Commit graph

413 commits

Author SHA1 Message Date
Carter Anderson
be1c317d4e Resolve (most) internal system ambiguities (#1606)
* Adds labels and orderings to systems that need them (uses the new many-to-many labels for InputSystem)
* Removes the Event, PreEvent, Scene, and Ui stages in favor of First, PreUpdate, and PostUpdate (there is more collapsing potential, such as the Asset stages and _maybe_ removing First, but those have more nuance so they should be handled separately)
* Ambiguity detection now prints component conflicts
* Removed broken change filters from flex calculation (which implicitly relied on the z-update system always modifying translation.z). This will require more work to make it behave as expected so i just removed it (and it was already doing this work every frame).
2021-03-10 22:37:02 +00:00
Nathan Stocks
faeccd7a09 Reflection cleanup (#1536)
This is an effort to provide the correct `#[reflect_value(...)]` attributes where they are needed.  

Supersedes #1533 and resolves #1528.

---

I am working under the following assumptions (thanks to @bjorn3 and @Davier for advice here):

- Any `enum` that derives `Reflect` and one or more of { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } needs a `#[reflect_value(...)]` attribute containing the same subset of { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } that is present on the derive.
- Same as above for `struct` and `#[reflect(...)]`, respectively.
- If a `struct` is used as a component, it should also have `#[reflect(Component)]`
- All reflected types should be registered in their plugins

I treated the following as components (added `#[reflect(Component)]` if necessary):
- `bevy_render`
  - `struct RenderLayers`
- `bevy_transform`
  - `struct GlobalTransform`
  - `struct Parent`
  - `struct Transform`
- `bevy_ui`
  - `struct Style`

Not treated as components:
- `bevy_math`
  - `struct Size<T>`
  - `struct Rect<T>`
  - Note: The updates for `Size<T>` and `Rect<T>` in `bevy::math::geometry` required using @Davier's suggestion to add `+ PartialEq` to the trait bound. I then registered the specific types used over in `bevy_ui` such as `Size<Val>`, etc. in `bevy_ui`'s plugin, since `bevy::math` does not contain a plugin.
- `bevy_render`
  - `struct Color`
  - `struct PipelineSpecialization`
  - `struct ShaderSpecialization`
  - `enum PrimitiveTopology`
  - `enum IndexFormat`

Not Addressed:
- I am not searching for components in Bevy that are _not_ reflected. So if there are components that are not reflected that should be reflected, that will need to be figured out in another PR.
- I only added `#[reflect(...)]` or `#[reflect_value(...)]` entries for the set of four traits { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } _if they were derived via `#[derive(...)]`_. I did not look for manual trait implementations of the same set of four, nor did I consider any traits outside the four.  Are those other possibilities something that needs to be looked into?
2021-03-09 23:39:41 +00:00
TheRawMeatball
d9b8b3e618 Add EventWriter (#1575)
This adds a `EventWriter<T>` `SystemParam` that is just a thin wrapper around `ResMut<Events<T>>`. This is primarily to have API symmetry between the reader and writer, and has the added benefit of easily improving the API later with no breaking changes.
2021-03-07 20:42:04 +00:00
Joshua J. Bouw
2b0a48d945 feat: clone indices (#1574)
Super simple and straight forward. I need this for the tilemap because if I need to update all chunk indices, then I can calculate it once and clone it. Of course, for now I'm just returning the Vec itself then wrapping it but would be nice if I didn't have to do that.
2021-03-07 19:50:20 +00:00
Cameron Hart
f61e44db28 Update glam to 0.13.0. (#1550)
See https://github.com/bitshifter/glam-rs/blob/master/CHANGELOG.md for details on changes.

Co-authored-by: Cameron Hart <c_hart@wargaming.net>
2021-03-06 19:39:16 +00:00
Carter Anderson
0eba5f38b9 update hexasphere to 3.2 (#1577) 2021-03-06 19:23:04 +00:00
sdfgeoff
006848311c Documented some of the Mesh properties (#1566)
I was fiddling with creating a mesh importer today, and decided to write some more docs. 

A lot of this is describing general renderer/GL stuff, so you'll probably find most of it self explanatory anyway, but perhaps it will be useful for someone.
2021-03-06 01:57:02 +00:00
Renato Caldas
87399c3560 Fix staging buffer required size calculation (fixes #1056) (#1509)
Fix staging buffer required size calculation (fixes #1056)

The `required_staging_buffer_size` is currently calculated differently in two places, each will be correct in different situations:

* `prepare_staging_buffers()` based on actual `buffer_byte_len()`
* `set_required_staging_buffer_size_to_max()` based on item_size

In the case of render assets, `prepare_staging_buffers()` would only operate over changed assets. If some of the assets didn't change, their size wouldn't be taken into account for the `required_staging_buffer_size`. In some cases, this meant the buffers wouldn't be resized when they should. Now `prepare_staging_buffers()` is called over all assets, which may hit performance but at least gets the size right.

Shortly after `prepare_staging_buffers()`,  `set_required_staging_buffer_size_to_max()` would unconditionally overwrite the previously computed value, even if using `item_size` made no sense. Now it only overwrites the value if bigger.

This can be considered a short term hack, but should prevent a few hard to debug panics.
2021-03-06 01:42:57 +00:00
Carter Anderson
3a2a68852c Bevy ECS V2 (#1525)
# Bevy ECS V2

This is a rewrite of Bevy ECS (basically everything but the new executor/schedule, which are already awesome). The overall goal was to improve the performance and versatility of Bevy ECS. Here is a quick bulleted list of changes before we dive into the details:

* Complete World rewrite
* Multiple component storage types:
    * Tables: fast cache friendly iteration, slower add/removes (previously called Archetypes)
    * Sparse Sets: fast add/remove, slower iteration
* Stateful Queries (caches query results for faster iteration. fragmented iteration is _fast_ now)
* Stateful System Params (caches expensive operations. inspired by @DJMcNab's work in #1364)
* Configurable System Params (users can set configuration when they construct their systems. once again inspired by @DJMcNab's work)
* Archetypes are now "just metadata", component storage is separate
* Archetype Graph (for faster archetype changes)
* Component Metadata
    * Configure component storage type
    * Retrieve information about component size/type/name/layout/send-ness/etc
    * Components are uniquely identified by a densely packed ComponentId
    * TypeIds are now totally optional (which should make implementing scripting easier)
* Super fast "for_each" query iterators
* Merged Resources into World. Resources are now just a special type of component
* EntityRef/EntityMut builder apis (more efficient and more ergonomic)
* Fast bitset-backed `Access<T>` replaces old hashmap-based approach everywhere
* Query conflicts are determined by component access instead of archetype component access (to avoid random failures at runtime)
    * With/Without are still taken into account for conflicts, so this should still be comfy to use
* Much simpler `IntoSystem` impl
* Significantly reduced the amount of hashing throughout the ecs in favor of Sparse Sets (indexed by densely packed ArchetypeId, ComponentId, BundleId, and TableId)
* Safety Improvements
    * Entity reservation uses a normal world reference instead of unsafe transmute
    * QuerySets no longer transmute lifetimes
    * Made traits "unsafe" where relevant
    * More thorough safety docs
* WorldCell
    * Exposes safe mutable access to multiple resources at a time in a World 
* Replaced "catch all" `System::update_archetypes(world: &World)` with `System::new_archetype(archetype: &Archetype)`
* Simpler Bundle implementation
* Replaced slow "remove_bundle_one_by_one" used as fallback for Commands::remove_bundle with fast "remove_bundle_intersection"
* Removed `Mut<T>` query impl. it is better to only support one way: `&mut T` 
* Removed with() from `Flags<T>` in favor of `Option<Flags<T>>`, which allows querying for flags to be "filtered" by default 
* Components now have is_send property (currently only resources support non-send)
* More granular module organization
* New `RemovedComponents<T>` SystemParam that replaces `query.removed::<T>()`
* `world.resource_scope()` for mutable access to resources and world at the same time
* WorldQuery and QueryFilter traits unified. FilterFetch trait added to enable "short circuit" filtering. Auto impled for cases that don't need it
* Significantly slimmed down SystemState in favor of individual SystemParam state
* System Commands changed from `commands: &mut Commands` back to `mut commands: Commands` (to allow Commands to have a World reference)

Fixes #1320

## `World` Rewrite

This is a from-scratch rewrite of `World` that fills the niche that `hecs` used to. Yes, this means Bevy ECS is no longer a "fork" of hecs. We're going out our own!

(the only shared code between the projects is the entity id allocator, which is already basically ideal)

A huge shout out to @SanderMertens (author of [flecs](https://github.com/SanderMertens/flecs)) for sharing some great ideas with me (specifically hybrid ecs storage and archetype graphs). He also helped advise on a number of implementation details.

## Component Storage (The Problem)

Two ECS storage paradigms have gained a lot of traction over the years:

* **Archetypal ECS**: 
    * Stores components in "tables" with static schemas. Each "column" stores components of a given type. Each "row" is an entity.
    * Each "archetype" has its own table. Adding/removing an entity's component changes the archetype.
    * Enables super-fast Query iteration due to its cache-friendly data layout
    * Comes at the cost of more expensive add/remove operations for an Entity's components, because all components need to be copied to the new archetype's "table"
* **Sparse Set ECS**:
    * Stores components of the same type in densely packed arrays, which are sparsely indexed by densely packed unsigned integers (Entity ids)
    * Query iteration is slower than Archetypal ECS because each entity's component could be at any position in the sparse set. This "random access" pattern isn't cache friendly. Additionally, there is an extra layer of indirection because you must first map the entity id to an index in the component array.
    * Adding/removing components is a cheap, constant time operation 

Bevy ECS V1, hecs, legion, flec, and Unity DOTS are all "archetypal ecs-es". I personally think "archetypal" storage is a good default for game engines. An entity's archetype doesn't need to change frequently in general, and it creates "fast by default" query iteration (which is a much more common operation). It is also "self optimizing". Users don't need to think about optimizing component layouts for iteration performance. It "just works" without any extra boilerplate.

Shipyard and EnTT are "sparse set ecs-es". They employ "packing" as a way to work around the "suboptimal by default" iteration performance for specific sets of components. This helps, but I didn't think this was a good choice for a general purpose engine like Bevy because:

1. "packs" conflict with each other. If bevy decides to internally pack the Transform and GlobalTransform components, users are then blocked if they want to pack some custom component with Transform.
2. users need to take manual action to optimize

Developers selecting an ECS framework are stuck with a hard choice. Select an "archetypal" framework with "fast iteration everywhere" but without the ability to cheaply add/remove components, or select a "sparse set" framework to cheaply add/remove components but with slower iteration performance.

## Hybrid Component Storage (The Solution)

In Bevy ECS V2, we get to have our cake and eat it too. It now has _both_ of the component storage types above (and more can be added later if needed):

* **Tables** (aka "archetypal" storage)
    * The default storage. If you don't configure anything, this is what you get
    * Fast iteration by default
    * Slower add/remove operations
* **Sparse Sets**
    * Opt-in
    * Slower iteration
    * Faster add/remove operations

These storage types complement each other perfectly. By default Query iteration is fast. If developers know that they want to add/remove a component at high frequencies, they can set the storage to "sparse set":

```rust
world.register_component(
    ComponentDescriptor:🆕:<MyComponent>(StorageType::SparseSet)
).unwrap();
```

## Archetypes

Archetypes are now "just metadata" ... they no longer store components directly. They do store:

* The `ComponentId`s of each of the Archetype's components (and that component's storage type)
    * Archetypes are uniquely defined by their component layouts
    * For example: entities with "table" components `[A, B, C]` _and_ "sparse set" components `[D, E]` will always be in the same archetype.
* The `TableId` associated with the archetype
    * For now each archetype has exactly one table (which can have no components),
    * There is a 1->Many relationship from Tables->Archetypes. A given table could have any number of archetype components stored in it:
        * Ex: an entity with "table storage" components `[A, B, C]` and "sparse set" components `[D, E]` will share the same `[A, B, C]` table as an entity with `[A, B, C]` table component and `[F]` sparse set components.
        * This 1->Many relationship is how we preserve fast "cache friendly" iteration performance when possible (more on this later)
* A list of entities that are in the archetype and the row id of the table they are in
* ArchetypeComponentIds
    * unique densely packed identifiers for (ArchetypeId, ComponentId) pairs
    * used by the schedule executor for cheap system access control
* "Archetype Graph Edges" (see the next section)  

## The "Archetype Graph"

Archetype changes in Bevy (and a number of other archetypal ecs-es) have historically been expensive to compute. First, you need to allocate a new vector of the entity's current component ids, add or remove components based on the operation performed, sort it (to ensure it is order-independent), then hash it to find the archetype (if it exists). And thats all before we get to the _already_ expensive full copy of all components to the new table storage.

The solution is to build a "graph" of archetypes to cache these results. @SanderMertens first exposed me to the idea (and he got it from @gjroelofs, who came up with it). They propose adding directed edges between archetypes for add/remove component operations. If `ComponentId`s are densely packed, you can use sparse sets to cheaply jump between archetypes.

Bevy takes this one step further by using add/remove `Bundle` edges instead of `Component` edges. Bevy encourages the use of `Bundles` to group add/remove operations. This is largely for "clearer game logic" reasons, but it also helps cut down on the number of archetype changes required. `Bundles` now also have densely-packed `BundleId`s. This allows us to use a _single_ edge for each bundle operation (rather than needing to traverse N edges ... one for each component). Single component operations are also bundles, so this is strictly an improvement over a "component only" graph.

As a result, an operation that used to be _heavy_ (both for allocations and compute) is now two dirt-cheap array lookups and zero allocations.

## Stateful Queries

World queries are now stateful. This allows us to:

1. Cache archetype (and table) matches
    * This resolves another issue with (naive) archetypal ECS: query performance getting worse as the number of archetypes goes up (and fragmentation occurs).
2. Cache Fetch and Filter state
    * The expensive parts of fetch/filter operations (such as hashing the TypeId to find the ComponentId) now only happen once when the Query is first constructed
3. Incrementally build up state
    * When new archetypes are added, we only process the new archetypes (no need to rebuild state for old archetypes)

As a result, the direct `World` query api now looks like this:

```rust
let mut query = world.query::<(&A, &mut B)>();
for (a, mut b) in query.iter_mut(&mut world) {
}
```

Requiring `World` to generate stateful queries (rather than letting the `QueryState` type be constructed separately) allows us to ensure that _all_ queries are properly initialized (and the relevant world state, such as ComponentIds). This enables QueryState to remove branches from its operations that check for initialization status (and also enables query.iter() to take an immutable world reference because it doesn't need to initialize anything in world).

However in systems, this is a non-breaking change. State management is done internally by the relevant SystemParam.

## Stateful SystemParams

Like Queries, `SystemParams` now also cache state. For example, `Query` system params store the "stateful query" state mentioned above. Commands store their internal `CommandQueue`. This means you can now safely use as many separate `Commands` parameters in your system as you want. `Local<T>` system params store their `T` value in their state (instead of in Resources). 

SystemParam state also enabled a significant slim-down of SystemState. It is much nicer to look at now.

Per-SystemParam state naturally insulates us from an "aliased mut" class of errors we have hit in the past (ex: using multiple `Commands` system params).

(credit goes to @DJMcNab for the initial idea and draft pr here #1364)

## Configurable SystemParams

@DJMcNab also had the great idea to make SystemParams configurable. This allows users to provide some initial configuration / values for system parameters (when possible). Most SystemParams have no config (the config type is `()`), but the `Local<T>` param now supports user-provided parameters:

```rust

fn foo(value: Local<usize>) {    
}

app.add_system(foo.system().config(|c| c.0 = Some(10)));
```

## Uber Fast "for_each" Query Iterators

Developers now have the choice to use a fast "for_each" iterator, which yields ~1.5-3x iteration speed improvements for "fragmented iteration", and minor ~1.2x iteration speed improvements for unfragmented iteration. 

```rust
fn system(query: Query<(&A, &mut B)>) {
    // you now have the option to do this for a speed boost
    query.for_each_mut(|(a, mut b)| {
    });

    // however normal iterators are still available
    for (a, mut b) in query.iter_mut() {
    }
}
```

I think in most cases we should continue to encourage "normal" iterators as they are more flexible and more "rust idiomatic". But when that extra "oomf" is needed, it makes sense to use `for_each`.

We should also consider using `for_each` for internal bevy systems to give our users a nice speed boost (but that should be a separate pr).

## Component Metadata

`World` now has a `Components` collection, which is accessible via `world.components()`. This stores mappings from `ComponentId` to `ComponentInfo`, as well as `TypeId` to `ComponentId` mappings (where relevant). `ComponentInfo` stores information about the component, such as ComponentId, TypeId, memory layout, send-ness (currently limited to resources), and storage type.

## Significantly Cheaper `Access<T>`

We used to use `TypeAccess<TypeId>` to manage read/write component/archetype-component access. This was expensive because TypeIds must be hashed and compared individually. The parallel executor got around this by "condensing" type ids into bitset-backed access types. This worked, but it had to be re-generated from the `TypeAccess<TypeId>`sources every time archetypes changed.

This pr removes TypeAccess in favor of faster bitset access everywhere. We can do this thanks to the move to densely packed `ComponentId`s and `ArchetypeComponentId`s.

## Merged Resources into World

Resources had a lot of redundant functionality with Components. They stored typed data, they had access control, they had unique ids, they were queryable via SystemParams, etc. In fact the _only_ major difference between them was that they were unique (and didn't correlate to an entity).

Separate resources also had the downside of requiring a separate set of access controls, which meant the parallel executor needed to compare more bitsets per system and manage more state.

I initially got the "separate resources" idea from `legion`. I think that design was motivated by the fact that it made the direct world query/resource lifetime interactions more manageable. It certainly made our lives easier when using Resources alongside hecs/bevy_ecs. However we already have a construct for safely and ergonomically managing in-world lifetimes: systems (which use `Access<T>` internally).

This pr merges Resources into World:

```rust
world.insert_resource(1);
world.insert_resource(2.0);
let a = world.get_resource::<i32>().unwrap();
let mut b = world.get_resource_mut::<f64>().unwrap();
*b = 3.0;
```

Resources are now just a special kind of component. They have their own ComponentIds (and their own resource TypeId->ComponentId scope, so they don't conflict wit components of the same type). They are stored in a special "resource archetype", which stores components inside the archetype using a new `unique_components` sparse set (note that this sparse set could later be used to implement Tags). This allows us to keep the code size small by reusing existing datastructures (namely Column, Archetype, ComponentFlags, and ComponentInfo). This allows us the executor to use a single `Access<ArchetypeComponentId>` per system. It should also make scripting language integration easier.

_But_ this merge did create problems for people directly interacting with `World`. What if you need mutable access to multiple resources at the same time? `world.get_resource_mut()` borrows World mutably!

## WorldCell

WorldCell applies the `Access<ArchetypeComponentId>` concept to direct world access:

```rust
let world_cell = world.cell();
let a = world_cell.get_resource_mut::<i32>().unwrap();
let b = world_cell.get_resource_mut::<f64>().unwrap();
```

This adds cheap runtime checks (a sparse set lookup of `ArchetypeComponentId` and a counter) to ensure that world accesses do not conflict with each other. Each operation returns a `WorldBorrow<'w, T>` or `WorldBorrowMut<'w, T>` wrapper type, which will release the relevant ArchetypeComponentId resources when dropped.

World caches the access sparse set (and only one cell can exist at a time), so `world.cell()` is a cheap operation. 

WorldCell does _not_ use atomic operations. It is non-send, does a mutable borrow of world to prevent other accesses, and uses a simple `Rc<RefCell<ArchetypeComponentAccess>>` wrapper in each WorldBorrow pointer. 

The api is currently limited to resource access, but it can and should be extended to queries / entity component access.

## Resource Scopes

WorldCell does not yet support component queries, and even when it does there are sometimes legitimate reasons to want a mutable world ref _and_ a mutable resource ref (ex: bevy_render and bevy_scene both need this). In these cases we could always drop down to the unsafe `world.get_resource_unchecked_mut()`, but that is not ideal!

Instead developers can use a "resource scope"

```rust
world.resource_scope(|world: &mut World, a: &mut A| {
})
```

This temporarily removes the `A` resource from `World`, provides mutable pointers to both, and re-adds A to World when finished. Thanks to the move to ComponentIds/sparse sets, this is a cheap operation.

If multiple resources are required, scopes can be nested. We could also consider adding a "resource tuple" to the api if this pattern becomes common and the boilerplate gets nasty.

## Query Conflicts Use ComponentId Instead of ArchetypeComponentId

For safety reasons, systems cannot contain queries that conflict with each other without wrapping them in a QuerySet. On bevy `main`, we use ArchetypeComponentIds to determine conflicts. This is nice because it can take into account filters:

```rust
// these queries will never conflict due to their filters
fn filter_system(a: Query<&mut A, With<B>>, b: Query<&mut B, Without<B>>) {
}
```

But it also has a significant downside:
```rust
// these queries will not conflict _until_ an entity with A, B, and C is spawned
fn maybe_conflicts_system(a: Query<(&mut A, &C)>, b: Query<(&mut A, &B)>) {
}
```

The system above will panic at runtime if an entity with A, B, and C is spawned. This makes it hard to trust that your game logic will run without crashing.

In this pr, I switched to using `ComponentId` instead. This _is_ more constraining. `maybe_conflicts_system` will now always fail, but it will do it consistently at startup. Naively, it would also _disallow_ `filter_system`, which would be a significant downgrade in usability. Bevy has a number of internal systems that rely on disjoint queries and I expect it to be a common pattern in userspace.

To resolve this, I added a new `FilteredAccess<T>` type, which wraps `Access<T>` and adds with/without filters. If two `FilteredAccess` have with/without values that prove they are disjoint, they will no longer conflict.

## EntityRef / EntityMut

World entity operations on `main` require that the user passes in an `entity` id to each operation:

```rust
let entity = world.spawn((A, )); // create a new entity with A
world.get::<A>(entity);
world.insert(entity, (B, C));
world.insert_one(entity, D);
```

This means that each operation needs to look up the entity location / verify its validity. The initial spawn operation also requires a Bundle as input. This can be awkward when no components are required (or one component is required).

These operations have been replaced by `EntityRef` and `EntityMut`, which are "builder-style" wrappers around world that provide read and read/write operations on a single, pre-validated entity:

```rust
// spawn now takes no inputs and returns an EntityMut
let entity = world.spawn()
    .insert(A) // insert a single component into the entity
    .insert_bundle((B, C)) // insert a bundle of components into the entity
    .id() // id returns the Entity id

// Returns EntityMut (or panics if the entity does not exist)
world.entity_mut(entity)
    .insert(D)
    .insert_bundle(SomeBundle::default());
{
    // returns EntityRef (or panics if the entity does not exist)
    let d = world.entity(entity)
        .get::<D>() // gets the D component
        .unwrap();
    // world.get still exists for ergonomics
    let d = world.get::<D>(entity).unwrap();
}

// These variants return Options if you want to check existence instead of panicing 
world.get_entity_mut(entity)
    .unwrap()
    .insert(E);

if let Some(entity_ref) = world.get_entity(entity) {
    let d = entity_ref.get::<D>().unwrap();
}
```

This _does not_ affect the current Commands api or terminology. I think that should be a separate conversation as that is a much larger breaking change.

## Safety Improvements

* Entity reservation in Commands uses a normal world borrow instead of an unsafe transmute
* QuerySets no longer transmutes lifetimes
* Made traits "unsafe" when implementing a trait incorrectly could cause unsafety
* More thorough safety docs

## RemovedComponents SystemParam

The old approach to querying removed components: `query.removed:<T>()` was confusing because it had no connection to the query itself. I replaced it with the following, which is both clearer and allows us to cache the ComponentId mapping in the SystemParamState:

```rust
fn system(removed: RemovedComponents<T>) {
    for entity in removed.iter() {
    }
} 
```

## Simpler Bundle implementation

Bundles are no longer responsible for sorting (or deduping) TypeInfo. They are just a simple ordered list of component types / data. This makes the implementation smaller and opens the door to an easy "nested bundle" implementation in the future (which i might even add in this pr). Duplicate detection is now done once per bundle type by World the first time a bundle is used.

## Unified WorldQuery and QueryFilter types

(don't worry they are still separate type _parameters_ in Queries .. this is a non-breaking change)

WorldQuery and QueryFilter were already basically identical apis. With the addition of `FetchState` and more storage-specific fetch methods, the overlap was even clearer (and the redundancy more painful).

QueryFilters are now just `F: WorldQuery where F::Fetch: FilterFetch`. FilterFetch requires `Fetch<Item = bool>` and adds new "short circuit" variants of fetch methods. This enables a filter tuple like `(With<A>, Without<B>, Changed<C>)` to stop evaluating the filter after the first mismatch is encountered. FilterFetch is automatically implemented for `Fetch` implementations that return bool.

This forces fetch implementations that return things like `(bool, bool, bool)` (such as the filter above) to manually implement FilterFetch and decide whether or not to short-circuit.

## More Granular Modules

World no longer globs all of the internal modules together. It now exports `core`, `system`, and `schedule` separately. I'm also considering exporting `core` submodules directly as that is still pretty "glob-ey" and unorganized (feedback welcome here).

## Remaining Draft Work (to be done in this pr)

* ~~panic on conflicting WorldQuery fetches (&A, &mut A)~~
    * ~~bevy `main` and hecs both currently allow this, but we should protect against it if possible~~
* ~~batch_iter / par_iter (currently stubbed out)~~
* ~~ChangedRes~~
    * ~~I skipped this while we sort out #1313. This pr should be adapted to account for whatever we land on there~~.
* ~~The `Archetypes` and `Tables` collections use hashes of sorted lists of component ids to uniquely identify each archetype/table. This hash is then used as the key in a HashMap to look up the relevant ArchetypeId or TableId. (which doesn't handle hash collisions properly)~~
* ~~It is currently unsafe to generate a Query from "World A", then use it on "World B" (despite the api claiming it is safe). We should probably close this gap. This could be done by adding a randomly generated WorldId to each world, then storing that id in each Query. They could then be compared to each other on each `query.do_thing(&world)` operation. This _does_ add an extra branch to each query operation, so I'm open to other suggestions if people have them.~~
* ~~Nested Bundles (if i find time)~~

## Potential Future Work

* Expand WorldCell to support queries.
* Consider not allocating in the empty archetype on `world.spawn()`
    * ex: return something like EntityMutUninit, which turns into EntityMut after an `insert` or `insert_bundle` op
    * this actually regressed performance last time i tried it, but in theory it should be faster
* Optimize SparseSet::insert (see `PERF` comment on insert)
* Replace SparseArray `Option<T>` with T::MAX to cut down on branching
    * would enable cheaper get_unchecked() operations
* upstream fixedbitset optimizations
    * fixedbitset could be allocation free for small block counts (store blocks in a SmallVec)
    * fixedbitset could have a const constructor 
* Consider implementing Tags (archetype-specific by-value data that affects archetype identity) 
    * ex: ArchetypeA could have `[A, B, C]` table components and `[D(1)]` "tag" component. ArchetypeB could have `[A, B, C]` table components and a `[D(2)]` tag component. The archetypes are different, despite both having D tags because the value inside D is different.
    * this could potentially build on top of the `archetype.unique_components` added in this pr for resource storage.
* Consider reverting `all_tuples` proc macro in favor of the old `macro_rules` implementation
    * all_tuples is more flexible and produces cleaner documentation (the macro_rules version produces weird type parameter orders due to parser constraints)
    * but unfortunately all_tuples also appears to make Rust Analyzer sad/slow when working inside of `bevy_ecs` (does not affect user code)
* Consider "resource queries" and/or "mixed resource and entity component queries" as an alternative to WorldCell
    * this is basically just "systems" so maybe it's not worth it
* Add more world ops
    * `world.clear()`
    * `world.reserve<T: Bundle>(count: usize)`
 * Try using the old archetype allocation strategy (allocate new memory on resize and copy everything over). I expect this to improve batch insertion performance at the cost of unbatched performance. But thats just a guess. I'm not an allocation perf pro :)
 * Adapt Commands apis for consistency with new World apis 

## Benchmarks

key:

* `bevy_old`: bevy `main` branch
* `bevy`: this branch
* `_foreach`: uses an optimized for_each iterator
* ` _sparse`: uses sparse set storage (if unspecified assume table storage)
* `_system`: runs inside a system (if unspecified assume test happens via direct world ops)

### Simple Insert (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109245573-9c3ce100-7795-11eb-9003-bfd41cd5c51f.png)

### Simpler Iter (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109245795-ffc70e80-7795-11eb-92fb-3ffad09aabf7.png)

### Fragment Iter (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109245849-0fdeee00-7796-11eb-8d25-eb6b7a682c48.png)

### Sparse Fragmented Iter

Iterate a query that matches 5 entities from a single matching archetype, but there are 100 unmatching archetypes

![image](https://user-images.githubusercontent.com/2694663/109245916-2b49f900-7796-11eb-9a8f-ed89c203f940.png)
 
### Schedule (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109246428-1fab0200-7797-11eb-8841-1b2161e90fa4.png)

### Add Remove Component (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109246492-39e4e000-7797-11eb-8985-2706bd0495ab.png)


### Add Remove Component Big

Same as the test above, but each entity has 5 "large" matrix components and 1 "large" matrix component is added and removed

![image](https://user-images.githubusercontent.com/2694663/109246517-449f7500-7797-11eb-835e-28b6790daeaa.png)


### Get Component

Looks up a single component value a large number of times

![image](https://user-images.githubusercontent.com/2694663/109246129-87ad1880-7796-11eb-9fcb-c38012aa7c70.png)
2021-03-05 07:54:35 +00:00
Zhixing Zhang
d9fb61d474 Wireframe Rendering Pipeline (#562)
This PR implements wireframe rendering.

Usage:

This is now ready as soon as #1401 gets merged.


Usage:

```rust
    app
        .insert_resource(WgpuOptions {
            name: Some("3d_scene"),
            features: WgpuFeatures::NON_FILL_POLYGON_MODE,
            ..Default::default()
        }) // To enable the NON_FILL_POLYGON_MODE feature
        .add_plugin(WireframePlugin)
        .run();

```

Now we just need to add the Wireframe component on an entity, and it'll draw. its wireframe.


We can also enable wireframe drawing globally by setting the global property in the `WireframeConfig` resource to `true`.



Co-authored-by: Zhixing Zhang <me@neoto.xin>
2021-03-04 01:23:24 +00:00
François
1fcafc4210 Glb textures should use bevy_render to load images (#1454)
Fixes #1396 

<img width="1392" alt="Screenshot 2021-02-16 at 02 24 01" src="https://user-images.githubusercontent.com/8672791/108011774-1b991a80-7008-11eb-979e-6ebfc51fba3c.png">

Issue was that, when loading an image directly from its bytes in the binary glb file, it didn't follow the same flow as when loaded as a texture file. This PR removes the dependency to `image` from `bevy_gltf`, and load the image using `bevy_render` in all cases. I also added support for more mime types while there.

<img width="1392" alt="Screenshot 2021-02-16 at 02 44 56" src="https://user-images.githubusercontent.com/8672791/108011915-674bc400-7008-11eb-83d4-ded96a38919b.png">
2021-03-03 21:36:16 +00:00
François
6a0968b2ea convert grayscale images to rgb (#1524)
Fixes #1518 

Issue was that images loaded as [`ImageLumaA8`](https://docs.rs/image/0.23.13/image/enum.DynamicImage.html#variant.ImageLumaA8) (grayscale with alpha channel) from `image` were considered as [`Rg8Unorm`](https://docs.rs/wgpu/0.7.0/wgpu/enum.TextureFormat.html#variant.Rg8Unorm) (red green channels) from `wgpu`.
Same for `ImageLuma8` (grayscale) that was converted to `R8Unorm` (only red channel).

As `wgpu` doesn't seem to have grayscale texture formats, I converted the grayscale textures to rgba.
2021-03-03 21:20:45 +00:00
Jakob Hellermann
bc4fe9b186 keep track of type name in NodeState (#1444)
Adds the original type_name to `NodeState`, enabling plugins like [this](https://github.com/jakobhellermann/bevy_mod_debugdump).
This does increase the `NodeState` type by 16 bytes, but it is already 176 so it's not that big of an increase.
2021-02-22 09:15:29 +00:00
Jonas Matser
72f2a7b581 Add getter for RenderGraph Node uuid (#1499)
`RenderGraph` errors only give the `Uuid` of the node. So for my graphviz dot based visualization of the `RenderGraph` I really wanted to show it to the user. I think it makes sense to have it accessible for at least debugging purposes.
2021-02-22 08:59:14 +00:00
Nathan Stocks
13b602ee3f Xtask CI (#1387)
This PR is easiest to review commit by commit.

Followup on https://github.com/bevyengine/bevy/pull/1309#issuecomment-767310084

- [x] Switch from a bash script to an xtask rust workspace member.
  - Results in ~30s longer CI due to compilation of the xtask itself
  - Enables Bevy contributors on any platform to run `cargo ci` to run linting -- if the default available Rust is the same version as on CI, then the command should give an identical result.
- [x] Use the xtask from official CI so there's only one place to update.
- [x] Bonus: Run clippy on the _entire_ workspace (existing CI setup was missing the `--workspace` flag
  - [x] Clean up newly-exposed clippy errors 

~#1388 builds on this to clean up newly discovered clippy errors -- I thought it might be nicer as a separate PR.~  Nope, merged it into this one so CI would pass.

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-02-22 08:42:19 +00:00
Jakob Hellermann
cd688d7a41 fix rustdoc warnings (#1437)
Every warning is fixed except for 
b39df9a8d2/crates/bevy_render/src/texture/texture_descriptor.rs (L61)
because I didn't know what the required feature is.
I opened https://github.com/gfx-rs/wgpu/issues/1213 for that.
2021-02-22 03:59:35 +00:00
Alec Deason
97a78c3698 Make vertex buffers optional (#1485)
For some cases, like driving a full screen fragment shader, it is sometimes convenient to not have to create and upload a mesh because the necessary vertices are simple to synthesize in the vertex shader. Bevy's existing pipeline compiler assumes that there will always be a vertex buffer. This PR changes that such that vertex buffer descriptor is only added to the pipeline layout if there are vertex attributes in the shader.
2021-02-22 03:43:27 +00:00
Alexander Sepity
c2a427f1a3
Non-string labels (#1423 continued) (#1473)
Non-string labels
2021-02-18 13:20:37 -08:00
Alexander Sepity
d5a7330431
System sets and parallel executor v2 (#1144)
System sets and parallel executor v2
2021-02-09 12:14:10 -08:00
Jakob Hellermann
4796ea8d22
move texture_to_image and image_to_texture into new module (#1381)
The `Texture::convert` function previously was only compiled when
one of the image format features (`png`, `jpeg` etc.) were enabled.
The `bevy_sprite` crate needs this function though, which led
to compilation errors when using `cargo check --no-default-features
--features render`.

Now the `convert` function has no features and the `texture_to_image`
and `image_to_texture` utilites functions are in an unconditionally
compiled module.
2021-02-02 13:25:16 -08:00
François
6b8f8a7ed0
Texture atlas format and conversion (#1365)
* can specify texture format for a texture atlas
* add automatic conversion
2021-02-01 11:30:11 -08:00
Zhixing Zhang
81809c71ce
Update to wgpu-rs 0.7 (#542)
Update to wgpu-rs 0.7
2021-01-31 20:06:42 -08:00
Jasen Borisov
7d065eeb71
3D OrthographicProjection improvements + new example (#1361)
* use `length_squared` for visible entities

* ortho projection 2d/3d different depth calculation

* use ScalingMode::FixedVertical for 3d ortho

* new example: 3d orthographic
2021-01-31 16:22:06 -08:00
Daniel McNab
b922a3ec60
Update init_resource to not overwrite (#1349)
Update init_resource to not overwrite
2021-01-30 12:48:11 -08:00
Renato Caldas
8e0e4223e5
Improve clarity of WindowTextureNode and WindowSwapchainNode error messages (#1355)
Improve clarity of WindowTextureNode and WindowSwapchainNode error messages
2021-01-30 12:47:27 -08:00
Jasen Borisov
57f9ac18d7
OrthographicProjection scaling mode + camera bundle refactoring (#400)
* add normalized orthographic projection

* custom scale for ScaledOrthographicProjection

* allow choosing base axis for ScaledOrthographicProjection

* cargo fmt

* add general (scaled) orthographic camera bundle

FIXME: does the same "far" trick from Camera2DBundle make any sense here?

* fixes

* camera bundles: rename and new ortho constructors

* unify orthographic projections

* give PerspectiveCameraBundle constructors like those of OrthographicCameraBundle

* update examples with new camera bundle syntax

* rename CameraUiBundle to UiCameraBundle

* update examples

* ScalingMode::None

* remove extra blank lines

* sane default bounds for orthographic projection

* fix alien_cake_addict example

* reorder ScalingMode enum variants

* ios example fix
2021-01-30 02:31:03 -08:00
Renato Caldas
0a39c81be6
Add support for reading from mapped buffers (#1274)
* Add support for mapping buffers for reading.

* Add support for reading from a mapped buffer.
2021-01-21 17:53:43 -08:00
Aevyrie
18e4fa8cdf
world coords to screen space (#1258)
Add Camera::world_to_screen to convert world coordinates to screen space
2021-01-21 17:49:29 -08:00
TheRawMeatball
a880b54508
Make EventReader a SystemParam (#1244)
* Add generic support for `#[derive(SystemParam)]`
* Make EventReader a SystemParam
2021-01-18 22:23:30 -08:00
Alec Deason
71c6a19ed8
Minimal change to support instanced rendering (#1262) 2021-01-18 16:52:06 -08:00
Zhixing Zhang
cf0e9f9968
Adding copy_texture_to_buffer and copy_texture_to_texture (#1236)
* Adding copy_texture_to_buffer and copy_texture_to_texture

* Adding CopyTextureToTexture and CopyTextureToBuffer in CommandQueue
2021-01-14 11:01:07 -08:00
João Capucho
478f947768
Don't panic if there's no index buffer and call draw (#1229) 2021-01-12 14:05:13 -08:00
bjorn3
fbf08ac545
Faster compilation of bevy_diagnostic (#1235)
* Remove AHashExt

There is little benefit of Hash*::new() over Hash*::default(), but it
does require more code that needs to be duplicated for every Hash* in
bevy_utils. It may also slightly increase compile times.

* Add StableHash* to bevy_utils

* Use StableHashMap instead of HashMap + BTreeSet for diagnostics

This is a significant reduction in the release mode compile times of
bevy_diagnostics

```
Benchmark #1: touch crates/bevy_diagnostic/src/lib.rs && cargo build --release -p bevy_diagnostic -j1
  Time (mean ± σ):      3.645 s ±  0.009 s    [User: 3.551 s, System: 0.094 s]
  Range (min … max):    3.632 s …  3.658 s    20 runs
```

```
Benchmark #1: touch crates/bevy_diagnostic/src/lib.rs && cargo build --release -p bevy_diagnostic -j1
  Time (mean ± σ):      2.938 s ±  0.012 s    [User: 2.850 s, System: 0.090 s]
  Range (min … max):    2.919 s …  2.969 s    20 runs
```
2021-01-12 13:21:45 -08:00
François
c434f57de1
use biggest RenderResources instead of first (#1208) 2021-01-11 14:28:32 -08:00
Schell Carl Scivally
a6a242cb86
Render Layers (#1209)
Adds RenderLayers, which enable cameras and entities to opt in to layers that apply to them
2021-01-08 12:45:54 -08:00
Jakob Hellermann
3f2dd22cb5
bevy_render: add torus and capsule shape (#1223)
* bevy_render: add torus shape

* bevy_render: add capsule shape

* bevy_render: reorganize shape module

* bevy_render: add more docs
2021-01-08 11:39:33 -08:00
Daniel McNab
9f2410a4ac
Add from_xyz to Transform (#1212)
* Add the from_xyz helper method to Transform

* Use `from_xyz` where possible
2021-01-06 17:17:06 -08:00
TheRawMeatball
c69aa98a60
Refactor Box<dyn System> to BoxedSystem (#1191)
Added BoxedSystem
2021-01-03 12:39:30 -08:00
Restioson
820f37fccf
add convenience function (#1197) 2021-01-03 11:57:18 -08:00
MsK`
ca310b856f
New mesh attribute: color (#1194)
New mesh attribute: color
2021-01-03 11:39:15 -08:00
MsK`
2754a9dde8
Mutable mesh accessors: indices_mut and attribute_mut (#1164)
mutable mesh accessors: indices_mut and attribute_mut
2020-12-30 15:17:44 -06:00
François
871b47f1c3
let user disable feature png when using only other format (#1156) 2020-12-28 15:31:23 -06:00
Nathan Stocks
f574c2c547
Render text in 2D scenes (#1122)
Render text in 2D scenes
2020-12-27 13:19:03 -06:00
Jakob Hellermann
0a51a26aba
bevy_render: load .spv assets (#1104)
bevy_render: ShaderLoader can now load spv files
2020-12-23 19:41:34 -06:00
Ryan Lee
acc29ec719
Add bmp as a supported texture format (#1081) 2020-12-23 16:53:02 -06:00
Carter Anderson
3b2c6ce49b
release 0.4.0 (#1093) 2020-12-19 13:28:00 -06:00
Carter Anderson
841755aaf2
Adopt a Fetch pattern for SystemParams (#1074) 2020-12-15 21:57:16 -08:00
Nathan Jeffords
d2e4327b14
update Window's width & height methods to return f32 (#1033)
update `Window`'s `width` & `height` methods to return `f32`
2020-12-13 15:05:56 -08:00
Carter Anderson
509b138e8f
Schedule v2 (#1021)
Schedule V2
2020-12-12 18:04:42 -08:00
Nathan Jeffords
9239621ffc
add ability to load .dds, .tga, and .jpeg texture formats (#1038)
add ability to load `.dds`, `.tga`, and `.jpeg` texture formats
2020-12-09 18:34:27 -08:00
James R
4a5bcccde2
Don't panic when attempting to set shader defs from an asset that hasn't loaded yet (#1035)
Don't panic when attempting to set shader defs from an asset that hasn't loaded yet
2020-12-09 16:34:22 -08:00
Carter Anderson
7ab0eeece0
Break out Visible component from Draw (#1034)
Break out Visible component from Draw
2020-12-09 13:38:48 -08:00
Corey Farwell
66f972c850
Use shaderc for aarch64-apple-darwin. (#1027) 2020-12-09 13:02:43 -08:00
Nathan Jeffords
3d386a77b4
attempt to deal with rounding issue when creating the swap chain (#997)
attempt to deal with rounding issue when creating the swap chain on high DPI displays
2020-12-07 13:32:57 -08:00
Al M
2c9b7956d1
Live reloading of shaders (#937)
* Add ShaderLoader, rebuild pipelines for modified shader assets
* New example
* Add shader_update_system, ShaderError, remove specialization assets
* Don't panic on shader compilation failure
2020-12-07 12:32:13 -08:00
François
a3bca7e464
Fix ci (#1024)
* fix format

* fix clippy

* used fixed nightly
2020-12-07 11:57:15 -08:00
Patrik Buhring
fcbae57489
Update Hexasphere to improve MSRV (#994)
Assumes hexasphere will follow semver (I will try to make sure it does!)
2020-12-04 10:38:25 -08:00
Carter Anderson
d601eeb829
account for "still loading" textures in RenderResourceNodes (#1000) 2020-12-04 10:37:41 -08:00
Carter Anderson
704a116778
fix scene loading (#988) 2020-12-03 13:57:36 -08:00
François
59d98de194
naming coherence for cameras (#995)
naming coherence for cameras
2020-12-03 13:46:15 -08:00
Carter Anderson
7699f8b6db
optimize asset gpu data transfer (#987) 2020-12-03 12:39:29 -08:00
Carter Anderson
915024bf35
fix changed meshes (#984) 2020-12-02 14:23:49 -08:00
Carter Anderson
ccb31bc949
Optimize Text rendering / SharedBuffers (#972)
optimize Text rendering / SharedBuffers
2020-12-02 12:38:20 -08:00
Joshua J. Bouw
9f4c8b1b9a
Fix errors and panics to typical Rust conventions (#968)
Fix errors and panics to typical Rust conventions
2020-12-02 11:31:16 -08:00
Patrik Buhring
f54eb12efc
Fixed Hexasphere versioning. (#974) 2020-12-01 21:48:25 -08:00
Carter Anderson
c05c1dc119
hidpi swap chains (#973)
hidpi swap chains
2020-12-01 20:25:31 -08:00
Carter Anderson
b5ffab7135
Renderer Optimization Round 1 (#958)
* only update global transforms when they (or their ancestors) have changed

* only update render resource nodes when they have changed (quality check plz)

* only update entity mesh specialization when mesh (or mesh component) has changed

* only update sprite size when changed

* remove stale bind groups

* fix setting size of loading sprites

* store unmatched render resource binding results

* reduce state changes

* cargo fmt + clippy

* remove cached "NoMatch" results when new bindings are added to RenderResourceBindings

* inline current_entity in world_builder

* try creating bind groups even when they havent changed

* render_resources_node: update all entities when resized

* fmt
2020-12-01 13:17:48 -08:00
Patrik Buhring
3da653e4dd
Update Hexasphere & Usage. (#965) 2020-11-30 22:25:33 -08:00
Nick
f35f813137
additional vertex attribute value types (#946) 2020-11-30 13:05:03 -08:00
Mariusz Kryński
dbf226be49
store PipelineSpecialization.dynamic_bindings in HashSet (#936) 2020-11-28 13:10:18 -08:00
Carter Anderson
72b2fc9843
Bevy Reflection (#926)
Bevy Reflection
2020-11-27 16:39:59 -08:00
dependabot[bot]
8e4eb41757
Update shaderc requirement from 0.6.3 to 0.7.0 (#823)
Updates the requirements on [shaderc](https://github.com/google/shaderc-rs) to permit the latest version.
- [Release notes](https://github.com/google/shaderc-rs/releases)
- [Commits](https://github.com/google/shaderc-rs/compare/v0.6.3...v0.7.0)

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2020-11-25 18:46:13 -08:00
Duncan
46fac78774
Extend the Texture asset type to support 3D data (#903)
Extend the Texture asset type to support 3D data

Textures are still loaded from images as 2D, but they can be reshaped
according to how the render pipeline would like to use them.

Also add an example of how this can be used with the texture2DArray uniform type.
2020-11-22 12:04:47 -08:00
Plecra
3a9a5b4e07
fix: update image version (#911)
into_bgra8 was added in 0.23.12
2020-11-21 19:08:02 -08:00
Valentin
d458406540
Add box shape (#883)
* Add rectangular cuboid shape

Co-authored-by: Jason Lessard <jason.lessard@usherbrooke.ca>
Co-authored-by: Jason Lessard <jason.lessard@usherbrooke.ca>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2020-11-21 14:51:24 -08:00
bg
106486bd99
fix deprecation error in image_texture_loader (and CI error) (#906)
fix deprecation error in image_texture_loader (and CI error)
2020-11-21 12:26:35 -08:00
Vladyslav Batyrenko
d11be437cb
Switch to default PartialEq implementation for RenderResourceBinding (#877)
* Switch to default PartialEq implementation for RenderResourceBinding
* Move specialized RenderResourceBinding Hash implementation to BindGroupBuilder
2020-11-21 11:52:44 -08:00
bjorn3
d6eb647451
Misc cleanups (#879)
* Remove cfg!(feature = "metal-auto-capture")

This cfg! has existed since the initial commit, but the corresponding
feature has never been part of Cargo.toml

* Remove unnecessary handle_create_window_events call

* Remove EventLoopProxyPtr wrapper

* Remove unnecessary statics

* Fix unrelated deprecation warning to fix CI
2020-11-17 13:40:18 -08:00
Carter Anderson
3a6f6de277
System Inputs, Outputs, Chaining, and Registration Ergo (#876)
System Inputs, Outputs, Chaining, and Registration Ergo
2020-11-16 18:18:00 -08:00
rod-salazar
3fca8c60bb
Remove redundant texture copies in TextureCopyNode (#871)
Remove redundant texture syncs in TextureCopyNode
2020-11-16 16:38:14 -08:00
Julian Heinken
fcf9d525e1
Removed vertex fallback buffer (#870)
removed fallback buffer
2020-11-16 16:36:57 -08:00
Carter Anderson
7628f4a64e
combine bevy_ecs and bevy_hecs crates. rename XComponents to XBundle (#863)
combine bevy_ecs and bevy_hecs crates. rename XComponents to XBundle
2020-11-15 20:32:23 -08:00
milkybit
b3541a9a31
Add all basic color constants (#859)
Add all basic color constants
2020-11-15 12:44:02 -08:00
Joshua J. Bouw
bb4a7392c0
Remove redundant .into for mesh set_attributes with impl (#866) 2020-11-15 12:08:03 -08:00
Mariusz Kryński
515d750004
wasm32: non-spirv shader specialization (#843)
wasm32: non-spirv shader specialization
2020-11-15 12:07:17 -08:00
Carter Anderson
e03f17ba7f
Log Plugin (#836)
add bevy_log plugin
2020-11-12 17:23:57 -08:00
Mariusz Kryński
fae628797f
bevy_render: delegate buffer aligning to render_resource_context (#842) 2020-11-11 14:08:27 -08:00
Carter Anderson
e769974d6a
query filters (#834) 2020-11-10 20:48:34 -08:00
Mariusz Kryński
60fa2d5f93
delegate layout reflection to RenderResourceContext (#691)
* delegate layout reflection to RenderResourceContext
Also:
 * auto-reflect DynamicBindings
 * use RenderPipeline::new, update dynamic_bindings

linting.

* add dynamic binding generation

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2020-11-10 13:20:05 -08:00
Carter Anderson
4ef6eb8a85
adjust to new clippy lints (#826) 2020-11-09 14:12:42 -08:00
Bram Buurlage
07f07a0736
Added RenderPass::set_scissor_rect (#815)
Added RenderPass::set_scissor_rect
2020-11-09 13:24:29 -08:00
Carter Anderson
ebcdc9fb8c
Flexible ECS System Params (#798)
system params can be in any order, faster compiles, remove foreach
2020-11-08 12:34:05 -08:00
Carter Anderson
9224983897
upgrade glam and hexasphere (#794) 2020-11-06 17:11:32 -08:00
Carter Anderson
9afe196f16
release: 0.3.0 (#783) 2020-11-03 13:34:00 -08:00
Carter Anderson
2e2fa4fef4
make Mesh::attribute() immutable (#774) 2020-11-02 22:54:20 -08:00
Nicholas Rishel
53c4c45eca
Use embedded glslang for runtime glsl-to-spirv and add Android example (#740)
Use embedded glslang for runtime glsl-to-spirv and add Android example
2020-11-02 16:30:30 -08:00
Carter Anderson
44b3e24e32
fix mesh allocation bug and public mesh api improvements (#768) 2020-11-02 13:15:07 -08:00
simlay
9cc6368b28
An initial xcode setup for using xcode (#539)
An example of bevy using xcode
2020-10-31 14:36:24 -07:00
Julian Heinken
4645da30c8
Mesh overhaul with custom vertex attributes #592 (#599)
Mesh overhaul with custom vertex attributes
2020-10-30 19:21:53 -07:00
Carter Anderson
ad940fbf6e
Rename query.entity() to query.get() and query.get() to query.get_component() (#752) 2020-10-30 18:04:33 -07:00