Commit graph

83 commits

Author SHA1 Message Date
Matty
123a19afa9
Put curve-related stuff behind a feature (#15790)
# Objective

A bunch of code is used only if you care about the `Curve` trait. Put it
behind a feature so it can be ignored if wanted.

## Solution

Added a default feature `curve` to `bevy_math` which feature-gates the
`curve` module and internal integrations.

## Testing

Tested compiling with the feature enabled and disabled.
2024-10-09 16:38:23 +00:00
Zachary Harrold
9366b95006
Remove thiserror from bevy_math (#15769)
# Objective

- Contributes to #15460

## Solution

- Removed `thiserror` from `bevy_math`
2024-10-09 14:23:23 +00:00
François Mockers
45eff09213
remove the interpolation dependency from bevy_math (#15748)
# Objective

- `interpolation` crates provides all the curves functions, but some of
them were wrong
- We have a partial solution where some functions comes from the
external crate, some from bevy_math

## Solution

- Move them all to bevy_math
- Remove the dependency on `interpolation`

## Testing

Playing the `easing_functions` example

![easing-functions](https://github.com/user-attachments/assets/88832f34-4bb3-4dc2-85af-7b9e4fa23e52)
2024-10-08 22:18:25 +00:00
François Mockers
4357539e06
Add most common interpolations (#15675)
# Objective

- Followup for #14788 
- Support most usual ease function

## Solution

- Use the crate
[`interpolation`](https://docs.rs/interpolation/0.3.0/interpolation/trait.Ease.html)
which has them all
- it's already used by bevy_easings, bevy_tweening, be_tween,
bevy_tweening_captured, bevy_enoki, kayak_ui in the Bevy ecosystem for
various easing/tweening/interpolation
2024-10-07 15:56:06 +00:00
targrub
de3c70a8d3
Update `glam to 0.29, encase` to 0.10. (#15249)
# Objective

Updating ``glam`` to 0.29, ``encase`` to 0.10.

## Solution

Update the necessary ``Cargo.toml`` files.

## Testing

Ran ``cargo run -p ci`` on Windows; no issues came up.

---------

Co-authored-by: aecsocket <aecsocket@tutanota.com>
2024-09-23 19:44:02 +00:00
Robert Walter
70a18d26e2
Glam 0.28 update - adopted (#14613)
Basically it's https://github.com/bevyengine/bevy/pull/13792 with the
bumped versions of `encase` and `hexasphere`.

---------

Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-08-06 01:28:00 +00:00
Giacomo Stevanato
71c5f1e3e4
Generate links to definition in source code pages on docs.rs and dev-docs.bevyengine.org (#12965)
# Objective

- Fix issue #2611

## Solution

- Add `--generate-link-to-definition` to all the `rustdoc-args` arrays
in the `Cargo.toml`s (for docs.rs)
- Add `--generate-link-to-definition` to the `RUSTDOCFLAGS` environment
variable in the docs workflow (for dev-docs.bevyengine.org)
- Document all the workspace crates in the docs workflow (needed because
otherwise only the source code of the `bevy` package will be included,
making the argument useless)
- I think this also fixes #3662, since it fixes the bug on
dev-docs.bevyengine.org, while on docs.rs it has been fixed for a while
on their side.

---

## Changelog

- The source code viewer on docs.rs now includes links to the
definitions.
2024-07-29 23:10:16 +00:00
Coder-Joe458
8f5345573c
Remove manual --cfg docsrs (#14376)
# Objective

- Fixes #14132 

## Solution

- Remove the cfg docsrs
2024-07-22 18:58:04 +00:00
Matty
3484bd916f
Cyclic splines (#14106)
# Objective

Fill a gap in the functionality of our curve constructions by allowing
users to easily build cyclic curves from control data.

## Solution

Here I opted for something lightweight and discoverable. There is a new
`CyclicCubicGenerator` trait with a method `to_curve_cyclic` which uses
splines' control data to create curves that are cyclic. For now, its
signature is exactly like that of `CubicGenerator` — `to_curve_cyclic`
just yields a `CubicCurve`:
```rust
/// Implement this on cubic splines that can generate a cyclic cubic curve from their spline parameters.
///
/// This makes sense only when the control data can be interpreted cyclically.
pub trait CyclicCubicGenerator<P: VectorSpace> {
    /// Build a cyclic [`CubicCurve`] by computing the interpolation coefficients for each curve segment.
    fn to_curve_cyclic(&self) -> CubicCurve<P>;
}
```

This trait has been implemented for `CubicHermite`,
`CubicCardinalSpline`, `CubicBSpline`, and `LinearSpline`:

<img width="753" alt="Screenshot 2024-07-01 at 8 58 27 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/69ae0802-3b78-4fb9-b73a-6f842cf3b33c">
<img width="628" alt="Screenshot 2024-07-01 at 9 00 14 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/2992175a-a96c-40fc-b1a1-5206c3572cde">
<img width="606" alt="Screenshot 2024-07-01 at 8 59 36 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/9e99eb3a-dbe6-42da-886c-3d3e00410d03">
<img width="603" alt="Screenshot 2024-07-01 at 8 59 01 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/d037bc0c-396a-43af-ab5c-fad9a29417ef">

(Each type pictured respectively with the control points rendered as
green spheres; tangents not pictured in the case of the Hermite spline.)

These curves are all parametrized so that the output of `to_curve` and
the output of `to_curve_cyclic` are similar. For instance, in
`CubicCardinalSpline`, the first output segment is a curve segment
joining the first and second control points in each, although it is
constructed differently. In the other cases, the segments from
`to_curve` are a subset of those in `to_curve_cyclic`, with the new
segments appearing at the end.

## Testing

I rendered cyclic splines from control data and made sure they looked
reasonable. Existing tests are intact for splines where previous code
was modified. (Note that the coefficient computation for cyclic spline
segments is almost verbatim identical to that of their non-cyclic
counterparts.)

The Bezier benchmarks also look fine.

---

## Changelog

- Added `CyclicCubicGenerator` trait to `bevy_math::cubic_splines` for
creating cyclic curves from control data.
- Implemented `CyclicCubicGenerator` for `CubicHermite`,
`CubicCardinalSpline`, `CubicBSpline`, and `LinearSpline`.
- `bevy_math` now depends on `itertools`.

---

## Discussion

### Design decisions

The biggest thing here is just the approach taken in the first place:
namely, the cyclic constructions use new methods on the same old
structs. This choice was made to reduce friction and increase
discoverability but also because creating new ones just seemed
unnecessary: the underlying data would have been the same, so creating
something like "`CyclicCubicBSpline`" whose internally-held control data
is regarded as cyclic in nature doesn't really accomplish much — the end
result for the user is basically the same either way.

Similarly, I don't presently see a pressing need for `to_curve_cyclic`
to output something other than a `CubicCurve`, although changing this in
the future may be useful. See below.

A notable omission here is that `CyclicCubicGenerator` is not
implemented for `CubicBezier`. This is not a gap waiting to be filled —
`CubicBezier` just doesn't have enough data to join its start with its
end without just making up the requisite control points wholesale. In
all the cases where `CyclicCubicGenerator` has been implemented here,
the fashion in which the ends are connected is quite natural and follows
the semantics of the associated spline construction.

### Future direction

There are two main things here:
1. We should investigate whether we should do something similar for
NURBS. I just don't know that much about NURBS at the moment, so I
regarded this as out of scope for the PR.
2. We may eventually want to change the output type of
`CyclicCubicGenerator::to_curve_cyclic` to a type which reifies the
cyclic nature of the curve output. This wasn't done in this PR because
I'm unsure how much value a type-level guarantee of cyclicity actually
has, but if some useful features make sense only in the case of cyclic
curves, this might be worth pursuing.
2024-07-17 13:02:31 +00:00
github-actions[bot]
8df10d2713
Bump Version after Release (#14219)
Bump version after release
This PR has been auto-generated

Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François Mockers <mockersf@gmail.com>
2024-07-08 12:54:08 +00:00
Matty
900f50d77d
Uniform mesh sampling (#14071)
# Objective

Allow random sampling from the surfaces of triangle meshes.

## Solution

This has two parts.

Firstly, rendering meshes can now yield their collections of triangles
through a method `Mesh::triangles`. This has signature
```rust
pub fn triangles(&self) -> Result<Vec<Triangle3d>, MeshTrianglesError> { //... }
```

and fails in a variety of cases — the most obvious of these is that the
mesh must have either the `TriangleList` or `TriangleStrip` topology,
and the others correspond to malformed vertex or triangle-index data.

With that in hand, we have the second piece, which is
`UniformMeshSampler`, which is a `Vec3`-valued
[distribution](https://docs.rs/rand/latest/rand/distributions/trait.Distribution.html)
that samples uniformly from collections of triangles. It caches the
triangles' distribution of areas so that after its initial setup,
sampling is allocation-free. It is constructed via
`UniformMeshSampler::try_new`, which looks like this:
```rust
pub fn try_new<T: Into<Vec<Triangle3d>>>(triangles: T) -> Result<Self, ZeroAreaMeshError> { //... }
```

It fails if the collection of triangles has zero area. 

The sum of these parts means that you can sample random points from a
mesh as follows:
```rust
let triangles = my_mesh.triangles().unwrap();
let mut rng = StdRng::seed_from_u64(8765309);
let distribution = UniformMeshSampler::try_new(triangles).unwrap();
// 10000 random points from the surface of my_mesh:
let sample_points: Vec<Vec3> = distribution.sample_iter(&mut rng).take(10000).collect();
```

## Testing

Tested by instantiating meshes and sampling as demonstrated above.

---

## Changelog

- Added `Mesh::triangles` method to get a collection of triangles from a
mesh.
- Added `UniformMeshSampler` to `bevy_math::sampling`. This is a
distribution which allows random sampling over collections of triangles
(such as those provided through meshes).

---

## Discussion

### Design decisions

The main thing here was making sure to have a good separation between
the parts of this in `bevy_render` and in `bevy_math`. Getting the
triangles from a mesh seems like a reasonable step after adding
`Triangle3d` to `bevy_math`, so I decided to make all of the random
sampling operate at that level, with the fallible conversion to
triangles doing most of the work.

Notably, the sampler could be called something else that reflects that
its input is a collection of triangles, but if/when we add other kinds
of meshes to `bevy_math` (e.g. half-edge meshes), the fact that
`try_new` takes an `impl Into<Vec<Triangle3d>>` means that those meshes
just need to satisfy that trait bound in order to work immediately with
this sampling functionality. In that case, the result would just be
something like this:
```rust
let dist = UniformMeshSampler::try_new(mesh).unwrap();
```
I think this highlights that most of the friction is really just from
extracting data from `Mesh`.

It's maybe worth mentioning also that "collection of triangles"
(`Vec<Triangle3d>`) sits downstream of any other kind of triangle mesh,
since the topology connecting the triangles has been effectively erased,
which makes an `Into<Vec<Triangle3d>>` trait bound seem all the more
natural to me.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-07-08 00:57:08 +00:00
Olle Lukowski
d7fc20c484
Implemented Reflect for (almost) all bevy_math types (#13537)
# Objective

Fixes #13535.

## Solution

I implemented `Reflect` for close to all math types now, except for some
types that it would cause issues (like some boxed types).

## Testing

- Everything seems to still build, will await CI though.
---

## Changelog

- Made close to all math types implement `Reflect`.
2024-05-27 18:18:10 +00:00
Olle Lukowski
8c7f73ab81
Move bevy_math Reflect impls (#13520)
# Objective

Fixes #13456 

## Solution

Moved `bevy_math`'s `Reflect` impls from `bevy_reflect` to `bevy_math`.


### Quick note
I accidentally used the same commit message while resolving a merge
conflict (first time I had to resolve a conflict). Sorry about that.
2024-05-27 14:15:22 +00:00
Ben Harper
ec01c2dc45
New circular primitives: Arc2d, CircularSector, CircularSegment (#13482)
# Objective

Adopted #11748

## Solution

I've rebased on main to fix the merge conflicts. ~~Not quite ready to
merge yet~~

* Clippy is happy and the tests are passing, but...
* ~~The new shapes in `examples/2d/2d_shapes.rs` don't look right at
all~~ Never mind, looks like radians and degrees just got mixed up at
some point?
* I have updated one doc comment based on a review in the original PR.

---------

Co-authored-by: Alexis "spectria" Horizon <spectria.limina@gmail.com>
Co-authored-by: Alexis "spectria" Horizon <118812919+spectria-limina@users.noreply.github.com>
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Ben Harper <ben@tukom.org>
2024-05-23 16:12:46 +00:00
Brezak
cbda71c2b3
Determine msrv for every standalone bevy_* crate. (#13211)
# Objective

As was pointed out in #13183, `bevy_mikktspace` is missing it's msrv
from it `Cargo.toml`. This promted me to check the msrv of every
`bevy_*` crate. Closes #13183.

## Solution

- Call `cargo check` with different rust versions on every bevy crate
until it doesn't complain.
- Write down the rust version `cargo check` started working.

## Testing

- Install `cargo-msrv`.
- Run `cargo msrv verify`.
- Rejoice.

---

## Changelog

Every published bevy crate now specifies a MSRV. If your rust toolchain
isn't at least version `1.77.0` You'll likely not be able to compile
most of bevy.

## Migration Guide

If your rust toolchain is bellow version`1.77.0, update.
2024-05-13 18:26:41 +00:00
Martín Maita
32cd0c5dc1
Update glam version requirement from 0.25 to 0.27 (#12757)
# Objective

- Update glam version requirement to latest version.

## Solution

- Updated `glam` version requirement from 0.25 to 0.27.
- Updated `encase` and `encase_derive_impl` version requirement from 0.7
to 0.8.
- Updated `hexasphere` version requirement from 10.0 to 12.0.
- Breaking changes from glam changelog:
- [0.26.0] Minimum Supported Rust Version bumped to 1.68.2 for impl
From<bool> for {f32,f64} support.
- [0.27.0] Changed implementation of vector fract method to match the
Rust implementation instead of the GLSL implementation, that is self -
self.trunc() instead of self - self.floor().

---

## Migration Guide

- When using `glam` exports, keep in mind that `vector` `fract()` method
now matches Rust implementation (that is `self - self.trunc()` instead
of `self - self.floor()`). If you want to use the GLSL implementation
you should now use `fract_gl()`.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-05-02 18:42:34 +00:00
Matty
3a7923ea92
Random sampling of directions and quaternions (#12857)
# Objective

Augment Bevy's random sampling capabilities by providing good tools for
producing random directions and rotations.

## Solution

The `rand` crate has a natural tool for providing `Distribution`s whose
output is a type that doesn't require any additional data to sample
values — namely,
[`Standard`](https://docs.rs/rand/latest/rand/distributions/struct.Standard.html).

Here, our existing `ShapeSample` implementations have been put to good
use in providing these, resulting in patterns like the following:
```rust
// Using thread-local rng
let random_direction1: Dir3 = random();

// Using an explicit rng
let random_direction2: Dir3 = rng.gen();

// Using an explicit rng coupled explicitly with Standard
let random_directions: Vec<Dir3> = rng.sample_iter(Standard).take(5).collect();
```

Furthermore, we have introduced a trait `FromRng` which provides sugar
for `rng.gen()` that is more namespace-friendly (in this author's
opinion):
```rust
let random_direction = Dir3::from_rng(rng);
```

The types this has been implemented for are `Dir2`, `Dir3`, `Dir3A`, and
`Quat`. Notably, `Quat` uses `glam`'s implementation rather than an
in-house one, and as a result, `bevy_math`'s "rand" feature now enables
that of `glam`.

---

## Changelog

- Created `standard` submodule in `sampling` to hold implementations and
other items related to the `Standard` distribution.
- "rand" feature of `bevy_math` now enables that of `glam`.

---

## Discussion

From a quick glance at `Quat`'s distribution implementation in `glam`, I
am a bit suspicious, since it is simple and doesn't match any algorithm
that I came across in my research. I will do a little more digging as a
follow-up to this and see if it's actually uniform (maybe even using
those tools I wrote — what a thrill).

As an aside, I'd also like to say that I think
[`Distribution`](https://docs.rs/rand/latest/rand/distributions/trait.Distribution.html)
is really, really good. It integrates with distributions provided
externally (e.g. in `rand` itself and its extensions) along with doing a
good job of isolating the source of randomness, so that output can be
reliably reproduced if need be. Finally, `Distribution::sample_iter` is
quite good for ergonomically acquiring lots of random values. At one
point I found myself writing traits to describe random sampling and
essentially reinvented this one. I just think it's good, and I think
it's worth centralizing around to a significant extent.
2024-04-04 23:13:00 +00:00
Vitaliy Sapronenko
c38e2d037d
Math tests fix (#12748)
# Objective

Fixes `cargo test -p bevy_math` as in #12729.

## Solution

As described in
[message](https://github.com/bevyengine/bevy/issues/12729#issuecomment-2022197944)
Added workaround `bevy_math = { path = ".", version = "0.14.0-dev",
features = ["approx"] }` to `bevy_math`'s `dev-dependencies`

---------

Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
2024-03-27 20:48:20 +00:00
Ame
72c51cdab9
Make feature(doc_auto_cfg) work (#12642)
# Objective

- In #12366 `![cfg_attr(docsrs, feature(doc_auto_cfg))] `was added. But
to apply it it needs `--cfg=docsrs` in rustdoc-args.


## Solution

- Apply `--cfg=docsrs` to all crates and CI.

I also added `[package.metadata.docs.rs]` to all crates to avoid adding
code behind a feature and forget adding the metadata.

Before:

![Screenshot 2024-03-22 at 00 51
57](https://github.com/bevyengine/bevy/assets/104745335/6a9dfdaa-8710-4784-852b-5f9b74e3522c)

After:
![Screenshot 2024-03-22 at 00 51
32](https://github.com/bevyengine/bevy/assets/104745335/c5bd6d8e-8ddb-45b3-b844-5ecf9f88961c)
2024-03-23 02:22:52 +00:00
TheBigCheese
948ea3137a
Uniform point sampling methods for some primitive shapes. (#12484)
# Objective
Give easy methods for uniform point sampling in a variety of primitive
shapes (particularly useful for circles and spheres) because in a lot of
cases its quite easy to get wrong (non-uniform).

## Solution
Added the `ShapeSample` trait to `bevy_math` and implemented it for
`Circle`, `Sphere`, `Rectangle`, `Cuboid`, `Cylinder`, `Capsule2d` and
`Capsule3d`. There are a few other shapes it would be reasonable to
implement for like `Triangle`, `Ellipse` and `Torus` but I'm not
immediately sure how these would be implemented (other than rejection
which could be the best method, and could be more performant than some
of the solutions in this pr I'm not sure). This exposes the
`sample_volume` and `sample_surface` methods to get both a random point
from its interior or its surface. EDIT: Renamed `sample_volume` to
`sample_interior` and `sample_surface` to `sample_boundary`

This brings in `rand` as a default optional dependency (without default
features), and the methods take `&mut impl Rng` which allows them to use
any random source implementing `RngCore`.

---

## Changelog
### Added
Added the methods `sample_interior` and `sample_boundary` to a variety
of primitive shapes providing easy uniform point sampling.
2024-03-17 14:48:16 +00:00
Joona Aalto
f89af0567b
Add Rotation2d (#11658)
# Objective

Rotating vectors is a very common task. It is required for a variety of
things both within Bevy itself and in many third party plugins, for
example all over physics and collision detection, and for things like
Bevy's bounding volumes and several gizmo implementations.

For 3D, we can do this using a `Quat`, but for 2D, we do not have a
clear and efficient option. `Mat2` can be used for rotating vectors if
created using `Mat2::from_angle`, but this is not obvious to many users,
it doesn't have many rotation helpers, and the type does not give any
guarantees that it represents a valid rotation.

We should have a proper type for 2D rotations. In addition to allowing
for potential optimization, it would allow us to have a consistent and
explicitly documented representation used throughout the engine, i.e.
counterclockwise and in radians.

## Representation

The mathematical formula for rotating a 2D vector is the following:

```
new_x = x * cos - y * sin
new_y = x * sin + y * cos
```

Here, `sin` and `cos` are the sine and cosine of the rotation angle.
Computing these every time when a vector needs to be rotated can be
expensive, so the rotation shouldn't be just an `f32` angle. Instead, it
is often more efficient to represent the rotation using the sine and
cosine of the angle instead of storing the angle itself. This can be
freely passed around and reused without unnecessary computations.

The two options are either a 2x2 rotation matrix or a unit complex
number where the cosine is the real part and the sine is the imaginary
part. These are equivalent for the most part, but the unit complex
representation is a bit more memory efficient (two `f32`s instead of
four), so I chose that. This is like Nalgebra's
[`UnitComplex`](https://docs.rs/nalgebra/latest/nalgebra/geometry/type.UnitComplex.html)
type, which can be used for the
[`Rotation2`](https://docs.rs/nalgebra/latest/nalgebra/geometry/type.Rotation2.html)
type.

## Implementation

Add a `Rotation2d` type represented as a unit complex number:

```rust
/// A counterclockwise 2D rotation in radians.
///
/// The rotation angle is wrapped to be within the `]-pi, pi]` range.
pub struct Rotation2d {
    /// The cosine of the rotation angle in radians.
    ///
    /// This is the real part of the unit complex number representing the rotation.
    pub cos: f32,
    /// The sine of the rotation angle in radians.
    ///
    /// This is the imaginary part of the unit complex number representing the rotation.
    pub sin: f32,
}
```

Using it is similar to using `Quat`, but in 2D:

```rust
let rotation = Rotation2d::radians(PI / 2.0);

// Rotate vector (also works on Direction2d!)
assert_eq!(rotation * Vec2::X, Vec2::Y);

// Get angle as degrees
assert_eq!(rotation.as_degrees(), 90.0);

// Getting sin and cos is free
let (sin, cos) = rotation.sin_cos();

// "Subtract" rotations
let rotation2 = Rotation2d::FRAC_PI_4; // there are constants!
let diff = rotation * rotation2.inverse();
assert_eq!(diff.as_radians(), PI / 4.0);

// This is equivalent to the above
assert_eq!(rotation2.angle_between(rotation), PI / 4.0);

// Lerp
let rotation1 = Rotation2d::IDENTITY;
let rotation2 = Rotation2d::FRAC_PI_2;
let result = rotation1.lerp(rotation2, 0.5);
assert_eq!(result.as_radians(), std::f32::consts::FRAC_PI_4);

// Slerp
let rotation1 = Rotation2d::FRAC_PI_4);
let rotation2 = Rotation2d::degrees(-180.0); // we can use degrees too!
let result = rotation1.slerp(rotation2, 1.0 / 3.0);
assert_eq!(result.as_radians(), std::f32::consts::FRAC_PI_2);
```

There's also a `From<f32>` implementation for `Rotation2d`, which means
that methods can still accept radians as floats if the argument uses
`impl Into<Rotation2d>`. This means that adding `Rotation2d` shouldn't
even be a breaking change.

---

## Changelog

- Added `Rotation2d`
- Bounding volume methods now take an `impl Into<Rotation2d>`
- Gizmo methods with rotation now take an `impl Into<Rotation2d>`

## Future use cases

- Collision detection (a type like this is quite essential considering
how common vector rotations are)
- `Transform` helpers (e.g. return a 2D rotation about the Z axis from a
`Transform`)
- The rotation used for `Transform2d` (#8268)
- More gizmos, maybe meshes... everything in 2D that uses rotation

---------

Co-authored-by: Tristan Guichaoua <33934311+tguichaoua@users.noreply.github.com>
Co-authored-by: Robert Walter <robwalter96@gmail.com>
Co-authored-by: IQuick 143 <IQuick143cz@gmail.com>
2024-03-11 19:11:57 +00:00
Al M
52e3f2007b
Add "all-features = true" to docs.rs metadata for most crates (#12366)
# Objective

Fix missing `TextBundle` (and many others) which are present in the main
crate as default features but optional in the sub-crate. See:

- https://docs.rs/bevy/0.13.0/bevy/ui/node_bundles/index.html
- https://docs.rs/bevy_ui/0.13.0/bevy_ui/node_bundles/index.html

~~There are probably other instances in other crates that I could track
down, but maybe "all-features = true" should be used by default in all
sub-crates? Not sure.~~ (There were many.) I only noticed this because
rust-analyzer's "open docs" features takes me to the sub-crate, not the
main one.

## Solution

Add "all-features = true" to docs.rs metadata for crates that use
features.

## Changelog

### Changed

- Unified features documented on docs.rs between main crate and
sub-crates
2024-03-08 20:03:09 +00:00
JohnTheCoolingFan
a543536a34
Cubic splines overhaul (#10701)
# Objective

Improve the `bevy::math::cubic_splines` module by making it more
flexible and adding new curve types.
Closes #10220 

## Solution

Added new spline types and improved existing

---

## Changelog

### Added

- `CubicNurbs` rational cubic curve generator, allows setting the knot
vector and weights associated with every point
- `LinearSpline` curve generator, allows generating a linearly
interpolated curve segment
- Ability to push additional cubic segments to `CubicCurve`
- `IntoIterator` and `Extend` implementations for `CubicCurve`

### Changed

- `Point` trait has been implemented for more types: `Quat` and `Vec4`.
- `CubicCurve::coefficients` was moved to `CubicSegment::coefficients`
because the function returns `CubicSegment`, so it seems logical to be
associated with `CubicSegment` instead. The method is still not public.

### Fixed

- `CubicBSpline::new` was referencing Cardinal spline instead of
B-Spline

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: IQuick 143 <IQuick143cz@gmail.com>
Co-authored-by: Miles Silberling-Cook <nth.tensor@gmail.com>
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
2024-02-28 17:18:42 +00:00
github-actions[bot]
e7c3359c4b
Bump Version after Release (#12020)
Fixes #12016.

Bump version after release
This PR has been auto-generated

Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François <mockersf@gmail.com>
2024-02-21 20:58:59 +00:00
Carter Anderson
abb8c353f4
Release 0.13.0 (#11920)
Bump Bevy crates to 0.13.0 in preparation for release.

(Note that we accidentally skipped the `0.13.0-dev` step this cycle)
2024-02-17 09:24:25 +00:00
Joona Aalto
d30fdda2c3
Implement approx traits for direction types (#11650)
# Objective

`approx` has traits like
[`AbsDiffEq`](https://docs.rs/approx/latest/approx/trait.AbsDiffEq.html),
[`RelativeEq`](https://docs.rs/approx/latest/approx/trait.RelativeEq.html),
and [`UlpsEq`](https://docs.rs/approx/latest/approx/trait.UlpsEq.html).
Glam implements them for its math types when the `approx` feature is
enabled. Bevy's `Direction2d` and `Direction3d` should implement these
too.

## Solution

Implement the traits. See [how Glam implements them for its own math
types](https://github.com/bitshifter/glam-rs/blob/main/src/features/impl_approx.rs).
For the epsilon values, I use the same as `Vec2`/`Vec3` (just
`f32::EPSILON`).
2024-02-01 19:22:28 +00:00
Joona Aalto
92567490a9
Add more constructors and math helpers for primitive shapes (#10632)
# Objective

Working towards finishing a part of #10572, this PR adds a ton of math
helpers and useful constructors for primitive shapes. I also tried
fixing some naming inconsistencies.

## Solution

- Add mathematical helpers like `area`, `volume`, `perimeter`,
`RegularPolygon::inradius` and so on, trying to cover all core
mathematical properties of each shape
- Add some constructors like `Rectangle::from_corners`,
`Cuboid::from_corners` and `Plane3d::from_points`

I also derived `PartialEq` for the shapes where it's trivial. Primitives
like `Line2d` and `Segment2d` are not trivial because you could argue
that they would be equal if they had an opposite direction.

All mathematical methods have tests with reference values computed by
hand or with external tools.

## Todo

- [x] Add tests to verify that the values from mathematical helpers are
correct

---------

Co-authored-by: IQuick 143 <IQuick143cz@gmail.com>
2024-01-29 16:04:51 +00:00
irate
ec14e946b8
Update glam, encase and hexasphere (#11082)
Update to `glam` 0.25, `encase` 0.7 and `hexasphere` to 10.0

## Changelog
Added the `FloatExt` trait to the `bevy_math` prelude which adds `lerp`,
`inverse_lerp` and `remap` methods to the `f32` and `f64` types.
2024-01-08 22:58:45 +00:00
Joona Aalto
0349809420
Add libm feature to bevy_math (#11238)
# Objective

Different platforms use their own implementations of several
mathematical functions (especially transcendental functions like sin,
cos, tan, atan, and so on) to provide hardware-level optimization using
intrinsics. This is good for performance, but bad when you expect
consistent outputs across machines.

[`libm`](https://github.com/rust-lang/libm) is a widely used crate that
provides mathematical functions that don't use intrinsics like `std`
functions. This allows bit-for-bit deterministic math across hardware,
which is crucial for things like cross-platform deterministic physics
simulation.

Glam has the `libm` feature for using [`libm` for the
math](d2871a151b/src/f32/math.rs (L35))
in its own types. This would be nice to expose as a feature in
`bevy_math`.

## Solution

Add `libm` feature to `bevy_math`. We could name it something like
`enhanced-determinism`, but this wouldn't be accurate for the rest of
Bevy, so I think just `libm` is more fitting and explicit.
2024-01-06 22:01:57 +00:00
Joona Aalto
536a7bd810
Add approx feature to bevy_math (#11176)
# Objective

`bevy_math` re-exports Glam, but doesn't have a feature for enabling
`approx` for it. Many projects (including some of Bevy's own crates)
need `approx`, and it'd be nice if you didn't have to manually add Glam
to specify the feature for it.

## Solution

Add an `approx` feature to `bevy_math`.
2024-01-02 18:10:44 +00:00
Ame
951c9bb1a2
Add [lints] table, fix adding #![allow(clippy::type_complexity)] everywhere (#10011)
# Objective

- Fix adding `#![allow(clippy::type_complexity)]` everywhere. like #9796

## Solution

- Use the new [lints] table that will land in 1.74
(https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#lints)
- inherit lint to the workspace, crates and examples.
```
[lints]
workspace = true
```

## Changelog

- Bump rust version to 1.74
- Enable lints table for the workspace
```toml
[workspace.lints.clippy]
type_complexity = "allow"
```
- Allow type complexity for all crates and examples
```toml
[lints]
workspace = true
```

---------

Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com>
2023-11-18 20:58:48 +00:00
github-actions[bot]
bf30a25efc
Release 0.12 (#10362)
Preparing next release
This PR has been auto-generated

---------

Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François <mockersf@gmail.com>
2023-11-04 17:24:23 +00:00
Ame :]
1e9258910c
re-export debug_glam_assert feature (#10206)
# Objective

- I want to use the `debug_glam_assert` feature with bevy.

## Solution

- Re-export the feature flag

---

## Changelog

- Re-export `debug_glam_assert` feature flag from glam.
2023-10-22 23:01:28 +00:00
Nicola Papale
ee3cc8ca86
Fix erronenous glam version (#9653)
# Objective

- Fix compilation issue with wrongly specified glam version
- bevy uses `Vec2::INFINITY`, depends on `0.24` (equivalent to `0.24.0`)
yet it was only introduced in version `0.24.1`

Context:
https://discord.com/channels/691052431525675048/692572690833473578/1146586570787397794

## Solution

- Bump glam version.
2023-08-31 12:55:17 +00:00
Carter Anderson
7c3131a761
Bump Version after Release (#9106)
CI-capable version of #9086

---------

Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François <mockersf@gmail.com>
2023-07-10 21:19:27 +00:00
Carter Anderson
8ba9571eed
Release 0.11.0 (#9080)
I created this manually as Github didn't want to run CI for the
workflow-generated PR. I'm guessing we didn't hit this in previous
releases because we used bors.

Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
2023-07-09 08:43:47 +00:00
François
0736195a1e
update syn, encase, glam and hexasphere (#8573)
# Objective

- Fixes #8282 
- Update `syn` to 2.0, `encase` to 0.6, `glam` to 0.24 and `hexasphere`
to 9.0


Blocked ~~on https://github.com/teoxoy/encase/pull/42~~ and ~~on
https://github.com/OptimisticPeach/hexasphere/pull/17~~

---------

Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
Co-authored-by: JoJoJet <21144246+JoJoJet@users.noreply.github.com>
2023-05-16 01:24:17 +00:00
Ame
bb63ad7fab
Re-export glam_assert feature (#8232)
# Objective

- Allow the use of the "glam _assert" feature to help catch runtime
errors and validate the arguments passed to glam.

e.g.
```rs
// Will panic if self is zero length when glam_assert is enabled.
    pub fn normalize(self) -> Self {
        let normalized = self.mul(self.length_recip());
        glam_assert!(normalized.is_finite());
        normalized
    }
```

## Solution

- Re-export the optional feature glam_assert

---

## Changelog

Added: Optional feature "glam_assert"
2023-03-28 20:18:50 +00:00
github-actions[bot]
6898351348
chore: Release (#7920)
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
2023-03-06 05:13:36 +00:00
github-actions[bot]
b44af49200 Release 0.10.0 (#7919)
Preparing next release
This PR has been auto-generated
2023-03-06 03:53:02 +00:00
github-actions[bot]
8eb67932f1 Bump Version after Release (#7918)
Bump version after release
This PR has been auto-generated
2023-03-06 02:10:30 +00:00
Edgar Geier
cbbf8ac575 Update glam to 0.23 (#7883)
# Objective

- Update `glam` to the latest version.

## Solution

- Update `glam` to version `0.23`.

Since the breaking change in `glam` only affects the `scalar-math` feature, this should cause no issues.
2023-03-04 11:42:27 +00:00
github-actions[bot]
920543c824 Release 0.9.0 (#6568)
Preparing next release
This PR has been auto-generated
2022-11-12 20:01:29 +00:00
François
0aab699a84 Update glam 0.22, hexasphere 8.0, encase 0.4 (#6427)
# Objective

- Update glam to 0.22, hexasphere to 8.0, encase to 0.4

## Solution

- Update glam to 0.22, hexasphere to 8.0, encase to 0.4
- ~~waiting on https://github.com/teoxoy/encase/pull/17 and https://github.com/OptimisticPeach/hexasphere/pull/13~~
2022-11-07 19:44:13 +00:00
amiani
bf6c457553 add serialize feature to bevy_transform (#6379)
# Objective
Fixes #6378 
`bevy_transform` is missing a feature corresponding to the `serialize` feature on the `bevy` crate.

## Solution

Adds a `serialize` feature to `bevy_transform`.
Derives `serde::Serialize` and `Deserialize` when feature is enabled.
2022-10-31 16:12:15 +00:00
harudagondi
0c98a2f0ca Expose mint feature in bevy_math/glam (#5857)
# Objective

- Expose `mint` feature of `glam` in `bevy_math`.
- Unblocks harudagondi/bevy_oddio#22
	- [`oddio::SpatialOptions`] uses mint types

[`oddio::SpatialOptions`]: https://docs.rs/oddio/latest/oddio/struct.SpatialOptions.html

## Solution

- Added features in `bevy_math`, ~`bevy_internal`, `bevy`~
- ~Updated `docs/cargo_features.md`~

---

## Changelog

### Added

- `mint` feature in `bevy_math` to allow interoperation of glam types with mint-compatible libraries.
2022-09-03 03:02:04 +00:00
Jerome Humbert
8b7b44d839 Move sprite::Rect into bevy_math (#5686)
# Objective

Promote the `Rect` utility of `sprite::Rect`, which defines a rectangle
by its minimum and maximum corners, to the `bevy_math` crate to make it
available as a general math type to all crates without the need to
depend on the `bevy_sprite` crate.

Fixes #5575

## Solution

Move `sprite::Rect` into `bevy_math` and fix all uses.

Implement `Reflect` for `Rect` directly into the `bevy_reflect` crate by
having `bevy_reflect` depend on `bevy_math`. This looks like a new
dependency, but the `bevy_reflect` was "cheating" for other math types
by directly depending on `glam` to reflect other math types, thereby
giving the illusion that there was no dependency on `bevy_math`. In
practice conceptually Bevy's math types are reflected into the
`bevy_reflect` crate to avoid a dependency of that crate to a "lower
level" utility crate like `bevy_math` (which in turn would make
`bevy_reflect` be a dependency of most other crates, and increase the
risk of circular dependencies). So this change simply formalizes that
dependency in `Cargo.toml`.

The `Rect` struct is also augmented in this change with a collection of
utility methods to improve its usability. A few uses cases are updated
to use those new methods, resulting is more clear and concise syntax.

---

## Changelog

### Changed

- Moved the `sprite::Rect` type into `bevy_math`.

### Added

- Added several utility methods to the `math::Rect` type.

## Migration Guide

The `bevy::sprite::Rect` type moved to the math utility crate as
`bevy::math::Rect`. You should change your imports from `use
bevy::sprite::Rect` to `use bevy::math::Rect`.
2022-09-02 12:35:23 +00:00
github-actions[bot]
444150025d Bump Version after Release (#5576)
Bump version after release
This PR has been auto-generated
2022-08-05 02:03:05 +00:00
github-actions[bot]
856588ed7c Release 0.8.0 (#5490)
Preparing next release
This PR has been auto-generated
2022-07-30 14:07:30 +00:00
CGMossa
33f9b3940d Updated glam to 0.21. (#5142)
Removed `const_vec2`/`const_vec3`
and replaced with equivalent `.from_array`.

# Objective

Fixes #5112 

## Solution

- `encase` needs to update to `glam` as well. See teoxoy/encase#4 on progress on that. 
- `hexasphere` also needs to be updated, see OptimisticPeach/hexasphere#12.
2022-07-03 19:55:33 +00:00