dioxus/packages/core/src/scope.rs

543 lines
19 KiB
Rust
Raw Normal View History

use crate::innerlude::*;
use futures_channel::mpsc::UnboundedSender;
2021-09-13 22:59:07 +00:00
use fxhash::FxHashMap;
2021-07-09 05:42:26 +00:00
use std::{
any::{Any, TypeId},
2021-10-08 20:01:13 +00:00
cell::{Cell, RefCell},
2021-09-01 04:57:04 +00:00
collections::HashMap,
2021-07-09 05:42:26 +00:00
future::Future,
rc::Rc,
2021-07-09 05:42:26 +00:00
};
use bumpalo::{boxed::Box as BumpBox, Bump};
/// Components in Dioxus use the "Context" object to interact with their lifecycle.
///
/// This lets components access props, schedule updates, integrate hooks, and expose shared state.
///
/// For the most part, the only method you should be using regularly is `render`.
///
/// ## Example
///
/// ```ignore
2021-11-05 20:28:08 +00:00
/// #[derive(Props)]
/// struct ExampleProps {
/// name: String
/// }
///
2021-11-05 20:28:08 +00:00
/// fn Example((cx, props): Scope<Props>) -> Element {
/// cx.render(rsx!{ div {"Hello, {props.name}"} })
/// }
/// ```
pub type Context<'a> = &'a ScopeInner;
2021-07-09 05:42:26 +00:00
/// Every component in Dioxus is represented by a `Scope`.
///
/// Scopes contain the state for hooks, the component's props, and other lifecycle information.
///
/// Scopes are allocated in a generational arena. As components are mounted/unmounted, they will replace slots of dead components.
/// The actual contents of the hooks, though, will be allocated with the standard allocator. These should not allocate as frequently.
///
/// We expose the `Scope` type so downstream users can traverse the Dioxus VirtualDOM for whatever
2021-10-24 17:30:36 +00:00
/// use case they might have.
pub struct ScopeInner {
// Book-keeping about our spot in the arena
// safety:
//
// pointers to scopes are *always* valid since they are bump allocated and never freed until this scope is also freed
pub(crate) parent_scope: Option<*mut ScopeInner>,
pub(crate) our_arena_idx: ScopeId,
pub(crate) height: u32,
2021-10-08 20:01:13 +00:00
pub(crate) subtree: Cell<u32>,
2021-10-08 20:01:13 +00:00
pub(crate) is_subtree_root: Cell<bool>,
2021-07-09 05:42:26 +00:00
// Nodes
pub(crate) frames: ActiveFrame,
2021-11-05 20:28:08 +00:00
pub(crate) vcomp: *const VComponent<'static>,
2021-07-09 05:42:26 +00:00
/*
we care about:
- listeners (and how to call them when an event is triggered)
- borrowed props (and how to drop them when the parent is dropped)
- suspended nodes (and how to call their callback when their associated tasks are complete)
*/
2021-11-05 20:28:08 +00:00
pub(crate) items: RefCell<SelfReferentialItems<'static>>,
// State
pub(crate) hooks: HookList,
2021-10-25 19:05:17 +00:00
// todo: move this into a centralized place - is more memory efficient
pub(crate) shared_contexts: RefCell<HashMap<TypeId, Rc<dyn Any>>>,
2021-07-09 05:42:26 +00:00
pub(crate) sender: UnboundedSender<SchedulerMsg>,
2021-07-09 05:42:26 +00:00
}
2021-11-05 20:28:08 +00:00
pub struct SelfReferentialItems<'a> {
pub(crate) listeners: Vec<*const Listener<'a>>,
pub(crate) borrowed_props: Vec<*const VComponent<'a>>,
pub(crate) suspended_nodes: FxHashMap<u64, *const VSuspended<'a>>,
pub(crate) tasks: Vec<BumpBox<'a, dyn Future<Output = ()>>>,
pub(crate) pending_effects: Vec<BumpBox<'a, dyn FnMut()>>,
}
pub struct ScopeVcomp {
// important things
}
2021-07-09 05:42:26 +00:00
impl ScopeInner {
2021-08-08 19:15:16 +00:00
/// This method cleans up any references to data held within our hook list. This prevents mutable aliasing from
2021-10-24 17:30:36 +00:00
/// causing UB in our tree.
2021-08-08 19:15:16 +00:00
///
/// This works by cleaning up our references from the bottom of the tree to the top. The directed graph of components
/// essentially forms a dependency tree that we can traverse from the bottom to the top. As we traverse, we remove
/// any possible references to the data in the hook list.
///
2021-10-24 17:30:36 +00:00
/// References to hook data can only be stored in listeners and component props. During diffing, we make sure to log
2021-08-08 19:15:16 +00:00
/// all listeners and borrowed props so we can clear them here.
2021-09-13 22:59:07 +00:00
///
/// This also makes sure that drop order is consistent and predictable. All resources that rely on being dropped will
/// be dropped.
pub(crate) fn ensure_drop_safety(&self) {
2021-08-27 13:53:26 +00:00
// make sure we drop all borrowed props manually to guarantee that their drop implementation is called before we
2021-10-24 17:30:36 +00:00
// run the hooks (which hold an &mut Reference)
2021-08-27 13:53:26 +00:00
// right now, we don't drop
2021-11-05 20:28:08 +00:00
self.items
.borrow_mut()
2021-11-05 20:28:08 +00:00
.borrowed_props
2021-08-27 13:53:26 +00:00
.drain(..)
.map(|li| unsafe { &*li })
.for_each(|comp| {
// First drop the component's undropped references
2021-09-13 22:59:07 +00:00
let scope_id = comp
.associated_scope
.get()
.expect("VComponents should be associated with a valid Scope");
todo!("move this onto virtualdom");
// let scope = unsafe { &mut *scope_id };
2021-08-27 13:53:26 +00:00
// scope.ensure_drop_safety();
todo!("drop the component's props");
// let mut drop_props = comp.drop_props.borrow_mut().take().unwrap();
// drop_props();
2021-08-27 13:53:26 +00:00
});
// Now that all the references are gone, we can safely drop our own references in our listeners.
2021-11-05 20:28:08 +00:00
self.items
.borrow_mut()
2021-11-05 20:28:08 +00:00
.listeners
2021-08-27 13:53:26 +00:00
.drain(..)
.map(|li| unsafe { &*li })
.for_each(|listener| drop(listener.callback.borrow_mut().take()));
2021-08-08 19:15:16 +00:00
}
/// A safe wrapper around calling listeners
pub(crate) fn call_listener(&self, event: UserEvent, element: ElementId) {
let listners = &mut self.items.borrow_mut().listeners;
let raw_listener = listners.iter().find(|lis| {
let search = unsafe { &***lis };
2021-09-22 06:44:01 +00:00
if search.event == event.name {
let search_id = search.mounted_node.get();
search_id.map(|f| f == element).unwrap_or(false)
} else {
false
}
});
if let Some(raw_listener) = raw_listener {
let listener = unsafe { &**raw_listener };
let mut cb = listener.callback.borrow_mut();
2021-07-26 16:14:48 +00:00
if let Some(cb) = cb.as_mut() {
2021-09-22 06:44:01 +00:00
(cb)(event.event);
2021-07-26 16:14:48 +00:00
}
} else {
log::warn!("An event was triggered but there was no listener to handle it");
2021-07-09 05:42:26 +00:00
}
}
2021-11-05 20:28:08 +00:00
// General strategy here is to load up the appropriate suspended task and then run it.
// Suspended nodes cannot be called repeatedly.
pub(crate) fn call_suspended_node<'a>(&'a mut self, task_id: u64) {
2021-11-05 20:28:08 +00:00
let mut nodes = &mut self.items.get_mut().suspended_nodes;
2021-07-29 22:04:09 +00:00
if let Some(suspended) = nodes.remove(&task_id) {
let sus: &'a VSuspended<'static> = unsafe { &*suspended };
2021-09-01 19:45:53 +00:00
let sus: &'a VSuspended<'a> = unsafe { std::mem::transmute(sus) };
let mut boxed = sus.callback.borrow_mut().take().unwrap();
let new_node: Element<'a> = boxed();
2021-09-01 19:45:53 +00:00
}
}
// run the list of effects
pub(crate) fn run_effects(&mut self) {
// pub(crate) fn run_effects(&mut self, pool: &ResourcePool) {
2021-11-05 20:28:08 +00:00
for mut effect in self.items.get_mut().pending_effects.drain(..) {
effect();
}
}
2021-11-05 20:28:08 +00:00
pub(crate) fn new_subtree(&self) -> Option<u32> {
todo!()
// if self.is_subtree_root.get() {
// None
// } else {
// let cur = self.shared.cur_subtree.get();
// self.shared.cur_subtree.set(cur + 1);
// Some(cur)
// }
}
pub(crate) fn update_vcomp(&self, vcomp: &VComponent) {
2021-11-05 20:28:08 +00:00
let f: *const _ = vcomp;
todo!()
// self.vcomp = unsafe { std::mem::transmute(f) };
2021-11-05 20:28:08 +00:00
}
pub(crate) fn load_vcomp<'a>(&'a mut self) -> &'a VComponent<'a> {
unsafe { std::mem::transmute(&*self.vcomp) }
}
/// Get the root VNode for this Scope.
///
/// This VNode is the "entrypoint" VNode. If the component renders multiple nodes, then this VNode will be a fragment.
///
/// # Example
/// ```rust
/// let mut dom = VirtualDom::new(|(cx, props)|cx.render(rsx!{ div {} }));
/// dom.rebuild();
///
/// let base = dom.base_scope();
///
/// if let VNode::VElement(node) = base.root_node() {
/// assert_eq!(node.tag_name, "div");
/// }
/// ```
pub fn root_node(&self) -> &VNode {
self.frames.fin_head()
}
/// Get the subtree ID that this scope belongs to.
///
/// Each component has its own subtree ID - the root subtree has an ID of 0. This ID is used by the renderer to route
/// the mutations to the correct window/portal/subtree.
///
///
/// # Example
///
/// ```rust
/// let mut dom = VirtualDom::new(|(cx, props)|cx.render(rsx!{ div {} }));
/// dom.rebuild();
///
/// let base = dom.base_scope();
///
/// assert_eq!(base.subtree(), 0);
/// ```
pub fn subtree(&self) -> u32 {
self.subtree.get()
}
/// Get the height of this Scope - IE the number of scopes above it.
///
/// A Scope with a height of `0` is the root scope - there are no other scopes above it.
///
/// # Example
///
/// ```rust
/// let mut dom = VirtualDom::new(|(cx, props)|cx.render(rsx!{ div {} }));
/// dom.rebuild();
///
/// let base = dom.base_scope();
///
/// assert_eq!(base.height(), 0);
/// ```
pub fn height(&self) -> u32 {
self.height
}
/// Get the Parent of this Scope within this Dioxus VirtualDOM.
///
/// This ID is not unique across Dioxus VirtualDOMs or across time. IDs will be reused when components are unmounted.
///
/// The base component will not have a parent, and will return `None`.
///
/// # Example
///
/// ```rust
/// let mut dom = VirtualDom::new(|(cx, props)|cx.render(rsx!{ div {} }));
/// dom.rebuild();
///
/// let base = dom.base_scope();
///
/// assert_eq!(base.parent(), None);
/// ```
pub fn parent(&self) -> Option<ScopeId> {
match self.parent_scope {
Some(p) => Some(unsafe { &*p }.our_arena_idx),
None => None,
}
2021-11-05 20:28:08 +00:00
}
/// Get the ID of this Scope within this Dioxus VirtualDOM.
///
/// This ID is not unique across Dioxus VirtualDOMs or across time. IDs will be reused when components are unmounted.
///
/// # Example
///
/// ```rust
/// let mut dom = VirtualDom::new(|(cx, props)|cx.render(rsx!{ div {} }));
/// dom.rebuild();
/// let base = dom.base_scope();
///
/// assert_eq!(base.scope_id(), 0);
/// ```
pub fn scope_id(&self) -> ScopeId {
self.our_arena_idx
}
/// Create a subscription that schedules a future render for the reference component
///
/// ## Notice: you should prefer using prepare_update and get_scope_id
pub fn schedule_update(&self) -> Rc<dyn Fn() + 'static> {
2021-11-05 20:28:08 +00:00
// pub fn schedule_update(&self) -> Rc<dyn Fn() + 'static> {
let chan = self.sender.clone();
2021-11-05 20:28:08 +00:00
let id = self.scope_id();
Rc::new(move || {
chan.unbounded_send(SchedulerMsg::Immediate(id));
})
}
/// Schedule an update for any component given its ScopeId.
///
/// A component's ScopeId can be obtained from `use_hook` or the [`Context::scope_id`] method.
///
/// This method should be used when you want to schedule an update for a component
pub fn schedule_update_any(&self) -> Rc<dyn Fn(ScopeId)> {
let chan = self.sender.clone();
2021-11-05 20:28:08 +00:00
Rc::new(move |id| {
chan.unbounded_send(SchedulerMsg::Immediate(id));
})
}
/// Get the [`ScopeId`] of a mounted component.
///
/// `ScopeId` is not unique for the lifetime of the VirtualDom - a ScopeId will be reused if a component is unmounted.
pub fn needs_update(&self) {
2021-11-05 20:28:08 +00:00
self.needs_update_any(self.scope_id())
}
/// Get the [`ScopeId`] of a mounted component.
///
/// `ScopeId` is not unique for the lifetime of the VirtualDom - a ScopeId will be reused if a component is unmounted.
pub fn needs_update_any(&self, id: ScopeId) {
self.sender
2021-11-05 20:28:08 +00:00
.unbounded_send(SchedulerMsg::Immediate(id))
.unwrap();
}
/// Get the [`ScopeId`] of a mounted component.
///
/// `ScopeId` is not unique for the lifetime of the VirtualDom - a ScopeId will be reused if a component is unmounted.
pub fn bump(&self) -> &Bump {
let bump = &self.frames.wip_frame().bump;
bump
}
/// Take a lazy VNode structure and actually build it with the context of the VDom's efficient VNode allocator.
///
/// This function consumes the context and absorb the lifetime, so these VNodes *must* be returned.
///
/// ## Example
///
/// ```ignore
/// fn Component(cx: Context<()>) -> VNode {
/// // Lazy assemble the VNode tree
/// let lazy_tree = html! {<div> "Hello World" </div>};
///
/// // Actually build the tree and allocate it
/// cx.render(lazy_tree)
/// }
///```
pub fn render<'src>(
&'src self,
lazy_nodes: Option<LazyNodes<'src, '_>>,
) -> Option<VNode<'src>> {
let bump = &self.frames.wip_frame().bump;
let factory = NodeFactory { bump };
lazy_nodes.map(|f| f.call(factory))
}
/// Push an effect to be ran after the component has been successfully mounted to the dom
/// Returns the effect's position in the stack
pub fn push_effect<'src>(&'src self, effect: impl FnOnce() + 'src) -> usize {
// this is some tricker to get around not being able to actually call fnonces
let mut slot = Some(effect);
let fut: &mut dyn FnMut() = self.bump().alloc(move || slot.take().unwrap()());
// wrap it in a type that will actually drop the contents
let boxed_fut = unsafe { BumpBox::from_raw(fut) };
// erase the 'src lifetime for self-referential storage
let self_ref_fut = unsafe { std::mem::transmute(boxed_fut) };
2021-11-05 20:28:08 +00:00
let mut items = self.items.borrow_mut();
items.pending_effects.push(self_ref_fut);
items.pending_effects.len() - 1
}
/// Pushes the future onto the poll queue to be polled
/// The future is forcibly dropped if the component is not ready by the next render
pub fn push_task<'src>(&'src self, fut: impl Future<Output = ()> + 'src) -> usize {
// allocate the future
let fut: &mut dyn Future<Output = ()> = self.bump().alloc(fut);
// wrap it in a type that will actually drop the contents
let boxed_fut: BumpBox<dyn Future<Output = ()>> = unsafe { BumpBox::from_raw(fut) };
// erase the 'src lifetime for self-referential storage
let self_ref_fut = unsafe { std::mem::transmute(boxed_fut) };
2021-11-05 20:28:08 +00:00
let mut items = self.items.borrow_mut();
items.tasks.push(self_ref_fut);
items.tasks.len() - 1
}
/// This method enables the ability to expose state to children further down the VirtualDOM Tree.
///
/// This is a "fundamental" operation and should only be called during initialization of a hook.
///
/// For a hook that provides the same functionality, use `use_provide_state` and `use_consume_state` instead.
///
/// When the component is dropped, so is the context. Be aware of this behavior when consuming
/// the context via Rc/Weak.
///
/// # Example
///
/// ```
/// struct SharedState(&'static str);
///
/// static App: FC<()> = |(cx, props)|{
/// cx.use_hook(|_| cx.provide_state(SharedState("world")), |_| {}, |_| {});
/// rsx!(cx, Child {})
/// }
///
/// static Child: FC<()> = |(cx, props)|{
/// let state = cx.consume_state::<SharedState>();
/// rsx!(cx, div { "hello {state.0}" })
/// }
/// ```
pub fn provide_state<T>(&self, value: T)
where
T: 'static,
{
self.shared_contexts
.borrow_mut()
.insert(TypeId::of::<T>(), Rc::new(value))
.map(|f| f.downcast::<T>().ok())
.flatten();
}
/// Try to retrieve a SharedState with type T from the any parent Scope.
pub fn consume_state<T: 'static>(&self) -> Option<Rc<T>> {
if let Some(shared) = self.shared_contexts.borrow().get(&TypeId::of::<T>()) {
Some(shared.clone().downcast::<T>().unwrap())
} else {
let mut search_parent = self.parent_scope;
while let Some(parent_ptr) = search_parent {
let parent = unsafe { &*parent_ptr };
if let Some(shared) = parent.shared_contexts.borrow().get(&TypeId::of::<T>()) {
return Some(shared.clone().downcast::<T>().unwrap());
}
search_parent = parent.parent_scope;
}
None
}
}
/// Create a new subtree with this scope as the root of the subtree.
///
/// Each component has its own subtree ID - the root subtree has an ID of 0. This ID is used by the renderer to route
/// the mutations to the correct window/portal/subtree.
///
/// This method
///
/// # Example
///
/// ```rust
/// static App: FC<()> = |(cx, props)| {
/// todo!();
/// rsx!(cx, div { "Subtree {id}"})
/// };
/// ```
pub fn create_subtree(&self) -> Option<u32> {
self.new_subtree()
}
/// Get the subtree ID that this scope belongs to.
///
/// Each component has its own subtree ID - the root subtree has an ID of 0. This ID is used by the renderer to route
/// the mutations to the correct window/portal/subtree.
///
/// # Example
///
/// ```rust
/// static App: FC<()> = |(cx, props)| {
/// let id = cx.get_current_subtree();
/// rsx!(cx, div { "Subtree {id}"})
/// };
/// ```
pub fn get_current_subtree(&self) -> u32 {
self.subtree()
}
/// Store a value between renders
///
/// This is *the* foundational hook for all other hooks.
///
/// - Initializer: closure used to create the initial hook state
/// - Runner: closure used to output a value every time the hook is used
///
2021-11-05 20:28:08 +00:00
/// To "cleanup" the hook, implement `Drop` on the stored hook value. Whenever the component is dropped, the hook
/// will be dropped as well.
///
/// # Example
///
/// ```ignore
/// // use_ref is the simplest way of storing a value between renders
/// fn use_ref<T: 'static>(initial_value: impl FnOnce() -> T) -> &RefCell<T> {
/// use_hook(
/// || Rc::new(RefCell::new(initial_value())),
/// |state| state,
/// )
/// }
/// ```
2021-11-05 20:28:08 +00:00
pub fn use_hook<'src, State: 'static, Output: 'src>(
&'src self,
2021-11-05 20:28:08 +00:00
initializer: impl FnOnce(usize) -> State,
runner: impl FnOnce(&'src mut State) -> Output,
) -> Output {
if self.hooks.at_end() {
2021-11-05 20:28:08 +00:00
self.hooks.push_hook(initializer(self.hooks.len()));
}
runner(self.hooks.next::<State>().expect(HOOK_ERR_MSG))
}
2021-07-18 16:39:32 +00:00
}
const HOOK_ERR_MSG: &str = r###"
Unable to retrieve the hook that was initialized at this index.
Consult the `rules of hooks` to understand how to use hooks properly.
You likely used the hook in a conditional. Hooks rely on consistent ordering between renders.
Functions prefixed with "use" should never be called conditionally.
"###;