mirror of
https://github.com/bevyengine/bevy
synced 2025-01-01 15:58:52 +00:00
83 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
notmd
|
d9282486e3
|
Dont enable bevy_remote by default (#16464)
# Objective - I dont think we want bevy_remote enable by default until our editor is out. ## Solution - Disable it |
||
andriyDev
|
b1e4512648
|
Fix the picking backend features not actually disabling the features (#16470)
# Objective - Fixes #16469. ## Solution - Make the picking backend features not enabled by default in each sub-crate. - Make features in `bevy_internal` to set the backend features - Make the root `bevy` crate set the features by default. ## Testing - The mesh and sprite picking examples still work correctly. |
||
François Mockers
|
6e81a05c93
|
Headless by features (#16401)
# Objective - Fixes #16152 ## Solution - Put `bevy_window` and `bevy_a11y` behind the `bevy_window` feature. they were the only difference - Add `ScheduleRunnerPlugin` to the `DefaultPlugins` when `bevy_window` is disabled - Remove `HeadlessPlugins` - Update the `headless` example |
||
Carter Anderson
|
6beeaa89d3
|
Make PCSS experimental (#16382)
# Objective PCSS still has some fundamental issues (#16155). We should resolve them before "releasing" the feature. ## Solution 1. Rename the already-optional `pbr_pcss` cargo feature to `experimental_pbr_pcss` to better communicate its state to developers. 2. Adjust the description of the `experimental_pbr_pcss` cargo feature to better communicate its state to developers. 3. Gate PCSS-related light component fields behind that cargo feature, to prevent surfacing them to developers by default. |
||
Patrick Walton
|
c6a66a7e96
|
Place percentage-closer soft shadows behind a feature gate to save on samplers. (#16068)
The two additional linear texture samplers that PCSS added caused us to blow past the limit on Apple Silicon macOS and WebGL. To fix the issue, this commit adds a `--feature pbr_pcss` feature gate that disables PCSS if not present. Closes #15345. Closes #15525. Closes #15821. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> Co-authored-by: IceSentry <IceSentry@users.noreply.github.com> |
||
Rob Parrett
|
30d84519a2
|
Use en-us locale for typos (#16037)
# Objective Bevy seems to want to standardize on "American English" spellings. Not sure if this is laid out anywhere in writing, but see also #15947. While perusing the docs for `typos`, I noticed that it has a `locale` config option and tried it out. ## Solution Switch to `en-us` locale in the `typos` config and run `typos -w` ## Migration Guide The following methods or fields have been renamed from `*dependants*` to `*dependents*`. - `ProcessorAssetInfo::dependants` - `ProcessorAssetInfos::add_dependant` - `ProcessorAssetInfos::non_existent_dependants` - `AssetInfo::dependants_waiting_on_load` - `AssetInfo::dependants_waiting_on_recursive_dep_load` - `AssetInfos::loader_dependants` - `AssetInfos::remove_dependants_and_labels` |
||
Clar Fon
|
683d6c90a9
|
Remove AVIF feature (#15973)
Resolves #15968. Since this feature never worked, and enabling it in the `image` crate requires system dependencies, we've decided that it's best to just remove it and let other plugin crates offer support for it as needed. ## Migration Guide AVIF images are no longer supported. They never really worked, and require system dependencies (libdav1d) to work correctly, so, it's better to simply offer this support via an unofficial plugin instead as needed. The corresponding types have been removed from Bevy to account for this. |
||
Alice Cecile
|
76744bf58c
|
Mark ghost nodes as experimental and partially feature flag them (#15961)
# Objective As discussed in #15341, ghost nodes are a contentious and experimental feature. In the interest of enabling ecosystem experimentation, we've decided to keep them in Bevy 0.15. That said, we don't use them internally, and don't expect third-party crates to support them. If the experimentation returns a negative result (they aren't very useful, an alternative design is preferred etc) they will be removed. We should clearly communicate this status to users, and make sure that users don't use ghost nodes in their projects without a very clear understanding of what they're getting themselves into. ## Solution To make life easy for users (and Bevy), `GhostNode` and all associated helpers remain public and are always available. However, actually constructing these requires enabling a feature flag that's clearly marked as experimental. To do so, I've added a meaningless private field. When the feature flag is enabled, our constructs (`new` and `default`) can be used. I've added a `new` constructor, which should be preferred over `Default::default` as that can be readily deprecated, allowing us to prompt users to swap over to the much nicer `GhostNode` syntax once this is a unit struct again. Full credit: this was mostly @cart's design: I'm just implementing it! ## Testing I've run the ghost_nodes example and it fails to compile without the feature flag. With the feature flag, it works fine :) --------- Co-authored-by: Zachary Harrold <zac@harrold.com.au> |
||
Joona Aalto
|
0e30b68b20
|
Add mesh picking backend and MeshRayCast system parameter (#15800)
# Objective Closes #15545. `bevy_picking` supports UI and sprite picking, but not mesh picking. Being able to pick meshes would be extremely useful for various games, tools, and our own examples, as well as scene editors and inspectors. So, we need a mesh picking backend! Luckily, [`bevy_mod_picking`](https://github.com/aevyrie/bevy_mod_picking) (which `bevy_picking` is based on) by @aevyrie already has a [backend for it]( |
||
Clar Fon
|
8adc9e9d6e
|
Feature-gate all image formats (#15586)
# Objective Bevy supports feature gates for each format it supports, but several formats that it loads via the `image` crate do not have feature gates. Additionally, the QOI format is supported by the `image` crate and wasn't available at all. This fixes that. ## Solution The following feature gates are added: * `avif` * `ff` (Farbfeld) * `gif` * `ico` * `qoi` * `tiff` None of these formats are enabled by default, despite the fact that all these formats appeared to be enabled by default before. Since `default-features` was disabled for the `image` crate, it's likely that using any of these formats would have errored by default before this change, although this probably needs additional testing. ## Testing The changes seemed minimal enough that a compile test would be sufficient. ## Migration guide Image formats that previously weren't feature-gated are now feature-gated, meaning they will have to be enabled if you use them: * `avif` * `ff` (Farbfeld) * `gif` * `ico` * `tiff` Additionally, the `qoi` feature has been added to support loading QOI format images. Previously, these formats appeared in the enum by default, but weren't actually enabled via the `image` crate, potentially resulting in weird bugs. Now, you should be able to add these features to your projects to support them properly. |
||
Bude
|
6edb78a8c3
|
Inverse bevy_render bevy_winit dependency and move cursor to bevy_winit (#15649)
# Objective - `bevy_render` should not depend on `bevy_winit` - Fixes #15565 ## Solution - `bevy_render` no longer depends on `bevy_winit` - The following is behind the `custom_cursor` feature - Move custom cursor code from `bevy_render` to `bevy_winit` behind the `custom_cursor` feature - `bevy_winit` now depends on `bevy_render` (for `Image` and `TextureFormat`) - `bevy_winit` now depends on `bevy_asset` (for `Assets`, `Handle` and `AssetId`) - `bevy_winit` now depends on `bytemuck` (already in tree) - Custom cursor code in `bevy_winit` reworked to use `AssetId` (other than that it is taken over 1:1) - Rework `bevy_winit` custom cursor interface visibility now that the logic is all contained in `bevy_winit` ## Testing - I ran the screenshot and window_settings examples - Tested on linux wayland so far --- ## Migration Guide `CursorIcon` and `CustomCursor` previously provided by `bevy::render::view::cursor` is now available from `bevy::winit`. A new feature `custom_cursor` enables this functionality (default feature). |
||
Joona Aalto
|
25bfa80e60
|
Migrate cameras to required components (#15641)
# Objective Yet another PR for migrating stuff to required components. This time, cameras! ## Solution As per the [selected proposal](https://hackmd.io/tsYID4CGRiWxzsgawzxG_g#Combined-Proposal-1-Selected), deprecate `Camera2dBundle` and `Camera3dBundle` in favor of `Camera2d` and `Camera3d`. Adding a `Camera` without `Camera2d` or `Camera3d` now logs a warning, as suggested by Cart [on Discord](https://discord.com/channels/691052431525675048/1264881140007702558/1291506402832945273). I would personally like cameras to work a bit differently and be split into a few more components, to avoid some footguns and confusing semantics, but that is more controversial, and shouldn't block this core migration. ## Testing I ran a few 2D and 3D examples, and tried cameras with and without render graphs. --- ## Migration Guide `Camera2dBundle` and `Camera3dBundle` have been deprecated in favor of `Camera2d` and `Camera3d`. Inserting them will now also insert the other components required by them automatically. |
||
Litttle_fish
|
e924df0e1a
|
Add features to switch NativeActivity and GameActivity usage (#12095)
# Objective Add two features to switch bevy to use `NativeActivity` or `GameActivity` on Android, use `GameActivity` by default. Also close #12058 and probably #12026 . ## Solution Add two features to the corresponding crates so you can toggle it, like what `winit` and `android-activity` crate did. --- ## Changelog Removed default `NativeActivity` feature implementation for Android, added two new features to enable `NativeActivity` and `GameActivity`, and use `GameActivity` by default. ## Migration Guide Because `cargo-apk` is not compatible with `GameActivity`, building/running using `cargo apk build/run -p bevy_mobile_example` is no longer possible. Users should follow the new workflow described in document. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com> Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com> Co-authored-by: Rich Churcher <rich.churcher@gmail.com> |
||
Matty
|
89e98b208f
|
Initial implementation of the Bevy Remote Protocol (Adopted) (#14880)
# Objective Adopted from #13563. The goal is to implement the Bevy Remote Protocol over HTTP/JSON, allowing the ECS to be interacted with remotely. ## Solution At a high level, there are really two separate things that have been undertaken here: 1. First, `RemotePlugin` has been created, which has the effect of embedding a [JSON-RPC](https://www.jsonrpc.org/specification) endpoint into a Bevy application. 2. Second, the [Bevy Remote Protocol verbs](https://gist.github.com/coreh/1baf6f255d7e86e4be29874d00137d1d#file-bevy-remote-protocol-md) (excluding `POLL`) have been implemented as remote methods for that JSON-RPC endpoint under a Bevy-exclusive namespace (e.g. `bevy/get`, `bevy/list`, etc.). To avoid some repetition, here is the crate-level documentation, which explains the request/response structure, built-in-methods, and custom method configuration: <details> <summary>Click to view crate-level docs</summary> ```rust //! An implementation of the Bevy Remote Protocol over HTTP and JSON, to allow //! for remote control of a Bevy app. //! //! Adding the [`RemotePlugin`] to your [`App`] causes Bevy to accept //! connections over HTTP (by default, on port 15702) while your app is running. //! These *remote clients* can inspect and alter the state of the //! entity-component system. Clients are expected to `POST` JSON requests to the //! root URL; see the `client` example for a trivial example of use. //! //! The Bevy Remote Protocol is based on the JSON-RPC 2.0 protocol. //! //! ## Request objects //! //! A typical client request might look like this: //! //! ```json //! { //! "method": "bevy/get", //! "id": 0, //! "params": { //! "entity": 4294967298, //! "components": [ //! "bevy_transform::components::transform::Transform" //! ] //! } //! } //! ``` //! //! The `id` and `method` fields are required. The `param` field may be omitted //! for certain methods: //! //! * `id` is arbitrary JSON data. The server completely ignores its contents, //! and the client may use it for any purpose. It will be copied via //! serialization and deserialization (so object property order, etc. can't be //! relied upon to be identical) and sent back to the client as part of the //! response. //! //! * `method` is a string that specifies one of the possible [`BrpRequest`] //! variants: `bevy/query`, `bevy/get`, `bevy/insert`, etc. It's case-sensitive. //! //! * `params` is parameter data specific to the request. //! //! For more information, see the documentation for [`BrpRequest`]. //! [`BrpRequest`] is serialized to JSON via `serde`, so [the `serde` //! documentation] may be useful to clarify the correspondence between the Rust //! structure and the JSON format. //! //! ## Response objects //! //! A response from the server to the client might look like this: //! //! ```json //! { //! "jsonrpc": "2.0", //! "id": 0, //! "result": { //! "bevy_transform::components::transform::Transform": { //! "rotation": { "x": 0.0, "y": 0.0, "z": 0.0, "w": 1.0 }, //! "scale": { "x": 1.0, "y": 1.0, "z": 1.0 }, //! "translation": { "x": 0.0, "y": 0.5, "z": 0.0 } //! } //! } //! } //! ``` //! //! The `id` field will always be present. The `result` field will be present if the //! request was successful. Otherwise, an `error` field will replace it. //! //! * `id` is the arbitrary JSON data that was sent as part of the request. It //! will be identical to the `id` data sent during the request, modulo //! serialization and deserialization. If there's an error reading the `id` field, //! it will be `null`. //! //! * `result` will be present if the request succeeded and will contain the response //! specific to the request. //! //! * `error` will be present if the request failed and will contain an error object //! with more information about the cause of failure. //! //! ## Error objects //! //! An error object might look like this: //! //! ```json //! { //! "code": -32602, //! "message": "Missing \"entity\" field" //! } //! ``` //! //! The `code` and `message` fields will always be present. There may also be a `data` field. //! //! * `code` is an integer representing the kind of an error that happened. Error codes documented //! in the [`error_codes`] module. //! //! * `message` is a short, one-sentence human-readable description of the error. //! //! * `data` is an optional field of arbitrary type containing additional information about the error. //! //! ## Built-in methods //! //! The Bevy Remote Protocol includes a number of built-in methods for accessing and modifying data //! in the ECS. Each of these methods uses the `bevy/` prefix, which is a namespace reserved for //! BRP built-in methods. //! //! ### bevy/get //! //! Retrieve the values of one or more components from an entity. //! //! `params`: //! - `entity`: The ID of the entity whose components will be fetched. //! - `components`: An array of fully-qualified type names of components to fetch. //! //! `result`: A map associating each type name to its value on the requested entity. //! //! ### bevy/query //! //! Perform a query over components in the ECS, returning all matching entities and their associated //! component values. //! //! All of the arrays that comprise this request are optional, and when they are not provided, they //! will be treated as if they were empty. //! //! `params`: //! `params`: //! - `data`: //! - `components` (optional): An array of fully-qualified type names of components to fetch. //! - `option` (optional): An array of fully-qualified type names of components to fetch optionally. //! - `has` (optional): An array of fully-qualified type names of components whose presence will be //! reported as boolean values. //! - `filter` (optional): //! - `with` (optional): An array of fully-qualified type names of components that must be present //! on entities in order for them to be included in results. //! - `without` (optional): An array of fully-qualified type names of components that must *not* be //! present on entities in order for them to be included in results. //! //! `result`: An array, each of which is an object containing: //! - `entity`: The ID of a query-matching entity. //! - `components`: A map associating each type name from `components`/`option` to its value on the matching //! entity if the component is present. //! - `has`: A map associating each type name from `has` to a boolean value indicating whether or not the //! entity has that component. If `has` was empty or omitted, this key will be omitted in the response. //! //! ### bevy/spawn //! //! Create a new entity with the provided components and return the resulting entity ID. //! //! `params`: //! - `components`: A map associating each component's fully-qualified type name with its value. //! //! `result`: //! - `entity`: The ID of the newly spawned entity. //! //! ### bevy/destroy //! //! Despawn the entity with the given ID. //! //! `params`: //! - `entity`: The ID of the entity to be despawned. //! //! `result`: null. //! //! ### bevy/remove //! //! Delete one or more components from an entity. //! //! `params`: //! - `entity`: The ID of the entity whose components should be removed. //! - `components`: An array of fully-qualified type names of components to be removed. //! //! `result`: null. //! //! ### bevy/insert //! //! Insert one or more components into an entity. //! //! `params`: //! - `entity`: The ID of the entity to insert components into. //! - `components`: A map associating each component's fully-qualified type name with its value. //! //! `result`: null. //! //! ### bevy/reparent //! //! Assign a new parent to one or more entities. //! //! `params`: //! - `entities`: An array of entity IDs of entities that will be made children of the `parent`. //! - `parent` (optional): The entity ID of the parent to which the child entities will be assigned. //! If excluded, the given entities will be removed from their parents. //! //! `result`: null. //! //! ### bevy/list //! //! List all registered components or all components present on an entity. //! //! When `params` is not provided, this lists all registered components. If `params` is provided, //! this lists only those components present on the provided entity. //! //! `params` (optional): //! - `entity`: The ID of the entity whose components will be listed. //! //! `result`: An array of fully-qualified type names of components. //! //! ## Custom methods //! //! In addition to the provided methods, the Bevy Remote Protocol can be extended to include custom //! methods. This is primarily done during the initialization of [`RemotePlugin`], although the //! methods may also be extended at runtime using the [`RemoteMethods`] resource. //! //! ### Example //! ```ignore //! fn main() { //! App::new() //! .add_plugins(DefaultPlugins) //! .add_plugins( //! // `default` adds all of the built-in methods, while `with_method` extends them //! RemotePlugin::default() //! .with_method("super_user/cool_method".to_owned(), path::to::my:🆒:handler) //! // ... more methods can be added by chaining `with_method` //! ) //! .add_systems( //! // ... standard application setup //! ) //! .run(); //! } //! ``` //! //! The handler is expected to be a system-convertible function which takes optional JSON parameters //! as input and returns a [`BrpResult`]. This means that it should have a type signature which looks //! something like this: //! ``` //! # use serde_json::Value; //! # use bevy_ecs::prelude::{In, World}; //! # use bevy_remote::BrpResult; //! fn handler(In(params): In<Option<Value>>, world: &mut World) -> BrpResult { //! todo!() //! } //! ``` //! //! Arbitrary system parameters can be used in conjunction with the optional `Value` input. The //! handler system will always run with exclusive `World` access. //! //! [the `serde` documentation]: https://serde.rs/ ``` </details> ### Message lifecycle At a high level, the lifecycle of client-server interactions is something like this: 1. The client sends one or more `BrpRequest`s. The deserialized version of that is just the Rust representation of a JSON-RPC request, and it looks like this: ```rust pub struct BrpRequest { /// The action to be performed. Parsing is deferred for the sake of error reporting. pub method: Option<Value>, /// Arbitrary data that will be returned verbatim to the client as part of /// the response. pub id: Option<Value>, /// The parameters, specific to each method. /// /// These are passed as the first argument to the method handler. /// Sometimes params can be omitted. pub params: Option<Value>, } ``` 2. These requests are accumulated in a mailbox resource (small lie but close enough). 3. Each update, the mailbox is drained by a system `process_remote_requests`, where each request is processed according to its `method`, which has an associated handler. Each handler is a Bevy system that runs with exclusive world access and returns a result; e.g.: ```rust pub fn process_remote_get_request(In(params): In<Option<Value>>, world: &World) -> BrpResult { // ... } ``` 4. The result (or an error) is reported back to the client. ## Testing This can be tested by using the `server` and `client` examples. The `client` example is not particularly exhaustive at the moment (it only creates barebones `bevy/query` requests) but is still informative. Other queries can be made using `curl` with the `server` example running. For example, to make a `bevy/list` request and list all registered components: ```bash curl -X POST -d '{ "jsonrpc": "2.0", "id": 1, "method": "bevy/list" }' 127.0.0.1:15702 | jq . ``` --- ## Future direction There were a couple comments on BRP versioning while this was in draft. I agree that BRP versioning is a good idea, but I think that it requires some consensus on a couple fronts: - First of all, what does the version actually mean? Is it a version for the protocol itself or for the `bevy/*` methods implemented using it? Both? - Where does the version actually live? The most natural place is just where we have `"jsonrpc"` right now (at least if it's versioning the protocol itself), but this means we're not actually conforming to JSON-RPC any more (so, for example, any client library used to construct JSON-RPC requests would stop working). I'm not really against that, but it's at least a real decision. - What do we actually do when we encounter mismatched versions? Adding handling for this would be actual scope creep instead of just a little add-on in my opinion. Another thing that would be nice is making the internal structure of the implementation less JSON-specific. Right now, for example, component values that will appear in server responses are quite eagerly converted to JSON `Value`s, which prevents disentangling the handler logic from the communication medium, but it can probably be done in principle and I imagine it would enable more code reuse (e.g. for custom method handlers) in addition to making the internals more readily usable for other formats. --------- Co-authored-by: Patrick Walton <pcwalton@mimiga.net> Co-authored-by: DragonGamesStudios <margos.michal@gmail.com> Co-authored-by: Christopher Biscardi <chris@christopherbiscardi.com> Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> |
||
Benjamin Brienen
|
9386bd0114
|
feature gate picking backends (#15369)
# Objective Fixes #15306 ## Solution - Add feature gate on the module and the place where each one is used - Declare the features and make them default ## Testing - CI |
||
Rich Churcher
|
58f6fa94a2
|
Spirv passthrough main (adopted, part deux) (#15352)
**Note:** This is an adoption of @Shfty 's adoption (#8131) of #3996! All I've done is updated the branch and run the docs CI. > **Note:** This is an adoption of #3996, originally authored by @molikto > > # Objective > Allow use of `wgpu::Features::SPIRV_SHADER_PASSTHROUGH` and the corresponding `wgpu::Device::create_shader_module_spirv` for SPIR-V shader assets. > > This enables use-cases where naga is not sufficient to load a given (valid) SPIR-V module, i.e. cases where naga lacks support for a given SPIR-V feature employed by a third-party codegen backend like `rust-gpu`. > > ## Solution > * Reimplemented the changes from [Spirv shader bypass #3996](https://github.com/bevyengine/bevy/pull/3996), on account of the original branch having been deleted. > * Documented the new `spirv_shader_passthrough` feature flag with the appropriate platform support context from [wgpu's documentation](https://docs.rs/wgpu/latest/wgpu/struct.Features.html#associatedconstant.SPIRV_SHADER_PASSTHROUGH). > > ## Changelog > * Adds a `spirv_shader_passthrough` feature flag to the following crates: > > * `bevy` > * `bevy_internal` > * `bevy_render` > * Extends `RenderDevice::create_shader_module` with a conditional call to `wgpu::Device::create_shader_module_spirv` if `spirv_shader_passthrough` is enabled and `wgpu::Features::SPIRV_SHADER_PASSTHROUGH` is present for the current platform. > * Documents the relevant `wgpu` platform support in `docs/cargo_features.md` --------- Co-authored-by: Josh Palmer <1253239+Shfty@users.noreply.github.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
MichiRecRoom
|
94d40d206e
|
Replace the wgpu_trace feature with a field in bevy_render::settings::WgpuSettings (#14842)
# Objective - Remove the `wgpu_trace` feature while still making it easy/possible to record wgpu traces for debugging. - Close #14725. - Get a taste of the bevy codebase. :P ## Solution This PR performs the above objective by removing the `wgpu_trace` feature from all `Cargo.toml` files. However, wgpu traces are still useful for debugging - but to record them, you need to pass in a directory path to store the traces in. To avoid forcing users into manually creating the renderer, `bevy_render::settings::WgpuSettings` now has a `trace_path` field, so that all of Bevy's automatic initialization can happen while still allowing for tracing. ## Testing - Did you test these changes? If so, how? - I have tested these changes, but only via running `cargo run -p ci`. I am hoping the Github Actions workflows will catch anything I missed. - Are there any parts that need more testing? - I do not believe so. - How can other people (reviewers) test your changes? Is there anything specific they need to know? - If you want to test these changes, I have updated the debugging guide (`docs/debugging.md`) section on WGPU Tracing. - If relevant, what platforms did you test these changes on, and are there any important ones you can't test? - I ran the above command on a Windows 10 64-bit (x64) machine, using the `stable-x86_64-pc-windows-msvc` toolchain. I do not have anything set up for other platforms or targets (though I can't imagine this needs testing on other platforms). --- ## Migration Guide 1. The `bevy/wgpu_trace`, `bevy_render/wgpu_trace`, and `bevy_internal/wgpu_trace` features no longer exist. Remove them from your `Cargo.toml`, CI, tooling, and what-not. 2. Follow the instructions in the updated `docs/debugging.md` file in the repository, under the WGPU Tracing section. Because of the changes made, you can now generate traces to any path, rather than the hardcoded `%WorkspaceRoot%/wgpu_trace` (where `%WorkspaceRoot%` is... the root of your crate's workspace) folder. (If WGPU hasn't restored tracing functionality...) Do note that WGPU has not yet restored tracing functionality. However, once it does, the above should be sufficient to generate new traces. --------- Co-authored-by: TrialDragon <31419708+TrialDragon@users.noreply.github.com> |
||
BD103
|
d722fef23d
|
Remove deprecated bevy_dynamic_plugin (#14534)
# Objective - Dynamic plugins were deprecated in #13080 due to being unsound. The plan was to deprecate them in 0.14 and remove them in 0.15. ## Solution - Remove all dynamic plugin functionality. - Update documentation to reflect this change. --- ## Migration Guide Dynamic plugins were deprecated in 0.14 for being unsound, and they have now been fully removed. Please consider using the alternatives listed in the `bevy_dynamic_plugin` crate documentation, or worst-case scenario you may copy the code from 0.14. |
||
Aevyrie
|
9575b20d31
|
Track source location in change detection (#14034)
# Objective - Make it possible to know *what* changed your component or resource. - Common need when debugging, when you want to know the last code location that mutated a value in the ECS. - This feature would be very useful for the editor alongside system stepping. ## Solution - Adds the caller location to column data. - Mutations now `track_caller` all the way up to the public API. - Commands that invoke these functions immediately call `Location::caller`, and pass this into the functions, instead of the functions themselves attempting to get the caller. This would not work for commands which are deferred, as the commands are executed by the scheduler, not the user's code. ## Testing - The `component_change_detection` example now shows where the component was mutated: ``` 2024-07-28T06:57:48.946022Z INFO component_change_detection: Entity { index: 1, generation: 1 }: New value: MyComponent(0.0) 2024-07-28T06:57:49.004371Z INFO component_change_detection: Entity { index: 1, generation: 1 }: New value: MyComponent(1.0) 2024-07-28T06:57:49.012738Z WARN component_change_detection: Change detected! -> value: Ref(MyComponent(1.0)) -> added: false -> changed: true -> changed by: examples/ecs/component_change_detection.rs:36:23 ``` - It's also possible to inspect change location from a debugger: <img width="608" alt="image" src="https://github.com/user-attachments/assets/c90ecc7a-0462-457a-80ae-42e7f5d346b4"> --- ## Changelog - Added source locations to ECS change detection behind the `track_change_detection` flag. ## Migration Guide - Added `changed_by` field to many internal ECS functions used with change detection when the `track_change_detection` feature flag is enabled. Use Location::caller() to provide the source of the function call. --------- Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com> Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> |
||
Gino Valente
|
99c9218b56
|
bevy_reflect: Feature-gate function reflection (#14174)
# Objective Function reflection requires a lot of macro code generation in the form of several `all_tuples!` invocations, as well as impls generated in the `Reflect` derive macro. Seeing as function reflection is currently a bit more niche, it makes sense to gate it all behind a feature. ## Solution Add a `functions` feature to `bevy_reflect`, which can be enabled in Bevy using the `reflect_functions` feature. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect ``` That should ensure that everything still works with the feature disabled. To test with the feature on, you can run: ``` cargo test --package bevy_reflect --features functions ``` --- ## Changelog - Moved function reflection behind a Cargo feature (`bevy/reflect_functions` and `bevy_reflect/functions`) - Add `IntoFunction` export in `bevy_reflect::prelude` ## Internal Migration Guide > [!important] > Function reflection was introduced as part of the 0.15 dev cycle. This migration guide was written for developers relying on `main` during this cycle, and is not a breaking change coming from 0.14. Function reflection is now gated behind a feature. To use function reflection, enable the feature: - If using `bevy_reflect` directly, enable the `functions` feature - If using `bevy`, enable the `reflect_functions` feature |
||
TotalKrill
|
5986d5d309
|
Cosmic text (#10193)
# Replace ab_glyph with the more capable cosmic-text Fixes #7616. Cosmic-text is a more mature text-rendering library that handles scripts and ligatures better than ab_glyph, it can also handle system fonts which can be implemented in bevy in the future Rebase of https://github.com/bevyengine/bevy/pull/8808 ## Changelog Replaces text renderer ab_glyph with cosmic-text The definition of the font size has changed with the migration to cosmic text. The behavior is now consistent with other platforms (e.g. the web), where the font size in pixels measures the height of the font (the distance between the top of the highest ascender and the bottom of the lowest descender). Font sizes in your app need to be rescaled to approximately 1.2x smaller; for example, if you were using a font size of 60.0, you should now use a font size of 50.0. ## Migration guide - `Text2dBounds` has been replaced with `TextBounds`, and it now accepts `Option`s to the bounds, instead of using `f32::INFINITY` to inidicate lack of bounds - Textsizes should be changed, dividing the current size with 1.2 will result in the same size as before. - `TextSettings` struct is removed - Feature `subpixel_alignment` has been removed since cosmic-text already does this automatically - TextBundles and things rendering texts requires the `CosmicBuffer` Component on them as well ## Suggested followups: - TextPipeline: reconstruct byte indices for keeping track of eventual cursors in text input - TextPipeline: (future work) split text entities into section entities - TextPipeline: (future work) text editing - Support line height as an option. Unitless `1.2` is the default used in browsers (1.2x font size). - Support System Fonts and font families - Example showing of animated text styles. Eg. throbbing hyperlinks --------- Co-authored-by: tigregalis <anak.harimau@gmail.com> Co-authored-by: Nico Burns <nico@nicoburns.com> Co-authored-by: sam edelsten <samedelsten1@gmail.com> Co-authored-by: Dimchikkk <velo.app1@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> |
||
Gagnus
|
a47b91cccc
|
Added feature switch to default Standard Material's new anisotropy texture to off (#14048)
# Objective - Standard Material is starting to run out of samplers (currently uses 13 with no additional features off, I think in 0.13 it was 12). - This change adds a new feature switch, modelled on the other ones which add features to Standard Material, to turn off the new anisotropy feature by default. ## Solution - feature + texture define ## Testing - Anisotropy example still works fine - Other samples work fine - Standard Material now takes 12 samplers by default on my Mac instead of 13 ## Migration Guide - Add feature pbr_anisotropy_texture if you are using that texture in any standard materials. --------- Co-authored-by: John Payne <20407779+johngpayne@users.noreply.github.com> |
||
François Mockers
|
19d078c609
|
don't crash without features bevy_pbr , ktx2 , zstd (#14020)
# Objective - Fixes #13728 ## Solution - add a new feature `smaa_luts`. if enables, it also enables `ktx2` and `zstd`. if not, it doesn't load the files but use placeholders instead - adds all the resources needed in the same places that system that uses them are added. |
||
Miles Silberling-Cook
|
aaccbe88aa
|
Upstream CorePlugin from bevy_mod_picking (#13677)
# Objective This is the first of a series of PRs intended to begin the upstreaming process for `bevy_mod_picking`. The purpose of this PR is to: + Create the new `bevy_picking` crate + Upstream `CorePlugin` as `PickingPlugin` + Upstream the core pointer and backend abstractions. This code has been ported verbatim from the corresponding files in [bevy_picking_core](https://github.com/aevyrie/bevy_mod_picking/tree/main/crates/bevy_picking_core/src) with a few tiny naming and docs tweaks. The work here is only an initial foothold to get the up-streaming process started in earnest. We can do refactoring and improvements once this is in-tree. --------- Co-authored-by: Aevyrie <aevyrie@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
Lee-Orr
|
42ba9dfaea
|
Separate state crate (#13216)
# Objective Extracts the state mechanisms into a new crate called "bevy_state". This comes with a few goals: - state wasn't really an inherent machinery of the ecs system, and so keeping it within bevy_ecs felt forced - by mixing it in with bevy_ecs, the maintainability of our more robust state system was significantly compromised moving state into a new crate makes it easier to encapsulate as it's own feature, and easier to read and understand since it's no longer a single, massive file. ## Solution move the state-related elements from bevy_ecs to a new crate ## Testing - Did you test these changes? If so, how? all the automated tests migrated and passed, ran the pre-existing examples without changes to validate. --- ## Migration Guide Since bevy_state is now gated behind the `bevy_state` feature, projects that use state but don't use the `default-features` will need to add that feature flag. Since it is no longer part of bevy_ecs, projects that use bevy_ecs directly will need to manually pull in `bevy_state`, trigger the StateTransition schedule, and handle any of the elements that bevy_app currently sets up. --------- Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com> |
||
andristarr
|
bb76a2c69c
|
multi_threaded feature rename (#12997)
# Objective Fixes #12966 ## Solution Renaming multi_threaded feature to match snake case ## Migration Guide Bevy feature multi-threaded should be refered to multi_threaded from now on. |
||
Patrick Walton
|
77ed72bc16
|
Implement clearcoat per the Filament and the KHR_materials_clearcoat specifications. (#13031)
Clearcoat is a separate material layer that represents a thin translucent layer of a material. Examples include (from the [Filament spec]) car paint, soda cans, and lacquered wood. This commit implements support for clearcoat following the Filament and Khronos specifications, marking the beginnings of support for multiple PBR layers in Bevy. The [`KHR_materials_clearcoat`] specification describes the clearcoat support in glTF. In Blender, applying a clearcoat to the Principled BSDF node causes the clearcoat settings to be exported via this extension. As of this commit, Bevy parses and reads the extension data when present in glTF. Note that the `gltf` crate has no support for `KHR_materials_clearcoat`; this patch therefore implements the JSON semantics manually. Clearcoat is integrated with `StandardMaterial`, but the code is behind a series of `#ifdef`s that only activate when clearcoat is present. Additionally, the `pbr_feature_layer_material_textures` Cargo feature must be active in order to enable support for clearcoat factor maps, clearcoat roughness maps, and clearcoat normal maps. This approach mirrors the same pattern used by the existing transmission feature and exists to avoid running out of texture bindings on platforms like WebGL and WebGPU. Note that constant clearcoat factors and roughness values *are* supported in the browser; only the relatively-less-common maps are disabled on those platforms. This patch refactors the lighting code in `StandardMaterial` significantly in order to better support multiple layers in a natural way. That code was due for a refactor in any case, so this is a nice improvement. A new demo, `clearcoat`, has been added. It's based on [the corresponding three.js demo], but all the assets (aside from the skybox and environment map) are my original work. [Filament spec]: https://google.github.io/filament/Filament.html#materialsystem/clearcoatmodel [`KHR_materials_clearcoat`]: https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_materials_clearcoat/README.md [the corresponding three.js demo]: https://threejs.org/examples/webgl_materials_physical_clearcoat.html ![Screenshot 2024-04-19 101143](https://github.com/bevyengine/bevy/assets/157897/3444bcb5-5c20-490c-b0ad-53759bd47ae2) ![Screenshot 2024-04-19 102054](https://github.com/bevyengine/bevy/assets/157897/6e953944-75b8-49ef-bc71-97b0a53b3a27) ## Changelog ### Added * `StandardMaterial` now supports a clearcoat layer, which represents a thin translucent layer over an underlying material. * The glTF loader now supports the `KHR_materials_clearcoat` extension, representing materials with clearcoat layers. ## Migration Guide * The lighting functions in the `pbr_lighting` WGSL module now have clearcoat parameters, if `STANDARD_MATERIAL_CLEARCOAT` is defined. * The `R` reflection vector parameter has been removed from some lighting functions, as it was unused. |
||
Jonathan
|
eb82ec047e
|
Remove stepping from default features (#12847)
# Objective Fix #11931 ## Solution - Make stepping a non-default feature - Adjust documentation and examples - In particular, make the breakout example not show the stepping prompt if compiled without the feature (shows a log message instead) --- ## Changelog - Removed `bevy_debug_stepping` from default features ## Migration Guide The system-by-system stepping feature is now disabled by default; to use it, enable the `bevy_debug_stepping` feature explicitly: ```toml [dependencies] bevy = { version = "0.14", features = ["bevy_debug_stepping"] } ``` Code using [`Stepping`](https://docs.rs/bevy/latest/bevy/ecs/schedule/struct.Stepping.html) will still compile with the feature disabled, but will print a runtime error message to the console if the application attempts to enable stepping. --------- Co-authored-by: James Liu <contact@jamessliu.com> Co-authored-by: François Mockers <francois.mockers@vleue.com> |
||
JMS55
|
4f20faaa43
|
Meshlet rendering (initial feature) (#10164)
# Objective - Implements a more efficient, GPU-driven (https://github.com/bevyengine/bevy/issues/1342) rendering pipeline based on meshlets. - Meshes are split into small clusters of triangles called meshlets, each of which acts as a mini index buffer into the larger mesh data. Meshlets can be compressed, streamed, culled, and batched much more efficiently than monolithic meshes. ![image](https://github.com/bevyengine/bevy/assets/47158642/cb2aaad0-7a9a-4e14-93b0-15d4e895b26a) ![image](https://github.com/bevyengine/bevy/assets/47158642/7534035b-1eb7-4278-9b99-5322e4401715) # Misc * Future work: https://github.com/bevyengine/bevy/issues/11518 * Nanite reference: https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf Two pass occlusion culling explained very well: https://medium.com/@mil_kru/two-pass-occlusion-culling-4100edcad501 --------- Co-authored-by: Ricky Taylor <rickytaylor26@gmail.com> Co-authored-by: vero <email@atlasdostal.com> Co-authored-by: François <mockersf@gmail.com> Co-authored-by: atlas dostal <rodol@rivalrebels.com> |
||
Mateusz Wachowiak
|
6533170e94
|
Add bevy_dev_tools crate (#11341)
# Objective - Resolves #11309 ## Solution - Add `bevy_dev_tools` crate as a default feature. - Add `DevToolsPlugin` and add it to an app if the `bevy_dev_tools` feature is enabled. `bevy_dev_tools` is reserved by @alice-i-cecile, should we wait until it gets transferred to cart before merging? --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com> |
||
François
|
f9e70abcac
|
Fix ios simulator support (#12339)
# Objective - #12103 broke iOS simulator support, it doesn't even compile anymore ## Solution - Fix the feature |
||
Kaur Kuut
|
165c360070
|
Update wgpu to v0.19.3 and unpin web-sys . (#12247)
# Objective This PR unpins `web-sys` so that unrelated projects that have `bevy_render` in their workspace can finally update their `web-sys`. More details in and fixes #12246. ## Solution * Update `wgpu` from 0.19.1 to 0.19.3. * Remove the `web-sys` pin. * Update docs and wasm helper to remove the now-stale `--cfg=web_sys_unstable_apis` Rust flag. --- ## Changelog Updated `wgpu` to v0.19.3 and removed `web-sys` pin. |
||
AxiomaticSemantics
|
7826313405
|
Make sysinfo diagnostic plugin optional (#12164)
# Objective - Fixes https://github.com/bevyengine/bevy/issues/11929 - make sysinfo plugin optional ## Solution - added features to allow for conditional compilation --- ## Migration Guide - For users who disable default features of bevy and wish to enable the diagnostic plugin, add `sysinfo_plugin` to your bevy features list. --------- Co-authored-by: ebola <dev@axiomatic> Co-authored-by: François <mockersf@gmail.com> |
||
Alice Cecile
|
2fbb4c68ae
|
Define a prelude for bevy_color, and add it to bevy_internal (#12158)
# Objective As we start to migrate to `bevy_color` in earnest (#12056), we should make it visible to Bevy users, and usable in examples. ## Solution 1. Add a prelude to `bevy_color`: I've only excluded the rarely used `ColorRange` type and the testing-focused color distance module. I definitely think that some color spaces are less useful than others to end users, but at the same time the types used there are very unlikely to conflict with user-facing types. 2. Add `bevy_color` to `bevy_internal` as an optional crate. 3. Re-export `bevy_color`'s prelude as part of `bevy::prelude`. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> |
||
David M. Lary
|
5c52d0aeee
|
System Stepping implemented as Resource (#8453)
# Objective Add interactive system debugging capabilities to bevy, providing step/break/continue style capabilities to running system schedules. * Original implementation: #8063 - `ignore_stepping()` everywhere was too much complexity * Schedule-config & Resource discussion: #8168 - Decided on selective adding of Schedules & Resource-based control ## Solution Created `Stepping` Resource. This resource can be used to enable stepping on a per-schedule basis. Systems within schedules can be individually configured to: * AlwaysRun: Ignore any stepping state and run every frame * NeverRun: Never run while stepping is enabled - this allows for disabling of systems while debugging * Break: If we're running the full frame, stop before this system is run Stepping provides two modes of execution that reflect traditional debuggers: * Step-based: Only execute one system at a time * Continue/Break: Run all systems, but stop before running a system marked as Break ### Demo https://user-images.githubusercontent.com/857742/233630981-99f3bbda-9ca6-4cc4-a00f-171c4946dc47.mov Breakout has been modified to use Stepping. The game runs normally for a couple of seconds, then stepping is enabled and the game appears to pause. A list of Schedules & Systems appears with a cursor at the first System in the list. The demo then steps forward full frames using the spacebar until the ball is about to hit a brick. Then we step system by system as the ball impacts a brick, showing the cursor moving through the individual systems. Finally the demo switches back to frame stepping as the ball changes course. ### Limitations Due to architectural constraints in bevy, there are some cases systems stepping will not function as a user would expect. #### Event-driven systems Stepping does not support systems that are driven by `Event`s as events are flushed after 1-2 frames. Although game systems are not running while stepping, ignored systems are still running every frame, so events will be flushed. This presents to the user as stepping the event-driven system never executes the system. It does execute, but the events have already been flushed. This can be resolved by changing event handling to use a buffer for events, and only dropping an event once all readers have read it. The work-around to allow these systems to properly execute during stepping is to have them ignore stepping: `app.add_systems(event_driven_system.ignore_stepping())`. This was done in the breakout example to ensure sound played even while stepping. #### Conditional Systems When a system is stepped, it is given an opportunity to run. If the conditions of the system say it should not run, it will not. Similar to Event-driven systems, if a system is conditional, and that condition is only true for a very small time window, then stepping the system may not execute the system. This includes depending on any sort of external clock. This exhibits to the user as the system not always running when it is stepped. A solution to this limitation is to ensure any conditions are consistent while stepping is enabled. For example, all systems that modify any state the condition uses should also enable stepping. #### State-transition Systems Stepping is configured on the per-`Schedule` level, requiring the user to have a `ScheduleLabel`. To support state-transition systems, bevy generates needed schedules dynamically. Currently it’s very difficult (if not impossible, I haven’t verified) for the user to get the labels for these schedules. Without ready access to the dynamically generated schedules, and a resolution for the `Event` lifetime, **stepping of the state-transition systems is not supported** --- ## Changelog - `Schedule::run()` updated to consult `Stepping` Resource to determine which Systems to run each frame - Added `Schedule.label` as a `BoxedSystemLabel`, along with supporting `Schedule::set_label()` and `Schedule::label()` methods - `Stepping` needed to know which `Schedule` was running, and prior to this PR, `Schedule` didn't track its own label - Would have preferred to add `Schedule::with_label()` and remove `Schedule::new()`, but this PR touches enough already - Added calls to `Schedule.set_label()` to `App` and `World` as needed - Added `Stepping` resource - Added `Stepping::begin_frame()` system to `MainSchedulePlugin` - Run before `Main::run_main()` - Notifies any `Stepping` Resource a new render frame is starting ## Migration Guide - Add a call to `Schedule::set_label()` for any custom `Schedule` - This is only required if the `Schedule` will be stepped --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Elabajaba
|
35ac1b152e
|
Update to wgpu 0.19 and raw-window-handle 0.6 (#11280)
# Objective Keep core dependencies up to date. ## Solution Update the dependencies. wgpu 0.19 only supports raw-window-handle (rwh) 0.6, so bumping that was included in this. The rwh 0.6 version bump is just the simplest way of doing it. There might be a way we can take advantage of wgpu's new safe surface creation api, but I'm not familiar enough with bevy's window management to untangle it and my attempt ended up being a mess of lifetimes and rustc complaining about missing trait impls (that were implemented). Thanks to @MiniaczQ for the (much simpler) rwh 0.6 version bump code. Unblocks https://github.com/bevyengine/bevy/pull/9172 and https://github.com/bevyengine/bevy/pull/10812 ~~This might be blocked on cpal and oboe updating their ndk versions to 0.8, as they both currently target ndk 0.7 which uses rwh 0.5.2~~ Tested on android, and everything seems to work correctly (audio properly stops when minimized, and plays when re-focusing the app). --- ## Changelog - `wgpu` has been updated to 0.19! The long awaited arcanization has been merged (for more info, see https://gfx-rs.github.io/2023/11/24/arcanization.html), and Vulkan should now be working again on Intel GPUs. - Targeting WebGPU now requires that you add the new `webgpu` feature (setting the `RUSTFLAGS` environment variable to `--cfg=web_sys_unstable_apis` is still required). This feature currently overrides the `webgl2` feature if you have both enabled (the `webgl2` feature is enabled by default), so it is not recommended to add it as a default feature to libraries without putting it behind a flag that allows library users to opt out of it! In the future we plan on supporting wasm binaries that can target both webgl2 and webgpu now that wgpu added support for doing so (see https://github.com/bevyengine/bevy/issues/11505). - `raw-window-handle` has been updated to version 0.6. ## Migration Guide - `bevy_render::instance_index::get_instance_index()` has been removed as the webgl2 workaround is no longer required as it was fixed upstream in wgpu. The `BASE_INSTANCE_WORKAROUND` shaderdef has also been removed. - WebGPU now requires the new `webgpu` feature to be enabled. The `webgpu` feature currently overrides the `webgl2` feature so you no longer need to disable all default features and re-add them all when targeting `webgpu`, but binaries built with both the `webgpu` and `webgl2` features will only target the webgpu backend, and will only work on browsers that support WebGPU. - Places where you conditionally compiled things for webgl2 need to be updated because of this change, eg: - `#[cfg(any(not(feature = "webgl"), not(target_arch = "wasm32")))]` becomes `#[cfg(any(not(feature = "webgl") ,not(target_arch = "wasm32"), feature = "webgpu"))]` - `#[cfg(all(feature = "webgl", target_arch = "wasm32"))]` becomes `#[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))]` - `if cfg!(all(feature = "webgl", target_arch = "wasm32"))` becomes `if cfg!(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))` - `create_texture_with_data` now also takes a `TextureDataOrder`. You can probably just set this to `TextureDataOrder::default()` - `TextureFormat`'s `block_size` has been renamed to `block_copy_size` - See the `wgpu` changelog for anything I might've missed: https://github.com/gfx-rs/wgpu/blob/trunk/CHANGELOG.md --------- Co-authored-by: François <mockersf@gmail.com> |
||
Marco Buono
|
44928e0df4
|
StandardMaterial Light Transmission (#8015)
# Objective
<img width="1920" alt="Screenshot 2023-04-26 at 01 07 34"
src="https://user-images.githubusercontent.com/418473/234467578-0f34187b-5863-4ea1-88e9-7a6bb8ce8da3.png">
This PR adds both diffuse and specular light transmission capabilities
to the `StandardMaterial`, with support for screen space refractions.
This enables realistically representing a wide range of real-world
materials, such as:
- Glass; (Including frosted glass)
- Transparent and translucent plastics;
- Various liquids and gels;
- Gemstones;
- Marble;
- Wax;
- Paper;
- Leaves;
- Porcelain.
Unlike existing support for transparency, light transmission does not
rely on fixed function alpha blending, and therefore works with both
`AlphaMode::Opaque` and `AlphaMode::Mask` materials.
## Solution
- Introduces a number of transmission related fields in the
`StandardMaterial`;
- For specular transmission:
- Adds logic to take a view main texture snapshot after the opaque
phase; (in order to perform screen space refractions)
- Introduces a new `Transmissive3d` phase to the renderer, to which all
meshes with `transmission > 0.0` materials are sent.
- Calculates a light exit point (of the approximate mesh volume) using
`ior` and `thickness` properties
- Samples the snapshot texture with an adaptive number of taps across a
`roughness`-controlled radius enabling “blurry” refractions
- For diffuse transmission:
- Approximates transmitted diffuse light by using a second, flipped +
displaced, diffuse-only Lambertian lobe for each light source.
## To Do
- [x] Figure out where `fresnel_mix()` is taking place, if at all, and
where `dielectric_specular` is being calculated, if at all, and update
them to use the `ior` value (Not a blocker, just a nice-to-have for more
correct BSDF)
- To the _best of my knowledge, this is now taking place, after
|
||
Elabajaba
|
65b3ff1c63
|
Log a warning when the tonemapping_luts feature is disabled but required for the selected tonemapper. (#10253)
# Objective Make it obvious why stuff renders pink when rendering stuff with bevy with `default_features = false` and bevy's default tonemapper (TonyMcMapFace, it requires a LUT which requires the `tonemapping_luts`, `ktx2`, and `zstd` features). Not sure if this should be considered as fixing these issues, but in my previous PR (https://github.com/bevyengine/bevy/pull/9073, and old discussions on discord that I only somewhat remember) it seemed like we didn't want to make ktx2 and zstd required features for bevy_core_pipeline. Related https://github.com/bevyengine/bevy/issues/9179 Related https://github.com/bevyengine/bevy/issues/9098 ## Solution This logs an error when a LUT based tonemapper is used without the `tonemapping_luts` feature enabled, and cleans up the default features a bit (`tonemapping_luts` now includes the `ktx2` and `zstd` features, since it panics without them). Another solution would be to fall back to a non-lut based tonemapper, but I don't like this solution as then it's not explicitly clear to users why eg. a library example renders differently than a normal bevy app (if the library forgot the `tonemapping_luts` feature). I did remove the `ktx2` and `zstd` features from the list of default features in Cargo.toml, as I don't believe anything else currently in bevy relies on them (or at least searching through every hit for `ktx2` and `zstd` didn't show anything except loading an environment map in some examples), and they still show up in the `cargo_features` doc as default features. --- ## Changelog - The `tonemapping_luts` feature now includes both the `ktx2` and `zstd` features to avoid a panic when the `tonemapping_luts` feature was enable without both the `ktx2` and `zstd` feature enabled. |
||
Ame :]
|
1e9258910c
|
re-export debug_glam_assert feature (#10206)
# Objective - I want to use the `debug_glam_assert` feature with bevy. ## Solution - Re-export the feature flag --- ## Changelog - Re-export `debug_glam_assert` feature flag from glam. |
||
Carter Anderson
|
6f27e0e35f
|
Add asset_processor feature and remove AssetMode::ProcessedDev (#10194)
# Objective Users shouldn't need to change their source code between "development workflows" and "releasing". Currently, Bevy Asset V2 has two "processed" asset modes `Processed` (assumes assets are already processed) and `ProcessedDev` (starts an asset processor and processes assets). This means that the mode must be changed _in code_ when switching from "app dev" to "release". Very suboptimal. We have already removed "runtime opt-in" for hot-reloading. Enabling the `file_watcher` feature _automatically_ enables file watching in code. This means deploying a game (without hot reloading enabled) just means calling `cargo build --release` instead of `cargo run --features bevy/file_watcher`. We should adopt this pattern for asset processing. ## Solution This adds the `asset_processor` feature, which will start the `AssetProcessor` when an `AssetPlugin` runs in `AssetMode::Processed`. The "asset processing workflow" is now: 1. Enable `AssetMode::Processed` on `AssetPlugin` 2. When developing, run with the `asset_processor` and `file_watcher` features 3. When releasing, build without these features. The `AssetMode::ProcessedDev` mode has been removed. |
||
Martín Maita
|
0dc7e60d0e
|
Improve WebGPU unstable flags docs (#10163)
# Objective - Fixes #9382 ## Solution - Added a few extra notes in regards to WebGPU experimental state and the need of enabling unstable APIs through certain attribute flags in `cargo_features.md` and the examples `README.md` files. |
||
Carter Anderson
|
35073cf7aa
|
Multiple Asset Sources (#9885)
This adds support for **Multiple Asset Sources**. You can now register a named `AssetSource`, which you can load assets from like you normally would: ```rust let shader: Handle<Shader> = asset_server.load("custom_source://path/to/shader.wgsl"); ``` Notice that `AssetPath` now supports `some_source://` syntax. This can now be accessed through the `asset_path.source()` accessor. Asset source names _are not required_. If one is not specified, the default asset source will be used: ```rust let shader: Handle<Shader> = asset_server.load("path/to/shader.wgsl"); ``` The behavior of the default asset source has not changed. Ex: the `assets` folder is still the default. As referenced in #9714 ## Why? **Multiple Asset Sources** enables a number of often-asked-for scenarios: * **Loading some assets from other locations on disk**: you could create a `config` asset source that reads from the OS-default config folder (not implemented in this PR) * **Loading some assets from a remote server**: you could register a new `remote` asset source that reads some assets from a remote http server (not implemented in this PR) * **Improved "Binary Embedded" Assets**: we can use this system for "embedded-in-binary assets", which allows us to replace the old `load_internal_asset!` approach, which couldn't support asset processing, didn't support hot-reloading _well_, and didn't make embedded assets accessible to the `AssetServer` (implemented in this pr) ## Adding New Asset Sources An `AssetSource` is "just" a collection of `AssetReader`, `AssetWriter`, and `AssetWatcher` entries. You can configure new asset sources like this: ```rust app.register_asset_source( "other", AssetSource::build() .with_reader(|| Box::new(FileAssetReader::new("other"))) ) ) ``` Note that `AssetSource` construction _must_ be repeatable, which is why a closure is accepted. `AssetSourceBuilder` supports `with_reader`, `with_writer`, `with_watcher`, `with_processed_reader`, `with_processed_writer`, and `with_processed_watcher`. Note that the "asset source" system replaces the old "asset providers" system. ## Processing Multiple Sources The `AssetProcessor` now supports multiple asset sources! Processed assets can refer to assets in other sources and everything "just works". Each `AssetSource` defines an unprocessed and processed `AssetReader` / `AssetWriter`. Currently this is all or nothing for a given `AssetSource`. A given source is either processed or it is not. Later we might want to add support for "lazy asset processing", where an `AssetSource` (such as a remote server) can be configured to only process assets that are directly referenced by local assets (in order to save local disk space and avoid doing extra work). ## A new `AssetSource`: `embedded` One of the big features motivating **Multiple Asset Sources** was improving our "embedded-in-binary" asset loading. To prove out the **Multiple Asset Sources** implementation, I chose to build a new `embedded` `AssetSource`, which replaces the old `load_interal_asset!` system. The old `load_internal_asset!` approach had a number of issues: * The `AssetServer` was not aware of (or capable of loading) internal assets. * Because internal assets weren't visible to the `AssetServer`, they could not be processed (or used by assets that are processed). This would prevent things "preprocessing shaders that depend on built in Bevy shaders", which is something we desperately need to start doing. * Each "internal asset" needed a UUID to be defined in-code to reference it. This was very manual and toilsome. The new `embedded` `AssetSource` enables the following pattern: ```rust // Called in `crates/bevy_pbr/src/render/mesh.rs` embedded_asset!(app, "mesh.wgsl"); // later in the app let shader: Handle<Shader> = asset_server.load("embedded://bevy_pbr/render/mesh.wgsl"); ``` Notice that this always treats the crate name as the "root path", and it trims out the `src` path for brevity. This is generally predictable, but if you need to debug you can use the new `embedded_path!` macro to get a `PathBuf` that matches the one used by `embedded_asset`. You can also reference embedded assets in arbitrary assets, such as WGSL shaders: ```rust #import "embedded://bevy_pbr/render/mesh.wgsl" ``` This also makes `embedded` assets go through the "normal" asset lifecycle. They are only loaded when they are actually used! We are also discussing implicitly converting asset paths to/from shader modules, so in the future (not in this PR) you might be able to load it like this: ```rust #import bevy_pbr::render::mesh::Vertex ``` Compare that to the old system! ```rust pub const MESH_SHADER_HANDLE: Handle<Shader> = Handle::weak_from_u128(3252377289100772450); load_internal_asset!(app, MESH_SHADER_HANDLE, "mesh.wgsl", Shader::from_wgsl); // The mesh asset is the _only_ accessible via MESH_SHADER_HANDLE and _cannot_ be loaded via the AssetServer. ``` ## Hot Reloading `embedded` You can enable `embedded` hot reloading by enabling the `embedded_watcher` cargo feature: ``` cargo run --features=embedded_watcher ``` ## Improved Hot Reloading Workflow First: the `filesystem_watcher` cargo feature has been renamed to `file_watcher` for brevity (and to match the `FileAssetReader` naming convention). More importantly, hot asset reloading is no longer configured in-code by default. If you enable any asset watcher feature (such as `file_watcher` or `rust_source_watcher`), asset watching will be automatically enabled. This removes the need to _also_ enable hot reloading in your app code. That means you can replace this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::default().watch_for_changes())) ``` with this: ```rust app.add_plugins(DefaultPlugins) ``` If you want to hot reload assets in your app during development, just run your app like this: ``` cargo run --features=file_watcher ``` This means you can use the same code for development and deployment! To deploy an app, just don't include the watcher feature ``` cargo build --release ``` My intent is to move to this approach for pretty much all dev workflows. In a future PR I would like to replace `AssetMode::ProcessedDev` with a `runtime-processor` cargo feature. We could then group all common "dev" cargo features under a single `dev` feature: ```sh # this would enable file_watcher, embedded_watcher, runtime-processor, and more cargo run --features=dev ``` ## AssetMode `AssetPlugin::Unprocessed`, `AssetPlugin::Processed`, and `AssetPlugin::ProcessedDev` have been replaced with an `AssetMode` field on `AssetPlugin`. ```rust // before app.add_plugins(DefaultPlugins.set(AssetPlugin::Processed { /* fields here */ }) // after app.add_plugins(DefaultPlugins.set(AssetPlugin { mode: AssetMode::Processed, ..default() }) ``` This aligns `AssetPlugin` with our other struct-like plugins. The old "source" and "destination" `AssetProvider` fields in the enum variants have been replaced by the "asset source" system. You no longer need to configure the AssetPlugin to "point" to custom asset providers. ## AssetServerMode To improve the implementation of **Multiple Asset Sources**, `AssetServer` was made aware of whether or not it is using "processed" or "unprocessed" assets. You can check that like this: ```rust if asset_server.mode() == AssetServerMode::Processed { /* do something */ } ``` Note that this refactor should also prepare the way for building "one to many processed output files", as it makes the server aware of whether it is loading from processed or unprocessed sources. Meaning we can store and read processed and unprocessed assets differently! ## AssetPath can now refer to folders The "file only" restriction has been removed from `AssetPath`. The `AssetServer::load_folder` API now accepts an `AssetPath` instead of a `Path`, meaning you can load folders from other asset sources! ## Improved AssetPath Parsing AssetPath parsing was reworked to support sources, improve error messages, and to enable parsing with a single pass over the string. `AssetPath::new` was replaced by `AssetPath::parse` and `AssetPath::try_parse`. ## AssetWatcher broken out from AssetReader `AssetReader` is no longer responsible for constructing `AssetWatcher`. This has been moved to `AssetSourceBuilder`. ## Duplicate Event Debouncing Asset V2 already debounced duplicate filesystem events, but this was _input_ events. Multiple input event types can produce the same _output_ `AssetSourceEvent`. Now that we have `embedded_watcher`, which does expensive file io on events, it made sense to debounce output events too, so I added that! This will also benefit the AssetProcessor by preventing integrity checks for duplicate events (and helps keep the noise down in trace logs). ## Next Steps * **Port Built-in Shaders**: Currently the primary (and essentially only) user of `load_interal_asset` in Bevy's source code is "built-in shaders". I chose not to do that in this PR for a few reasons: 1. We need to add the ability to pass shader defs in to shaders via meta files. Some shaders (such as MESH_VIEW_TYPES) need to pass shader def values in that are defined in code. 2. We need to revisit the current shader module naming system. I think we _probably_ want to imply modules from source structure (at least by default). Ideally in a way that can losslessly convert asset paths to/from shader modules (to enable the asset system to resolve modules using the asset server). 3. I want to keep this change set minimal / get this merged first. * **Deprecate `load_internal_asset`**: we can't do that until we do (1) and (2) * **Relative Asset Paths**: This PR significantly increases the need for relative asset paths (which was already pretty high). Currently when loading dependencies, it is assumed to be an absolute path, which means if in an `AssetLoader` you call `context.load("some/path/image.png")` it will assume that is the "default" asset source, _even if the current asset is in a different asset source_. This will cause breakage for AssetLoaders that are not designed to add the current source to whatever paths are being used. AssetLoaders should generally not need to be aware of the name of their current asset source, or need to think about the "current asset source" generally. We should build apis that support relative asset paths and then encourage using relative paths as much as possible (both via api design and docs). Relative paths are also important because they will allow developers to move folders around (even across providers) without reprocessing, provided there is no path breakage. |
||
Pixelstorm
|
503b861e3a
|
Allow using async_io::block_on in bevy_tasks (#9626)
# Objective Fixes #9625 ## Solution Adds `async-io` as an optional dependency of `bevy_tasks`. When enabled, this causes calls to `futures_lite::future::block_on` to be replaced with calls to `async_io::block_on`. --- ## Changelog - Added a new `async-io` feature to `bevy_tasks`. When enabled, this causes `bevy_tasks` to use `async-io`'s implemention of `block_on` instead of `futures-lite`'s implementation. You should enable this if you use `async-io` in your application. |
||
Carter Anderson
|
5eb292dc10
|
Bevy Asset V2 (#8624)
# Bevy Asset V2 Proposal ## Why Does Bevy Need A New Asset System? Asset pipelines are a central part of the gamedev process. Bevy's current asset system is missing a number of features that make it non-viable for many classes of gamedev. After plenty of discussions and [a long community feedback period](https://github.com/bevyengine/bevy/discussions/3972), we've identified a number missing features: * **Asset Preprocessing**: it should be possible to "preprocess" / "compile" / "crunch" assets at "development time" rather than when the game starts up. This enables offloading expensive work from deployed apps, faster asset loading, less runtime memory usage, etc. * **Per-Asset Loader Settings**: Individual assets cannot define their own loaders that override the defaults. Additionally, they cannot provide per-asset settings to their loaders. This is a huge limitation, as many asset types don't provide all information necessary for Bevy _inside_ the asset. For example, a raw PNG image says nothing about how it should be sampled (ex: linear vs nearest). * **Asset `.meta` files**: assets should have configuration files stored adjacent to the asset in question, which allows the user to configure asset-type-specific settings. These settings should be accessible during the pre-processing phase. Modifying a `.meta` file should trigger a re-processing / re-load of the asset. It should be possible to configure asset loaders from the meta file. * **Processed Asset Hot Reloading**: Changes to processed assets (or their dependencies) should result in re-processing them and re-loading the results in live Bevy Apps. * **Asset Dependency Tracking**: The current bevy_asset has no good way to wait for asset dependencies to load. It punts this as an exercise for consumers of the loader apis, which is unreasonable and error prone. There should be easy, ergonomic ways to wait for assets to load and block some logic on an asset's entire dependency tree loading. * **Runtime Asset Loading**: it should be (optionally) possible to load arbitrary assets dynamically at runtime. This necessitates being able to deploy and run the asset server alongside Bevy Apps on _all platforms_. For example, we should be able to invoke the shader compiler at runtime, stream scenes from sources like the internet, etc. To keep deployed binaries (and startup times) small, the runtime asset server configuration should be configurable with different settings compared to the "pre processor asset server". * **Multiple Backends**: It should be possible to load assets from arbitrary sources (filesystems, the internet, remote asset serves, etc). * **Asset Packing**: It should be possible to deploy assets in compressed "packs", which makes it easier and more efficient to distribute assets with Bevy Apps. * **Asset Handoff**: It should be possible to hold a "live" asset handle, which correlates to runtime data, without actually holding the asset in memory. Ex: it must be possible to hold a reference to a GPU mesh generated from a "mesh asset" without keeping the mesh data in CPU memory * **Per-Platform Processed Assets**: Different platforms and app distributions have different capabilities and requirements. Some platforms need lower asset resolutions or different asset formats to operate within the hardware constraints of the platform. It should be possible to define per-platform asset processing profiles. And it should be possible to deploy only the assets required for a given platform. These features have architectural implications that are significant enough to require a full rewrite. The current Bevy Asset implementation got us this far, but it can take us no farther. This PR defines a brand new asset system that implements most of these features, while laying the foundations for the remaining features to be built. ## Bevy Asset V2 Here is a quick overview of the features introduced in this PR. * **Asset Preprocessing**: Preprocess assets at development time into more efficient (and configurable) representations * **Dependency Aware**: Dependencies required to process an asset are tracked. If an asset's processed dependency changes, it will be reprocessed * **Hot Reprocessing/Reloading**: detect changes to asset source files, reprocess them if they have changed, and then hot-reload them in Bevy Apps. * **Only Process Changes**: Assets are only re-processed when their source file (or meta file) has changed. This uses hashing and timestamps to avoid processing assets that haven't changed. * **Transactional and Reliable**: Uses write-ahead logging (a technique commonly used by databases) to recover from crashes / forced-exits. Whenever possible it avoids full-reprocessing / only uncompleted transactions will be reprocessed. When the processor is running in parallel with a Bevy App, processor asset writes block Bevy App asset reads. Reading metadata + asset bytes is guaranteed to be transactional / correctly paired. * **Portable / Run anywhere / Database-free**: The processor does not rely on an in-memory database (although it uses some database techniques for reliability). This is important because pretty much all in-memory databases have unsupported platforms or build complications. * **Configure Processor Defaults Per File Type**: You can say "use this processor for all files of this type". * **Custom Processors**: The `Processor` trait is flexible and unopinionated. It can be implemented by downstream plugins. * **LoadAndSave Processors**: Most asset processing scenarios can be expressed as "run AssetLoader A, save the results using AssetSaver X, and then load the result using AssetLoader B". For example, load this png image using `PngImageLoader`, which produces an `Image` asset and then save it using `CompressedImageSaver` (which also produces an `Image` asset, but in a compressed format), which takes an `Image` asset as input. This means if you have an `AssetLoader` for an asset, you are already half way there! It also means that you can share AssetSavers across multiple loaders. Because `CompressedImageSaver` accepts Bevy's generic Image asset as input, it means you can also use it with some future `JpegImageLoader`. * **Loader and Saver Settings**: Asset Loaders and Savers can now define their own settings types, which are passed in as input when an asset is loaded / saved. Each asset can define its own settings. * **Asset `.meta` files**: configure asset loaders, their settings, enable/disable processing, and configure processor settings * **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex: if an asset contains a `Handle<Image>`) are tracked by the asset server. An event is emitted when an asset and all of its dependencies have been loaded * **Unprocessed Asset Loading**: Assets do not require preprocessing. They can be loaded directly. A processed asset is just a "normal" asset with some extra metadata. Asset Loaders don't need to know or care about whether or not an asset was processed. * **Async Asset IO**: Asset readers/writers use async non-blocking interfaces. Note that because Rust doesn't yet support async traits, there is a bit of manual Boxing / Future boilerplate. This will hopefully be removed in the near future when Rust gets async traits. * **Pluggable Asset Readers and Writers**: Arbitrary asset source readers/writers are supported, both by the processor and the asset server. * **Better Asset Handles** * **Single Arc Tree**: Asset Handles now use a single arc tree that represents the lifetime of the asset. This makes their implementation simpler, more efficient, and allows us to cheaply attach metadata to handles. Ex: the AssetPath of a handle is now directly accessible on the handle itself! * **Const Typed Handles**: typed handles can be constructed in a const context. No more weird "const untyped converted to typed at runtime" patterns! * **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed `Handle<T>` is now much smaller in memory and `AssetId<T>` is even smaller. * **Weak Handle Usage Reduction**: In general Handles are now considered to be "strong". Bevy features that previously used "weak `Handle<T>`" have been ported to `AssetId<T>`, which makes it statically clear that the features do not hold strong handles (while retaining strong type information). Currently Handle::Weak still exists, but it is very possible that we can remove that entirely. * **Efficient / Dense Asset Ids**: Assets now have efficient dense runtime asset ids, which means we can avoid expensive hash lookups. Assets are stored in Vecs instead of HashMaps. There are now typed and untyped ids, which means we no longer need to store dynamic type information in the ID for typed handles. "AssetPathId" (which was a nightmare from a performance and correctness standpoint) has been entirely removed in favor of dense ids (which are retrieved for a path on load) * **Direct Asset Loading, with Dependency Tracking**: Assets that are defined at runtime can still have their dependencies tracked by the Asset Server (ex: if you create a material at runtime, you can still wait for its textures to load). This is accomplished via the (currently optional) "asset dependency visitor" trait. This system can also be used to define a set of assets to load, then wait for those assets to load. * **Async folder loading**: Folder loading also uses this system and immediately returns a handle to the LoadedFolder asset, which means folder loading no longer blocks on directory traversals. * **Improved Loader Interface**: Loaders now have a specific "top level asset type", which makes returning the top-level asset simpler and statically typed. * **Basic Image Settings and Processing**: Image assets can now be processed into the gpu-friendly Basic Universal format. The ImageLoader now has a setting to define what format the image should be loaded as. Note that this is just a minimal MVP ... plenty of additional work to do here. To demo this, enable the `basis-universal` feature and turn on asset processing. * **Simpler Audio Play / AudioSink API**: Asset handle providers are cloneable, which means the Audio resource can mint its own handles. This means you can now do `let sink_handle = audio.play(music)` instead of `let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that this might still be replaced by https://github.com/bevyengine/bevy/pull/8424. **Removed Handle Casting From Engine Features**: Ex: FontAtlases no longer use casting between handle types ## Using The New Asset System ### Normal Unprocessed Asset Loading By default the `AssetPlugin` does not use processing. It behaves pretty much the same way as the old system. If you are defining a custom asset, first derive `Asset`: ```rust #[derive(Asset)] struct Thing { value: String, } ``` Initialize the asset: ```rust app.init_asset:<Thing>() ``` Implement a new `AssetLoader` for it: ```rust #[derive(Default)] struct ThingLoader; #[derive(Serialize, Deserialize, Default)] pub struct ThingSettings { some_setting: bool, } impl AssetLoader for ThingLoader { type Asset = Thing; type Settings = ThingSettings; fn load<'a>( &'a self, reader: &'a mut Reader, settings: &'a ThingSettings, load_context: &'a mut LoadContext, ) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> { Box::pin(async move { let mut bytes = Vec::new(); reader.read_to_end(&mut bytes).await?; // convert bytes to value somehow Ok(Thing { value }) }) } fn extensions(&self) -> &[&str] { &["thing"] } } ``` Note that this interface will get much cleaner once Rust gets support for async traits. `Reader` is an async futures_io::AsyncRead. You can stream bytes as they come in or read them all into a `Vec<u8>`, depending on the context. You can use `let handle = load_context.load(path)` to kick off a dependency load, retrieve a handle, and register the dependency for the asset. Then just register the loader in your Bevy app: ```rust app.init_asset_loader::<ThingLoader>() ``` Now just add your `Thing` asset files into the `assets` folder and load them like this: ```rust fn system(asset_server: Res<AssetServer>) { let handle = Handle<Thing> = asset_server.load("cool.thing"); } ``` You can check load states directly via the asset server: ```rust if asset_server.load_state(&handle) == LoadState::Loaded { } ``` You can also listen for events: ```rust fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) { for event in events.iter() { if event.is_loaded_with_dependencies(&handle) { } } } ``` Note the new `AssetEvent::LoadedWithDependencies`, which only fires when the asset is loaded _and_ all dependencies (and their dependencies) have loaded. Unlike the old asset system, for a given asset path all `Handle<T>` values point to the same underlying Arc. This means Handles can cheaply hold more asset information, such as the AssetPath: ```rust // prints the AssetPath of the handle info!("{:?}", handle.path()) ``` ### Processed Assets Asset processing can be enabled via the `AssetPlugin`. When developing Bevy Apps with processed assets, do this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev())) ``` This runs the `AssetProcessor` in the background with hot-reloading. It reads assets from the `assets` folder, processes them, and writes them to the `.imported_assets` folder. Asset loads in the Bevy App will wait for a processed version of the asset to become available. If an asset in the `assets` folder changes, it will be reprocessed and hot-reloaded in the Bevy App. When deploying processed Bevy apps, do this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::processed())) ``` This does not run the `AssetProcessor` in the background. It behaves like `AssetPlugin::unprocessed()`, but reads assets from `.imported_assets`. When the `AssetProcessor` is running, it will populate sibling `.meta` files for assets in the `assets` folder. Meta files for assets that do not have a processor configured look like this: ```rust ( meta_format_version: "1.0", asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: FromExtension, ), ), ) ``` This is metadata for an image asset. For example, if you have `assets/my_sprite.png`, this could be the metadata stored at `assets/my_sprite.png.meta`. Meta files are totally optional. If no metadata exists, the default settings will be used. In short, this file says "load this asset with the ImageLoader and use the file extension to determine the image type". This type of meta file is supported in all AssetPlugin modes. If in `Unprocessed` mode, the asset (with the meta settings) will be loaded directly. If in `ProcessedDev` mode, the asset file will be copied directly to the `.imported_assets` folder. The meta will also be copied directly to the `.imported_assets` folder, but with one addition: ```rust ( meta_format_version: "1.0", processed_info: Some(( hash: 12415480888597742505, full_hash: 14344495437905856884, process_dependencies: [], )), asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: FromExtension, ), ), ) ``` `processed_info` contains `hash` (a direct hash of the asset and meta bytes), `full_hash` (a hash of `hash` and the hashes of all `process_dependencies`), and `process_dependencies` (the `path` and `full_hash` of every process_dependency). A "process dependency" is an asset dependency that is _directly_ used when processing the asset. Images do not have process dependencies, so this is empty. When the processor is enabled, you can use the `Process` metadata config: ```rust ( meta_format_version: "1.0", asset: Process( processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>", settings: ( loader_settings: ( format: FromExtension, ), saver_settings: ( generate_mipmaps: true, ), ), ), ) ``` This configures the asset to use the `LoadAndSave` processor, which runs an AssetLoader and feeds the result into an AssetSaver (which saves the given Asset and defines a loader to load it with). (for terseness LoadAndSave will likely get a shorter/friendlier type name when [Stable Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common processor type, but arbitrary processors are supported. `CompressedImageSaver` saves an `Image` in the Basis Universal format and configures the ImageLoader to load it as basis universal. The `AssetProcessor` will read this meta, run it through the LoadAndSave processor, and write the basis-universal version of the image to `.imported_assets`. The final metadata will look like this: ```rust ( meta_format_version: "1.0", processed_info: Some(( hash: 905599590923828066, full_hash: 9948823010183819117, process_dependencies: [], )), asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: Format(Basis), ), ), ) ``` To try basis-universal processing out in Bevy examples, (for example `sprite.rs`), change `add_plugins(DefaultPlugins)` to `add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run with the `basis-universal` feature enabled: `cargo run --features=basis-universal --example sprite`. To create a custom processor, there are two main paths: 1. Use the `LoadAndSave` processor with an existing `AssetLoader`. Implement the `AssetSaver` trait, register the processor using `asset_processor.register_processor::<LoadAndSave<ImageLoader, CompressedImageSaver>>(image_saver.into())`. 2. Implement the `Process` trait directly and register it using: `asset_processor.register_processor(thing_processor)`. You can configure default processors for file extensions like this: ```rust asset_processor.set_default_processor::<ThingProcessor>("thing") ``` There is one more metadata type to be aware of: ```rust ( meta_format_version: "1.0", asset: Ignore, ) ``` This will ignore the asset during processing / prevent it from being written to `.imported_assets`. The AssetProcessor stores a transaction log at `.imported_assets/log` and uses it to gracefully recover from unexpected stops. This means you can force-quit the processor (and Bevy Apps running the processor in parallel) at arbitrary times! `.imported_assets` is "local state". It should _not_ be checked into source control. It should also be considered "read only". In practice, you _can_ modify processed assets and processed metadata if you really need to test something. But those modifications will not be represented in the hashes of the assets, so the processed state will be "out of sync" with the source assets. The processor _will not_ fix this for you. Either revert the change after you have tested it, or delete the processed files so they can be re-populated. ## Open Questions There are a number of open questions to be discussed. We should decide if they need to be addressed in this PR and if so, how we will address them: ### Implied Dependencies vs Dependency Enumeration There are currently two ways to populate asset dependencies: * **Implied via AssetLoaders**: if an AssetLoader loads an asset (and retrieves a handle), a dependency is added to the list. * **Explicit via the optional Asset::visit_dependencies**: if `server.load_asset(my_asset)` is called, it will call `my_asset.visit_dependencies`, which will grab dependencies that have been manually defined for the asset via the Asset trait impl (which can be derived). This means that defining explicit dependencies is optional for "loaded assets". And the list of dependencies is always accurate because loaders can only produce Handles if they register dependencies. If an asset was loaded with an AssetLoader, it only uses the implied dependencies. If an asset was created at runtime and added with `asset_server.load_asset(MyAsset)`, it will use `Asset::visit_dependencies`. However this can create a behavior mismatch between loaded assets and equivalent "created at runtime" assets if `Assets::visit_dependencies` doesn't exactly match the dependencies produced by the AssetLoader. This behavior mismatch can be resolved by completely removing "implied loader dependencies" and requiring `Asset::visit_dependencies` to supply dependency data. But this creates two problems: * It makes defining loaded assets harder and more error prone: Devs must remember to manually annotate asset dependencies with `#[dependency]` when deriving `Asset`. For more complicated assets (such as scenes), the derive likely wouldn't be sufficient and a manual `visit_dependencies` impl would be required. * Removes the ability to immediately kick off dependency loads: When AssetLoaders retrieve a Handle, they also immediately kick off an asset load for the handle, which means it can start loading in parallel _before_ the asset finishes loading. For large assets, this could be significant. (although this could be mitigated for processed assets if we store dependencies in the processed meta file and load them ahead of time) ### Eager ProcessorDev Asset Loading I made a controversial call in the interest of fast startup times ("time to first pixel") for the "processor dev mode configuration". When initializing the AssetProcessor, current processed versions of unchanged assets are yielded immediately, even if their dependencies haven't been checked yet for reprocessing. This means that non-current-state-of-filesystem-but-previously-valid assets might be returned to the App first, then hot-reloaded if/when their dependencies change and the asset is reprocessed. Is this behavior desirable? There is largely one alternative: do not yield an asset from the processor to the app until all of its dependencies have been checked for changes. In some common cases (load dependency has not changed since last run) this will increase startup time. The main question is "by how much" and is that slower startup time worth it in the interest of only yielding assets that are true to the current state of the filesystem. Should this be configurable? I'm starting to think we should only yield an asset after its (historical) dependencies have been checked for changes + processed as necessary, but I'm curious what you all think. ### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs? In this implementation AssetPaths are the only canonical asset identifier (just like the previous Bevy Asset system and Godot). Moving assets will result in re-scans (and currently reprocessing, although reprocessing can easily be avoided with some changes). Asset renames/moves will break code and assets that rely on specific paths, unless those paths are fixed up. Do we want / need "stable asset uuids"? Introducing them is very possible: 1. Generate a UUID and include it in .meta files 2. Support UUID in AssetPath 3. Generate "asset indices" which are loaded on startup and map UUIDs to paths. 4 (maybe). Consider only supporting UUIDs for processed assets so we can generate quick-to-load indices instead of scanning meta files. The main "pro" is that assets referencing UUIDs don't need to be migrated when a path changes. The main "con" is that UUIDs cannot be "lazily resolved" like paths. They need a full view of all assets to answer the question "does this UUID exist". Which means UUIDs require the AssetProcessor to fully finish startup scans before saying an asset doesnt exist. And they essentially require asset pre-processing to use in apps, because scanning all asset metadata files at runtime to resolve a UUID is not viable for medium-to-large apps. It really requires a pre-generated UUID index, which must be loaded before querying for assets. I personally think this should be investigated in a separate PR. Paths aren't going anywhere ... _everyone_ uses filesystems (and filesystem-like apis) to manage their asset source files. I consider them permanent canonical asset information. Additionally, they behave well for both processed and unprocessed asset modes. Given that Bevy is supporting both, this feels like the right canonical ID to start with. UUIDS (and maybe even other indexed-identifier types) can be added later as necessary. ### Folder / File Naming Conventions All asset processing config currently lives in the `.imported_assets` folder. The processor transaction log is in `.imported_assets/log`. Processed assets are added to `.imported_assets/Default`, which will make migrating to processed asset profiles (ex: a `.imported_assets/Mobile` profile) a non-breaking change. It also allows us to create top-level files like `.imported_assets/log` without it being interpreted as an asset. Meta files currently have a `.meta` suffix. Do we like these names and conventions? ### Should the `AssetPlugin::processed_dev` configuration enable `watch_for_changes` automatically? Currently it does (which I think makes sense), but it does make it the only configuration that enables watch_for_changes by default. ### Discuss on_loaded High Level Interface: This PR includes a very rough "proof of concept" `on_loaded` system adapter that uses the `LoadedWithDependencies` event in combination with `asset_server.load_asset` dependency tracking to support this pattern ```rust fn main() { App::new() .init_asset::<MyAssets>() .add_systems(Update, on_loaded(create_array_texture)) .run(); } #[derive(Asset, Clone)] struct MyAssets { #[dependency] picture_of_my_cat: Handle<Image>, #[dependency] picture_of_my_other_cat: Handle<Image>, } impl FromWorld for ArrayTexture { fn from_world(world: &mut World) -> Self { picture_of_my_cat: server.load("meow.png"), picture_of_my_other_cat: server.load("meeeeeeeow.png"), } } fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) { commands.spawn(SpriteBundle { texture: my_assets.picture_of_my_cat.clone(), ..default() }); commands.spawn(SpriteBundle { texture: my_assets.picture_of_my_other_cat.clone(), ..default() }); } ``` The implementation is _very_ rough. And it is currently unsafe because `bevy_ecs` doesn't expose some internals to do this safely from inside `bevy_asset`. There are plenty of unanswered questions like: * "do we add a Loadable" derive? (effectively automate the FromWorld implementation above) * Should `MyAssets` even be an Asset? (largely implemented this way because it elegantly builds on `server.load_asset(MyAsset { .. })` dependency tracking). We should think hard about what our ideal API looks like (and if this is a pattern we want to support). Not necessarily something we need to solve in this PR. The current `on_loaded` impl should probably be removed from this PR before merging. ## Clarifying Questions ### What about Assets as Entities? This Bevy Asset V2 proposal implementation initially stored Assets as ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used `Entity` as the asset id and Asset values were just ECS components. There are plenty of compelling reasons to do this: 1. Easier to inline assets in Bevy Scenes (as they are "just" normal entities + components) 2. More flexible queries: use the power of the ECS to filter assets (ex: `Query<Mesh, With<Tree>>`). 3. Extensible. Users can add arbitrary component data to assets. 4. Things like "component visualization tools" work out of the box to visualize asset data. However Assets as Entities has a ton of caveats right now: * We need to be able to allocate entity ids without a direct World reference (aka rework id allocator in Entities ... i worked around this in my prototypes by just pre allocating big chunks of entities) * We want asset change events in addition to ECS change tracking ... how do we populate them when mutations can come from anywhere? Do we use Changed queries? This would require iterating over the change data for all assets every frame. Is this acceptable or should we implement a new "event based" component change detection option? * Reconciling manually created assets with asset-system managed assets has some nuance (ex: are they "loaded" / do they also have that component metadata?) * "how do we handle "static" / default entity handles" (ties in to the Entity Indices discussion: https://github.com/bevyengine/bevy/discussions/8319). This is necessary for things like "built in" assets and default handles in things like SpriteBundle. * Storing asset information as a component makes it easy to "invalidate" asset state by removing the component (or forcing modifications). Ideally we have ways to lock this down (some combination of Rust type privacy and ECS validation) In practice, how we store and identify assets is a reasonably superficial change (porting off of Assets as Entities and implementing dedicated storage + ids took less than a day). So once we sort out the remaining challenges the flip should be straightforward. Additionally, I do still have "Assets as Entities" in my commit history, so we can reuse that work. I personally think "assets as entities" is a good endgame, but it also doesn't provide _significant_ value at the moment and it certainly isn't ready yet with the current state of things. ### Why not Distill? [Distill](https://github.com/amethyst/distill) is a high quality fully featured asset system built in Rust. It is very natural to ask "why not just use Distill?". It is also worth calling out that for awhile, [we planned on adopting Distill / I signed off on it](https://github.com/bevyengine/bevy/issues/708). However I think Bevy has a number of constraints that make Distill adoption suboptimal: * **Architectural Simplicity:** * Distill's processor requires an in-memory database (lmdb) and RPC networked API (using Cap'n Proto). Each of these introduces API complexity that increases maintenance burden and "code grokability". Ignoring tests, documentation, and examples, Distill has 24,237 lines of Rust code (including generated code for RPC + database interactions). If you ignore generated code, it has 11,499 lines. * Bevy builds the AssetProcessor and AssetServer using pluggable AssetReader/AssetWriter Rust traits with simple io interfaces. They do not necessitate databases or RPC interfaces (although Readers/Writers could use them if that is desired). Bevy Asset V2 (at the time of writing this PR) is 5,384 lines of Rust code (ignoring tests, documentation, and examples). Grain of salt: Distill does have more features currently (ex: Asset Packing, GUIDS, remote-out-of-process asset processor). I do plan to implement these features in Bevy Asset V2 and I personally highly doubt they will meaningfully close the 6115 lines-of-code gap. * This complexity gap (which while illustrated by lines of code, is much bigger than just that) is noteworthy to me. Bevy should be hackable and there are pillars of Distill that are very hard to understand and extend. This is a matter of opinion (and Bevy Asset V2 also has complicated areas), but I think Bevy Asset V2 is much more approachable for the average developer. * Necessary disclaimer: counting lines of code is an extremely rough complexity metric. Read the code and form your own opinions. * **Optional Asset Processing:** Not all Bevy Apps (or Bevy App developers) need / want asset preprocessing. Processing increases the complexity of the development environment by introducing things like meta files, imported asset storage, running processors in the background, waiting for processing to finish, etc. Distill _requires_ preprocessing to work. With Bevy Asset V2 processing is fully opt-in. The AssetServer isn't directly aware of asset processors at all. AssetLoaders only care about converting bytes to runtime Assets ... they don't know or care if the bytes were pre-processed or not. Processing is "elegantly" (forgive my self-congratulatory phrasing) layered on top and builds on the existing Asset system primitives. * **Direct Filesystem Access to Processed Asset State:** Distill stores processed assets in a database. This makes debugging / inspecting the processed outputs harder (either requires special tooling to query the database or they need to be "deployed" to be inspected). Bevy Asset V2, on the other hand, stores processed assets in the filesystem (by default ... this is configurable). This makes interacting with the processed state more natural. Note that both Godot and Unity's new asset system store processed assets in the filesystem. * **Portability**: Because Distill's processor uses lmdb and RPC networking, it cannot be run on certain platforms (ex: lmdb is a non-rust dependency that cannot run on the web, some platforms don't support running network servers). Bevy should be able to process assets everywhere (ex: run the Bevy Editor on the web, compile + process shaders on mobile, etc). Distill does partially mitigate this problem by supporting "streaming" assets via the RPC protocol, but this is not a full solve from my perspective. And Bevy Asset V2 can (in theory) also stream assets (without requiring RPC, although this isn't implemented yet) Note that I _do_ still think Distill would be a solid asset system for Bevy. But I think the approach in this PR is a better solve for Bevy's specific "asset system requirements". ### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the point? "True async file io" has limited / spotty platform support. async-fs (and the rust async ecosystem generally ... ex Tokio) currently use async wrappers over std::fs that offload blocking requests to separate threads. This may feel unsatisfying, but it _does_ still provide value because it prevents our task pools from blocking on file system operations (which would prevent progress when there are many tasks to do, but all threads in a pool are currently blocking on file system ops). Additionally, using async APIs for our AssetReaders and AssetWriters also provides value because we can later add support for "true async file io" for platforms that support it. _And_ we can implement other "true async io" asset backends (such as networked asset io). ## Draft TODO - [x] Fill in missing filesystem event APIs: file removed event (which is expressed as dangling RenameFrom events in some cases), file/folder renamed event - [x] Assets without loaders are not moved to the processed folder. This breaks things like referenced `.bin` files for GLTFs. This should be configurable per-non-asset-type. - [x] Initial implementation of Reflect and FromReflect for Handle. The "deserialization" parity bar is low here as this only worked with static UUIDs in the old impl ... this is a non-trivial problem. Either we add a Handle::AssetPath variant that gets "upgraded" to a strong handle on scene load or we use a separate AssetRef type for Bevy scenes (which is converted to a runtime Handle on load). This deserves its own discussion in a different pr. - [x] Populate read_asset_bytes hash when run by the processor (a bit of a special case .. when run by the processor the processed meta will contain the hash so we don't need to compute it on the spot, but we don't want/need to read the meta when run by the main AssetServer) - [x] Delay hot reloading: currently filesystem events are handled immediately, which creates timing issues in some cases. For example hot reloading images can sometimes break because the image isn't finished writing. We should add a delay, likely similar to the [implementation in this PR](https://github.com/bevyengine/bevy/pull/8503). - [x] Port old platform-specific AssetIo implementations to the new AssetReader interface (currently missing Android and web) - [x] Resolve on_loaded unsafety (either by removing the API entirely or removing the unsafe) - [x] Runtime loader setting overrides - [x] Remove remaining unwraps that should be error-handled. There are number of TODOs here - [x] Pretty AssetPath Display impl - [x] Document more APIs - [x] Resolve spurious "reloading because it has changed" events (to repro run load_gltf with `processed_dev()`) - [x] load_dependency hot reloading currently only works for processed assets. If processing is disabled, load_dependency changes are not hot reloaded. - [x] Replace AssetInfo dependency load/fail counters with `loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from (potentially) breaking counters. Storing this will also enable "dependency reloaded" events (see [Next Steps](#next-steps)) - [x] Re-add filesystem watcher cargo feature gate (currently it is not optional) - [ ] Migration Guide - [ ] Changelog ## Followup TODO - [ ] Replace "eager unchanged processed asset loading" behavior with "don't returned unchanged processed asset until dependencies have been checked". - [ ] Add true `Ignore` AssetAction that does not copy the asset to the imported_assets folder. - [ ] Finish "live asset unloading" (ex: free up CPU asset memory after uploading an image to the GPU), rethink RenderAssets, and port renderer features. The `Assets` collection uses `Option<T>` for asset storage to support its removal. (1) the Option might not actually be necessary ... might be able to just remove from the collection entirely (2) need to finalize removal apis - [ ] Try replacing the "channel based" asset id recycling with something a bit more efficient (ex: we might be able to use raw atomic ints with some cleverness) - [ ] Consider adding UUIDs to processed assets (scoped just to helping identify moved assets ... not exposed to load queries ... see [Next Steps](#next-steps)) - [ ] Store "last modified" source asset and meta timestamps in processed meta files to enable skipping expensive hashing when the file wasn't changed - [ ] Fix "slow loop" handle drop fix - [ ] Migrate to TypeName - [x] Handle "loader preregistration". See #9429 ## Next Steps * **Configurable per-type defaults for AssetMeta**: It should be possible to add configuration like "all png image meta should default to using nearest sampling" (currently this hard-coded per-loader/processor Settings::default() impls). Also see the "Folder Meta" bullet point. * **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical asset ids" discussion in [Open Questions](#open-questions) and the relevant bullet point in [Draft TODO](#draft-todo). Even without canonical ids, folder renames could avoid reprocessing in some cases. * **Multiple Asset Sources**: Expand AssetPath to support "asset source names" and support multiple AssetReaders in the asset server (ex: `webserver://some_path/image.png` backed by an Http webserver AssetReader). The "default" asset reader would use normal `some_path/image.png` paths. Ideally this works in combination with multiple AssetWatchers for hot-reloading * **Stable Type Names**: this pr removes the TypeUuid requirement from assets in favor of `std::any::type_name`. This makes defining assets easier (no need to generate a new uuid / use weird proc macro syntax). It also makes reading meta files easier (because things have "friendly names"). We also use type names for components in scene files. If they are good enough for components, they are good enough for assets. And consistency across Bevy pillars is desirable. However, `std::any::type_name` is not guaranteed to be stable (although in practice it is). We've developed a [stable type path](https://github.com/bevyengine/bevy/pull/7184) to resolve this, which should be adopted when it is ready. * **Command Line Interface**: It should be possible to run the asset processor in a separate process from the command line. This will also require building a network-server-backed AssetReader to communicate between the app and the processor. We've been planning to build a "bevy cli" for awhile. This seems like a good excuse to build it. * **Asset Packing**: This is largely an additive feature, so it made sense to me to punt this until we've laid the foundations in this PR. * **Per-Platform Processed Assets**: It should be possible to generate assets for multiple platforms by supporting multiple "processor profiles" per asset (ex: compress with format X on PC and Y on iOS). I think there should probably be arbitrary "profiles" (which can be separate from actual platforms), which are then assigned to a given platform when generating the final asset distribution for that platform. Ex: maybe devs want a "Mobile" profile that is shared between iOS and Android. Or a "LowEnd" profile shared between web and mobile. * **Versioning and Migrations**: Assets, Loaders, Savers, and Processors need to have versions to determine if their schema is valid. If an asset / loader version is incompatible with the current version expected at runtime, the processor should be able to migrate them. I think we should try using Bevy Reflect for this, as it would allow us to load the old version as a dynamic Reflect type without actually having the old Rust type. It would also allow us to define "patches" to migrate between versions (Bevy Reflect devs are currently working on patching). The `.meta` file already has its own format version. Migrating that to new versions should also be possible. * **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write type) currently used by AssetPath can still result in String clones that aren't actually necessary (cloning an Owned Cow clones the contents). Bevy's asset system requires cloning AssetPaths in a number of places, which result in actual clones of the internal Strings. This is not efficient. AssetPath internals should be reworked to exhibit truer cow-like-behavior that reduces String clones to the absolute minimum. * **Consider processor-less processing**: In theory the AssetServer could run processors "inline" even if the background AssetProcessor is disabled. If we decide this is actually desirable, we could add this. But I don't think its a priority in the short or medium term. * **Pre-emptive dependency loading**: We could encode dependencies in processed meta files, which could then be used by the Asset Server to kick of dependency loads as early as possible (prior to starting the actual asset load). Is this desirable? How much time would this save in practice? * **Optimize Processor With UntypedAssetIds**: The processor exclusively uses AssetPath to identify assets currently. It might be possible to swap these out for UntypedAssetIds in some places, which are smaller / cheaper to hash and compare. * **One to Many Asset Processing**: An asset source file that produces many assets currently must be processed into a single "processed" asset source. If labeled assets can be written separately they can each have their own configured savers _and_ they could be loaded more granularly. Definitely worth exploring! * **Automatically Track "Runtime-only" Asset Dependencies**: Right now, tracking "created at runtime" asset dependencies requires adding them via `asset_server.load_asset(StandardMaterial::default())`. I think with some cleverness we could also do this for `materials.add(StandardMaterial::default())`, making tracking work "everywhere". There are challenges here relating to change detection / ensuring the server is made aware of dependency changes. This could be expensive in some cases. * **"Dependency Changed" events**: Some assets have runtime artifacts that need to be re-generated when one of their dependencies change (ex: regenerate a material's bind group when a Texture needs to change). We are generating the dependency graph so we can definitely produce these events. Buuuuut generating these events will have a cost / they could be high frequency for some assets, so we might want this to be opt-in for specific cases. * **Investigate Storing More Information In Handles**: Handles can now store arbitrary information, which makes it cheaper and easier to access. How much should we move into them? Canonical asset load states (via atomics)? (`handle.is_loaded()` would be very cool). Should we store the entire asset and remove the `Assets<T>` collection? (`Arc<RwLock<Option<Image>>>`?) * **Support processing and loading files without extensions**: This is a pretty arbitrary restriction and could be supported with very minimal changes. * **Folder Meta**: It would be nice if we could define per folder processor configuration defaults (likely in a `.meta` or `.folder_meta` file). Things like "default to linear filtering for all Images in this folder". * **Replace async_broadcast with event-listener?** This might be approximately drop-in for some uses and it feels more light weight * **Support Running the AssetProcessor on the Web**: Most of the hard work is done here, but there are some easy straggling TODOs (make the transaction log an interface instead of a direct file writer so we can write a web storage backend, implement an AssetReader/AssetWriter that reads/writes to something like LocalStorage). * **Consider identifying and preventing circular dependencies**: This is especially important for "processor dependencies", as processing will silently never finish in these cases. * **Built-in/Inlined Asset Hot Reloading**: This PR regresses "built-in/inlined" asset hot reloading (previously provided by the DebugAssetServer). I'm intentionally punting this because I think it can be cleanly implemented with "multiple asset sources" by registering a "debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset paths) in combination with an AssetWatcher for that asset source and support for "manually loading pats with asset bytes instead of AssetReaders". The old DebugAssetServer was quite nasty and I'd love to avoid that hackery going forward. * **Investigate ways to remove double-parsing meta files**: Parsing meta files currently involves parsing once with "minimal" versions of the meta file to extract the type name of the loader/processor config, then parsing again to parse the "full" meta. This is suboptimal. We should be able to define custom deserializers that (1) assume the loader/processor type name comes first (2) dynamically looks up the loader/processor registrations to deserialize settings in-line (similar to components in the bevy scene format). Another alternative: deserialize as dynamic Reflect objects and then convert. * **More runtime loading configuration**: Support using the Handle type as a hint to select an asset loader (instead of relying on AssetPath extensions) * **More high level Processor trait implementations**: For example, it might be worth adding support for arbitrary chains of "asset transforms" that modify an in-memory asset representation between loading and saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by a `flip_normals` transform, then save the mesh to an efficient compressed format). * **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO item](#draft-todo) for context) * **Explore High Level Load Interfaces**: See [this discussion](#discuss-on_loaded-high-level-interface) for one prototype. * **Asset Streaming**: It would be great if we could stream Assets (ex: stream a long video file piece by piece) * **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than they need to be because they have a Uuid enum variant. If we implement an "id exchanging" system that trades Uuids for "efficient runtime ids", we can cut down on the size of AssetIds, making them more efficient. This has some open design questions, such as how to spawn entities with "default" handle values (as these wouldn't have access to the exchange api in the current system). * **Asset Path Fixup Tooling**: Assets that inline asset paths inside them will break when an asset moves. The asset system provides the functionality to detect when paths break. We should build a framework that enables formats to define "path migrations". This is especially important for scene files. For editor-generated files, we should also consider using UUIDs (see other bullet point) to avoid the need to migrate in these cases. --------- Co-authored-by: BeastLe9enD <beastle9end@outlook.de> Co-authored-by: Mike <mike.hsu@gmail.com> Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com> |
||
James Liu
|
d33f5c759c
|
Add optional single-threaded feature to bevy_ecs/bevy_tasks (#6690)
# Objective Fixes #6689. ## Solution Add `single-threaded` as an optional non-default feature to `bevy_ecs` and `bevy_tasks` that: - disable the `ParallelExecutor` as a default runner - disables the multi-threaded `TaskPool` - internally replace `QueryParIter::for_each` calls with `Query::for_each`. Removed the `Mutex` and `Arc` usage in the single-threaded task pool. ![image](https://user-images.githubusercontent.com/3137680/202833253-dd2d520f-75e6-4c7b-be2d-5ce1523cbd38.png) ## Future Work/TODO Create type aliases for `Mutex`, `Arc` that change to single-threaaded equivalents where possible. --- ## Changelog Added: Optional default feature `multi-theaded` to that enables multithreaded parallelism in the engine. Disabling it disables all multithreading in exchange for higher single threaded performance. Does nothing on WASM targets. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Luca Della Vedova
|
a47f1ab4be
|
Add support for pnm textures (#8601)
# Objective
Add support for the [Netpbm](https://en.wikipedia.org/wiki/Netpbm) image
formats, behind a `pnm` feature flag.
My personal use case for this was robotics applications, with `pgm`
being a popular format used in the field to represent world maps in
robots.
I chose the formats and feature name by checking the logic in
[image.rs](
|
||
François
|
71842c5ac9
|
Webgpu support (#8336)
# Objective - Support WebGPU - alternative to #5027 that doesn't need any async / await - fixes #8315 - Surprise fix #7318 ## Solution ### For async renderer initialisation - Update the plugin lifecycle: - app builds the plugin - calls `plugin.build` - registers the plugin - app starts the event loop - event loop waits for `ready` of all registered plugins in the same order - returns `true` by default - then call all `finish` then all `cleanup` in the same order as registered - then execute the schedule In the case of the renderer, to avoid anything async: - building the renderer plugin creates a detached task that will send back the initialised renderer through a mutex in a resource - `ready` will wait for the renderer to be present in the resource - `finish` will take that renderer and place it in the expected resources by other plugins - other plugins (that expect the renderer to be available) `finish` are called and they are able to set up their pipelines - `cleanup` is called, only custom one is still for pipeline rendering ### For WebGPU support - update the `build-wasm-example` script to support passing `--api webgpu` that will build the example with WebGPU support - feature for webgl2 was always enabled when building for wasm. it's now in the default feature list and enabled on all platforms, so check for this feature must also check that the target_arch is `wasm32` --- ## Migration Guide - `Plugin::setup` has been renamed `Plugin::cleanup` - `Plugin::finish` has been added, and plugins adding pipelines should do it in this function instead of `Plugin::build` ```rust // Before impl Plugin for MyPlugin { fn build(&self, app: &mut App) { app.insert_resource::<MyResource> .add_systems(Update, my_system); let render_app = match app.get_sub_app_mut(RenderApp) { Ok(render_app) => render_app, Err(_) => return, }; render_app .init_resource::<RenderResourceNeedingDevice>() .init_resource::<OtherRenderResource>(); } } // After impl Plugin for MyPlugin { fn build(&self, app: &mut App) { app.insert_resource::<MyResource> .add_systems(Update, my_system); let render_app = match app.get_sub_app_mut(RenderApp) { Ok(render_app) => render_app, Err(_) => return, }; render_app .init_resource::<OtherRenderResource>(); } fn finish(&self, app: &mut App) { let render_app = match app.get_sub_app_mut(RenderApp) { Ok(render_app) => render_app, Err(_) => return, }; render_app .init_resource::<RenderResourceNeedingDevice>(); } } ``` |
||
François
|
949487d92c
|
make glsl and spirv support optional (#8491)
# Objective - Reduce compilation time ## Solution - Make `spirv` and `glsl` shader format support optional. They are not needed for Bevy shaders. - on my mac (where shaders are compiled to `msl`), this reduces the total build time by 2 to 5 seconds, improvement should be even better with less cores There is a big reduction in compile time for `naga`, and small improvements on `wgpu` and `bevy_render` This PR with optional shader formats enabled timings: <img width="1478" alt="current main" src="https://user-images.githubusercontent.com/8672791/234347032-cbd5c276-a9b0-49c3-b793-481677391c18.png"> This PR: <img width="1479" alt="this pr" src="https://user-images.githubusercontent.com/8672791/234347059-a67412a9-da8d-4356-91d8-7b0ae84ca100.png"> --- ## Migration Guide - If you want to use shaders in `spirv`, enable the `shader_format_spirv` feature - If you want to use shaders in `glsl`, enable the `shader_format_glsl` feature |
||
François
|
e0e5f3acd4
|
add a default font (#8445)
# Objective - Have a default font ## Solution - Add a font based on FiraMono containing only ASCII characters and use it as the default font - It is behind a feature `default_font` enabled by default - I also updated examples to use it, but not UI examples to still show how to use a custom font --- ## Changelog * If you display text without using the default handle provided by `TextStyle`, the text will be displayed |
||
François
|
882c86eee3
|
add a feature for memory tracing with tracy (#8272)
# Objective - Expose a feature for tracing with Tracy to profile memory (https://docs.rs/tracy-client/0.15.2/tracy_client/struct.ProfiledAllocator.html) - This is a separate feature than just tracing as it can have an additional cost <img width="1912" alt="Screenshot 2023-03-30 at 08 39 49" src="https://user-images.githubusercontent.com/8672791/228985566-dd62fff8-1cbf-4f59-8a10-80c796daba0c.png"> |