mirror of
https://github.com/bevyengine/bevy
synced 2024-11-22 12:43:34 +00:00
many_cubes: Add a cube pattern suitable for benchmarking culling changes (#4126)
# Objective - Add a cube pattern to `many_cubes` suitable for benchmarking culling changes ## Solution - Use a 'golden spiral' mapped to a sphere with the strategy of optimising for average nearest neighbour distance, as per: http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
This commit is contained in:
parent
4add96b1be
commit
a188babce2
1 changed files with 87 additions and 43 deletions
|
@ -1,8 +1,8 @@
|
|||
use bevy::{
|
||||
diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin},
|
||||
math::{DVec2, DVec3},
|
||||
prelude::*,
|
||||
};
|
||||
|
||||
fn main() {
|
||||
App::new()
|
||||
.add_plugins(DefaultPlugins)
|
||||
|
@ -26,41 +26,75 @@ fn setup(
|
|||
base_color: Color::PINK,
|
||||
..default()
|
||||
});
|
||||
for x in 0..WIDTH {
|
||||
for y in 0..HEIGHT {
|
||||
// introduce spaces to break any kind of moiré pattern
|
||||
if x % 10 == 0 || y % 10 == 0 {
|
||||
continue;
|
||||
|
||||
match std::env::args().nth(1).as_deref() {
|
||||
Some("sphere") => {
|
||||
// NOTE: This pattern is good for testing performance of culling as it provides roughly
|
||||
// the same number of visible meshes regardless of the viewing angle.
|
||||
const N_POINTS: usize = WIDTH * HEIGHT * 4;
|
||||
// NOTE: f64 is used to avoid precision issues that produce visual artifacts in the distribution
|
||||
let radius = WIDTH as f64 * 2.5;
|
||||
let golden_ratio = 0.5f64 * (1.0f64 + 5.0f64.sqrt());
|
||||
for i in 0..N_POINTS {
|
||||
let spherical_polar_theta_phi =
|
||||
fibonacci_spiral_on_sphere(golden_ratio, i, N_POINTS);
|
||||
let unit_sphere_p = spherical_polar_to_cartesian(spherical_polar_theta_phi);
|
||||
commands.spawn_bundle(PbrBundle {
|
||||
mesh: mesh.clone_weak(),
|
||||
material: material.clone_weak(),
|
||||
transform: Transform::from_translation((radius * unit_sphere_p).as_vec3()),
|
||||
..default()
|
||||
});
|
||||
}
|
||||
// cube
|
||||
commands.spawn_bundle(PbrBundle {
|
||||
mesh: mesh.clone_weak(),
|
||||
material: material.clone_weak(),
|
||||
transform: Transform::from_xyz((x as f32) * 2.5, (y as f32) * 2.5, 0.0),
|
||||
|
||||
// camera
|
||||
commands.spawn_bundle(PerspectiveCameraBundle::default());
|
||||
}
|
||||
_ => {
|
||||
// NOTE: This pattern is good for demonstrating that frustum culling is working correctly
|
||||
// as the number of visible meshes rises and falls depending on the viewing angle.
|
||||
for x in 0..WIDTH {
|
||||
for y in 0..HEIGHT {
|
||||
// introduce spaces to break any kind of moiré pattern
|
||||
if x % 10 == 0 || y % 10 == 0 {
|
||||
continue;
|
||||
}
|
||||
// cube
|
||||
commands.spawn_bundle(PbrBundle {
|
||||
mesh: mesh.clone_weak(),
|
||||
material: material.clone_weak(),
|
||||
transform: Transform::from_xyz((x as f32) * 2.5, (y as f32) * 2.5, 0.0),
|
||||
..default()
|
||||
});
|
||||
commands.spawn_bundle(PbrBundle {
|
||||
mesh: mesh.clone_weak(),
|
||||
material: material.clone_weak(),
|
||||
transform: Transform::from_xyz(
|
||||
(x as f32) * 2.5,
|
||||
HEIGHT as f32 * 2.5,
|
||||
(y as f32) * 2.5,
|
||||
),
|
||||
..default()
|
||||
});
|
||||
commands.spawn_bundle(PbrBundle {
|
||||
mesh: mesh.clone_weak(),
|
||||
material: material.clone_weak(),
|
||||
transform: Transform::from_xyz((x as f32) * 2.5, 0.0, (y as f32) * 2.5),
|
||||
..default()
|
||||
});
|
||||
commands.spawn_bundle(PbrBundle {
|
||||
mesh: mesh.clone_weak(),
|
||||
material: material.clone_weak(),
|
||||
transform: Transform::from_xyz(0.0, (x as f32) * 2.5, (y as f32) * 2.5),
|
||||
..default()
|
||||
});
|
||||
}
|
||||
}
|
||||
// camera
|
||||
commands.spawn_bundle(PerspectiveCameraBundle {
|
||||
transform: Transform::from_xyz(WIDTH as f32, HEIGHT as f32, WIDTH as f32),
|
||||
..default()
|
||||
});
|
||||
commands.spawn_bundle(PbrBundle {
|
||||
mesh: mesh.clone_weak(),
|
||||
material: material.clone_weak(),
|
||||
transform: Transform::from_xyz(
|
||||
(x as f32) * 2.5,
|
||||
HEIGHT as f32 * 2.5,
|
||||
(y as f32) * 2.5,
|
||||
),
|
||||
..Default::default()
|
||||
});
|
||||
commands.spawn_bundle(PbrBundle {
|
||||
mesh: mesh.clone_weak(),
|
||||
material: material.clone_weak(),
|
||||
transform: Transform::from_xyz((x as f32) * 2.5, 0.0, (y as f32) * 2.5),
|
||||
..Default::default()
|
||||
});
|
||||
commands.spawn_bundle(PbrBundle {
|
||||
mesh: mesh.clone_weak(),
|
||||
material: material.clone_weak(),
|
||||
transform: Transform::from_xyz(0.0, (x as f32) * 2.5, (y as f32) * 2.5),
|
||||
..Default::default()
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -72,20 +106,30 @@ fn setup(
|
|||
transform: Transform {
|
||||
translation: Vec3::new(0.0, HEIGHT as f32 * 2.5, 0.0),
|
||||
scale: Vec3::splat(5.0),
|
||||
..Default::default()
|
||||
..default()
|
||||
},
|
||||
..Default::default()
|
||||
});
|
||||
|
||||
// camera
|
||||
commands.spawn_bundle(PerspectiveCameraBundle {
|
||||
transform: Transform::from_xyz(WIDTH as f32, HEIGHT as f32, WIDTH as f32),
|
||||
..default()
|
||||
});
|
||||
|
||||
commands.spawn_bundle(DirectionalLightBundle {
|
||||
..Default::default()
|
||||
});
|
||||
commands.spawn_bundle(DirectionalLightBundle { ..default() });
|
||||
}
|
||||
|
||||
// NOTE: This epsilon value is apparently optimal for optimizing for the average
|
||||
// nearest-neighbor distance. See:
|
||||
// http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
|
||||
// for details.
|
||||
const EPSILON: f64 = 0.36;
|
||||
fn fibonacci_spiral_on_sphere(golden_ratio: f64, i: usize, n: usize) -> DVec2 {
|
||||
DVec2::new(
|
||||
2.0 * std::f64::consts::PI * (i as f64 / golden_ratio),
|
||||
(1.0 - 2.0 * (i as f64 + EPSILON) / (n as f64 - 1.0 + 2.0 * EPSILON)).acos(),
|
||||
)
|
||||
}
|
||||
|
||||
fn spherical_polar_to_cartesian(p: DVec2) -> DVec3 {
|
||||
let (sin_theta, cos_theta) = p.x.sin_cos();
|
||||
let (sin_phi, cos_phi) = p.y.sin_cos();
|
||||
DVec3::new(cos_theta * sin_phi, sin_theta * sin_phi, cos_phi)
|
||||
}
|
||||
|
||||
// System for rotating the camera
|
||||
|
|
Loading…
Reference in a new issue