PLATFORM_RELFLAGS += -meabi
PLATFORM_CPPFLAGS += -ffixed-r2
were defined in all arch/powerpc/${CPU}/config.mk.
This commit moves them to arch/powerpc/config.mk.
Signed-off-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
A new valid setting case added for fman1, it uses platform frequency.
Signed-off-by: Shaohui Xie <Shaohui.Xie@freescale.com>
Acked-by: York Sun <yorksun@freescale.com>
MEM_PLL_RAT on T4240/T4160 Rev2.0 uses a value which is half of Rev1.0.
It's 12 in Rev1.0, for Rev2.0 it uses 6.
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Shaohui Xie <Shaohui.Xie@freescale.com>
Acked-by: York Sun <yorksun@freescale.com>
In PBL RAMBOOT(SPI/SD/NAND boot) mode, CPC1 used as SRAM, should disable
CPC1 speculation and keep it till relocation. Otherwise, speculation
transactions will go to DDR controller, it will cause problem.
Signed-off-by: Dave Liu <daveliu@freescale.com>
Signed-off-by: Shaohui Xie <Shaohui.Xie@freescale.com>
Acked-by: York Sun <yorksun@freescale.com>
Add support for Freescale T2080/T2081 SoC.
T2080 includes the following functions and features:
- Four dual-threads 64-bit Power architecture e6500 cores, up to 1.8GHz
- 2MB L2 cache and 512KB CoreNet platform cache (CPC)
- Hierarchical interconnect fabric
- One 32-/64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving
- Data Path Acceleration Architecture (DPAA) incorporating acceleration
- 16 SerDes lanes up to 10.3125 GHz
- 8 mEMACs for network interfaces (four 1Gbps MACs and four 10Gbps/1Gbps MACs)
- High-speed peripheral interfaces
- Four PCI Express controllers (two PCIe 2.0 and two PCIe 3.0 with SR-IOV)
- Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz
- Additional peripheral interfaces
- Two serial ATA (SATA 2.0) controllers
- Two high-speed USB 2.0 controllers with integrated PHY
- Enhanced secure digital host controller (SD/SDHC/SDXC/eMMC)
- Enhanced serial peripheral interface (eSPI)
- Four I2C controllers
- Four 2-pin UARTs or two 4-pin UARTs
- Integrated Flash Controller supporting NAND and NOR flash
- Three eight-channel DMA engines
- Support for hardware virtualization and partitioning enforcement
- QorIQ Platform's Trust Architecture 2.0
Differences between T2080 and T2081:
Feature T2080 T2081
1G Ethernet numbers: 8 6
10G Ethernet numbers: 4 2
SerDes lanes: 16 8
Serial RapidIO,RMan: 2 no
SATA Controller: 2 no
Aurora: yes no
SoC Package: 896-pins 780-pins
Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com>
Acked-by: York Sun <yorksun@freescale.com>
Freescale IFC controller has been used for mpc8xxx. It will be used
for ARM-based SoC as well. This patch moves the driver to driver/misc
and fix the header file includes.
Signed-off-by: York Sun <yorksun@freescale.com>
Fix ccsr_ddr structure to avoid using typedef. Combine DDR2 and DDR3
structure for 83xx, 85xx and 86xx.
Signed-off-by: York Sun <yorksun@freescale.com>
Freescale DDR driver has been used for mpc83xx, mpc85xx, mpc86xx SoCs.
The similar DDR controllers will be used for ARM-based SoCs.
Signed-off-by: York Sun <yorksun@freescale.com>
When indexing freqProcessor[] we use the first
value in the cpu's "reg" property, which on
new e6500 cores IDs the threads.
But freqProcessor[] should be indexed with a
core index so, when fixing "the clock-frequency"
cpu node property, access the freqProcessor[]
with the core index derived from the "reg' property.
If we don't do this, last half of the "cpu" nodes
will have broken "clock-frequency" values.
Signed-off-by: Laurentiu Tudor <Laurentiu.Tudor@freescale.com>
Cc: York Sun <yorksun@freescale.com>
Update the code that builds the pci endpoint liodn
offset list so that it doesn't overlap with other
liodns and doesn't generate negative offsets like:
fsl,liodn-offset-list = <0 0xffffffcd 0xffffffcf
0xffffffd1 0xffffffd3
0xffffffd5 0xffffffd7
0xffffffd9 0xffffffdb>;
The update consists in adding a parameter to the
function that builds the list to specify the base
liodn.
On PCI v2.4 use the old base = 256 and, on PCI 3.0
where some of the PCIE liodns are larger than 256,
use a base = 1024. The version check is based on
the PCI controller's version register.
Signed-off-by: Laurentiu Tudor <Laurentiu.Tudor@freescale.com>
Cc: Scott Wood <scottwood@freescale.com>
Cc: York Sun <yorksun@freescale.com>
The liodn for the T4240's PCIE controller is no longer set
through a register in the guts register block but with one
in the PCIE register block itself.
Use the already existing SET_PCI_LIODN_BASE macro that puts
the liodn in the correct register.
Signed-off-by: Laurentiu Tudor <Laurentiu.Tudor@freescale.com>
Cc: Scott Wood <scottwood@freescale.com>
Cc: York Sun <yorksun@freescale.com>
T1040 Soc has four personalities:
-T1040 (4 cores with L2 switch)
-T1042:Reduced personality of T1040 without L2 switch
-T1020:Reduced personality of T1040 with less cores(2 cores)
-T1022:Reduced personality of T1040 with 2 cores and without L2 switch
Update defines in arch/powerpc header files, Makefiles and in
driver/net/fm/Makefile to support all T1040 personalities
Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com>
Signed-off-by: Priyanka Jain <Priyanka.Jain@freescale.com>
[York Sun: fixed Makefiles]
Acked-by: York Sun <yorksun@freescale.com>
Note:
arch/powerpc/cpu/mpc8260/Makefile is originally like follows:
---<snip>---
START = start.o kgdb.o
COBJS = traps.o serial_smc.o serial_scc.o cpu.o cpu_init.o speed.o \
---<snip>---
COBJS-$(CONFIG_ETHER_ON_SCC) = ether_scc.o
---<snip>---
$(LIB): $(OBJS)
$(call cmd_link_o_target, $(OBJS) $(obj)kgdb.o)
The link rule `$(call cmd_link_o_target, $(OBJS) $(obj)kgdb.o)'
is weird.
kbdg.o is not included in $(OBJS) but linked into $(LIB)
and $(LIB) is not dependent on kgdb.o.
(Broken dependency tracking)
So,
START = start.o kgdb.o
shoud have been
START = start.o
SOBJS = kgdb.o
That is why this commit adds kgdb.o to obj-y, not to extra-y.
Signed-off-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
Cc: Wolfgang Denk <wd@denx.de>
Cc: Stefan Roese <sr@denx.de>
This allows to share some common code for the boards that use a corenet
base SoC.
Two different versions of the function are available in
fsl_corenet_serdes.c and fsl_corenet2_serdes.c files.
Signed-off-by: Valentin Longchamp <valentin.longchamp@keymile.com>
[York Sun: fix t1040qds.c]
Acked-by: York Sun <yorksun@freescale.com>
Erratum A006379 says CPCHDBCR0 bit field [10:14] has incorrect default
value after POR. The workaround is to set this field before enabling
CPC to 0x1e.
Erratum A006379 applies to
T4240 rev 1.0
B4860 rev 1.0, 2.0
Signed-off-by: York Sun <yorksun@freescale.com>
CHASSIS2 architecture never fix clock groups for Cluster and hardware
accelerator like PME, FMA. These are SoC defined. SoC defines :-
- NUM of PLLs present in the system
- Clusters and their Clock group
- hardware accelerator and their clock group
if no clock group, then platform clock divider for FMAN, PME
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
CHASSIS2 architecture never defines type of L2 cache present in SoC.
it is dependent upon the core present in the SoC.
for example,
- e6500 core has L2 cluster (Kibo)
- e5500 core has Backside L2 Cache
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
In a very rare condition, a system hang is possible when the e500 core
initiates a guarded load to PCI / PCIe /SRIO performs a coherent write
to memory. Please refer to errata document for more details. This erratum
applies to the following SoCs and their variants, if any.
BSC9132
BSC9131
MPC8536
MPC8544
MPC8548
MPC8569
MPC8572
P1010
P1020
P1021
P1022
P1023
P2020
C29x
Signed-off-by: York Sun <yorksun@freescale.com>
CC: Scott Wood <scottwood@freescale.com>
The source clock frequency of I2C bus on p1022 is the platform(CCB)
clock, not CCB/2. The wrong source clock frequency leads to wrong
I2C bus speed setting. so, fixed it.
Signed-off-by: Tang Yuantian <Yuantian.Tang@freescale.com>
- Added section "u_boot_list" in arch/powerpc/cpu/mpc85xx/u-boot-spl.lds
- Use the function i2c_init_all instead of i2c_init
Signed-off-by: Ying Zhang <b40530@freescale.com>
Multiple read/write transactions initiated by security
engine may cause system to hang.
Workaround: set MCFGR[AXIPIPE] to 0 to avoid hang.
Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com>
Acked-by: York Sun <yorksun@freescale.com>
Also some fix for QSGMII.
1. fix QSGMII configure of Serdes2.
2. fix PHY address of QSGMII MAC9 & MAC10 for each FMAN.
3. fix dtb for QSGMII interface.
Signed-off-by: Shaohui Xie <Shaohui.Xie@freescale.com>
Acked-by: York Sun <yorksun@freescale.com>
Makes the startup output more consistent
Signed-off-by: Shruti Kanetkar <Shruti@Freescale.com>
Acked-by: Andy Fleming <afleming@freescale.com>
Acked-by: Stefan Roese <sr@denx.de>
Acked-by: York Sun <yorksun@freescale.com>
Makes the startup output more consistent
Signed-off-by: Shruti Kanetkar <Shruti@Freescale.com>
Acked-by: Andy Fleming <afleming@freescale.com>
Acked-by: York Sun <yorksun@freescale.com>
85xx, 86xx PowerPC folders have code variables with CamelCase naming conventions.
because of this code checkpatch script generates "WARNING: Avoid CamelCase".
Convert variables name to normal naming convention and modify board, driver
files with updated the new structure.
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Acked-by: York Sun <yorksun@freescale.com>
The code from the internal on-chip ROM. It loads the final uboot image
into DDR, then jump to it to begin execution.
The SPL's size is sizeable, the maximum size must not exceed the size of L2
SRAM. It initializes the DDR through SPD code, and copys final uboot image
to DDR. So there are two stage uboot images:
* spl_boot, 96KB size. The env variables are copied to L2 SRAM, so that
ddr spd code can get the interleaving mode setting in env. It loads
final uboot image from offset 96KB.
* final uboot image, size is variable depends on the functions enabled.
Signed-off-by: Ying Zhang <b40530@freescale.com>
Acked-by: York Sun <yorksun@freescale.com>
1. The symbol CONFIG_SPL_NAND_MINIMAL is unused, so deleted it.
2. Some functions were unused in the minimal SPL, but it is useful
in the common SPL. So, enabled some functionality for common SPL.
Signed-off-by: Ying Zhang <b40530@freescale.com>
Acked-by: York Sun <yorksun@freescale.com>
This workaround is for the erratum I2C A004447. Device reference
manual provides a scheme that allows the I2C master controller
to generate nine SCL pulses, which enable an I2C slave device
that held SDA low to release SDA. However, due to this erratum,
this scheme no longer works. In addition, when I2C is used as
a source of the PBL, the state machine is not able to recover.
At the same time, delete the reduplicative definition of SVR_VER
and SVR_REV. The SVR_REV is the low 8 bits rather than the low 16
bits of svr. And we use the CONFIG_SYS_FSL_A004447_SVR_REV macro
instead of hard-code value 0x10, 0x11 and 0x20.
The CONFIG_SYS_FSL_A004447_SVR_REV = 0x00 represents that one
version of platform has this I2C errata. So enable this errata
by IS_SVR_REV(svr, maj, min) function.
Signed-off-by: Zhao Chenhui <chenhui.zhao@freescale.com>
Signed-off-by: Chunhe Lan <Chunhe.Lan@freescale.com>
Cc: Scott Wood <scottwood@freescale.com>
Cc: Heiko Schocher <hs@denx.de>
fsl_usb.h file created to share data bewteen usb platform code
and usb ip driver. Internal phy structure definitions moved to
this file
Signed-off-by: Ramneek Mehresh <ramneek.mehresh@freescale.com>
Acked-by: York Sun <yorksun@freescale.com>
It is not necessary for all processor to have serdes block 1 & 2.
They may have only one serdes block.
So, put serdes block 1 & 2 related code under defines
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Acked-by: York Sun <yorksun@freescale.com>
Fix the license header introduced by the following patches
Add TWR-P10xx board support
Add T4240EMU target
IDT8T49N222A configuration code
Add C29x SoC support
Add support for C29XPCIE board
Signed-off-by: York Sun <yorksun@freescale.com>
The Freescale C29x family is a high performance crypto co-processor.
It combines a single e500v2 core with necessary SEC engine. There're
three SoC types(C291, C292, C293) with the following features:
- 512K L2 Cache/SRAM and 512 KB platform SRAM
- DDR3/DDR3L 32bit DDR controller
- One PCI express (x1, x2, x4) Gen 2.0 Controller
- Trust Architecture 2.0
- SEC6.0 engine
Signed-off-by: Mingkai Hu <Mingkai.Hu@freescale.com>
Signed-off-by: Po Liu <Po.Liu@freescale.com>
1. Add CONFIG_SYS_DPAA_RMAN macro to t4240 and b4860.
2. Decrease RMan liodn offset number.
SET_RMAN_LIODN() is used to set liodn offset of RMan blocks 0-3.
For t4240 and b4860, RMan liodn base is assigned to 922, the original
offset number is too large that the liodn (base+offset 922+678 = 1600)
is greater than 0x500 the maximum liodn number.
Signed-off-by: Minghuan Lian <Minghuan.Lian@freescale.com>
Signed-off-by: York Sun <yorksun@freescale.com>
When a board (slave) boots from SRIO/PCIE, it would get the instructions
from a remote board (master) by SRIO/PCIE interface, and the slave's
u-boot image should be built with the
SYS_TEXT_BASE=0xFFF80000;
So the u-boot of the slave should avoid the NOR_BOOT branch at the
booting stage.
For example, when a P2041RDB boots from SRIO/PCIE, it will set TLB
entry 15 from base address "CONFIG_SYS_MONITOR_BASE & 0xffc00000",
and with the 4M size as the boot window in NOR_BOOT branch. Because
the CONFIG_SYS_MONITOR_BASE = CONFIG_SYS_TEXT_BASE = 0xFFF80000, so
the TLB entry will be from base address 0xffc00000 and with 4M size.
Then the u-boot will set TLB entry 14 from base address
"CONFIG_SYS_INIT_RAM_ADDR", and with the 16K size as the initial
stack window. For the P2041RDB platform, the CONFIG_SYS_INIT_RAM_ADDR
= 0xffd00000. So the TLB entry 14 and 15 will be in confliction.
There will be right TLB entries configurations when avoid the
NOR_BOOT branch and set the boot window from 0xfff00000 with 1M
size space.
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Erratum A-005812 Incorrect reservation clearing in Write Shadow mode can
result in invalid atomic operations. For u-boot, this erratum only impacts
SoCs running in write shadow mode.
Signed-off-by: York Sun <yorksun@freescale.com>
JEDEC spec requires the clocks to be stable before deasserting reset
signal for RDIMMs. Clocks start when any chip select is enabled and
clock control register is set. This patch also adds the interface to
toggle memory reset signal if needed by the boards.
Signed-off-by: York Sun <yorksun@freescale.com>
Prepare for emulator support for mpc85xx parts.
Disable DDR training and skip wrlvl_cntl_2 and wrlvl_cntl_3 registers.
These two registers improve stability but not supported by emulator.
Add CONFIG_FSL_TBCLK_EXTRA_DIV for possible adjustment to time base.
Signed-off-by: York Sun <yorksun@freescale.com>
CONFIG_SPL_BUILD creates debug TLB entry, so disable it before init_tlbs.
CONFIG_SPL_INIT_MINIMAL never creates any debug TLB entry, so no need
of disable_tlb().
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
init_tlbs() initialize all the TLB entries required for the system.
So disable DEBUG TLB entry before TLB entries initialization.
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
If a variable is used as array subscript, it's valid value range is
0 ... ARRAY_SIZE -1.
Signed-off-by: Axel Lin <axel.lin@ingics.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
There will clear the BSS in the function clear_bss(), the reset address of
the BSS started from the __bss_start, and increased by four-byte increments,
finally stoped depending on the address is equal to the _bss_end. If the end
address __bss_end is not alignment to 4byte, it will be an infinite loop.
1. The reset action stoped depending on the reset address is greater
than or equal the end address of the BSS.
2. The end address of the BSS should be 4byte aligned. Because the reset unit
is 4 Bytes.
This patch is on top of the patch "powerpc/mpc85xx: support application
without resetvec segment in the linker script".
Signed-off-by: Ying Zhang <b40530@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
For SD/SPI 2-stage bootloader, the On-Chip Rom code loads the SPL into L2 SRAM,
then jump to it to begin execution. After that, the SPL loads the final uboot
image into DDR, then jump to it to begin execution. The segment .resetvec in
the SPL and in final U-boot is useless.
So, add new symbols CONFIG_SYS_MPC85XX_NO_RESETVEC for this application.
If CONFIG_SYS_MPC85XX_NO_RESETVEC is set, the segment .resetvec is excluded
and the segment .bootpg is placed in the previous 4K of the segment .text.
Signed-off-by: Ying Zhang <b40530@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Erratum A-006593 is "Atomic store may report failure but still allow
the store data to be visible".
The workaround is: "Set CoreNet Platform Cache register CPCHDBCR0 bit
21 to 1'b1. This may have a small impact on synthetic write bandwidth
benchmarks but should have a negligible impact on real code."
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Currently, the macro "CONFIG_SYS_FSL_SRIO_PCIE_BOOT_MASTER" can enable
the master module of Boot from SRIO and PCIE on a platform. But this
is not a silicon feature, it's just a specific booting mode based on
the SRIO and PCIE interfaces. So it's inappropriate to put the macro
into the file arch/powerpc/include/asm/config_mpc85xx.h.
Change the macro "CONFIG_SYS_FSL_SRIO_PCIE_BOOT_MASTER" to
"CONFIG_SRIO_PCIE_BOOT_MASTER", remove them from
arch/powerpc/include/asm/config_mpc85xx.h file, and add those macros
in configuration header file of each board which can support the
master module of Boot from SRIO and PCIE.
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Freescale documentation presents the PowerPC core names in lower case, such as
"e300", "e500", "e600", etc.
Change the upper case occurrences into lower case so that the core names
reported in U-boot can match the ones from the documentation.
While at it also fix a checkpatch error:
ERROR: space prohibited before that close parenthesis ')'
#53: FILE: arch/powerpc/cpu/mpc86xx/cpu.c:81:
+ printf("e600 Core %d", (msscr0 & 0x20) ? 1 : 0 );
Reported-by: Heinz Wrobel <heinz.wrobel@freescale.com>
Signed-off-by: Fabio Estevam <fabio.estevam@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Linker script is not able find start.o binary. So add its absolute path in
u-boot-spl.lds. This change is similar to u-boot-nand.lds
common/Makefile: Avoid compiling unnecssary files
fsl_ifc_spl.c : It is is responsible for reading u-boot binary from
NAND flash and copying into DDR. It also transfer control from NAND SPL
to u-boot image present in DDR.
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
IFC errata A003399 is valid for IFC NOR boot i.e.if no on-board NOR flash or
no NOR boot, do not compile its workaround.
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
To avoid sign extension problem, use explicit casting to cast
the SDRAM size to type phys_size_t, or else, if the SDRAM size
is 2G(0x80000000), it will be extended to 0xffffffff80000000
when phys_size_t is type 'unsigned long long'.
Signed-off-by: Mingkai Hu <Mingkai.Hu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Accidentally applied an earlier version of the patch, which set
the compatible to "fsl,qoriq-clockgen-2", lacking the final
".0".
Signed-off-by: Andy Fleming <afleming@freescale.com>
Signed-off-by: Tang Yuantian <Yuantian.Tang@freescale.com>
dcbi instruction has been used to clear D-cache lock. However, the cache
lock is persistent for e6500 core. Use dcblc to clear the lock explicitly.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Boot ROM code creates TLB entries for 3.5G space before entering
the u-boot. Earlier we were deleting these entries after early
initialization of CPU. In recent past, code has been added
to invalidate all these entries before relocation of u-boot code.
So this code to delete TLB entries after CPU initialization
is no longer required.
Signed-off-by: Ruchika Gupta <ruchika.gupta@freescale.com>
Acked-by: Matthew McClintock <msm@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
To align with chassis generation 2 spec, all cores are numbered in sequence.
The cores may reside across multiple clusters. Each cluster has zero to four
cores. The first available core is numbered as core 0. The second available
core is numbered as core 1 and so on.
Core clocks are generated by each clusters. To identify the cluster of each
core, topology registers are examined.
Cluster clock registers are reorganized to be easily indexed.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
T1040 and variants have e5500 cores and are compliant to QorIQ Chassis
Generation 2. The major difference between T1040 and its variants is the
number of cores and the number of L2 switch ports.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
"cpu <num> status" should check if core is disabled before printing
the spin table location.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The workaround has been updated to use a slightly different magic number.
Change from 0x00003000 to 0x30003000.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
This is what we have done for the UTMI PHY on P3041/P5020. Then the PHY
initialization can be reused in kernel without “usb start” command.
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
When CONFIG_SYS_FSL_QORIQ_CHASSIS2 is not defined, QMAN frequency will not
be initialized, and QMAN will have a wrong frequency display.
Signed-off-by: Shaohui Xie <Shaohui.Xie@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
T4160 SoC is low power version of T4240. The T4160 combines eight dual
threaded Power Architecture e6500 cores and two memory complexes (CoreNet
platform cache and DDR3 memory controller) with the same high-performance
datapath acceleration, networking, and peripheral bus interfaces.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Protocols are constants. Fix arrays with const prefix.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The PIR parsing algorithm we used is not only for E6500. It applies to all
SoCs with chassis 2.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Use decimal and hexadecimal for protocol numbers. It helps to match with
SoC user manual.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Missing nodes of crypto, pme, etc in device tree is not a fatal error.
Setting up the qman portal should skip the missing node and continue
to finish the rest.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Lane H on SerDes4 should be SATA2 instead of SATA1
Signed-off-by: Jerry Huang <Chang-Ming.Huang@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The L1 D-cache on e6500 is write-through. This means that it's not
considered a good idea to have the L1 up and running if the L2 is
disabled. We don't actually *use* the L1 until after the L2 is
brought up on e6500, so go ahead and move the L1 enablement after
that code is done.
Signed-off-by: Andy Fleming <afleming@freescale.com>
Makes it a bit easier to see if we've properly set them. While
we're in there, modify the accesses to HDBCR0 and HDBCR1 to actually
use those definitions.
Signed-off-by: Andy Fleming <afleming@freescale.com>
The bit positions for FMAN1 freq in RCW is different for B4860.
Also addded a case when FMAN1 frewuency is equal to systembus.
Signed-off-by: Sandeep Singh <Sandeep@freescale.com>
Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Extending LIODN offset range from 1-5 to 1-10
While using a qman portal with a higher index the LIODN offset
is incorrectly set, thus extending the range of offsets covers
all 10 qman portals
Signed-off-by: Cristian Sovaiala <cristian.sovaiala@freescale.com>
Acked-by: Haiying Wang <Haiying.Wang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Only some chips have four SerDes banks, so don't define lanes for a bank
that doesn't exist.
Signed-off-by: Timur Tabi <timur@tabi.org>
Signed-off-by: Andy Fleming <afleming@freescale.com>
On P204x/P304x/P50x0 Rev1.0, USB transmit will result in false internal
multi-bit ECC errors, which has impact on performance, so software should
disable all ECC reporting from USB1 and USB2.
In formal release document, the errata number should be USB14 instead of USB138.
Signed-off-by: xulei <Lei.Xu@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: xulei <B33228@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
For T4/B4, the clockgen node compatible string is updated to version 2.
Add clock-frequency setting for this new version.
Signed-off-by: Tang Yuantian <Yuantian.Tang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Set the device tree property associated with the mpic source
frequency. The frequency is used for mpic timer.
Signed-off-by: Wang Dongsheng <dongsheng.wang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The 'fsl,pme-rev1' and 'fsl-pme-rev2' properties have been added to the
pme portal node. This is required for software to determine which version
of PME hardware is present and take appropriate actions.
These properties are a direct reflection of the corresponding ccsr pme
register value.
Also removed unnecessary static global variables.
Signed-off-by: Jeffrey Ladouceur <Jeffrey.Ladouceur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
'bool' is defined in random places. This patch consolidates them into a
single header file include/linux/types.h, using stdbool.h introduced in C99.
All other #define, typedef and enum are removed. They are all consistent with
true = 1, false = 0.
Replace FALSE, False with false. Replace TRUE, True with true.
Skip *.py, *.php, lib/* files.
Signed-off-by: York Sun <yorksun@freescale.com>
Albert's rework of the linker scripts conflicted with Simon's making
everyone use __bss_end. We also had a minor conflict over
README.scrapyard being added to in mainline and enhanced in
u-boot-arm/master with proper formatting.
Conflicts:
arch/arm/cpu/ixp/u-boot.lds
arch/arm/cpu/u-boot.lds
arch/arm/lib/Makefile
board/actux1/u-boot.lds
board/actux2/u-boot.lds
board/actux3/u-boot.lds
board/dvlhost/u-boot.lds
board/freescale/mx31ads/u-boot.lds
doc/README.scrapyard
include/configs/tegra-common.h
Build tested for all of ARM and run-time tested on am335x_evm.
Signed-off-by: Tom Rini <trini@ti.com>
Note this is a tree-wide change affecting multiple architectures.
At present we use __bss_start, but mostly __bss_end__. This seems
inconsistent and in a number of places __bss_end is used instead.
Change to use __bss_end for the BSS end symbol throughout U-Boot. This
makes it possible to use the asm-generic/sections.h file on all
archs.
Signed-off-by: Simon Glass <sjg@chromium.org>
Refactor linker-generated array code so that symbols
which were previously linker-generated are now compiler-
generated. This causes relocation records of type
R_ARM_ABS32 to become R_ARM_RELATIVE, which makes
code which uses LGA able to run before relocation as
well as after.
Note: this affects more than ARM targets, as linker-
lists span possibly all target architectures, notably
PowerPC.
Conflicts:
arch/arm/cpu/arm926ejs/mxs/u-boot-spl.lds
arch/arm/cpu/arm926ejs/spear/u-boot-spl.lds
arch/arm/cpu/armv7/omap-common/u-boot-spl.lds
board/ait/cam_enc_4xx/u-boot-spl.lds
board/davinci/da8xxevm/u-boot-spl-da850evm.lds
board/davinci/da8xxevm/u-boot-spl-hawk.lds
board/vpac270/u-boot-spl.lds
Signed-off-by: Albert ARIBAUD <albert.u.boot@aribaud.net>
trivial:
fdt_support.c:89:64: warning: Using plain integer as NULL pointer
fdt_support.c:325:65: warning: Using plain integer as NULL pointer
fdt_support.c:352:65: warning: Using plain integer as NULL pointer
For the following bad constant expression, We hardcode the max. number of
memory banks to four for the foreseeable future, and add an error with
instructions on what to do once it's exceeded:
fdt_support.c:397:22: error: bad constant expression
For the rest below, sparse found a couple of wrong endian conversions
in of_bus_default_translate() and fdt_get_base_address(), but
otherwise the rest is mostly annotation fixes:
fdt_support.c:64:24: warning: cast to restricted __be32
fdt_support.c:192:21: warning: incorrect type in assignment (different base types)
fdt_support.c:192:21: expected unsigned int [unsigned] [usertype] tmp
fdt_support.c:192:21: got restricted __be32 [usertype] <noident>
fdt_support.c:201:21: warning: incorrect type in assignment (different base types)
fdt_support.c:201:21: expected unsigned int [unsigned] [addressable] [usertype] tmp
fdt_support.c:201:21: got restricted __be32 [usertype] <noident>
fdt_support.c:304:13: warning: incorrect type in assignment (different base types)
fdt_support.c:304:13: expected unsigned int [unsigned] [usertype] val
fdt_support.c:304:13: got restricted __be32 [usertype] <noident>
fdt_support.c:333:13: warning: incorrect type in assignment (different base types)
fdt_support.c:333:13: expected unsigned int [unsigned] [usertype] val
fdt_support.c:333:13: got restricted __be32 [usertype] <noident>
fdt_support.c:359:13: warning: incorrect type in assignment (different base types)
fdt_support.c:359:13: expected unsigned int [unsigned] [usertype] val
fdt_support.c:359:13: got restricted __be32 [usertype] <noident>
fdt_support.c:373:21: warning: cast to restricted __be32
fdt_support.c:963:48: warning: incorrect type in argument 1 (different base types)
fdt_support.c:963:48: expected restricted __be32 const [usertype] *p
fdt_support.c:963:48: got unsigned int [usertype] *<noident>
fdt_support.c:971:48: warning: incorrect type in argument 1 (different base types)
fdt_support.c:971:48: expected restricted __be32 const [usertype] *p
fdt_support.c:971:48: got unsigned int [usertype] *<noident>
fdt_support.c:984:29: warning: incorrect type in argument 1 (different base types)
fdt_support.c:984:29: expected restricted __be32 const [usertype] *cell
fdt_support.c:984:29: got unsigned int [usertype] *addr
fdt_support.c:996:32: warning: incorrect type in argument 1 (different base types)
fdt_support.c:996:32: expected restricted __be32 const [usertype] *cell
fdt_support.c:996:32: got unsigned int [usertype] *addr
fdt_support.c:1041:41: warning: incorrect type in argument 1 (different base types)
fdt_support.c:1041:41: expected restricted __be32 const [usertype] *cell
fdt_support.c:1041:41: got unsigned int [usertype] *addr
fdt_support.c:1053:41: warning: incorrect type in argument 2 (different base types)
fdt_support.c:1053:41: expected restricted __be32 const [usertype] *range
fdt_support.c:1053:41: got unsigned int const [usertype] *[assigned] ranges
fdt_support.c:1064:53: warning: incorrect type in argument 2 (different base types)
fdt_support.c:1064:53: expected restricted __be32 const [usertype] *addr
fdt_support.c:1064:53: got unsigned int [usertype] *addr
fdt_support.c:1110:50: warning: incorrect type in argument 2 (different base types)
fdt_support.c:1110:50: expected restricted __be32 const [usertype] *addr
fdt_support.c:1110:50: got unsigned int *<noident>
fdt_support.c:1121:49: warning: incorrect type in argument 1 (different base types)
fdt_support.c:1121:49: expected restricted __be32 const [usertype] *cell
fdt_support.c:1121:49: got unsigned int *<noident>
fdt_support.c:1147:60: warning: incorrect type in argument 2 (different base types)
fdt_support.c:1147:60: expected restricted __be32 const [usertype] *addr
fdt_support.c:1147:60: got unsigned int *<noident>
fdt_support.c:1081:5: warning: symbol '__of_translate_address' was not declared. Should it be static?
fdt_support.c:1154:5: error: symbol 'fdt_translate_address' redeclared with different type (originally declared at include/fdt_support.h:95) - incompatible argument 3 (different base types)
fdt_support.c: In function 'fdt_node_offset_by_compat_reg':
fdt_support.c:1173:17: warning: initialization discards 'const' qualifier from pointer target type [enabled by default]
See also linux kernel commit 0131d897 "of/address: use proper
endianess in get_flags".
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
Cc: Jerry Van Baren <gvb.uboot@gmail.com>
Move these fields into arch_global_data and tidy up. This is needed for
both ppc and m68k since they share the i2c driver.
Signed-off-by: Simon Glass <sjg@chromium.org>
Move these fields into arch_global_data and tidy up.
Signed-off-by: Simon Glass <sjg@chromium.org>
[trini: Update for bsc9132qds.c, b4860qds.c]
Signed-off-by: Tom Rini <trini@ti.com>
Move vco_out, cpm_clk, scc_clk, brg_clk into arch_global_data and tidy
up. Leave pci_clk on its own since this should really depend only on
CONFIG_PCI and not any particular chip type.
Signed-off-by: Simon Glass <sjg@chromium.org>
When CoreNet Fabric (CCF) internal resources are consumed by the cores,
inbound SRIO messaging traffic through RMan can put the device into a
deadlock condition.
This errata workaround forces internal resources to be reserved for
upstream transactions. This ensures resources exist on the device for
upstream transactions and removes the deadlock condition.
The Workaround is for the T4240 silicon rev 1.0.
Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
If property 'fsl,sec-era' is already present, it is updated.
This property is required so that applications can ascertain which
descriptor commands are supported on a particular CAAM version.
Signed-off-by: Vakul Garg <vakul@freescale.com>
Cc: Andy Fleming <afleming@gmail.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
e6500 implements MMUv2 and supports power-of-2 page sizes rather than
power-of-4. Add support for such pages.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The BSC9132 is a highly integrated device that targets the evolving
Microcell, Picocell, and Enterprise-Femto base station market subsegments.
The BSC9132 device combines Power Architecture e500 and DSP StarCore SC3850
core technologies with MAPLE-B2P baseband acceleration processing elements
to address the need for a high performance, low cost, integrated solution
that handles all required processing layers without the need for an
external device except for an RF transceiver or, in a Micro base station
configuration, a host device that handles the L3/L4 and handover between
sectors.
The BSC9132 SoC includes the following function and features:
- Power Architecture subsystem including two e500 processors with
512-Kbyte shared L2 cache
- Two StarCore SC3850 DSP subsystems, each with a 512-Kbyte private L2
cache
- 32 Kbyte of shared M3 memory
- The Multi Accelerator Platform Engine for Pico BaseStation Baseband
Processing (MAPLE-B2P)
- Two DDR3/3L memory interfaces with 32-bit data width (40 bits including
ECC), up to 1333 MHz data rate
- Dedicated security engine featuring trusted boot
- Two DMA controllers
- OCNDMA with four bidirectional channels
- SysDMA with sixteen bidirectional channels
- Interfaces
- Four-lane SerDes PHY
- PCI Express controller complies with the PEX Specification-Rev 2.0
- Two Common Public Radio Interface (CPRI) controller lanes
- High-speed USB 2.0 host and device controller with ULPI interface
- Enhanced secure digital (SD/MMC) host controller (eSDHC)
- Antenna interface controller (AIC), supporting four industry
standard JESD207/four custom ADI RF interfaces
- ADI lanes support both full duplex FDD support & half duplex TDD
- Universal Subscriber Identity Module (USIM) interface that
facilitates communication to SIM cards or Eurochip pre-paid phone
cards
- Two DUART, two eSPI, and two I2C controllers
- Integrated Flash memory controller (IFC)
- GPIO
- Sixteen 32-bit timers
Signed-off-by: Naveen Burmi <NaveenBurmi@freescale.com>
Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Different personalities/derivatives of SoC may have reduced cluster. But it is
not necessary for last valid DCFG_CCSR_TP_CLUSTER register to have
DCFG_CCSR_TP_CLUSTER[EOC] bit set to represent "End of Clusters".
EOC bit can still be set in last DCFG_CCSR_TP_CLUSTER register of orignal SoC
which may not be valid for the personality.
So add initiator type check to find valid cluster.
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The boot page in memory is already reserved so OS won't overwrite.
As long as the boot page translation is active, the default boot page
also needs to be reserved in case the memory is 4GB or more.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Move the getenv_yesno() to env_common.c and change most checks for
'y' or 'n' to use this helper.
Signed-off-by: Joe Hershberger <joe.hershberger@ni.com>
By extracting these defines into a header, they can be re-used by other
C sources as well. This will be done by the SPL framework OS boot
support.
Signed-off-by: Stefan Roese <sr@denx.de>
Fix a bug introduced by this patch
powerpc/mpc85xx: Temporary fix for spin table backward compatibility
Should have checked both CONFIG_PPC_SPINTABLE_COMPATIBLE and CONFIG_MP in
cpu_init.c.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The documented work-around for P4080 erratum SERDES-9 has been updated.
It is now compatible with the work-around for erratum A-4580.
This requires adding a few bitfield macros for the BnTTLCRy0 register.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Due to SerDes configuration error, if we set the PCI-e controller link width
as x8 in RCW and add a narrower width(such as x4, x2 or x1) PCI-e device to
PCI-e slot, it fails to train down to the PCI-e device's link width. According
to p4080ds errata PCIe-A003, we reset the PCI-e controller link width to x4 in
u-boot. Then it can train down to x2 or x1 width to make the PCI-e link between
RC and EP.
Signed-off-by: Yuanquan Chen <B41889@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The work-around for erratum A-004580 ("Internal tracking loop can falsely
lock causing unrecoverable bit errors") is implemented via the PBI
(pre-boot initialization code, typically attached to the RCW binary).
This is because the work-around is easier to implement in PBI than in
U-Boot itself.
It is still useful, however, for the 'errata' command to tell us whether
the work-around has been applied. For A-004580, we can do this by verifying
that the values in the specific registers that the work-around says to
update.
This change requires access to the SerDes lane sub-structure in
serdes_corenet_t, so we make it a named struct.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Once u-boot sets the spin table to cache-enabled memory, old kernel which
uses cache-inhibit mapping without coherence will not work properly. We
use this temporary fix until kernel has updated its spin table code.
For now this fix is activated by default. To disable this fix for new
kernel, set environmental variable "spin_table_compat=no". After kernel
has updated spin table code, this default shall be changed.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The work-around for erratum A-004849 ("CoreNet fabric (CCF) can exhibit a
deadlock under certain traffic patterns causing the system to hang") is
implemented via the PBI (pre-boot initialization code, typically attached
to the RCW binary). This is because the work-around is easier to implement
in PBI than in U-Boot itself.
It is still useful, however, for the 'errata' command to tell us whether
the work-around has been applied. For A-004849, we can do this by verifying
that the values in the specific registers that the work-around says to
update.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
There were a number of shared files that were using
CONFIG_SYS_MPC85xx_DDR_ADDR, or CONFIG_SYS_MPC86xx_DDR_ADDR, and
several variants (DDR2, DDR3). A recent patchset added
85xx-specific ones to code which was used by 86xx systems.
After reviewing places where these constants were used, and
noting that the type definitions of the pointers assigned to
point to those addresses were the same, the cleanest approach
to fixing this problem was to unify the namespace for the
85xx, 83xx, and 86xx DDR address definitions.
This patch does:
s/CONFIG_SYS_MPC8.xx_DDR/CONFIG_SYS_MPC8xxx_DDR/g
All 85xx, 86xx, and 83xx have been built with this change.
Signed-off-by: Andy Fleming <afleming@freescale.com>
Tested-by: Andy Fleming <afleming@freescale.com>
Acked-by: Kim Phillips <kim.phillips@freescale.com>
Update CONFIG_RAMBOOT and CONFIG_NAND_SPL references to accept CONFIG_SPL
and CONFIG_SPL_BUILD, respectively. CONFIG_NAND_SPL can be removed once
the last mpc85xx nand_spl target is gone.
CONFIG_RAMBOOT will need to remain for other use cases, but it doesn't
seem right to overload it for meaning SPL as well as nand_spl does. Even
if it's somewhat appropriate for the main u-boot, the SPL itself isn't
(necessarily) ramboot, and we don't have separate configs for SPL and
main u-boot. It was also inconsistent, as other platforms such as
mpc83xx didn't use CONFIG_RAMBOOT in this way.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Cc: Andy Fleming <afleming@freescale.com>
cpu_init_nand.c is renamed to spl_minimal.c as it is not really NAND-specific.
Signed-off-by: Scott Wood <scottwood@freescale.com>
---
v2: factor out START, and change cpu_init_nand.c to spl_minimal.c
Cc: Andy Fleming <afleming@freescale.com>
A subsequent patch will conditionalize some of the files that are
currently unconditional.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Cc: Andy Fleming <afleming@freescale.com>
It applies to non-Freescale 85xx boards as well as Freescale boards,
so it doesn't belong in board/freescale. Plus, it needs to come out
of nand_spl if it's to be used by the new SPL.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Cc: Andy Fleming <afleming@freescale.com>
In the RAMBOOT/SPL case we were creating a TLB entry starting at
CONFIG_SYS_MONITOR_BASE, and just hoping that the base was properly
aligned for the TLB entry size. This turned out to not be the case
with NAND SPL because the main U-Boot starts at an offset into the image
in order to skip the SPL itself.
Fix the TLB entry to always start at a proper alignment. We still assume that
CONFIG_SYS_MONITOR_BASE doesn't start immediately before a large-page boundary
thus requiring multiple TLB entries.
Signed-off-by: Scott Wood <scottwood@frescale.com>
Cc: Andy Fleming <afleming@freescale.com>
Now outputs like this:
L2: 512 KB already enabled, moving to 0xf8f80000
rather than this:
L2: 512 KB already enabledmoving to 0xf8f80000
Signed-off-by: Scott Wood <scottwood@freescale.com>
Cc: Andy Fleming <afleming@gmail.com>
Previously, in many if not all configs we were creating overlapping TLB entries
which is illegal. This caused a crash during boot when moving p2020rdb NAND SPL
into L2 SRAM.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Cc: Prabhakar Kushwaha <prabhakar@freescale.com>
Cc: Andy Fleming <afleming@freescale.com>
--
Prabhakar, please test that debug still works.
fsl_corenet_serdes.c:485:6: warning: symbol '__soc_serdes_init' was not declared. Should it be static?
cpu_init.c:185:6: warning: symbol 'invalidate_cpc' was not declared. Should it be static?
bcsr.c:28:27: warning: non-ANSI function declaration of function 'enable_8568mds_duart'
bcsr.c:39:33: warning: non-ANSI function declaration of function 'enable_8568mds_flash_write'
bcsr.c:46:34: warning: non-ANSI function declaration of function 'disable_8568mds_flash_write'
bcsr.c:53:29: warning: non-ANSI function declaration of function 'enable_8568mds_qe_mdio'
bcsr.c:28:33: warning: non-ANSI function declaration of function 'enable_8569mds_flash_write'
bcsr.c:33:34: warning: non-ANSI function declaration of function 'disable_8569mds_flash_write'
bcsr.c:38:28: warning: non-ANSI function declaration of function 'enable_8569mds_qe_uec'
bcsr.c:63:47: warning: non-ANSI function declaration of function 'disable_8569mds_brd_eeprom_write_protect'
ngpixis.c:245:1: error: directive in argument list
ngpixis.c:247:1: error: directive in argument list
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
traps.c:*:1: warning: symbol 'print_backtrace' was not declared. Should it be static?
traps.c:93:1: warning: symbol '_exception' was not declared. Should it be static?
board.c:166:6: warning: symbol '__board_add_ram_info' was not declared. Should it be static?
board.c:174:5: warning: symbol '__board_flash_wp_on' was not declared. Should it be static?
board.c:187:6: warning: symbol '__cpu_secondary_init_r' was not declared. Should it be static?
board.c:265:12: warning: symbol 'init_sequence' was not declared. Should it be static?
board.c:348:5: warning: symbol '__fixup_cpu' was not declared. Should it be static?
board.c:405:53: warning: Using plain integer as NULL pointer
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
The timeout_save variable was only used by the DDR111_134
erratum code. It was being set, but never used. Newer compilers
will actually complain about this.
Signed-off-by: Andy Fleming <afleming@freescale.com>
Currently, the SRIO and PCIE boot master module will be compiled into the
u-boot image if the macro "CONFIG_FSL_CORENET" has been defined. And this
macro has been included by all the corenet architecture platform boards.
But in fact, it's uncertain whether all corenet platform boards support
this feature.
So it may be better to get rid of the macro "CONFIG_FSL_CORENET", and add
a special macro for every board which can support the feature. This
special macro will be defined in the header file
"arch/powerpc/include/asm/config_mpc85xx.h". It will decide if the SRIO
and PCIE boot master module should be compiled into the board u-boot image.
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Starting from QMan3.0, the QMan clock cycle needs be exposed so that the kernel
driver can use it to calculate the shaper prescaler and rate.
Signed-off-by: Haiying Wang <Haiying.Wang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Because QMan3.0 and BMan2.1 used ip_cfg in ip_rev_2 register to differ the
total portal number, buffer pool number etc, we can use this info to limit
those resources in kernel driver.
Signed-off-by: Haiying Wang <Haiying.Wang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
New corenet platforms with chassis2 have separated DDR clock inputs. Use
CONFIG_DDR_CLK_FREQ for DDR clock. This patch also cleans up the logic of
detecting and displaying synchronous vs asynchronous mode.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Move spin table to cached memory to comply with ePAPR v1.1.
Load R3 with 64-bit value if CONFIG_SYS_PPC64 is defined.
'M' bit is set for DDR TLB to maintain cache coherence.
See details in doc/README.mpc85xx-spin-table.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
R6 was in ePAPR draft version but was dropped in official spec.
Removing it to comply.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
After DDR controller is enabled, it performs a calibration for the
transmit data vs DQS paths. During this calibration, the DDR controller
may make an inaccurate calculation, resulting in a non-optimal tap point.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Boot space translation utilizes the pre-translation address to select
the DDR controller target. However, the post-translation address will be
presented to the selected DDR controller. It is possible that the pre-
translation address selects one DDR controller but the post-translation
address exists in a different DDR controller when using certain DDR
controller interleaving modes. The device may fail to boot under these
circumstances. Note that a DDR MSE error will not be detected since DDR
controller bounds registers are programmed to be the same when configured
for DDR controller interleaving.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
When ECC is enabled, DDR controller needs to initialize the data and ecc.
The wait time can be calcuated with total memory size, bus width, bus speed
and interleaving mode. If it went wrong, it is bettert to timeout than
waiting for D_INIT to clear, where it probably hangs.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
DDRC ver 4.7 adds DDR_SLOW bit in sdram_cfg_2 register. This bit needs to be
set for speed lower than 1250MT/s.
CDR1 and CDR2 are control driver registers. ODT termination valueis for
IOs are defined. Starting from DDRC 4.7, the decoding of ODT for IOs is
000 -> Termsel off
001 -> 120 Ohm
010 -> 180 Ohm
011 -> 75 Ohm
100 -> 110 Ohm
101 -> 60 Ohm
110 -> 70 Ohm
111 -> 47 Ohm
Add two write leveling registers. Each QDS now has its own write leveling
start value. In case of zero value, the value of QDS0 will be used. These
values are board-specific and are set in board files.
Extend DDR register timing_cfg_1 to have 4 bits for each field.
DDR control driver registers and write leveling registers are added to
interactive debugging for easy access.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Add support for Freescale B4860 and variant SoCs. Features of B4860 are
(incomplete list):
Six fully-programmable StarCore SC3900 FVP subsystems, divided into three
clusters-each core runs up to 1.2 GHz, with an architecture highly
optimized for wireless base station applications
Four dual-thread e6500 Power Architecture processors organized in one
cluster-each core runs up to 1.8 GHz
Two DDR3/3L controllers for high-speed, industry-standard memory interface
each runs at up to 1866.67 MHz
MAPLE-B3 hardware acceleration-for forward error correction schemes
including Turbo or Viterbi decoding, Turbo encoding and rate matching,
MIMO MMSE equalization scheme, matrix operations, CRC insertion and
check, DFT/iDFT and FFT/iFFT calculations, PUSCH/PDSCH acceleration,
and UMTS chip rate acceleration
CoreNet fabric that fully supports coherency using MESI protocol between
the e6500 cores, SC3900 FVP cores, memories and external interfaces.
CoreNet fabric interconnect runs at 667 MHz and supports coherent and
non-coherent out of order transactions with prioritization and
bandwidth allocation amongst CoreNet endpoints.
Data Path Acceleration Architecture, which includes the following:
Frame Manager (FMan), which supports in-line packet parsing and general
classification to enable policing and QoS-based packet distribution
Queue Manager (QMan) and Buffer Manager (BMan), which allow offloading
of queue management, task management, load distribution, flow ordering,
buffer management, and allocation tasks from the cores
Security engine (SEC 5.3)-crypto-acceleration for protocols such as
IPsec, SSL, and 802.16
RapidIO manager (RMAN) - Support SRIO types 8, 9, 10, and 11 (inbound and
outbound). Supports types 5, 6 (outbound only)
Large internal cache memory with snooping and stashing capabilities for
bandwidth saving and high utilization of processor elements. The
9856-Kbyte internal memory space includes the following:
32 Kbyte L1 ICache per e6500/SC3900 core
32 Kbyte L1 DCache per e6500/SC3900 core
2048 Kbyte unified L2 cache for each SC3900 FVP cluster
2048 Kbyte unified L2 cache for the e6500 cluster
Two 512 Kbyte shared L3 CoreNet platform caches (CPC)
Sixteen 10-GHz SerDes lanes serving:
Two Serial RapidIO interfaces. Each supports up to 4 lanes and a total
of up to 8 lanes
Up to 8-lanes Common Public Radio Interface (CPRI) controller for glue-
less antenna connection
Two 10-Gbit Ethernet controllers (10GEC)
Six 1G/2.5-Gbit Ethernet controllers for network communications
PCI Express controller
Debug (Aurora)
Two OCeaN DMAs
Various system peripherals
182 32-bit timers
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Add support for Freescale T4240 SoC. Feature of T4240 are
(incomplete list):
12 dual-threaded e6500 cores built on Power Architecture® technology
Arranged as clusters of four cores sharing a 2 MB L2 cache.
Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture
v2.06-compliant)
Three levels of instruction: user, supervisor, and hypervisor
1.5 MB CoreNet Platform Cache (CPC)
Hierarchical interconnect fabric
CoreNet fabric supporting coherent and non-coherent transactions with
prioritization and bandwidth allocation amongst CoreNet end-points
1.6 Tbps coherent read bandwidth
Queue Manager (QMan) fabric supporting packet-level queue management and
quality of service scheduling
Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving
support
Memory prefetch engine (PMan)
Data Path Acceleration Architecture (DPAA) incorporating acceleration for
the following functions:
Packet parsing, classification, and distribution (Frame Manager 1.1)
Queue management for scheduling, packet sequencing, and congestion
management (Queue Manager 1.1)
Hardware buffer management for buffer allocation and de-allocation
(BMan 1.1)
Cryptography acceleration (SEC 5.0) at up to 40 Gbps
RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps
Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps
DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0)
32 SerDes lanes at up to 10.3125 GHz
Ethernet interfaces
Up to four 10 Gbps Ethernet MACs
Up to sixteen 1 Gbps Ethernet MACs
Maximum configuration of 4 x 10 GE + 8 x 1 GE
High-speed peripheral interfaces
Four PCI Express 2.0/3.0 controllers
Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with
Type 11 messaging and Type 9 data streaming support
Interlaken look-aside interface for serial TCAM connection
Additional peripheral interfaces
Two serial ATA (SATA 2.0) controllers
Two high-speed USB 2.0 controllers with integrated PHY
Enhanced secure digital host controller (SD/MMC/eMMC)
Enhanced serial peripheral interface (eSPI)
Four I2C controllers
Four 2-pin or two 4-pin UARTs
Integrated Flash controller supporting NAND and NOR flash
Two eight-channel DMA engines
Support for hardware virtualization and partitioning enforcement
QorIQ Platform's Trust Architecture 1.1
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Corenet 2nd generation Chassis doesn't have ddr_sync bit in RCW. Only
async mode is supported.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Create new files to handle 2nd generation Chassis as the registers are
organized differently.
- Add SerDes protocol parsing and detection
- Add support of 4 SerDes
- Add CPRI protocol in fsl_serdes.h
The Common Public Radio Interface (CPRI) is publicly available
specification that standardizes the protocol interface between the
radio equipment control (REC) and the radio equipment (RE) in wireless
basestations. This allows interoperability of equipment from different
vendors,and preserves the software investment made by wireless service
providers.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Corenet based SoCs have different core clocks starting from Chassis
generation 2. Cores are organized into clusters. Each cluster has up to
4 cores sharing same clock, which can be chosen from one of three PLLs in
the cluster group with one of the devisors /1, /2 or /4. Two clusters are
put together as a cluster group. These two clusters share the PLLs but may
have different divisor. For example, core 0~3 are in cluster 1. Core 4~7
are in cluster 2. Core 8~11 are in cluster 3 and so on. Cluster 1 and 2
are cluster group A. Cluster 3 and 4 are in cluster group B. Cluster group
A has PLL1, PLL2, PLL3. Cluster group B has PLL4, PLL5. Core 0~3 may have
PLL1/2, core 4~7 may have PLL2/2. Core 8~11 may have PLL4/1.
PME and FMan blocks can take different PLLs, configured by RCW.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Panic if the number of cores is more than CONFIG_MAX_CPUS because it will
surely overflow gd structure.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Chassis generation 2 has different mask and shift. Use macro instead of
magic numbers.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Using E6500 L1 cache as initram requires L2 cache enabled.
Add l2-cache cluster enabling.
Setup stash id for L1 cache as (coreID) * 2 + 32 + 0
Setup stash id for L2 cache as (cluster) * 2 + 32 + 1
Stash id for L2 is only set for Chassis 2.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andy Fleming <afleming@freescale.com>
These assembly macros simplify codes to add and delete temporary TLB entries.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Add support for the Freescale P5040 SOC, which is similar to the P5020.
Features of the P5040 are:
Four P5040 single-threaded e5500 cores built
Up to 2.4 GHz with 64-bit ISA support
Three levels of instruction: user, supervisor, hypervisor
CoreNet platform cache (CPC)
2.0 MB configures as dual 1 MB blocks hierarchical interconnect fabric
Two 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving
support Up to 1600MT/s
Memory pre-fetch engine
DPAA incorporating acceleration for the following functions
Packet parsing, classification, and distribution (FMAN)
Queue management for scheduling, packet sequencing and
congestion management (QMAN)
Hardware buffer management for buffer allocation and
de-allocation (BMAN)
Cryptography acceleration (SEC 5.2) at up to 40 Gbps SerDes
20 lanes at up to 5 Gbps
Supports SGMII, XAUI, PCIe rev1.1/2.0, SATA Ethernet interfaces
Two 10 Gbps Ethernet MACs
Ten 1 Gbps Ethernet MACs
High-speed peripheral interfaces
Two PCI Express 2.0/3.0 controllers
Additional peripheral interfaces
Two serial ATA (SATA 2.0) controllers
Two high-speed USB 2.0 controllers with integrated PHY
Enhanced secure digital host controller (SD/MMC/eMMC)
Enhanced serial peripheral interface (eSPI)
Two I2C controllers
Four UARTs
Integrated flash controller supporting NAND and NOR flash
DMA
Dual four channel
Support for hardware virtualization and partitioning enforcement
Extra privileged level for hypervisor support
QorIQ Trust Architecture 1.1
Secure boot, secure debug, tamper detection, volatile key storage
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Add a new device tree property named "fsl,liodn-offset-list"
holding a list of per pci endpoint permitted liodn offsets.
This property is useful in virtualization scenarios
that implement per pci endpoint partitioning.
The final liodn of a partitioned pci endpoint is
calculated by the hardware, by adding these offsets
to pci controller's base liodn, stored in the
"fsl,liodn" property of its node.
The liodn offsets are interleaved to get better cache
utilization. As an example, given 3 pci controllers,
the following liodns are generated for the pci endpoints:
pci0: 193 256 259 262 265 268 271 274 277
pci1: 194 257 260 263 266 269 272 275 278
pci2: 195 258 261 264 267 270 273 276 279
Signed-off-by: Laurentiu Tudor <Laurentiu.Tudor@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The P5040 does not have SRIO support, so there are no SRIO LIODNs.
Therefore, the functions that set the SRIO LIODNs should not be compiled.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Commit 709389b6 unintentionally used the Unicode version of the
apostrophy. Replace it with the normal ASCII version.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>