Callable PBR functions (#4939)

# Objective

- Builds on top of #4938 
- Make clustered-forward PBR lighting/shadows functionality callable
- See #3969 for details

## Solution

- Add `PbrInput` struct type containing a `StandardMaterial`, occlusion, world_position, world_normal, and frag_coord
- Split functionality to calculate the unit view vector, and normal-mapped normal into `bevy_pbr::pbr_functions`
- Split high-level shading flow into `pbr(in: PbrInput, N: vec3<f32>, V: vec3<f32>, is_orthographic: bool)` function in `bevy_pbr::pbr_functions`
- Rework `pbr.wgsl` fragment stage entry point to make use of the new functions
- This has been benchmarked on an M1 Max using `many_cubes -- sphere`. `main` had a median frame time of 15.88ms, this PR 15.99ms, which is a 0.69% frame time increase, which is within noise in my opinion.

---

## Changelog

- Added: PBR shading code is now callable. Import `bevy_pbr::pbr_functions` and its dependencies, create a `PbrInput`, calculate the unit view and normal-mapped normal vectors and whether the projection is orthographic, and call `pbr()`!
This commit is contained in:
Robert Swain 2022-06-21 20:50:06 +00:00
parent c988264180
commit 114d169dce
3 changed files with 233 additions and 143 deletions

View file

@ -64,6 +64,8 @@ pub const SHADOWS_HANDLE: HandleUntyped =
HandleUntyped::weak_from_u64(Shader::TYPE_UUID, 11350275143789590502);
pub const PBR_SHADER_HANDLE: HandleUntyped =
HandleUntyped::weak_from_u64(Shader::TYPE_UUID, 4805239651767701046);
pub const PBR_FUNCTIONS_HANDLE: HandleUntyped =
HandleUntyped::weak_from_u64(Shader::TYPE_UUID, 16550102964439850292);
pub const SHADOW_SHADER_HANDLE: HandleUntyped =
HandleUntyped::weak_from_u64(Shader::TYPE_UUID, 1836745567947005696);
@ -104,6 +106,12 @@ impl Plugin for PbrPlugin {
"render/shadows.wgsl",
Shader::from_wgsl
);
load_internal_asset!(
app,
PBR_FUNCTIONS_HANDLE,
"render/pbr_functions.wgsl",
Shader::from_wgsl
);
load_internal_asset!(app, PBR_SHADER_HANDLE, "render/pbr.wgsl", Shader::from_wgsl);
load_internal_asset!(
app,

View file

@ -6,6 +6,7 @@
#import bevy_pbr::clustered_forward
#import bevy_pbr::lighting
#import bevy_pbr::shadows
#import bevy_pbr::pbr_functions
struct FragmentInput {
[[builtin(front_facing)]] is_front: bool;
@ -24,22 +25,31 @@ struct FragmentInput {
[[stage(fragment)]]
fn fragment(in: FragmentInput) -> [[location(0)]] vec4<f32> {
var output_color: vec4<f32> = material.base_color;
#ifdef VERTEX_COLORS
#ifdef VERTEX_COLORS
output_color = output_color * in.color;
#endif
#endif
if ((material.flags & STANDARD_MATERIAL_FLAGS_BASE_COLOR_TEXTURE_BIT) != 0u) {
output_color = output_color * textureSample(base_color_texture, base_color_sampler, in.uv);
}
// // NOTE: Unlit bit not set means == 0 is true, so the true case is if lit
// NOTE: Unlit bit not set means == 0 is true, so the true case is if lit
if ((material.flags & STANDARD_MATERIAL_FLAGS_UNLIT_BIT) == 0u) {
// Prepare a 'processed' StandardMaterial by sampling all textures to resolve
// the material members
var pbr_input: PbrInput;
pbr_input.material.base_color = output_color;
pbr_input.material.reflectance = material.reflectance;
pbr_input.material.flags = material.flags;
pbr_input.material.alpha_cutoff = material.alpha_cutoff;
// TODO use .a for exposure compensation in HDR
var emissive: vec4<f32> = material.emissive;
if ((material.flags & STANDARD_MATERIAL_FLAGS_EMISSIVE_TEXTURE_BIT) != 0u) {
emissive = vec4<f32>(emissive.rgb * textureSample(emissive_texture, emissive_sampler, in.uv).rgb, 1.0);
}
pbr_input.material.emissive = emissive;
// calculate non-linear roughness from linear perceptualRoughness
var metallic: f32 = material.metallic;
var perceptual_roughness: f32 = material.perceptual_roughness;
if ((material.flags & STANDARD_MATERIAL_FLAGS_METALLIC_ROUGHNESS_TEXTURE_BIT) != 0u) {
@ -48,158 +58,34 @@ fn fragment(in: FragmentInput) -> [[location(0)]] vec4<f32> {
metallic = metallic * metallic_roughness.b;
perceptual_roughness = perceptual_roughness * metallic_roughness.g;
}
let roughness = perceptualRoughnessToRoughness(perceptual_roughness);
pbr_input.material.metallic = metallic;
pbr_input.material.perceptual_roughness = perceptual_roughness;
var occlusion: f32 = 1.0;
if ((material.flags & STANDARD_MATERIAL_FLAGS_OCCLUSION_TEXTURE_BIT) != 0u) {
occlusion = textureSample(occlusion_texture, occlusion_sampler, in.uv).r;
}
pbr_input.occlusion = occlusion;
var N: vec3<f32> = normalize(in.world_normal);
pbr_input.frag_coord = in.frag_coord;
pbr_input.world_position = in.world_position;
pbr_input.world_normal = in.world_normal;
pbr_input.is_orthographic = view.projection[3].w == 1.0;
pbr_input.N = prepare_normal(
in.world_normal,
#ifdef VERTEX_TANGENTS
#ifdef STANDARDMATERIAL_NORMAL_MAP
// NOTE: The mikktspace method of normal mapping explicitly requires that these NOT be
// normalized nor any Gram-Schmidt applied to ensure the vertex normal is orthogonal to the
// vertex tangent! Do not change this code unless you really know what you are doing.
// http://www.mikktspace.com/
var T: vec3<f32> = in.world_tangent.xyz;
var B: vec3<f32> = in.world_tangent.w * cross(N, T);
in.world_tangent,
#endif
#endif
if ((material.flags & STANDARD_MATERIAL_FLAGS_DOUBLE_SIDED_BIT) != 0u) {
if (!in.is_front) {
N = -N;
#ifdef VERTEX_TANGENTS
#ifdef STANDARDMATERIAL_NORMAL_MAP
T = -T;
B = -B;
#endif
#endif
}
}
#ifdef VERTEX_TANGENTS
#ifdef STANDARDMATERIAL_NORMAL_MAP
let TBN = mat3x3<f32>(T, B, N);
// Nt is the tangent-space normal.
var Nt: vec3<f32>;
if ((material.flags & STANDARD_MATERIAL_FLAGS_TWO_COMPONENT_NORMAL_MAP) != 0u) {
// Only use the xy components and derive z for 2-component normal maps.
Nt = vec3<f32>(textureSample(normal_map_texture, normal_map_sampler, in.uv).rg * 2.0 - 1.0, 0.0);
Nt.z = sqrt(1.0 - Nt.x * Nt.x - Nt.y * Nt.y);
} else {
Nt = textureSample(normal_map_texture, normal_map_sampler, in.uv).rgb * 2.0 - 1.0;
}
// Normal maps authored for DirectX require flipping the y component
if ((material.flags & STANDARD_MATERIAL_FLAGS_FLIP_NORMAL_MAP_Y) != 0u) {
Nt.y = -Nt.y;
}
// NOTE: The mikktspace method of normal mapping applies maps the tangent-space normal from
// the normal map texture in this way to be an EXACT inverse of how the normal map baker
// calculates the normal maps so there is no error introduced. Do not change this code
// unless you really know what you are doing.
// http://www.mikktspace.com/
N = normalize(Nt.x * T + Nt.y * B + Nt.z * N);
#endif
#endif
if ((material.flags & STANDARD_MATERIAL_FLAGS_ALPHA_MODE_OPAQUE) != 0u) {
// NOTE: If rendering as opaque, alpha should be ignored so set to 1.0
output_color.a = 1.0;
} else if ((material.flags & STANDARD_MATERIAL_FLAGS_ALPHA_MODE_MASK) != 0u) {
if (output_color.a >= material.alpha_cutoff) {
// NOTE: If rendering as masked alpha and >= the cutoff, render as fully opaque
output_color.a = 1.0;
} else {
// NOTE: output_color.a < material.alpha_cutoff should not is not rendered
// NOTE: This and any other discards mean that early-z testing cannot be done!
discard;
}
}
var V: vec3<f32>;
// If the projection is not orthographic
let is_orthographic = view.projection[3].w == 1.0;
if (is_orthographic) {
// Orthographic view vector
V = normalize(vec3<f32>(view.view_proj[0].z, view.view_proj[1].z, view.view_proj[2].z));
} else {
// Only valid for a perpective projection
V = normalize(view.world_position.xyz - in.world_position.xyz);
}
// Neubelt and Pettineo 2013, "Crafting a Next-gen Material Pipeline for The Order: 1886"
let NdotV = max(dot(N, V), 0.0001);
// Remapping [0,1] reflectance to F0
// See https://google.github.io/filament/Filament.html#materialsystem/parameterization/remapping
let reflectance = material.reflectance;
let F0 = 0.16 * reflectance * reflectance * (1.0 - metallic) + output_color.rgb * metallic;
// Diffuse strength inversely related to metallicity
let diffuse_color = output_color.rgb * (1.0 - metallic);
let R = reflect(-V, N);
// accumulate color
var light_accum: vec3<f32> = vec3<f32>(0.0);
let view_z = dot(vec4<f32>(
view.inverse_view[0].z,
view.inverse_view[1].z,
view.inverse_view[2].z,
view.inverse_view[3].z
), in.world_position);
let cluster_index = fragment_cluster_index(in.frag_coord.xy, view_z, is_orthographic);
let offset_and_count = unpack_offset_and_count(cluster_index);
for (var i: u32 = offset_and_count[0]; i < offset_and_count[0] + offset_and_count[1]; i = i + 1u) {
let light_id = get_light_id(i);
let light = point_lights.data[light_id];
var shadow: f32 = 1.0;
if ((mesh.flags & MESH_FLAGS_SHADOW_RECEIVER_BIT) != 0u
&& (light.flags & POINT_LIGHT_FLAGS_SHADOWS_ENABLED_BIT) != 0u) {
shadow = fetch_point_shadow(light_id, in.world_position, in.world_normal);
}
let light_contrib = point_light(in.world_position.xyz, light, roughness, NdotV, N, V, R, F0, diffuse_color);
light_accum = light_accum + light_contrib * shadow;
}
let n_directional_lights = lights.n_directional_lights;
for (var i: u32 = 0u; i < n_directional_lights; i = i + 1u) {
let light = lights.directional_lights[i];
var shadow: f32 = 1.0;
if ((mesh.flags & MESH_FLAGS_SHADOW_RECEIVER_BIT) != 0u
&& (light.flags & DIRECTIONAL_LIGHT_FLAGS_SHADOWS_ENABLED_BIT) != 0u) {
shadow = fetch_directional_shadow(i, in.world_position, in.world_normal);
}
let light_contrib = directional_light(light, roughness, NdotV, N, V, R, F0, diffuse_color);
light_accum = light_accum + light_contrib * shadow;
}
let diffuse_ambient = EnvBRDFApprox(diffuse_color, 1.0, NdotV);
let specular_ambient = EnvBRDFApprox(F0, perceptual_roughness, NdotV);
output_color = vec4<f32>(
light_accum +
(diffuse_ambient + specular_ambient) * lights.ambient_color.rgb * occlusion +
emissive.rgb * output_color.a,
output_color.a);
output_color = cluster_debug_visualization(
output_color,
view_z,
is_orthographic,
offset_and_count,
cluster_index,
in.uv,
in.is_front,
);
pbr_input.V = calculate_view(in.world_position, pbr_input.is_orthographic);
// tone_mapping
output_color = vec4<f32>(reinhard_luminance(output_color.rgb), output_color.a);
// Gamma correction.
// Not needed with sRGB buffer
// output_color.rgb = pow(output_color.rgb, vec3(1.0 / 2.2));
output_color = pbr(pbr_input);
}
return output_color;

View file

@ -0,0 +1,196 @@
#define_import_path bevy_pbr::pbr_functions
// NOTE: This ensures that the world_normal is normalized and if
// vertex tangents and normal maps then normal mapping may be applied.
fn prepare_normal(
world_normal: vec3<f32>,
#ifdef VERTEX_TANGENTS
#ifdef STANDARDMATERIAL_NORMAL_MAP
world_tangent: vec4<f32>,
#endif
#endif
uv: vec2<f32>,
is_front: bool,
) -> vec3<f32> {
var N: vec3<f32> = normalize(world_normal);
#ifdef VERTEX_TANGENTS
#ifdef STANDARDMATERIAL_NORMAL_MAP
// NOTE: The mikktspace method of normal mapping explicitly requires that these NOT be
// normalized nor any Gram-Schmidt applied to ensure the vertex normal is orthogonal to the
// vertex tangent! Do not change this code unless you really know what you are doing.
// http://www.mikktspace.com/
var T: vec3<f32> = world_tangent.xyz;
var B: vec3<f32> = world_tangent.w * cross(N, T);
#endif
#endif
if ((material.flags & STANDARD_MATERIAL_FLAGS_DOUBLE_SIDED_BIT) != 0u) {
if (!is_front) {
N = -N;
#ifdef VERTEX_TANGENTS
#ifdef STANDARDMATERIAL_NORMAL_MAP
T = -T;
B = -B;
#endif
#endif
}
}
#ifdef VERTEX_TANGENTS
#ifdef STANDARDMATERIAL_NORMAL_MAP
// Nt is the tangent-space normal.
var Nt: vec3<f32>;
if ((material.flags & STANDARD_MATERIAL_FLAGS_TWO_COMPONENT_NORMAL_MAP) != 0u) {
// Only use the xy components and derive z for 2-component normal maps.
Nt = vec3<f32>(textureSample(normal_map_texture, normal_map_sampler, uv).rg * 2.0 - 1.0, 0.0);
Nt.z = sqrt(1.0 - Nt.x * Nt.x - Nt.y * Nt.y);
} else {
Nt = textureSample(normal_map_texture, normal_map_sampler, uv).rgb * 2.0 - 1.0;
}
// Normal maps authored for DirectX require flipping the y component
if ((material.flags & STANDARD_MATERIAL_FLAGS_FLIP_NORMAL_MAP_Y) != 0u) {
Nt.y = -Nt.y;
}
// NOTE: The mikktspace method of normal mapping applies maps the tangent-space normal from
// the normal map texture in this way to be an EXACT inverse of how the normal map baker
// calculates the normal maps so there is no error introduced. Do not change this code
// unless you really know what you are doing.
// http://www.mikktspace.com/
N = normalize(Nt.x * T + Nt.y * B + Nt.z * N);
#endif
#endif
return N;
}
// NOTE: Correctly calculates the view vector depending on whether
// the projection is orthographic or perspective.
fn calculate_view(
world_position: vec4<f32>,
is_orthographic: bool,
) -> vec3<f32> {
var V: vec3<f32>;
if (is_orthographic) {
// Orthographic view vector
V = normalize(vec3<f32>(view.view_proj[0].z, view.view_proj[1].z, view.view_proj[2].z));
} else {
// Only valid for a perpective projection
V = normalize(view.world_position.xyz - world_position.xyz);
}
return V;
}
struct PbrInput {
material: StandardMaterial;
occlusion: f32;
frag_coord: vec4<f32>;
world_position: vec4<f32>;
world_normal: vec3<f32>;
N: vec3<f32>;
V: vec3<f32>;
is_orthographic: bool;
};
fn pbr(
in: PbrInput,
) -> vec4<f32> {
var output_color: vec4<f32> = in.material.base_color;
// TODO use .a for exposure compensation in HDR
let emissive = in.material.emissive;
// calculate non-linear roughness from linear perceptualRoughness
let metallic = in.material.metallic;
let perceptual_roughness = in.material.perceptual_roughness;
let roughness = perceptualRoughnessToRoughness(perceptual_roughness);
let occlusion = in.occlusion;
if ((in.material.flags & STANDARD_MATERIAL_FLAGS_ALPHA_MODE_OPAQUE) != 0u) {
// NOTE: If rendering as opaque, alpha should be ignored so set to 1.0
output_color.a = 1.0;
} else if ((in.material.flags & STANDARD_MATERIAL_FLAGS_ALPHA_MODE_MASK) != 0u) {
if (output_color.a >= in.material.alpha_cutoff) {
// NOTE: If rendering as masked alpha and >= the cutoff, render as fully opaque
output_color.a = 1.0;
} else {
// NOTE: output_color.a < in.material.alpha_cutoff should not is not rendered
// NOTE: This and any other discards mean that early-z testing cannot be done!
discard;
}
}
// Neubelt and Pettineo 2013, "Crafting a Next-gen Material Pipeline for The Order: 1886"
let NdotV = max(dot(in.N, in.V), 0.0001);
// Remapping [0,1] reflectance to F0
// See https://google.github.io/filament/Filament.html#materialsystem/parameterization/remapping
let reflectance = in.material.reflectance;
let F0 = 0.16 * reflectance * reflectance * (1.0 - metallic) + output_color.rgb * metallic;
// Diffuse strength inversely related to metallicity
let diffuse_color = output_color.rgb * (1.0 - metallic);
let R = reflect(-in.V, in.N);
// accumulate color
var light_accum: vec3<f32> = vec3<f32>(0.0);
let view_z = dot(vec4<f32>(
view.inverse_view[0].z,
view.inverse_view[1].z,
view.inverse_view[2].z,
view.inverse_view[3].z
), in.world_position);
let cluster_index = fragment_cluster_index(in.frag_coord.xy, view_z, in.is_orthographic);
let offset_and_count = unpack_offset_and_count(cluster_index);
for (var i: u32 = offset_and_count[0]; i < offset_and_count[0] + offset_and_count[1]; i = i + 1u) {
let light_id = get_light_id(i);
let light = point_lights.data[light_id];
var shadow: f32 = 1.0;
if ((mesh.flags & MESH_FLAGS_SHADOW_RECEIVER_BIT) != 0u
&& (light.flags & POINT_LIGHT_FLAGS_SHADOWS_ENABLED_BIT) != 0u) {
shadow = fetch_point_shadow(light_id, in.world_position, in.world_normal);
}
let light_contrib = point_light(in.world_position.xyz, light, roughness, NdotV, in.N, in.V, R, F0, diffuse_color);
light_accum = light_accum + light_contrib * shadow;
}
let n_directional_lights = lights.n_directional_lights;
for (var i: u32 = 0u; i < n_directional_lights; i = i + 1u) {
let light = lights.directional_lights[i];
var shadow: f32 = 1.0;
if ((mesh.flags & MESH_FLAGS_SHADOW_RECEIVER_BIT) != 0u
&& (light.flags & DIRECTIONAL_LIGHT_FLAGS_SHADOWS_ENABLED_BIT) != 0u) {
shadow = fetch_directional_shadow(i, in.world_position, in.world_normal);
}
let light_contrib = directional_light(light, roughness, NdotV, in.N, in.V, R, F0, diffuse_color);
light_accum = light_accum + light_contrib * shadow;
}
let diffuse_ambient = EnvBRDFApprox(diffuse_color, 1.0, NdotV);
let specular_ambient = EnvBRDFApprox(F0, perceptual_roughness, NdotV);
output_color = vec4<f32>(
light_accum +
(diffuse_ambient + specular_ambient) * lights.ambient_color.rgb * occlusion +
emissive.rgb * output_color.a,
output_color.a);
output_color = cluster_debug_visualization(
output_color,
view_z,
in.is_orthographic,
offset_and_count,
cluster_index,
);
// tone_mapping
output_color = vec4<f32>(reinhard_luminance(output_color.rgb), output_color.a);
// Gamma correction.
// Not needed with sRGB buffer
// output_color.rgb = pow(output_color.rgb, vec3(1.0 / 2.2));
return output_color;
}