Commit graph

295 commits

Author SHA1 Message Date
ira
992681b59b Make Resource trait opt-in, requiring #[derive(Resource)] V2 (#5577)
*This PR description is an edited copy of #5007, written by @alice-i-cecile.*
# Objective
Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds.

While ergonomic, this results in several drawbacks:

* it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource
* it is challenging to discover if a type is intended to be used as a resource
* we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component).
* dependencies can use the same Rust type as a resource in invisibly conflicting ways
* raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values
* we cannot capture a definitive list of possible resources to display to users in an editor
## Notes to reviewers
 * Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits.
   *ira: My commits are not as well organized :')*
 * I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does.
 * I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981.

## Changelog
`Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro.

## Migration Guide
Add `#[derive(Resource)]` to all types you are using as a resource.

If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics.

`ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing.
Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead.


Co-authored-by: Alice <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00
Timo Kösters
2ac744331b Fix shader syntax (#5613) 2022-08-08 19:59:59 +00:00
github-actions[bot]
444150025d Bump Version after Release (#5576)
Bump version after release
This PR has been auto-generated
2022-08-05 02:03:05 +00:00
Josh Stratton
a9cb18eefc add default direction to DirectionalLight docs (#5188)
# Objective

- Adds a default direction to the documentation of DirectionalLight 

## Solution

Suggestion from Q&A answer: 
https://github.com/bevyengine/bevy/discussions/5186#discussioncomment-3073767
2022-08-02 18:13:21 +00:00
github-actions[bot]
856588ed7c Release 0.8.0 (#5490)
Preparing next release
This PR has been auto-generated
2022-07-30 14:07:30 +00:00
robtfm
6a1ba9c456 Spotlight shadow bugfix (#5451)
# Objective

fix an error in shadow map indexing that occurs when point lights without shadows are used in conjunction with spotlights with shadows

## Solution

calculate point_light_count correctly
2022-07-25 16:24:54 +00:00
Nicola Papale
4b1f6f4ebb Add some documentation to standard material fields (#5323)
# Objective

the bevy pbr shader doesn't handle at all normal maps
if a mesh doesn't have backed tangents. This is a pitfall
(that I fell into) and needs to be documented.

# Solution

Document the behavior. (Also document a few other
`StandardMaterial` fields)

## Changelog

* Add documentation to `emissive`, `normal_map_texture` and `occlusion_texture` fields of `StandardMaterial`.
2022-07-20 22:00:59 +00:00
Christopher Biscardi
d4f8f88bb6 Don't panic when StandardMaterial normal_map hasn't loaded yet (#5307)
# Objective

[This unwrap()](de484c1e41/crates/bevy_pbr/src/pbr_material.rs (L195)) in pbr_material.rs will be hit if a StandardMaterial normal_map image has not finished loading, resulting in an error message that is hard to debug.

## Solution

~~This PR improves the error message including a potential indication of why the unwrap() could have panic'd by using expect() instead of unwrap().~~

This PR removes the panic by only proceeding if the image is found.

---

## Changelog

Don't panic when StandardMaterial normal_map images have not finished loading.
2022-07-16 21:50:19 +00:00
Dusty DeWeese
9f8bdeeeb9 Use Affine3A for GlobalTransform to allow any affine transformation (#4379)
# Objective

- Add capability to use `Affine3A`s for some `GlobalTransform`s. This allows affine transformations that are not possible using a single `Transform` such as shear and non-uniform scaling along an arbitrary axis.
- Related to #1755 and #2026

## Solution

- `GlobalTransform` becomes an enum wrapping either a `Transform` or an `Affine3A`.
- The API of `GlobalTransform` is minimized to avoid inefficiency, and to make it clear that operations should be performed using the underlying data types.
- using `GlobalTransform::Affine3A` disables transform propagation, because the main use is for cases that `Transform`s cannot support.

---

## Changelog

- `GlobalTransform`s can optionally support any affine transformation using an `Affine3A`.


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-07-16 00:51:12 +00:00
Carter Anderson
40d4992401 Visibilty Inheritance, universal ComputedVisibility and RenderLayers support (#5310)
# Objective

Fixes #4907. Fixes #838. Fixes #5089.
Supersedes #5146. Supersedes #2087. Supersedes #865. Supersedes #5114

Visibility is currently entirely local. Set a parent entity to be invisible, and the children are still visible. This makes it hard for users to hide entire hierarchies of entities.

Additionally, the semantics of `Visibility` vs `ComputedVisibility` are inconsistent across entity types. 3D meshes use `ComputedVisibility` as the "definitive" visibility component, with `Visibility` being just one data source. Sprites just use `Visibility`, which means they can't feed off of `ComputedVisibility` data, such as culling information, RenderLayers, and (added in this pr) visibility inheritance information.

## Solution

Splits `ComputedVisibilty::is_visible` into `ComputedVisibilty::is_visible_in_view` and `ComputedVisibilty::is_visible_in_hierarchy`. For each visible entity, `is_visible_in_hierarchy` is computed by propagating visibility down the hierarchy. The `ComputedVisibility::is_visible()` function combines these two booleans for the canonical "is this entity visible" function.

Additionally, all entities that have `Visibility` now also have `ComputedVisibility`.  Sprites, Lights, and UI entities now use `ComputedVisibility` when appropriate.

This means that in addition to visibility inheritance, everything using Visibility now also supports RenderLayers. Notably, Sprites (and other 2d objects) now support `RenderLayers` and work properly across multiple views.

Also note that this does increase the amount of work done per sprite. Bevymark with 100,000 sprites on `main` runs in `0.017612` seconds and this runs in `0.01902`. That is certainly a gap, but I believe the api consistency and extra functionality this buys us is worth it. See [this thread](https://github.com/bevyengine/bevy/pull/5146#issuecomment-1182783452) for more info. Note that #5146 in combination with #5114 _are_ a viable alternative to this PR and _would_ perform better, but that comes at the cost of api inconsistencies and doing visibility calculations in the "wrong" place. The current visibility system does have potential for performance improvements. I would prefer to evolve that one system as a whole rather than doing custom hacks / different behaviors for each feature slice.

Here is a "split screen" example where the left camera uses RenderLayers to filter out the blue sprite.

![image](https://user-images.githubusercontent.com/2694663/178814868-2e9a2173-bf8c-4c79-8815-633899d492c3.png)


Note that this builds directly on #5146 and that @james7132 deserves the credit for the baseline visibility inheritance work. This pr moves the inherited visibility field into `ComputedVisibility`, then does the additional work of porting everything to `ComputedVisibility`. See my [comments here](https://github.com/bevyengine/bevy/pull/5146#issuecomment-1182783452) for rationale. 

## Follow up work

* Now that lights use ComputedVisibility, VisibleEntities now includes "visible lights" in the entity list. Functionally not a problem as we use queries to filter the list down in the desired context. But we should consider splitting this out into a separate`VisibleLights` collection for both clarity and performance reasons. And _maybe_ even consider scoping `VisibleEntities` down to `VisibleMeshes`?.
* Investigate alternative sprite rendering impls (in combination with visibility system tweaks) that avoid re-generating a per-view fixedbitset of visible entities every frame, then checking each ExtractedEntity. This is where most of the performance overhead lives. Ex: we could generate ExtractedEntities per-view using the VisibleEntities list, avoiding the need for the bitset.
* Should ComputedVisibility use bitflags under the hood? This would cut down on the size of the component, potentially speed up the `is_visible()` function, and allow us to cheaply expand ComputedVisibility with more data (ex: split out local visibility and parent visibility, add more culling classes, etc).
---

## Changelog

* ComputedVisibility now takes hierarchy visibility into account.
* 2D, UI and Light entities now use the ComputedVisibility component.

## Migration Guide

If you were previously reading `Visibility::is_visible` as the "actual visibility" for sprites or lights, use `ComputedVisibilty::is_visible()` instead:

```rust
// before (0.7)
fn system(query: Query<&Visibility>) {
  for visibility in query.iter() {
    if visibility.is_visible {
       log!("found visible entity");
    }
  }
}

// after (0.8)
fn system(query: Query<&ComputedVisibility>) {
  for visibility in query.iter() {
    if visibility.is_visible() {
       log!("found visible entity");
    }
  }
}
``` 


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-07-15 23:24:42 +00:00
François
814f8d1635 update wgpu to 0.13 (#5168)
# Objective

- Update wgpu to 0.13
- ~~Wait, is wgpu 0.13 released? No, but I had most of the changes already ready since playing with webgpu~~ well it has been released now
- Also update parking_lot to 0.12 and naga to 0.9

## Solution

- Update syntax for wgsl shaders https://github.com/gfx-rs/wgpu/blob/master/CHANGELOG.md#wgsl-syntax
- Add a few options, remove some references: https://github.com/gfx-rs/wgpu/blob/master/CHANGELOG.md#other-breaking-changes
- fragment inputs should now exactly match vertex outputs for locations, so I added exports for those to be able to reuse them https://github.com/gfx-rs/wgpu/pull/2704
2022-07-14 21:17:16 +00:00
Charles
de484c1e41 fix extract_wireframes (#5301)
# Objective

- Wireframes are currently not rendering on main because they aren't being extracted correctly

## Solution

- Extract the wireframes correctly
2022-07-13 04:53:50 +00:00
CGMossa
93a131661d Very minor doc formatting changes (#5287)
# Objective

- Added a bunch of backticks to things that should have them, like equations, abstract variable names,
- Changed all small x, y, and z to capitals X, Y, Z.

This might be more annoying than helpful; Feel free to refuse this PR.
2022-07-12 13:06:16 +00:00
ira
4847f7e3ad Update codebase to use IntoIterator where possible. (#5269)
Remove unnecessary calls to `iter()`/`iter_mut()`.
Mainly updates the use of queries in our code, docs, and examples.

```rust
// From
for _ in list.iter() {
for _ in list.iter_mut() {

// To
for _ in &list {
for _ in &mut list {
```

We already enable the pedantic lint [clippy::explicit_iter_loop](https://rust-lang.github.io/rust-clippy/stable/) inside of Bevy. However, this only warns for a few known types from the standard library.

## Note for reviewers
As you can see the additions and deletions are exactly equal.
Maybe give it a quick skim to check I didn't sneak in a crypto miner, but you don't have to torture yourself by reading every line.
I already experienced enough pain making this PR :) 


Co-authored-by: devil-ira <justthecooldude@gmail.com>
2022-07-11 15:28:50 +00:00
Daniel McNab
7b2cf98896 Make RenderStage::Extract run on the render world (#4402)
# Objective

- Currently, the `Extract` `RenderStage` is executed on the main world, with the render world available as a resource.
- However, when needing access to resources in the render world (e.g. to mutate them), the only way to do so was to get exclusive access to the whole `RenderWorld` resource.
- This meant that effectively only one extract which wrote to resources could run at a time.
- We didn't previously make `Extract`ing writing to the world a non-happy path, even though we want to discourage that.

## Solution

- Move the extract stage to run on the render world.
- Add the main world as a `MainWorld` resource.
- Add an `Extract` `SystemParam` as a convenience to access a (read only) `SystemParam` in the main world during `Extract`.

## Future work

It should be possible to avoid needing to use `get_or_spawn` for the render commands, since now the `Commands`' `Entities` matches up with the world being executed on.
We need to determine how this interacts with https://github.com/bevyengine/bevy/pull/3519
It's theoretically possible to remove the need for the `value` method on `Extract`. However, that requires slightly changing the `SystemParam` interface, which would make it more complicated. That would probably mess up the `SystemState` api too.

## Todo
I still need to add doc comments to `Extract`.

---

## Changelog

### Changed
- The `Extract` `RenderStage` now runs on the render world (instead of the main world as before).
   You must use the `Extract` `SystemParam` to access the main world during the extract phase.
   Resources on the render world can now be accessed using `ResMut` during extract.

### Removed
- `Commands::spawn_and_forget`. Use `Commands::get_or_spawn(e).insert_bundle(bundle)` instead

## Migration Guide

The `Extract` `RenderStage` now runs on the render world (instead of the main world as before).
You must use the `Extract` `SystemParam` to access the main world during the extract phase. `Extract` takes a single type parameter, which is any system parameter (such as `Res`, `Query` etc.). It will extract this from the main world, and returns the result of this extraction when `value` is called on it.

For example, if previously your extract system looked like:
```rust
fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) {
    for cloud in clouds.iter() {
        commands.get_or_spawn(cloud).insert(Cloud);
    }
}
```
the new version would be:
```rust
fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) {
    for cloud in clouds.value().iter() {
        commands.get_or_spawn(cloud).insert(Cloud);
    }
}
```
The diff is:
```diff
--- a/src/clouds.rs
+++ b/src/clouds.rs
@@ -1,5 +1,5 @@
-fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) {
-    for cloud in clouds.iter() {
+fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) {
+    for cloud in clouds.value().iter() {
         commands.get_or_spawn(cloud).insert(Cloud);
     }
 }
```
You can now also access resources from the render world using the normal system parameters during `Extract`:
```rust
fn extract_assets(mut render_assets: ResMut<MyAssets>, source_assets: Extract<Res<MyAssets>>) {
     *render_assets = source_assets.clone();
}
```
Please note that all existing extract systems need to be updated to match this new style; even if they currently compile they will not run as expected. A warning will be emitted on a best-effort basis if this is not met.

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-07-08 23:56:33 +00:00
Robin KAY
3c51ad2764 Allow rendering meshes without UV coordinate data. (#5222)
# Objective

Bevy requires meshes to include UV coordinates, even if the material does not use any textures, and will fail with an error `ERROR bevy_pbr::material: Mesh is missing requested attribute: Vertex_Uv (MeshVertexAttributeId(2), pipeline type: Some("bevy_pbr::material::MaterialPipeline<bevy_pbr::pbr_material::StandardMaterial>"))` otherwise. The objective of this PR is to permit this.

## Solution

This PR follows the design of #4528, which added support for per-vertex colours. It adds a shader define called VERTEX_UVS which indicates the presence of UV coordinates to the shader.
2022-07-08 20:55:08 +00:00
robtfm
132950cd55 Spotlights (#4715)
# Objective

add spotlight support

## Solution / Changelog

- add spotlight angles (inner, outer) to ``PointLight`` struct. emitted light is linearly attenuated from 100% to 0% as angle tends from inner to outer. Direction is taken from the existing transform rotation.
- add spotlight direction (vec3) and angles (f32,f32) to ``GpuPointLight`` struct (60 bytes -> 80 bytes) in ``pbr/render/lights.rs`` and ``mesh_view_bind_group.wgsl``
- reduce no-buffer-support max point light count to 204 due to above
- use spotlight data to attenuate light in ``pbr.wgsl``
- do additional cluster culling on spotlights to minimise cost in ``assign_lights_to_clusters``
- changed one of the lights in the lighting demo to a spotlight
- also added a ``spotlight`` demo - probably not justified but so reviewers can see it more easily

## notes

increasing the size of the GpuPointLight struct on my machine reduces the FPS of ``many_lights -- sphere`` from ~150fps to 140fps. 

i thought this was a reasonable tradeoff, and felt better than handling spotlights separately which is possible but would mean introducing a new bind group, refactoring light-assignment code and adding new spotlight-specific code in pbr.wgsl. the FPS impact for smaller numbers of lights should be very small.

the cluster culling strategy reintroduces the cluster aabb code which was recently removed... sorry. the aabb is used to get a cluster bounding sphere, which can then be tested fairly efficiently using the strategy described at the end of https://bartwronski.com/2017/04/13/cull-that-cone/. this works well with roughly cubic clusters (where the cluster z size is close to the same as x/y size), less well for other cases like single Z slice / tiled forward rendering. In the worst case we will end up just keeping the culling of the equivalent point light.

Co-authored-by: François <mockersf@gmail.com>
2022-07-08 19:57:43 +00:00
Robin KAY
5b5013d540 Add ViewRangefinder3d to reduce boilerplate when enqueuing standard 3D PhaseItems. (#5014)
# Objective

Reduce the boilerplate code needed to make draw order sorting work correctly when queuing items through new common functionality. Also fix several instances in the bevy code-base (mostly examples) where this boilerplate appears to be incorrect.

## Solution

- Moved the logic for handling back-to-front vs front-to-back draw ordering into the PhaseItems by inverting the sort key ordering of Opaque3d and AlphaMask3d. The means that all the standard 3d rendering phases measure distance in the same way. Clients of these structs no longer need to know to negate the distance.
- Added a new utility struct, ViewRangefinder3d, which encapsulates the maths needed to calculate a "distance" from an ExtractedView and a mesh's transform matrix.
- Converted all the occurrences of the distance calculations in Bevy and its examples to use ViewRangefinder3d. Several of these occurrences appear to be buggy because they don't invert the view matrix or don't negate the distance where appropriate. This leads me to the view that Bevy should expose a facility to correctly perform this calculation.

## Migration Guide

Code which creates Opaque3d, AlphaMask3d, or Transparent3d phase items _should_ use ViewRangefinder3d to calculate the distance value.

Code which manually calculated the distance for Opaque3d or AlphaMask3d phase items and correctly negated the z value will no longer depth sort correctly. However, incorrect depth sorting for these types will not impact the rendered output as sorting is only a performance optimisation when drawing with depth-testing enabled. Code which manually calculated the distance for Transparent3d phase items will continue to work as before.
2022-07-05 06:13:39 +00:00
Hennadii Chernyshchyk
534cad611d Add reflection for resources (#5175)
# Objective

We don't have reflection for resources.

## Solution

Introduce reflection for resources.

Continues #3580 (by @Davier), related to #3576.

---

## Changelog

### Added

* Reflection on a resource type (by adding `ReflectResource`):

```rust
#[derive(Reflect)]
#[reflect(Resource)]
struct MyResourse;
```

### Changed

* Rename `ReflectComponent::add_component` into `ReflectComponent::insert_component` for consistency.

## Migration Guide

* Rename `ReflectComponent::add_component` into `ReflectComponent::insert_component`.
2022-07-04 13:04:20 +00:00
Elijah
5d3fa5e77b Add inverse_projection and inverse_view_proj fields to shader view uniform (#5119)
# Objective

Transform screen-space coordinates into world space in shaders. (My use case is for generating rays for ray tracing with the same perspective as the 3d camera).

## Solution

Add `inverse_projection` and `inverse_view_proj` fields to shader view uniform

---

## Changelog

### Added
`inverse_projection` and `inverse_view_proj` fields to shader view uniform

## Note

It'd probably be good to double-check that I did the matrix multiplication in the right order for `inverse_proj_view`. Thanks!
2022-07-04 21:04:16 +08:00
Nicola Papale
288765930f Rework extract_meshes (#4240)
* Cleanup redundant code
* Use a type alias to make sure the `caster_query` and
  `not_caster_query` really do the same thing and access the same things

**Objective**

Cleanup code that would otherwise be difficult to understand

**Solution**

* `extract_meshes` had two for loops which are functionally identical,
  just copy-pasted code. I extracted the common code between the two
  and put them into an anonymous function.
* I flattened the tuple literal for the bundle batch, it looks much
  less nested and the code is much more readable as a result.
* The parameters of `extract_meshes` were also very daunting, but they
  turned out to be the same query repeated twice. I extracted the query
  into a type alias.

EDIT: I reworked the PR to **not do anything breaking**, and keep the old allocation behavior. Removing the memorized length was clearly a performance loss, so I kept it.
2022-07-04 12:44:23 +00:00
CGMossa
33f9b3940d Updated glam to 0.21. (#5142)
Removed `const_vec2`/`const_vec3`
and replaced with equivalent `.from_array`.

# Objective

Fixes #5112 

## Solution

- `encase` needs to update to `glam` as well. See teoxoy/encase#4 on progress on that. 
- `hexasphere` also needs to be updated, see OptimisticPeach/hexasphere#12.
2022-07-03 19:55:33 +00:00
SarthakSingh31
cdbabb7053 Removed world cell from places where split multable access is not needed (#5167)
Fixes #5109.
2022-07-01 17:03:32 +00:00
Rob Parrett
5e1756954f Derive default for enums where possible (#5158)
# Objective

Fixes #5153

## Solution

Search for all enums and manually check if they have default impls that can use this new derive.

By my reckoning:

| enum | num |
|-|-|
| total | 159 |
| has default impl | 29 |
| default is unit variant | 23 |
2022-07-01 03:42:15 +00:00
Carter Anderson
747b0c69b0 Better Materials: AsBindGroup trait and derive, simpler Material trait (#5053)
# Objective

This PR reworks Bevy's Material system, making the user experience of defining Materials _much_ nicer. Bevy's previous material system leaves a lot to be desired:
* Materials require manually implementing the `RenderAsset` trait, which involves manually generating the bind group, handling gpu buffer data transfer, looking up image textures, etc. Even the simplest single-texture material involves writing ~80 unnecessary lines of code. This was never the long term plan.
* There are two material traits, which is confusing, hard to document, and often redundant: `Material` and `SpecializedMaterial`. `Material` implicitly implements `SpecializedMaterial`, and `SpecializedMaterial` is used in most high level apis to support both use cases. Most users shouldn't need to think about specialization at all (I consider it a "power-user tool"), so the fact that `SpecializedMaterial` is front-and-center in our apis is a miss.
* Implementing either material trait involves a lot of "type soup". The "prepared asset" parameter is particularly heinous: `&<Self as RenderAsset>::PreparedAsset`. Defining vertex and fragment shaders is also more verbose than it needs to be. 

## Solution

Say hello to the new `Material` system:

```rust
#[derive(AsBindGroup, TypeUuid, Debug, Clone)]
#[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"]
pub struct CoolMaterial {
    #[uniform(0)]
    color: Color,
    #[texture(1)]
    #[sampler(2)]
    color_texture: Handle<Image>,
}
impl Material for CoolMaterial {
    fn fragment_shader() -> ShaderRef {
        "cool_material.wgsl".into()
    }
}
```

Thats it! This same material would have required [~80 lines of complicated "type heavy" code](https://github.com/bevyengine/bevy/blob/v0.7.0/examples/shader/shader_material.rs) in the old Material system. Now it is just 14 lines of simple, readable code.

This is thanks to a new consolidated `Material` trait and the new `AsBindGroup` trait / derive.

### The new `Material` trait

The old "split" `Material` and `SpecializedMaterial` traits have been removed in favor of a new consolidated `Material` trait. All of the functions on the trait are optional.

The difficulty of implementing `Material` has been reduced by simplifying dataflow and removing type complexity:

```rust
// Old
impl Material for CustomMaterial {
    fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
        Some(asset_server.load("custom_material.wgsl"))
    }

    fn alpha_mode(render_asset: &<Self as RenderAsset>::PreparedAsset) -> AlphaMode {
        render_asset.alpha_mode
    }
}

// New
impl Material for CustomMaterial {
    fn fragment_shader() -> ShaderRef {
        "custom_material.wgsl".into()
    }

    fn alpha_mode(&self) -> AlphaMode {
        self.alpha_mode
    }
}
```

Specialization is still supported, but it is hidden by default under the `specialize()` function (more on this later).

### The `AsBindGroup` trait / derive

The `Material` trait now requires the `AsBindGroup` derive. This can be implemented manually relatively easily, but deriving it will almost always be preferable. 

Field attributes like `uniform` and `texture` are used to define which fields should be bindings,
what their binding type is, and what index they should be bound at:

```rust
#[derive(AsBindGroup)]
struct CoolMaterial {
    #[uniform(0)]
    color: Color,
    #[texture(1)]
    #[sampler(2)]
    color_texture: Handle<Image>,
}
```

In WGSL shaders, the binding looks like this:

```wgsl
struct CoolMaterial {
    color: vec4<f32>;
};

[[group(1), binding(0)]]
var<uniform> material: CoolMaterial;
[[group(1), binding(1)]]
var color_texture: texture_2d<f32>;
[[group(1), binding(2)]]
var color_sampler: sampler;
```

Note that the "group" index is determined by the usage context. It is not defined in `AsBindGroup`. Bevy material bind groups are bound to group 1.

The following field-level attributes are supported:
* `uniform(BINDING_INDEX)`
    * The field will be converted to a shader-compatible type using the `ShaderType` trait, written to a `Buffer`, and bound as a uniform. It can also be derived for custom structs.
* `texture(BINDING_INDEX)`
    * This field's `Handle<Image>` will be used to look up the matching `Texture` gpu resource, which will be bound as a texture in shaders. The field will be assumed to implement `Into<Option<Handle<Image>>>`. In practice, most fields should be a `Handle<Image>` or `Option<Handle<Image>>`. If the value of an `Option<Handle<Image>>` is `None`, the new `FallbackImage` resource will be used instead. This attribute can be used in conjunction with a `sampler` binding attribute (with a different binding index).
* `sampler(BINDING_INDEX)`
    * Behaves exactly like the `texture` attribute, but sets the Image's sampler binding instead of the texture. 

Note that fields without field-level binding attributes will be ignored.
```rust
#[derive(AsBindGroup)]
struct CoolMaterial {
    #[uniform(0)]
    color: Color,
    this_field_is_ignored: String,
}
```

As mentioned above, `Option<Handle<Image>>` is also supported:
```rust
#[derive(AsBindGroup)]
struct CoolMaterial {
    #[uniform(0)]
    color: Color,
    #[texture(1)]
    #[sampler(2)]
    color_texture: Option<Handle<Image>>,
}
```
This is useful if you want a texture to be optional. When the value is `None`, the `FallbackImage` will be used for the binding instead, which defaults to "pure white".

Field uniforms with the same binding index will be combined into a single binding:
```rust
#[derive(AsBindGroup)]
struct CoolMaterial {
    #[uniform(0)]
    color: Color,
    #[uniform(0)]
    roughness: f32,
}
```

In WGSL shaders, the binding would look like this:
```wgsl
struct CoolMaterial {
    color: vec4<f32>;
    roughness: f32;
};

[[group(1), binding(0)]]
var<uniform> material: CoolMaterial;
```

Some less common scenarios will require "struct-level" attributes. These are the currently supported struct-level attributes:
* `uniform(BINDING_INDEX, ConvertedShaderType)`
    * Similar to the field-level `uniform` attribute, but instead the entire `AsBindGroup` value is converted to `ConvertedShaderType`, which must implement `ShaderType`. This is useful if more complicated conversion logic is required.
* `bind_group_data(DataType)`
    * The `AsBindGroup` type will be converted to some `DataType` using `Into<DataType>` and stored as `AsBindGroup::Data` as part of the `AsBindGroup::as_bind_group` call. This is useful if data needs to be stored alongside the generated bind group, such as a unique identifier for a material's bind group. The most common use case for this attribute is "shader pipeline specialization".

The previous `CoolMaterial` example illustrating "combining multiple field-level uniform attributes with the same binding index" can
also be equivalently represented with a single struct-level uniform attribute:
```rust
#[derive(AsBindGroup)]
#[uniform(0, CoolMaterialUniform)]
struct CoolMaterial {
    color: Color,
    roughness: f32,
}

#[derive(ShaderType)]
struct CoolMaterialUniform {
    color: Color,
    roughness: f32,
}

impl From<&CoolMaterial> for CoolMaterialUniform {
    fn from(material: &CoolMaterial) -> CoolMaterialUniform {
        CoolMaterialUniform {
            color: material.color,
            roughness: material.roughness,
        }
    }
}
```

### Material Specialization

Material shader specialization is now _much_ simpler:

```rust
#[derive(AsBindGroup, TypeUuid, Debug, Clone)]
#[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"]
#[bind_group_data(CoolMaterialKey)]
struct CoolMaterial {
    #[uniform(0)]
    color: Color,
    is_red: bool,
}

#[derive(Copy, Clone, Hash, Eq, PartialEq)]
struct CoolMaterialKey {
    is_red: bool,
}

impl From<&CoolMaterial> for CoolMaterialKey {
    fn from(material: &CoolMaterial) -> CoolMaterialKey {
        CoolMaterialKey {
            is_red: material.is_red,
        }
    }
}

impl Material for CoolMaterial {
    fn fragment_shader() -> ShaderRef {
        "cool_material.wgsl".into()
    }

    fn specialize(
        pipeline: &MaterialPipeline<Self>,
        descriptor: &mut RenderPipelineDescriptor,
        layout: &MeshVertexBufferLayout,
        key: MaterialPipelineKey<Self>,
    ) -> Result<(), SpecializedMeshPipelineError> {
        if key.bind_group_data.is_red {
            let fragment = descriptor.fragment.as_mut().unwrap();
            fragment.shader_defs.push("IS_RED".to_string());
        }
        Ok(())
    }
}
```

Setting `bind_group_data` is not required for specialization (it defaults to `()`). Scenarios like "custom vertex attributes" also benefit from this system:
```rust
impl Material for CustomMaterial {
    fn vertex_shader() -> ShaderRef {
        "custom_material.wgsl".into()
    }

    fn fragment_shader() -> ShaderRef {
        "custom_material.wgsl".into()
    }

    fn specialize(
        pipeline: &MaterialPipeline<Self>,
        descriptor: &mut RenderPipelineDescriptor,
        layout: &MeshVertexBufferLayout,
        key: MaterialPipelineKey<Self>,
    ) -> Result<(), SpecializedMeshPipelineError> {
        let vertex_layout = layout.get_layout(&[
            Mesh::ATTRIBUTE_POSITION.at_shader_location(0),
            ATTRIBUTE_BLEND_COLOR.at_shader_location(1),
        ])?;
        descriptor.vertex.buffers = vec![vertex_layout];
        Ok(())
    }
}
```

### Ported `StandardMaterial` to the new `Material` system

Bevy's built-in PBR material uses the new Material system (including the AsBindGroup derive):

```rust
#[derive(AsBindGroup, Debug, Clone, TypeUuid)]
#[uuid = "7494888b-c082-457b-aacf-517228cc0c22"]
#[bind_group_data(StandardMaterialKey)]
#[uniform(0, StandardMaterialUniform)]
pub struct StandardMaterial {
    pub base_color: Color,
    #[texture(1)]
    #[sampler(2)]
    pub base_color_texture: Option<Handle<Image>>,
    /* other fields omitted for brevity */
```

### Ported Bevy examples to the new `Material` system

The overall complexity of Bevy's "custom shader examples" has gone down significantly. Take a look at the diffs if you want a dopamine spike.

Please note that while this PR has a net increase in "lines of code", most of those extra lines come from added documentation. There is a significant reduction
in the overall complexity of the code (even accounting for the new derive logic).

---

## Changelog

### Added

* `AsBindGroup` trait and derive, which make it much easier to transfer data to the gpu and generate bind groups for a given type.

### Changed

* The old `Material` and `SpecializedMaterial` traits have been replaced by a consolidated (much simpler) `Material` trait. Materials no longer implement `RenderAsset`.
* `StandardMaterial` was ported to the new material system. There are no user-facing api changes to the `StandardMaterial` struct api, but it now implements `AsBindGroup` and `Material` instead of `RenderAsset` and `SpecializedMaterial`.

## Migration Guide
The Material system has been reworked to be much simpler. We've removed a lot of boilerplate with the new `AsBindGroup` derive and the `Material` trait is simpler as well!

### Bevy 0.7 (old)

```rust
#[derive(Debug, Clone, TypeUuid)]
#[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"]
pub struct CustomMaterial {
    color: Color,
    color_texture: Handle<Image>,
}

#[derive(Clone)]
pub struct GpuCustomMaterial {
    _buffer: Buffer,
    bind_group: BindGroup,
}

impl RenderAsset for CustomMaterial {
    type ExtractedAsset = CustomMaterial;
    type PreparedAsset = GpuCustomMaterial;
    type Param = (SRes<RenderDevice>, SRes<MaterialPipeline<Self>>);
    fn extract_asset(&self) -> Self::ExtractedAsset {
        self.clone()
    }

    fn prepare_asset(
        extracted_asset: Self::ExtractedAsset,
        (render_device, material_pipeline): &mut SystemParamItem<Self::Param>,
    ) -> Result<Self::PreparedAsset, PrepareAssetError<Self::ExtractedAsset>> {
        let color = Vec4::from_slice(&extracted_asset.color.as_linear_rgba_f32());

        let byte_buffer = [0u8; Vec4::SIZE.get() as usize];
        let mut buffer = encase::UniformBuffer::new(byte_buffer);
        buffer.write(&color).unwrap();

        let buffer = render_device.create_buffer_with_data(&BufferInitDescriptor {
            contents: buffer.as_ref(),
            label: None,
            usage: BufferUsages::UNIFORM | BufferUsages::COPY_DST,
        });

        let (texture_view, texture_sampler) = if let Some(result) = material_pipeline
            .mesh_pipeline
            .get_image_texture(gpu_images, &Some(extracted_asset.color_texture.clone()))
        {
            result
        } else {
            return Err(PrepareAssetError::RetryNextUpdate(extracted_asset));
        };
        let bind_group = render_device.create_bind_group(&BindGroupDescriptor {
            entries: &[
                BindGroupEntry {
                    binding: 0,
                    resource: buffer.as_entire_binding(),
                },
                BindGroupEntry {
                    binding: 0,
                    resource: BindingResource::TextureView(texture_view),
                },
                BindGroupEntry {
                    binding: 1,
                    resource: BindingResource::Sampler(texture_sampler),
                },
            ],
            label: None,
            layout: &material_pipeline.material_layout,
        });

        Ok(GpuCustomMaterial {
            _buffer: buffer,
            bind_group,
        })
    }
}

impl Material for CustomMaterial {
    fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
        Some(asset_server.load("custom_material.wgsl"))
    }

    fn bind_group(render_asset: &<Self as RenderAsset>::PreparedAsset) -> &BindGroup {
        &render_asset.bind_group
    }

    fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout {
        render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
            entries: &[
                BindGroupLayoutEntry {
                    binding: 0,
                    visibility: ShaderStages::FRAGMENT,
                    ty: BindingType::Buffer {
                        ty: BufferBindingType::Uniform,
                        has_dynamic_offset: false,
                        min_binding_size: Some(Vec4::min_size()),
                    },
                    count: None,
                },
                BindGroupLayoutEntry {
                    binding: 1,
                    visibility: ShaderStages::FRAGMENT,
                    ty: BindingType::Texture {
                        multisampled: false,
                        sample_type: TextureSampleType::Float { filterable: true },
                        view_dimension: TextureViewDimension::D2Array,
                    },
                    count: None,
                },
                BindGroupLayoutEntry {
                    binding: 2,
                    visibility: ShaderStages::FRAGMENT,
                    ty: BindingType::Sampler(SamplerBindingType::Filtering),
                    count: None,
                },
            ],
            label: None,
        })
    }
}
```

### Bevy 0.8 (new)

```rust
impl Material for CustomMaterial {
    fn fragment_shader() -> ShaderRef {
        "custom_material.wgsl".into()
    }
}

#[derive(AsBindGroup, TypeUuid, Debug, Clone)]
#[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"]
pub struct CustomMaterial {
    #[uniform(0)]
    color: Color,
    #[texture(1)]
    #[sampler(2)]
    color_texture: Handle<Image>,
}
```

## Future Work

* Add support for more binding types (cubemaps, buffers, etc). This PR intentionally includes a bare minimum number of binding types to keep "reviewability" in check.
* Consider optionally eliding binding indices using binding names. `AsBindGroup` could pass in (optional?) reflection info as a "hint".
    * This would make it possible for the derive to do this:
        ```rust
        #[derive(AsBindGroup)]
        pub struct CustomMaterial {
            #[uniform]
            color: Color,
            #[texture]
            #[sampler]
            color_texture: Option<Handle<Image>>,
            alpha_mode: AlphaMode,
        }
        ```
    * Or this
        ```rust
        #[derive(AsBindGroup)]
        pub struct CustomMaterial {
            #[binding]
            color: Color,
            #[binding]
            color_texture: Option<Handle<Image>>,
            alpha_mode: AlphaMode,
        }
        ```
    * Or even this (if we flip to "include bindings by default")
        ```rust
        #[derive(AsBindGroup)]
        pub struct CustomMaterial {
            color: Color,
            color_texture: Option<Handle<Image>>,
            #[binding(ignore)]
            alpha_mode: AlphaMode,
        }
        ```
* If we add the option to define custom draw functions for materials (which could be done in a type-erased way), I think that would be enough to support extra non-material bindings. Worth considering!
2022-06-30 23:48:46 +00:00
DGriffin91
072f2e17d3 Move texture sample out of branch in prepare_normal (#5129)
# Objective

This fixes https://github.com/bevyengine/bevy/issues/5127

## Solution

- Moved texture sample out of branch in `prepare_normal()`.


Co-authored-by: DGriffin91 <github@dgdigital.net>
2022-06-29 02:48:46 +00:00
Robert Swain
84991d34f3 Array texture example (#5077)
# Objective

- Make the reusable PBR shading functionality a little more reusable
  - Add constructor functions for `StandardMaterial` and `PbrInput` structs to populate them with default values
  - Document unclear `PbrInput` members
- Demonstrate how to reuse the bevy PBR shading functionality
- The final important piece from #3969 as the initial shot at making the PBR shader code reusable in custom materials

## Solution

- Add back and rework the 'old' `array_texture` example from pre-0.6.
- Create a custom shader material
  - Use a single array texture binding and sampler for the material bind group
  - Use a shader that calls `pbr()` from the `bevy_pbr::pbr_functions` import
- Spawn a row of cubes using the custom material
- In the shader, select the array texture layer to sample by using the world position x coordinate modulo the number of array texture layers

<img width="1392" alt="Screenshot 2022-06-23 at 12 28 05" src="https://user-images.githubusercontent.com/302146/175278593-2296f519-f577-4ece-81c0-d842283784a1.png">

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-06-28 00:58:50 +00:00
研究社交
92eec47b99 Separate PBR and tone mapping into 2 functions (#5078)
# Objective

- Allow custom shaders to reuse the HDR results of PBR.

## Solution

- Separate `pbr()` and `tone_mapping()` into 2 functions in `pbr_functions.wgsl`.
2022-06-26 00:00:23 +00:00
Edward Vear
5a3e77716a Fix skinned mesh normal handling in mesh shader (#5095)
# Objective

Update pbr mesh shader to use correct normals for skinned meshes.

## Solution

Only use `mesh_normal_local_to_world` for normals if `SKINNED` is not defined.
2022-06-25 09:54:33 +00:00
James Liu
7e6dd3f03e Allow unbatched render phases to use unstable sorts (#5049)
# Objective

Partially addresses #4291.

Speed up the sort phase for unbatched render phases.

## Solution
Split out one of the optimizations in #4899 and allow implementors of `PhaseItem` to change what kind of sort is used when sorting the items in the phase. This currently includes Stable, Unstable, and Unsorted. Each of these corresponds to `Vec::sort_by_key`, `Vec::sort_unstable_by_key`, and no sorting at all. The default is `Unstable`. The last one can be used as a default if users introduce a preliminary depth prepass.

## Performance
This will not impact the performance of any batched phases, as it is still using a stable sort. 2D's only phase is unchanged. All 3D phases are unbatched currently, and will benefit from this change.

On `many_cubes`, where the primary phase is opaque, this change sees a speed up from 907.02us -> 477.62us, a 47.35% reduction.

![image](https://user-images.githubusercontent.com/3137680/174471253-22424874-30d5-4db5-b5b4-65fb2c612a9c.png)

## Future Work
There were prior discussions to add support for faster radix sorts in #4291, which in theory should be a `O(n)` instead of a `O(nlog(n))` time. [`voracious`](https://crates.io/crates/voracious_radix_sort) has been proposed, but it seems to be optimize for use cases with more than 30,000 items, which may be atypical for most systems.

Another optimization included in #4899 is to reduce the size of a few of the IDs commonly used in `PhaseItem` implementations to shrink the types to make swapping/sorting faster. Both `CachedPipelineId` and `DrawFunctionId` could be reduced to `u32` instead of `usize`.

Ideally, this should automatically change to use stable sorts when `BatchedPhaseItem` is implemented on the same phase item type, but this requires specialization, which may not land in stable Rust for a short while.

---

## Changelog
Added: `PhaseItem::sort`

## Migration Guide
RenderPhases now default to a unstable sort (via `slice::sort_unstable_by_key`). This can typically improve sort phase performance, but may produce incorrect batching results when implementing `BatchedPhaseItem`. To revert to the older stable sort, manually implement `PhaseItem::sort` to implement a stable sort (i.e. via `slice::sort_by_key`).

Co-authored-by: Federico Rinaldi <gisquerin@gmail.com>
Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: colepoirier <colepoirier@gmail.com>
2022-06-23 10:52:49 +00:00
Robert Swain
114d169dce Callable PBR functions (#4939)
# Objective

- Builds on top of #4938 
- Make clustered-forward PBR lighting/shadows functionality callable
- See #3969 for details

## Solution

- Add `PbrInput` struct type containing a `StandardMaterial`, occlusion, world_position, world_normal, and frag_coord
- Split functionality to calculate the unit view vector, and normal-mapped normal into `bevy_pbr::pbr_functions`
- Split high-level shading flow into `pbr(in: PbrInput, N: vec3<f32>, V: vec3<f32>, is_orthographic: bool)` function in `bevy_pbr::pbr_functions`
- Rework `pbr.wgsl` fragment stage entry point to make use of the new functions
- This has been benchmarked on an M1 Max using `many_cubes -- sphere`. `main` had a median frame time of 15.88ms, this PR 15.99ms, which is a 0.69% frame time increase, which is within noise in my opinion.

---

## Changelog

- Added: PBR shading code is now callable. Import `bevy_pbr::pbr_functions` and its dependencies, create a `PbrInput`, calculate the unit view and normal-mapped normal vectors and whether the projection is orthographic, and call `pbr()`!
2022-06-21 20:50:06 +00:00
François
8b27124a80 WGSL: use correct syntax for matrix access (#5039)
# Objective

- `.x` is not the correct syntax to access a column in a matrix in WGSL: https://www.w3.org/TR/WGSL/#matrix-access-expr
- naga accepts it and translates it correctly, but it's not valid when shaders are kept as is and used directly in WGSL

## Solution

- Use the correct syntax
2022-06-18 07:41:54 +00:00
Robert Swain
c6222f1acc Separate out PBR lighting, shadows, clustered forward, and utils from pbr.wgsl (#4938)
# Objective

- Builds on top of #4901 
- Separate out PBR lighting, shadows, clustered forward, and utils from `pbr.wgsl` as part of making the PBR code more reusable and extensible.
- See #3969 for details.

## Solution

- Add `bevy_pbr::utils`, `bevy_pbr::clustered_forward`, `bevy_pbr::lighting`, `bevy_pbr::shadows` shader imports exposing many shader functions for external use
- Split `PI`, `saturate()`, `hsv2rgb()`, and `random1D()` into `bevy_pbr::utils`
- Split clustered-forward-specific functions into `bevy_pbr::clustered_forward`, including moving the debug visualization code into a `cluster_debug_visualization()` function in that import
- Split PBR lighting functions into `bevy_pbr::lighting`
- Split shadow functions into `bevy_pbr::shadows`

---

## Changelog

- Added: `bevy_pbr::utils`, `bevy_pbr::clustered_forward`, `bevy_pbr::lighting`, `bevy_pbr::shadows` shader imports exposing many shader functions for external use
  - Split `PI`, `saturate()`, `hsv2rgb()`, and `random1D()` into `bevy_pbr::utils`
  - Split clustered-forward-specific functions into `bevy_pbr::clustered_forward`, including moving the debug visualization code into a `cluster_debug_visualization()` function in that import
  - Split PBR lighting functions into `bevy_pbr::lighting`
  - Split shadow functions into `bevy_pbr::shadows`
2022-06-14 00:58:30 +00:00
Robert Swain
b333386271 Add reusable shader functions for transforming position/normal/tangent (#4901)
# Objective

- Add reusable shader functions for transforming positions / normals / tangents between local and world / clip space for 2D and 3D so that they are done in a simple and correct way
- The next step in #3969 so check there for more details.

## Solution

- Add `bevy_pbr::mesh_functions` and `bevy_sprite::mesh2d_functions` shader imports
  - These contain `mesh_` and `mesh2d_` versions of the following functions:
    - `mesh_position_local_to_world`
    - `mesh_position_world_to_clip`
    - `mesh_position_local_to_clip`
    - `mesh_normal_local_to_world`
    - `mesh_tangent_local_to_world`
- Use them everywhere where it is appropriate
  - Notably not in the sprite and UI shaders where `mesh2d_position_world_to_clip` could have been used, but including all the functions depends on the mesh binding so I chose to not use the function there
- NOTE: The `mesh_` and `mesh2d_` functions are currently identical. However, if I had defined only `bevy_pbr::mesh_functions` and used that in bevy_sprite, then bevy_sprite would have a runtime dependency on bevy_pbr, which seems undesirable. I also expect that when we have a proper 2D rendering API, these functions will diverge between 2D and 3D.

---

## Changelog

- Added: `bevy_pbr::mesh_functions` and `bevy_sprite::mesh2d_functions` shader imports containing `mesh_` and `mesh2d_` versions of the following functions:
  - `mesh_position_local_to_world`
  - `mesh_position_world_to_clip`
  - `mesh_position_local_to_clip`
  - `mesh_normal_local_to_world`
  - `mesh_tangent_local_to_world`

## Migration Guide

- The `skin_tangents` function from the `bevy_pbr::skinning` shader import has been replaced with the `mesh_tangent_local_to_world` function from the `bevy_pbr::mesh_functions` shader import
2022-06-14 00:32:33 +00:00
François
f969c62f7b Fix wasm examples (#4967)
# Objective

Fix #4958 

There was 4 issues:

- this is not true in WASM and on macOS: f28b921209/examples/3d/split_screen.rs (L90)
  - ~~I made sure the system was running at least once~~
  - I'm sending the event on window creation
- in webgl, setting a viewport has impacts on other render passes
  - only in webgl and when there is a custom viewport, I added a render pass without a custom viewport
- shaderdef NO_ARRAY_TEXTURES_SUPPORT was not used by the 2d pipeline
  - webgl feature was used but not declared in bevy_sprite, I added it to the Cargo.toml
- shaderdef NO_STORAGE_BUFFERS_SUPPORT was not used by the 2d pipeline
  - I added it based on the BufferBindingType

The last commit changes the two last fixes to add the shaderdefs in the shader cache directly instead of needing to do it in each pipeline

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-06-11 20:10:13 +00:00
Aevyrie
772d15238c Change default Image FilterMode to Linear (#4465)
# Objective

- Closes #4464 

## Solution

- Specify default mag and min filter types for `Image` instead of using `wgpu`'s defaults.

---

## Changelog

### Changed

- Default `Image` filtering changed from `Nearest` to `Linear`.


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-06-11 09:13:37 +00:00
François
193998b5d4 add NO_STORAGE_BUFFERS_SUPPORT shaderdef when needed (#4949)
# Objective

- fix #4946 
- fix running 3d in wasm

## Solution

- since #4867, the imports are splitter differently, and this shader def was not always set correctly depending on the shader used
- add it when needed
2022-06-06 20:00:30 +00:00
Carter Anderson
5e2cfb2f19 Camera Driven Viewports (#4898)
# Objective

Users should be able to render cameras to specific areas of a render target, which enables scenarios like split screen, minimaps, etc.

Builds on the new Camera Driven Rendering added here: #4745 
Fixes: #202
Alternative to #1389 and #3626 (which are incompatible with the new Camera Driven Rendering)

## Solution

![image](https://user-images.githubusercontent.com/2694663/171560044-f0694f67-0cd9-4598-83e2-a9658c4fed57.png)


Cameras can now configure an optional "viewport", which defines a rectangle within their render target to draw to. If a `Viewport` is defined, the camera's `CameraProjection`, `View`, and visibility calculations will use the viewport configuration instead of the full render target. 

```rust
// This camera will render to the first half of the primary window (on the left side).
commands.spawn_bundle(Camera3dBundle {
    camera: Camera {
        viewport: Some(Viewport {
            physical_position: UVec2::new(0, 0),
            physical_size: UVec2::new(window.physical_width() / 2, window.physical_height()),
            depth: 0.0..1.0,
        }),
        ..default()
    },
    ..default()
});
```

To account for this, the `Camera` component has received a few adjustments:

* `Camera` now has some new getter functions:
  * `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, `projection_matrix`
*  All computed camera values are now private and live on the `ComputedCameraValues` field (logical/physical width/height, the projection matrix). They are now exposed on `Camera` via getters/setters  This wasn't _needed_ for viewports, but it was long overdue.

---

## Changelog

### Added

* `Camera` components now have a `viewport` field, which can be set to draw to a portion of a render target instead of the full target.
* `Camera` component has some new functions: `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, and `projection_matrix`
* Added a new split_screen example illustrating how to render two cameras to the same scene

## Migration Guide

`Camera::projection_matrix` is no longer a public field. Use the new `Camera::projection_matrix()` method instead:

```rust

// Bevy 0.7
let projection = camera.projection_matrix;

// Bevy 0.8
let projection = camera.projection_matrix();
```
2022-06-05 00:27:49 +00:00
Carter Anderson
f487407e07 Camera Driven Rendering (#4745)
This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier. 

Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915):
![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png)

Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work". 

Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id:
```rust
// main camera (main window)
commands.spawn_bundle(Camera2dBundle::default());

// second camera (other window)
commands.spawn_bundle(Camera2dBundle {
    camera: Camera {
        target: RenderTarget::Window(window_id),
        ..default()
    },
    ..default()
});
```

Rendering to a texture is as simple as pointing the camera at a texture:

```rust
commands.spawn_bundle(Camera2dBundle {
    camera: Camera {
        target: RenderTarget::Texture(image_handle),
        ..default()
    },
    ..default()
});
```

Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`).

```rust
// main pass camera with a default priority of 0
commands.spawn_bundle(Camera2dBundle::default());

commands.spawn_bundle(Camera2dBundle {
    camera: Camera {
        target: RenderTarget::Texture(image_handle.clone()),
        priority: -1,
        ..default()
    },
    ..default()
});

commands.spawn_bundle(SpriteBundle {
    texture: image_handle,
    ..default()
})
```

Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system:

```rust
commands.spawn_bundle(Camera3dBundle::default());

commands.spawn_bundle(Camera2dBundle {
    camera: Camera {
        // this will render 2d entities "on top" of the default 3d camera's render
        priority: 1,
        ..default()
    },
    ..default()
});
```

There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active.

Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections.

```rust
// old 3d perspective camera
commands.spawn_bundle(PerspectiveCameraBundle::default())

// new 3d perspective camera
commands.spawn_bundle(Camera3dBundle::default())
```

```rust
// old 2d orthographic camera
commands.spawn_bundle(OrthographicCameraBundle::new_2d())

// new 2d orthographic camera
commands.spawn_bundle(Camera2dBundle::default())
```

```rust
// old 3d orthographic camera
commands.spawn_bundle(OrthographicCameraBundle::new_3d())

// new 3d orthographic camera
commands.spawn_bundle(Camera3dBundle {
    projection: OrthographicProjection {
        scale: 3.0,
        scaling_mode: ScalingMode::FixedVertical,
        ..default()
    }.into(),
    ..default()
})
```

Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors.

If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component:

```rust
commands.spawn_bundle(Camera3dBundle {
    camera_render_graph: CameraRenderGraph::new(some_render_graph_name),
    ..default()
})
```

Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added.

Speaking of using components to configure graphs / passes, there are a number of new configuration options:

```rust
commands.spawn_bundle(Camera3dBundle {
    camera_3d: Camera3d {
        // overrides the default global clear color 
        clear_color: ClearColorConfig::Custom(Color::RED),
        ..default()
    },
    ..default()
})

commands.spawn_bundle(Camera3dBundle {
    camera_3d: Camera3d {
        // disables clearing
        clear_color: ClearColorConfig::None,
        ..default()
    },
    ..default()
})
```

Expect to see more of the "graph configuration Components on Cameras" pattern in the future.

By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component:

```rust
commands
    .spawn_bundle(Camera3dBundle::default())
    .insert(CameraUi {
        is_enabled: false,
        ..default()
    })
```

## Other Changes

* The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr.
* I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization.
* I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler. 
* All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr.
* Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic.
* Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals:
    1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs.
    2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense.

## Follow Up Work

* Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen)
* Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor)
* Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system).
* Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable.
* Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home.
2022-06-02 00:12:17 +00:00
Robert Swain
cc4062ec43 Split mesh shader files (#4867)
# Objective

- Split PBR and 2D mesh shaders into types and bindings to prepare the shaders to be more reusable.
- See #3969 for details. I'm doing this in multiple steps to make review easier.

---

## Changelog

- Changed: 2D and PBR mesh shaders are now split into types and bindings, the following shader imports are available: `bevy_pbr::mesh_view_types`, `bevy_pbr::mesh_view_bindings`, `bevy_pbr::mesh_types`, `bevy_pbr::mesh_bindings`, `bevy_sprite::mesh2d_view_types`, `bevy_sprite::mesh2d_view_bindings`, `bevy_sprite::mesh2d_types`, `bevy_sprite::mesh2d_bindings`

## Migration Guide

- In shaders for 3D meshes:
  - `#import bevy_pbr::mesh_view_bind_group` -> `#import bevy_pbr::mesh_view_bindings`
  - `#import bevy_pbr::mesh_struct` -> `#import bevy_pbr::mesh_types`
    - NOTE: If you are using the mesh bind group at bind group index 2, you can remove those binding statements in your shader and just use `#import bevy_pbr::mesh_bindings` which itself imports the mesh types needed for the bindings.
- In shaders for 2D meshes:
  - `#import bevy_sprite::mesh2d_view_bind_group` -> `#import bevy_sprite::mesh2d_view_bindings`
  - `#import bevy_sprite::mesh2d_struct` -> `#import bevy_sprite::mesh2d_types`
    - NOTE: If you are using the mesh2d bind group at bind group index 2, you can remove those binding statements in your shader and just use `#import bevy_sprite::mesh2d_bindings` which itself imports the mesh2d types needed for the bindings.
2022-05-31 23:23:25 +00:00
Robert Swain
bdef86ea6e Generate vertex tangents using mikktspace (#3872)
# Objective

Models can be produced that do not have vertex tangents but do have normal map textures. The tangents can be generated. There is a way that the vertex tangents can be generated to be exactly invertible to avoid introducing error when recreating the normals in the fragment shader.

## Solution

- After attempts to get https://github.com/gltf-rs/mikktspace to integrate simple glam changes and version bumps, and releases of that crate taking weeks / not being made (no offense intended to the authors/maintainers, bevy just has its own timelines and needs to take care of) it was decided to fork that repository. The following steps were taken:
  - mikktspace was forked to https://github.com/bevyengine/mikktspace in order to preserve the repository's history in case the original is ever taken down
  - The README in that repo was edited to add a note stating from where the repository was forked and explaining why
  - The repo was locked for changes as its only purpose is historical
  - The repo was integrated into the bevy repo using `git subtree add --prefix crates/bevy_mikktspace git@github.com:bevyengine/mikktspace.git master`
  - In `bevy_mikktspace`:
    - The travis configuration was removed
    - `cargo fmt` was run
    - The `Cargo.toml` was conformed to bevy's (just adding bevy to the keywords, changing the homepage and repository, changing the version to 0.7.0-dev - importantly the license is exactly the same)
    - Remove the features, remove `nalgebra` entirely, only use `glam`, suppress clippy.
      - This was necessary because our CI runs clippy with `--all-features` and the `nalgebra` and `glam` features are mutually exclusive, plus I don't want to modify this highly numerically-sensitive code just to appease clippy and diverge even more from upstream.
- Rebase https://github.com/bevyengine/bevy/pull/1795
  - @jakobhellermann said it was fine to copy and paste but it ended up being almost exactly the same with just a couple of adjustments when validating correctness so I decided to actually rebase it and then build on top of it.
- Use the exact same fragment shader code to ensure correct normal mapping.
- Tested with both https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/NormalTangentMirrorTest which has vertex tangents and https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/NormalTangentTest which requires vertex tangent generation

Co-authored-by: alteous <alteous@outlook.com>
2022-05-31 22:53:54 +00:00
robtfm
ee4bcbea3c add depth_bias to SpecializedMaterial (#4101)
# Objective

allow meshes with equal z-depth to be rendered in a chosen order / avoid z-fighting

## Solution

add a depth_bias to SpecializedMaterial that is added to the mesh depth used for render-ordering.
2022-05-31 02:02:49 +00:00
Félix Lescaudey de Maneville
f000c2b951 Clippy improvements (#4665)
# Objective

Follow up to my previous MR #3718 to add new clippy warnings to bevy:

- [x] [~~option_if_let_else~~](https://rust-lang.github.io/rust-clippy/master/#option_if_let_else) (reverted)
- [x] [redundant_else](https://rust-lang.github.io/rust-clippy/master/#redundant_else)
- [x] [match_same_arms](https://rust-lang.github.io/rust-clippy/master/#match_same_arms)
- [x] [semicolon_if_nothing_returned](https://rust-lang.github.io/rust-clippy/master/#semicolon_if_nothing_returned)
- [x] [explicit_iter_loop](https://rust-lang.github.io/rust-clippy/master/#explicit_iter_loop)
- [x] [map_flatten](https://rust-lang.github.io/rust-clippy/master/#map_flatten)

There is one commit per clippy warning, and the matching flags are added to the CI execution.

To test the CI execution you may run `cargo run -p ci -- clippy` at the root.

I choose the add the flags in the `ci` tool crate to avoid having them in every `lib.rs` but I guess it could become an issue with suprise warnings coming up after a commit/push


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-05-31 01:38:07 +00:00
Robert Swain
a0a3d8798b ExtractResourcePlugin (#3745)
# Objective

- Add an `ExtractResourcePlugin` for convenience and consistency

## Solution

- Add an `ExtractResourcePlugin` similar to `ExtractComponentPlugin` but for ECS `Resource`s. The system that is executed simply clones the main world resource into a render world resource, if and only if the main world resource was either added or changed since the last execution of the system.
- Add an `ExtractResource` trait with a `fn extract_resource(res: &Self) -> Self` function. This is used by the `ExtractResourcePlugin` to extract the resource
- Add a derive macro for `ExtractResource` on a `Resource` with the `Clone` trait, that simply returns `res.clone()`
- Use `ExtractResourcePlugin` wherever both possible and appropriate
2022-05-30 18:36:03 +00:00
Teodor Tanasoaia
b6eededea4 Use uniform buffer usage for SkinnedMeshUniform instead of all usages (#4816)
# Objective

fixes #4811 (caused by #4339 [[exact change](https://github.com/bevyengine/bevy/pull/4339/files#diff-4bf3ed03d4129aad9f5678ba19f9b14ee8e3e61d6f6365e82197b01c74468b10R712-R721)] - where the buffer type has been changed from `UniformVec` to `BufferVec`)

## Solution

Use uniform buffer usage for `SkinnedMeshUniform` instead of all usages due to the `Default` derive.
2022-05-20 22:05:32 +00:00
Teodor Tanasoaia
7cb4d3cb43 Migrate to encase from crevice (#4339)
# Objective

- Unify buffer APIs
- Also see #4272

## Solution

- Replace vendored `crevice` with `encase`

---

## Changelog

Changed `StorageBuffer`
Added `DynamicStorageBuffer`
Replaced `UniformVec` with `UniformBuffer`
Replaced `DynamicUniformVec` with `DynamicUniformBuffer`

## Migration Guide

### `StorageBuffer`

removed `set_body()`, `values()`, `values_mut()`, `clear()`, `push()`, `append()`
added `set()`, `get()`, `get_mut()`

### `UniformVec` -> `UniformBuffer`

renamed `uniform_buffer()` to `buffer()`
removed `len()`, `is_empty()`, `capacity()`, `push()`, `reserve()`, `clear()`, `values()`
added `set()`, `get()`

### `DynamicUniformVec` -> `DynamicUniformBuffer`

renamed `uniform_buffer()` to `buffer()`
removed `capacity()`, `reserve()`


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-05-18 21:09:21 +00:00
Aron Derenyi
2e8dfc02ef Fixing confusing near and far fields in Camera (#4457)
# Objective

- Fixes #4456 

## Solution

- Removed the `near` and `far` fields from the camera and the views.

---

## Changelog

- Removed the `near` and `far` fields from the camera and the views.
- Removed the `ClusterFarZMode::CameraFarPlane` far z mode.

## Migration Guide

- Cameras no longer accept near and far values during initialization
- `ClusterFarZMode::Constant` should be used with the far value instead of `ClusterFarZMode::CameraFarPlane`
2022-05-16 16:37:33 +00:00
François
743bd30bc7 use const Vec2 in lights cluster and bounding box when possible (#4602)
# Objective

- noticed a few Vec3 and Vec2 that could be const

## Solution

- Declared them as const
- It seems to make a tiny improvement in example `many_light`, but given that the change is not complex at all it could still be worth it
2022-05-06 22:05:45 +00:00
Dusty DeWeese
82d849d3dc Add support for vertex colors (#4528)
# Objective

Add support for vertex colors

## Solution

This change is modeled after how vertex tangents are handled, so the shader is conditionally compiled with vertex color support if the mesh has the corresponding attribute set.

Vertex colors are multiplied by the base color. I'm not sure if this is the best for all cases, but may be useful for modifying vertex colors without creating a new mesh.

I chose `VertexFormat::Float32x4`, but I'd prefer 16-bit floats if/when support is added.

## Changelog

### Added
- Vertex colors can be specified using the `Mesh::ATTRIBUTE_COLOR` mesh attribute.
2022-05-05 00:46:32 +00:00
David Taralla
f02bea5bfc Make Wireframe respect visible entities (#4660)
# Objective

- Make meshes with a Wireframe component not render if they are not in the VisibleEntities list of a given camera
- See [discussion](https://discord.com/channels/691052431525675048/742884593551802431/971392761972527144) on the Bevy Engine Discord
- Fixes this kind of issues:
![image](https://user-images.githubusercontent.com/1733200/166746303-39003d57-8b07-4ae2-9ddf-bacdb04e7d84.png)
Camera for the RenderTexture in the bottom left is set to only see layer 1 entities. The three colored lines are on the render layer 1, but not the sphere (which has a Wireframe component).

## Solution

- Mimick what is done in [bevy_pbr/src/material.rs#L307](479f43bbf3/crates/bevy_pbr/src/material.rs (L307)) for [bevy_pbr/src/wireframe.rs#L106](2b6e67f4cb/crates/bevy_pbr/src/wireframe.rs (L106))
- Credits to beep for finding this out!
2022-05-04 22:28:16 +00:00
Charles
3f4ac65682 set alpha_mode based on alpha value (#4658)
# Objective

- When spawning a sprite the alpha is used for transparency, but when using the `Color::into()` implementation to spawn a `StandardMaterial`, the alpha is ignored.
- Pretty much everytime I want to make something transparent I started with a `Color::rgb().into()` and I'm always surprised that it doesn't work when changing it to  `Color::rgba().into()`
- It's possible there's an issue with this approach I am not thinking of, but I'm not sure what's the point of setting an alpha value without the goal of making a color transparent.

## Solution

- Set the alpha_mode to AlphaMode::Blend when the alpha is not the default value.

---

## Migration Guide

This is not a breaking change, but it can easily be migrated to reduce boilerplate

```rust
commands.spawn_bundle(PbrBundle {
    mesh: meshes.add(shape::Cube::default().into()),
    material: materials.add(StandardMaterial {
        base_color: Color::rgba(1.0, 0.0, 0.0, 0.75),
        alpha_mode: AlphaMode::Blend,
        ..default()
    }),
    ..default()
});

// becomes

commands.spawn_bundle(PbrBundle {
    mesh: meshes.add(shape::Cube::default().into()),
    material: materials.add(Color::rgba(1.0, 0.0, 0.0, 0.75).into()),
    ..default()
});
```


Co-authored-by: Charles <IceSentry@users.noreply.github.com>
2022-05-04 22:10:20 +00:00
Jakob Hellermann
2b6e67f4cb add #[reflect(Default)] to create default value for reflected types (#3733)
### Problem
It currently isn't possible to construct the default value of a reflected type. Because of that, it isn't possible to use `add_component` of `ReflectComponent` to add a new component to an entity because you can't know what the initial value should be.

### Solution

1. add `ReflectDefault` type
```rust
#[derive(Clone)]
pub struct ReflectDefault {
    default: fn() -> Box<dyn Reflect>,
}

impl ReflectDefault {
    pub fn default(&self) -> Box<dyn Reflect> {
        (self.default)()
    }
}

impl<T: Reflect + Default> FromType<T> for ReflectDefault {
    fn from_type() -> Self {
        ReflectDefault {
            default: || Box::new(T::default()),
        }
    }
}
```

2. add `#[reflect(Default)]` to all component types that implement `Default` and are user facing (so not `ComputedSize`, `CubemapVisibleEntities` etc.)



This makes it possible to add the default value of a component to an entity without any compile-time information:

```rust
fn main() {
    let mut app = App::new();
    app.register_type::<Camera>();

    let type_registry = app.world.get_resource::<TypeRegistry>().unwrap();
    let type_registry = type_registry.read();

    let camera_registration = type_registry.get(std::any::TypeId::of::<Camera>()).unwrap();
    let reflect_default = camera_registration.data::<ReflectDefault>().unwrap();
    let reflect_component = camera_registration
        .data::<ReflectComponent>()
        .unwrap()
        .clone();

    let default = reflect_default.default();

    drop(type_registry);

    let entity = app.world.spawn().id();
    reflect_component.add_component(&mut app.world, entity, &*default);

    let camera = app.world.entity(entity).get::<Camera>().unwrap();
    dbg!(&camera);
}
```

### Open questions
- should we have `ReflectDefault` or `ReflectFromWorld` or both?
2022-05-03 19:20:13 +00:00
Robert Swain
479f43bbf3 Filter material handles on extraction (#4178)
# Objective

- While optimising many_cubes, I noticed that all material handles are extracted regardless of whether the entity to which the handle belongs is visible or not. As such >100k handles are extracted when only <20k are visible.

## Solution

- Only extract material handles of visible entities.
- This improves `many_cubes -- sphere` from ~42fps to ~48fps. It reduces not only the extraction time but also system commands time. `Handle<StandardMaterial>` extraction and its system commands went from 0.522ms + 3.710ms respectively, to 0.267ms + 0.227ms an 88% reduction for this system for this case. It's very view dependent but...
2022-05-03 18:28:04 +00:00
Robert Swain
5cb6f7ffd2 Do not create nor execute render passes which have no phase items to draw (#4643)
# Objective

- Creating and executing render passes has GPU overhead. If there are no phase items in the render phase to draw, then this overhead should not be incurred as it has no benefit.

## Solution

- Check if there are no phase items to draw, and if not, do not construct not execute the render pass

---

## Changelog

- Changed: Do not create nor execute empty render passes
2022-05-02 20:22:30 +00:00
研究社交
e49542b026 Rename transparent_phase to opaque_phase in wireframe.rs (#4639)
# Objective

- Meshes are queued in opaque phase instead of transparent phase when drawing wireframes.
- There is a name mismatch.

## Solution

- Rename `transparent_phase` to `opaque_phase` in `wireframe.rs`.
2022-05-02 04:11:55 +00:00
Christopher Durham
3d4e0066f4 Move float_ord from bevy_core to bevy_utils (#4189)
# Objective

Reduce the catch-all grab-bag of functionality in bevy_core by moving FloatOrd to bevy_utils.

A step in addressing #2931 and splitting bevy_core into more specific locations.

## Solution

Move FloatOrd into bevy_utils. Fix the compile errors.

As a result, bevy_core_pipeline, bevy_pbr, bevy_sprite, bevy_text, and bevy_ui no longer depend on bevy_core (they were only using it for `FloatOrd` previously).
2022-04-27 18:02:05 +00:00
Aevyrie
4aa56050b6 Add infallible resource getters for WorldCell (#4104)
# Objective

- Eliminate all `worldcell.get_resource().unwrap()` cases.
- Provide helpful messages on panic.

## Solution

- Adds infallible resource getters to `WorldCell`, mirroring `World`.
2022-04-25 23:19:13 +00:00
SarthakSingh31
5155034a58 Converted exclusive systems to parallel systems wherever possible (#2774)
Closes #2767.

Converted:
- `play_queued_audio_system`
- `change_window`
2022-04-25 14:32:56 +00:00
KDecay
7a7f097485 Move Size to bevy_ui (#4285)
# Objective

- Related #4276.
- Part of the splitting process of #3503.

## Solution

- Move `Size` to `bevy_ui`.

## Reasons

- `Size` is only needed in `bevy_ui` (because it needs to use `Val` instead of `f32`), but it's also used as a worse `Vec2`  replacement in other areas.
- `Vec2` is more powerful than `Size` so it should be used whenever possible.
- Discussion in #3503.

## Changelog

### Changed

- The `Size` type got moved from `bevy_math` to `bevy_ui`.

## Migration Guide

- The `Size` type got moved from `bevy::math` to `bevy::ui`. To migrate you just have to import `bevy::ui::Size` instead of `bevy::math::Math` or use the `bevy::prelude` instead.

Co-authored-by: KDecay <KDecayMusic@protonmail.com>
2022-04-25 13:54:46 +00:00
Hennadii Chernyshchyk
06d709b178 Make MaterialPipelineKey<T> fields public (#4508)
# Objective

Fixes #4507. This comment provides a very good explanation: https://github.com/bevyengine/bevy/issues/4507#issuecomment-1100905685.

## Solution

Make `MaterialPipelineKey` fields public.
2022-04-18 10:11:14 +00:00
Yutao Yuan
8d67832dfa Bump Bevy to 0.8.0-dev (#4505)
# Objective

We should bump our version to 0.8.0-dev after releasing 0.7.0, according to our release checklist.

## Solution

Do it.
2022-04-17 23:04:52 +00:00
Carter Anderson
83c6ffb73c release 0.7.0 (#4487) 2022-04-15 18:05:37 +00:00
Robert Swain
b809e8e931 bevy_pbr: Fix ClusterConfig::None (#4483)
# Objective

- Fix `ClusterConfig::None`
- This fix is from @robtfm but they didn't have time to submit it, so I am.

## Solution

- Always clear clusters and skip processing when `ClusterConfig::None`
- Conditionally remove `VisiblePointLights` from the view if it is present
2022-04-15 16:05:59 +00:00
Daniel McNab
424d4d26f1 A hack to work around minimising still being broken (#4481)
# Objective

- https://github.com/bevyengine/bevy/pull/4098 still hasn't fixed minimisation on Windows.
- `Clusters.lights` is assumed to have the number of items given by the product of `Clusters.dimensions`'s axes.

## Solution

- Make that true in `clear`.
2022-04-15 11:22:48 +00:00
Dusty DeWeese
0d2b527faf Avoid windows with a physical size of zero (#4098)
# Objective

Fix #4097

## Solution

Return `None` from `RenderTarget::get_physical_size` if either dimension is zero.
2022-04-15 07:32:21 +00:00
Hennadii Chernyshchyk
3b81a50a1a Fix crash in headless mode (#4476)
# Objective

Fixes #4440.

## Solution

Check if `RenderDevice` exists and add CI validation.
2022-04-15 07:13:37 +00:00
Robert Swain
c2a9d5843d Faster assign lights to clusters (#4345)
# Objective

- Fixes #4234
- Fixes #4473 
- Built on top of #3989
- Improve performance of `assign_lights_to_clusters`

## Solution

- Remove the OBB-based cluster light assignment algorithm and calculation of view space AABBs
- Implement the 'iterative sphere refinement' algorithm used in Just Cause 3 by Emil Persson as documented in the Siggraph 2015 Practical Clustered Shading talk by Persson, on pages 42-44 http://newq.net/dl/pub/s2015_practical.pdf
- Adapt to also support orthographic projections
- Add `many_lights -- orthographic` for testing many lights using an orthographic projection

## Results

- `assign_lights_to_clusters` in `many_lights` before this PR on an M1 Max over 1500 frames had a median execution time of 1.71ms. With this PR it is 1.51ms, a reduction of 0.2ms or 11.7% for this system.

---

## Changelog

- Changed: Improved cluster light assignment performance

Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-04-15 02:53:20 +00:00
François
4feb0d520a increase the maximum number of point lights with shadows to the max supported by the device (#4435)
# Objective

- Being limited to 10 pointlights with shadow is very limiting

## Solution

- Raise the limit
2022-04-07 21:55:31 +00:00
François
9d54f33974 Skinned extraction speedup (#4428)
# Objective

- While animating 501 https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/BrainStem, I noticed things were getting a little slow
- Looking in tracy, the system `extract_skinned_meshes` is taking a lot of time, with a mean duration of 15.17ms

## Solution

- ~~Use `Vec` instead of a `SmallVec`~~
- ~~Don't use an temporary variable~~
- Compute the affine matrix as an `Affine3A` instead
- Remove the `temp` vec

| |mean|
|---|---|
|base|15.17ms|
|~~vec~~|~~9.31ms~~|
|~~no temp variable~~|~~11.31ms~~|
|removing the temp vector|8.43ms|
|affine|13.21ms|
|all together|7.23ms|
2022-04-07 16:16:36 +00:00
Robert Swain
c5963b4fd5 Use storage buffers for clustered forward point lights (#3989)
# Objective

- Make use of storage buffers, where they are available, for clustered forward bindings to support far more point lights in a scene
- Fixes #3605 
- Based on top of #4079 

This branch on an M1 Max can keep 60fps with about 2150 point lights of radius 1m in the Sponza scene where I've been testing. The bottleneck is mostly assigning lights to clusters which grows faster than linearly (I think 1000 lights was about 1.5ms and 5000 was 7.5ms). I have seen papers and presentations leveraging compute shaders that can get this up to over 1 million. That said, I think any further optimisations should probably be done in a separate PR.

## Solution

- Add `RenderDevice` to the `Material` and `SpecializedMaterial` trait `::key()` functions to allow setting flags on the keys depending on feature/limit availability
- Make `GpuPointLights` and `ViewClusterBuffers` into enums containing `UniformVec` and `StorageBuffer` variants. Implement the necessary API on them to make usage the same for both cases, and the only difference is at initialisation time.
- Appropriate shader defs in the shader code to handle the two cases

## Context on some decisions / open questions

- I'm using `max_storage_buffers_per_shader_stage >= 3` as a check to see if storage buffers are supported. I was thinking about diving into 'binding resource management' but it feels like we don't have enough use cases to understand the problem yet, and it is mostly a separate concern to this PR, so I think it should be handled separately.
- Should `ViewClusterBuffers` and `ViewClusterBindings` be merged, duplicating the count variables into the enum variants?


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-04-07 16:16:35 +00:00
Robert Swain
579928e8e0 bevy_pbr: Support flipping tangent space normal map y for DirectX normal maps (#4433)
# Objective

- Normal maps authored for DirectX use a left-handed convention and have their tangent space normal in the texture inverted from what we need. Support this.
- Details here: https://doc.babylonjs.com/divingDeeper/materials/advanced/normalMaps

## Solution

- Add a `StandardMaterial` `flip_normal_map_y` boolean field
- Add a `STANDARDMATERIAL_FLIP_NORMAL_MAP_Y` flag to `StandardMaterialFlags` and in the PBR shader
- Flip the y-component of the tangent space normal just after sampling it from the normal map texture

## Screenshots

### Before

<img width="1392" alt="Screenshot 2022-04-06 at 21 04 44" src="https://user-images.githubusercontent.com/302146/162050314-e7bfaaf6-9ee1-4756-9821-f6f5ff78f508.png">

### After

<img width="1392" alt="Screenshot 2022-04-06 at 21 03 39" src="https://user-images.githubusercontent.com/302146/162050255-36ee0745-1d79-4fd2-9a1c-18085376b643.png">

---

## Changelog

- Added: Support for flipping the normal map texture y component for normal maps authored for use with DirectX
2022-04-07 15:50:14 +00:00
François
3537c6ae2d Fix animation: shadow and wireframe support (#4367)
# Objective

Animation with shadows crashes with:
```
thread 'main' panicked at 'wgpu error: Validation Error

Caused by:
    In Device::create_render_pipeline
      note: label = `shadow_pipeline`
    error matching VERTEX shader requirements against the pipeline
    shader global ResourceBinding { group: 1, binding: 1 } is not available in the layout pipeline layout
    visibility flags don't include the shader stage
```


Animation with wireframe crashes with:
```
thread 'main' panicked at 'wgpu error: Validation Error

Caused by:
    In Device::create_render_pipeline
      note: label = `opaque_mesh_pipeline`
    error matching VERTEX shader requirements against the pipeline
    shader global ResourceBinding { group: 2, binding: 0 } is not available in the layout pipeline layout
    binding is missing from the pipeline layout
```

## Solution

- Fix the bindings
2022-03-30 19:56:16 +00:00
bilsen
63fee2572b ParamSet for conflicting SystemParam:s (#2765)
# Objective
Add a system parameter `ParamSet` to be used as container for conflicting parameters.

## Solution
Added two methods to the SystemParamState trait, which gives the access used by the parameter. Did the implementation. Added some convenience methods to FilteredAccessSet. Changed `get_conflicts` to return every conflicting component instead of breaking on the first conflicting `FilteredAccess`.


Co-authored-by: bilsen <40690317+bilsen@users.noreply.github.com>
2022-03-29 23:39:38 +00:00
James Liu
31bd4ecbbc Mesh Skinning. Attempt #3 (#4238)
# Objective
Load skeletal weights and indices from GLTF files. Animate meshes.

## Solution
 - Load skeletal weights and indices from GLTF files.
 - Added `SkinnedMesh` component and ` SkinnedMeshInverseBindPose` asset
 - Added `extract_skinned_meshes` to extract joint matrices.
 - Added queue phase systems for enqueuing the buffer writes.

Some notes:

 -  This ports part of # #2359 to the current main.
 -  This generates new `BufferVec`s and bind groups every frame. The expectation here is that the number of `Query::get` calls during extract is probably going to be the stronger bottleneck, with up to 256 calls per skinned mesh. Until that is optimized, caching buffers and bind groups is probably a non-concern.
 - Unfortunately, due to the uniform size requirements, this means a 16KB buffer is allocated for every skinned mesh every frame. There's probably a few ways to get around this, but most of them require either compute shaders or storage buffers, which are both incompatible with WebGL2.

Co-authored-by: james7132 <contact@jamessliu.com>
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: James Liu <contact@jamessliu.com>
2022-03-29 18:31:13 +00:00
Carter Anderson
207ebde020 Always update clusters and remove per-frame allocations (#4169)
* Refactor assign_lights_to_clusters to always clear + update clusters, even if the screen size isn't available yet / is zero. This fixes #4167. We still avoid the "expensive" per-light work when the screen size isn't available yet. I also consolidated some logic to eliminate some redundancies.
* Removed _a ton_ of (potentially very large) per-frame reallocations
  * Removed `Res<VisiblePointLights>` (a vec) in favor of  `Res<GlobalVisiblePointLights>` (a hashmap). We were allocating a new hashmap every frame, the collecting it into a vec every frame, then in another system _re-generating the hashmap_. It is always used like a hashmap, might as well embrace that. We now reuse the same hashmap every frame and dont use any intermediate collections.
  * We were re-allocating Clusters aabb and light vectors every frame by re-constructing Clusters every frame. We now re-use the existing collections.
  * Reuse per-camera VisiblePointLight vecs when possible instead of allocating them every frame. We now only insert VisiblePointLights if the component doesn't exist yet.
2022-03-24 00:20:27 +00:00
Kurt Kühnert
9e450f2827 Compute Pipeline Specialization (#3979)
# Objective

- Fixes #3970
- To support Bevy's shader abstraction(shader defs, shader imports and hot shader reloading) for compute shaders, I have followed carts advice and change the `PipelinenCache` to accommodate both compute and render pipelines.

## Solution

- renamed `RenderPipelineCache` to `PipelineCache`
- Cached Pipelines are now represented by an enum (render, compute)
- split the `SpecializedPipelines` into `SpecializedRenderPipelines` and `SpecializedComputePipelines`
- updated the game of life example

## Open Questions

- should `SpecializedRenderPipelines` and `SpecializedComputePipelines` be merged and how would we do that?
- should the `get_render_pipeline` and `get_compute_pipeline` methods be merged?
- is pipeline specialization for different entry points a good pattern




Co-authored-by: Kurt Kühnert <51823519+Ku95@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-03-23 00:27:26 +00:00
Boxy
024d98457c yeet unsound lifetime annotations on Query methods (#4243)
# Objective
Continuation of #2964 (I really should have checked other methods when I made that PR)

yeet unsound lifetime annotations on `Query` methods.
Example unsoundness:
```rust
use bevy::prelude::*;

fn main() {
    App::new().add_startup_system(bar).add_system(foo).run();
}

pub fn bar(mut cmds: Commands) {
    let e = cmds.spawn().insert(Foo { a: 10 }).id();
    cmds.insert_resource(e);
}

#[derive(Component, Debug, PartialEq, Eq)]
pub struct Foo {
    a: u32,
}
pub fn foo(mut query: Query<&mut Foo>, e: Res<Entity>) {
    dbg!("hi");
    {
        let data: &Foo = query.get(*e).unwrap();
        let data2: Mut<Foo> = query.get_mut(*e).unwrap();
        assert_eq!(data, &*data2); // oops UB
    }

    {
        let data: &Foo = query.single();
        let data2: Mut<Foo> = query.single_mut();
        assert_eq!(data, &*data2); // oops UB
    }

    {
        let data: &Foo = query.get_single().unwrap();
        let data2: Mut<Foo> = query.get_single_mut().unwrap();
        assert_eq!(data, &*data2); // oops UB
    }

    {
        let data: &Foo = query.iter().next().unwrap();
        let data2: Mut<Foo> = query.iter_mut().next().unwrap();
        assert_eq!(data, &*data2); // oops UB
    }

    {
        let mut opt_data: Option<&Foo> = None;
        let mut opt_data_2: Option<Mut<Foo>> = None;
        query.for_each(|data| opt_data = Some(data));
        query.for_each_mut(|data| opt_data_2 = Some(data));
        assert_eq!(opt_data.unwrap(), &*opt_data_2.unwrap()); // oops UB
    }
    dbg!("bye");
}

```

## Solution
yeet unsound lifetime annotations on `Query` methods

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-03-22 02:49:41 +00:00
Robert Swain
ac8bbafc5c Faster view frustum culling (#4181)
# Objective

- Reduce time spent in the `check_visibility` system

## Solution

- Use `Vec3A` for all bounding volume types to leverage SIMD optimisations and to avoid repeated runtime conversions from `Vec3` to `Vec3A`
- Inline all bounding volume intersection methods
- Add on-the-fly calculated `Aabb` -> `Sphere` and do `Sphere`-`Frustum` intersection tests before `Aabb`-`Frustum` tests. This is faster for `many_cubes` but could be slower in other cases where the sphere test gives a false-positive that the `Aabb` test discards. Also, I tested precalculating the `Sphere`s and inserting them alongside the `Aabb` but this was slower. 
- Do not test meshes against the far plane. Apparently games don't do this anymore with infinite projections, and it's one fewer plane to test against. I made it optional and still do the test for culling lights but that is up for discussion.
- These collectively reduce `check_visibility` execution time in `many_cubes -- sphere` from 2.76ms to 1.48ms and increase frame rate from ~42fps to ~44fps
2022-03-19 04:41:28 +00:00
Alice Cecile
7ce3ae43e3 Bump Bevy to 0.7.0-dev (#4230)
# Objective

- The [dev docs](https://dev-docs.bevyengine.org/bevy/index.html#) show version 0.6.0, which is actively misleading.

[Image of the problem](https://cdn.discordapp.com/attachments/695741366520512563/953513612943704114/Screenshot_20220316-154100_Firefox-01.jpeg)

Noticed by @ickk, fix proposed by @mockersf.

## Solution

- Bump the version across all Bevy crates to 0.7.0 dev.
- Set a reminder in the Release Checklist to remember to do this each release.
2022-03-19 03:54:15 +00:00
Robert Swain
0529f633f9 KTX2/DDS/.basis compressed texture support (#3884)
# Objective

- Support compressed textures including 'universal' formats (ETC1S, UASTC) and transcoding of them to 
- Support `.dds`, `.ktx2`, and `.basis` files

## Solution

- Fixes https://github.com/bevyengine/bevy/issues/3608 Look there for more details.
- Note that the functionality is all enabled through non-default features. If it is desirable to enable some by default, I can do that.
- The `basis-universal` crate, used for `.basis` file support and for transcoding, is built on bindings against a C++ library. It's not feasible to rewrite in Rust in a short amount of time. There are no Rust alternatives of which I am aware and it's specialised code. In its current state it doesn't support the wasm target, but I don't know for sure. However, it is possible to build the upstream C++ library with emscripten, so there is perhaps a way to add support for web too with some shenanigans.
- There's no support for transcoding from BasisLZ/ETC1S in KTX2 files as it was quite non-trivial to implement and didn't feel important given people could use `.basis` files for ETC1S.
2022-03-15 22:26:46 +00:00
robtfm
5af746457e fix cluster tiling calculations (#4148)
# Objective

fix cluster tilesize and tilecount calculations.
Fixes https://github.com/bevyengine/bevy/issues/4127 & https://github.com/bevyengine/bevy/issues/3596

## Solution

- calculate tilesize as smallest integers such that dimensions.xy() tiles will cover the screen
- calculate final dimensions as smallest integers such that final dimensions * tilesize will cover the screen

there is more cleanup that could be done in these functions. a future PR will likely remove the tilesize completely, so this is just a minimal change set to fix the current bug at small screen sizes

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-03-10 01:14:21 +00:00
robtfm
244687a0bb Dynamic light clusters (#3968)
# Objective

provide some customisation for default cluster setup
avoid "cluster index lists is full" in all cases (using a strategy outlined by @superdump)

## Solution

Add ClusterConfig enum (which can be inserted into a view at any time) to allow specifying cluster setup with variants:
- None (do not do any light assignment - for views which do not require light info, e.g. minimaps etc)
- Single (one cluster)
- XYZ (explicit cluster counts in each dimension)
- FixedZ (most similar to current - specify Z-slices and total, then x and y counts are dynamically determined to give approximately square clusters based on current aspect ratio)
Defaults to FixedZ { total: 4096, z: 24 } which is similar to the current setup.

Per frame, estimate the number of indices that would be required for the current config and decrease the cluster counts / increase the cluster sizes in the x and y dimensions if the index list would be too small.

notes:

- I didn't put ClusterConfig in the camera bundles to avoid introducing a dependency from bevy_render to bevy_pbr. the ClusterConfig enum comes with a pbr-centric impl block so i didn't want to move that into bevy_render either.
- ~Might want to add None variant to cluster config for views that don't care about lights?~
- Not well tested for orthographic
- ~there's a cluster_muck branch on my repo which includes some diagnostics / a modified lighting example which may be useful for tyre-kicking~ (outdated, i will bring it up to date if required)

anecdotal timings:

FPS on the lighting demo is negligibly better (~5%), maybe due to a small optimisation constraining the light aabb to be in front of the camera
FPS on the lighting demo with 100 extra lights added is ~33% faster, and also renders correctly as the cluster index count is no longer exceeded
2022-03-08 04:56:42 +00:00
dataphract
b4483dbfc8 perf: only recalculate frusta of changed lights (#4086)
## Objective

Currently, all directional and point lights have their viewing frusta recalculated every frame, even if they have not moved or been disabled/enabled.

## Solution

The relevant systems now make use of change detection to only update those lights whose viewing frusta may have changed.
2022-03-08 01:00:22 +00:00
Robert Bragg
1d5145fd64 StandardMaterial: expose a cull_mode option (#3982)
This makes it possible for materials to configure front or
back face culling, or disable culling.

Initially I looked at specializing the Mesh which currently
controls this state but conceptually it seems more appropriate
to control this at the material level, not the mesh level.

_Just for reference this also seems to be consistent with Unity
where materials/shaders can configure the culling mode between
front/back/off - as opposed to configuring any culling state
when importing a mesh._

After some archaeology, trying to understand how this might
relate to the existing 'double_sided' option, it was determined
that double_sided is a more high level lighting option originally
from Filament that will cause the normals for back faces to be
flipped.

For sake of avoiding complexity, but keeping control this
currently keeps the options orthogonal, and adds some clarifying
documentation for `double_sided`. This won't affect any existing
apps since there hasn't been a way to disable backface culling
up until now, so the option was essentially redundant.

double_sided support could potentially be updated to imply
disabling of backface culling.

For reference https://github.com/bevyengine/bevy/pull/3734/commits also looks at exposing cull mode control. I think the main difference here is that this patch handles RenderPipelineDescriptor specialization directly within the StandardMaterial implementation instead of communicating info back to the Mesh via the `queue_material_meshes` system.

With the way material.rs builds up the final RenderPipelineDescriptor first by calling specialize for the MeshPipeline followed by specialize for the material then it seems like we have a natural place to override anything in the descriptor that's first configured for the mesh state.
2022-03-05 03:37:23 +00:00
robtfm
575ea81d7b add Visibility for lights (#3958)
# Objective

Add Visibility for lights

## Solution

- add Visibility to PointLightBundle and DirectionLightBundle
- filter lights used by Visibility.is_visible

note: includes changes from #3916 due to overlap, will be cleaner after that is merged
2022-03-05 03:23:01 +00:00
robtfm
3f6068da3d fix issues with too many point lights (#3916)
# Objective

fix #3915 

## Solution

the issues are caused by
- lights are assigned to clusters before being filtered down to MAX_POINT_LIGHTS, leading to cluster counts potentially being too high
- after fixing the above, packing the count into 8 bits still causes overflow with exactly 256 lights affecting a cluster

to fix:

```assign_lights_to_clusters```
- limit extracted lights to MAX_POINT_LIGHTS, selecting based on shadow-caster & intensity (if required)
- warn if MAX_POINT_LIGHT count is exceeded

```prepare_lights```
- limit the lights assigned to a cluster to CLUSTER_COUNT_MASK (which is 1 less than MAX_POINT_LIGHTS) to avoid overflowing into the offset bits

notes:
- a better solution to the overflow may be to use more than 8 bits for cluster_count (the comment states only 14 of the remaining 24 bits are used for the offset). this would touch more of the code base but i'm happy to try if it has some benefit.
- intensity is only one way to select lights. it may be worth allowing user configuration of the light filtering, but i can't see a clean way to do that
2022-03-01 10:17:41 +00:00
Robert Swain
786654307d bevy_pbr: Optimize assign_lights_to_clusters (#3984)
# Objective

- Optimize assign_lights_to_clusters

## Solution

- Avoid inserting entities into hash sets in inner loops when it is known they will be inserted in at least one iteration of the loop.
- Use a Vec instead of a hash set where the set is not needed
- Avoid explicit calculation of the cluster_index from x,y,z coordinates, instead using row and column offsets and just adding z in the inner loop 
- These changes cut the time spent in the system roughly in half
2022-02-28 22:02:06 +00:00
Alice Cecile
557ab9897a Make get_resource (and friends) infallible (#4047)
# Objective

- In the large majority of cases, users were calling `.unwrap()` immediately after `.get_resource`.
- Attempting to add more helpful error messages here resulted in endless manual boilerplate (see #3899 and the linked PRs).

## Solution

- Add an infallible variant named `.resource` and so on.
- Use these infallible variants over `.get_resource().unwrap()` across the code base.

## Notes

I did not provide equivalent methods on `WorldCell`, in favor of removing it entirely in #3939.

## Migration Guide

Infallible variants of `.get_resource` have been added that implicitly panic, rather than needing to be unwrapped.

Replace `world.get_resource::<Foo>().unwrap()` with `world.resource::<Foo>()`.

## Impact

- `.unwrap` search results before: 1084
- `.unwrap` search results after: 942
- internal `unwrap_or_else` calls added: 4
- trivial unwrap calls removed from tests and code: 146
- uses of the new `try_get_resource` API: 11
- percentage of the time the unwrapping API was used internally: 93%
2022-02-27 22:37:18 +00:00
Dusty DeWeese
81d57e129b Add capability to render to a texture (#3412)
# Objective

Will fix #3377 and #3254

## Solution

Use an enum to represent either a `WindowId` or `Handle<Image>` in place of `Camera::window`.


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-02-24 00:40:24 +00:00
Carter Anderson
e369a8ad51 Mesh vertex buffer layouts (#3959)
This PR makes a number of changes to how meshes and vertex attributes are handled, which the goal of enabling easy and flexible custom vertex attributes:
* Reworks the `Mesh` type to use the newly added `VertexAttribute` internally
  * `VertexAttribute` defines the name, a unique `VertexAttributeId`, and a `VertexFormat`
  *  `VertexAttributeId` is used to produce consistent sort orders for vertex buffer generation, replacing the more expensive and often surprising "name based sorting"  
  * Meshes can be used to generate a `MeshVertexBufferLayout`, which defines the layout of the gpu buffer produced by the mesh. `MeshVertexBufferLayouts` can then be used to generate actual `VertexBufferLayouts` according to the requirements of a specific pipeline. This decoupling of "mesh layout" vs "pipeline vertex buffer layout" is what enables custom attributes. We don't need to standardize _mesh layouts_ or contort meshes to meet the needs of a specific pipeline. As long as the mesh has what the pipeline needs, it will work transparently. 
* Mesh-based pipelines now specialize on `&MeshVertexBufferLayout` via the new `SpecializedMeshPipeline` trait (which behaves like `SpecializedPipeline`, but adds `&MeshVertexBufferLayout`). The integrity of the pipeline cache is maintained because the `MeshVertexBufferLayout` is treated as part of the key (which is fully abstracted from implementers of the trait ... no need to add any additional info to the specialization key).    
* Hashing `MeshVertexBufferLayout` is too expensive to do for every entity, every frame. To make this scalable, I added a generalized "pre-hashing" solution to `bevy_utils`: `Hashed<T>` keys and `PreHashMap<K, V>` (which uses `Hashed<T>` internally) . Why didn't I just do the quick and dirty in-place "pre-compute hash and use that u64 as a key in a hashmap" that we've done in the past? Because its wrong! Hashes by themselves aren't enough because two different values can produce the same hash. Re-hashing a hash is even worse! I decided to build a generalized solution because this pattern has come up in the past and we've chosen to do the wrong thing. Now we can do the right thing! This did unfortunately require pulling in `hashbrown` and using that in `bevy_utils`, because avoiding re-hashes requires the `raw_entry_mut` api, which isn't stabilized yet (and may never be ... `entry_ref` has favor now, but also isn't available yet). If std's HashMap ever provides the tools we need, we can move back to that. Note that adding `hashbrown` doesn't increase our dependency count because it was already in our tree. I will probably break these changes out into their own PR.
* Specializing on `MeshVertexBufferLayout` has one non-obvious behavior: it can produce identical pipelines for two different MeshVertexBufferLayouts. To optimize the number of active pipelines / reduce re-binds while drawing, I de-duplicate pipelines post-specialization using the final `VertexBufferLayout` as the key.  For example, consider a pipeline that needs the layout `(position, normal)` and is specialized using two meshes: `(position, normal, uv)` and `(position, normal, other_vec2)`. If both of these meshes result in `(position, normal)` specializations, we can use the same pipeline! Now we do. Cool!

To briefly illustrate, this is what the relevant section of `MeshPipeline`'s specialization code looks like now:

```rust
impl SpecializedMeshPipeline for MeshPipeline {
    type Key = MeshPipelineKey;

    fn specialize(
        &self,
        key: Self::Key,
        layout: &MeshVertexBufferLayout,
    ) -> RenderPipelineDescriptor {
        let mut vertex_attributes = vec![
            Mesh::ATTRIBUTE_POSITION.at_shader_location(0),
            Mesh::ATTRIBUTE_NORMAL.at_shader_location(1),
            Mesh::ATTRIBUTE_UV_0.at_shader_location(2),
        ];

        let mut shader_defs = Vec::new();
        if layout.contains(Mesh::ATTRIBUTE_TANGENT) {
            shader_defs.push(String::from("VERTEX_TANGENTS"));
            vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(3));
        }

        let vertex_buffer_layout = layout
            .get_layout(&vertex_attributes)
            .expect("Mesh is missing a vertex attribute");
```

Notice that this is _much_ simpler than it was before. And now any mesh with any layout can be used with this pipeline, provided it has vertex postions, normals, and uvs. We even got to remove `HAS_TANGENTS` from MeshPipelineKey and `has_tangents` from `GpuMesh`, because that information is redundant with `MeshVertexBufferLayout`.

This is still a draft because I still need to:

* Add more docs
* Experiment with adding error handling to mesh pipeline specialization (which would print errors at runtime when a mesh is missing a vertex attribute required by a pipeline). If it doesn't tank perf, we'll keep it.
* Consider breaking out the PreHash / hashbrown changes into a separate PR.
* Add an example illustrating this change
* Verify that the "mesh-specialized pipeline de-duplication code" works properly

Please dont yell at me for not doing these things yet :) Just trying to get this in peoples' hands asap.

Alternative to #3120
Fixes #3030


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-02-23 23:21:13 +00:00
Carter Anderson
98938a8555 Internal Asset Hot Reloading (#3966)
Adds "hot reloading" of internal assets, which is normally not possible because they are loaded using `include_str` / direct Asset collection access.

This is accomplished via the following:
* Add a new `debug_asset_server` feature flag
* When that feature flag is enabled, create a second App with a second AssetServer that points to a configured location (by default the `crates` folder). Plugins that want to add hot reloading support for their assets can call the new `app.add_debug_asset::<T>()` and `app.init_debug_asset_loader::<T>()` functions.
* Load "internal" assets using the new `load_internal_asset` macro. By default this is identical to the current "include_str + register in asset collection" approach. But if the `debug_asset_server` feature flag is enabled, it will also load the asset dynamically in the debug asset server using the file path. It will then set up a correlation between the "debug asset" and the "actual asset" by listening for asset change events.

This is an alternative to #3673. The goal was to keep the boilerplate and features flags to a minimum for bevy plugin authors, and allow them to home their shaders near relevant code. 

This is a draft because I haven't done _any_ quality control on this yet. I'll probably rename things and remove a bunch of unwraps. I just got it working and wanted to use it to start a conversation.

Fixes #3660
2022-02-18 22:56:57 +00:00
Carter Anderson
e9f52b9dd2 Move import_path definitions into shader source (#3976)
This enables shaders to (optionally) define their import path inside their source. This has a number of benefits:

1. enables users to define their own custom paths directly in their assets
2. moves the import path "close" to the asset instead of centralized in the plugin definition, which seems "better" to me. 
3. makes "internal hot shader reloading" way more reasonable (see #3966)
4. logically opens the door to importing "parts" of a shader by defining "import_path blocks".

```rust
#define_import_path bevy_pbr::mesh_struct

struct Mesh {
    model: mat4x4<f32>;
    inverse_transpose_model: mat4x4<f32>;
    // 'flags' is a bit field indicating various options. u32 is 32 bits so we have up to 32 options.
    flags: u32;
};

let MESH_FLAGS_SHADOW_RECEIVER_BIT: u32 = 1u;
```
2022-02-18 21:54:03 +00:00
Robert Swain
936468aa1e bevy_render: Use RenderDevice to get limits/features and expose AdapterInfo (#3931)
# Objective

- `WgpuOptions` is mutated to be updated with the actual device limits and features, but this information is readily available to both the main and render worlds through the `RenderDevice` which has .limits() and .features() methods
- Information about the adapter in terms of its name, the backend in use, etc were not being exposed but have clear use cases for being used to take decisions about what rendering code to use. For example, if something works well on AMD GPUs but poorly on Intel GPUs. Or perhaps something works well in Vulkan but poorly in DX12.

## Solution

- Stop mutating `WgpuOptions `and don't insert the updated values into the main and render worlds
- Return `AdapterInfo` from `initialize_renderer` and insert it into the main and render worlds
- Use `RenderDevice` limits in the lighting code that was using `WgpuOptions.limits`.
- Renamed `WgpuOptions` to `WgpuSettings`
2022-02-16 21:17:37 +00:00
danieleades
d8974e7c3d small and mostly pointless refactoring (#2934)
What is says on the tin.

This has got more to do with making `clippy` slightly more *quiet* than it does with changing anything that might greatly impact readability or performance.

that said, deriving `Default` for a couple of structs is a nice easy win
2022-02-13 22:33:55 +00:00
Loch Wansbrough
56b0e88b53 Add view transform to view uniform (#3885)
(cherry picked from commit de943381bd2a8b242c94db99e6c7bbd70006d7c3)

# Objective

The view uniform lacks view transform information. The inverse transform is currently provided but this is not sufficient if you do not have access to an `inverse` function (such as in WGSL).

## Solution

Grab the view transform, put it in the view uniform, use the same matrix to compute the inverse as well.
2022-02-08 04:14:34 +00:00
dataphract
ca83e8a6de fix: remove unneeded filter in check_light_mesh_visibility (#3861)
# Objective

The query for `VisiblePointLights` in `check_light_mesh_visibility` has a `Without<DirectionalLight>` filter. However, because `VisiblePointLights` is no longer an alias for `VisibleEntities`, the query won't conflict with the query for `DirectionalLight`s and thus the filter is unnecessary.

## Solution

Remove the filter and the outdated comment explaining its purpose.
2022-02-04 03:07:22 +00:00
dataphract
b506c30cd3 fix: only init_resource() once for AmbientLight (#3853)
# Objective

`PbrPlugin` calls `app.init_resource::<AmbientLight>()` twice. The second call won't do anything.

## Solution

Remove the second call.
2022-02-03 00:43:37 +00:00
Robert Swain
a9f2817c49 bevy_pbr: Do not panic when more than 256 point lights are added the scene (#3697)
# Objective

- Do not panic when mroe than 256 point lights are added the scene
- Fixes https://github.com/bevyengine/bevy/issues/3682

## Solution

- Only iterate the first `MAX_POINT_LIGHTS` lights instead of as many as there are

## Open questions

- Should we warn that there are more than the maximum allowed number of point lights in the scene?
2022-01-17 22:22:15 +00:00
Hennadii Chernyshchyk
458cb7a9e9 Add headless mode (#3439)
# Objective

In this PR I added the ability to opt-out graphical backends. Closes #3155.

## Solution

I turned backends into `Option` ~~and removed panicking sub app API to force users handle the error (was suggested by `@cart`)~~.
2022-01-08 10:39:43 +00:00
Carter Anderson
2ee38cb9e0 Release 0.6.0 (#3587) 2022-01-08 10:18:22 +00:00