dioxus/packages/core/src/scope.rs

581 lines
18 KiB
Rust
Raw Normal View History

use crate::innerlude::*;
use futures_channel::mpsc::UnboundedSender;
2021-09-13 22:59:07 +00:00
use fxhash::FxHashMap;
2021-11-10 22:09:52 +00:00
use smallvec::SmallVec;
2021-07-09 05:42:26 +00:00
use std::{
any::{Any, TypeId},
2021-10-08 20:01:13 +00:00
cell::{Cell, RefCell},
2021-09-01 04:57:04 +00:00
collections::HashMap,
2021-07-09 05:42:26 +00:00
future::Future,
rc::Rc,
2021-07-09 05:42:26 +00:00
};
use bumpalo::{boxed::Box as BumpBox, Bump};
/// Components in Dioxus use the "Context" object to interact with their lifecycle.
///
/// This lets components access props, schedule updates, integrate hooks, and expose shared state.
///
/// For the most part, the only method you should be using regularly is `render`.
///
/// ## Example
///
/// ```ignore
2021-11-05 20:28:08 +00:00
/// #[derive(Props)]
/// struct ExampleProps {
/// name: String
/// }
///
/// fn Example(cx: Context, props: &ExampleProps) -> Element {
2021-11-05 20:28:08 +00:00
/// cx.render(rsx!{ div {"Hello, {props.name}"} })
/// }
/// ```
pub type Context<'a> = &'a Scope;
2021-07-09 05:42:26 +00:00
/// Every component in Dioxus is represented by a `Scope`.
///
/// Scopes contain the state for hooks, the component's props, and other lifecycle information.
///
/// Scopes are allocated in a generational arena. As components are mounted/unmounted, they will replace slots of dead components.
/// The actual contents of the hooks, though, will be allocated with the standard allocator. These should not allocate as frequently.
///
/// We expose the `Scope` type so downstream users can traverse the Dioxus VirtualDOM for whatever
2021-10-24 17:30:36 +00:00
/// use case they might have.
pub struct Scope {
pub(crate) parent_scope: Option<*mut Scope>,
2021-11-12 02:34:20 +00:00
pub(crate) container: ElementId,
pub(crate) our_arena_idx: ScopeId,
pub(crate) height: u32,
2021-10-08 20:01:13 +00:00
pub(crate) subtree: Cell<u32>,
2021-10-08 20:01:13 +00:00
pub(crate) is_subtree_root: Cell<bool>,
2021-07-09 05:42:26 +00:00
2021-11-08 03:36:57 +00:00
pub(crate) generation: Cell<u32>,
pub(crate) frames: [BumpFrame; 2],
2021-11-05 20:28:08 +00:00
2021-11-09 07:11:44 +00:00
pub(crate) caller: *const dyn Fn(&Scope) -> Element,
2021-11-08 03:36:57 +00:00
2021-11-05 20:28:08 +00:00
pub(crate) items: RefCell<SelfReferentialItems<'static>>,
pub(crate) hooks: HookList,
2021-10-25 19:05:17 +00:00
pub(crate) shared_contexts: RefCell<HashMap<TypeId, Rc<dyn Any>>>,
2021-07-09 05:42:26 +00:00
pub(crate) sender: UnboundedSender<SchedulerMsg>,
2021-07-09 05:42:26 +00:00
}
2021-11-05 20:28:08 +00:00
pub struct SelfReferentialItems<'a> {
2021-11-07 06:01:22 +00:00
pub(crate) listeners: Vec<&'a Listener<'a>>,
pub(crate) borrowed_props: Vec<&'a VComponent<'a>>,
2021-11-15 14:49:01 +00:00
pub(crate) suspended_nodes: FxHashMap<u64, &'a VSuspended>,
2021-11-05 20:28:08 +00:00
pub(crate) tasks: Vec<BumpBox<'a, dyn Future<Output = ()>>>,
}
2021-11-09 07:16:25 +00:00
/// A component's unique identifier.
///
/// `ScopeId` is a `usize` that is unique across the entire VirtualDOM - but not unique across time. If a component is
/// unmounted, then the `ScopeId` will be reused for a new component.
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct ScopeId(pub usize);
2021-11-07 06:01:22 +00:00
// Public methods exposed to libraries and components
impl Scope {
2021-11-05 20:28:08 +00:00
/// Get the subtree ID that this scope belongs to.
///
/// Each component has its own subtree ID - the root subtree has an ID of 0. This ID is used by the renderer to route
/// the mutations to the correct window/portal/subtree.
///
///
/// # Example
///
2021-11-12 02:34:20 +00:00
/// ```rust, ignore
/// let mut dom = VirtualDom::new(|cx, props|cx.render(rsx!{ div {} }));
2021-11-05 20:28:08 +00:00
/// dom.rebuild();
///
/// let base = dom.base_scope();
///
/// assert_eq!(base.subtree(), 0);
/// ```
pub fn subtree(&self) -> u32 {
self.subtree.get()
}
2021-11-15 14:49:01 +00:00
/// Create a new subtree with this scope as the root of the subtree.
///
/// Each component has its own subtree ID - the root subtree has an ID of 0. This ID is used by the renderer to route
/// the mutations to the correct window/portal/subtree.
///
/// This method
///
/// # Example
///
/// ```rust, ignore
/// fn App(cx: Context, props: &()) -> Element {
/// todo!();
/// rsx!(cx, div { "Subtree {id}"})
/// };
/// ```
pub fn create_subtree(&self) -> Option<u32> {
if self.is_subtree_root.get() {
None
} else {
todo!()
// let cur = self.subtree().get();
// self.shared.cur_subtree.set(cur + 1);
// Some(cur)
}
}
2021-11-05 20:28:08 +00:00
/// Get the height of this Scope - IE the number of scopes above it.
///
/// A Scope with a height of `0` is the root scope - there are no other scopes above it.
///
/// # Example
///
2021-11-12 02:34:20 +00:00
/// ```rust, ignore
/// let mut dom = VirtualDom::new(|cx, props|cx.render(rsx!{ div {} }));
2021-11-05 20:28:08 +00:00
/// dom.rebuild();
///
/// let base = dom.base_scope();
///
/// assert_eq!(base.height(), 0);
/// ```
pub fn height(&self) -> u32 {
self.height
}
/// Get the Parent of this Scope within this Dioxus VirtualDOM.
///
/// This ID is not unique across Dioxus VirtualDOMs or across time. IDs will be reused when components are unmounted.
///
/// The base component will not have a parent, and will return `None`.
///
/// # Example
///
2021-11-12 02:34:20 +00:00
/// ```rust, ignore
/// let mut dom = VirtualDom::new(|cx, props|cx.render(rsx!{ div {} }));
2021-11-05 20:28:08 +00:00
/// dom.rebuild();
///
/// let base = dom.base_scope();
///
/// assert_eq!(base.parent(), None);
/// ```
pub fn parent(&self) -> Option<ScopeId> {
2021-11-12 02:34:20 +00:00
self.parent_scope.map(|p| unsafe { &*p }.our_arena_idx)
2021-11-05 20:28:08 +00:00
}
/// Get the ID of this Scope within this Dioxus VirtualDOM.
///
/// This ID is not unique across Dioxus VirtualDOMs or across time. IDs will be reused when components are unmounted.
///
/// # Example
///
2021-11-12 02:34:20 +00:00
/// ```rust, ignore
/// let mut dom = VirtualDom::new(|cx, props|cx.render(rsx!{ div {} }));
2021-11-05 20:28:08 +00:00
/// dom.rebuild();
/// let base = dom.base_scope();
///
/// assert_eq!(base.scope_id(), 0);
/// ```
pub fn scope_id(&self) -> ScopeId {
self.our_arena_idx
}
/// Create a subscription that schedules a future render for the reference component
///
/// ## Notice: you should prefer using prepare_update and get_scope_id
pub fn schedule_update(&self) -> Rc<dyn Fn() + 'static> {
2021-11-05 20:28:08 +00:00
// pub fn schedule_update(&self) -> Rc<dyn Fn() + 'static> {
let chan = self.sender.clone();
2021-11-05 20:28:08 +00:00
let id = self.scope_id();
Rc::new(move || {
2021-11-19 05:49:04 +00:00
// log::debug!("set on channel an update for scope {:?}", id);
2021-11-07 06:01:22 +00:00
let _ = chan.unbounded_send(SchedulerMsg::Immediate(id));
2021-11-05 20:28:08 +00:00
})
}
/// Schedule an update for any component given its ScopeId.
///
/// A component's ScopeId can be obtained from `use_hook` or the [`Context::scope_id`] method.
///
/// This method should be used when you want to schedule an update for a component
pub fn schedule_update_any(&self) -> Rc<dyn Fn(ScopeId)> {
let chan = self.sender.clone();
2021-11-05 20:28:08 +00:00
Rc::new(move |id| {
2021-11-07 06:01:22 +00:00
let _ = chan.unbounded_send(SchedulerMsg::Immediate(id));
2021-11-05 20:28:08 +00:00
})
}
/// Get the [`ScopeId`] of a mounted component.
///
/// `ScopeId` is not unique for the lifetime of the VirtualDom - a ScopeId will be reused if a component is unmounted.
pub fn needs_update(&self) {
2021-11-05 20:28:08 +00:00
self.needs_update_any(self.scope_id())
}
/// Get the [`ScopeId`] of a mounted component.
///
/// `ScopeId` is not unique for the lifetime of the VirtualDom - a ScopeId will be reused if a component is unmounted.
pub fn needs_update_any(&self, id: ScopeId) {
2021-11-07 06:01:22 +00:00
let _ = self.sender.unbounded_send(SchedulerMsg::Immediate(id));
}
/// Get the [`ScopeId`] of a mounted component.
///
/// `ScopeId` is not unique for the lifetime of the VirtualDom - a ScopeId will be reused if a component is unmounted.
pub fn bump(&self) -> &Bump {
2021-11-08 03:36:57 +00:00
&self.wip_frame().bump
}
/// This method enables the ability to expose state to children further down the VirtualDOM Tree.
///
/// This is a "fundamental" operation and should only be called during initialization of a hook.
///
/// For a hook that provides the same functionality, use `use_provide_state` and `use_consume_state` instead.
///
/// When the component is dropped, so is the context. Be aware of this behavior when consuming
/// the context via Rc/Weak.
///
/// # Example
///
2021-11-12 02:34:20 +00:00
/// ```rust, ignore
/// struct SharedState(&'static str);
///
/// static App: FC<()> = |cx, props|{
/// cx.use_hook(|_| cx.provide_state(SharedState("world")), |_| {}, |_| {});
/// rsx!(cx, Child {})
/// }
///
2021-11-12 02:34:20 +00:00
/// static Child: FC<()> = |cx, props| {
/// let state = cx.consume_state::<SharedState>();
/// rsx!(cx, div { "hello {state.0}" })
/// }
/// ```
pub fn provide_state<T: 'static>(&self, value: T) {
self.shared_contexts
.borrow_mut()
.insert(TypeId::of::<T>(), Rc::new(value))
.map(|f| f.downcast::<T>().ok())
.flatten();
}
/// Try to retrieve a SharedState with type T from the any parent Scope.
pub fn consume_state<T: 'static>(&self) -> Option<Rc<T>> {
if let Some(shared) = self.shared_contexts.borrow().get(&TypeId::of::<T>()) {
Some(shared.clone().downcast::<T>().unwrap())
} else {
let mut search_parent = self.parent_scope;
while let Some(parent_ptr) = search_parent {
let parent = unsafe { &*parent_ptr };
if let Some(shared) = parent.shared_contexts.borrow().get(&TypeId::of::<T>()) {
return Some(shared.clone().downcast::<T>().unwrap());
}
search_parent = parent.parent_scope;
}
None
}
}
2021-11-15 14:49:01 +00:00
/// Pushes the future onto the poll queue to be polled
/// The future is forcibly dropped if the component is not ready by the next render
2021-11-16 06:25:38 +00:00
pub fn push_task<'src, F: Future<Output = ()>>(
2021-11-15 14:49:01 +00:00
&'src self,
2021-11-16 06:25:38 +00:00
fut: impl FnOnce() -> F + 'src,
) -> usize
where
F::Output: 'src,
F: 'src,
{
self.sender
.unbounded_send(SchedulerMsg::TaskPushed(self.our_arena_idx))
.unwrap();
2021-11-15 14:49:01 +00:00
// allocate the future
let fut = fut();
let fut: &mut dyn Future<Output = ()> = self.bump().alloc(fut);
// wrap it in a type that will actually drop the contents
let boxed_fut: BumpBox<dyn Future<Output = ()>> = unsafe { BumpBox::from_raw(fut) };
// erase the 'src lifetime for self-referential storage
let self_ref_fut = unsafe { std::mem::transmute(boxed_fut) };
let mut items = self.items.borrow_mut();
2021-11-16 06:25:38 +00:00
2021-11-15 14:49:01 +00:00
items.tasks.push(self_ref_fut);
items.tasks.len() - 1
}
/// Take a lazy VNode structure and actually build it with the context of the VDom's efficient VNode allocator.
///
2021-11-15 14:49:01 +00:00
/// This function consumes the context and absorb the lifetime, so these VNodes *must* be returned.
///
2021-11-15 14:49:01 +00:00
/// ## Example
///
2021-11-15 14:49:01 +00:00
/// ```ignore
/// fn Component(cx: Scope, props: &Props) -> Element {
/// // Lazy assemble the VNode tree
/// let lazy_nodes = rsx!("hello world");
///
2021-11-15 14:49:01 +00:00
/// // Actually build the tree and allocate it
/// cx.render(lazy_tree)
/// }
///```
2021-11-16 18:09:41 +00:00
pub fn render<'src>(&'src self, rsx: Option<LazyNodes<'src, '_>>) -> Option<NodeLink> {
2021-11-15 14:49:01 +00:00
let frame = self.wip_frame();
let bump = &frame.bump;
let factory = NodeFactory { bump };
2021-11-16 18:09:41 +00:00
let node = rsx.map(|f| f.call(factory))?;
2021-11-15 14:49:01 +00:00
let node = bump.alloc(node);
let node_ptr = node as *mut _;
let node_ptr = unsafe { std::mem::transmute(node_ptr) };
let link = NodeLink {
scope_id: Cell::new(Some(self.our_arena_idx)),
link_idx: Cell::new(0),
node: node_ptr,
};
Some(link)
}
2021-11-15 14:49:01 +00:00
pub fn suspend<'src, F: Future<Output = Element> + 'src>(
&'src self,
mut fut: impl FnMut() -> F,
) -> Option<VNode> {
let channel = self.sender.clone();
let node_fut = fut();
let scope = self.scope_id();
// self.push_task(move || {
//
// async move {
// //
// let r = node_fut.await;
// if let Some(node) = r {
// channel
// .unbounded_send(SchedulerMsg::Suspended { node, scope })
// .unwrap();
// }
// }
// });
todo!()
}
/// Store a value between renders
///
/// This is *the* foundational hook for all other hooks.
///
/// - Initializer: closure used to create the initial hook state
/// - Runner: closure used to output a value every time the hook is used
///
2021-11-05 20:28:08 +00:00
/// To "cleanup" the hook, implement `Drop` on the stored hook value. Whenever the component is dropped, the hook
/// will be dropped as well.
///
/// # Example
///
/// ```ignore
/// // use_ref is the simplest way of storing a value between renders
/// fn use_ref<T: 'static>(initial_value: impl FnOnce() -> T) -> &RefCell<T> {
/// use_hook(
/// || Rc::new(RefCell::new(initial_value())),
/// |state| state,
/// )
/// }
/// ```
2021-11-05 20:28:08 +00:00
pub fn use_hook<'src, State: 'static, Output: 'src>(
&'src self,
2021-11-05 20:28:08 +00:00
initializer: impl FnOnce(usize) -> State,
runner: impl FnOnce(&'src mut State) -> Output,
) -> Output {
if self.hooks.at_end() {
2021-11-05 20:28:08 +00:00
self.hooks.push_hook(initializer(self.hooks.len()));
}
2021-11-08 03:36:57 +00:00
const HOOK_ERR_MSG: &str = r###"
Unable to retrieve the hook that was initialized at this index.
Consult the `rules of hooks` to understand how to use hooks properly.
You likely used the hook in a conditional. Hooks rely on consistent ordering between renders.
Functions prefixed with "use" should never be called conditionally.
"###;
2021-11-07 06:01:22 +00:00
2021-11-08 03:36:57 +00:00
runner(self.hooks.next::<State>().expect(HOOK_ERR_MSG))
2021-11-07 06:01:22 +00:00
}
2021-11-08 03:36:57 +00:00
}
2021-11-07 06:01:22 +00:00
2021-11-08 03:36:57 +00:00
// Important internal methods
impl Scope {
2021-11-07 06:01:22 +00:00
/// The "work in progress frame" represents the frame that is currently being worked on.
2021-11-08 03:36:57 +00:00
pub(crate) fn wip_frame(&self) -> &BumpFrame {
match self.generation.get() & 1 == 0 {
true => &self.frames[0],
false => &self.frames[1],
}
}
2021-11-10 22:09:52 +00:00
2021-11-12 02:34:20 +00:00
pub(crate) fn wip_frame_mut(&mut self) -> &mut BumpFrame {
match self.generation.get() & 1 == 0 {
true => &mut self.frames[0],
false => &mut self.frames[1],
}
}
2021-11-08 03:36:57 +00:00
pub(crate) fn fin_frame(&self) -> &BumpFrame {
match self.generation.get() & 1 == 1 {
true => &self.frames[0],
false => &self.frames[1],
}
2021-11-07 06:01:22 +00:00
}
2021-11-12 02:34:20 +00:00
/// Reset this component's frame
///
/// # Safety:
/// This method breaks every reference of VNodes in the current frame.
pub(crate) unsafe fn reset_wip_frame(&mut self) {
2021-11-07 06:01:22 +00:00
// todo: unsafecell or something
2021-11-12 02:34:20 +00:00
let bump = self.wip_frame_mut();
bump.bump.reset();
2021-11-08 03:36:57 +00:00
}
2021-11-07 06:01:22 +00:00
2021-11-12 02:34:20 +00:00
pub(crate) fn cycle_frame(&self) {
2021-11-08 03:36:57 +00:00
self.generation.set(self.generation.get() + 1);
2021-11-07 06:01:22 +00:00
}
// General strategy here is to load up the appropriate suspended task and then run it.
// Suspended nodes cannot be called repeatedly.
pub(crate) fn call_suspended_node<'a>(&'a mut self, task_id: u64) {
let mut nodes = &mut self.items.get_mut().suspended_nodes;
if let Some(suspended) = nodes.remove(&task_id) {
2021-11-15 14:49:01 +00:00
let sus: &'a VSuspended = suspended;
// let mut boxed = sus.callback.borrow_mut().take().unwrap();
// let new_node: Element = boxed();
2021-11-07 06:01:22 +00:00
}
}
2021-11-15 14:49:01 +00:00
pub fn root_node(&self) -> &VNode {
2021-11-10 22:09:52 +00:00
let node = *self.wip_frame().nodes.borrow().get(0).unwrap();
unsafe { std::mem::transmute(&*node) }
}
2021-11-07 06:01:22 +00:00
}
2021-11-08 03:36:57 +00:00
2021-11-10 22:09:52 +00:00
pub(crate) struct BumpFrame {
2021-11-08 03:36:57 +00:00
pub bump: Bump,
2021-11-10 22:09:52 +00:00
pub nodes: RefCell<Vec<*const VNode<'static>>>,
2021-11-08 03:36:57 +00:00
}
impl BumpFrame {
2021-11-10 22:09:52 +00:00
pub fn new(capacity: usize) -> Self {
let bump = Bump::with_capacity(capacity);
2021-11-08 03:36:57 +00:00
let node = &*bump.alloc(VText {
text: "asd",
dom_id: Default::default(),
is_static: false,
});
2021-11-10 22:09:52 +00:00
let node = bump.alloc(VNode::Text(unsafe { std::mem::transmute(node) }));
let nodes = RefCell::new(vec![node as *const _]);
2021-11-08 03:36:57 +00:00
Self { bump, nodes }
}
2021-11-10 22:09:52 +00:00
pub fn allocated_bytes(&self) -> usize {
self.bump.allocated_bytes()
}
pub fn assign_nodelink(&self, node: &NodeLink) {
2021-11-08 03:36:57 +00:00
let mut nodes = self.nodes.borrow_mut();
2021-11-10 22:09:52 +00:00
let len = nodes.len();
nodes.push(node.node);
node.link_idx.set(len);
2021-11-08 03:36:57 +00:00
}
}
2021-11-09 17:18:45 +00:00
/// An abstraction over internally stored data using a hook-based memory layout.
///
/// Hooks are allocated using Boxes and then our stored references are given out.
///
/// It's unsafe to "reset" the hooklist, but it is safe to add hooks into it.
///
/// Todo: this could use its very own bump arena, but that might be a tad overkill
#[derive(Default)]
pub(crate) struct HookList {
arena: Bump,
2021-11-10 22:09:52 +00:00
vals: RefCell<SmallVec<[*mut dyn Any; 5]>>,
2021-11-09 17:18:45 +00:00
idx: Cell<usize>,
}
impl HookList {
2021-11-10 22:09:52 +00:00
pub fn new(capacity: usize) -> Self {
Self {
arena: Bump::with_capacity(capacity),
..Default::default()
}
}
2021-11-09 17:18:45 +00:00
pub(crate) fn next<T: 'static>(&self) -> Option<&mut T> {
self.vals.borrow().get(self.idx.get()).and_then(|inn| {
self.idx.set(self.idx.get() + 1);
let raw_box = unsafe { &mut **inn };
raw_box.downcast_mut::<T>()
})
}
/// This resets the internal iterator count
/// It's okay that we've given out each hook, but now we have the opportunity to give it out again
/// Therefore, resetting is considered unsafe
///
/// This should only be ran by Dioxus itself before "running scope".
/// Dioxus knows how to descend through the tree to prevent mutable aliasing.
pub(crate) unsafe fn reset(&self) {
self.idx.set(0);
}
pub(crate) fn push_hook<T: 'static>(&self, new: T) {
let val = self.arena.alloc(new);
self.vals.borrow_mut().push(val)
}
pub(crate) fn len(&self) -> usize {
self.vals.borrow().len()
}
pub(crate) fn cur_idx(&self) -> usize {
self.idx.get()
}
pub(crate) fn at_end(&self) -> bool {
self.cur_idx() >= self.len()
}
2021-11-10 22:09:52 +00:00
pub fn clear(&mut self) {
2021-11-09 17:18:45 +00:00
self.vals.borrow_mut().drain(..).for_each(|state| {
let as_mut = unsafe { &mut *state };
let boxed = unsafe { bumpalo::boxed::Box::from_raw(as_mut) };
drop(boxed);
});
}
/// Get the ammount of memory a hooklist uses
/// Used in heuristics
pub fn get_hook_arena_size(&self) -> usize {
self.arena.allocated_bytes()
}
}
#[test]
fn sizeof() {
dbg!(std::mem::size_of::<Scope>());
}