

```rust
// old 3d perspective camera
commands.spawn_bundle(PerspectiveCameraBundle::default())

// new 3d perspective camera
commands.spawn_bundle(Camera3dBundle::default())
```

```rust
// old 2d orthographic camera
commands.spawn_bundle(OrthographicCameraBundle::new_2d())

// new 2d orthographic camera
commands.spawn_bundle(Camera2dBundle::default())
```

```rust
// old 3d orthographic camera
commands.spawn_bundle(OrthographicCameraBundle::new_3d())

// new 3d orthographic camera
commands.spawn_bundle(Camera3dBundle {
    projection: OrthographicProjection {
        scale: 3.0,
        scaling_mode: ScalingMode::FixedVertical,
        ..default()
    }.into(),
    ..default()
})
```

Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors.

If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component:

```rust
commands.spawn_bundle(Camera3dBundle {
    camera_render_graph: CameraRenderGraph::new(some_render_graph_name),
    ..default()
})
```

Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added.

Speaking of using components to configure graphs / passes, there are a number of new configuration options:

```rust
commands.spawn_bundle(Camera3dBundle {
    camera_3d: Camera3d {
        // overrides the default global clear color 
        clear_color: ClearColorConfig::Custom(Color::RED),
        ..default()
    },
    ..default()
})

commands.spawn_bundle(Camera3dBundle {
    camera_3d: Camera3d {
        // disables clearing
        clear_color: ClearColorConfig::None,
        ..default()
    },
    ..default()
})
```

Expect to see more of the "graph configuration Components on Cameras" pattern in the future.

By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component:

```rust
commands
    .spawn_bundle(Camera3dBundle::default())
    .insert(CameraUi {
        is_enabled: false,
        ..default()
    })
```

## Other Changes

* The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr.
* I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization.
* I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler. 
* All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr.
* Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic.
* Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals:
    1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs.
    2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense.

## Follow Up Work

* Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen)
* Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor)
* Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system).
* Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable.
* Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home.
2022-06-02 00:12:17 +00:00
Félix Lescaudey de Maneville
f000c2b951 Clippy improvements (#4665)
# Objective

Follow up to my previous MR #3718 to add new clippy warnings to bevy:

- [x] [~~option_if_let_else~~](https://rust-lang.github.io/rust-clippy/master/#option_if_let_else) (reverted)
- [x] [redundant_else](https://rust-lang.github.io/rust-clippy/master/#redundant_else)
- [x] [match_same_arms](https://rust-lang.github.io/rust-clippy/master/#match_same_arms)
- [x] [semicolon_if_nothing_returned](https://rust-lang.github.io/rust-clippy/master/#semicolon_if_nothing_returned)
- [x] [explicit_iter_loop](https://rust-lang.github.io/rust-clippy/master/#explicit_iter_loop)
- [x] [map_flatten](https://rust-lang.github.io/rust-clippy/master/#map_flatten)

There is one commit per clippy warning, and the matching flags are added to the CI execution.

To test the CI execution you may run `cargo run -p ci -- clippy` at the root.

I choose the add the flags in the `ci` tool crate to avoid having them in every `lib.rs` but I guess it could become an issue with suprise warnings coming up after a commit/push


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-05-31 01:38:07 +00:00
Thierry Berger
99e689cfd2 remove unneeded msaa explicit addition from examples (#4830)
# Objective

- Coming from 7a596f1910 (r876310734)
- Simplify the examples regarding addition of `Msaa` Resource with default value.

## Solution

- Remove addition of `Msaa` Resource with default value from examples,
2022-05-27 20:52:12 +00:00
Mark Schmale
1ba7429371 Doc/module style doc blocks for examples (#4438)
# Objective

Provide a starting point for #3951, or a partial solution. 
Providing a few comment blocks to discuss, and hopefully find better one in the process. 

## Solution

Since I am pretty new to pretty much anything in this context, I figured I'd just start with a draft for some file level doc blocks. For some of them I found more relevant details (or at least things I considered interessting), for some others there is less. 

## Changelog

- Moved some existing comments from main() functions in the 2d examples to the file header level
- Wrote some more comment blocks for most other 2d examples

TODO: 
- [x] 2d/sprite_sheet, wasnt able to come up with something good yet 
- [x] all other example groups...


Also: Please let me know if the commit style is okay, or to verbose. I could certainly squash these things, or add more details if needed. 
I also hope its okay to raise this PR this early, with just a few files changed. Took me long enough and I dont wanted to let it go to waste because I lost motivation to do the whole thing. Additionally I am somewhat uncertain over the style and contents of the commets. So let me know what you thing please.
2022-05-16 13:53:20 +00:00
Dusty DeWeese
82d849d3dc Add support for vertex colors (#4528)
# Objective

Add support for vertex colors

## Solution

This change is modeled after how vertex tangents are handled, so the shader is conditionally compiled with vertex color support if the mesh has the corresponding attribute set.

Vertex colors are multiplied by the base color. I'm not sure if this is the best for all cases, but may be useful for modifying vertex colors without creating a new mesh.

I chose `VertexFormat::Float32x4`, but I'd prefer 16-bit floats if/when support is added.

## Changelog

### Added
- Vertex colors can be specified using the `Mesh::ATTRIBUTE_COLOR` mesh attribute.
2022-05-05 00:46:32 +00:00
Rob Parrett
61a3494a06 Add 3d shapes example (#4613)
# Objective

- As requested here: https://github.com/bevyengine/bevy/pull/4520#issuecomment-1109302039
- Make it easier to spot issues with built-in shapes

## Solution

https://user-images.githubusercontent.com/200550/165624709-c40dfe7e-0e1e-4bd3-ae52-8ae66888c171.mp4

- Add an example showcasing the built-in 3d shapes with lighting/shadows
- Rotate objects in such a way that all faces are seen by the camera
- Add a UV debug texture

## Discussion

I'm not sure if this is what @alice-i-cecile had in mind, but I adapted the little "torus playground" from the issue linked above to include all built-in shapes.

This exact arrangement might not be particularly scalable if many more shapes are added. Maybe a slow camera pan, or cycling with the keyboard or on a timer, or a sidebar with buttons would work better. If one of the latter options is used, options for showing wireframes or computed flat normals might add some additional utility.

Ideally, I think we'd have a better way of visualizing normals.

Happy to rework this or close it if there's not a consensus around it being useful.
2022-05-02 13:20:56 +00:00
Aevyrie
4aa56050b6 Add infallible resource getters for WorldCell (#4104)
# Objective

- Eliminate all `worldcell.get_resource().unwrap()` cases.
- Provide helpful messages on panic.

## Solution

- Adds infallible resource getters to `WorldCell`, mirroring `World`.
2022-04-25 23:19:13 +00:00
Dusty DeWeese
5a297d7903 Reuse texture when resolving multiple passes (#3552)
# Objective

Fixes https://github.com/bevyengine/bevy/issues/3499

## Solution

Uses a `HashMap` from `RenderTarget` to sampled textures when preparing `ViewTarget`s to ensure that two passes with the same render target get sampled to the same texture.

This builds on and depends on https://github.com/bevyengine/bevy/pull/3412, so this will be a draft PR until #3412 is merged. All changes for this PR are in the last commit.
2022-04-12 19:27:30 +00:00
Alice Cecile
c747cc526b Group stress test examples (#4289)
# Objective

- Several examples are useful for qualitative tests of Bevy's performance
- By contrast, these are less useful for learning material: they are often relatively complex and have large amounts of setup and are performance optimized.

## Solution

- Move bevymark, many_sprites and many_cubes into the new stress_tests example folder
- Move contributors into the games folder: unlike the remaining examples in the 2d folder, it is not focused on demonstrating a clear feature.
2022-04-10 02:05:21 +00:00
François
449a1d223c animation player (#4375)
# Objective

- Add a basic animation player
  - Single track
  - Not generic, can only animate `Transform`s
  - With plenty of possible optimisations available
  - Close-ish to https://github.com/bevyengine/rfcs/pull/49
- https://discord.com/channels/691052431525675048/774027865020039209/958820063148929064

## Solution

- Can play animations
  - looping or not
- Can pause animations
- Can seek in animation
- Can alter speed of animation
- I also removed the previous gltf animation example

https://user-images.githubusercontent.com/8672791/161051887-e79283f0-9803-448a-93d0-5f7a62acb02d.mp4
2022-04-02 22:36:02 +00:00
bilsen
63fee2572b ParamSet for conflicting SystemParam:s (#2765)
# Objective
Add a system parameter `ParamSet` to be used as container for conflicting parameters.

## Solution
Added two methods to the SystemParamState trait, which gives the access used by the parameter. Did the implementation. Added some convenience methods to FilteredAccessSet. Changed `get_conflicts` to return every conflicting component instead of breaking on the first conflicting `FilteredAccess`.


Co-authored-by: bilsen <40690317+bilsen@users.noreply.github.com>
2022-03-29 23:39:38 +00:00
MrGVSV
f16768d868 bevy_derive: Add derives for Deref and DerefMut (#4328)
# Objective

A common pattern in Rust is the [newtype](https://doc.rust-lang.org/rust-by-example/generics/new_types.html). This is an especially useful pattern in Bevy as it allows us to give common/foreign types different semantics (such as allowing it to implement `Component` or `FromWorld`) or to simply treat them as a "new type" (clever). For example, it allows us to wrap a common `Vec<String>` and do things like:

```rust
#[derive(Component)]
struct Items(Vec<String>);

fn give_sword(query: Query<&mut Items>) { 
  query.single_mut().0.push(String::from("Flaming Poisoning Raging Sword of Doom"));
}
```

> We could then define another struct that wraps `Vec<String>` without anything clashing in the query.

However, one of the worst parts of this pattern is the ugly `.0` we have to write in order to access the type we actually care about. This is why people often implement `Deref` and `DerefMut` in order to get around this.

Since it's such a common pattern, especially for Bevy, it makes sense to add a derive macro to automatically add those implementations.


## Solution

Added a derive macro for `Deref` and another for `DerefMut` (both exported into the prelude). This works on all structs (including tuple structs) as long as they only contain a single field:

```rust
#[derive(Deref)]
struct Foo(String);

#[derive(Deref, DerefMut)]
struct Bar {
  name: String,
}
```

This allows us to then remove that pesky `.0`:

```rust
#[derive(Component, Deref, DerefMut)]
struct Items(Vec<String>);

fn give_sword(query: Query<&mut Items>) { 
  query.single_mut().push(String::from("Flaming Poisoning Raging Sword of Doom"));
}
```

### Alternatives

There are other alternatives to this such as by using the [`derive_more`](https://crates.io/crates/derive_more) crate. However, it doesn't seem like we need an entire crate just yet since we only need `Deref` and `DerefMut` (for now).

### Considerations

One thing to consider is that the Rust std library recommends _not_ using `Deref` and `DerefMut` for things like this: "`Deref` should only be implemented for smart pointers to avoid confusion" ([reference](https://doc.rust-lang.org/std/ops/trait.Deref.html)). Personally, I believe it makes sense to use it in the way described above, but others may disagree.

### Additional Context

Discord: https://discord.com/channels/691052431525675048/692572690833473578/956648422163746827 (controversiality discussed [here](https://discord.com/channels/691052431525675048/692572690833473578/956711911481835630))

---

## Changelog

- Add `Deref` derive macro (exported to prelude)
- Add `DerefMut` derive macro (exported to prelude)
- Updated most newtypes in examples to use one or both derives

Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
2022-03-29 02:10:06 +00:00
François
fbe7a49d5b Gltf animations (#3751)
# Objective

- Load informations for animations from GLTF
- Make experimenting on animations easier

# Non Objective

- Implement a solutions for all animations in Bevy. This would need a discussion / RFC. The goal here is only to have the information available to try different APIs

## Solution

- Load animations with a representation close to the GLTF spec
- Add an example to display animations. There is an animation driver in the example, not in Bevy code, to show how it can be used. The example is cycling between examples from the official gltf sample ([AnimatedTriangle](https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/AnimatedTriangle), [BoxAnimated](https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/BoxAnimated)), and one from me with some cases not present in the official examples.


https://user-images.githubusercontent.com/8672791/150696656-073403f0-d921-43b6-beaf-099c7aee16ed.mp4




Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-03-22 02:26:34 +00:00
Chris Foster
21f6760b2a Render to texture example: No need to create an image handle manually. (#4223)
# Objective

- Make the example a little easier to follow by removing unnecessary steps.

## Solution

- `Assets<Image>` will give us a handle for our render texture if we call `add()` instead of `set()`.  No need to set it manually; one less thing to think about while reading the example.
2022-03-16 01:53:04 +00:00
Jakob Hellermann
bf6de89622 use marker components for cameras instead of name strings (#3635)
**Problem**
- whenever you want more than one of the builtin cameras (for example multiple windows, split screen, portals), you need to add a render graph node that executes the correct sub graph, extract the camera into the render world and add the correct `RenderPhase<T>` components
- querying for the 3d camera is annoying because you need to compare the camera's name to e.g. `CameraPlugin::CAMERA_3d`

**Solution**
- Introduce the marker types `Camera3d`, `Camera2d` and `CameraUi`
-> `Query<&mut Transform, With<Camera3d>>` works
- `PerspectiveCameraBundle::new_3d()` and `PerspectiveCameraBundle::<Camera3d>::default()` contain the `Camera3d` marker
- `OrthographicCameraBundle::new_3d()` has `Camera3d`, `OrthographicCameraBundle::new_2d()` has `Camera2d`
- remove `ActiveCameras`, `ExtractedCameraNames`
- run 2d, 3d and ui passes for every camera of their respective marker
-> no custom setup for multiple windows example needed

**Open questions**
- do we need a replacement for `ActiveCameras`? What about a component `ActiveCamera { is_active: bool }` similar to `Visibility`?

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-03-12 00:41:06 +00:00
Robert Swain
a188babce2 many_cubes: Add a cube pattern suitable for benchmarking culling changes (#4126)
# Objective

- Add a cube pattern to `many_cubes` suitable for benchmarking culling changes

## Solution

- Use a 'golden spiral' mapped to a sphere with the strategy of optimising for average nearest neighbour distance, as per: http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
2022-03-08 04:39:52 +00:00
François
159fe527a8 Slow down the many_cubes example (#4117)
# Objective

- After #4015, the `many_cubes` example could introduce discomfort in some cases

## Solution

- Slow down the camera, add space between the cubes

https://user-images.githubusercontent.com/8672791/156898412-0fcd29b4-63b1-4e11-bf52-7ec40cb8f932.mp4
2022-03-05 22:59:54 +00:00
François
6c95b582a5 Make many_cubes example more interesting (#4015)
# Objective

- Make the many_cubes example more interesting (and look more like many_sprites)

## Solution

- Actually display many cubes
- Move the camera around
2022-03-05 13:23:04 +00:00
Carter Anderson
b6a647cc01 default() shorthand (#4071)
Adds a `default()` shorthand for `Default::default()` ... because life is too short to constantly type `Default::default()`.

```rust
use bevy::prelude::*;

#[derive(Default)]
struct Foo {
  bar: usize,
  baz: usize,
}

// Normally you would do this:
let foo = Foo {
  bar: 10,
  ..Default::default()
};

// But now you can do this:
let foo = Foo {
  bar: 10,
  ..default()
};
```

The examples have been adapted to use `..default()`. I've left internal crates as-is for now because they don't pull in the bevy prelude, and the ergonomics of each case should be considered individually.
2022-03-01 20:52:09 +00:00
Alice Cecile
557ab9897a Make get_resource (and friends) infallible (#4047)
# Objective

- In the large majority of cases, users were calling `.unwrap()` immediately after `.get_resource`.
- Attempting to add more helpful error messages here resulted in endless manual boilerplate (see #3899 and the linked PRs).

## Solution

- Add an infallible variant named `.resource` and so on.
- Use these infallible variants over `.get_resource().unwrap()` across the code base.

## Notes

I did not provide equivalent methods on `WorldCell`, in favor of removing it entirely in #3939.

## Migration Guide

Infallible variants of `.get_resource` have been added that implicitly panic, rather than needing to be unwrapped.

Replace `world.get_resource::<Foo>().unwrap()` with `world.resource::<Foo>()`.

## Impact

- `.unwrap` search results before: 1084
- `.unwrap` search results after: 942
- internal `unwrap_or_else` calls added: 4
- trivial unwrap calls removed from tests and code: 146
- uses of the new `try_get_resource` API: 11
- percentage of the time the unwrapping API was used internally: 93%
2022-02-27 22:37:18 +00:00
Dusty DeWeese
81d57e129b Add capability to render to a texture (#3412)
# Objective

Will fix #3377 and #3254

## Solution

Use an enum to represent either a `WindowId` or `Handle<Image>` in place of `Camera::window`.


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-02-24 00:40:24 +00:00
Robert Swain
936468aa1e bevy_render: Use RenderDevice to get limits/features and expose AdapterInfo (#3931)
# Objective

- `WgpuOptions` is mutated to be updated with the actual device limits and features, but this information is readily available to both the main and render worlds through the `RenderDevice` which has .limits() and .features() methods
- Information about the adapter in terms of its name, the backend in use, etc were not being exposed but have clear use cases for being used to take decisions about what rendering code to use. For example, if something works well on AMD GPUs but poorly on Intel GPUs. Or perhaps something works well in Vulkan but poorly in DX12.

## Solution

- Stop mutating `WgpuOptions `and don't insert the updated values into the main and render worlds
- Return `AdapterInfo` from `initialize_renderer` and insert it into the main and render worlds
- Use `RenderDevice` limits in the lighting code that was using `WgpuOptions.limits`.
- Renamed `WgpuOptions` to `WgpuSettings`
2022-02-16 21:17:37 +00:00
MinerSebas
59ee512292 Add TransformBundle (#3054)
# Objective

- Bevy currently has no simple way to make an "empty" Entity work correctly in a Hierachy.
  - The current Solution is to insert a Tuple instead: 

```rs
.insert_bundle((Transform::default(), GlobalTransform::default()))
```

## Solution

* Add a `TransformBundle` that combines the Components:

```rs
.insert_bundle(TransformBundle::default())
```

* The code is based on #2331, except for missing the more controversial usage of `TransformBundle` as a Sub-bundle in preexisting Bundles.

Co-authored-by: MinerSebas <66798382+MinerSebas@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-02-06 01:07:55 +00:00
Carter Anderson
1d0d8a3397 Spherical area lights example (#3498)
I was putting together the Bevy 0.6 release blog post and wanted a simple area light radius example, so here we are :)

![image](https://user-images.githubusercontent.com/2694663/147786883-63454290-b5b1-4456-9762-0b0b47e16bb5.png)
2021-12-30 21:07:26 +00:00
Michael Dorst
e6bce74220 Fix doc_markdown lints in examples (#3486)
#3457 adds the `doc_markdown` clippy lint, which checks doc comments to make sure code identifiers are escaped with backticks. This causes a lot of lint errors, so this is one of a number of PR's that will fix those lint errors one crate at a time.

This PR fixes lints in the `examples` folder.
2021-12-29 17:25:34 +00:00
Carter Anderson
ffecb05a0a Replace old renderer with new renderer (#3312)
This makes the [New Bevy Renderer](#2535) the default (and only) renderer. The new renderer isn't _quite_ ready for the final release yet, but I want as many people as possible to start testing it so we can identify bugs and address feedback prior to release.

The examples are all ported over and operational with a few exceptions:

* I removed a good portion of the examples in the `shader` folder. We still have some work to do in order to make these examples possible / ergonomic / worthwhile: #3120 and "high level shader material plugins" are the big ones. This is a temporary measure.
* Temporarily removed the multiple_windows example: doing this properly in the new renderer will require the upcoming "render targets" changes. Same goes for the render_to_texture example.
* Removed z_sort_debug: entity visibility sort info is no longer available in app logic. we could do this on the "render app" side, but i dont consider it a priority.
2021-12-14 03:58:23 +00:00
François
eb15f81e17 enable alpha mode for textures materials that are transparent (#3202)
# Objective

- Transparent materials used in 3d are not transparent by default

## Solution

- Enable transparency in example
2021-11-29 21:22:53 +00:00
François
e8412df021 add shadows in examples (#3201)
# Objective

- As mentioned in #3126, shadows need to be readded in examples

## Solution

- Add shadows in examples
2021-11-27 10:12:47 +00:00
François
7ced541cb2 increase light intensity in pbr_pipelined example (#3182)
# Objective

- example `pbr_pipelined` doesn't look like example `pbr`

`pbr`:
![pbr](https://user-images.githubusercontent.com/8672791/143328022-83797197-233c-4824-8daa-4d7bd092938d.png)


`pbr_pipelined`:
![pbr_pipelined](https://user-images.githubusercontent.com/8672791/143328034-8a8bdb39-0d75-472b-8880-7bb7cd48f448.png)


## Solution

- set the light intensity to a higher value

`pbr_pipelined` with this pr:
![pbr_pipelined_fixed](https://user-images.githubusercontent.com/8672791/143328040-4149e96c-dada-4940-9f6f-f8925e48b22e.png)
2021-11-27 10:12:45 +00:00
Carter Anderson
8009af3879 Merge New Renderer 2021-11-22 23:57:42 -08:00
Robert Swain
2f22f5ca21 MSAA example (#3049)
Add an example that demonstrates the difference between no MSAA and MSAA 4x. This is also useful for testing panics when resizing the window using MSAA. This is on top of #3042 .

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-11-03 22:20:23 +00:00
Carter Anderson
43e8a156fb Upgrade to wgpu 0.11 (#2933)
Upgrades both the old and new renderer to wgpu 0.11 (and naga 0.7). This builds on @zicklag's work here #2556.

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-10-08 19:55:24 +00:00
Paweł Grabarz
07ed1d053e Implement and require #[derive(Component)] on all component structs (#2254)
This implements the most minimal variant of #1843 - a derive for marker trait. This is a prerequisite to more complicated features like statically defined storage type or opt-out component reflection.

In order to make component struct's purpose explicit and avoid misuse, it must be annotated with `#[derive(Component)]` (manual impl is discouraged for compatibility). Right now this is just a marker trait, but in the future it might be expanded. Making this change early allows us to make further changes later without breaking backward compatibility for derive macro users.

This already prevents a lot of issues, like using bundles in `insert` calls. Primitive types are no longer valid components as well. This can be easily worked around by adding newtype wrappers and deriving `Component` for them.

One funny example of prevented bad code (from our own tests) is when an newtype struct or enum variant is used. Previously, it was possible to write `insert(Newtype)` instead of `insert(Newtype(value))`. That code compiled, because function pointers (in this case newtype struct constructor) implement `Send + Sync + 'static`, so we allowed them to be used as components. This is no longer the case and such invalid code will trigger a compile error.


Co-authored-by: = <=>
Co-authored-by: TheRawMeatball <therawmeatball@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-10-03 19:23:44 +00:00
Carter Anderson
08969a24b8 Modular Rendering (#2831)
This changes how render logic is composed to make it much more modular. Previously, all extraction logic was centralized for a given "type" of rendered thing. For example, we extracted meshes into a vector of ExtractedMesh, which contained the mesh and material asset handles, the transform, etc. We looked up bindings for "drawn things" using their index in the `Vec<ExtractedMesh>`. This worked fine for built in rendering, but made it hard to reuse logic for "custom" rendering. It also prevented us from reusing things like "extracted transforms" across contexts.

To make rendering more modular, I made a number of changes:

* Entities now drive rendering:
  * We extract "render components" from "app components" and store them _on_ entities. No more centralized uber lists! We now have true "ECS-driven rendering"
  * To make this perform well, I implemented #2673 in upstream Bevy for fast batch insertions into specific entities. This was merged into the `pipelined-rendering` branch here: #2815
* Reworked the `Draw` abstraction:
  * Generic `PhaseItems`: each draw phase can define its own type of "rendered thing", which can define its own "sort key"
  * Ported the 2d, 3d, and shadow phases to the new PhaseItem impl (currently Transparent2d, Transparent3d, and Shadow PhaseItems)
  * `Draw` trait and and `DrawFunctions` are now generic on PhaseItem
  * Modular / Ergonomic `DrawFunctions` via `RenderCommands`
    * RenderCommand is a trait that runs an ECS query and produces one or more RenderPass calls. Types implementing this trait can be composed to create a final DrawFunction. For example the DrawPbr DrawFunction is created from the following DrawCommand tuple. Const generics are used to set specific bind group locations:
        ```rust
         pub type DrawPbr = (
            SetPbrPipeline,
            SetMeshViewBindGroup<0>,
            SetStandardMaterialBindGroup<1>,
            SetTransformBindGroup<2>,
            DrawMesh,
        );
        ```
    * The new `custom_shader_pipelined` example illustrates how the commands above can be reused to create a custom draw function:
       ```rust
       type DrawCustom = (
           SetCustomMaterialPipeline,
           SetMeshViewBindGroup<0>,
           SetTransformBindGroup<2>,
           DrawMesh,
       );
       ``` 
* ExtractComponentPlugin and UniformComponentPlugin:
  * Simple, standardized ways to easily extract individual components and write them to GPU buffers
* Ported PBR and Sprite rendering to the new primitives above.
* Removed staging buffer from UniformVec in favor of direct Queue usage
  * Makes UniformVec much easier to use and more ergonomic. Completely removes the need for custom render graph nodes in these contexts (see the PbrNode and view Node removals and the much simpler call patterns in the relevant Prepare systems).
* Added a many_cubes_pipelined example to benchmark baseline 3d rendering performance and ensure there were no major regressions during this port. Avoiding regressions was challenging given that the old approach of extracting into centralized vectors is basically the "optimal" approach. However thanks to a various ECS optimizations and render logic rephrasing, we pretty much break even on this benchmark!
* Lifetimeless SystemParams: this will be a bit divisive, but as we continue to embrace "trait driven systems" (ex: ExtractComponentPlugin, UniformComponentPlugin, DrawCommand), the ergonomics of `(Query<'static, 'static, (&'static A, &'static B, &'static)>, Res<'static, C>)` were getting very hard to bear. As a compromise, I added "static type aliases" for the relevant SystemParams. The previous example can now be expressed like this: `(SQuery<(Read<A>, Read<B>)>, SRes<C>)`. If anyone has better ideas / conflicting opinions, please let me know!
* RunSystem trait: a way to define Systems via a trait with a SystemParam associated type. This is used to implement the various plugins mentioned above. I also added SystemParamItem and QueryItem type aliases to make "trait stye" ecs interactions nicer on the eyes (and fingers).
* RenderAsset retrying: ensures that render assets are only created when they are "ready" and allows us to create bind groups directly inside render assets (which significantly simplified the StandardMaterial code). I think ultimately we should swap this out on "asset dependency" events to wait for dependencies to load, but this will require significant asset system changes.
* Updated some built in shaders to account for missing MeshUniform fields
2021-09-23 06:16:11 +00:00
Carter Anderson
11b41206eb Add upstream bevy_ecs and prepare for custom-shaders merge (#2815)
This updates the `pipelined-rendering` branch to use the latest `bevy_ecs` from `main`. This accomplishes a couple of goals:

1. prepares for upcoming `custom-shaders` branch changes, which were what drove many of the recent bevy_ecs changes on `main`
2. prepares for the soon-to-happen merge of `pipelined-rendering` into `main`. By including bevy_ecs changes now, we make that merge simpler / easier to review. 

I split this up into 3 commits:

1. **add upstream bevy_ecs**: please don't bother reviewing this content. it has already received thorough review on `main` and is a literal copy/paste of the relevant folders (the old folders were deleted so the directories are literally exactly the same as `main`).
2. **support manual buffer application in stages**: this is used to enable the Extract step. we've already reviewed this once on the `pipelined-rendering` branch, but its worth looking at one more time in the new context of (1).
3. **support manual archetype updates in QueryState**: same situation as (2).
2021-09-14 06:14:19 +00:00
MinerSebas
9effc3e9b3 Replace .insert_resource(T::default()) calls with init_resource::<T>() (#2807)
# Objective

I added the [INSERT_RESOURCE_WITH_DEFAULT](https://minersebas.github.io/bevy_lint/bevy_lint/static.INSERT_RESOURCE_WITH_DEFAULT.html) Lint to [bevy_lint](https://github.com/MinerSebas/bevy_lint) and while Testing it on bevy itself, I found several places where the Lint correctly triggered.



## Solution

Replace `.insert_resource(T::default())` calls with `init_resource::<T>()`
2021-09-13 14:02:28 +00:00
Robert Swain
045f324e97 Use the infinite reverse right-handed perspective projection (#2543)
# Objective

Forward perspective projections have poor floating point precision distribution over the depth range. Reverse projections fair much better, and instead of having to have a far plane, with the reverse projection, using an infinite far plane is not a problem. The infinite reverse perspective projection has become the industry standard. The renderer rework is a great time to migrate to it.

## Solution

All perspective projections, including point lights, have been moved to using `glam::Mat4::perspective_infinite_reverse_rh()` and so have no far plane. As various depth textures are shared between orthographic and perspective projections, a quirk of this PR is that the near and far planes of the orthographic projection are swapped when the Mat4 is computed. This has no impact on 2D/3D orthographic projection usage, and provides consistency in shaders, texture clear values, etc. throughout the codebase.

## Known issues

For some reason, when looking along -Z, all geometry is black. The camera can be translated up/down / strafed left/right and geometry will still be black. Moving forward/backward or rotating the camera away from looking exactly along -Z causes everything to work as expected.

I have tried to debug this issue but both in macOS and Windows I get crashes when doing pixel debugging. If anyone could reproduce this and debug it I would be very grateful. Otherwise I will have to try to debug it further without pixel debugging, though the projections and such all looked fine to me.
2021-08-27 20:15:09 +00:00
Robert Swain
f4aa3284a8 bevy_pbr2: Add support for not casting/receiving shadows (#2726)
# Objective

Allow marking meshes as not casting / receiving shadows.

## Solution

- Added `NotShadowCaster` and `NotShadowReceiver` zero-sized type components.
- Extract these components into `bool`s in `ExtractedMesh`
- Only generate `DrawShadowMesh` `Drawable`s for meshes _without_ `NotShadowCaster`
- Add a `u32` bit `flags` member to `MeshUniform` with one flag indicating whether the mesh is a shadow receiver
- If a mesh does _not_ have the `NotShadowReceiver` component, then it is a shadow receiver, and so the bit in the `MeshUniform` is set, otherwise it is not set.
- Added an example illustrating the functionality.

NOTE: I wanted to have the default state of a mesh as being a shadow caster and shadow receiver, hence the `Not*` components. However, I am on the fence about this. I don't want to have a negative performance impact, nor have people wondering why their custom meshes don't have shadows because they forgot to add `ShadowCaster` and `ShadowReceiver` components, but I also really don't like the double negatives the `Not*` approach incurs. What do you think?

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-08-25 19:44:20 +00:00
Robert Swain
c3d3ae7f92 bevy_pbr2: Improve lighting units and documentation (#2704)
# Objective

A question was raised on Discord about the units of the `PointLight` `intensity` member.

After digging around in the bevy_pbr2 source code and [Google Filament documentation](https://google.github.io/filament/Filament.html#mjx-eqn-pointLightLuminousPower) I discovered that the intention by Filament was that the 'intensity' value for point lights would be in lumens. This makes a lot of sense as these are quite relatable units given basically all light bulbs I've seen sold over the past years are rated in lumens as people move away from thinking about how bright a bulb is relative to a non-halogen incandescent bulb.

However, it seems that the derivation of the conversion between luminous power (lumens, denoted `Φ` in the Filament formulae) and luminous intensity (lumens per steradian, `I` in the Filament formulae) was missed and I can see why as it is tucked right under equation 58 at the link above. As such, while the formula states that for a point light, `I = Φ / 4 π` we have been using `intensity` as if it were luminous intensity `I`.

Before this PR, the intensity field is luminous intensity in lumens per steradian. After this PR, the intensity field is luminous power in lumens, [as suggested by Filament](https://google.github.io/filament/Filament.html#table_lighttypesunits) (unfortunately the link jumps to the table's caption so scroll up to see the actual table).

I appreciate that it may be confusing to call this an intensity, but I think this is intended as more of a non-scientific, human-relatable general term with a bit of hand waving so that most light types can just have an intensity field and for most of them it works in the same way or at least with some relatable value. I'm inclined to think this is reasonable rather than throwing terms like luminous power, luminous intensity, blah at users.

## Solution

- Documented the `PointLight` `intensity` member as 'luminous power' in units of lumens.
- Added a table of examples relating from various types of household lighting to lumen values.
- Added in the mapping from luminous power to luminous intensity when premultiplying the intensity into the colour before it is made into a graphics uniform.
- Updated the documentation in `pbr.wgsl` to clarify the earlier confusion about the missing `/ 4 π`.
- Bumped the intensity of the point lights in `3d_scene_pipelined` to 1600 lumens.

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-08-23 23:48:11 +00:00
Robert Swain
ae4f809a52 Port bevy_gltf to pipelined-rendering (#2537)
# Objective

Port bevy_gltf to the pipelined-rendering branch.

## Solution

crates/bevy_gltf has been copied and pasted into pipelined/bevy_gltf2 and modifications were made to work with the pipelined-rendering branch. Notably vertex tangents and vertex colours are not supported.

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-07-30 03:37:34 +00:00
François
b724a0f586 Down with the system! (#2496)
# Objective

- Remove all the `.system()` possible.
- Check for remaining missing cases.

## Solution

- Remove all `.system()`, fix compile errors
- 32 calls to `.system()` remains, mostly internals, the few others should be removed after #2446
2021-07-27 23:42:36 +00:00
bjorn3
6d6bc2a8b4 Merge AppBuilder into App (#2531)
This is extracted out of eb8f973646476b4a4926ba644a77e2b3a5772159 and includes some additional changes to remove all references to AppBuilder and fix examples that still used App::build() instead of App::new(). In addition I didn't extract the sub app feature as it isn't ready yet.

You can use `git diff --diff-filter=M eb8f973646476b4a4926ba644a77e2b3a5772159` to find all differences in this PR. The `--diff-filtered=M` filters all files added in the original commit but not in this commit away.

Co-Authored-By: Carter Anderson <mcanders1@gmail.com>
2021-07-27 20:21:06 +00:00
Carter Anderson
2e99d84cdc remove .system from pipelined code (#2538)
Now that we have main features, lets use them!
2021-07-26 23:44:23 +00:00
Robert Swain
618c9e94f0 Scale normal bias by texel size (#26)
* 3d_scene_pipelined: Use a shallower directional light angle to provoke acne

* cornell_box_pipelined: Remove bias tweaks

* bevy_pbr2: Simplify shadow biases by moving them to linear depth

* bevy_pbr2: Do not use DepthBiasState

* bevy_pbr2: Do not use bilinear filtering for sampling depth textures

* pbr.wgsl: Remove unnecessary comment

* bevy_pbr2: Do manual shadow map depth comparisons for more flexibility

* examples: Add shadow_biases_pipelined example

This is useful for stress testing biases.

* bevy_pbr2: Scale the point light normal bias by the shadow map texel size

This allows the normal bias to be small close to the light source where the
shadow map texel to screen texel ratio is high, but is appropriately large
further away from the light source where the shadow map texel can easily cover
multiple screen texels.

* shadow_biases_pipelined: Add support for toggling directional / point light

* shadow_biases_pipelined: Cleanup

* bevy_pbr2: Scale the directional light normal bias by the shadow map texel size

* shadow_biases_pipelined: Fit the orthographic projection around the scene

* bevy_pbr2: Directional lights should have no shadows outside their projection

Before this change, sampling a fragment position from outside the ndc volume
would result in the return sample being clamped to the edge in x,y or possibly
always casting a shadow for fragment positions past the orthographic
projection's far plane.

* bevy_pbr2: Fix the default directional light normal bias

* Revert "bevy_pbr2: Do manual shadow map depth comparisons for more flexibility"

This reverts commit 7df1bab38a42d8a33bc50ca583d4be37bd9c9f0d.

* shadow_biases_pipelined: Adjust directional light normal bias in 0.1 increments

* pbr.wgsl: Add a couple of clarifying comments

* Revert "bevy_pbr2: Do not use bilinear filtering for sampling depth textures"

This reverts commit f53baab0232ce218866a45cad6902b470f4cf2c4.

* shadow_biases_pipelined: Print usage to terminal
2021-07-24 16:43:37 -07:00