bevy_render: add torus and capsule shape (#1223)

* bevy_render: add torus shape

* bevy_render: add capsule shape

* bevy_render: reorganize shape module

* bevy_render: add more docs
This commit is contained in:
Jakob Hellermann 2021-01-08 20:39:33 +01:00 committed by GitHub
parent 5e7456115a
commit 3f2dd22cb5
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 585 additions and 72 deletions

View file

@ -0,0 +1,379 @@
use crate::{
mesh::{Indices, Mesh},
pipeline::PrimitiveTopology,
};
use bevy_math::{Vec2, Vec3};
/// A cylinder with hemispheres at the top and bottom
pub struct Capsule {
/// Radius on the xz plane.
pub radius: f32,
/// Number of sections in cylinder between hemispheres.
pub rings: usize,
/// Height of the middle cylinder on the y axis, excluding the hemispheres.
pub depth: f32,
/// Number of latitudes, distributed by inclination. Must be even.
pub latitudes: usize,
/// Number of longitudes, or meridians, distributed by azimuth.
pub longitudes: usize,
/// Manner in which UV coordinates are distributed vertically.
pub uv_profile: CapsuleUvProfile,
}
impl Default for Capsule {
fn default() -> Self {
Capsule {
radius: 0.5,
rings: 0,
depth: 1.0,
latitudes: 16,
longitudes: 32,
uv_profile: CapsuleUvProfile::Aspect,
}
}
}
#[derive(Clone, Copy)]
/// Manner in which UV coordinates are distributed vertically.
pub enum CapsuleUvProfile {
/// UV space is distributed by how much of the capsule consists of the hemispheres.
Aspect,
/// Hemispheres get UV space according to the ratio of latitudes to rings.
Uniform,
/// Upper third of the texture goes to the northern hemisphere, middle third to the cylinder and lower third to the southern one.
Fixed,
}
impl Default for CapsuleUvProfile {
fn default() -> Self {
CapsuleUvProfile::Aspect
}
}
impl From<Capsule> for Mesh {
#[allow(clippy::clippy::needless_range_loop)]
fn from(capsule: Capsule) -> Self {
// code adapted from https://behreajj.medium.com/making-a-capsule-mesh-via-script-in-five-3d-environments-c2214abf02db
let Capsule {
radius,
rings,
depth,
latitudes,
longitudes,
uv_profile,
} = capsule;
let calc_middle = rings > 0;
let half_lats = latitudes / 2;
let half_latsn1 = half_lats - 1;
let half_latsn2 = half_lats - 2;
let ringsp1 = rings + 1;
let lonsp1 = longitudes + 1;
let half_depth = depth * 0.5;
let summit = half_depth + radius;
// Vertex index offsets.
let vert_offset_north_hemi = longitudes;
let vert_offset_north_equator = vert_offset_north_hemi + lonsp1 * half_latsn1;
let vert_offset_cylinder = vert_offset_north_equator + lonsp1;
let vert_offset_south_equator = if calc_middle {
vert_offset_cylinder + lonsp1 * rings
} else {
vert_offset_cylinder
};
let vert_offset_south_hemi = vert_offset_south_equator + lonsp1;
let vert_offset_south_polar = vert_offset_south_hemi + lonsp1 * half_latsn2;
let vert_offset_south_cap = vert_offset_south_polar + lonsp1;
// Initialize arrays.
let vert_len = vert_offset_south_cap + longitudes;
let mut vs: Vec<Vec3> = vec![Vec3::default(); vert_len];
let mut vts: Vec<Vec2> = vec![Vec2::default(); vert_len];
let mut vns: Vec<Vec3> = vec![Vec3::default(); vert_len];
let to_theta = 2.0 * std::f32::consts::PI / longitudes as f32;
let to_phi = std::f32::consts::PI / latitudes as f32;
let to_tex_horizontal = 1.0 / longitudes as f32;
let to_tex_vertical = 1.0 / half_lats as f32;
let vt_aspect_ratio = match uv_profile {
CapsuleUvProfile::Aspect => radius / (depth + radius + radius),
CapsuleUvProfile::Uniform => half_lats as f32 / (ringsp1 + latitudes) as f32,
CapsuleUvProfile::Fixed => 1.0 / 3.0,
};
let vt_aspect_north = 1.0 - vt_aspect_ratio;
let vt_aspect_south = vt_aspect_ratio;
let mut theta_cartesian: Vec<Vec2> = vec![Vec2::default(); longitudes];
let mut rho_theta_cartesian: Vec<Vec2> = vec![Vec2::default(); longitudes];
let mut s_texture_cache: Vec<f32> = vec![0.0; lonsp1];
for j in 0..longitudes {
let jf = j as f32;
let s_texture_polar = 1.0 - ((jf + 0.5) * to_tex_horizontal);
let theta = jf * to_theta;
let cos_theta = theta.cos();
let sin_theta = theta.sin();
theta_cartesian[j] = Vec2::new(cos_theta, sin_theta);
rho_theta_cartesian[j] = Vec2::new(radius * cos_theta, radius * sin_theta);
// North.
vs[j] = Vec3::new(0.0, summit, 0.0);
vts[j] = Vec2::new(s_texture_polar, 1.0);
vns[j] = Vec3::new(0.0, 1.0, 0.0);
// South.
let idx = vert_offset_south_cap + j;
vs[idx] = Vec3::new(0.0, -summit, 0.0);
vts[idx] = Vec2::new(s_texture_polar, 0.0);
vns[idx] = Vec3::new(0.0, -1.0, 0.0);
}
// Equatorial vertices.
for j in 0..lonsp1 {
let s_texture = 1.0 - j as f32 * to_tex_horizontal;
s_texture_cache[j] = s_texture;
// Wrap to first element upon reaching last.
let j_mod = j % longitudes;
let tc = theta_cartesian[j_mod];
let rtc = rho_theta_cartesian[j_mod];
// North equator.
let idxn = vert_offset_north_equator + j;
vs[idxn] = Vec3::new(rtc.x, half_depth, -rtc.y);
vts[idxn] = Vec2::new(s_texture, vt_aspect_north);
vns[idxn] = Vec3::new(tc.x, 0.0, -tc.y);
// South equator.
let idxs = vert_offset_south_equator + j;
vs[idxs] = Vec3::new(rtc.x, -half_depth, -rtc.y);
vts[idxs] = Vec2::new(s_texture, vt_aspect_south);
vns[idxs] = Vec3::new(tc.x, 0.0, -tc.y);
}
// Hemisphere vertices.
for i in 0..half_latsn1 {
let ip1f = i as f32 + 1.0;
let phi = ip1f * to_phi;
// For coordinates.
let cos_phi_south = phi.cos();
let sin_phi_south = phi.sin();
// Symmetrical hemispheres mean cosine and sine only needs
// to be calculated once.
let cos_phi_north = sin_phi_south;
let sin_phi_north = -cos_phi_south;
let rho_cos_phi_north = radius * cos_phi_north;
let rho_sin_phi_north = radius * sin_phi_north;
let z_offset_north = half_depth - rho_sin_phi_north;
let rho_cos_phi_south = radius * cos_phi_south;
let rho_sin_phi_south = radius * sin_phi_south;
let z_offset_sout = -half_depth - rho_sin_phi_south;
// For texture coordinates.
let t_tex_fac = ip1f * to_tex_vertical;
let cmpl_tex_fac = 1.0 - t_tex_fac;
let t_tex_north = cmpl_tex_fac + vt_aspect_north * t_tex_fac;
let t_tex_south = cmpl_tex_fac * vt_aspect_south;
let i_lonsp1 = i * lonsp1;
let vert_curr_lat_north = vert_offset_north_hemi + i_lonsp1;
let vert_curr_lat_south = vert_offset_south_hemi + i_lonsp1;
for j in 0..lonsp1 {
let j_mod = j % longitudes;
let s_texture = s_texture_cache[j];
let tc = theta_cartesian[j_mod];
// North hemisphere.
let idxn = vert_curr_lat_north + j;
vs[idxn] = Vec3::new(
rho_cos_phi_north * tc.x,
z_offset_north,
-rho_cos_phi_north * tc.y,
);
vts[idxn] = Vec2::new(s_texture, t_tex_north);
vns[idxn] = Vec3::new(cos_phi_north * tc.x, -sin_phi_north, -cos_phi_north * tc.y);
// South hemisphere.
let idxs = vert_curr_lat_south + j;
vs[idxs] = Vec3::new(
rho_cos_phi_south * tc.x,
z_offset_sout,
-rho_cos_phi_south * tc.y,
);
vts[idxs] = Vec2::new(s_texture, t_tex_south);
vns[idxs] = Vec3::new(cos_phi_south * tc.x, -sin_phi_south, -cos_phi_south * tc.y);
}
}
// Cylinder vertices.
if calc_middle {
// Exclude both origin and destination edges
// (North and South equators) from the interpolation.
let to_fac = 1.0 / ringsp1 as f32;
let mut idx_cyl_lat = vert_offset_cylinder;
for h in 1..ringsp1 {
let fac = h as f32 * to_fac;
let cmpl_fac = 1.0 - fac;
let t_texture = cmpl_fac * vt_aspect_north + fac * vt_aspect_south;
let z = half_depth - depth * fac;
for j in 0..lonsp1 {
let j_mod = j % longitudes;
let tc = theta_cartesian[j_mod];
let rtc = rho_theta_cartesian[j_mod];
let s_texture = s_texture_cache[j];
vs[idx_cyl_lat] = Vec3::new(rtc.x, z, -rtc.y);
vts[idx_cyl_lat] = Vec2::new(s_texture, t_texture);
vns[idx_cyl_lat] = Vec3::new(tc.x, 0.0, -tc.y);
idx_cyl_lat += 1;
}
}
}
// Triangle indices.
// Stride is 3 for polar triangles;
// stride is 6 for two triangles forming a quad.
let lons3 = longitudes * 3;
let lons6 = longitudes * 6;
let hemi_lons = half_latsn1 * lons6;
let tri_offset_north_hemi = lons3;
let tri_offset_cylinder = tri_offset_north_hemi + hemi_lons;
let tri_offset_south_hemi = tri_offset_cylinder + ringsp1 * lons6;
let tri_offset_south_cap = tri_offset_south_hemi + hemi_lons;
let fs_len = tri_offset_south_cap + lons3;
let mut tris: Vec<u32> = vec![0; fs_len];
// Polar caps.
let mut i = 0;
let mut k = 0;
let mut m = tri_offset_south_cap;
while i < longitudes {
// North.
tris[k] = i as u32;
tris[k + 1] = (vert_offset_north_hemi + i) as u32;
tris[k + 2] = (vert_offset_north_hemi + i + 1) as u32;
// South.
tris[m] = (vert_offset_south_cap + i) as u32;
tris[m + 1] = (vert_offset_south_polar + i + 1) as u32;
tris[m + 2] = (vert_offset_south_polar + i) as u32;
i += 1;
k += 3;
m += 3;
}
// Hemispheres.
let mut i = 0;
let mut k = tri_offset_north_hemi;
let mut m = tri_offset_south_hemi;
while i < half_latsn1 {
let i_lonsp1 = i * lonsp1;
let vert_curr_lat_north = vert_offset_north_hemi + i_lonsp1;
let vert_next_lat_north = vert_curr_lat_north + lonsp1;
let vert_curr_lat_south = vert_offset_south_equator + i_lonsp1;
let vert_next_lat_south = vert_curr_lat_south + lonsp1;
let mut j = 0;
while j < longitudes {
// North.
let north00 = vert_curr_lat_north + j;
let north01 = vert_next_lat_north + j;
let north11 = vert_next_lat_north + j + 1;
let north10 = vert_curr_lat_north + j + 1;
tris[k] = north00 as u32;
tris[k + 1] = north11 as u32;
tris[k + 2] = north10 as u32;
tris[k + 3] = north00 as u32;
tris[k + 4] = north01 as u32;
tris[k + 5] = north11 as u32;
// South.
let south00 = vert_curr_lat_south + j;
let south01 = vert_next_lat_south + j;
let south11 = vert_next_lat_south + j + 1;
let south10 = vert_curr_lat_south + j + 1;
tris[m] = south00 as u32;
tris[m + 1] = south11 as u32;
tris[m + 2] = south10 as u32;
tris[m + 3] = south00 as u32;
tris[m + 4] = south01 as u32;
tris[m + 5] = south11 as u32;
j += 1;
k += 6;
m += 6;
}
i += 1;
}
// Cylinder.
let mut i = 0;
let mut k = tri_offset_cylinder;
while i < ringsp1 {
let vert_curr_lat = vert_offset_north_equator + i * lonsp1;
let vert_next_lat = vert_curr_lat + lonsp1;
let mut j = 0;
while j < longitudes {
let cy00 = vert_curr_lat + j;
let cy01 = vert_next_lat + j;
let cy11 = vert_next_lat + j + 1;
let cy10 = vert_curr_lat + j + 1;
tris[k] = cy00 as u32;
tris[k + 1] = cy11 as u32;
tris[k + 2] = cy10 as u32;
tris[k + 3] = cy00 as u32;
tris[k + 4] = cy01 as u32;
tris[k + 5] = cy11 as u32;
j += 1;
k += 6;
}
i += 1;
}
let vs: Vec<[f32; 3]> = vs.into_iter().map(Into::into).collect();
let vns: Vec<[f32; 3]> = vns.into_iter().map(Into::into).collect();
let vts: Vec<[f32; 2]> = vts.into_iter().map(Into::into).collect();
assert_eq!(vs.len(), vert_len);
assert_eq!(tris.len(), fs_len);
let mut mesh = Mesh::new(PrimitiveTopology::TriangleList);
mesh.set_attribute(Mesh::ATTRIBUTE_POSITION, vs);
mesh.set_attribute(Mesh::ATTRIBUTE_NORMAL, vns);
mesh.set_attribute(Mesh::ATTRIBUTE_UV_0, vts);
mesh.set_indices(Some(Indices::U32(tris)));
mesh
}
}

View file

@ -0,0 +1,106 @@
use hexasphere::shapes::IcoSphere;
use crate::{
mesh::{Indices, Mesh},
pipeline::PrimitiveTopology,
};
/// A sphere made from a subdivided Icosahedron.
#[derive(Debug)]
pub struct Icosphere {
/// The radius of the sphere.
pub radius: f32,
/// The number of subdivisions applied.
pub subdivisions: usize,
}
impl Default for Icosphere {
fn default() -> Self {
Self {
radius: 1.0,
subdivisions: 5,
}
}
}
impl From<Icosphere> for Mesh {
fn from(sphere: Icosphere) -> Self {
if sphere.subdivisions >= 80 {
/*
Number of triangles:
N = 20
Number of edges:
E = 30
Number of vertices:
V = 12
Number of points within a triangle (triangular numbers):
inner(s) = (s^2 + s) / 2
Number of points on an edge:
edges(s) = s
Add up all vertices on the surface:
vertices(s) = edges(s) * E + inner(s - 1) * N + V
Expand and simplify. Notice that the triangular number formula has roots at -1, and 0, so translating it one to the right fixes it.
subdivisions(s) = 30s + 20((s^2 - 2s + 1 + s - 1) / 2) + 12
subdivisions(s) = 30s + 10s^2 - 10s + 12
subdivisions(s) = 10(s^2 + 2s) + 12
Factor an (s + 1) term to simplify in terms of calculation
subdivisions(s) = 10(s + 1)^2 + 12 - 10
resulting_vertices(s) = 10(s + 1)^2 + 2
*/
let temp = sphere.subdivisions + 1;
let number_of_resulting_points = temp * temp * 10 + 2;
panic!(
"Cannot create an icosphere of {} subdivisions due to there being too many vertices being generated: {}. (Limited to 65535 vertices or 79 subdivisions)",
sphere.subdivisions,
number_of_resulting_points
);
}
let generated = IcoSphere::new(sphere.subdivisions, |point| {
let inclination = point.z.acos();
let azumith = point.y.atan2(point.x);
let norm_inclination = 1.0 - (inclination / std::f32::consts::PI);
let norm_azumith = (azumith / std::f32::consts::PI) * 0.5;
[norm_inclination, norm_azumith]
});
let raw_points = generated.raw_points();
let points = raw_points
.iter()
.map(|&p| (p * sphere.radius).into())
.collect::<Vec<[f32; 3]>>();
let normals = raw_points
.iter()
.copied()
.map(Into::into)
.collect::<Vec<[f32; 3]>>();
let uvs = generated.raw_data().to_owned();
let mut indices = Vec::with_capacity(generated.indices_per_main_triangle() * 20);
for i in 0..20 {
generated.get_indices(i, &mut indices);
}
let indices = Indices::U32(indices);
let mut mesh = Mesh::new(PrimitiveTopology::TriangleList);
mesh.set_indices(Some(indices));
mesh.set_attribute(Mesh::ATTRIBUTE_POSITION, points);
mesh.set_attribute(Mesh::ATTRIBUTE_NORMAL, normals);
mesh.set_attribute(Mesh::ATTRIBUTE_UV_0, uvs);
mesh
}
}

View file

@ -1,7 +1,6 @@
use super::{Indices, Mesh};
use crate::pipeline::PrimitiveTopology;
use bevy_math::*;
use hexasphere::shapes::IcoSphere;
pub struct Cube {
pub size: f32,
@ -252,75 +251,10 @@ impl From<Plane> for Mesh {
}
}
/// A sphere made from a subdivided Icosahedron.
#[derive(Debug)]
pub struct Icosphere {
/// The radius of the sphere.
pub radius: f32,
/// The number of subdivisions applied.
pub subdivisions: usize,
}
mod capsule;
mod icosphere;
mod torus;
impl Default for Icosphere {
fn default() -> Self {
Self {
radius: 1.0,
subdivisions: 5,
}
}
}
impl From<Icosphere> for Mesh {
fn from(sphere: Icosphere) -> Self {
if sphere.subdivisions >= 80 {
// https://oeis.org/A005901
let subdivisions = sphere.subdivisions + 1;
let number_of_resulting_points = (subdivisions * subdivisions * 10) + 2;
panic!(
"Cannot create an icosphere of {} subdivisions due to there being too many vertices being generated: {}. (Limited to 65535 vertices or 79 subdivisions)",
sphere.subdivisions,
number_of_resulting_points
);
}
let generated = IcoSphere::new(sphere.subdivisions, |point| {
let inclination = point.z.acos();
let azumith = point.y.atan2(point.x);
let norm_inclination = 1.0 - (inclination / std::f32::consts::PI);
let norm_azumith = (azumith / std::f32::consts::PI) * 0.5;
[norm_inclination, norm_azumith]
});
let raw_points = generated.raw_points();
let points = raw_points
.iter()
.map(|&p| (p * sphere.radius).into())
.collect::<Vec<[f32; 3]>>();
let normals = raw_points
.iter()
.copied()
.map(Into::into)
.collect::<Vec<[f32; 3]>>();
let uvs = generated.raw_data().to_owned();
let mut indices = Vec::with_capacity(generated.indices_per_main_triangle() * 20);
for i in 0..20 {
generated.get_indices(i, &mut indices);
}
let indices = Indices::U32(indices);
let mut mesh = Mesh::new(PrimitiveTopology::TriangleList);
mesh.set_indices(Some(indices));
mesh.set_attribute(Mesh::ATTRIBUTE_POSITION, points);
mesh.set_attribute(Mesh::ATTRIBUTE_NORMAL, normals);
mesh.set_attribute(Mesh::ATTRIBUTE_UV_0, uvs);
mesh
}
}
pub use capsule::{Capsule, CapsuleUvProfile};
pub use icosphere::Icosphere;
pub use torus::Torus;

View file

@ -0,0 +1,94 @@
use crate::{
mesh::{Indices, Mesh},
pipeline::PrimitiveTopology,
};
use bevy_math::Vec3;
/// A torus (donut) shape.
#[derive(Debug)]
pub struct Torus {
pub radius: f32,
pub ring_radius: f32,
pub subdivisions_segments: usize,
pub subdivisions_sides: usize,
}
impl Default for Torus {
fn default() -> Self {
Torus {
radius: 1.0,
ring_radius: 0.5,
subdivisions_segments: 32,
subdivisions_sides: 24,
}
}
}
impl From<Torus> for Mesh {
fn from(torus: Torus) -> Self {
// code adapted from http://apparat-engine.blogspot.com/2013/04/procedural-meshes-torus.html
// (source code at https://github.com/SEilers/Apparat)
let n_vertices = (torus.subdivisions_segments + 1) * (torus.subdivisions_sides + 1);
let mut positions: Vec<[f32; 3]> = Vec::with_capacity(n_vertices);
let mut normals: Vec<[f32; 3]> = Vec::with_capacity(n_vertices);
let mut uvs: Vec<[f32; 2]> = Vec::with_capacity(n_vertices);
let segment_stride = 2.0 * std::f32::consts::PI / torus.subdivisions_segments as f32;
let side_stride = 2.0 * std::f32::consts::PI / torus.subdivisions_sides as f32;
for segment in 0..=torus.subdivisions_segments {
let theta = segment_stride * segment as f32;
let segment_pos = Vec3::new(theta.cos(), 0.0, theta.sin() * torus.radius);
for side in 0..=torus.subdivisions_sides {
let phi = side_stride * side as f32;
let x = theta.cos() * (torus.radius + torus.ring_radius * phi.cos());
let z = theta.sin() * (torus.radius + torus.ring_radius * phi.cos());
let y = torus.ring_radius * phi.sin();
let normal = segment_pos.cross(Vec3::unit_y()).normalize();
positions.push([x, y, z]);
normals.push(normal.into());
uvs.push([
segment as f32 / torus.subdivisions_segments as f32,
side as f32 / torus.subdivisions_sides as f32,
]);
}
}
let n_faces = (torus.subdivisions_segments) * (torus.subdivisions_sides);
let n_triangles = n_faces * 2;
let n_indices = n_triangles * 3;
let mut indices: Vec<u32> = Vec::with_capacity(n_indices);
let n_vertices_per_row = torus.subdivisions_sides + 1;
for segment in 0..torus.subdivisions_segments {
for side in 0..torus.subdivisions_sides {
let lt = side + segment * n_vertices_per_row;
let rt = (side + 1) + segment * n_vertices_per_row;
let lb = side + (segment + 1) * n_vertices_per_row;
let rb = (side + 1) + (segment + 1) * n_vertices_per_row;
indices.push(lt as u32);
indices.push(rt as u32);
indices.push(lb as u32);
indices.push(rt as u32);
indices.push(rb as u32);
indices.push(lb as u32);
}
}
let mut mesh = Mesh::new(PrimitiveTopology::TriangleList);
mesh.set_indices(Some(Indices::U32(indices)));
mesh.set_attribute(Mesh::ATTRIBUTE_POSITION, positions);
mesh.set_attribute(Mesh::ATTRIBUTE_NORMAL, normals);
mesh.set_attribute(Mesh::ATTRIBUTE_UV_0, uvs);
mesh
}
}