dioxus/packages/core/src/scope.rs

633 lines
23 KiB
Rust
Raw Normal View History

use crate::innerlude::*;
2021-09-13 22:59:07 +00:00
use fxhash::FxHashMap;
2021-07-09 05:42:26 +00:00
use std::{
any::{Any, TypeId},
2021-10-08 20:01:13 +00:00
cell::{Cell, RefCell},
2021-09-01 04:57:04 +00:00
collections::HashMap,
2021-07-09 05:42:26 +00:00
future::Future,
pin::Pin,
rc::Rc,
2021-07-09 05:42:26 +00:00
};
use crate::{innerlude::*, lazynodes::LazyNodes};
use bumpalo::{boxed::Box as BumpBox, Bump};
use std::ops::Deref;
/// Components in Dioxus use the "Context" object to interact with their lifecycle.
///
/// This lets components access props, schedule updates, integrate hooks, and expose shared state.
///
/// Note: all of these methods are *imperative* - they do not act as hooks! They are meant to be used by hooks
/// to provide complex behavior. For instance, calling "add_shared_state" on every render is considered a leak. This method
/// exists for the `use_provide_state` hook to provide a shared state object.
///
/// For the most part, the only method you should be using regularly is `render`.
///
/// ## Example
///
/// ```ignore
/// #[derive(Properties)]
/// struct Props {
/// name: String
/// }
///
/// fn example(cx: Context<Props>) -> VNode {
/// html! {
/// <div> "Hello, {cx.name}" </div>
/// }
/// }
/// ```
pub type Context<'a> = &'a ScopeInner;
2021-07-09 05:42:26 +00:00
/// Every component in Dioxus is represented by a `Scope`.
///
/// Scopes contain the state for hooks, the component's props, and other lifecycle information.
///
/// Scopes are allocated in a generational arena. As components are mounted/unmounted, they will replace slots of dead components.
/// The actual contents of the hooks, though, will be allocated with the standard allocator. These should not allocate as frequently.
///
/// We expose the `Scope` type so downstream users can traverse the Dioxus VirtualDOM for whatever
2021-10-24 17:30:36 +00:00
/// use case they might have.
pub struct ScopeInner {
// Book-keeping about our spot in the arena
pub(crate) parent_idx: Option<ScopeId>,
pub(crate) our_arena_idx: ScopeId,
pub(crate) height: u32,
2021-10-08 20:01:13 +00:00
pub(crate) subtree: Cell<u32>,
pub(crate) is_subtree_root: Cell<bool>,
2021-07-09 05:42:26 +00:00
// Nodes
pub(crate) frames: ActiveFrame,
pub(crate) caller: BumpBox<'static, dyn for<'b> Fn(&'b ScopeInner) -> Element<'b>>,
2021-07-09 05:42:26 +00:00
/*
we care about:
- listeners (and how to call them when an event is triggered)
- borrowed props (and how to drop them when the parent is dropped)
- suspended nodes (and how to call their callback when their associated tasks are complete)
*/
pub(crate) listeners: RefCell<Vec<*const Listener<'static>>>,
2021-08-08 19:15:16 +00:00
pub(crate) borrowed_props: RefCell<Vec<*const VComponent<'static>>>,
pub(crate) suspended_nodes: RefCell<FxHashMap<u64, *const VSuspended<'static>>>,
2021-08-25 20:40:18 +00:00
pub(crate) tasks: RefCell<Vec<BumpBox<'static, dyn Future<Output = ()>>>>,
pub(crate) pending_effects: RefCell<Vec<BumpBox<'static, dyn FnMut()>>>,
// State
pub(crate) hooks: HookList,
2021-10-25 19:05:17 +00:00
// todo: move this into a centralized place - is more memory efficient
pub(crate) shared_contexts: RefCell<HashMap<TypeId, Rc<dyn Any>>>,
2021-07-09 05:42:26 +00:00
// whenever set_state is called, we fire off a message to the scheduler
// this closure _is_ the method called by schedule_update that marks this component as dirty
pub(crate) memoized_updater: Rc<dyn Fn()>,
2021-08-25 19:54:33 +00:00
pub(crate) shared: EventChannel,
2021-07-09 05:42:26 +00:00
}
/// Public interface for Scopes.
impl ScopeInner {
/// Get the root VNode for this Scope.
///
/// This VNode is the "entrypoint" VNode. If the component renders multiple nodes, then this VNode will be a fragment.
///
/// # Example
/// ```rust
2021-10-16 21:37:28 +00:00
/// let mut dom = VirtualDom::new(|(cx, props)|cx.render(rsx!{ div {} }));
/// dom.rebuild();
///
/// let base = dom.base_scope();
///
/// if let VNode::VElement(node) = base.root_node() {
/// assert_eq!(node.tag_name, "div");
/// }
/// ```
pub fn root_node(&self) -> &VNode {
self.frames.fin_head()
}
2021-10-08 20:01:13 +00:00
/// Get the subtree ID that this scope belongs to.
///
/// Each component has its own subtree ID - the root subtree has an ID of 0. This ID is used by the renderer to route
/// the mutations to the correct window/portal/subtree.
///
///
/// # Example
///
/// ```rust
2021-10-16 21:37:28 +00:00
/// let mut dom = VirtualDom::new(|(cx, props)|cx.render(rsx!{ div {} }));
2021-10-08 20:01:13 +00:00
/// dom.rebuild();
///
/// let base = dom.base_scope();
///
/// assert_eq!(base.subtree(), 0);
/// ```
pub fn subtree(&self) -> u32 {
self.subtree.get()
}
pub(crate) fn new_subtree(&self) -> Option<u32> {
if self.is_subtree_root.get() {
None
} else {
let cur = self.shared.cur_subtree.get();
self.shared.cur_subtree.set(cur + 1);
Some(cur)
}
}
/// Get the height of this Scope - IE the number of scopes above it.
///
/// A Scope with a height of `0` is the root scope - there are no other scopes above it.
///
/// # Example
///
/// ```rust
2021-10-16 21:37:28 +00:00
/// let mut dom = VirtualDom::new(|(cx, props)|cx.render(rsx!{ div {} }));
/// dom.rebuild();
///
/// let base = dom.base_scope();
///
/// assert_eq!(base.height(), 0);
/// ```
pub fn height(&self) -> u32 {
self.height
}
/// Get the Parent of this Scope within this Dioxus VirtualDOM.
///
/// This ID is not unique across Dioxus VirtualDOMs or across time. IDs will be reused when components are unmounted.
///
/// The base component will not have a parent, and will return `None`.
///
/// # Example
///
/// ```rust
2021-10-16 21:37:28 +00:00
/// let mut dom = VirtualDom::new(|(cx, props)|cx.render(rsx!{ div {} }));
/// dom.rebuild();
///
/// let base = dom.base_scope();
///
/// assert_eq!(base.parent(), None);
/// ```
pub fn parent(&self) -> Option<ScopeId> {
self.parent_idx
}
/// Get the ID of this Scope within this Dioxus VirtualDOM.
///
/// This ID is not unique across Dioxus VirtualDOMs or across time. IDs will be reused when components are unmounted.
///
/// # Example
///
/// ```rust
2021-10-16 21:37:28 +00:00
/// let mut dom = VirtualDom::new(|(cx, props)|cx.render(rsx!{ div {} }));
/// dom.rebuild();
/// let base = dom.base_scope();
///
/// assert_eq!(base.scope_id(), 0);
/// ```
pub fn scope_id(&self) -> ScopeId {
self.our_arena_idx
}
}
// The type of closure that wraps calling components
2021-08-25 20:40:18 +00:00
/// The type of task that gets sent to the task scheduler
/// Submitting a fiber task returns a handle to that task, which can be used to wake up suspended nodes
pub type FiberTask = Pin<Box<dyn Future<Output = ScopeId>>>;
/// Private interface for Scopes.
impl ScopeInner {
2021-07-09 05:42:26 +00:00
// we are being created in the scope of an existing component (where the creator_node lifetime comes into play)
// we are going to break this lifetime by force in order to save it on ourselves.
// To make sure that the lifetime isn't truly broken, we receive a Weak RC so we can't keep it around after the parent dies.
// This should never happen, but is a good check to keep around
//
// Scopes cannot be made anywhere else except for this file
// Therefore, their lifetimes are connected exclusively to the virtual dom
pub(crate) fn new(
caller: BumpBox<dyn for<'b> Fn(&'b ScopeInner) -> Element<'b>>,
our_arena_idx: ScopeId,
parent_idx: Option<ScopeId>,
2021-07-09 05:42:26 +00:00
height: u32,
2021-10-08 20:01:13 +00:00
subtree: u32,
2021-08-25 19:54:33 +00:00
shared: EventChannel,
2021-07-09 05:42:26 +00:00
) -> Self {
let schedule_any_update = shared.schedule_any_immediate.clone();
let memoized_updater = Rc::new(move || schedule_any_update(our_arena_idx));
2021-07-29 22:04:09 +00:00
// wipe away the associated lifetime - we are going to manually manage the one-way lifetime graph
let caller = unsafe { std::mem::transmute(caller) };
2021-07-09 05:42:26 +00:00
Self {
2021-08-25 19:54:33 +00:00
memoized_updater,
shared,
2021-07-09 05:42:26 +00:00
caller,
parent_idx,
our_arena_idx,
2021-07-09 05:42:26 +00:00
height,
2021-10-08 20:01:13 +00:00
subtree: Cell::new(subtree),
is_subtree_root: Cell::new(false),
tasks: Default::default(),
2021-07-09 05:42:26 +00:00
frames: ActiveFrame::new(),
hooks: Default::default(),
pending_effects: Default::default(),
2021-08-25 20:40:18 +00:00
suspended_nodes: Default::default(),
2021-07-09 05:42:26 +00:00
shared_contexts: Default::default(),
listeners: Default::default(),
2021-08-08 19:15:16 +00:00
borrowed_props: Default::default(),
2021-07-09 05:42:26 +00:00
}
}
pub(crate) fn update_scope_dependencies(
2021-07-09 05:42:26 +00:00
&mut self,
caller: &dyn for<'b> Fn(&'b ScopeInner) -> Element<'b>,
2021-07-09 05:42:26 +00:00
) {
2021-10-11 22:40:00 +00:00
log::debug!("Updating scope dependencies {:?}", self.our_arena_idx);
let caller = caller as *const _;
self.caller = unsafe { std::mem::transmute(caller) };
2021-07-09 05:42:26 +00:00
}
2021-08-08 19:15:16 +00:00
/// This method cleans up any references to data held within our hook list. This prevents mutable aliasing from
2021-10-24 17:30:36 +00:00
/// causing UB in our tree.
2021-08-08 19:15:16 +00:00
///
/// This works by cleaning up our references from the bottom of the tree to the top. The directed graph of components
/// essentially forms a dependency tree that we can traverse from the bottom to the top. As we traverse, we remove
/// any possible references to the data in the hook list.
///
2021-10-24 17:30:36 +00:00
/// References to hook data can only be stored in listeners and component props. During diffing, we make sure to log
2021-08-08 19:15:16 +00:00
/// all listeners and borrowed props so we can clear them here.
2021-09-13 22:59:07 +00:00
///
/// This also makes sure that drop order is consistent and predictable. All resources that rely on being dropped will
/// be dropped.
2021-09-01 19:45:53 +00:00
pub(crate) fn ensure_drop_safety(&mut self, pool: &ResourcePool) {
2021-08-27 13:53:26 +00:00
// make sure we drop all borrowed props manually to guarantee that their drop implementation is called before we
2021-10-24 17:30:36 +00:00
// run the hooks (which hold an &mut Reference)
2021-08-27 13:53:26 +00:00
// right now, we don't drop
self.borrowed_props
.get_mut()
.drain(..)
.map(|li| unsafe { &*li })
.for_each(|comp| {
// First drop the component's undropped references
2021-09-13 22:59:07 +00:00
let scope_id = comp
.associated_scope
.get()
.expect("VComponents should be associated with a valid Scope");
if let Some(scope) = pool.get_scope_mut(scope_id) {
scope.ensure_drop_safety(pool);
2021-08-27 13:53:26 +00:00
2021-09-13 22:59:07 +00:00
let mut drop_props = comp.drop_props.borrow_mut().take().unwrap();
drop_props();
}
2021-08-27 13:53:26 +00:00
});
// Now that all the references are gone, we can safely drop our own references in our listeners.
self.listeners
.get_mut()
.drain(..)
.map(|li| unsafe { &*li })
.for_each(|listener| drop(listener.callback.borrow_mut().take()));
2021-08-08 19:15:16 +00:00
}
/// A safe wrapper around calling listeners
2021-09-22 06:44:01 +00:00
pub(crate) fn call_listener(&mut self, event: UserEvent, element: ElementId) {
2021-07-13 20:48:47 +00:00
let listners = self.listeners.borrow_mut();
let raw_listener = listners.iter().find(|lis| {
let search = unsafe { &***lis };
2021-09-22 06:44:01 +00:00
if search.event == event.name {
let search_id = search.mounted_node.get();
search_id.map(|f| f == element).unwrap_or(false)
} else {
false
}
});
if let Some(raw_listener) = raw_listener {
let listener = unsafe { &**raw_listener };
let mut cb = listener.callback.borrow_mut();
2021-07-26 16:14:48 +00:00
if let Some(cb) = cb.as_mut() {
2021-09-22 06:44:01 +00:00
(cb)(event.event);
2021-07-26 16:14:48 +00:00
}
} else {
log::warn!("An event was triggered but there was no listener to handle it");
2021-07-09 05:42:26 +00:00
}
}
/*
General strategy here is to load up the appropriate suspended task and then run it.
Suspended nodes cannot be called repeatedly.
*/
pub(crate) fn call_suspended_node<'a>(&'a mut self, task_id: u64) {
let mut nodes = self.suspended_nodes.borrow_mut();
2021-07-29 22:04:09 +00:00
if let Some(suspended) = nodes.remove(&task_id) {
let sus: &'a VSuspended<'static> = unsafe { &*suspended };
2021-09-01 19:45:53 +00:00
let sus: &'a VSuspended<'a> = unsafe { std::mem::transmute(sus) };
let mut boxed = sus.callback.borrow_mut().take().unwrap();
let new_node: Element<'a> = boxed();
2021-09-01 19:45:53 +00:00
}
}
// run the list of effects
pub(crate) fn run_effects(&mut self, pool: &ResourcePool) {
todo!()
// let mut effects = self.frames.effects.borrow_mut();
// let mut effects = effects.drain(..).collect::<Vec<_>>();
// for effect in effects {
// let effect = unsafe { &*effect };
// let effect = effect.as_ref();
// let mut effect = effect.borrow_mut();
// let mut effect = effect.as_mut();
// effect.run(pool);
// }
}
/// Render this component.
///
/// Returns true if the scope completed successfully and false if running failed (IE a None error was propagated).
pub(crate) fn run_scope<'sel>(&'sel mut self, pool: &ResourcePool) -> bool {
// Cycle to the next frame and then reset it
// This breaks any latent references, invalidating every pointer referencing into it.
// Remove all the outdated listeners
self.ensure_drop_safety(pool);
// Safety:
// - We dropped the listeners, so no more &mut T can be used while these are held
// - All children nodes that rely on &mut T are replaced with a new reference
unsafe { self.hooks.reset() };
// Safety:
// - We've dropped all references to the wip bump frame
unsafe { self.frames.reset_wip_frame() };
// just forget about our suspended nodes while we're at it
self.suspended_nodes.get_mut().clear();
// guarantee that we haven't screwed up - there should be no latent references anywhere
debug_assert!(self.listeners.borrow().is_empty());
debug_assert!(self.suspended_nodes.borrow().is_empty());
debug_assert!(self.borrowed_props.borrow().is_empty());
2021-10-25 19:05:17 +00:00
log::debug!("Borrowed stuff is successfully cleared");
// Cast the caller ptr from static to one with our own reference
let render: &dyn for<'b> Fn(&'b ScopeInner) -> Element<'b> = unsafe { &*self.caller };
// Todo: see if we can add stronger guarantees around internal bookkeeping and failed component renders.
if let Some(builder) = render(self) {
let new_head = builder.into_vnode(NodeFactory {
bump: &self.frames.wip_frame().bump,
});
log::debug!("Render is successful");
// the user's component succeeded. We can safely cycle to the next frame
self.frames.wip_frame_mut().head_node = unsafe { std::mem::transmute(new_head) };
self.frames.cycle_frame();
true
} else {
false
}
2021-09-02 04:10:09 +00:00
}
/// Create a subscription that schedules a future render for the reference component
///
/// ## Notice: you should prefer using prepare_update and get_scope_id
pub fn schedule_update(&self) -> Rc<dyn Fn() + 'static> {
self.memoized_updater.clone()
}
/// Get the [`ScopeId`] of a mounted component.
///
/// `ScopeId` is not unique for the lifetime of the VirtualDom - a ScopeId will be reused if a component is unmounted.
pub fn needs_update(&self) {
(self.memoized_updater)()
}
/// Get the [`ScopeId`] of a mounted component.
///
/// `ScopeId` is not unique for the lifetime of the VirtualDom - a ScopeId will be reused if a component is unmounted.
pub fn needs_update_any(&self, id: ScopeId) {
(self.shared.schedule_any_immediate)(id)
}
/// Schedule an update for any component given its ScopeId.
///
/// A component's ScopeId can be obtained from `use_hook` or the [`Context::scope_id`] method.
///
/// This method should be used when you want to schedule an update for a component
pub fn schedule_update_any(&self) -> Rc<dyn Fn(ScopeId)> {
self.shared.schedule_any_immediate.clone()
}
/// Get the [`ScopeId`] of a mounted component.
///
/// `ScopeId` is not unique for the lifetime of the VirtualDom - a ScopeId will be reused if a component is unmounted.
pub fn bump(&self) -> &Bump {
let bump = &self.frames.wip_frame().bump;
bump
}
/// Take a lazy VNode structure and actually build it with the context of the VDom's efficient VNode allocator.
///
/// This function consumes the context and absorb the lifetime, so these VNodes *must* be returned.
///
/// ## Example
///
/// ```ignore
/// fn Component(cx: Context<()>) -> VNode {
/// // Lazy assemble the VNode tree
/// let lazy_tree = html! {<div> "Hello World" </div>};
///
/// // Actually build the tree and allocate it
/// cx.render(lazy_tree)
/// }
///```
pub fn render<'src>(
&'src self,
lazy_nodes: Option<LazyNodes<'src, '_>>,
) -> Option<VNode<'src>> {
let bump = &self.frames.wip_frame().bump;
let factory = NodeFactory { bump };
lazy_nodes.map(|f| f.call(factory))
}
/// Push an effect to be ran after the component has been successfully mounted to the dom
/// Returns the effect's position in the stack
pub fn push_effect<'src>(&'src self, effect: impl FnOnce() + 'src) -> usize {
// this is some tricker to get around not being able to actually call fnonces
let mut slot = Some(effect);
let fut: &mut dyn FnMut() = self.bump().alloc(move || slot.take().unwrap()());
// wrap it in a type that will actually drop the contents
let boxed_fut = unsafe { BumpBox::from_raw(fut) };
// erase the 'src lifetime for self-referential storage
let self_ref_fut = unsafe { std::mem::transmute(boxed_fut) };
self.pending_effects.borrow_mut().push(self_ref_fut);
self.pending_effects.borrow().len() - 1
}
/// Pushes the future onto the poll queue to be polled
/// The future is forcibly dropped if the component is not ready by the next render
pub fn push_task<'src>(&'src self, fut: impl Future<Output = ()> + 'src) -> usize {
// allocate the future
let fut: &mut dyn Future<Output = ()> = self.bump().alloc(fut);
// wrap it in a type that will actually drop the contents
let boxed_fut: BumpBox<dyn Future<Output = ()>> = unsafe { BumpBox::from_raw(fut) };
// erase the 'src lifetime for self-referential storage
let self_ref_fut = unsafe { std::mem::transmute(boxed_fut) };
self.tasks.borrow_mut().push(self_ref_fut);
self.tasks.borrow().len() - 1
}
/// This method enables the ability to expose state to children further down the VirtualDOM Tree.
///
/// This is a "fundamental" operation and should only be called during initialization of a hook.
///
/// For a hook that provides the same functionality, use `use_provide_state` and `use_consume_state` instead.
///
/// When the component is dropped, so is the context. Be aware of this behavior when consuming
/// the context via Rc/Weak.
///
/// # Example
///
/// ```
/// struct SharedState(&'static str);
///
/// static App: FC<()> = |(cx, props)|{
/// cx.use_hook(|_| cx.provide_state(SharedState("world")), |_| {}, |_| {});
/// rsx!(cx, Child {})
/// }
///
/// static Child: FC<()> = |(cx, props)|{
/// let state = cx.consume_state::<SharedState>();
/// rsx!(cx, div { "hello {state.0}" })
/// }
/// ```
pub fn provide_state<T>(self, value: T)
where
T: 'static,
{
self.shared_contexts
.borrow_mut()
.insert(TypeId::of::<T>(), Rc::new(value))
.map(|f| f.downcast::<T>().ok())
.flatten();
}
/// Try to retrieve a SharedState with type T from the any parent Scope.
pub fn consume_state<T: 'static>(self) -> Option<Rc<T>> {
let getter = &self.shared.get_shared_context;
let ty = TypeId::of::<T>();
let idx = self.our_arena_idx;
getter(idx, ty).map(|f| f.downcast().unwrap())
}
/// Create a new subtree with this scope as the root of the subtree.
///
/// Each component has its own subtree ID - the root subtree has an ID of 0. This ID is used by the renderer to route
/// the mutations to the correct window/portal/subtree.
///
/// This method
///
/// # Example
///
/// ```rust
/// static App: FC<()> = |(cx, props)| {
/// todo!();
/// rsx!(cx, div { "Subtree {id}"})
/// };
/// ```
pub fn create_subtree(self) -> Option<u32> {
self.new_subtree()
}
/// Get the subtree ID that this scope belongs to.
///
/// Each component has its own subtree ID - the root subtree has an ID of 0. This ID is used by the renderer to route
/// the mutations to the correct window/portal/subtree.
///
/// # Example
///
/// ```rust
/// static App: FC<()> = |(cx, props)| {
/// let id = cx.get_current_subtree();
/// rsx!(cx, div { "Subtree {id}"})
/// };
/// ```
pub fn get_current_subtree(self) -> u32 {
self.subtree()
}
/// Store a value between renders
///
/// This is *the* foundational hook for all other hooks.
///
/// - Initializer: closure used to create the initial hook state
/// - Runner: closure used to output a value every time the hook is used
/// - Cleanup: closure used to teardown the hook once the dom is cleaned up
///
///
/// # Example
///
/// ```ignore
/// // use_ref is the simplest way of storing a value between renders
/// fn use_ref<T: 'static>(initial_value: impl FnOnce() -> T) -> &RefCell<T> {
/// use_hook(
/// || Rc::new(RefCell::new(initial_value())),
/// |state| state,
/// |_| {},
/// )
/// }
/// ```
pub fn use_hook<'src, State, Output, Init, Run, Cleanup>(
&'src self,
initializer: Init,
runner: Run,
cleanup: Cleanup,
) -> Output
where
State: 'static,
Output: 'src,
Init: FnOnce(usize) -> State,
Run: FnOnce(&'src mut State) -> Output,
Cleanup: FnOnce(Box<State>) + 'static,
{
// If the idx is the same as the hook length, then we need to add the current hook
if self.hooks.at_end() {
self.hooks.push_hook(
initializer(self.hooks.len()),
Box::new(|raw| {
let s = raw.downcast::<State>().unwrap();
cleanup(s);
}),
);
}
runner(self.hooks.next::<State>().expect(HOOK_ERR_MSG))
}
2021-07-18 16:39:32 +00:00
}
const HOOK_ERR_MSG: &str = r###"
Unable to retrieve the hook that was initialized at this index.
Consult the `rules of hooks` to understand how to use hooks properly.
You likely used the hook in a conditional. Hooks rely on consistent ordering between renders.
Functions prefixed with "use" should never be called conditionally.
"###;