# Objective
In the [*Similar parameters* section of
`Query`](https://dev-docs.bevyengine.org/bevy/ecs/prelude/struct.Query.html#similar-parameters),
the doc link for `Single` actually links to `Query::single`, and
`Option<Single>` just links to `Option`. They should both link to
`Single`!
The first link is broken because there is a reference-style link defined
for `single`, but not for `Single`, and rustdoc treats the link as
case-insensitive for some reason.
## Solution
Fix the links!
## Testing
I built the docs locally with `cargo doc` and tested the links.
# Objective
- Refactor
## Solution
- Refactor
## Testing
- Ran 3d_scene
---
## Migration Guide
`RenderCreation::Manual` variant fields are now wrapped in a struct
called `RenderResources`
# Objective
`TemporaryRenderEntity` currently uses `SparseSet` storage, but doesn't
seem to fit the criteria for a component that would benefit from this.
Typical usage of `TemporaryRenderEntity` (and all current usages of it
in engine as far as I can tell) would be to spawn an entity with it once
and then iterate over it once to despawn that entity.
`SparseSet` is said to be useful for insert/removal perf at the cost of
iteration perf.
## Solution
Use the default table storage
## Testing
Possibly this could show up in stress tests like `many_buttons`. I
didn't do any benchmarking.
# Objective
When using a rect for a ui image, its content size is still equal to the
size of the full image instead of the size of the rect.
## Solution
Use the rect size if it is present.
## Testing
I tested it using all 4 possible combinations of having a rect and
texture atlas or not. See the showcase section.
---
## Showcase
<details>
<summary>Click to view showcase</summary>
```rust
use bevy::prelude::*;
fn main() {
App::new()
.add_plugins(DefaultPlugins.set(ImagePlugin::default_nearest()))
.add_systems(Startup, create_ui)
.run();
}
fn create_ui(
mut commands: Commands,
assets: Res<AssetServer>,
mut texture_atlas_layouts: ResMut<Assets<TextureAtlasLayout>>,
mut ui_scale: ResMut<UiScale>,
) {
let texture = assets.load("textures/fantasy_ui_borders/numbered_slices.png");
let layout = TextureAtlasLayout::from_grid(UVec2::splat(16), 3, 3, None, None);
let texture_atlas_layout = texture_atlas_layouts.add(layout);
ui_scale.0 = 2.;
commands.spawn(Camera2d::default());
commands
.spawn(Node {
display: Display::Flex,
align_items: AlignItems::Center,
..default()
})
.with_children(|parent| {
// nothing
parent.spawn(ImageNode::new(texture.clone()));
// with rect
parent.spawn(ImageNode::new(texture.clone()).with_rect(Rect::new(0., 0., 16., 16.)));
// with rect and texture atlas
parent.spawn(
ImageNode::from_atlas_image(
texture.clone(),
TextureAtlas {
layout: texture_atlas_layout.clone(),
index: 1,
},
)
.with_rect(Rect::new(0., 0., 8., 8.)),
);
// with texture atlas
parent.spawn(ImageNode::from_atlas_image(
texture.clone(),
TextureAtlas {
layout: texture_atlas_layout.clone(),
index: 2,
},
));
});
}
```
Before this change:
<img width="529" alt="Screenshot 2024-11-21 at 11 55 45"
src="https://github.com/user-attachments/assets/23196003-08ca-4049-8409-fe349bd5aa54">
After the change:
<img width="400" alt="Screenshot 2024-11-21 at 11 54 54"
src="https://github.com/user-attachments/assets/e2cd6ebf-859c-40a1-9fc4-43bb28b024e5">
</details>
# Objective
Original motivation was a bundle I am migrating that is `Copy` which
needs to be synced to the render world. It probably doesn't actually
*need* to be `Copy`, so this isn't critical or anything.
I am continuing to use this bundle while bundles still exist to give
users an easier migration path.
## Solution
These ZSTs might as well be `Copy`. Add `Copy` derives.
PR #15164 made Bevy consider the center of the mesh to be the center of
the axis-aligned bounding box (AABB). Unfortunately, this breaks
crossfading in many cases. LODs may have different AABBs and so the
center of the AABB may differ for different LODs of the same mesh. The
crossfading, however, relies on all LODs having *precisely* the same
position.
To address this problem, this PR adds a new field, `use_aabb`, to
`VisibilityRange`, which makes the AABB center point behavior opt-in.
@BenjaminBrienen first noticed this issue when reviewing PR #16286. That
PR contains a video showing the effects of this regression on the
`visibility_range` example. This commit fixes that example.
## Migration Guide
* The `VisibilityRange` component now has an extra field, `use_aabb`.
Generally, you can safely set it to false.
We have an early-out to avoid updating `RenderVisibilityRanges` when a
`VisibilityRange` component is *modified*, but not when one is
*removed*. This means that removing `VisibilityRange` from an entity
might not update the rendering.
This PR fixes the issue by adding a check for removed
`VisibilityRange`s.
# Objective
- Fixes#16472.
## Solution
- Add flags to `SpritePlugin` and `UiPlugin` to disable their picking
backends.
## Testing
- The change is pretty trivial, so not much to test!
---
## Migration Guide
- `UiPlugin` now contains an extra `add_picking` field if
`bevy_ui_picking_backend` is enabled.
- `SpritePlugin` is no longer a unit struct, and has one field if
`bevy_sprite_picking_backend` is enabled (otherwise no fields).
# Objective
- Fixes#16469.
## Solution
- Make the picking backend features not enabled by default in each
sub-crate.
- Make features in `bevy_internal` to set the backend features
- Make the root `bevy` crate set the features by default.
## Testing
- The mesh and sprite picking examples still work correctly.
I'm not sure why, but somehow `#[derive(Reflect)]` on a tuple struct
with a boxed trait object can result in linker errors when dynamic
linking is used on Windows using `rust-lld`:
```
= note: rust-lld: error: <root>: undefined symbol: bevy_animation::_::_$LT$impl$u20$bevy_reflect..reflect..PartialReflect$u20$for$u20$bevy_animation..AnimationEventFn$GT$::reflect_partial_eq::hc4cce1dc55e42e0b␍
rust-lld: error: <root>: undefined symbol: bevy_animation::_::_$LT$impl$u20$bevy_reflect..from_reflect..FromReflect$u20$for$u20$bevy_animation..AnimationEventFn$GT$::from_reflect::hc2b1d575b8491092␍
rust-lld: error: <root>: undefined symbol: bevy_animation::_::_$LT$impl$u20$bevy_reflect..tuple_struct..TupleStruct$u20$for$u20$bevy_animation..AnimationEventFn$GT$::clone_dynamic::hab42a4edc8d6b5c2␍
rust-lld: error: <root>: undefined symbol: bevy_animation::_::_$LT$impl$u20$bevy_reflect..tuple_struct..TupleStruct$u20$for$u20$bevy_animation..AnimationEventFn$GT$::field::h729a3d6dd6a27a43␍
rust-lld: error: <root>: undefined symbol: bevy_animation::_::_$LT$impl$u20$bevy_reflect..tuple_struct..TupleStruct$u20$for$u20$bevy_animation..AnimationEventFn$GT$::field_mut::hde1c34846d77344b␍
rust-lld: error: <root>: undefined symbol: bevy_animation::_::_$LT$impl$u20$bevy_reflect..type_registry..GetTypeRegistration$u20$for$u20$bevy_animation..AnimationEventFn$GT$::get_type_registration::hb96eb543e403a132␍
rust-lld: error: <root>: undefined symbol: bevy_animation::_::_$LT$impl$u20$bevy_reflect..type_registry..GetTypeRegistration$u20$for$u20$bevy_animation..AnimationEventFn$GT$::register_type_dependencies::hcf1a4b69bcfea6ae␍
rust-lld: error: undefined symbol: bevy_animation::_::_$LT$impl$u20$bevy_reflect..reflect..PartialReflect$u20$for$u20$bevy_animation..AnimationEventFn$GT$::reflect_partial_eq::hc4cce1dc55e42e0b␍
```
etc.
Adding `#[reflect(opaque)]` to the `Reflect` derive fixes the problem,
and that's what this patch does. I think that adding
`#[reflect(opaque)]` is harmless, as there's little that reflection
allows with a boxed trait object anyhow.
# Objective
- Fixes#16406 even more. The previous implementation did not take into
account the depth of the requiree when setting the depth relative to the
required_by component.
## Solution
- Add the depth of the requiree!
## Testing
- Added a test.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
We switch back and forwards between logical and physical coordinates all
over the place. Systems have to query for cameras and the UiScale when
they shouldn't need to. It's confusing and fragile and new scale factor
bugs get found constantly.
## Solution
* Use physical coordinates whereever possible in `bevy_ui`.
* Store physical coords in `ComputedNode` and tear out all the unneeded
scale factor calculations and queries.
* Add an `inverse_scale_factor` field to `ComputedNode` and set nodes
changed when their scale factor changes.
## Migration Guide
`ComputedNode`'s fields and methods now use physical coordinates.
`ComputedNode` has a new field `inverse_scale_factor`. Multiplying the
physical coordinates by the `inverse_scale_factor` will give the logical
values.
---------
Co-authored-by: atlv <email@atlasdostal.com>
# Objective
Needing to derive `AnimationEvent` for `Event` is unnecessary, and the
trigger logic coupled to it feels like we're coupling "event producer"
logic with the event itself, which feels wrong. It also comes with a
bunch of complexity, which is again unnecessary. We can have the
flexibility of "custom animation event trigger logic" without this
coupling and complexity.
The current `animation_events` example is also needlessly complicated,
due to it needing to work around system ordering issues. The docs
describing it are also slightly wrong. We can make this all a non-issue
by solving the underlying ordering problem.
Related to this, we use the `bevy_animation::Animation` system set to
solve PostUpdate animation order-of-operations issues. If we move this
to bevy_app as part of our "core schedule", we can cut out needless
`bevy_animation` crate dependencies in these instances.
## Solution
- Remove `AnimationEvent`, the derive, and all other infrastructure
associated with it (such as the `bevy_animation/derive` crate)
- Replace all instances of `AnimationEvent` traits with `Event + Clone`
- Store and use functions for custom animation trigger logic (ex:
`clip.add_event_fn()`). For "normal" cases users dont need to think
about this and should use the simpler `clip.add_event()`
- Run the `Animation` system set _before_ updating text
- Move `bevy_animation::Animation` to `bevy_app::Animation`. Remove
unnecessary `bevy_animation` dependency from `bevy_ui`
- Adjust `animation_events` example to use the simpler `clip.add_event`
API, as the workarounds are no longer necessary
This is polishing work that will land in 0.15, and I think it is simple
enough and valuable enough to land in 0.15 with it, in the interest of
making the feature as compelling as possible.
# Objective
A new user is likely to try `Query<Component>` instead of
`Query<&Component>`. The error message should guide them to the right
solution.
## Solution
Add a note to the on_unimplemented message for `QueryData` recommending
`&T` and `&mut T`.
The full error message now looks like:
```
error[E0277]: `A` is not valid to request as data in a `Query`
--> crates\bevy_ecs\src\query\world_query.rs:260:18
|
260 | fn system(query: Query<A>) {}
| ^^^^^^^^ invalid `Query` data
|
= help: the trait `fetch::QueryData` is not implemented for `A`
= note: if `A` is a component type, try using `&A` or `&mut A`
= help: the following other types implement trait `fetch::QueryData`:
&'__w mut T
&Archetype
&T
()
(F,)
(F0, F1)
(F0, F1, F2)
(F0, F1, F2, F3)
and 41 others
note: required by a bound in `system::query::Query`
--> crates\bevy_ecs\src\system\query.rs:362:37
|
362 | pub struct Query<'world, 'state, D: QueryData, F: QueryFilter = ()> {
| ^^^^^^^^^ required by this bound in `Query`
```
Alternative to #16450
# Objective
detailed_trace! in its current form does not work (and breaks CI)
## Solution
Fix detailed_trace by checking for the feature properly, adding it to
the correct crates, and removing it from the incorrect crates
# Objective
- Fixes#16406
- Fixes an issue where registering a "deeper" required component, then a
"shallower" required component, would result in the wrong required
constructor being used for the root component.
## Solution
- Make `register_required_components` add any "parent" of a component as
`required_by` to the new "child".
- Assign the depth of the `requiree` plus 1 as the depth of a new
runtime required component.
## Testing
- Added two new tests.
# Objective
- Add methods to facilitate `TextFont` component creation and insertion.
## Solution
- Added `from_font` and `from_font_size` which return a new `TextFont`
with said attributes provided as parameters.
- Added `with_font` and `with_font_size` which return an existing
`TextFont` modifying said attributes with the values provided as
parameters.
## Testing
- CI Checks.
- Tested methods locally by changing values and running the `text_debug`
example.
# Objective
Run this without this PR:
`cargo build -p bevy_hierarchy --no-default-features`
You'll get:
```
error[E0432]: unresolved import `bevy_reflect`
--> crates/bevy_hierarchy/src/events.rs:2:5
|
2 | use bevy_reflect::Reflect;
| ^^^^^^^^^^^^ use of undeclared crate or module `bevy_reflect`
For more information about this error, try `rustc --explain E0432`.
error: could not compile `bevy_hierarchy` (lib) due to 1 previous error
warning: build failed, waiting for other jobs to finish...
```
Because of this line:
```rs
use bevy_reflect::Reflect;
#[derive(Event, Debug, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "reflect", derive(Reflect), reflect(Debug, PartialEq))]
pub enum HierarchyEvent { .. }
```
## Solution
use FQN: `derive(bevy_reflect::Reflect)`
## Testing
`cargo build -p bevy_hierarchy --no-default-features`
# Objective
It looks like this file was created based on the `ui_texture_slice`
rendering code and some variable names weren't updated.
## Solution
Rename "texture slice" variable names to "box shadow".
# Objective
#16222 regressed the user experience of actually using gamepads:
```rust
// Before 16222
gamepad.just_pressed(GamepadButton::South)
// After 16222
gamepad.digital.just_pressed(GamepadButton::South)
// Before 16222
gamepad.get(GamepadButton::RightTrigger2)
// After 16222
gamepad.analog.get(GamepadButton::RighTrigger2)
```
Users shouldn't need to think about "digital vs analog" when checking if
a button is pressed. This abstraction was intentional and I strongly
believe it is in our users' best interest. Buttons and Axes are _both_
digital and analog, and this is largely an implementation detail. I
don't think reverting this will be controversial.
## Solution
- Revert most of #16222
- Add the `Into<T>` from #16222 to the internals
- Expose read/write `digital` and `analog` accessors on gamepad, in the
interest of enabling the mocking scenarios covered in #16222 (and
allowing the minority of users that care about the "digital" vs "analog"
distinction in this context to make that distinction)
---------
Co-authored-by: Hennadii Chernyshchyk <genaloner@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
# Objective
- bevy_render (poorly) implements gcd (which should be in bevy_math but
theres not enough justification to have it there either anyways cus its
just one usage)
## Solution
- hardcoded LUT replacement for the one usage
## Testing
- verified the alternative implementation of 4/gcd(4,x) agreed with
original for 0..200
# Objective
https://github.com/AccessKit/accesskit/pull/475 changed how text content
should be set for AccessKit nodes with a role of `Label`. This was
unfortunately missing from #16234.
## Solution
When building an `accesskit::Node` with `Role::Label`, calls `set_value`
instead of `set_label` on the node to set its content.
## Testing
I can't test this right now on my Windows machine due to a compilation
error with wgpu-hal I have no idea how to resolve.
**NOTE: This is based on, and should be merged alongside,
https://github.com/bevyengine/bevy/pull/15482.** I'll leave this in
draft until that PR is merged.
# Objective
Equivalent of https://github.com/bevyengine/bevy/pull/15482 but for
serialization. See that issue for the motivation.
Also part of this tracking issue:
https://github.com/bevyengine/bevy/issues/15518
This PR is non-breaking, just like the deserializer PR (because the new
type parameter `P` has a default `P = ()`).
## Solution
Identical solution to the deserializer PR.
## Testing
Added unit tests and a very comprehensive doc test outlining a clear
example and use case.
# Objective
Fixes#16406.
Currently, the `#[require(...)]` attribute internally registers
component requirements using `register_required_components_manual`. This
is done recursively in a way where every requirement in the "inheritance
tree" is added into a flat `RequiredComponents` hash map with component
constructors and inheritance depths stored.
However, this does not consider runtime requirements: if a plugins has
already registered `C` as required by `B`, and a component `A` requires
`B` through the macro attribute, spawning an entity with `A` won't add
`C`. The `required_by` hash set for `C` doesn't have `A`, and the
`RequiredComponents` of `A` don't have `C`.
Intuitively, I would've thought that the macro attribute's requirements
were always added *before* runtime requirements, and in that case I
believe this shouldn't have been an issue. But the macro requirements
are based on `Component::register_required_components`, which in a lot
of cases (I think) is only called *after* the first time a bundle with
the component is inserted. So if a runtime requirement is defined
*before* this (as is often the case, during `Plugin::build`), the macro
may not take it into account.
## Solution
Register requirements inherited from the `required` component in
`register_required_components_manual_unchecked`.
## Testing
I added a test, essentially the same as in #16406, and it now passes. I
also ran some of the tests in #16409, and they seem to work as expected.
All the existing tests for required components pass.
# Objective
Seemed to have missed the export of `DynamicComponentFetch` from #15593.
`TryFromFilteredError` which is returned by `impl
TryFrom<FiliteredEntityMut/Ref> for EntityRef/Mut` also seemed to have
been missing.
## Solution
Export both of them.
# Objective
MSRV in the standalone crates should be accurate
## Solution
Determine the msrv of each crate and set it
## Testing
Adding better msrv checks to the CI is a next-step.
# Objective
- Fix part of #15920
## Solution
- Keep track of the last written amount of bytes, and bind only that
much of the buffer.
## Testing
- Did you test these changes? If so, how? No
- Are there any parts that need more testing?
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
---
## Migration Guide
- Fixed a bug with StorageBuffer and DynamicStorageBuffer binding data
from the previous frame(s) due to caching GPU buffers between frames.
# Objective
When adding custom BRP methods one might need to:
- Run custom systems in the `RemoteLast` schedule.
- Order those systems before/after request processing and cleanup.
For example in `bevy_remote_inspector` we need a way to perform some
preparation _before_ request processing. And to perform cleanup
_between_ request processing and watcher cleanup.
## Solution
- Make `RemoteLast` public
- Add `RemoteSet` with `ProcessRequests` and `Cleanup` variants.
I didn't mean to make this item private, fixing it for the 0.15 release
to be consistent with 0.14.
(maintainers: please make sure this gets merged into the 0.15 release
branch as well as main)
# Objective
- Fixes#16152
## Solution
- Put `bevy_window` and `bevy_a11y` behind the `bevy_window` feature.
they were the only difference
- Add `ScheduleRunnerPlugin` to the `DefaultPlugins` when `bevy_window`
is disabled
- Remove `HeadlessPlugins`
- Update the `headless` example
# Objective
- Fixes#16285
- Inactive camera are keeping the component `ViewUniformOffset` from
when they were active, still matching some queries trying to render to
them
## Solution
- Remove component `ViewUniformOffset` from cameras that are inactive
## Testing
- Ran example `render_primitives` and switched camera
Tweaks picking docs slightly for formatting and to add additional
context about the ordering of `Over` and `Out` events. Also shifts `Out`
to trigger before `Over` in the global event ordering.
Because of how focus is tracked, we must send all `Over` and `Out`
events at the same time, in a block. Originally I had `Over` precede
`Out` in the global event order, because this seemed natural. However,
the effect of this, when a pointer moves between entities, is to have
the new entity receive `Over` before the old entity received `Out`,
which several users found confusing.
The new ordering (out before over globally, over before out locally per
entity) should make it much easier to write hover state cleanup code.
# Objective
- When picking sprites, the pointer is offset from the mouse, causing
you to pick sprites you're not mousing over!
## Solution
- Shift over the cursor by the minimum of the viewport.
## Testing
- I was already using the bevy_mod_picking PR for my project, so it
seems to work!
- I tested this on the sprite_example (making the camera only render to
part of the viewport), and it also works there.
## Notes
- This is just https://github.com/aevyrie/bevy_mod_picking/pull/365 but
in Bevy form.
- We don't need to renormalize the viewport in any way since the
viewport is specified in pixels, so all that matters is that the origin
is correct.
Co-authored-by: johanhelsing <johanhelsing@gmail.com>
# Objective
PCSS still has some fundamental issues (#16155). We should resolve them
before "releasing" the feature.
## Solution
1. Rename the already-optional `pbr_pcss` cargo feature to
`experimental_pbr_pcss` to better communicate its state to developers.
2. Adjust the description of the `experimental_pbr_pcss` cargo feature
to better communicate its state to developers.
3. Gate PCSS-related light component fields behind that cargo feature,
to prevent surfacing them to developers by default.
# Objective
UI Anti-aliasing is incorrectly implemented. It always uses an edge
radius of 0.25 logical pixels, and ignores the physical resolution. For
low dpi screens 0.25 is is too low and on higher dpi screens the
physical edge radius is much too large, resulting in visual artifacts.
## Solution
Multiply the distance by the scale factor in the `antialias` function so
that the edge radius stays constant in physical pixels.
## Testing
To see the problem really clearly run the button example with `UiScale`
set really high. With `UiScale(25.)` on main if you examine the button's
border you can see a thick gradient fading away from the edges:
<img width="127" alt="edgg"
src="https://github.com/user-attachments/assets/7c852030-c0e8-4aef-8d3e-768cb2464cab">
With this PR the edges are sharp and smooth at all scale factors:
<img width="127" alt="edge"
src="https://github.com/user-attachments/assets/b3231140-1bbc-4a4f-a1d3-dde21f287988">
# Objective
Text2d doesn't respond to changes to the window scalefactor.
Fixes#16223
## Solution
In `update_text2d_layout` store the previous scale factor in a `Local`
instead and check against the current scale factor to detect changes.
It seems like previously the text wasn't updated because of a bug with
the `WindowScaleFactorChanged` event and it isn't emitted after changes
to the scale factor. That needs to be looked into, but this will work
for now.
## Testing
Really simple app that draws a big message in the middle of the window:
```
use bevy::prelude::*;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.run();
}
fn setup(mut commands: Commands) {
commands.spawn(Camera2d);
commands.spawn((
Text2d::new("Hello"),
TextFont {
font_size: 400.,
..Default::default()
},
));
}
```
Looks fine:
<img width="500" alt="hello1"
src="https://github.com/user-attachments/assets/5320746b-687e-4682-9e4c-bc43ab7ff9d3">
On main, after changing the monitor's scale factor:
<img width="500" alt="hello2"
src="https://github.com/user-attachments/assets/486cea16-fc44-4d66-9468-6f68905d4196">
With this PR the text maintains the same size and position after the
scale factor is changed.
# Objective
- Describe the objective or issue this PR addresses.
Use the fully qualified name for `Component` in the `require` attribute
- If you're fixing a specific issue, say "Fixes #X".
Fixes#16377
## Solution
- Describe the solution used to achieve the objective above.
Use the fully qualified name for `Component` in the `require` attribute,
i.e.,`<#ident as #bevy_ecs_path::component::Component>`
## Testing
- Did you test these changes? If so, how?
`cargo run -p ci -- lints`
`cargo run -p ci -- compile`
`cargo run -p ci -- test`
- Are there any parts that need more testing?
no
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
try to compile
```rust
#[derive(::bevy::ecs::component::Component, Default)]
pub struct A;
#[derive(::bevy::ecs::component::Component)]
#[require(A)]
pub struct B;
```
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
Mac only
---
</details>
## Migration Guide
> This section is optional. If there are no breaking changes, you can
delete this section.
- If this PR is a breaking change (relative to the last release of
Bevy), describe how a user might need to migrate their code to support
these changes
- Simply adding new functionality is not a breaking change.
- Fixing behavior that was definitely a bug, rather than a questionable
design choice is not a breaking change.
Co-authored-by: Volodymyr Enhelhardt <volodymyr.enhelhardt@ambr.net>
# Objective
We currently use special "floating" constructors for `EasingCurve`,
`FunctionCurve`, and `ConstantCurve` (ex: `easing_curve`). This erases
the type being created (and in general "what is happening"
structurally), for very minimal ergonomics improvements. With rare
exceptions, we prefer normal `X::new()` constructors over floating `x()`
constructors in Bevy. I don't think this use case merits special casing
here.
## Solution
Add `EasingCurve::new()`, use normal constructors everywhere, and remove
the floating constructors.
I think this should land in 0.15 in the interest of not breaking people
later.
# Objective
Fixes#16266
## Solution
Added an `UnregisterSystem` command struct and
`Commands::unregister_system`. Also renamed `World::remove_system` and
`World::remove_system_cached` to `World::unregister_*`
## Testing
It's a fairly simple change, but I tested locally to ensure it actually
works.
---------
Co-authored-by: Benjamin Brienen <benjamin.brienen@outlook.com>
# Objective
Fixes#16316
## Solution
Tweaked a few crates cargo files until I was able to build and test
`bevy_ui` via `cargo test --package bevy_ui`
## Testing
- ran `cargo test --package bevy_ui` successfully
- CI should catch anything amiss (Hopefully?)
# Objective
`ButtonBundle` has an `ImageNode` component (renamed from `UiImage`)
which wasn't a problem in 0.14 but in 0.15 `requires` pulls in the
`ContentSize` and `NodeImageSize` which means that by default
`ButtonBundle` nodes are given a measure func based on the size of the
image belonging to `TRANSPARENT_IMAGE_HANDLE`, which is 1x1.
This doesn't make sense and the behaviour for default image nodes should
either be to go to zero size or not add a measure func.
## Solution
Check if an image has a `TRANSPARENT_IMAGE_HANDLE` and if it does remove
its measure func.
Possibly a zero-sized measure would make more sense, but that would
break existing code.
## Testing
Used `ButtonBundle` in the 0.15 `button` example and the border doesn't
render, after this change it does.
# Objective
- Fix bug where `UiSurface::set_camera_children` (and
`UiSurface::update_children` sometimes) will panic if you remove and add
a `Node` component in a single tick. This is more likely to happen now
because of `remove_with_requires`.
## Solution
- Filter out entities with `Node` when cleaning up entities from
`RemovedComponents<Node>`.
## Testing
- Not tested (rust compiler refused to cooperate when I tried to patch
this into my project), correct by inspection.
# Objective
- Allow to configure `on_thread_spawn` and `on_thread_destroy` when
using `TaskPoolPlugin` of bevy.
## Solution
- In `TaskPoolThreadAssignmentPolicy`, two options `on_thread_spawn` and
`on_thread_destroy` are added, which will be passed to two new methods
motioned above when creating corresponding task pool using builder.
- Due to lack of debug derive for these two options, manually implement
the debug for `TaskPoolThreadAssignmentPolicy`.
---
## Changelog
### Added
- `on_thread_spawn` option and `on_thread_destroy` option to the
`TaskPoolPlugin`, allow user to customize them as needed.
## Migration Guide
- `TaskPooolThreadAssignmentPolicy` now has two additional fields:
`on_thread_spawn` and `on_thread_destroy`. Please consider defaulting
them to `None`.
---------
Co-authored-by: François Mockers <mockersf@gmail.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
_If I understand it correctly_, we were checking mesh visibility, as
well as re-rendering point and spot light shadow maps for each view.
This makes it so that M views and N lights produce M x N complexity.
This PR aims to fix that, as well as introduce a stress test for this
specific scenario.
## Solution
- Keep track of what lights have already had mesh visibility calculated
and do not calculate it again;
- Reuse shadow depth textures and attachments across all views, and only
render shadow maps for the _first_ time a light is encountered on a
view;
- Directional lights remain unaltered, since their shadow map cascades
are view-dependent;
- Add a new `many_cameras_lights` stress test example to verify the
solution
## Showcase
110% speed up on the stress test
83% reduction of memory usage in stress test
### Before (5.35 FPS on stress test)
<img width="1392" alt="Screenshot 2024-09-11 at 12 25 57"
src="https://github.com/user-attachments/assets/136b0785-e9a4-44df-9a22-f99cc465e126">
### After (11.34 FPS on stress test)
<img width="1392" alt="Screenshot 2024-09-11 at 12 24 35"
src="https://github.com/user-attachments/assets/b8dd858f-5e19-467f-8344-2b46ca039630">
## Testing
- Did you test these changes? If so, how?
- On my game project where I have two cameras, and many shadow casting
lights I managed to get pretty much double the FPS.
- Also included a stress test, see the comparison above
- Are there any parts that need more testing?
- Yes, I would like help verifying that this fix is indeed correct, and
that we were really re-rendering the shadow maps by mistake and it's
indeed okay to not do that
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Run the `many_cameras_lights` example
- On the `main` branch, cherry pick the commit with the example (`git
cherry-pick --no-commit 1ed4ace01`) and run it
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
- macOS
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
Should compile successfully with any combination of features
## Solution
Add the missing import on the right cfg.
## Testing
Tested building locally.
Fixes https://github.com/bevyengine/bevy/issues/16352
# Objective
Glam has some common and useful types and helpers that are not in the
prelude of `bevy_math`. This includes shorthand constructors like
`vec3`, or even `Vec3A`, the aligned version of `Vec3`.
```rust
// The "normal" way to create a 3D vector
let vec = Vec3::new(2.0, 1.0, -3.0);
// Shorthand version
let vec = vec3(2.0, 1.0, -3.0);
```
## Solution
Add the following types and methods to the prelude:
- `vec2`, `vec3`, `vec3a`, `vec4`
- `uvec2`, `uvec3`, `uvec4`
- `ivec2`, `ivec3`, `ivec4`
- `bvec2`, `bvec3`, `bvec3a`, `bvec4`, `bvec4a`
- `mat2`, `mat3`, `mat3a`, `mat4`
- `quat` (not sure if anyone uses this, but for consistency)
- `Vec3A`
- `BVec3A`, `BVec4A`
- `Mat3A`
I did not add the u16, i16, or f64 variants like `dvec2`, since there
are currently no existing types like those in the prelude.
The shorthand constructors are currently used a lot in some places in
Bevy, and not at all in others. In a follow-up, we might want to
consider if we have a preference for the shorthand, and make a PR to
change the codebase to use it more consistently.
# Objective
- Fixes: #15603
## Solution
- Add an unsafe `get_mut_by_id_unchecked` to `EntityMut` that borrows
&self instead of &mut self, thereby allowing access to multiple
components simultaneously.
## Testing
- a unit test function `get_mut_by_id_unchecked` was added.
---------
Co-authored-by: Mike <mike.hsu@gmail.com>
**NOTE: Also see https://github.com/bevyengine/bevy/pull/15548 for the
serializer equivalent**
# Objective
The current `ReflectDeserializer` and `TypedReflectDeserializer` use the
`TypeRegistration` and/or `ReflectDeserialize` of a given type in order
to determine how to deserialize a value of that type. However, there is
currently no way to statefully override deserialization of a given type
when using these two deserializers - that is, to have some local data in
the same scope as the `ReflectDeserializer`, and make use of that data
when deserializing.
The motivating use case for this came up when working on
[`bevy_animation_graph`](https://github.com/aecsocket/bevy_animation_graph/tree/feat/dynamic-nodes),
when loading an animation graph asset. The `AnimationGraph` stores
`Vec<Box<dyn NodeLike>>`s which we have to load in. Those `Box<dyn
NodeLike>`s may store `Handle`s to e.g. `Handle<AnimationClip>`. I want
to trigger a `load_context.load()` for that handle when it's loaded.
```rs
#[derive(Reflect)]
struct Animation {
clips: Vec<Handle<AnimationClip>>,
}
```
```rs
(
clips: [
"animation_clips/walk.animclip.ron",
"animation_clips/run.animclip.ron",
"animation_clips/jump.animclip.ron",
],
)
````
Currently, if this were deserialized from an asset loader, this would be
deserialized as a vec of `Handle::default()`s, which isn't useful since
we also need to `load_context.load()` those handles for them to be used.
With this processor field, a processor can detect when `Handle<T>`s are
being loaded, then actually load them in.
## Solution
```rs
trait ReflectDeserializerProcessor {
fn try_deserialize<'de, D>(
&mut self,
registration: &TypeRegistration,
deserializer: D,
) -> Result<Result<Box<dyn PartialReflect>, D>, D::Error>
where
D: serde::Deserializer<'de>;
}
```
```diff
- pub struct ReflectDeserializer<'a> {
+ pub struct ReflectDeserializer<'a, P = ()> { // also for ReflectTypedDeserializer
registry: &'a TypeRegistry,
+ processor: Option<&'a mut P>,
}
```
```rs
impl<'a, P: ReflectDeserializerProcessor> ReflectDeserializer<'a, P> { // also for ReflectTypedDeserializer
pub fn with_processor(registry: &'a TypeRegistry, processor: &'a mut P) -> Self {
Self {
registry,
processor: Some(processor),
}
}
}
```
This does not touch the existing `fn new`s.
This `processor` field is also added to all internal visitor structs.
When `TypedReflectDeserializer` runs, it will first try to deserialize a
value of this type by passing the `TypeRegistration` and deserializer to
the processor, and fallback to the default logic. This processor runs
the earliest, and takes priority over all other deserialization logic.
## Testing
Added unit tests to `bevy_reflect::serde::de`. Also using almost exactly
the same implementation in [my fork of
`bevy_animation_graph`](https://github.com/aecsocket/bevy_animation_graph/tree/feat/dynamic-nodes).
## Migration Guide
(Since I added `P = ()`, I don't think this is actually a breaking
change anymore, but I'll leave this in)
`bevy_reflect`'s `ReflectDeserializer` and `TypedReflectDeserializer`
now take a `ReflectDeserializerProcessor` as the type parameter `P`,
which allows you to customize deserialization for specific types when
they are found. However, the rest of the API surface (`new`) remains the
same.
<details>
<summary>Original implementation</summary>
Add `ReflectDeserializerProcessor`:
```rs
struct ReflectDeserializerProcessor {
pub can_deserialize: Box<dyn FnMut(&TypeRegistration) -> bool + 'p>,
pub deserialize: Box<
dyn FnMut(
&TypeRegistration,
&mut dyn erased_serde::Deserializer,
) -> Result<Box<dyn PartialReflect>, erased_serde::Error>
+ 'p,
}
```
Along with `ReflectDeserializer::new_with_processor` and
`TypedReflectDeserializer::new_with_processor`. This does not touch the
public API of the existing `new` fns.
This is stored as an `Option<&mut ReflectDeserializerProcessor>` on the
deserializer and any of the private `-Visitor` structs, and when we
attempt to deserialize a value, we first pass it through this processor.
Also added a very comprehensive doc test to
`ReflectDeserializerProcessor`, which is actually a scaled down version
of the code for the `bevy_animation_graph` loader. This should give
users a good motivating example for when and why to use this feature.
### Why `Box<dyn ..>`?
When I originally implemented this, I added a type parameter to
`ReflectDeserializer` to determine the processor used, with `()` being
"no processor". However when using this, I kept running into rustc
errors where it failed to validate certain type bounds and led to
overflows. I then switched to a dynamic dispatch approach.
The dynamic dispatch should not be that expensive, nor should it be a
performance regression, since it's only used if there is `Some`
processor. (Note: I have not benchmarked this, I am just speculating.)
Also, it means that we don't infect the rest of the code with an extra
type parameter, which is nicer to maintain.
### Why the `'p` on `ReflectDeserializerProcessor<'p>`?
Without a lifetime here, the `Box`es would automatically become `Box<dyn
FnMut(..) + 'static>`. This makes them practically useless, since any
local data you would want to pass in must then be `'static`. In the
motivating example, you couldn't pass in that `&mut LoadContext` to the
function.
This means that the `'p` infects the rest of the Visitor types, but this
is acceptable IMO. This PR also elides the lifetimes in the `impl<'de>
Visitor<'de> for -Visitor` blocks where possible.
### Future possibilities
I think it's technically possible to turn the processor into a trait,
and make the deserializers generic over that trait. This would also open
the door to an API like:
```rs
type Seed;
fn seed_deserialize(&mut self, r: &TypeRegistration) -> Option<Self::Seed>;
fn deserialize(&mut self, r: &TypeRegistration, d: &mut dyn erased_serde::Deserializer, s: Self::Seed) -> ...;
```
A similar processor system should also be added to the serialization
side, but that's for another PR. Ideally, both PRs will be in the same
release, since one isn't very useful without the other.
## Testing
Added unit tests to `bevy_reflect::serde::de`. Also using almost exactly
the same implementation in [my fork of
`bevy_animation_graph`](https://github.com/aecsocket/bevy_animation_graph/tree/feat/dynamic-nodes).
## Migration Guide
`bevy_reflect`'s `ReflectDeserializer` and `TypedReflectDeserializer`
now take a second lifetime parameter `'p` for storing the
`ReflectDeserializerProcessor` field lifetimes. However, the rest of the
API surface (`new`) remains the same, so if you are not storing these
deserializers or referring to them with lifetimes, you should not have
to make any changes.
</details>
# Objective
`glam` has opted to rename `Vec2::angle_between` to `Vec2::angle_to`
because of the difference in semantics compared to `Vec3::angle_between`
and others which return an unsigned angle `[0, PI]` where
`Vec2::angle_between` returns a signed angle `[-PI, PI]`.
We should follow suit for `Rot2` in 0.15 to avoid further confusion.
Links:
-
https://github.com/bitshifter/glam-rs/issues/514#issuecomment-2143202294
- https://github.com/bitshifter/glam-rs/pull/524
## Migration Guide
`Rot2::angle_between` has been deprecated, use `Rot2::angle_to` instead,
the semantics of `Rot2::angle_between` will change in the future.
---------
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
# Objective
Fixes#15940
## Solution
Remove the `pub use` and fix the compile errors.
Make `bevy_image` available as `bevy::image`.
## Testing
Feature Frenzy would be good here! Maybe I'll learn how to use it if I
have some time this weekend, or maybe a reviewer can use it.
## Migration Guide
Use `bevy_image` instead of `bevy_render::texture` items.
---------
Co-authored-by: chompaa <antony.m.3012@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Currently when you attempt to change the cursor_grab_mode it caches
the new value whether the cursor grab succeeded or failed. This change
handles the Result being returned by set_cursor_grab and changes the
cursor_grab_mode back to the cached version in case of an Error.
- Creates a way to handle #16237 and #16238
## Solution
- I changed the signature of winit_windows attempt_grab to return the
Result<(), ExternalError> that winit set_cursor_grab returns. The system
that calls attempt_grab now checks if there's an error returned, and if
there is it sets the grab_mode back to the cached version (similar to
what hit_test does a few lines down).
## Testing
- I tested using this system that previously would not correctly lock
the mouse on Ubuntu/x11
```
pub fn lock_mouse(mut primary_window: Query<&mut Window, With<PrimaryWindow>>) {
let window = &mut primary_window.single_mut();
if window.focused {
window.cursor_options.grab_mode = CursorGrabMode::Confined;
} else {
window.cursor_options.grab_mode = CursorGrabMode::None;
}
}
```
- I only tested on Ubuntu with x11
# Objective
Fixes#15928
## Solution
return Error instead of panic
## Testing
I don't know if we need to add a test for this. It is pretty
straightforward.
# Objective
- wgpu 0.20 made workgroup vars stop being zero-init by default. this
broke some applications (cough foresight cough) and now we workaround
it. wgpu exposes a compilation option that zero initializes workgroup
memory by default, but bevy does not expose it.
## Solution
- expose the compilation option wgpu gives us
## Testing
- ran examples: 3d_scene, compute_shader_game_of_life, gpu_readback,
lines, specialized_mesh_pipeline. they all work
- confirmed fix for our own problems
---
</details>
## Migration Guide
- add `zero_initialize_workgroup_memory: false,` to
`ComputePipelineDescriptor` or `RenderPipelineDescriptor` structs to
preserve 0.14 functionality, add `zero_initialize_workgroup_memory:
true,` to restore bevy 0.13 functionality.
# Objective
- Fixes#16235
## Solution
- Both Bevy and AccessKit export a `Node` struct, to reduce confusion
Bevy will no longer re-export `AccessKit` from `bevy_a11y`
## Testing
- Tested locally
## Migration Guide
```diff
# main.rs
-- use bevy_a11y::{
-- accesskit::{Node, Rect, Role},
-- AccessibilityNode,
-- };
++ use bevy_a11y::AccessibilityNode;
++ use accesskit::{Node, Rect, Role};
# Cargo.toml
++ accesskit = "0.17"
```
- Users will need to add `accesskit = "0.17"` to the dependencies
section of their `Cargo.toml` file and update their `accesskit` use
statements to come directly from the external crate instead of
`bevy_a11y`.
- Make sure to keep the versions of `accesskit` aligned with the
versions Bevy uses.
# Objective
- Fixed issue where `thiserror` `#[error(...)]` attributes were
improperly converted to `derive_more` `#[display(...)]` equivalents in
certain cases with a tuple struct/enum variant.
## Solution
- Used `re/#\[display\(.*\{[0-9]+\}.*\)\]/` to find occurences of using
`{0}` where `{_0}` was intended (checked for other field indexes too)and
updated accordingly.
## Testing
- `cargo check`
- CI
## Notes
This was discovered by @dtolnay in [this
comment](https://github.com/bevyengine/bevy/pull/15772#discussion_r1833730555).
# Objective
`AudioPlayer::<AudioSource>(assets.load("audio.mp3"))` is awkward and
complicated to type because the `AudioSource` generic type cannot be
elided. This is especially annoying because `AudioSource` is used in the
majority of cases. Most users don't need to think about it.
## Solution
Add an `AudioPlayer::new()` function that is hard-coded to
`AudioSource`, allowing `AudioPlayer::new(assets.load("audio.mp3"))`.
Prefer using that in the relevant places.
# Objective
In the existing implementation, additive blending effectively treats the
node with least index specially by basically forcing its weight to be
`1.0` regardless of what its computed weight would be (based on the
weights in the `AnimationGraph` and `AnimationPlayer`).
Arguably this makes some amount of sense, because the "base" animation
is often one which was not authored to be used additively, meaning that
its sampled values are interpreted absolutely rather than as deltas.
However, this also leads to strange behavior with respect to animation
masks: if the "base" animation is masked out on some target, then the
next node is treated as the "base" animation, despite the fact that it
would normally be interpreted additively, and the weight of that
animation is thrown away as a result.
This is all kind of weird and revolves around special treatment (if the
behavior is even really intentional in the first place). From a
mathematical standpoint, there is nothing special about how the "base"
animation must be treated other than having a weight of 1.0 under an
`Add` node, which is something that the user can do without relying on
some bizarre corner-case behavior of the animation system — this is the
only present situation under which weights are discarded.
This PR changes this behavior so that the weight of every node is
incorporated. In other words, for an animation graph that looks like
this:
```text
┌───────────────┐
│Base clip ┼──┐
│ 0.5 │ │
└───────────────┘ │
┌───────────────┐ │ ┌───────────────┐ ┌────┐
│Additive clip 1┼──┼─►┤Additive blend ┼────►│Root│
│ 0.1 │ │ │ 1.0 │ └────┘
└───────────────┘ │ └───────────────┘
┌───────────────┐ │
│Additive clip 2┼──┘
│ 0.2 │
└───────────────┘
```
Previously, the result would have been
```text
base_clip + 0.1 * additive_clip_1 + 0.2 * additive_clip_2
```
whereas now it would be
```text
0.5 * base_clip + 0.1 * additive_clip_1 + 0.2 * additive_clip_2
```
and in the scenario where `base_clip` is masked out:
```text
additive_clip_1 + 0.2 * additive_clip_2
```
vs.
```text
0.1 * additive_clip_1 + 0.2 * additive_clip_2
```
## Solution
For background, the way that the additive blending procedure works is
something like this:
- During graph traversal, the node values and weights of the children
are pushed onto the evaluator `stack`. The traversal order guarantees
that the item with least node index will be on top.
- Once we reach the `Add` node itself, we start popping off the `stack`
and into the evaluator's `blend_register`, which is an accumulator
holding up to one weight-value pair:
- If the `blend_register` is empty, it is filled using data from the top
of the `stack`.
- Otherwise, the `blend_register` is combined with data popped from the
`stack` and updated.
In the example above, the additive blending steps would look like this
(with the pre-existing implementation):
1. The `blend_register` is empty, so we pop `(base_clip, 0.5)` from the
top of the `stack` and put it in. Now the value of the `blend_register`
is `(base_clip, 0.5)`.
2. The `blend_register` is non-empty: we pop `(additive_clip_1, 0.1)`
from the top of the `stack` and combine it additively with the value in
the `blend_register`, forming `(base_clip + 0.1 * additive_clip_1, 0.6)`
in the `blend_register` (the carried weight value goes unused).
3. The `blend_register` is non-empty: we pop `(additive_clip_2, 0.2)`
from the top of the `stack` and combine it additively with the value in
the `blend_register`, forming `(base_clip + 0.1 * additive_clip_1 + 0.2
* additive_clip_2, 0.8)` in the `blend_register`.
The solution in this PR changes step 1: the `base_clip` is multiplied by
its weight as it is added to the `blend_register` in the first place,
yielding `0.5 * base_clip + 0.1 * additive_clip_1 + 0.2 *
additive_clip_2` as the final result.
### Note for reviewers
It might be tempting to look at the code, which contains a segment that
looks like this:
```rust
if additive {
current_value = A::blend(
[
BlendInput {
weight: 1.0, // <--
value: current_value,
additive: true,
},
BlendInput {
weight: weight_to_blend,
value: value_to_blend,
additive: true,
},
]
.into_iter(),
);
}
```
and conclude that the explicit value of `1.0` is responsible for
overwriting the weight of the base animation. This is incorrect.
Rather, this additive blend has to be written this way because it is
multiplying the *existing value in the blend register* by 1 (i.e. not
doing anything) before adding the next value to it. Changing this to
another quantity (e.g. the existing weight) would cause the value in the
blend register to be spuriously multiplied down.
## Testing
Tested on `animation_masks` example. Checked `morph_weights` example as
well.
## Migration Guide
I will write a migration guide later if this change is not included in
0.15.
# Objective
After #12929 we no longer have methods to get component or ticks for
previously obtained table column.
It's possible to use a lower level API by indexing the slice, but then
it won't be possible to construct `ComponentTicks`.
## Solution
Make `ComponentTicks` fields public. They don't hold any invariants and
you can't get a mutable reference to the struct in Bevy.
I also removed the getters since they are no longer needed.
## Testing
- I tested the compilation
---
## Migration Guide
- Instead of using `ComponentTicks::last_changed_tick` and
`ComponentTicks::added_tick` methods, access fields directly.
# Objective
Re-enable some tests in `entity_ref.rs` that are marked as `#[ignore]`,
but that pass after #14561.
## Solution
Remove `#[ignore]` from those tests.
# Objective
Automatic imaging sizing for image nodes isn't working because the the
`ContentSize` requirement for `UiImage` got lost in some merge again.
Fixes#16239Fixes#16240
Fixes the missing images seen in #16241
## Solution
Require `ContentSize` for `UiImage`.
# Objective
- Fixes#16254
- fix building in wasm without custom_cursor
## Solution
- Properly flag `CustomCursor::Url` which only exist in wasm, but also
only when `custom_cursor` is enabled
## Testing
- `cargo check --target wasm32-unknown-unknown -p bevy_winit`
# Objective
- Attempts to fix#16042
## Solution
- Added a new `RemoteSystem` `SystemSet` for the BRP systems.
- Changed the schedule on which these systems run from `Update` to
`Last`.
## Testing
- I did not test these changes and would appreciate a hand in doing so.
I assume it would be good to test that you can order against these
systems easily now.
---
## Migration Guide
- `process_remote_requests`, `process_ongoing_watching_requests` and
`remove_closed_watching_requests` now run in the `Last` schedule. Make
sure you use `RemoteSystem` `SystemSet` in case you need to order your
systems against them.
# Objective
Addressing a suggestion I made in Discord: store gamepad name as a
`Name` component.
Advantages:
- Will be nicely displayed in inspector / editor.
- Easier to spawn in tests, just `world.spawn(Gamepad::default())`.
## Solution
`Gamepad` component now stores only vendor and product IDs and `Name`
stores the gamepad name.
Since `GamepadInfo` is no longer necessary, I removed it and merged its
fields into the connection event.
## Testing
- Run unit tests.
---
## Migration Guide
- `GamepadInfo` no longer exists:
- Name now accesible via `Name` component.
- Other information available on `Gamepad` component directly.
- `GamepadConnection::Connected` now stores all info fields directly.
# Objective
Use same pattern when creating `TransparentUi` items where the
`sort_key` is the `UiNode` stack index + some offset.
## Solution
Refactored to follow same pattern.
## Testing
Ran few UI examples.
## Doubts
Maybe `stack_z_offsets::BACKGROUND_COLOR` should be renamed. This is
used for `ExtractedUiNode`, which is not only used for "background
color" it's also used to render borders, images and text (I think).
In `bevy_mod_picking` events are driven by several interlocking state
machines, which read and write events, and share state in a few common
resources. When I merged theses state machines into one to make event
ordering work properly, I combined this state and hid it in a `Local`.
This PR exposes the state in a resource again. Also adds a simple little
API for it. Useful for adding debug UI.
# Objective
Exposes a means to create an asset directory (and its parent
directories). Wasn't sure whether we also wanted the variant to create
directories without the parent (i.e. `mkdir` instead of `mkdir -p`)?
Fixes https://github.com/bevyengine/bevy_editor_prototypes/issues/144
# Objective
- Bumps accesskit and accesskit_winit dependencies
## Solution
- Fixes several breaking API changes introduced in accesskit 0.23.
## Testing
- Tested with the ui example and seems to work comparably
# Objective
Closes#16221.
## Solution
- Make `Gamepad` fields public and remove delegates / getters.
- Move `impl Into` to `Axis` methods (delegates for `Axis` used `impl
Into` to allow passing both `GamepadAxis` and `GamepadButton`).
- Improve docs.
## Testing
- I run tests.
Not sure if the migration guide is needed, since it's a feature from RC,
but I wrote it just in case.
---
## Migration Guide
- `Gamepad` fields are now public.
- Instead of using `Gamepad` delegates like `Gamepad::just_pressed`,
call these methods directly on the fields.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
GlobalTransform's current methods make it unintuitive, long and clunky
to access just the rotation or just the scale.
## Solution
Dedicated just_rotation() and scale() methods to access just these
properties.
I'm not sure about the naming, I chose just_rotation() to show that try
to indicate there is a waste since it also computes the other fields.
## Testing
- Did you test these changes? If so, how?
I tried logging the methods with a rotating and scaling cube and the
values were correct.
- Are there any parts that need more testing?
My methods are based on existing bevy/glam methods so should be correct
from the getgo.
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
Probably the easiest is using the 3d_rotations example, adding scaling
to it and then logging the methods I added
---
## Showcase
```rust
fn log(gt_query: Query<&GlobalTransform>) {
for global_transform in gt_query().iter() {
println!("{} {}", global_transform.just_rotation(), global_transform.scale());
}
}
```
---------
Co-authored-by: Sigma-dev <antonin.programming@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- fix formatting issue in "mesh_view_binding.wgsl"
_note: As naga-oil preprocessor match the whole line when finding an
"#endif",
It's just for external formatting tool and consistency._
## Solution
Trivial change.
Add '//' before the closing comment of the "#endif"
# Objective
gpu based mesh uniform construction in the `GpuPreprocessNode` is
currently in `Core3d`. The node iterates all views and schedules the
uniform construction for each. so
- when there are multiple 3d cameras, it runs multiple times on each
view
- if a view wants to render meshes but doesn't use the `Core3d` graph,
the camera must run later than at least one `Core3d`-based camera (or
add the node to its own graph, duplicating the work)
- If views want to share mesh uniforms there is no way to avoid running
the preprocessing for every view
## Solution
- move the node to the top level of the rendergraph, before the camera
driver node
- make the `PreprocessBindGroup` `clone`able, and add a
`SkipGpuPreprocessing` component to allow opting out per view
# Objective
Currently, if we have two cameras with the same output texture, one with
`CameraOutputMode::Write` and one with `CameraOutputMode::Skip`, it is
possible for the `CameraOutputMode::Write` camera to be assigned alpha
blending (which is the fallback blending when multiple cameras write to
the same output texture), although it is the only camera writing to the
output texture. This may or may not happen every restart of the app,
because the camera iteration order in prepare_view_upscaling_pipelines
isn't consistent. Since this is random behaviour I consider this a bug
and didn't add a migration guide.
## Solution
In `prepare_view_upscaling_pipelines` make sure we don't consider
cameras with CameraOutputMode::Skip to be outputting something to the
output texture.
## Testing
I ran a few examples to make sure nothing obvious is broken. There is no
example using CameraOutputMode::Skip, so I only tested the change in my
own App where this was relevant, which however isn't public.
# Objective
- Choose LOD based on normal simplification error in addition to
position error
- Update meshoptimizer to 0.22, which has a bunch of simplifier
improvements
## Testing
- Did you test these changes? If so, how?
- Visualize normals, and compare LOD changes before and after. Normals
no longer visibly change as the LOD cut changes.
- Are there any parts that need more testing?
- No
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Run the meshlet example in this PR and on main and move around to
change the LOD cut. Before running each example, in
meshlet_mesh_material.wgsl, replace `let color = vec3(rand_f(&rng),
rand_f(&rng), rand_f(&rng));` with `let color =
(vertex_output.world_normal + 1.0) / 2.0;`. Make sure to download the
appropriate bunny asset for each branch!
# Objective
1. UI texture slicing chops and scales an image to fit the size of a
node and isn't meant to place any constraints on the size of the node
itself, but because the required components changes required `ImageSize`
and `ContentSize` for nodes with `UiImage`, texture sliced nodes are
laid out using an `ImageMeasure`.
2. In 0.14 users could spawn a `(UiImage, NodeBundle)` which would
display an image stretched to fill the UI node's bounds ignoring the
image's instrinsic size. Now that `UiImage` requires `ContentSize`,
there's no option to display an image without its size placing
constrains on the UI layout (unless you force the `Node` to a fixed
size, but that's not a solution).
3. It's desirable that the `Sprite` and `UiImage` share similar APIs.
Fixes#16109
## Solution
* Remove the `Component` impl from `ImageScaleMode`.
* Add a `Stretch` variant to `ImageScaleMode`.
* Add a field `scale_mode: ImageScaleMode` to `Sprite`.
* Add a field `mode: UiImageMode` to `UiImage`.
* Add an enum `UiImageMode` similar to `ImageScaleMode` but with
additional UI specific variants.
* Remove the queries for `ImageScaleMode` from Sprite and UI extraction,
and refer to the new fields instead.
* Change `ui_layout_system` to update measure funcs on any change to
`ContentSize`s to enable manual clearing without removing the component.
* Don't add a measure unless `UiImageMode::Auto` is set in
`update_image_content_size_system`. Mutably deref the `Mut<ContentSize>`
if the `UiImage` is changed to force removal of any existing measure
func.
## Testing
Remove all the constraints from the ui_texture_slice example:
```rust
//! This example illustrates how to create buttons with their textures sliced
//! and kept in proportion instead of being stretched by the button dimensions
use bevy::{
color::palettes::css::{GOLD, ORANGE},
prelude::*,
winit::WinitSettings,
};
fn main() {
App::new()
.add_plugins(DefaultPlugins)
// Only run the app when there is user input. This will significantly reduce CPU/GPU use.
.insert_resource(WinitSettings::desktop_app())
.add_systems(Startup, setup)
.add_systems(Update, button_system)
.run();
}
fn button_system(
mut interaction_query: Query<
(&Interaction, &Children, &mut UiImage),
(Changed<Interaction>, With<Button>),
>,
mut text_query: Query<&mut Text>,
) {
for (interaction, children, mut image) in &mut interaction_query {
let mut text = text_query.get_mut(children[0]).unwrap();
match *interaction {
Interaction::Pressed => {
**text = "Press".to_string();
image.color = GOLD.into();
}
Interaction::Hovered => {
**text = "Hover".to_string();
image.color = ORANGE.into();
}
Interaction::None => {
**text = "Button".to_string();
image.color = Color::WHITE;
}
}
}
}
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
let image = asset_server.load("textures/fantasy_ui_borders/panel-border-010.png");
let slicer = TextureSlicer {
border: BorderRect::square(22.0),
center_scale_mode: SliceScaleMode::Stretch,
sides_scale_mode: SliceScaleMode::Stretch,
max_corner_scale: 1.0,
};
// ui camera
commands.spawn(Camera2d);
commands
.spawn(Node {
width: Val::Percent(100.0),
height: Val::Percent(100.0),
align_items: AlignItems::Center,
justify_content: JustifyContent::Center,
..default()
})
.with_children(|parent| {
for [w, h] in [[150.0, 150.0], [300.0, 150.0], [150.0, 300.0]] {
parent
.spawn((
Button,
Node {
// width: Val::Px(w),
// height: Val::Px(h),
// horizontally center child text
justify_content: JustifyContent::Center,
// vertically center child text
align_items: AlignItems::Center,
margin: UiRect::all(Val::Px(20.0)),
..default()
},
UiImage::new(image.clone()),
ImageScaleMode::Sliced(slicer.clone()),
))
.with_children(|parent| {
// parent.spawn((
// Text::new("Button"),
// TextFont {
// font: asset_server.load("fonts/FiraSans-Bold.ttf"),
// font_size: 33.0,
// ..default()
// },
// TextColor(Color::srgb(0.9, 0.9, 0.9)),
// ));
});
}
});
}
```
This should result in a blank window, since without any constraints the
texture slice image nodes should be zero-sized. But in main the image
nodes are given the size of the underlying unsliced source image
`textures/fantasy_ui_borders/panel-border-010.png`:
<img width="321" alt="slicing"
src="https://github.com/user-attachments/assets/cbd74c9c-14cd-4b4d-93c6-7c0152bb05ee">
For this PR need to change the lines:
```
UiImage::new(image.clone()),
ImageScaleMode::Sliced(slicer.clone()),
```
to
```
UiImage::new(image.clone()).with_mode(UiImageMode::Sliced(slicer.clone()),
```
and then nothing should be rendered, as desired.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
The schedule graph can easily confirm whether a set is contained or not.
This helps me in my personal project where I write an extension trait
for `Schedule` and I want to configure a specific set in its methods.
The set in question has a run condition though and I don't want to add
that condition to the same schedule as many times as the trait methods
are called. Since the non-pub set is unknown to the schedule until then,
a `contains_set` is sufficient.
It is probably trivial to add a method that returns an `Option<NodeId>`
as well but as I personally don't need it I did not add that. If it is
desired I can do so here though. It might be unneeded to have a
`contains_set` then because one could check `is_some` on the returned id
in that case.
An argument against that is that future changes may be easier if only a
`contains_set` needs to be ported.
## Solution
Added `ScheduleGraph::contains_set`.
## Testing
I put the below showcase code into a temporary unit test and it worked.
If wanted I add it as a test too but I did not see that other more
somewhat complicated methods have tests
---
## Showcase
```rs
#[derive(ScheduleLabel, Debug, Default, Clone, Copy, PartialEq, Eq, Hash)]
struct MySchedule;
#[derive(SystemSet, Debug, Default, Clone, Copy, PartialEq, Eq, Hash)]
struct MySet;
let mut schedule = Schedule::new(MySchedule);
assert_eq!(schedule.graph().contains_set(MySet), false);
schedule.configure_sets(MySet);
assert_eq!(schedule.graph().contains_set(MySet), true);
```
# Objective
- `CircularSegment` and `CircularSector` are well defined 2D shapes with
both an area and a perimeter.
# Solution
- This PR implements `perimeter` for both and moves the existsing `area`
functions into the `Measured2d` implementations.
## Testing
- The `arc_tests` have been extended to also check for perimeters.
# Objective
Currently there's no way to change the window's cursor icon with the
`custom_cursor` feature **disabled**. You should still be able to set
system cursor icons.
Connections:
- https://github.com/bevyengine/bevy/pull/15649
## Solution
Move some `custom_cursor` feature gates around, as to expose the
`CursorIcon` type again.
Note this refactoring was mainly piloted by hunting after the compiler
warnings -- I shouldn't have missed anything, but FYI.
## Testing
Disabled the `custom_cursor` feature, ran the `window_settings` example.
# Objective
#14273 changed `Msaa` to be a component rather than a resource. However,
the documentation still says that it is a resource. This tripped me up
during migration to 0.15 until I looked at the type definition.
Additionally, the docs have some unnecessary repetition and some grammar
mistakes, and they don't link to camera documentation.
## Solution
Fix up the docs!
# Objective
When merging two meshes, we need to find the offset of indices for the
second mesh. Currently it is done by inserting empty positions if
positions is not set.
Although practically it is not an issue, this does not feel right:
- We did not have positions before, then why we have positions after
merge?
- Moreover, if positions are not set, but uvs are not empty, computed
offset will be zero, while it should be equal to the number of uvs.
## Solution
Use `Mesh::count_vertices` to find the number of vertices.
## Testing
Looking hard.
# Objective
There's integer overflow in `Mesh::merge` in branches like this:
405fa3e8ea/crates/bevy_mesh/src/mesh.rs (L857-L859)
we truncate `u32` to `u16` and ignore integer overflow on `u16`. This
may lead to unexpected results when the number of vertices exceeds
`u16::MAX`.
## Solution
Convert indices storage to `u32` when necessary.
## Testing
- Unit test added for `extend` function
- For changes in `Mesh`, I presume it is already tested elsewhere