Commit graph

292 commits

Author SHA1 Message Date
Carter Anderson
e369a8ad51 Mesh vertex buffer layouts (#3959)
This PR makes a number of changes to how meshes and vertex attributes are handled, which the goal of enabling easy and flexible custom vertex attributes:
* Reworks the `Mesh` type to use the newly added `VertexAttribute` internally
  * `VertexAttribute` defines the name, a unique `VertexAttributeId`, and a `VertexFormat`
  *  `VertexAttributeId` is used to produce consistent sort orders for vertex buffer generation, replacing the more expensive and often surprising "name based sorting"  
  * Meshes can be used to generate a `MeshVertexBufferLayout`, which defines the layout of the gpu buffer produced by the mesh. `MeshVertexBufferLayouts` can then be used to generate actual `VertexBufferLayouts` according to the requirements of a specific pipeline. This decoupling of "mesh layout" vs "pipeline vertex buffer layout" is what enables custom attributes. We don't need to standardize _mesh layouts_ or contort meshes to meet the needs of a specific pipeline. As long as the mesh has what the pipeline needs, it will work transparently. 
* Mesh-based pipelines now specialize on `&MeshVertexBufferLayout` via the new `SpecializedMeshPipeline` trait (which behaves like `SpecializedPipeline`, but adds `&MeshVertexBufferLayout`). The integrity of the pipeline cache is maintained because the `MeshVertexBufferLayout` is treated as part of the key (which is fully abstracted from implementers of the trait ... no need to add any additional info to the specialization key).    
* Hashing `MeshVertexBufferLayout` is too expensive to do for every entity, every frame. To make this scalable, I added a generalized "pre-hashing" solution to `bevy_utils`: `Hashed<T>` keys and `PreHashMap<K, V>` (which uses `Hashed<T>` internally) . Why didn't I just do the quick and dirty in-place "pre-compute hash and use that u64 as a key in a hashmap" that we've done in the past? Because its wrong! Hashes by themselves aren't enough because two different values can produce the same hash. Re-hashing a hash is even worse! I decided to build a generalized solution because this pattern has come up in the past and we've chosen to do the wrong thing. Now we can do the right thing! This did unfortunately require pulling in `hashbrown` and using that in `bevy_utils`, because avoiding re-hashes requires the `raw_entry_mut` api, which isn't stabilized yet (and may never be ... `entry_ref` has favor now, but also isn't available yet). If std's HashMap ever provides the tools we need, we can move back to that. Note that adding `hashbrown` doesn't increase our dependency count because it was already in our tree. I will probably break these changes out into their own PR.
* Specializing on `MeshVertexBufferLayout` has one non-obvious behavior: it can produce identical pipelines for two different MeshVertexBufferLayouts. To optimize the number of active pipelines / reduce re-binds while drawing, I de-duplicate pipelines post-specialization using the final `VertexBufferLayout` as the key.  For example, consider a pipeline that needs the layout `(position, normal)` and is specialized using two meshes: `(position, normal, uv)` and `(position, normal, other_vec2)`. If both of these meshes result in `(position, normal)` specializations, we can use the same pipeline! Now we do. Cool!

To briefly illustrate, this is what the relevant section of `MeshPipeline`'s specialization code looks like now:

```rust
impl SpecializedMeshPipeline for MeshPipeline {
    type Key = MeshPipelineKey;

    fn specialize(
        &self,
        key: Self::Key,
        layout: &MeshVertexBufferLayout,
    ) -> RenderPipelineDescriptor {
        let mut vertex_attributes = vec![
            Mesh::ATTRIBUTE_POSITION.at_shader_location(0),
            Mesh::ATTRIBUTE_NORMAL.at_shader_location(1),
            Mesh::ATTRIBUTE_UV_0.at_shader_location(2),
        ];

        let mut shader_defs = Vec::new();
        if layout.contains(Mesh::ATTRIBUTE_TANGENT) {
            shader_defs.push(String::from("VERTEX_TANGENTS"));
            vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(3));
        }

        let vertex_buffer_layout = layout
            .get_layout(&vertex_attributes)
            .expect("Mesh is missing a vertex attribute");
```

Notice that this is _much_ simpler than it was before. And now any mesh with any layout can be used with this pipeline, provided it has vertex postions, normals, and uvs. We even got to remove `HAS_TANGENTS` from MeshPipelineKey and `has_tangents` from `GpuMesh`, because that information is redundant with `MeshVertexBufferLayout`.

This is still a draft because I still need to:

* Add more docs
* Experiment with adding error handling to mesh pipeline specialization (which would print errors at runtime when a mesh is missing a vertex attribute required by a pipeline). If it doesn't tank perf, we'll keep it.
* Consider breaking out the PreHash / hashbrown changes into a separate PR.
* Add an example illustrating this change
* Verify that the "mesh-specialized pipeline de-duplication code" works properly

Please dont yell at me for not doing these things yet :) Just trying to get this in peoples' hands asap.

Alternative to #3120
Fixes #3030


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-02-23 23:21:13 +00:00
danieleades
d8974e7c3d small and mostly pointless refactoring (#2934)
What is says on the tin.

This has got more to do with making `clippy` slightly more *quiet* than it does with changing anything that might greatly impact readability or performance.

that said, deriving `Default` for a couple of structs is a nice easy win
2022-02-13 22:33:55 +00:00
Jakob Hellermann
d305e4f026 only use unique type UUIDs (#3579)
Out of curiosity I ran `rg -F -I '#[uuid = "' | sort` to see if there were any duplicate UUIDs, and they were. Now there aren't any.
2022-02-12 19:58:02 +00:00
Gwen
b11ee3ffb8 Remove duplicate call to set_vertex_buffer(0, ...) in shader_instancing example (#3738)
## Objective

The [`DrawMeshInstanced`] command in the example sets vertex buffer 0 twice, with two identical calls to:

```rs
pass.set_vertex_buffer(0, gpu_mesh.vertex_buffer.slice(..));
```

## Solution

Remove the second call as it is unecessary.

[`DrawMeshInstanced`]: f3de12bc5e/examples/shader/shader_instancing.rs (L217-L258)
2022-02-04 03:37:40 +00:00
Charles Giguere
435fb7af4f Improve shader_material example documentation (#3601)
# Objective

While trying to learn how to use custom shaders, I had difficulty figuring out how to use a vertex shader. My confusion was mostly because all the other shader examples used a custom pipeline, but I didn't want a custom pipeline. After digging around I realised that I simply needed to add a function to the `impl Material` block. I also searched what was the default shader used, because it wasn't obvious to me where to find it.

## Solution

Added a few comments explaining what is going on in the example and a link to the default shader.
2022-01-26 18:52:54 +00:00
luke.biel
6d76229c38 Fix a typo in shader_defs example (#3762)
# Objective

As in title, I'm already looking through these files so may as well rename `pipline` to `pipeline`
2022-01-24 23:44:08 +00:00
Robert Swain
55da315432 bevy_render: Provide a way to opt-out of the built-in frustum culling (#3711)
# Objective

- Allow opting-out of the built-in frustum culling for cases where its behaviour would be incorrect
- Make use of the this in the shader_instancing example that uses a custom instancing method. The built-in frustum culling breaks the custom instancing in the shader_instancing example if the camera is moved to:

```rust
    commands.spawn_bundle(PerspectiveCameraBundle {
        transform: Transform::from_xyz(12.0, 0.0, 15.0)
            .looking_at(Vec3::new(12.0, 0.0, 0.0), Vec3::Y),
        ..Default::default()
    });
```

...such that the Aabb of the cube Mesh that is at the origin goes completely out of view. This incorrectly (for the purpose of the custom instancing) culls the `Mesh` and so culls all instances even though some may be visible.


## Solution

- Add a `NoFrustumCulling` marker component
- Do not compute and add an `Aabb` to `Mesh` entities without an `Aabb` if they have a `NoFrustumCulling` marker component
- Do not apply frustum culling to entities with the `NoFrustumCulling` marker component
2022-01-17 22:55:44 +00:00
Jakob Hellermann
b1476015d9 add some more pipelined-rendering shader examples (#3041)
based on #3031 

Adds some examples showing of how to use the new pipelined rendering for custom shaders.

- a minimal shader example which doesn't use render assets
- the same but using glsl
- an example showing how to render instanced data
- a shader which uses the seconds since startup to animate some textures


Instancing shader:
![grafik](https://user-images.githubusercontent.com/22177966/139299294-e176b62a-53d1-4287-9a66-02fb55affc02.png)
Animated shader:
![animate_shader](https://user-images.githubusercontent.com/22177966/139299718-2940c0f3-8480-4ee0-98d7-b6ba40dc1472.gif)
(the gif makes it look a bit ugly)

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-01-05 19:43:11 +00:00
Carter Anderson
963e2f08a2 Materials and MaterialPlugin (#3428)
This adds "high level" `Material` and `SpecializedMaterial` traits, which can be used with a `MaterialPlugin<T: SpecializedMaterial>`. `MaterialPlugin` automatically registers the appropriate resources, draw functions, and queue systems. The `Material` trait is simpler, and should cover most use cases. `SpecializedMaterial` is like `Material`, but it also requires defining a "specialization key" (see #3031). `Material` has a trivial blanket impl of `SpecializedMaterial`, which allows us to use the same types + functions for both.

This makes defining custom 3d materials much simpler (see the `shader_material` example diff) and ensures consistent behavior across all 3d materials (both built in and custom). I ported the built in `StandardMaterial` to `MaterialPlugin`. There is also a new `MaterialMeshBundle<T: SpecializedMaterial>`, which `PbrBundle` aliases to.
2021-12-25 21:45:43 +00:00
Jakob Hellermann
adb3ad399c make sub_app return an &App and add sub_app_mut() -> &mut App (#3309)
It's sometimes useful to have a reference to an app a sub app at the same time, which is only possible with an immutable reference.
2021-12-24 06:57:30 +00:00
François
79d36e7c28 Prepare crevice for vendored release (#3394)
# Objective

- Our crevice is still called "crevice", which we can't use for a release
- Users would need to use our "crevice" directly to be able to use the derive macro

## Solution

- Rename crevice to bevy_crevice, and crevice-derive to bevy-crevice-derive
- Re-export it from bevy_render, and use it from bevy_render everywhere
- Fix derive macro to work either from bevy_render, from bevy_crevice, or from bevy

## Remaining

- It is currently re-exported as `bevy::render::bevy_crevice`, is it the path we want?
- After a brief suggestion to Cart, I changed the version to follow Bevy version instead of crevice, do we want that?
- Crevice README.md need to be updated
- in the `Cargo.toml`, there are a few things to change. How do we want to change them? How do we keep attributions to original Crevice?
```
authors = ["Lucien Greathouse <me@lpghatguy.com>"]
documentation = "https://docs.rs/crevice"
homepage = "https://github.com/LPGhatguy/crevice"
repository = "https://github.com/LPGhatguy/crevice"
```


Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-12-23 22:49:12 +00:00
davier
c79ec9cad6 Fix custom mesh pipelines (#3381)
# Objective

Fixes #3379 

## Solution

The custom mesh pipelines needed to be specialized on each mesh's primitive topology, as done in `queue_meshes()`

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-12-20 20:33:39 +00:00
Carter Anderson
ffecb05a0a Replace old renderer with new renderer (#3312)
This makes the [New Bevy Renderer](#2535) the default (and only) renderer. The new renderer isn't _quite_ ready for the final release yet, but I want as many people as possible to start testing it so we can identify bugs and address feedback prior to release.

The examples are all ported over and operational with a few exceptions:

* I removed a good portion of the examples in the `shader` folder. We still have some work to do in order to make these examples possible / ergonomic / worthwhile: #3120 and "high level shader material plugins" are the big ones. This is a temporary measure.
* Temporarily removed the multiple_windows example: doing this properly in the new renderer will require the upcoming "render targets" changes. Same goes for the render_to_texture example.
* Removed z_sort_debug: entity visibility sort info is no longer available in app logic. we could do this on the "render app" side, but i dont consider it a priority.
2021-12-14 03:58:23 +00:00
François
3de391be21 fix calls to as_rgba_linear (#3200)
# Objective

- After #3192, some places where `as_rgba_linear` was called were doing too many conversions

## Solution

- Fix the conversions
2021-11-28 10:40:42 +00:00
Carter Anderson
8009af3879 Merge New Renderer 2021-11-22 23:57:42 -08:00
Carter Anderson
2e79951659 Shader Imports. Decouple Mesh logic from PBR (#3137)
## Shader Imports

This adds "whole file" shader imports. These come in two flavors:

### Asset Path Imports

```rust
// /assets/shaders/custom.wgsl

#import "shaders/custom_material.wgsl"

[[stage(fragment)]]
fn fragment() -> [[location(0)]] vec4<f32> {
    return get_color();
}
```

```rust
// /assets/shaders/custom_material.wgsl

[[block]]
struct CustomMaterial {
    color: vec4<f32>;
};
[[group(1), binding(0)]]
var<uniform> material: CustomMaterial;
```

### Custom Path Imports

Enables defining custom import paths. These are intended to be used by crates to export shader functionality:

```rust
// bevy_pbr2/src/render/pbr.wgsl

#import bevy_pbr::mesh_view_bind_group
#import bevy_pbr::mesh_bind_group

[[block]]
struct StandardMaterial {
    base_color: vec4<f32>;
    emissive: vec4<f32>;
    perceptual_roughness: f32;
    metallic: f32;
    reflectance: f32;
    flags: u32;
};

/* rest of PBR fragment shader here */
```

```rust
impl Plugin for MeshRenderPlugin {
    fn build(&self, app: &mut bevy_app::App) {
        let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap();
        shaders.set_untracked(
            MESH_BIND_GROUP_HANDLE,
            Shader::from_wgsl(include_str!("mesh_bind_group.wgsl"))
                .with_import_path("bevy_pbr::mesh_bind_group"),
        );
        shaders.set_untracked(
            MESH_VIEW_BIND_GROUP_HANDLE,
            Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl"))
                .with_import_path("bevy_pbr::mesh_view_bind_group"),
        );
```

By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention.

Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that.

## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin

This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials.

## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache

This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`.

##  RenderCommands are now fallible

This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". 

# Next Steps

* Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct)
* Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders
* Move shader import logic into the asset preprocessor once bevy gets support for that.

Fixes #3132
2021-11-18 03:45:02 +00:00
Carter Anderson
9a4cc42b38 EntityRenderCommand and PhaseItemRenderCommand (#3111)
Adds new `EntityRenderCommand`, `EntityPhaseItem`, and `CachedPipelinePhaseItem` traits to make it possible to reuse RenderCommands across phases. This should be helpful for features like #3072 . It also makes the trait impls slightly less generic-ey in the common cases.

This also fixes the custom shader examples to account for the recent Frustum Culling and MSAA changes (the UX for these things will be improved later).
2021-11-12 22:27:17 +00:00
Carter Anderson
015617a774 Pipeline Specialization, Shader Assets, and Shader Preprocessing (#3031)
## New Features
This adds the following to the new renderer:

* **Shader Assets**
  * Shaders are assets again! Users no longer need to call `include_str!` for their shaders
  * Shader hot-reloading
* **Shader Defs / Shader Preprocessing**
  * Shaders now support `# ifdef NAME`, `# ifndef NAME`, and `# endif` preprocessor directives
* **Bevy RenderPipelineDescriptor and RenderPipelineCache**
  * Bevy now provides its own `RenderPipelineDescriptor` and the wgpu version is now exported as `RawRenderPipelineDescriptor`. This allows users to define pipelines with `Handle<Shader>` instead of needing to manually compile and reference `ShaderModules`, enables passing in shader defs to configure the shader preprocessor, makes hot reloading possible (because the descriptor can be owned and used to create new pipelines when a shader changes), and opens the doors to pipeline specialization.
  * The `RenderPipelineCache` now handles compiling and re-compiling Bevy RenderPipelineDescriptors. It has internal PipelineLayout and ShaderModule caches. Users receive a `CachedPipelineId`, which can be used to look up the actual `&RenderPipeline` during rendering. 
* **Pipeline Specialization**
  * This enables defining per-entity-configurable pipelines that specialize on arbitrary custom keys. In practice this will involve specializing based on things like MSAA values, Shader Defs, Bind Group existence, and Vertex Layouts.
  * Adds a `SpecializedPipeline` trait and `SpecializedPipelines<MyPipeline>` resource. This is a simple layer that generates Bevy RenderPipelineDescriptors based on a custom key defined for the pipeline.
  * Specialized pipelines are also hot-reloadable.
  * This was the result of experimentation with two different approaches:
    1. **"generic immediate mode multi-key hash pipeline specialization"**
      * breaks up the pipeline into multiple "identities" (the core pipeline definition, shader defs, mesh layout, bind group layout). each of these identities has its own key. looking up / compiling a specific version of a pipeline requires composing all of these keys together
      * the benefit of this approach is that it works for all pipelines / the pipeline is fully identified by the keys. the multiple keys allow pre-hashing parts of the pipeline identity where possible (ex: pre compute the mesh identity for all meshes)
      * the downside is that any per-entity data that informs the values of these keys could require expensive re-hashes. computing each key for each sprite tanked bevymark performance (sprites don't actually need this level of specialization yet ... but things like pbr and future sprite scenarios might). 
      * this is the approach rafx used last time i checked
    2. **"custom key specialization"**
      * Pipelines by default are not specialized
      * Pipelines that need specialization implement a SpecializedPipeline trait with a custom key associated type
      * This allows specialization keys to encode exactly the amount of information required (instead of needing to be a combined hash of the entire pipeline). Generally this should fit in a small number of bytes. Per-entity specialization barely registers anymore on things like bevymark. It also makes things like "shader defs" way cheaper to hash because we can use context specific bitflags instead of strings.
      * Despite the extra trait, it actually generally makes pipeline definitions + lookups simpler: managing multiple keys (and making the appropriate calls to manage these keys) was way more complicated.
  * I opted for custom key specialization. It performs better generally and in my opinion is better UX. Fortunately the way this is implemented also allows for custom caches as this all builds on a common abstraction: the RenderPipelineCache. The built in custom key trait is just a simple / pre-defined way to interact with the cache 

## Callouts

* The SpecializedPipeline trait makes it easy to inherit pipeline configuration in custom pipelines. The changes to `custom_shader_pipelined` and the new `shader_defs_pipelined` example illustrate how much simpler it is to define custom pipelines based on the PbrPipeline.
* The shader preprocessor is currently pretty naive (it just uses regexes to process each line). Ultimately we might want to build a more custom parser for more performance + better error handling, but for now I'm happy to optimize for "easy to implement and understand". 

## Next Steps

* Port compute pipelines to the new system
* Add more preprocessor directives (else, elif, import)
* More flexible vertex attribute specialization / enable cheaply specializing on specific mesh vertex layouts
2021-10-28 19:07:47 +00:00
Carter Anderson
43e8a156fb Upgrade to wgpu 0.11 (#2933)
Upgrades both the old and new renderer to wgpu 0.11 (and naga 0.7). This builds on @zicklag's work here #2556.

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-10-08 19:55:24 +00:00
Paweł Grabarz
07ed1d053e Implement and require #[derive(Component)] on all component structs (#2254)
This implements the most minimal variant of #1843 - a derive for marker trait. This is a prerequisite to more complicated features like statically defined storage type or opt-out component reflection.

In order to make component struct's purpose explicit and avoid misuse, it must be annotated with `#[derive(Component)]` (manual impl is discouraged for compatibility). Right now this is just a marker trait, but in the future it might be expanded. Making this change early allows us to make further changes later without breaking backward compatibility for derive macro users.

This already prevents a lot of issues, like using bundles in `insert` calls. Primitive types are no longer valid components as well. This can be easily worked around by adding newtype wrappers and deriving `Component` for them.

One funny example of prevented bad code (from our own tests) is when an newtype struct or enum variant is used. Previously, it was possible to write `insert(Newtype)` instead of `insert(Newtype(value))`. That code compiled, because function pointers (in this case newtype struct constructor) implement `Send + Sync + 'static`, so we allowed them to be used as components. This is no longer the case and such invalid code will trigger a compile error.


Co-authored-by: = <=>
Co-authored-by: TheRawMeatball <therawmeatball@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-10-03 19:23:44 +00:00
Carter Anderson
08969a24b8 Modular Rendering (#2831)
This changes how render logic is composed to make it much more modular. Previously, all extraction logic was centralized for a given "type" of rendered thing. For example, we extracted meshes into a vector of ExtractedMesh, which contained the mesh and material asset handles, the transform, etc. We looked up bindings for "drawn things" using their index in the `Vec<ExtractedMesh>`. This worked fine for built in rendering, but made it hard to reuse logic for "custom" rendering. It also prevented us from reusing things like "extracted transforms" across contexts.

To make rendering more modular, I made a number of changes:

* Entities now drive rendering:
  * We extract "render components" from "app components" and store them _on_ entities. No more centralized uber lists! We now have true "ECS-driven rendering"
  * To make this perform well, I implemented #2673 in upstream Bevy for fast batch insertions into specific entities. This was merged into the `pipelined-rendering` branch here: #2815
* Reworked the `Draw` abstraction:
  * Generic `PhaseItems`: each draw phase can define its own type of "rendered thing", which can define its own "sort key"
  * Ported the 2d, 3d, and shadow phases to the new PhaseItem impl (currently Transparent2d, Transparent3d, and Shadow PhaseItems)
  * `Draw` trait and and `DrawFunctions` are now generic on PhaseItem
  * Modular / Ergonomic `DrawFunctions` via `RenderCommands`
    * RenderCommand is a trait that runs an ECS query and produces one or more RenderPass calls. Types implementing this trait can be composed to create a final DrawFunction. For example the DrawPbr DrawFunction is created from the following DrawCommand tuple. Const generics are used to set specific bind group locations:
        ```rust
         pub type DrawPbr = (
            SetPbrPipeline,
            SetMeshViewBindGroup<0>,
            SetStandardMaterialBindGroup<1>,
            SetTransformBindGroup<2>,
            DrawMesh,
        );
        ```
    * The new `custom_shader_pipelined` example illustrates how the commands above can be reused to create a custom draw function:
       ```rust
       type DrawCustom = (
           SetCustomMaterialPipeline,
           SetMeshViewBindGroup<0>,
           SetTransformBindGroup<2>,
           DrawMesh,
       );
       ``` 
* ExtractComponentPlugin and UniformComponentPlugin:
  * Simple, standardized ways to easily extract individual components and write them to GPU buffers
* Ported PBR and Sprite rendering to the new primitives above.
* Removed staging buffer from UniformVec in favor of direct Queue usage
  * Makes UniformVec much easier to use and more ergonomic. Completely removes the need for custom render graph nodes in these contexts (see the PbrNode and view Node removals and the much simpler call patterns in the relevant Prepare systems).
* Added a many_cubes_pipelined example to benchmark baseline 3d rendering performance and ensure there were no major regressions during this port. Avoiding regressions was challenging given that the old approach of extracting into centralized vectors is basically the "optimal" approach. However thanks to a various ECS optimizations and render logic rephrasing, we pretty much break even on this benchmark!
* Lifetimeless SystemParams: this will be a bit divisive, but as we continue to embrace "trait driven systems" (ex: ExtractComponentPlugin, UniformComponentPlugin, DrawCommand), the ergonomics of `(Query<'static, 'static, (&'static A, &'static B, &'static)>, Res<'static, C>)` were getting very hard to bear. As a compromise, I added "static type aliases" for the relevant SystemParams. The previous example can now be expressed like this: `(SQuery<(Read<A>, Read<B>)>, SRes<C>)`. If anyone has better ideas / conflicting opinions, please let me know!
* RunSystem trait: a way to define Systems via a trait with a SystemParam associated type. This is used to implement the various plugins mentioned above. I also added SystemParamItem and QueryItem type aliases to make "trait stye" ecs interactions nicer on the eyes (and fingers).
* RenderAsset retrying: ensures that render assets are only created when they are "ready" and allows us to create bind groups directly inside render assets (which significantly simplified the StandardMaterial code). I think ultimately we should swap this out on "asset dependency" events to wait for dependencies to load, but this will require significant asset system changes.
* Updated some built in shaders to account for missing MeshUniform fields
2021-09-23 06:16:11 +00:00
Carter Anderson
11b41206eb Add upstream bevy_ecs and prepare for custom-shaders merge (#2815)
This updates the `pipelined-rendering` branch to use the latest `bevy_ecs` from `main`. This accomplishes a couple of goals:

1. prepares for upcoming `custom-shaders` branch changes, which were what drove many of the recent bevy_ecs changes on `main`
2. prepares for the soon-to-happen merge of `pipelined-rendering` into `main`. By including bevy_ecs changes now, we make that merge simpler / easier to review. 

I split this up into 3 commits:

1. **add upstream bevy_ecs**: please don't bother reviewing this content. it has already received thorough review on `main` and is a literal copy/paste of the relevant folders (the old folders were deleted so the directories are literally exactly the same as `main`).
2. **support manual buffer application in stages**: this is used to enable the Extract step. we've already reviewed this once on the `pipelined-rendering` branch, but its worth looking at one more time in the new context of (1).
3. **support manual archetype updates in QueryState**: same situation as (2).
2021-09-14 06:14:19 +00:00
Charles Giguere
51a5070cd2 add get_single variant (#2793)
# Objective

The vast majority of `.single()` usage I've seen is immediately followed by a `.unwrap()`. Since it seems most people use it without handling the error, I think making it easier to just get what you want fast while also having a more verbose alternative when you want to handle the error could help.

## Solution

Instead of having a lot of `.unwrap()` everywhere, this PR introduces a `try_single()` variant that behaves like the current `.single()` and make the new `.single()` panic on error.
2021-09-10 20:23:50 +00:00
François
b724a0f586 Down with the system! (#2496)
# Objective

- Remove all the `.system()` possible.
- Check for remaining missing cases.

## Solution

- Remove all `.system()`, fix compile errors
- 32 calls to `.system()` remains, mostly internals, the few others should be removed after #2446
2021-07-27 23:42:36 +00:00
bjorn3
6d6bc2a8b4 Merge AppBuilder into App (#2531)
This is extracted out of eb8f973646476b4a4926ba644a77e2b3a5772159 and includes some additional changes to remove all references to AppBuilder and fix examples that still used App::build() instead of App::new(). In addition I didn't extract the sub app feature as it isn't ready yet.

You can use `git diff --diff-filter=M eb8f973646476b4a4926ba644a77e2b3a5772159` to find all differences in this PR. The `--diff-filtered=M` filters all files added in the original commit but not in this commit away.

Co-Authored-By: Carter Anderson <mcanders1@gmail.com>
2021-07-27 20:21:06 +00:00
Carter Anderson
4ac2ed7cc6 pipelined rendering proof of concept 2021-07-24 16:43:37 -07:00
Alice Cecile
e4e32598a9 Cargo fmt with unstable features (#1903)
Fresh version of #1670 off the latest main.

Mostly fixing documentation wrapping.
2021-04-21 23:19:34 +00:00
Anselmo Sampietro
9b7ed18f72 Add animate shaders example (#1765)
This PR adds an example on how to animate a shader by passing the global `time.seconds_since_startup()` to a component, and accessing that component inside the shader.

Hopefully this is the current proper solution, please let me know if it should be solved in another way.

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-04-15 19:49:31 +00:00
Carter Anderson
5bccb67aa3 Remove unused material (#1898)
This doesn't do anything and complicates the example.
2021-04-13 02:39:50 +00:00
Carter Anderson
81b53d15d4 Make Commands and World apis consistent (#1703)
Resolves #1253 #1562

This makes the Commands apis consistent with World apis. This moves to a "type state" pattern (like World) where the "current entity" is stored in an `EntityCommands` builder.

In general this tends to cuts down on indentation and line count. It comes at the cost of needing to type `commands` more and adding more semicolons to terminate expressions.

I also added `spawn_bundle` to Commands because this is a common enough operation that I think its worth providing a shorthand.
2021-03-23 00:23:40 +00:00
Jonas Matser
cd8025d0a7 Remove remaining camerapos bindings (#1708)
Fixes #1706

@JeanMertz already solved it. I just ran all examples and tests.
2021-03-22 18:10:35 +00:00
Jonas Matser
45b2db7070 Rebase of existing PBR work (#1554)
This is a rebase of StarArawns PBR work from #261 with IngmarBitters work from #1160 cherry-picked on top.

I had to make a few minor changes to make some intermediate commits compile and the end result is not yet 100% what I expected, so there's a bit more work to do.

Co-authored-by: John Mitchell <toasterthegamer@gmail.com>
Co-authored-by: Ingmar Bitter <ingmar.bitter@gmail.com>
2021-03-20 03:22:33 +00:00
Carter Anderson
dd4a196329 Flexible camera bindings (#1689)
Alternative to #1203 and #1611

Camera bindings have historically been "hacked in". They were _required_ in all shaders and only supported a single Mat4. PBR (#1554) requires the CameraView matrix, but adding this using the "hacked" method forced users to either include all possible camera data in a single binding (#1203) or include all possible bindings (#1611).

This approach instead assigns each "active camera" its own RenderResourceBindings, which are populated by CameraNode. The PassNode then retrieves (and initializes) the relevant bind groups for all render pipelines used by visible entities. 

* Enables any number of camera bindings , including zero (with any set or binding number ... set 0 should still be used to avoid rebinds).
* Renames Camera binding to CameraViewProj
* Adds CameraView binding
2021-03-19 20:36:40 +00:00
François
bbb9849506 Replace default method calls from Glam types with explicit const (#1645)
it's a followup of #1550 

I think calling explicit methods/values instead of default makes the code easier to read: "what is `Quat::default()`" vs "Oh, it's `Quat::IDENTITY`"

`Transform::identity()` and `GlobalTransform::identity()` can also be consts and I replaced the calls to their `default()` impl with `identity()`
2021-03-13 18:23:39 +00:00
Carter Anderson
b17f8a4bce format comments (#1612)
Uses the new unstable comment formatting features added to rustfmt.toml.
2021-03-11 00:27:30 +00:00
Cameron Hart
f61e44db28 Update glam to 0.13.0. (#1550)
See https://github.com/bitshifter/glam-rs/blob/master/CHANGELOG.md for details on changes.

Co-authored-by: Cameron Hart <c_hart@wargaming.net>
2021-03-06 19:39:16 +00:00
Carter Anderson
3a2a68852c Bevy ECS V2 (#1525)
# Bevy ECS V2

This is a rewrite of Bevy ECS (basically everything but the new executor/schedule, which are already awesome). The overall goal was to improve the performance and versatility of Bevy ECS. Here is a quick bulleted list of changes before we dive into the details:

* Complete World rewrite
* Multiple component storage types:
    * Tables: fast cache friendly iteration, slower add/removes (previously called Archetypes)
    * Sparse Sets: fast add/remove, slower iteration
* Stateful Queries (caches query results for faster iteration. fragmented iteration is _fast_ now)
* Stateful System Params (caches expensive operations. inspired by @DJMcNab's work in #1364)
* Configurable System Params (users can set configuration when they construct their systems. once again inspired by @DJMcNab's work)
* Archetypes are now "just metadata", component storage is separate
* Archetype Graph (for faster archetype changes)
* Component Metadata
    * Configure component storage type
    * Retrieve information about component size/type/name/layout/send-ness/etc
    * Components are uniquely identified by a densely packed ComponentId
    * TypeIds are now totally optional (which should make implementing scripting easier)
* Super fast "for_each" query iterators
* Merged Resources into World. Resources are now just a special type of component
* EntityRef/EntityMut builder apis (more efficient and more ergonomic)
* Fast bitset-backed `Access<T>` replaces old hashmap-based approach everywhere
* Query conflicts are determined by component access instead of archetype component access (to avoid random failures at runtime)
    * With/Without are still taken into account for conflicts, so this should still be comfy to use
* Much simpler `IntoSystem` impl
* Significantly reduced the amount of hashing throughout the ecs in favor of Sparse Sets (indexed by densely packed ArchetypeId, ComponentId, BundleId, and TableId)
* Safety Improvements
    * Entity reservation uses a normal world reference instead of unsafe transmute
    * QuerySets no longer transmute lifetimes
    * Made traits "unsafe" where relevant
    * More thorough safety docs
* WorldCell
    * Exposes safe mutable access to multiple resources at a time in a World 
* Replaced "catch all" `System::update_archetypes(world: &World)` with `System::new_archetype(archetype: &Archetype)`
* Simpler Bundle implementation
* Replaced slow "remove_bundle_one_by_one" used as fallback for Commands::remove_bundle with fast "remove_bundle_intersection"
* Removed `Mut<T>` query impl. it is better to only support one way: `&mut T` 
* Removed with() from `Flags<T>` in favor of `Option<Flags<T>>`, which allows querying for flags to be "filtered" by default 
* Components now have is_send property (currently only resources support non-send)
* More granular module organization
* New `RemovedComponents<T>` SystemParam that replaces `query.removed::<T>()`
* `world.resource_scope()` for mutable access to resources and world at the same time
* WorldQuery and QueryFilter traits unified. FilterFetch trait added to enable "short circuit" filtering. Auto impled for cases that don't need it
* Significantly slimmed down SystemState in favor of individual SystemParam state
* System Commands changed from `commands: &mut Commands` back to `mut commands: Commands` (to allow Commands to have a World reference)

Fixes #1320

## `World` Rewrite

This is a from-scratch rewrite of `World` that fills the niche that `hecs` used to. Yes, this means Bevy ECS is no longer a "fork" of hecs. We're going out our own!

(the only shared code between the projects is the entity id allocator, which is already basically ideal)

A huge shout out to @SanderMertens (author of [flecs](https://github.com/SanderMertens/flecs)) for sharing some great ideas with me (specifically hybrid ecs storage and archetype graphs). He also helped advise on a number of implementation details.

## Component Storage (The Problem)

Two ECS storage paradigms have gained a lot of traction over the years:

* **Archetypal ECS**: 
    * Stores components in "tables" with static schemas. Each "column" stores components of a given type. Each "row" is an entity.
    * Each "archetype" has its own table. Adding/removing an entity's component changes the archetype.
    * Enables super-fast Query iteration due to its cache-friendly data layout
    * Comes at the cost of more expensive add/remove operations for an Entity's components, because all components need to be copied to the new archetype's "table"
* **Sparse Set ECS**:
    * Stores components of the same type in densely packed arrays, which are sparsely indexed by densely packed unsigned integers (Entity ids)
    * Query iteration is slower than Archetypal ECS because each entity's component could be at any position in the sparse set. This "random access" pattern isn't cache friendly. Additionally, there is an extra layer of indirection because you must first map the entity id to an index in the component array.
    * Adding/removing components is a cheap, constant time operation 

Bevy ECS V1, hecs, legion, flec, and Unity DOTS are all "archetypal ecs-es". I personally think "archetypal" storage is a good default for game engines. An entity's archetype doesn't need to change frequently in general, and it creates "fast by default" query iteration (which is a much more common operation). It is also "self optimizing". Users don't need to think about optimizing component layouts for iteration performance. It "just works" without any extra boilerplate.

Shipyard and EnTT are "sparse set ecs-es". They employ "packing" as a way to work around the "suboptimal by default" iteration performance for specific sets of components. This helps, but I didn't think this was a good choice for a general purpose engine like Bevy because:

1. "packs" conflict with each other. If bevy decides to internally pack the Transform and GlobalTransform components, users are then blocked if they want to pack some custom component with Transform.
2. users need to take manual action to optimize

Developers selecting an ECS framework are stuck with a hard choice. Select an "archetypal" framework with "fast iteration everywhere" but without the ability to cheaply add/remove components, or select a "sparse set" framework to cheaply add/remove components but with slower iteration performance.

## Hybrid Component Storage (The Solution)

In Bevy ECS V2, we get to have our cake and eat it too. It now has _both_ of the component storage types above (and more can be added later if needed):

* **Tables** (aka "archetypal" storage)
    * The default storage. If you don't configure anything, this is what you get
    * Fast iteration by default
    * Slower add/remove operations
* **Sparse Sets**
    * Opt-in
    * Slower iteration
    * Faster add/remove operations

These storage types complement each other perfectly. By default Query iteration is fast. If developers know that they want to add/remove a component at high frequencies, they can set the storage to "sparse set":

```rust
world.register_component(
    ComponentDescriptor:🆕:<MyComponent>(StorageType::SparseSet)
).unwrap();
```

## Archetypes

Archetypes are now "just metadata" ... they no longer store components directly. They do store:

* The `ComponentId`s of each of the Archetype's components (and that component's storage type)
    * Archetypes are uniquely defined by their component layouts
    * For example: entities with "table" components `[A, B, C]` _and_ "sparse set" components `[D, E]` will always be in the same archetype.
* The `TableId` associated with the archetype
    * For now each archetype has exactly one table (which can have no components),
    * There is a 1->Many relationship from Tables->Archetypes. A given table could have any number of archetype components stored in it:
        * Ex: an entity with "table storage" components `[A, B, C]` and "sparse set" components `[D, E]` will share the same `[A, B, C]` table as an entity with `[A, B, C]` table component and `[F]` sparse set components.
        * This 1->Many relationship is how we preserve fast "cache friendly" iteration performance when possible (more on this later)
* A list of entities that are in the archetype and the row id of the table they are in
* ArchetypeComponentIds
    * unique densely packed identifiers for (ArchetypeId, ComponentId) pairs
    * used by the schedule executor for cheap system access control
* "Archetype Graph Edges" (see the next section)  

## The "Archetype Graph"

Archetype changes in Bevy (and a number of other archetypal ecs-es) have historically been expensive to compute. First, you need to allocate a new vector of the entity's current component ids, add or remove components based on the operation performed, sort it (to ensure it is order-independent), then hash it to find the archetype (if it exists). And thats all before we get to the _already_ expensive full copy of all components to the new table storage.

The solution is to build a "graph" of archetypes to cache these results. @SanderMertens first exposed me to the idea (and he got it from @gjroelofs, who came up with it). They propose adding directed edges between archetypes for add/remove component operations. If `ComponentId`s are densely packed, you can use sparse sets to cheaply jump between archetypes.

Bevy takes this one step further by using add/remove `Bundle` edges instead of `Component` edges. Bevy encourages the use of `Bundles` to group add/remove operations. This is largely for "clearer game logic" reasons, but it also helps cut down on the number of archetype changes required. `Bundles` now also have densely-packed `BundleId`s. This allows us to use a _single_ edge for each bundle operation (rather than needing to traverse N edges ... one for each component). Single component operations are also bundles, so this is strictly an improvement over a "component only" graph.

As a result, an operation that used to be _heavy_ (both for allocations and compute) is now two dirt-cheap array lookups and zero allocations.

## Stateful Queries

World queries are now stateful. This allows us to:

1. Cache archetype (and table) matches
    * This resolves another issue with (naive) archetypal ECS: query performance getting worse as the number of archetypes goes up (and fragmentation occurs).
2. Cache Fetch and Filter state
    * The expensive parts of fetch/filter operations (such as hashing the TypeId to find the ComponentId) now only happen once when the Query is first constructed
3. Incrementally build up state
    * When new archetypes are added, we only process the new archetypes (no need to rebuild state for old archetypes)

As a result, the direct `World` query api now looks like this:

```rust
let mut query = world.query::<(&A, &mut B)>();
for (a, mut b) in query.iter_mut(&mut world) {
}
```

Requiring `World` to generate stateful queries (rather than letting the `QueryState` type be constructed separately) allows us to ensure that _all_ queries are properly initialized (and the relevant world state, such as ComponentIds). This enables QueryState to remove branches from its operations that check for initialization status (and also enables query.iter() to take an immutable world reference because it doesn't need to initialize anything in world).

However in systems, this is a non-breaking change. State management is done internally by the relevant SystemParam.

## Stateful SystemParams

Like Queries, `SystemParams` now also cache state. For example, `Query` system params store the "stateful query" state mentioned above. Commands store their internal `CommandQueue`. This means you can now safely use as many separate `Commands` parameters in your system as you want. `Local<T>` system params store their `T` value in their state (instead of in Resources). 

SystemParam state also enabled a significant slim-down of SystemState. It is much nicer to look at now.

Per-SystemParam state naturally insulates us from an "aliased mut" class of errors we have hit in the past (ex: using multiple `Commands` system params).

(credit goes to @DJMcNab for the initial idea and draft pr here #1364)

## Configurable SystemParams

@DJMcNab also had the great idea to make SystemParams configurable. This allows users to provide some initial configuration / values for system parameters (when possible). Most SystemParams have no config (the config type is `()`), but the `Local<T>` param now supports user-provided parameters:

```rust

fn foo(value: Local<usize>) {    
}

app.add_system(foo.system().config(|c| c.0 = Some(10)));
```

## Uber Fast "for_each" Query Iterators

Developers now have the choice to use a fast "for_each" iterator, which yields ~1.5-3x iteration speed improvements for "fragmented iteration", and minor ~1.2x iteration speed improvements for unfragmented iteration. 

```rust
fn system(query: Query<(&A, &mut B)>) {
    // you now have the option to do this for a speed boost
    query.for_each_mut(|(a, mut b)| {
    });

    // however normal iterators are still available
    for (a, mut b) in query.iter_mut() {
    }
}
```

I think in most cases we should continue to encourage "normal" iterators as they are more flexible and more "rust idiomatic". But when that extra "oomf" is needed, it makes sense to use `for_each`.

We should also consider using `for_each` for internal bevy systems to give our users a nice speed boost (but that should be a separate pr).

## Component Metadata

`World` now has a `Components` collection, which is accessible via `world.components()`. This stores mappings from `ComponentId` to `ComponentInfo`, as well as `TypeId` to `ComponentId` mappings (where relevant). `ComponentInfo` stores information about the component, such as ComponentId, TypeId, memory layout, send-ness (currently limited to resources), and storage type.

## Significantly Cheaper `Access<T>`

We used to use `TypeAccess<TypeId>` to manage read/write component/archetype-component access. This was expensive because TypeIds must be hashed and compared individually. The parallel executor got around this by "condensing" type ids into bitset-backed access types. This worked, but it had to be re-generated from the `TypeAccess<TypeId>`sources every time archetypes changed.

This pr removes TypeAccess in favor of faster bitset access everywhere. We can do this thanks to the move to densely packed `ComponentId`s and `ArchetypeComponentId`s.

## Merged Resources into World

Resources had a lot of redundant functionality with Components. They stored typed data, they had access control, they had unique ids, they were queryable via SystemParams, etc. In fact the _only_ major difference between them was that they were unique (and didn't correlate to an entity).

Separate resources also had the downside of requiring a separate set of access controls, which meant the parallel executor needed to compare more bitsets per system and manage more state.

I initially got the "separate resources" idea from `legion`. I think that design was motivated by the fact that it made the direct world query/resource lifetime interactions more manageable. It certainly made our lives easier when using Resources alongside hecs/bevy_ecs. However we already have a construct for safely and ergonomically managing in-world lifetimes: systems (which use `Access<T>` internally).

This pr merges Resources into World:

```rust
world.insert_resource(1);
world.insert_resource(2.0);
let a = world.get_resource::<i32>().unwrap();
let mut b = world.get_resource_mut::<f64>().unwrap();
*b = 3.0;
```

Resources are now just a special kind of component. They have their own ComponentIds (and their own resource TypeId->ComponentId scope, so they don't conflict wit components of the same type). They are stored in a special "resource archetype", which stores components inside the archetype using a new `unique_components` sparse set (note that this sparse set could later be used to implement Tags). This allows us to keep the code size small by reusing existing datastructures (namely Column, Archetype, ComponentFlags, and ComponentInfo). This allows us the executor to use a single `Access<ArchetypeComponentId>` per system. It should also make scripting language integration easier.

_But_ this merge did create problems for people directly interacting with `World`. What if you need mutable access to multiple resources at the same time? `world.get_resource_mut()` borrows World mutably!

## WorldCell

WorldCell applies the `Access<ArchetypeComponentId>` concept to direct world access:

```rust
let world_cell = world.cell();
let a = world_cell.get_resource_mut::<i32>().unwrap();
let b = world_cell.get_resource_mut::<f64>().unwrap();
```

This adds cheap runtime checks (a sparse set lookup of `ArchetypeComponentId` and a counter) to ensure that world accesses do not conflict with each other. Each operation returns a `WorldBorrow<'w, T>` or `WorldBorrowMut<'w, T>` wrapper type, which will release the relevant ArchetypeComponentId resources when dropped.

World caches the access sparse set (and only one cell can exist at a time), so `world.cell()` is a cheap operation. 

WorldCell does _not_ use atomic operations. It is non-send, does a mutable borrow of world to prevent other accesses, and uses a simple `Rc<RefCell<ArchetypeComponentAccess>>` wrapper in each WorldBorrow pointer. 

The api is currently limited to resource access, but it can and should be extended to queries / entity component access.

## Resource Scopes

WorldCell does not yet support component queries, and even when it does there are sometimes legitimate reasons to want a mutable world ref _and_ a mutable resource ref (ex: bevy_render and bevy_scene both need this). In these cases we could always drop down to the unsafe `world.get_resource_unchecked_mut()`, but that is not ideal!

Instead developers can use a "resource scope"

```rust
world.resource_scope(|world: &mut World, a: &mut A| {
})
```

This temporarily removes the `A` resource from `World`, provides mutable pointers to both, and re-adds A to World when finished. Thanks to the move to ComponentIds/sparse sets, this is a cheap operation.

If multiple resources are required, scopes can be nested. We could also consider adding a "resource tuple" to the api if this pattern becomes common and the boilerplate gets nasty.

## Query Conflicts Use ComponentId Instead of ArchetypeComponentId

For safety reasons, systems cannot contain queries that conflict with each other without wrapping them in a QuerySet. On bevy `main`, we use ArchetypeComponentIds to determine conflicts. This is nice because it can take into account filters:

```rust
// these queries will never conflict due to their filters
fn filter_system(a: Query<&mut A, With<B>>, b: Query<&mut B, Without<B>>) {
}
```

But it also has a significant downside:
```rust
// these queries will not conflict _until_ an entity with A, B, and C is spawned
fn maybe_conflicts_system(a: Query<(&mut A, &C)>, b: Query<(&mut A, &B)>) {
}
```

The system above will panic at runtime if an entity with A, B, and C is spawned. This makes it hard to trust that your game logic will run without crashing.

In this pr, I switched to using `ComponentId` instead. This _is_ more constraining. `maybe_conflicts_system` will now always fail, but it will do it consistently at startup. Naively, it would also _disallow_ `filter_system`, which would be a significant downgrade in usability. Bevy has a number of internal systems that rely on disjoint queries and I expect it to be a common pattern in userspace.

To resolve this, I added a new `FilteredAccess<T>` type, which wraps `Access<T>` and adds with/without filters. If two `FilteredAccess` have with/without values that prove they are disjoint, they will no longer conflict.

## EntityRef / EntityMut

World entity operations on `main` require that the user passes in an `entity` id to each operation:

```rust
let entity = world.spawn((A, )); // create a new entity with A
world.get::<A>(entity);
world.insert(entity, (B, C));
world.insert_one(entity, D);
```

This means that each operation needs to look up the entity location / verify its validity. The initial spawn operation also requires a Bundle as input. This can be awkward when no components are required (or one component is required).

These operations have been replaced by `EntityRef` and `EntityMut`, which are "builder-style" wrappers around world that provide read and read/write operations on a single, pre-validated entity:

```rust
// spawn now takes no inputs and returns an EntityMut
let entity = world.spawn()
    .insert(A) // insert a single component into the entity
    .insert_bundle((B, C)) // insert a bundle of components into the entity
    .id() // id returns the Entity id

// Returns EntityMut (or panics if the entity does not exist)
world.entity_mut(entity)
    .insert(D)
    .insert_bundle(SomeBundle::default());
{
    // returns EntityRef (or panics if the entity does not exist)
    let d = world.entity(entity)
        .get::<D>() // gets the D component
        .unwrap();
    // world.get still exists for ergonomics
    let d = world.get::<D>(entity).unwrap();
}

// These variants return Options if you want to check existence instead of panicing 
world.get_entity_mut(entity)
    .unwrap()
    .insert(E);

if let Some(entity_ref) = world.get_entity(entity) {
    let d = entity_ref.get::<D>().unwrap();
}
```

This _does not_ affect the current Commands api or terminology. I think that should be a separate conversation as that is a much larger breaking change.

## Safety Improvements

* Entity reservation in Commands uses a normal world borrow instead of an unsafe transmute
* QuerySets no longer transmutes lifetimes
* Made traits "unsafe" when implementing a trait incorrectly could cause unsafety
* More thorough safety docs

## RemovedComponents SystemParam

The old approach to querying removed components: `query.removed:<T>()` was confusing because it had no connection to the query itself. I replaced it with the following, which is both clearer and allows us to cache the ComponentId mapping in the SystemParamState:

```rust
fn system(removed: RemovedComponents<T>) {
    for entity in removed.iter() {
    }
} 
```

## Simpler Bundle implementation

Bundles are no longer responsible for sorting (or deduping) TypeInfo. They are just a simple ordered list of component types / data. This makes the implementation smaller and opens the door to an easy "nested bundle" implementation in the future (which i might even add in this pr). Duplicate detection is now done once per bundle type by World the first time a bundle is used.

## Unified WorldQuery and QueryFilter types

(don't worry they are still separate type _parameters_ in Queries .. this is a non-breaking change)

WorldQuery and QueryFilter were already basically identical apis. With the addition of `FetchState` and more storage-specific fetch methods, the overlap was even clearer (and the redundancy more painful).

QueryFilters are now just `F: WorldQuery where F::Fetch: FilterFetch`. FilterFetch requires `Fetch<Item = bool>` and adds new "short circuit" variants of fetch methods. This enables a filter tuple like `(With<A>, Without<B>, Changed<C>)` to stop evaluating the filter after the first mismatch is encountered. FilterFetch is automatically implemented for `Fetch` implementations that return bool.

This forces fetch implementations that return things like `(bool, bool, bool)` (such as the filter above) to manually implement FilterFetch and decide whether or not to short-circuit.

## More Granular Modules

World no longer globs all of the internal modules together. It now exports `core`, `system`, and `schedule` separately. I'm also considering exporting `core` submodules directly as that is still pretty "glob-ey" and unorganized (feedback welcome here).

## Remaining Draft Work (to be done in this pr)

* ~~panic on conflicting WorldQuery fetches (&A, &mut A)~~
    * ~~bevy `main` and hecs both currently allow this, but we should protect against it if possible~~
* ~~batch_iter / par_iter (currently stubbed out)~~
* ~~ChangedRes~~
    * ~~I skipped this while we sort out #1313. This pr should be adapted to account for whatever we land on there~~.
* ~~The `Archetypes` and `Tables` collections use hashes of sorted lists of component ids to uniquely identify each archetype/table. This hash is then used as the key in a HashMap to look up the relevant ArchetypeId or TableId. (which doesn't handle hash collisions properly)~~
* ~~It is currently unsafe to generate a Query from "World A", then use it on "World B" (despite the api claiming it is safe). We should probably close this gap. This could be done by adding a randomly generated WorldId to each world, then storing that id in each Query. They could then be compared to each other on each `query.do_thing(&world)` operation. This _does_ add an extra branch to each query operation, so I'm open to other suggestions if people have them.~~
* ~~Nested Bundles (if i find time)~~

## Potential Future Work

* Expand WorldCell to support queries.
* Consider not allocating in the empty archetype on `world.spawn()`
    * ex: return something like EntityMutUninit, which turns into EntityMut after an `insert` or `insert_bundle` op
    * this actually regressed performance last time i tried it, but in theory it should be faster
* Optimize SparseSet::insert (see `PERF` comment on insert)
* Replace SparseArray `Option<T>` with T::MAX to cut down on branching
    * would enable cheaper get_unchecked() operations
* upstream fixedbitset optimizations
    * fixedbitset could be allocation free for small block counts (store blocks in a SmallVec)
    * fixedbitset could have a const constructor 
* Consider implementing Tags (archetype-specific by-value data that affects archetype identity) 
    * ex: ArchetypeA could have `[A, B, C]` table components and `[D(1)]` "tag" component. ArchetypeB could have `[A, B, C]` table components and a `[D(2)]` tag component. The archetypes are different, despite both having D tags because the value inside D is different.
    * this could potentially build on top of the `archetype.unique_components` added in this pr for resource storage.
* Consider reverting `all_tuples` proc macro in favor of the old `macro_rules` implementation
    * all_tuples is more flexible and produces cleaner documentation (the macro_rules version produces weird type parameter orders due to parser constraints)
    * but unfortunately all_tuples also appears to make Rust Analyzer sad/slow when working inside of `bevy_ecs` (does not affect user code)
* Consider "resource queries" and/or "mixed resource and entity component queries" as an alternative to WorldCell
    * this is basically just "systems" so maybe it's not worth it
* Add more world ops
    * `world.clear()`
    * `world.reserve<T: Bundle>(count: usize)`
 * Try using the old archetype allocation strategy (allocate new memory on resize and copy everything over). I expect this to improve batch insertion performance at the cost of unbatched performance. But thats just a guess. I'm not an allocation perf pro :)
 * Adapt Commands apis for consistency with new World apis 

## Benchmarks

key:

* `bevy_old`: bevy `main` branch
* `bevy`: this branch
* `_foreach`: uses an optimized for_each iterator
* ` _sparse`: uses sparse set storage (if unspecified assume table storage)
* `_system`: runs inside a system (if unspecified assume test happens via direct world ops)

### Simple Insert (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109245573-9c3ce100-7795-11eb-9003-bfd41cd5c51f.png)

### Simpler Iter (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109245795-ffc70e80-7795-11eb-92fb-3ffad09aabf7.png)

### Fragment Iter (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109245849-0fdeee00-7796-11eb-8d25-eb6b7a682c48.png)

### Sparse Fragmented Iter

Iterate a query that matches 5 entities from a single matching archetype, but there are 100 unmatching archetypes

![image](https://user-images.githubusercontent.com/2694663/109245916-2b49f900-7796-11eb-9a8f-ed89c203f940.png)
 
### Schedule (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109246428-1fab0200-7797-11eb-8841-1b2161e90fa4.png)

### Add Remove Component (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109246492-39e4e000-7797-11eb-8985-2706bd0495ab.png)


### Add Remove Component Big

Same as the test above, but each entity has 5 "large" matrix components and 1 "large" matrix component is added and removed

![image](https://user-images.githubusercontent.com/2694663/109246517-449f7500-7797-11eb-835e-28b6790daeaa.png)


### Get Component

Looks up a single component value a large number of times

![image](https://user-images.githubusercontent.com/2694663/109246129-87ad1880-7796-11eb-9fcb-c38012aa7c70.png)
2021-03-05 07:54:35 +00:00
Alexander Sepity
c2a427f1a3
Non-string labels (#1423 continued) (#1473)
Non-string labels
2021-02-18 13:20:37 -08:00
Jasen Borisov
57f9ac18d7
OrthographicProjection scaling mode + camera bundle refactoring (#400)
* add normalized orthographic projection

* custom scale for ScaledOrthographicProjection

* allow choosing base axis for ScaledOrthographicProjection

* cargo fmt

* add general (scaled) orthographic camera bundle

FIXME: does the same "far" trick from Camera2DBundle make any sense here?

* fixes

* camera bundles: rename and new ortho constructors

* unify orthographic projections

* give PerspectiveCameraBundle constructors like those of OrthographicCameraBundle

* update examples with new camera bundle syntax

* rename CameraUiBundle to UiCameraBundle

* update examples

* ScalingMode::None

* remove extra blank lines

* sane default bounds for orthographic projection

* fix alien_cake_addict example

* reorder ScalingMode enum variants

* ios example fix
2021-01-30 02:31:03 -08:00
Daniel McNab
9f2410a4ac
Add from_xyz to Transform (#1212)
* Add the from_xyz helper method to Transform

* Use `from_xyz` where possible
2021-01-06 17:17:06 -08:00
Patrik Buhring
cbc0fe1416
Modify Derive to allow unit structs for RenderResources. (#1089) 2020-12-23 17:21:10 -06:00
Carter Anderson
841755aaf2
Adopt a Fetch pattern for SystemParams (#1074) 2020-12-15 21:57:16 -08:00
Al M
2c9b7956d1
Live reloading of shaders (#937)
* Add ShaderLoader, rebuild pipelines for modified shader assets
* New example
* Add shader_update_system, ShaderError, remove specialization assets
* Don't panic on shader compilation failure
2020-12-07 12:32:13 -08:00
Carter Anderson
44b5cfeda1
fix example bindings (#1001) 2020-12-04 10:37:27 -08:00
Carter Anderson
72b2fc9843
Bevy Reflection (#926)
Bevy Reflection
2020-11-27 16:39:59 -08:00
Duncan
46fac78774
Extend the Texture asset type to support 3D data (#903)
Extend the Texture asset type to support 3D data

Textures are still loaded from images as 2D, but they can be reshaped
according to how the render pipeline would like to use them.

Also add an example of how this can be used with the texture2DArray uniform type.
2020-11-22 12:04:47 -08:00
Valentin
d458406540
Add box shape (#883)
* Add rectangular cuboid shape

Co-authored-by: Jason Lessard <jason.lessard@usherbrooke.ca>
Co-authored-by: Jason Lessard <jason.lessard@usherbrooke.ca>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2020-11-21 14:51:24 -08:00
Carter Anderson
3a6f6de277
System Inputs, Outputs, Chaining, and Registration Ergo (#876)
System Inputs, Outputs, Chaining, and Registration Ergo
2020-11-16 18:18:00 -08:00
Carter Anderson
7628f4a64e
combine bevy_ecs and bevy_hecs crates. rename XComponents to XBundle (#863)
combine bevy_ecs and bevy_hecs crates. rename XComponents to XBundle
2020-11-15 20:32:23 -08:00
Mariusz Kryński
60fa2d5f93
delegate layout reflection to RenderResourceContext (#691)
* delegate layout reflection to RenderResourceContext
Also:
 * auto-reflect DynamicBindings
 * use RenderPipeline::new, update dynamic_bindings

linting.

* add dynamic binding generation

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2020-11-10 13:20:05 -08:00
Carter Anderson
ebcdc9fb8c
Flexible ECS System Params (#798)
system params can be in any order, faster compiles, remove foreach
2020-11-08 12:34:05 -08:00
Carter Anderson
66f2f76a18
rename add_plugin_group to add_plugins (#773) 2020-11-02 19:01:17 -08:00
Nathan Stocks
9871e7e24b
Remove add_default_plugins and add MinimalPlugins for simple "headless" scenarios (#767)
Remove add_default_plugins and add MinimalPlugins for simple "headless" scenarios
2020-11-02 18:38:37 -08:00
Julian Heinken
f81ecddafc
Example for custom mesh attributes (#757)
example for custom attributes + changelog
2020-11-02 13:47:05 -08:00
Carter Anderson
c32e637384
Asset system rework and GLTF scene loading (#693) 2020-10-18 13:48:15 -07:00
Marek Legris
5acebed731
Transform and GlobalTransform are now Similarities (#596)
Transform and GlobalTransform are now Similarities.

This resolves precision errors and simplifies the api

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2020-10-18 13:03:16 -07:00
Smite Rust
b0e64d4295
update async-executor (#484)
update async-executor
2020-09-14 14:01:41 -07:00
Marek Legris
474bb5403e
Transform Rewrite (#374)
Remove individual Translation / Rotation / Scale components in favor of a combined Transform component
2020-09-14 14:00:32 -07:00
Victor "multun" Collod
d138647818 enforce cargo fmt --check 2020-08-16 05:02:06 -07:00
Carter Anderson
bb111cbafa more example cleanup and polish 2020-07-31 17:10:29 -07:00
Carter Anderson
6dadf34401 add more example comments 2020-07-28 13:45:36 -07:00
Carter Anderson
726eb37198 use rh coordinate system in 2d
z = 0 is now "farthest back" and z=1000 "farthest forward"
2020-07-19 17:00:08 -07:00
Carter Anderson
b12c4d0a48 render: simplify imports and cleanup prelude 2020-07-16 18:26:21 -07:00
Carter Anderson
1db77b2435 examples: cleanup imports 2020-07-16 17:20:42 -07:00
Carter Anderson
c81ab99dac cargo fmt 2020-07-10 01:37:06 -07:00
Carter Anderson
950e50bbb1 Bevy ECS migration 2020-07-10 01:06:21 -07:00
Carter Anderson
e75496772e legion: change query system ordering 2020-06-27 10:18:27 -07:00
Carter Anderson
92c44320ee ecs: rename EntityArchetype to ComponentSet 2020-06-25 11:21:56 -07:00
Carter Anderson
75429f4639 render: use left-handed coordinate system and y-up 2020-06-24 15:29:10 -07:00
Carter Anderson
3ee8aa8b0f camera: make camera transform in world coordinates instead of the inverse 2020-06-23 19:18:32 -07:00
Carter Anderson
faacd2778d sprite: add color to TextureAtlasSprite and make Vec3 16 bytes again to account for glsl UBO layout 2020-06-21 17:43:36 -07:00
Carter Anderson
74d0055a3d render: move dynamic_bindings to PipelineSpecialization
This is a temporary step back in ergonomics as we are no longer automatically inferring dynamic bindings from RenderResourceBindings
2020-06-17 18:10:29 -07:00
Carter Anderson
0931fd0266 fix a few things in shader examples 2020-06-17 17:44:26 -07:00
Carter Anderson
e855995145 cargo fmt 2020-06-15 12:47:35 -07:00
Carter Anderson
f799d3ac93 render: add RenderPipeline and begin moving logic there 2020-06-15 00:08:50 -07:00
Carter Anderson
fc4160ea41 AssetRenderResourceNodes now consume asset change events. Remove EntitiesWaitingForAssets in favor of DrawState. 2020-06-10 18:54:17 -07:00
Carter Anderson
3d07fbdc81 render: "Immediate Mode" draw api
This replaces Renderable with Draw/RenderPipelines components and makes various aspects of the renderer much simpler and legible
2020-06-09 23:16:48 -07:00
Carter Anderson
1426208e2f remove DrawTargets in favor of PassNodes and in preparation for "immediate mode" drawing api 2020-06-08 14:35:13 -07:00
Carter Anderson
62c434274f shader_defs: new leaner shader defs. they are now separate from uniforms 2020-06-07 22:24:53 -07:00
Carter Anderson
fd8f87400d add RenderResources/RenderResource traits to replace Uniforms/Uniform 2020-06-07 19:12:41 -07:00
Carter Anderson
5add29f8cf rename LocalToWorld -> Transform and LocalToParent -> LocalTransform 2020-06-07 13:39:50 -07:00
Carter Anderson
5ea979dd0e move shaders in examples into consts 2020-06-05 00:13:18 -07:00
Carter Anderson
21a79c56a7 camera: add position and rotation components to Perspective camera. add "sync" toggle to LocalToWorld transform. 2020-05-31 10:31:18 -07:00
Carter Anderson
51d41b2302 camera: remove active camera components in favor of camera names 2020-05-29 22:07:55 -07:00
Carter Anderson
fcc0a6303b update mesh on gpu when it changes 2020-05-16 00:21:04 -07:00
Carter Anderson
2bcb8a2a41 cargo fmt 2020-05-13 18:05:18 -07:00
Carter Anderson
6381611e89 Resource -> Res, Ref->Com 2020-05-13 17:57:08 -07:00
Carter Anderson
fb8f9e8636 RenderGraph::add_node now requires a name 2020-05-13 17:35:48 -07:00
Carter Anderson
06f3a4efb9 Use system fns for all setup code 2020-05-13 17:31:56 -07:00
Carter Anderson
70f122b92a Rename AssetStorage to Assets 2020-05-13 16:45:18 -07:00
Carter Anderson
16b568e00e Asset events and AddAsset builder 2020-05-13 16:17:44 -07:00
Carter Anderson
7b79b3de8d organize examples and add ecs guide 2020-05-01 13:12:47 -07:00