bevy/crates/bevy_ui/src/render/mod.rs

910 lines
34 KiB
Rust
Raw Normal View History

mod pipeline;
mod render_pass;
Camera Driven Rendering (#4745) This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier. Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915): ![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png) Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work". Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id: ```rust // main camera (main window) commands.spawn_bundle(Camera2dBundle::default()); // second camera (other window) commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Window(window_id), ..default() }, ..default() }); ``` Rendering to a texture is as simple as pointing the camera at a texture: ```rust commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle), ..default() }, ..default() }); ``` Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`). ```rust // main pass camera with a default priority of 0 commands.spawn_bundle(Camera2dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle.clone()), priority: -1, ..default() }, ..default() }); commands.spawn_bundle(SpriteBundle { texture: image_handle, ..default() }) ``` Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system: ```rust commands.spawn_bundle(Camera3dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { // this will render 2d entities "on top" of the default 3d camera's render priority: 1, ..default() }, ..default() }); ``` There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active. Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections. ```rust // old 3d perspective camera commands.spawn_bundle(PerspectiveCameraBundle::default()) // new 3d perspective camera commands.spawn_bundle(Camera3dBundle::default()) ``` ```rust // old 2d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_2d()) // new 2d orthographic camera commands.spawn_bundle(Camera2dBundle::default()) ``` ```rust // old 3d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_3d()) // new 3d orthographic camera commands.spawn_bundle(Camera3dBundle { projection: OrthographicProjection { scale: 3.0, scaling_mode: ScalingMode::FixedVertical, ..default() }.into(), ..default() }) ``` Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors. If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component: ```rust commands.spawn_bundle(Camera3dBundle { camera_render_graph: CameraRenderGraph::new(some_render_graph_name), ..default() }) ``` Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added. Speaking of using components to configure graphs / passes, there are a number of new configuration options: ```rust commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // overrides the default global clear color clear_color: ClearColorConfig::Custom(Color::RED), ..default() }, ..default() }) commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // disables clearing clear_color: ClearColorConfig::None, ..default() }, ..default() }) ``` Expect to see more of the "graph configuration Components on Cameras" pattern in the future. By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component: ```rust commands .spawn_bundle(Camera3dBundle::default()) .insert(CameraUi { is_enabled: false, ..default() }) ``` ## Other Changes * The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr. * I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization. * I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler. * All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr. * Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic. * Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals: 1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs. 2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense. ## Follow Up Work * Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen) * Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor) * Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system). * Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable. * Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home.
2022-06-02 00:12:17 +00:00
use bevy_core_pipeline::{core_2d::Camera2d, core_3d::Camera3d};
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
use bevy_ecs::storage::SparseSet;
use bevy_hierarchy::Parent;
Split `ComputedVisibility` into two components to allow for accurate change detection and speed up visibility propagation (#9497) # Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
use bevy_render::view::ViewVisibility;
use bevy_render::{ExtractSchedule, Render};
Windows as Entities (#5589) # Objective Fix https://github.com/bevyengine/bevy/issues/4530 - Make it easier to open/close/modify windows by setting them up as `Entity`s with a `Window` component. - Make multiple windows very simple to set up. (just add a `Window` component to an entity and it should open) ## Solution - Move all properties of window descriptor to ~components~ a component. - Replace `WindowId` with `Entity`. - ~Use change detection for components to update backend rather than events/commands. (The `CursorMoved`/`WindowResized`/... events are kept for user convenience.~ Check each field individually to see what we need to update, events are still kept for user convenience. --- ## Changelog - `WindowDescriptor` renamed to `Window`. - Width/height consolidated into a `WindowResolution` component. - Requesting maximization/minimization is done on the [`Window::state`] field. - `WindowId` is now `Entity`. ## Migration Guide - Replace `WindowDescriptor` with `Window`. - Change `width` and `height` fields in a `WindowResolution`, either by doing ```rust WindowResolution::new(width, height) // Explicitly // or using From<_> for tuples for convenience (1920., 1080.).into() ``` - Replace any `WindowCommand` code to just modify the `Window`'s fields directly and creating/closing windows is now by spawning/despawning an entity with a `Window` component like so: ```rust let window = commands.spawn(Window { ... }).id(); // open window commands.entity(window).despawn(); // close window ``` ## Unresolved - ~How do we tell when a window is minimized by a user?~ ~Currently using the `Resize(0, 0)` as an indicator of minimization.~ No longer attempting to tell given how finnicky this was across platforms, now the user can only request that a window be maximized/minimized. ## Future work - Move `exit_on_close` functionality out from windowing and into app(?) - https://github.com/bevyengine/bevy/issues/5621 - https://github.com/bevyengine/bevy/issues/7099 - https://github.com/bevyengine/bevy/issues/7098 Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-01-19 00:38:28 +00:00
use bevy_window::{PrimaryWindow, Window};
pub use pipeline::*;
pub use render_pass::*;
use crate::{
Divide by `UiScale` when converting UI coordinates from physical to logical (#8720) # Objective After the UI layout is computed when the coordinates are converted back from physical coordinates to logical coordinates the `UiScale` is ignored. This results in a confusing situation where we have two different systems of logical coordinates. Example: ```rust use bevy::prelude::*; fn main() { App::new() .add_plugins(DefaultPlugins) .add_systems(Startup, setup) .add_systems(Update, update) .run(); } fn setup(mut commands: Commands, mut ui_scale: ResMut<UiScale>) { ui_scale.scale = 4.; commands.spawn(Camera2dBundle::default()); commands.spawn(NodeBundle { style: Style { align_items: AlignItems::Center, justify_content: JustifyContent::Center, width: Val::Percent(100.), ..Default::default() }, ..Default::default() }) .with_children(|builder| { builder.spawn(NodeBundle { style: Style { width: Val::Px(100.), height: Val::Px(100.), ..Default::default() }, background_color: Color::MAROON.into(), ..Default::default() }).with_children(|builder| { builder.spawn(TextBundle::from_section("", TextStyle::default()); }); }); } fn update( mut text_query: Query<(&mut Text, &Parent)>, node_query: Query<Ref<Node>>, ) { for (mut text, parent) in text_query.iter_mut() { let node = node_query.get(parent.get()).unwrap(); if node.is_changed() { text.sections[0].value = format!("size: {}", node.size()); } } } ``` result: ![Bevy App 30_05_2023 16_54_32](https://github.com/bevyengine/bevy/assets/27962798/a5ecbf31-0a12-4669-87df-b0c32f058732) We asked for a 100x100 UI node but the Node's size is multiplied by the value of `UiScale` to give a logical size of 400x400. ## Solution Divide the output physical coordinates by `UiScale` in `ui_layout_system` and multiply the logical viewport size by `UiScale` when creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. --- ## Changelog * The UI layout's physical coordinates are divided by both the window scale factor and `UiScale` when converting them back to logical coordinates. The logical size of Ui nodes now matches the values given to their size constraints. * Multiply the logical viewport size by `UiScale` before creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. * In `ui_focus_system` the cursor position returned from `Window` is divided by `UiScale`. * Added a scale factor parameter to `Node::physical_size` and `Node::physical_rect`. * The example `viewport_debug` now uses a `UiScale` of 2. to ensure that viewport coordinates are working correctly with a non-unit `UiScale`. ## Migration Guide Physical UI coordinates are now divided by both the `UiScale` and the window's scale factor to compute the logical sizes and positions of UI nodes. This ensures that UI Node size and position values, held by the `Node` and `GlobalTransform` components, conform to the same logical coordinate system as the style constraints from which they are derived, irrespective of the current `scale_factor` and `UiScale`. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-07-06 20:27:54 +00:00
prelude::UiCameraConfig, BackgroundColor, BorderColor, CalculatedClip, ContentSize, Node,
Style, UiImage, UiScale, UiStack, UiTextureAtlasImage, Val,
};
Divide by `UiScale` when converting UI coordinates from physical to logical (#8720) # Objective After the UI layout is computed when the coordinates are converted back from physical coordinates to logical coordinates the `UiScale` is ignored. This results in a confusing situation where we have two different systems of logical coordinates. Example: ```rust use bevy::prelude::*; fn main() { App::new() .add_plugins(DefaultPlugins) .add_systems(Startup, setup) .add_systems(Update, update) .run(); } fn setup(mut commands: Commands, mut ui_scale: ResMut<UiScale>) { ui_scale.scale = 4.; commands.spawn(Camera2dBundle::default()); commands.spawn(NodeBundle { style: Style { align_items: AlignItems::Center, justify_content: JustifyContent::Center, width: Val::Percent(100.), ..Default::default() }, ..Default::default() }) .with_children(|builder| { builder.spawn(NodeBundle { style: Style { width: Val::Px(100.), height: Val::Px(100.), ..Default::default() }, background_color: Color::MAROON.into(), ..Default::default() }).with_children(|builder| { builder.spawn(TextBundle::from_section("", TextStyle::default()); }); }); } fn update( mut text_query: Query<(&mut Text, &Parent)>, node_query: Query<Ref<Node>>, ) { for (mut text, parent) in text_query.iter_mut() { let node = node_query.get(parent.get()).unwrap(); if node.is_changed() { text.sections[0].value = format!("size: {}", node.size()); } } } ``` result: ![Bevy App 30_05_2023 16_54_32](https://github.com/bevyengine/bevy/assets/27962798/a5ecbf31-0a12-4669-87df-b0c32f058732) We asked for a 100x100 UI node but the Node's size is multiplied by the value of `UiScale` to give a logical size of 400x400. ## Solution Divide the output physical coordinates by `UiScale` in `ui_layout_system` and multiply the logical viewport size by `UiScale` when creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. --- ## Changelog * The UI layout's physical coordinates are divided by both the window scale factor and `UiScale` when converting them back to logical coordinates. The logical size of Ui nodes now matches the values given to their size constraints. * Multiply the logical viewport size by `UiScale` before creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. * In `ui_focus_system` the cursor position returned from `Window` is divided by `UiScale`. * Added a scale factor parameter to `Node::physical_size` and `Node::physical_rect`. * The example `viewport_debug` now uses a `UiScale` of 2. to ensure that viewport coordinates are working correctly with a non-unit `UiScale`. ## Migration Guide Physical UI coordinates are now divided by both the `UiScale` and the window's scale factor to compute the logical sizes and positions of UI nodes. This ensures that UI Node size and position values, held by the `Node` and `GlobalTransform` components, conform to the same logical coordinate system as the style constraints from which they are derived, irrespective of the current `scale_factor` and `UiScale`. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-07-06 20:27:54 +00:00
use bevy_app::prelude::*;
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
use bevy_asset::{load_internal_asset, AssetEvent, Assets, Handle, HandleId, HandleUntyped};
use bevy_ecs::prelude::*;
use bevy_math::{Mat4, Rect, URect, UVec4, Vec2, Vec3, Vec4Swizzles};
2020-11-28 00:39:59 +00:00
use bevy_reflect::TypeUuid;
use bevy_render::texture::DEFAULT_IMAGE_HANDLE;
2020-05-03 19:35:07 +00:00
use bevy_render::{
Change UI coordinate system to have origin at top left corner (#6000) # Objective Fixes #5572 ## Solution Approach is to invert the Y-axis of the UI Camera by changing the UI projection matrix to render the UI upside down. After that I'm trying to fix all issues, that pop up: - interaction expected the "old" position - images and text were displayed upside-down - baseline of text was based on the top of the glyph instead of bottom ... probably a lot more. --- Result when running examples: <details> <summary>Button example</summary> main branch: ![button main](https://user-images.githubusercontent.com/4232644/190856087-61dd1d98-42b5-4238-bd97-149744ddfeba.png) this pr: ![button pr](https://user-images.githubusercontent.com/4232644/190856097-3f4bc97a-ed15-4e97-b7f1-2b2dd6bb8b14.png) </details> <details> <summary>Text example</summary> m ![text main](https://user-images.githubusercontent.com/4232644/192142831-4cf19aa1-f49a-485e-af7b-374d6f5c396c.png) ain branch: this pr: ![text pr fixed](https://user-images.githubusercontent.com/4232644/192142829-c433db3b-32e1-4ee8-b493-0b4a4d9c8e70.png) </details> <details> <summary>Text debug example</summary> main branch: ![text_debug main](https://user-images.githubusercontent.com/4232644/192142822-940aefa6-e502-410b-8da4-5570f77b5df2.png) this pr: ![text_debug pr fixed](https://user-images.githubusercontent.com/4232644/194547010-8c968f5c-5a71-4ffc-871d-790c06d48016.png) </details> <details> <summary>Transparency UI example</summary> main branch: ![transparency_ui main](https://user-images.githubusercontent.com/4232644/190856172-328c60fe-3622-4598-97d5-2f1595db13b3.png) this pr: ![transperency_ui pr](https://user-images.githubusercontent.com/4232644/190856179-a2dafb99-41ea-45a9-9dd6-400fa3ef24b9.png) </details> <details> <summary>UI example</summary> **ui example** main branch: ![ui main](https://user-images.githubusercontent.com/4232644/192142812-e20ba31a-6841-46d9-a785-4198cf22dc99.png) this pr: ![ui pr fixed](https://user-images.githubusercontent.com/4232644/192142788-cc0b74e0-7710-4faa-b5a2-60270a5da77c.png) </details> ## Changelog UI coordinate system and cursor position was changed from bottom left origin, y+ up to top left origin, y+ down. ## Migration Guide All flex layout should be inverted (ColumnReverse => Column, FlexStart => FlexEnd, WrapReverse => Wrap) System where dealing with cursor position should be changed to account for cursor position being based on the top left instead of bottom left
2022-10-11 12:51:44 +00:00
camera::Camera,
color::Color,
render_asset::RenderAssets,
Make render graph slots optional for most cases (#8109) # Objective - Currently, the render graph slots are only used to pass the view_entity around. This introduces significant boilerplate for very little value. Instead of using slots for this, make the view_entity part of the `RenderGraphContext`. This also means we won't need to have `IN_VIEW` on every node and and we'll be able to use the default impl of `Node::input()`. ## Solution - Add `view_entity: Option<Entity>` to the `RenderGraphContext` - Update all nodes to use this instead of entity slot input --- ## Changelog - Add optional `view_entity` to `RenderGraphContext` ## Migration Guide You can now get the view_entity directly from the `RenderGraphContext`. When implementing the Node: ```rust // 0.10 struct FooNode; impl FooNode { const IN_VIEW: &'static str = "view"; } impl Node for FooNode { fn input(&self) -> Vec<SlotInfo> { vec![SlotInfo::new(Self::IN_VIEW, SlotType::Entity)] } fn run( &self, graph: &mut RenderGraphContext, // ... ) -> Result<(), NodeRunError> { let view_entity = graph.get_input_entity(Self::IN_VIEW)?; // ... Ok(()) } } // 0.11 struct FooNode; impl Node for FooNode { fn run( &self, graph: &mut RenderGraphContext, // ... ) -> Result<(), NodeRunError> { let view_entity = graph.view_entity(); // ... Ok(()) } } ``` When adding the node to the graph, you don't need to specify a slot_edge for the view_entity. ```rust // 0.10 let mut graph = RenderGraph::default(); graph.add_node(FooNode::NAME, node); let input_node_id = draw_2d_graph.set_input(vec![SlotInfo::new( graph::input::VIEW_ENTITY, SlotType::Entity, )]); graph.add_slot_edge( input_node_id, graph::input::VIEW_ENTITY, FooNode::NAME, FooNode::IN_VIEW, ); // add_node_edge ... // 0.11 let mut graph = RenderGraph::default(); graph.add_node(FooNode::NAME, node); // add_node_edge ... ``` ## Notes This PR paired with #8007 will help reduce a lot of annoying boilerplate with the render nodes. Depending on which one gets merged first. It will require a bit of clean up work to make both compatible. I tagged this as a breaking change, because using the old system to get the view_entity will break things because it's not a node input slot anymore. ## Notes for reviewers A lot of the diffs are just removing the slots in every nodes and graph creation. The important part is mostly in the graph_runner/CameraDriverNode.
2023-03-21 20:11:13 +00:00
render_graph::{RenderGraph, RunGraphOnViewNode},
render_phase::{sort_phase_system, AddRenderCommand, DrawFunctions, RenderPhase},
render_resource::*,
renderer::{RenderDevice, RenderQueue},
texture::Image,
Split `ComputedVisibility` into two components to allow for accurate change detection and speed up visibility propagation (#9497) # Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
view::{ExtractedView, ViewUniforms},
Migrate engine to Schedule v3 (#7267) Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR. # Objective - Followup #6587. - Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45 ## Solution - [x] Remove old scheduling module - [x] Migrate new methods to no longer use extension methods - [x] Fix compiler errors - [x] Fix benchmarks - [x] Fix examples - [x] Fix docs - [x] Fix tests ## Changelog ### Added - a large number of methods on `App` to work with schedules ergonomically - the `CoreSchedule` enum - `App::add_extract_system` via the `RenderingAppExtension` trait extension method - the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms` ### Removed - stages, and all code that mentions stages - states have been dramatically simplified, and no longer use a stack - `RunCriteriaLabel` - `AsSystemLabel` trait - `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition) - systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world - `RunCriteriaLabel` - `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear. ### Changed - `System::default_labels` is now `System::default_system_sets`. - `App::add_default_labels` is now `App::add_default_sets` - `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet` - `App::add_system_set` was renamed to `App::add_systems` - The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum - `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)` - `SystemLabel` trait was replaced by `SystemSet` - `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>` - The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq` - Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria. - Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. - `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`. - `bevy_pbr::add_clusters` is no longer an exclusive system - the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling` - `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread. ## Migration Guide - Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)` - Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed. - The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved. - Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior. - Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you. - For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with - `add_system(my_system.in_set(CoreSet::PostUpdate)` - When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages - Run criteria have been renamed to run conditions. These can now be combined with each other and with states. - Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow. - For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label. - Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default. - Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually. - Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior. - the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity - `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl. - Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings. - `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds. - `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool. - States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set` ## TODO - [x] remove dead methods on App and World - [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule` - [x] avoid adding the default system set at inappropriate times - [x] remove any accidental cycles in the default plugins schedule - [x] migrate benchmarks - [x] expose explicit labels for the built-in command flush points - [x] migrate engine code - [x] remove all mentions of stages from the docs - [x] verify docs for States - [x] fix uses of exclusive systems that use .end / .at_start / .before_commands - [x] migrate RenderStage and AssetStage - [x] migrate examples - [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub) - [x] ensure that on_enter schedules are run at least once before the main app - [x] re-enable opt-in to execution order ambiguities - [x] revert change to `update_bounds` to ensure it runs in `PostUpdate` - [x] test all examples - [x] unbreak directional lights - [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples) - [x] game menu example shows loading screen and menu simultaneously - [x] display settings menu is a blank screen - [x] `without_winit` example panics - [x] ensure all tests pass - [x] SubApp doc test fails - [x] runs_spawn_local tasks fails - [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120) ## Points of Difficulty and Controversy **Reviewers, please give feedback on these and look closely** 1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup. 2. The outer schedule controls which schedule is run when `App::update` is called. 3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes. 4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset. 5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order 6. Implemetnation strategy for fixed timesteps 7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks. 8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements. ## Future Work (ideally before 0.10) - Rename schedule_v3 module to schedule or scheduling - Add a derive macro to states, and likely a `EnumIter` trait of some form - Figure out what exactly to do with the "systems added should basically work by default" problem - Improve ergonomics for working with fixed timesteps and states - Polish FixedTime API to match Time - Rebase and merge #7415 - Resolve all internal ambiguities (blocked on better tools, especially #7442) - Add "base sets" to replace the removed default sets.
2023-02-06 02:04:50 +00:00
Extract, RenderApp, RenderSet,
2020-05-03 19:35:07 +00:00
};
use bevy_sprite::SpriteAssetEvents;
use bevy_sprite::TextureAtlas;
#[cfg(feature = "bevy_text")]
use bevy_text::{PositionedGlyph, Text, TextLayoutInfo};
use bevy_transform::components::GlobalTransform;
use bevy_utils::HashMap;
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
use bevy_utils::{FloatOrd, Uuid};
use bytemuck::{Pod, Zeroable};
use std::ops::Range;
2020-05-03 19:35:07 +00:00
pub mod node {
pub const UI_PASS_DRIVER: &str = "ui_pass_driver";
}
pub mod draw_ui_graph {
pub const NAME: &str = "draw_ui";
pub mod node {
pub const UI_PASS: &str = "ui_pass";
}
}
pub const UI_SHADER_HANDLE: HandleUntyped =
HandleUntyped::weak_from_u64(Shader::TYPE_UUID, 13012847047162779583);
Migrate engine to Schedule v3 (#7267) Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR. # Objective - Followup #6587. - Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45 ## Solution - [x] Remove old scheduling module - [x] Migrate new methods to no longer use extension methods - [x] Fix compiler errors - [x] Fix benchmarks - [x] Fix examples - [x] Fix docs - [x] Fix tests ## Changelog ### Added - a large number of methods on `App` to work with schedules ergonomically - the `CoreSchedule` enum - `App::add_extract_system` via the `RenderingAppExtension` trait extension method - the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms` ### Removed - stages, and all code that mentions stages - states have been dramatically simplified, and no longer use a stack - `RunCriteriaLabel` - `AsSystemLabel` trait - `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition) - systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world - `RunCriteriaLabel` - `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear. ### Changed - `System::default_labels` is now `System::default_system_sets`. - `App::add_default_labels` is now `App::add_default_sets` - `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet` - `App::add_system_set` was renamed to `App::add_systems` - The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum - `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)` - `SystemLabel` trait was replaced by `SystemSet` - `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>` - The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq` - Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria. - Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. - `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`. - `bevy_pbr::add_clusters` is no longer an exclusive system - the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling` - `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread. ## Migration Guide - Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)` - Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed. - The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved. - Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior. - Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you. - For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with - `add_system(my_system.in_set(CoreSet::PostUpdate)` - When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages - Run criteria have been renamed to run conditions. These can now be combined with each other and with states. - Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow. - For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label. - Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default. - Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually. - Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior. - the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity - `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl. - Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings. - `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds. - `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool. - States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set` ## TODO - [x] remove dead methods on App and World - [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule` - [x] avoid adding the default system set at inappropriate times - [x] remove any accidental cycles in the default plugins schedule - [x] migrate benchmarks - [x] expose explicit labels for the built-in command flush points - [x] migrate engine code - [x] remove all mentions of stages from the docs - [x] verify docs for States - [x] fix uses of exclusive systems that use .end / .at_start / .before_commands - [x] migrate RenderStage and AssetStage - [x] migrate examples - [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub) - [x] ensure that on_enter schedules are run at least once before the main app - [x] re-enable opt-in to execution order ambiguities - [x] revert change to `update_bounds` to ensure it runs in `PostUpdate` - [x] test all examples - [x] unbreak directional lights - [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples) - [x] game menu example shows loading screen and menu simultaneously - [x] display settings menu is a blank screen - [x] `without_winit` example panics - [x] ensure all tests pass - [x] SubApp doc test fails - [x] runs_spawn_local tasks fails - [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120) ## Points of Difficulty and Controversy **Reviewers, please give feedback on these and look closely** 1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup. 2. The outer schedule controls which schedule is run when `App::update` is called. 3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes. 4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset. 5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order 6. Implemetnation strategy for fixed timesteps 7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks. 8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements. ## Future Work (ideally before 0.10) - Rename schedule_v3 module to schedule or scheduling - Add a derive macro to states, and likely a `EnumIter` trait of some form - Figure out what exactly to do with the "systems added should basically work by default" problem - Improve ergonomics for working with fixed timesteps and states - Polish FixedTime API to match Time - Rebase and merge #7415 - Resolve all internal ambiguities (blocked on better tools, especially #7442) - Add "base sets" to replace the removed default sets.
2023-02-06 02:04:50 +00:00
#[derive(Debug, Hash, PartialEq, Eq, Clone, SystemSet)]
pub enum RenderUiSystem {
ExtractNode,
ExtractAtlasNode,
}
pub fn build_ui_render(app: &mut App) {
load_internal_asset!(app, UI_SHADER_HANDLE, "ui.wgsl", Shader::from_wgsl);
let render_app = match app.get_sub_app_mut(RenderApp) {
Ok(render_app) => render_app,
Err(_) => return,
};
render_app
.init_resource::<SpecializedRenderPipelines<UiPipeline>>()
.init_resource::<UiImageBindGroups>()
.init_resource::<UiMeta>()
.init_resource::<ExtractedUiNodes>()
.init_resource::<DrawFunctions<TransparentUi>>()
.add_render_command::<TransparentUi, DrawUi>()
.add_systems(
ExtractSchedule,
Migrate engine to Schedule v3 (#7267) Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR. # Objective - Followup #6587. - Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45 ## Solution - [x] Remove old scheduling module - [x] Migrate new methods to no longer use extension methods - [x] Fix compiler errors - [x] Fix benchmarks - [x] Fix examples - [x] Fix docs - [x] Fix tests ## Changelog ### Added - a large number of methods on `App` to work with schedules ergonomically - the `CoreSchedule` enum - `App::add_extract_system` via the `RenderingAppExtension` trait extension method - the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms` ### Removed - stages, and all code that mentions stages - states have been dramatically simplified, and no longer use a stack - `RunCriteriaLabel` - `AsSystemLabel` trait - `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition) - systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world - `RunCriteriaLabel` - `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear. ### Changed - `System::default_labels` is now `System::default_system_sets`. - `App::add_default_labels` is now `App::add_default_sets` - `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet` - `App::add_system_set` was renamed to `App::add_systems` - The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum - `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)` - `SystemLabel` trait was replaced by `SystemSet` - `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>` - The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq` - Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria. - Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. - `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`. - `bevy_pbr::add_clusters` is no longer an exclusive system - the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling` - `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread. ## Migration Guide - Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)` - Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed. - The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved. - Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior. - Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you. - For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with - `add_system(my_system.in_set(CoreSet::PostUpdate)` - When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages - Run criteria have been renamed to run conditions. These can now be combined with each other and with states. - Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow. - For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label. - Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default. - Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually. - Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior. - the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity - `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl. - Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings. - `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds. - `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool. - States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set` ## TODO - [x] remove dead methods on App and World - [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule` - [x] avoid adding the default system set at inappropriate times - [x] remove any accidental cycles in the default plugins schedule - [x] migrate benchmarks - [x] expose explicit labels for the built-in command flush points - [x] migrate engine code - [x] remove all mentions of stages from the docs - [x] verify docs for States - [x] fix uses of exclusive systems that use .end / .at_start / .before_commands - [x] migrate RenderStage and AssetStage - [x] migrate examples - [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub) - [x] ensure that on_enter schedules are run at least once before the main app - [x] re-enable opt-in to execution order ambiguities - [x] revert change to `update_bounds` to ensure it runs in `PostUpdate` - [x] test all examples - [x] unbreak directional lights - [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples) - [x] game menu example shows loading screen and menu simultaneously - [x] display settings menu is a blank screen - [x] `without_winit` example panics - [x] ensure all tests pass - [x] SubApp doc test fails - [x] runs_spawn_local tasks fails - [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120) ## Points of Difficulty and Controversy **Reviewers, please give feedback on these and look closely** 1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup. 2. The outer schedule controls which schedule is run when `App::update` is called. 3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes. 4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset. 5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order 6. Implemetnation strategy for fixed timesteps 7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks. 8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements. ## Future Work (ideally before 0.10) - Rename schedule_v3 module to schedule or scheduling - Add a derive macro to states, and likely a `EnumIter` trait of some form - Figure out what exactly to do with the "systems added should basically work by default" problem - Improve ergonomics for working with fixed timesteps and states - Polish FixedTime API to match Time - Rebase and merge #7415 - Resolve all internal ambiguities (blocked on better tools, especially #7442) - Add "base sets" to replace the removed default sets.
2023-02-06 02:04:50 +00:00
(
extract_default_ui_camera_view::<Camera2d>,
extract_default_ui_camera_view::<Camera3d>,
extract_uinodes.in_set(RenderUiSystem::ExtractNode),
extract_atlas_uinodes
.in_set(RenderUiSystem::ExtractAtlasNode)
.after(RenderUiSystem::ExtractNode),
extract_uinode_borders.after(RenderUiSystem::ExtractAtlasNode),
#[cfg(feature = "bevy_text")]
extract_text_uinodes.after(RenderUiSystem::ExtractAtlasNode),
),
Camera Driven Rendering (#4745) This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier. Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915): ![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png) Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work". Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id: ```rust // main camera (main window) commands.spawn_bundle(Camera2dBundle::default()); // second camera (other window) commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Window(window_id), ..default() }, ..default() }); ``` Rendering to a texture is as simple as pointing the camera at a texture: ```rust commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle), ..default() }, ..default() }); ``` Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`). ```rust // main pass camera with a default priority of 0 commands.spawn_bundle(Camera2dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle.clone()), priority: -1, ..default() }, ..default() }); commands.spawn_bundle(SpriteBundle { texture: image_handle, ..default() }) ``` Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system: ```rust commands.spawn_bundle(Camera3dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { // this will render 2d entities "on top" of the default 3d camera's render priority: 1, ..default() }, ..default() }); ``` There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active. Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections. ```rust // old 3d perspective camera commands.spawn_bundle(PerspectiveCameraBundle::default()) // new 3d perspective camera commands.spawn_bundle(Camera3dBundle::default()) ``` ```rust // old 2d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_2d()) // new 2d orthographic camera commands.spawn_bundle(Camera2dBundle::default()) ``` ```rust // old 3d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_3d()) // new 3d orthographic camera commands.spawn_bundle(Camera3dBundle { projection: OrthographicProjection { scale: 3.0, scaling_mode: ScalingMode::FixedVertical, ..default() }.into(), ..default() }) ``` Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors. If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component: ```rust commands.spawn_bundle(Camera3dBundle { camera_render_graph: CameraRenderGraph::new(some_render_graph_name), ..default() }) ``` Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added. Speaking of using components to configure graphs / passes, there are a number of new configuration options: ```rust commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // overrides the default global clear color clear_color: ClearColorConfig::Custom(Color::RED), ..default() }, ..default() }) commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // disables clearing clear_color: ClearColorConfig::None, ..default() }, ..default() }) ``` Expect to see more of the "graph configuration Components on Cameras" pattern in the future. By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component: ```rust commands .spawn_bundle(Camera3dBundle::default()) .insert(CameraUi { is_enabled: false, ..default() }) ``` ## Other Changes * The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr. * I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization. * I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler. * All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr. * Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic. * Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals: 1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs. 2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense. ## Follow Up Work * Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen) * Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor) * Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system). * Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable. * Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home.
2022-06-02 00:12:17 +00:00
)
.add_systems(
Render,
(
queue_uinodes.in_set(RenderSet::Queue),
sort_phase_system::<TransparentUi>.in_set(RenderSet::PhaseSort),
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
prepare_uinodes.in_set(RenderSet::PrepareBindGroups),
),
);
// Render graph
Camera Driven Rendering (#4745) This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier. Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915): ![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png) Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work". Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id: ```rust // main camera (main window) commands.spawn_bundle(Camera2dBundle::default()); // second camera (other window) commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Window(window_id), ..default() }, ..default() }); ``` Rendering to a texture is as simple as pointing the camera at a texture: ```rust commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle), ..default() }, ..default() }); ``` Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`). ```rust // main pass camera with a default priority of 0 commands.spawn_bundle(Camera2dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle.clone()), priority: -1, ..default() }, ..default() }); commands.spawn_bundle(SpriteBundle { texture: image_handle, ..default() }) ``` Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system: ```rust commands.spawn_bundle(Camera3dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { // this will render 2d entities "on top" of the default 3d camera's render priority: 1, ..default() }, ..default() }); ``` There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active. Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections. ```rust // old 3d perspective camera commands.spawn_bundle(PerspectiveCameraBundle::default()) // new 3d perspective camera commands.spawn_bundle(Camera3dBundle::default()) ``` ```rust // old 2d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_2d()) // new 2d orthographic camera commands.spawn_bundle(Camera2dBundle::default()) ``` ```rust // old 3d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_3d()) // new 3d orthographic camera commands.spawn_bundle(Camera3dBundle { projection: OrthographicProjection { scale: 3.0, scaling_mode: ScalingMode::FixedVertical, ..default() }.into(), ..default() }) ``` Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors. If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component: ```rust commands.spawn_bundle(Camera3dBundle { camera_render_graph: CameraRenderGraph::new(some_render_graph_name), ..default() }) ``` Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added. Speaking of using components to configure graphs / passes, there are a number of new configuration options: ```rust commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // overrides the default global clear color clear_color: ClearColorConfig::Custom(Color::RED), ..default() }, ..default() }) commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // disables clearing clear_color: ClearColorConfig::None, ..default() }, ..default() }) ``` Expect to see more of the "graph configuration Components on Cameras" pattern in the future. By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component: ```rust commands .spawn_bundle(Camera3dBundle::default()) .insert(CameraUi { is_enabled: false, ..default() }) ``` ## Other Changes * The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr. * I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization. * I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler. * All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr. * Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic. * Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals: 1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs. 2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense. ## Follow Up Work * Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen) * Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor) * Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system). * Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable. * Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home.
2022-06-02 00:12:17 +00:00
let ui_graph_2d = get_ui_graph(render_app);
let ui_graph_3d = get_ui_graph(render_app);
let mut graph = render_app.world.resource_mut::<RenderGraph>();
Camera Driven Rendering (#4745) This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier. Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915): ![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png) Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work". Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id: ```rust // main camera (main window) commands.spawn_bundle(Camera2dBundle::default()); // second camera (other window) commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Window(window_id), ..default() }, ..default() }); ``` Rendering to a texture is as simple as pointing the camera at a texture: ```rust commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle), ..default() }, ..default() }); ``` Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`). ```rust // main pass camera with a default priority of 0 commands.spawn_bundle(Camera2dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle.clone()), priority: -1, ..default() }, ..default() }); commands.spawn_bundle(SpriteBundle { texture: image_handle, ..default() }) ``` Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system: ```rust commands.spawn_bundle(Camera3dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { // this will render 2d entities "on top" of the default 3d camera's render priority: 1, ..default() }, ..default() }); ``` There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active. Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections. ```rust // old 3d perspective camera commands.spawn_bundle(PerspectiveCameraBundle::default()) // new 3d perspective camera commands.spawn_bundle(Camera3dBundle::default()) ``` ```rust // old 2d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_2d()) // new 2d orthographic camera commands.spawn_bundle(Camera2dBundle::default()) ``` ```rust // old 3d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_3d()) // new 3d orthographic camera commands.spawn_bundle(Camera3dBundle { projection: OrthographicProjection { scale: 3.0, scaling_mode: ScalingMode::FixedVertical, ..default() }.into(), ..default() }) ``` Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors. If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component: ```rust commands.spawn_bundle(Camera3dBundle { camera_render_graph: CameraRenderGraph::new(some_render_graph_name), ..default() }) ``` Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added. Speaking of using components to configure graphs / passes, there are a number of new configuration options: ```rust commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // overrides the default global clear color clear_color: ClearColorConfig::Custom(Color::RED), ..default() }, ..default() }) commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // disables clearing clear_color: ClearColorConfig::None, ..default() }, ..default() }) ``` Expect to see more of the "graph configuration Components on Cameras" pattern in the future. By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component: ```rust commands .spawn_bundle(Camera3dBundle::default()) .insert(CameraUi { is_enabled: false, ..default() }) ``` ## Other Changes * The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr. * I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization. * I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler. * All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr. * Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic. * Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals: 1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs. 2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense. ## Follow Up Work * Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen) * Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor) * Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system). * Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable. * Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home.
2022-06-02 00:12:17 +00:00
if let Some(graph_2d) = graph.get_sub_graph_mut(bevy_core_pipeline::core_2d::graph::NAME) {
graph_2d.add_sub_graph(draw_ui_graph::NAME, ui_graph_2d);
graph_2d.add_node(
draw_ui_graph::node::UI_PASS,
RunGraphOnViewNode::new(draw_ui_graph::NAME),
);
graph_2d.add_node_edge(
bevy_core_pipeline::core_2d::graph::node::MAIN_PASS,
draw_ui_graph::node::UI_PASS,
);
graph_2d.add_node_edge(
bevy_core_pipeline::core_2d::graph::node::END_MAIN_PASS_POST_PROCESSING,
draw_ui_graph::node::UI_PASS,
);
graph_2d.add_node_edge(
draw_ui_graph::node::UI_PASS,
bevy_core_pipeline::core_2d::graph::node::UPSCALING,
);
Camera Driven Rendering (#4745) This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier. Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915): ![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png) Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work". Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id: ```rust // main camera (main window) commands.spawn_bundle(Camera2dBundle::default()); // second camera (other window) commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Window(window_id), ..default() }, ..default() }); ``` Rendering to a texture is as simple as pointing the camera at a texture: ```rust commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle), ..default() }, ..default() }); ``` Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`). ```rust // main pass camera with a default priority of 0 commands.spawn_bundle(Camera2dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle.clone()), priority: -1, ..default() }, ..default() }); commands.spawn_bundle(SpriteBundle { texture: image_handle, ..default() }) ``` Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system: ```rust commands.spawn_bundle(Camera3dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { // this will render 2d entities "on top" of the default 3d camera's render priority: 1, ..default() }, ..default() }); ``` There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active. Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections. ```rust // old 3d perspective camera commands.spawn_bundle(PerspectiveCameraBundle::default()) // new 3d perspective camera commands.spawn_bundle(Camera3dBundle::default()) ``` ```rust // old 2d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_2d()) // new 2d orthographic camera commands.spawn_bundle(Camera2dBundle::default()) ``` ```rust // old 3d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_3d()) // new 3d orthographic camera commands.spawn_bundle(Camera3dBundle { projection: OrthographicProjection { scale: 3.0, scaling_mode: ScalingMode::FixedVertical, ..default() }.into(), ..default() }) ``` Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors. If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component: ```rust commands.spawn_bundle(Camera3dBundle { camera_render_graph: CameraRenderGraph::new(some_render_graph_name), ..default() }) ``` Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added. Speaking of using components to configure graphs / passes, there are a number of new configuration options: ```rust commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // overrides the default global clear color clear_color: ClearColorConfig::Custom(Color::RED), ..default() }, ..default() }) commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // disables clearing clear_color: ClearColorConfig::None, ..default() }, ..default() }) ``` Expect to see more of the "graph configuration Components on Cameras" pattern in the future. By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component: ```rust commands .spawn_bundle(Camera3dBundle::default()) .insert(CameraUi { is_enabled: false, ..default() }) ``` ## Other Changes * The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr. * I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization. * I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler. * All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr. * Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic. * Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals: 1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs. 2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense. ## Follow Up Work * Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen) * Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor) * Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system). * Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable. * Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home.
2022-06-02 00:12:17 +00:00
}
if let Some(graph_3d) = graph.get_sub_graph_mut(bevy_core_pipeline::core_3d::graph::NAME) {
graph_3d.add_sub_graph(draw_ui_graph::NAME, ui_graph_3d);
graph_3d.add_node(
draw_ui_graph::node::UI_PASS,
RunGraphOnViewNode::new(draw_ui_graph::NAME),
);
graph_3d.add_node_edge(
bevy_core_pipeline::core_3d::graph::node::END_MAIN_PASS,
draw_ui_graph::node::UI_PASS,
);
graph_3d.add_node_edge(
bevy_core_pipeline::core_3d::graph::node::END_MAIN_PASS_POST_PROCESSING,
draw_ui_graph::node::UI_PASS,
);
graph_3d.add_node_edge(
draw_ui_graph::node::UI_PASS,
bevy_core_pipeline::core_3d::graph::node::UPSCALING,
);
Camera Driven Rendering (#4745) This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier. Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915): ![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png) Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work". Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id: ```rust // main camera (main window) commands.spawn_bundle(Camera2dBundle::default()); // second camera (other window) commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Window(window_id), ..default() }, ..default() }); ``` Rendering to a texture is as simple as pointing the camera at a texture: ```rust commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle), ..default() }, ..default() }); ``` Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`). ```rust // main pass camera with a default priority of 0 commands.spawn_bundle(Camera2dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle.clone()), priority: -1, ..default() }, ..default() }); commands.spawn_bundle(SpriteBundle { texture: image_handle, ..default() }) ``` Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system: ```rust commands.spawn_bundle(Camera3dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { // this will render 2d entities "on top" of the default 3d camera's render priority: 1, ..default() }, ..default() }); ``` There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active. Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections. ```rust // old 3d perspective camera commands.spawn_bundle(PerspectiveCameraBundle::default()) // new 3d perspective camera commands.spawn_bundle(Camera3dBundle::default()) ``` ```rust // old 2d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_2d()) // new 2d orthographic camera commands.spawn_bundle(Camera2dBundle::default()) ``` ```rust // old 3d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_3d()) // new 3d orthographic camera commands.spawn_bundle(Camera3dBundle { projection: OrthographicProjection { scale: 3.0, scaling_mode: ScalingMode::FixedVertical, ..default() }.into(), ..default() }) ``` Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors. If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component: ```rust commands.spawn_bundle(Camera3dBundle { camera_render_graph: CameraRenderGraph::new(some_render_graph_name), ..default() }) ``` Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added. Speaking of using components to configure graphs / passes, there are a number of new configuration options: ```rust commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // overrides the default global clear color clear_color: ClearColorConfig::Custom(Color::RED), ..default() }, ..default() }) commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // disables clearing clear_color: ClearColorConfig::None, ..default() }, ..default() }) ``` Expect to see more of the "graph configuration Components on Cameras" pattern in the future. By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component: ```rust commands .spawn_bundle(Camera3dBundle::default()) .insert(CameraUi { is_enabled: false, ..default() }) ``` ## Other Changes * The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr. * I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization. * I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler. * All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr. * Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic. * Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals: 1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs. 2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense. ## Follow Up Work * Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen) * Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor) * Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system). * Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable. * Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home.
2022-06-02 00:12:17 +00:00
}
}
fn get_ui_graph(render_app: &mut App) -> RenderGraph {
let ui_pass_node = UiPassNode::new(&mut render_app.world);
let mut ui_graph = RenderGraph::default();
ui_graph.add_node(draw_ui_graph::node::UI_PASS, ui_pass_node);
ui_graph
}
pub struct ExtractedUiNode {
Add z-index support with a predictable UI stack (#5877) # Objective Add consistent UI rendering and interaction where deep nodes inside two different hierarchies will never render on top of one-another by default and offer an escape hatch (z-index) for nodes to change their depth. ## The problem with current implementation The current implementation of UI rendering is broken in that regard, mainly because [it sets the Z value of the `Transform` component based on a "global Z" space](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/update.rs#L43) shared by all nodes in the UI. This doesn't account for the fact that each node's final `GlobalTransform` value will be relative to its parent. This effectively makes the depth unpredictable when two deep trees are rendered on top of one-another. At the moment, it's also up to each part of the UI code to sort all of the UI nodes. The solution that's offered here does the full sorting of UI node entities once and offers the result through a resource so that all systems can use it. ## Solution ### New ZIndex component This adds a new optional `ZIndex` enum component for nodes which offers two mechanism: - `ZIndex::Local(i32)`: Overrides the depth of the node relative to its siblings. - `ZIndex::Global(i32)`: Overrides the depth of the node relative to the UI root. This basically allows any node in the tree to "escape" the parent and be ordered relative to the entire UI. Note that in the current implementation, omitting `ZIndex` on a node has the same result as adding `ZIndex::Local(0)`. Additionally, the "global" stacking context is essentially a way to add your node to the root stacking context, so using `ZIndex::Local(n)` on a root node (one without parent) will share that space with all nodes using `Index::Global(n)`. ### New UiStack resource This adds a new `UiStack` resource which is calculated from both hierarchy and `ZIndex` during UI update and contains a vector of all node entities in the UI, ordered by depth (from farthest from camera to closest). This is exposed publicly by the bevy_ui crate with the hope that it can be used for consistent ordering and to reduce the amount of sorting that needs to be done by UI systems (i.e. instead of sorting everything by `global_transform.z` in every system, this array can be iterated over). ### New z_index example This also adds a new z_index example that showcases the new `ZIndex` component. It's also a good general demo of the new UI stack system, because making this kind of UI was very broken with the old system (e.g. nodes would render on top of each other, not respecting hierarchy or insert order at all). ![image](https://user-images.githubusercontent.com/1060971/189015985-8ea8f989-0e9d-4601-a7e0-4a27a43a53f9.png) --- ## Changelog - Added the `ZIndex` component to bevy_ui. - Added the `UiStack` resource to bevy_ui, and added implementation in a new `stack.rs` module. - Removed the previous Z updating system from bevy_ui, because it was replaced with the above. - Changed bevy_ui rendering to use UiStack instead of z ordering. - Changed bevy_ui focus/interaction system to use UiStack instead of z ordering. - Added a new z_index example. ## ZIndex demo Here's a demo I wrote to test these features https://user-images.githubusercontent.com/1060971/188329295-d7beebd6-9aee-43ab-821e-d437df5dbe8a.mp4 Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-11-02 22:06:04 +00:00
pub stack_index: usize,
pub transform: Mat4,
pub color: Color,
pub rect: Rect,
pub image: Handle<Image>,
pub atlas_size: Option<Vec2>,
pub clip: Option<Rect>,
pub flip_x: bool,
pub flip_y: bool,
}
Make `Resource` trait opt-in, requiring `#[derive(Resource)]` V2 (#5577) *This PR description is an edited copy of #5007, written by @alice-i-cecile.* # Objective Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds. While ergonomic, this results in several drawbacks: * it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource * it is challenging to discover if a type is intended to be used as a resource * we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component). * dependencies can use the same Rust type as a resource in invisibly conflicting ways * raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values * we cannot capture a definitive list of possible resources to display to users in an editor ## Notes to reviewers * Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits. *ira: My commits are not as well organized :')* * I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does. * I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981. ## Changelog `Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro. ## Migration Guide Add `#[derive(Resource)]` to all types you are using as a resource. If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics. `ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing. Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead. Co-authored-by: Alice <alice.i.cecile@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: devil-ira <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00
#[derive(Resource, Default)]
pub struct ExtractedUiNodes {
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
pub uinodes: SparseSet<Entity, ExtractedUiNode>,
}
pub fn extract_atlas_uinodes(
mut extracted_uinodes: ResMut<ExtractedUiNodes>,
images: Extract<Res<Assets<Image>>>,
texture_atlases: Extract<Res<Assets<TextureAtlas>>>,
ui_stack: Extract<Res<UiStack>>,
uinode_query: Extract<
Query<
(
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
Entity,
&Node,
&GlobalTransform,
&BackgroundColor,
Split `ComputedVisibility` into two components to allow for accurate change detection and speed up visibility propagation (#9497) # Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
&ViewVisibility,
Option<&CalculatedClip>,
&Handle<TextureAtlas>,
&UiTextureAtlasImage,
),
Without<UiImage>,
>,
>,
) {
for (stack_index, entity) in ui_stack.uinodes.iter().enumerate() {
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
if let Ok((
entity,
uinode,
transform,
color,
Split `ComputedVisibility` into two components to allow for accurate change detection and speed up visibility propagation (#9497) # Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
view_visibility,
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
clip,
texture_atlas_handle,
atlas_image,
)) = uinode_query.get(*entity)
{
// Skip invisible and completely transparent nodes
Split `ComputedVisibility` into two components to allow for accurate change detection and speed up visibility propagation (#9497) # Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
if !view_visibility.get() || color.0.a() == 0.0 {
continue;
}
let (mut atlas_rect, mut atlas_size, image) =
if let Some(texture_atlas) = texture_atlases.get(texture_atlas_handle) {
let atlas_rect = *texture_atlas
.textures
.get(atlas_image.index)
.unwrap_or_else(|| {
panic!(
"Atlas index {:?} does not exist for texture atlas handle {:?}.",
atlas_image.index,
texture_atlas_handle.id(),
)
});
(
atlas_rect,
texture_atlas.size,
texture_atlas.texture.clone(),
)
} else {
// Atlas not present in assets resource (should this warn the user?)
continue;
};
// Skip loading images
if !images.contains(&image) {
continue;
}
let scale = uinode.size() / atlas_rect.size();
atlas_rect.min *= scale;
atlas_rect.max *= scale;
atlas_size *= scale;
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
extracted_uinodes.uinodes.insert(
entity,
ExtractedUiNode {
stack_index,
transform: transform.compute_matrix(),
color: color.0,
rect: atlas_rect,
clip: clip.map(|clip| clip.clip),
image,
atlas_size: Some(atlas_size),
flip_x: atlas_image.flip_x,
flip_y: atlas_image.flip_y,
},
);
}
}
}
fn resolve_border_thickness(value: Val, parent_width: f32, viewport_size: Vec2) -> f32 {
match value {
Val::Auto => 0.,
Val::Px(px) => px.max(0.),
Val::Percent(percent) => (parent_width * percent / 100.).max(0.),
Val::Vw(percent) => (viewport_size.x * percent / 100.).max(0.),
Val::Vh(percent) => (viewport_size.y * percent / 100.).max(0.),
Val::VMin(percent) => (viewport_size.min_element() * percent / 100.).max(0.),
Val::VMax(percent) => (viewport_size.max_element() * percent / 100.).max(0.),
}
}
pub fn extract_uinode_borders(
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
mut commands: Commands,
mut extracted_uinodes: ResMut<ExtractedUiNodes>,
windows: Extract<Query<&Window, With<PrimaryWindow>>>,
Divide by `UiScale` when converting UI coordinates from physical to logical (#8720) # Objective After the UI layout is computed when the coordinates are converted back from physical coordinates to logical coordinates the `UiScale` is ignored. This results in a confusing situation where we have two different systems of logical coordinates. Example: ```rust use bevy::prelude::*; fn main() { App::new() .add_plugins(DefaultPlugins) .add_systems(Startup, setup) .add_systems(Update, update) .run(); } fn setup(mut commands: Commands, mut ui_scale: ResMut<UiScale>) { ui_scale.scale = 4.; commands.spawn(Camera2dBundle::default()); commands.spawn(NodeBundle { style: Style { align_items: AlignItems::Center, justify_content: JustifyContent::Center, width: Val::Percent(100.), ..Default::default() }, ..Default::default() }) .with_children(|builder| { builder.spawn(NodeBundle { style: Style { width: Val::Px(100.), height: Val::Px(100.), ..Default::default() }, background_color: Color::MAROON.into(), ..Default::default() }).with_children(|builder| { builder.spawn(TextBundle::from_section("", TextStyle::default()); }); }); } fn update( mut text_query: Query<(&mut Text, &Parent)>, node_query: Query<Ref<Node>>, ) { for (mut text, parent) in text_query.iter_mut() { let node = node_query.get(parent.get()).unwrap(); if node.is_changed() { text.sections[0].value = format!("size: {}", node.size()); } } } ``` result: ![Bevy App 30_05_2023 16_54_32](https://github.com/bevyengine/bevy/assets/27962798/a5ecbf31-0a12-4669-87df-b0c32f058732) We asked for a 100x100 UI node but the Node's size is multiplied by the value of `UiScale` to give a logical size of 400x400. ## Solution Divide the output physical coordinates by `UiScale` in `ui_layout_system` and multiply the logical viewport size by `UiScale` when creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. --- ## Changelog * The UI layout's physical coordinates are divided by both the window scale factor and `UiScale` when converting them back to logical coordinates. The logical size of Ui nodes now matches the values given to their size constraints. * Multiply the logical viewport size by `UiScale` before creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. * In `ui_focus_system` the cursor position returned from `Window` is divided by `UiScale`. * Added a scale factor parameter to `Node::physical_size` and `Node::physical_rect`. * The example `viewport_debug` now uses a `UiScale` of 2. to ensure that viewport coordinates are working correctly with a non-unit `UiScale`. ## Migration Guide Physical UI coordinates are now divided by both the `UiScale` and the window's scale factor to compute the logical sizes and positions of UI nodes. This ensures that UI Node size and position values, held by the `Node` and `GlobalTransform` components, conform to the same logical coordinate system as the style constraints from which they are derived, irrespective of the current `scale_factor` and `UiScale`. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-07-06 20:27:54 +00:00
ui_scale: Extract<Res<UiScale>>,
ui_stack: Extract<Res<UiStack>>,
uinode_query: Extract<
Query<
(
&Node,
&GlobalTransform,
&Style,
&BorderColor,
Option<&Parent>,
Split `ComputedVisibility` into two components to allow for accurate change detection and speed up visibility propagation (#9497) # Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
&ViewVisibility,
Option<&CalculatedClip>,
),
Without<ContentSize>,
>,
>,
node_query: Extract<Query<&Node>>,
) {
let image = bevy_render::texture::DEFAULT_IMAGE_HANDLE.typed();
Divide by `UiScale` when converting UI coordinates from physical to logical (#8720) # Objective After the UI layout is computed when the coordinates are converted back from physical coordinates to logical coordinates the `UiScale` is ignored. This results in a confusing situation where we have two different systems of logical coordinates. Example: ```rust use bevy::prelude::*; fn main() { App::new() .add_plugins(DefaultPlugins) .add_systems(Startup, setup) .add_systems(Update, update) .run(); } fn setup(mut commands: Commands, mut ui_scale: ResMut<UiScale>) { ui_scale.scale = 4.; commands.spawn(Camera2dBundle::default()); commands.spawn(NodeBundle { style: Style { align_items: AlignItems::Center, justify_content: JustifyContent::Center, width: Val::Percent(100.), ..Default::default() }, ..Default::default() }) .with_children(|builder| { builder.spawn(NodeBundle { style: Style { width: Val::Px(100.), height: Val::Px(100.), ..Default::default() }, background_color: Color::MAROON.into(), ..Default::default() }).with_children(|builder| { builder.spawn(TextBundle::from_section("", TextStyle::default()); }); }); } fn update( mut text_query: Query<(&mut Text, &Parent)>, node_query: Query<Ref<Node>>, ) { for (mut text, parent) in text_query.iter_mut() { let node = node_query.get(parent.get()).unwrap(); if node.is_changed() { text.sections[0].value = format!("size: {}", node.size()); } } } ``` result: ![Bevy App 30_05_2023 16_54_32](https://github.com/bevyengine/bevy/assets/27962798/a5ecbf31-0a12-4669-87df-b0c32f058732) We asked for a 100x100 UI node but the Node's size is multiplied by the value of `UiScale` to give a logical size of 400x400. ## Solution Divide the output physical coordinates by `UiScale` in `ui_layout_system` and multiply the logical viewport size by `UiScale` when creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. --- ## Changelog * The UI layout's physical coordinates are divided by both the window scale factor and `UiScale` when converting them back to logical coordinates. The logical size of Ui nodes now matches the values given to their size constraints. * Multiply the logical viewport size by `UiScale` before creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. * In `ui_focus_system` the cursor position returned from `Window` is divided by `UiScale`. * Added a scale factor parameter to `Node::physical_size` and `Node::physical_rect`. * The example `viewport_debug` now uses a `UiScale` of 2. to ensure that viewport coordinates are working correctly with a non-unit `UiScale`. ## Migration Guide Physical UI coordinates are now divided by both the `UiScale` and the window's scale factor to compute the logical sizes and positions of UI nodes. This ensures that UI Node size and position values, held by the `Node` and `GlobalTransform` components, conform to the same logical coordinate system as the style constraints from which they are derived, irrespective of the current `scale_factor` and `UiScale`. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-07-06 20:27:54 +00:00
let ui_logical_viewport_size = windows
.get_single()
.map(|window| Vec2::new(window.resolution.width(), window.resolution.height()))
Divide by `UiScale` when converting UI coordinates from physical to logical (#8720) # Objective After the UI layout is computed when the coordinates are converted back from physical coordinates to logical coordinates the `UiScale` is ignored. This results in a confusing situation where we have two different systems of logical coordinates. Example: ```rust use bevy::prelude::*; fn main() { App::new() .add_plugins(DefaultPlugins) .add_systems(Startup, setup) .add_systems(Update, update) .run(); } fn setup(mut commands: Commands, mut ui_scale: ResMut<UiScale>) { ui_scale.scale = 4.; commands.spawn(Camera2dBundle::default()); commands.spawn(NodeBundle { style: Style { align_items: AlignItems::Center, justify_content: JustifyContent::Center, width: Val::Percent(100.), ..Default::default() }, ..Default::default() }) .with_children(|builder| { builder.spawn(NodeBundle { style: Style { width: Val::Px(100.), height: Val::Px(100.), ..Default::default() }, background_color: Color::MAROON.into(), ..Default::default() }).with_children(|builder| { builder.spawn(TextBundle::from_section("", TextStyle::default()); }); }); } fn update( mut text_query: Query<(&mut Text, &Parent)>, node_query: Query<Ref<Node>>, ) { for (mut text, parent) in text_query.iter_mut() { let node = node_query.get(parent.get()).unwrap(); if node.is_changed() { text.sections[0].value = format!("size: {}", node.size()); } } } ``` result: ![Bevy App 30_05_2023 16_54_32](https://github.com/bevyengine/bevy/assets/27962798/a5ecbf31-0a12-4669-87df-b0c32f058732) We asked for a 100x100 UI node but the Node's size is multiplied by the value of `UiScale` to give a logical size of 400x400. ## Solution Divide the output physical coordinates by `UiScale` in `ui_layout_system` and multiply the logical viewport size by `UiScale` when creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. --- ## Changelog * The UI layout's physical coordinates are divided by both the window scale factor and `UiScale` when converting them back to logical coordinates. The logical size of Ui nodes now matches the values given to their size constraints. * Multiply the logical viewport size by `UiScale` before creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. * In `ui_focus_system` the cursor position returned from `Window` is divided by `UiScale`. * Added a scale factor parameter to `Node::physical_size` and `Node::physical_rect`. * The example `viewport_debug` now uses a `UiScale` of 2. to ensure that viewport coordinates are working correctly with a non-unit `UiScale`. ## Migration Guide Physical UI coordinates are now divided by both the `UiScale` and the window's scale factor to compute the logical sizes and positions of UI nodes. This ensures that UI Node size and position values, held by the `Node` and `GlobalTransform` components, conform to the same logical coordinate system as the style constraints from which they are derived, irrespective of the current `scale_factor` and `UiScale`. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-07-06 20:27:54 +00:00
.unwrap_or(Vec2::ZERO)
// The logical window resolution returned by `Window` only takes into account the window scale factor and not `UiScale`,
Divide by `UiScale` when converting UI coordinates from physical to logical (#8720) # Objective After the UI layout is computed when the coordinates are converted back from physical coordinates to logical coordinates the `UiScale` is ignored. This results in a confusing situation where we have two different systems of logical coordinates. Example: ```rust use bevy::prelude::*; fn main() { App::new() .add_plugins(DefaultPlugins) .add_systems(Startup, setup) .add_systems(Update, update) .run(); } fn setup(mut commands: Commands, mut ui_scale: ResMut<UiScale>) { ui_scale.scale = 4.; commands.spawn(Camera2dBundle::default()); commands.spawn(NodeBundle { style: Style { align_items: AlignItems::Center, justify_content: JustifyContent::Center, width: Val::Percent(100.), ..Default::default() }, ..Default::default() }) .with_children(|builder| { builder.spawn(NodeBundle { style: Style { width: Val::Px(100.), height: Val::Px(100.), ..Default::default() }, background_color: Color::MAROON.into(), ..Default::default() }).with_children(|builder| { builder.spawn(TextBundle::from_section("", TextStyle::default()); }); }); } fn update( mut text_query: Query<(&mut Text, &Parent)>, node_query: Query<Ref<Node>>, ) { for (mut text, parent) in text_query.iter_mut() { let node = node_query.get(parent.get()).unwrap(); if node.is_changed() { text.sections[0].value = format!("size: {}", node.size()); } } } ``` result: ![Bevy App 30_05_2023 16_54_32](https://github.com/bevyengine/bevy/assets/27962798/a5ecbf31-0a12-4669-87df-b0c32f058732) We asked for a 100x100 UI node but the Node's size is multiplied by the value of `UiScale` to give a logical size of 400x400. ## Solution Divide the output physical coordinates by `UiScale` in `ui_layout_system` and multiply the logical viewport size by `UiScale` when creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. --- ## Changelog * The UI layout's physical coordinates are divided by both the window scale factor and `UiScale` when converting them back to logical coordinates. The logical size of Ui nodes now matches the values given to their size constraints. * Multiply the logical viewport size by `UiScale` before creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. * In `ui_focus_system` the cursor position returned from `Window` is divided by `UiScale`. * Added a scale factor parameter to `Node::physical_size` and `Node::physical_rect`. * The example `viewport_debug` now uses a `UiScale` of 2. to ensure that viewport coordinates are working correctly with a non-unit `UiScale`. ## Migration Guide Physical UI coordinates are now divided by both the `UiScale` and the window's scale factor to compute the logical sizes and positions of UI nodes. This ensures that UI Node size and position values, held by the `Node` and `GlobalTransform` components, conform to the same logical coordinate system as the style constraints from which they are derived, irrespective of the current `scale_factor` and `UiScale`. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-07-06 20:27:54 +00:00
// so we have to divide by `UiScale` to get the size of the UI viewport.
/ ui_scale.0 as f32;
for (stack_index, entity) in ui_stack.uinodes.iter().enumerate() {
Split `ComputedVisibility` into two components to allow for accurate change detection and speed up visibility propagation (#9497) # Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
if let Ok((node, global_transform, style, border_color, parent, view_visibility, clip)) =
uinode_query.get(*entity)
{
// Skip invisible borders
Split `ComputedVisibility` into two components to allow for accurate change detection and speed up visibility propagation (#9497) # Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
if !view_visibility.get()
|| border_color.0.a() == 0.0
|| node.size().x <= 0.
|| node.size().y <= 0.
{
continue;
}
// Both vertical and horizontal percentage border values are calculated based on the width of the parent node
// <https://developer.mozilla.org/en-US/docs/Web/CSS/border-width>
let parent_width = parent
.and_then(|parent| node_query.get(parent.get()).ok())
.map(|parent_node| parent_node.size().x)
Divide by `UiScale` when converting UI coordinates from physical to logical (#8720) # Objective After the UI layout is computed when the coordinates are converted back from physical coordinates to logical coordinates the `UiScale` is ignored. This results in a confusing situation where we have two different systems of logical coordinates. Example: ```rust use bevy::prelude::*; fn main() { App::new() .add_plugins(DefaultPlugins) .add_systems(Startup, setup) .add_systems(Update, update) .run(); } fn setup(mut commands: Commands, mut ui_scale: ResMut<UiScale>) { ui_scale.scale = 4.; commands.spawn(Camera2dBundle::default()); commands.spawn(NodeBundle { style: Style { align_items: AlignItems::Center, justify_content: JustifyContent::Center, width: Val::Percent(100.), ..Default::default() }, ..Default::default() }) .with_children(|builder| { builder.spawn(NodeBundle { style: Style { width: Val::Px(100.), height: Val::Px(100.), ..Default::default() }, background_color: Color::MAROON.into(), ..Default::default() }).with_children(|builder| { builder.spawn(TextBundle::from_section("", TextStyle::default()); }); }); } fn update( mut text_query: Query<(&mut Text, &Parent)>, node_query: Query<Ref<Node>>, ) { for (mut text, parent) in text_query.iter_mut() { let node = node_query.get(parent.get()).unwrap(); if node.is_changed() { text.sections[0].value = format!("size: {}", node.size()); } } } ``` result: ![Bevy App 30_05_2023 16_54_32](https://github.com/bevyengine/bevy/assets/27962798/a5ecbf31-0a12-4669-87df-b0c32f058732) We asked for a 100x100 UI node but the Node's size is multiplied by the value of `UiScale` to give a logical size of 400x400. ## Solution Divide the output physical coordinates by `UiScale` in `ui_layout_system` and multiply the logical viewport size by `UiScale` when creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. --- ## Changelog * The UI layout's physical coordinates are divided by both the window scale factor and `UiScale` when converting them back to logical coordinates. The logical size of Ui nodes now matches the values given to their size constraints. * Multiply the logical viewport size by `UiScale` before creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. * In `ui_focus_system` the cursor position returned from `Window` is divided by `UiScale`. * Added a scale factor parameter to `Node::physical_size` and `Node::physical_rect`. * The example `viewport_debug` now uses a `UiScale` of 2. to ensure that viewport coordinates are working correctly with a non-unit `UiScale`. ## Migration Guide Physical UI coordinates are now divided by both the `UiScale` and the window's scale factor to compute the logical sizes and positions of UI nodes. This ensures that UI Node size and position values, held by the `Node` and `GlobalTransform` components, conform to the same logical coordinate system as the style constraints from which they are derived, irrespective of the current `scale_factor` and `UiScale`. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-07-06 20:27:54 +00:00
.unwrap_or(ui_logical_viewport_size.x);
let left =
resolve_border_thickness(style.border.left, parent_width, ui_logical_viewport_size);
let right = resolve_border_thickness(
style.border.right,
parent_width,
ui_logical_viewport_size,
);
let top =
resolve_border_thickness(style.border.top, parent_width, ui_logical_viewport_size);
let bottom = resolve_border_thickness(
style.border.bottom,
parent_width,
ui_logical_viewport_size,
);
// Calculate the border rects, ensuring no overlap.
// The border occupies the space between the node's bounding rect and the node's bounding rect inset in each direction by the node's corresponding border value.
let max = 0.5 * node.size();
let min = -max;
let inner_min = min + Vec2::new(left, top);
let inner_max = (max - Vec2::new(right, bottom)).max(inner_min);
let border_rects = [
// Left border
Rect {
min,
max: Vec2::new(inner_min.x, max.y),
},
// Right border
Rect {
min: Vec2::new(inner_max.x, min.y),
max,
},
// Top border
Rect {
min: Vec2::new(inner_min.x, min.y),
max: Vec2::new(inner_max.x, inner_min.y),
},
// Bottom border
Rect {
min: Vec2::new(inner_min.x, inner_max.y),
max: Vec2::new(inner_max.x, max.y),
},
];
let transform = global_transform.compute_matrix();
for edge in border_rects {
if edge.min.x < edge.max.x && edge.min.y < edge.max.y {
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
extracted_uinodes.uinodes.insert(
commands.spawn_empty().id(),
ExtractedUiNode {
stack_index,
// This translates the uinode's transform to the center of the current border rectangle
transform: transform * Mat4::from_translation(edge.center().extend(0.)),
color: border_color.0,
rect: Rect {
max: edge.size(),
..Default::default()
},
image: image.clone_weak(),
atlas_size: None,
clip: clip.map(|clip| clip.clip),
flip_x: false,
flip_y: false,
},
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
);
}
}
}
}
}
pub fn extract_uinodes(
Make `RenderStage::Extract` run on the render world (#4402) # Objective - Currently, the `Extract` `RenderStage` is executed on the main world, with the render world available as a resource. - However, when needing access to resources in the render world (e.g. to mutate them), the only way to do so was to get exclusive access to the whole `RenderWorld` resource. - This meant that effectively only one extract which wrote to resources could run at a time. - We didn't previously make `Extract`ing writing to the world a non-happy path, even though we want to discourage that. ## Solution - Move the extract stage to run on the render world. - Add the main world as a `MainWorld` resource. - Add an `Extract` `SystemParam` as a convenience to access a (read only) `SystemParam` in the main world during `Extract`. ## Future work It should be possible to avoid needing to use `get_or_spawn` for the render commands, since now the `Commands`' `Entities` matches up with the world being executed on. We need to determine how this interacts with https://github.com/bevyengine/bevy/pull/3519 It's theoretically possible to remove the need for the `value` method on `Extract`. However, that requires slightly changing the `SystemParam` interface, which would make it more complicated. That would probably mess up the `SystemState` api too. ## Todo I still need to add doc comments to `Extract`. --- ## Changelog ### Changed - The `Extract` `RenderStage` now runs on the render world (instead of the main world as before). You must use the `Extract` `SystemParam` to access the main world during the extract phase. Resources on the render world can now be accessed using `ResMut` during extract. ### Removed - `Commands::spawn_and_forget`. Use `Commands::get_or_spawn(e).insert_bundle(bundle)` instead ## Migration Guide The `Extract` `RenderStage` now runs on the render world (instead of the main world as before). You must use the `Extract` `SystemParam` to access the main world during the extract phase. `Extract` takes a single type parameter, which is any system parameter (such as `Res`, `Query` etc.). It will extract this from the main world, and returns the result of this extraction when `value` is called on it. For example, if previously your extract system looked like: ```rust fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) { for cloud in clouds.iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` the new version would be: ```rust fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) { for cloud in clouds.value().iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` The diff is: ```diff --- a/src/clouds.rs +++ b/src/clouds.rs @@ -1,5 +1,5 @@ -fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) { - for cloud in clouds.iter() { +fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) { + for cloud in clouds.value().iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` You can now also access resources from the render world using the normal system parameters during `Extract`: ```rust fn extract_assets(mut render_assets: ResMut<MyAssets>, source_assets: Extract<Res<MyAssets>>) { *render_assets = source_assets.clone(); } ``` Please note that all existing extract systems need to be updated to match this new style; even if they currently compile they will not run as expected. A warning will be emitted on a best-effort basis if this is not met. Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-07-08 23:56:33 +00:00
mut extracted_uinodes: ResMut<ExtractedUiNodes>,
images: Extract<Res<Assets<Image>>>,
Add z-index support with a predictable UI stack (#5877) # Objective Add consistent UI rendering and interaction where deep nodes inside two different hierarchies will never render on top of one-another by default and offer an escape hatch (z-index) for nodes to change their depth. ## The problem with current implementation The current implementation of UI rendering is broken in that regard, mainly because [it sets the Z value of the `Transform` component based on a "global Z" space](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/update.rs#L43) shared by all nodes in the UI. This doesn't account for the fact that each node's final `GlobalTransform` value will be relative to its parent. This effectively makes the depth unpredictable when two deep trees are rendered on top of one-another. At the moment, it's also up to each part of the UI code to sort all of the UI nodes. The solution that's offered here does the full sorting of UI node entities once and offers the result through a resource so that all systems can use it. ## Solution ### New ZIndex component This adds a new optional `ZIndex` enum component for nodes which offers two mechanism: - `ZIndex::Local(i32)`: Overrides the depth of the node relative to its siblings. - `ZIndex::Global(i32)`: Overrides the depth of the node relative to the UI root. This basically allows any node in the tree to "escape" the parent and be ordered relative to the entire UI. Note that in the current implementation, omitting `ZIndex` on a node has the same result as adding `ZIndex::Local(0)`. Additionally, the "global" stacking context is essentially a way to add your node to the root stacking context, so using `ZIndex::Local(n)` on a root node (one without parent) will share that space with all nodes using `Index::Global(n)`. ### New UiStack resource This adds a new `UiStack` resource which is calculated from both hierarchy and `ZIndex` during UI update and contains a vector of all node entities in the UI, ordered by depth (from farthest from camera to closest). This is exposed publicly by the bevy_ui crate with the hope that it can be used for consistent ordering and to reduce the amount of sorting that needs to be done by UI systems (i.e. instead of sorting everything by `global_transform.z` in every system, this array can be iterated over). ### New z_index example This also adds a new z_index example that showcases the new `ZIndex` component. It's also a good general demo of the new UI stack system, because making this kind of UI was very broken with the old system (e.g. nodes would render on top of each other, not respecting hierarchy or insert order at all). ![image](https://user-images.githubusercontent.com/1060971/189015985-8ea8f989-0e9d-4601-a7e0-4a27a43a53f9.png) --- ## Changelog - Added the `ZIndex` component to bevy_ui. - Added the `UiStack` resource to bevy_ui, and added implementation in a new `stack.rs` module. - Removed the previous Z updating system from bevy_ui, because it was replaced with the above. - Changed bevy_ui rendering to use UiStack instead of z ordering. - Changed bevy_ui focus/interaction system to use UiStack instead of z ordering. - Added a new z_index example. ## ZIndex demo Here's a demo I wrote to test these features https://user-images.githubusercontent.com/1060971/188329295-d7beebd6-9aee-43ab-821e-d437df5dbe8a.mp4 Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-11-02 22:06:04 +00:00
ui_stack: Extract<Res<UiStack>>,
Make `RenderStage::Extract` run on the render world (#4402) # Objective - Currently, the `Extract` `RenderStage` is executed on the main world, with the render world available as a resource. - However, when needing access to resources in the render world (e.g. to mutate them), the only way to do so was to get exclusive access to the whole `RenderWorld` resource. - This meant that effectively only one extract which wrote to resources could run at a time. - We didn't previously make `Extract`ing writing to the world a non-happy path, even though we want to discourage that. ## Solution - Move the extract stage to run on the render world. - Add the main world as a `MainWorld` resource. - Add an `Extract` `SystemParam` as a convenience to access a (read only) `SystemParam` in the main world during `Extract`. ## Future work It should be possible to avoid needing to use `get_or_spawn` for the render commands, since now the `Commands`' `Entities` matches up with the world being executed on. We need to determine how this interacts with https://github.com/bevyengine/bevy/pull/3519 It's theoretically possible to remove the need for the `value` method on `Extract`. However, that requires slightly changing the `SystemParam` interface, which would make it more complicated. That would probably mess up the `SystemState` api too. ## Todo I still need to add doc comments to `Extract`. --- ## Changelog ### Changed - The `Extract` `RenderStage` now runs on the render world (instead of the main world as before). You must use the `Extract` `SystemParam` to access the main world during the extract phase. Resources on the render world can now be accessed using `ResMut` during extract. ### Removed - `Commands::spawn_and_forget`. Use `Commands::get_or_spawn(e).insert_bundle(bundle)` instead ## Migration Guide The `Extract` `RenderStage` now runs on the render world (instead of the main world as before). You must use the `Extract` `SystemParam` to access the main world during the extract phase. `Extract` takes a single type parameter, which is any system parameter (such as `Res`, `Query` etc.). It will extract this from the main world, and returns the result of this extraction when `value` is called on it. For example, if previously your extract system looked like: ```rust fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) { for cloud in clouds.iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` the new version would be: ```rust fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) { for cloud in clouds.value().iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` The diff is: ```diff --- a/src/clouds.rs +++ b/src/clouds.rs @@ -1,5 +1,5 @@ -fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) { - for cloud in clouds.iter() { +fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) { + for cloud in clouds.value().iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` You can now also access resources from the render world using the normal system parameters during `Extract`: ```rust fn extract_assets(mut render_assets: ResMut<MyAssets>, source_assets: Extract<Res<MyAssets>>) { *render_assets = source_assets.clone(); } ``` Please note that all existing extract systems need to be updated to match this new style; even if they currently compile they will not run as expected. A warning will be emitted on a best-effort basis if this is not met. Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-07-08 23:56:33 +00:00
uinode_query: Extract<
Query<
(
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
Entity,
&Node,
&GlobalTransform,
&BackgroundColor,
Option<&UiImage>,
Split `ComputedVisibility` into two components to allow for accurate change detection and speed up visibility propagation (#9497) # Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
&ViewVisibility,
Option<&CalculatedClip>,
),
Without<UiTextureAtlasImage>,
>,
Make `RenderStage::Extract` run on the render world (#4402) # Objective - Currently, the `Extract` `RenderStage` is executed on the main world, with the render world available as a resource. - However, when needing access to resources in the render world (e.g. to mutate them), the only way to do so was to get exclusive access to the whole `RenderWorld` resource. - This meant that effectively only one extract which wrote to resources could run at a time. - We didn't previously make `Extract`ing writing to the world a non-happy path, even though we want to discourage that. ## Solution - Move the extract stage to run on the render world. - Add the main world as a `MainWorld` resource. - Add an `Extract` `SystemParam` as a convenience to access a (read only) `SystemParam` in the main world during `Extract`. ## Future work It should be possible to avoid needing to use `get_or_spawn` for the render commands, since now the `Commands`' `Entities` matches up with the world being executed on. We need to determine how this interacts with https://github.com/bevyengine/bevy/pull/3519 It's theoretically possible to remove the need for the `value` method on `Extract`. However, that requires slightly changing the `SystemParam` interface, which would make it more complicated. That would probably mess up the `SystemState` api too. ## Todo I still need to add doc comments to `Extract`. --- ## Changelog ### Changed - The `Extract` `RenderStage` now runs on the render world (instead of the main world as before). You must use the `Extract` `SystemParam` to access the main world during the extract phase. Resources on the render world can now be accessed using `ResMut` during extract. ### Removed - `Commands::spawn_and_forget`. Use `Commands::get_or_spawn(e).insert_bundle(bundle)` instead ## Migration Guide The `Extract` `RenderStage` now runs on the render world (instead of the main world as before). You must use the `Extract` `SystemParam` to access the main world during the extract phase. `Extract` takes a single type parameter, which is any system parameter (such as `Res`, `Query` etc.). It will extract this from the main world, and returns the result of this extraction when `value` is called on it. For example, if previously your extract system looked like: ```rust fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) { for cloud in clouds.iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` the new version would be: ```rust fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) { for cloud in clouds.value().iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` The diff is: ```diff --- a/src/clouds.rs +++ b/src/clouds.rs @@ -1,5 +1,5 @@ -fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) { - for cloud in clouds.iter() { +fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) { + for cloud in clouds.value().iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` You can now also access resources from the render world using the normal system parameters during `Extract`: ```rust fn extract_assets(mut render_assets: ResMut<MyAssets>, source_assets: Extract<Res<MyAssets>>) { *render_assets = source_assets.clone(); } ``` Please note that all existing extract systems need to be updated to match this new style; even if they currently compile they will not run as expected. A warning will be emitted on a best-effort basis if this is not met. Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-07-08 23:56:33 +00:00
>,
) {
Add z-index support with a predictable UI stack (#5877) # Objective Add consistent UI rendering and interaction where deep nodes inside two different hierarchies will never render on top of one-another by default and offer an escape hatch (z-index) for nodes to change their depth. ## The problem with current implementation The current implementation of UI rendering is broken in that regard, mainly because [it sets the Z value of the `Transform` component based on a "global Z" space](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/update.rs#L43) shared by all nodes in the UI. This doesn't account for the fact that each node's final `GlobalTransform` value will be relative to its parent. This effectively makes the depth unpredictable when two deep trees are rendered on top of one-another. At the moment, it's also up to each part of the UI code to sort all of the UI nodes. The solution that's offered here does the full sorting of UI node entities once and offers the result through a resource so that all systems can use it. ## Solution ### New ZIndex component This adds a new optional `ZIndex` enum component for nodes which offers two mechanism: - `ZIndex::Local(i32)`: Overrides the depth of the node relative to its siblings. - `ZIndex::Global(i32)`: Overrides the depth of the node relative to the UI root. This basically allows any node in the tree to "escape" the parent and be ordered relative to the entire UI. Note that in the current implementation, omitting `ZIndex` on a node has the same result as adding `ZIndex::Local(0)`. Additionally, the "global" stacking context is essentially a way to add your node to the root stacking context, so using `ZIndex::Local(n)` on a root node (one without parent) will share that space with all nodes using `Index::Global(n)`. ### New UiStack resource This adds a new `UiStack` resource which is calculated from both hierarchy and `ZIndex` during UI update and contains a vector of all node entities in the UI, ordered by depth (from farthest from camera to closest). This is exposed publicly by the bevy_ui crate with the hope that it can be used for consistent ordering and to reduce the amount of sorting that needs to be done by UI systems (i.e. instead of sorting everything by `global_transform.z` in every system, this array can be iterated over). ### New z_index example This also adds a new z_index example that showcases the new `ZIndex` component. It's also a good general demo of the new UI stack system, because making this kind of UI was very broken with the old system (e.g. nodes would render on top of each other, not respecting hierarchy or insert order at all). ![image](https://user-images.githubusercontent.com/1060971/189015985-8ea8f989-0e9d-4601-a7e0-4a27a43a53f9.png) --- ## Changelog - Added the `ZIndex` component to bevy_ui. - Added the `UiStack` resource to bevy_ui, and added implementation in a new `stack.rs` module. - Removed the previous Z updating system from bevy_ui, because it was replaced with the above. - Changed bevy_ui rendering to use UiStack instead of z ordering. - Changed bevy_ui focus/interaction system to use UiStack instead of z ordering. - Added a new z_index example. ## ZIndex demo Here's a demo I wrote to test these features https://user-images.githubusercontent.com/1060971/188329295-d7beebd6-9aee-43ab-821e-d437df5dbe8a.mp4 Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-11-02 22:06:04 +00:00
for (stack_index, entity) in ui_stack.uinodes.iter().enumerate() {
Split `ComputedVisibility` into two components to allow for accurate change detection and speed up visibility propagation (#9497) # Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
if let Ok((entity, uinode, transform, color, maybe_image, view_visibility, clip)) =
uinode_query.get(*entity)
{
// Skip invisible and completely transparent nodes
Split `ComputedVisibility` into two components to allow for accurate change detection and speed up visibility propagation (#9497) # Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
if !view_visibility.get() || color.0.a() == 0.0 {
Add z-index support with a predictable UI stack (#5877) # Objective Add consistent UI rendering and interaction where deep nodes inside two different hierarchies will never render on top of one-another by default and offer an escape hatch (z-index) for nodes to change their depth. ## The problem with current implementation The current implementation of UI rendering is broken in that regard, mainly because [it sets the Z value of the `Transform` component based on a "global Z" space](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/update.rs#L43) shared by all nodes in the UI. This doesn't account for the fact that each node's final `GlobalTransform` value will be relative to its parent. This effectively makes the depth unpredictable when two deep trees are rendered on top of one-another. At the moment, it's also up to each part of the UI code to sort all of the UI nodes. The solution that's offered here does the full sorting of UI node entities once and offers the result through a resource so that all systems can use it. ## Solution ### New ZIndex component This adds a new optional `ZIndex` enum component for nodes which offers two mechanism: - `ZIndex::Local(i32)`: Overrides the depth of the node relative to its siblings. - `ZIndex::Global(i32)`: Overrides the depth of the node relative to the UI root. This basically allows any node in the tree to "escape" the parent and be ordered relative to the entire UI. Note that in the current implementation, omitting `ZIndex` on a node has the same result as adding `ZIndex::Local(0)`. Additionally, the "global" stacking context is essentially a way to add your node to the root stacking context, so using `ZIndex::Local(n)` on a root node (one without parent) will share that space with all nodes using `Index::Global(n)`. ### New UiStack resource This adds a new `UiStack` resource which is calculated from both hierarchy and `ZIndex` during UI update and contains a vector of all node entities in the UI, ordered by depth (from farthest from camera to closest). This is exposed publicly by the bevy_ui crate with the hope that it can be used for consistent ordering and to reduce the amount of sorting that needs to be done by UI systems (i.e. instead of sorting everything by `global_transform.z` in every system, this array can be iterated over). ### New z_index example This also adds a new z_index example that showcases the new `ZIndex` component. It's also a good general demo of the new UI stack system, because making this kind of UI was very broken with the old system (e.g. nodes would render on top of each other, not respecting hierarchy or insert order at all). ![image](https://user-images.githubusercontent.com/1060971/189015985-8ea8f989-0e9d-4601-a7e0-4a27a43a53f9.png) --- ## Changelog - Added the `ZIndex` component to bevy_ui. - Added the `UiStack` resource to bevy_ui, and added implementation in a new `stack.rs` module. - Removed the previous Z updating system from bevy_ui, because it was replaced with the above. - Changed bevy_ui rendering to use UiStack instead of z ordering. - Changed bevy_ui focus/interaction system to use UiStack instead of z ordering. - Added a new z_index example. ## ZIndex demo Here's a demo I wrote to test these features https://user-images.githubusercontent.com/1060971/188329295-d7beebd6-9aee-43ab-821e-d437df5dbe8a.mp4 Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-11-02 22:06:04 +00:00
continue;
}
let (image, flip_x, flip_y) = if let Some(image) = maybe_image {
// Skip loading images
if !images.contains(&image.texture) {
continue;
}
(image.texture.clone_weak(), image.flip_x, image.flip_y)
} else {
(DEFAULT_IMAGE_HANDLE.typed(), false, false)
};
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
extracted_uinodes.uinodes.insert(
entity,
ExtractedUiNode {
stack_index,
transform: transform.compute_matrix(),
color: color.0,
rect: Rect {
min: Vec2::ZERO,
max: uinode.calculated_size,
},
clip: clip.map(|clip| clip.clip),
image,
atlas_size: None,
flip_x,
flip_y,
Add z-index support with a predictable UI stack (#5877) # Objective Add consistent UI rendering and interaction where deep nodes inside two different hierarchies will never render on top of one-another by default and offer an escape hatch (z-index) for nodes to change their depth. ## The problem with current implementation The current implementation of UI rendering is broken in that regard, mainly because [it sets the Z value of the `Transform` component based on a "global Z" space](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/update.rs#L43) shared by all nodes in the UI. This doesn't account for the fact that each node's final `GlobalTransform` value will be relative to its parent. This effectively makes the depth unpredictable when two deep trees are rendered on top of one-another. At the moment, it's also up to each part of the UI code to sort all of the UI nodes. The solution that's offered here does the full sorting of UI node entities once and offers the result through a resource so that all systems can use it. ## Solution ### New ZIndex component This adds a new optional `ZIndex` enum component for nodes which offers two mechanism: - `ZIndex::Local(i32)`: Overrides the depth of the node relative to its siblings. - `ZIndex::Global(i32)`: Overrides the depth of the node relative to the UI root. This basically allows any node in the tree to "escape" the parent and be ordered relative to the entire UI. Note that in the current implementation, omitting `ZIndex` on a node has the same result as adding `ZIndex::Local(0)`. Additionally, the "global" stacking context is essentially a way to add your node to the root stacking context, so using `ZIndex::Local(n)` on a root node (one without parent) will share that space with all nodes using `Index::Global(n)`. ### New UiStack resource This adds a new `UiStack` resource which is calculated from both hierarchy and `ZIndex` during UI update and contains a vector of all node entities in the UI, ordered by depth (from farthest from camera to closest). This is exposed publicly by the bevy_ui crate with the hope that it can be used for consistent ordering and to reduce the amount of sorting that needs to be done by UI systems (i.e. instead of sorting everything by `global_transform.z` in every system, this array can be iterated over). ### New z_index example This also adds a new z_index example that showcases the new `ZIndex` component. It's also a good general demo of the new UI stack system, because making this kind of UI was very broken with the old system (e.g. nodes would render on top of each other, not respecting hierarchy or insert order at all). ![image](https://user-images.githubusercontent.com/1060971/189015985-8ea8f989-0e9d-4601-a7e0-4a27a43a53f9.png) --- ## Changelog - Added the `ZIndex` component to bevy_ui. - Added the `UiStack` resource to bevy_ui, and added implementation in a new `stack.rs` module. - Removed the previous Z updating system from bevy_ui, because it was replaced with the above. - Changed bevy_ui rendering to use UiStack instead of z ordering. - Changed bevy_ui focus/interaction system to use UiStack instead of z ordering. - Added a new z_index example. ## ZIndex demo Here's a demo I wrote to test these features https://user-images.githubusercontent.com/1060971/188329295-d7beebd6-9aee-43ab-821e-d437df5dbe8a.mp4 Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-11-02 22:06:04 +00:00
},
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
);
};
Bevy ECS V2 (#1525) # Bevy ECS V2 This is a rewrite of Bevy ECS (basically everything but the new executor/schedule, which are already awesome). The overall goal was to improve the performance and versatility of Bevy ECS. Here is a quick bulleted list of changes before we dive into the details: * Complete World rewrite * Multiple component storage types: * Tables: fast cache friendly iteration, slower add/removes (previously called Archetypes) * Sparse Sets: fast add/remove, slower iteration * Stateful Queries (caches query results for faster iteration. fragmented iteration is _fast_ now) * Stateful System Params (caches expensive operations. inspired by @DJMcNab's work in #1364) * Configurable System Params (users can set configuration when they construct their systems. once again inspired by @DJMcNab's work) * Archetypes are now "just metadata", component storage is separate * Archetype Graph (for faster archetype changes) * Component Metadata * Configure component storage type * Retrieve information about component size/type/name/layout/send-ness/etc * Components are uniquely identified by a densely packed ComponentId * TypeIds are now totally optional (which should make implementing scripting easier) * Super fast "for_each" query iterators * Merged Resources into World. Resources are now just a special type of component * EntityRef/EntityMut builder apis (more efficient and more ergonomic) * Fast bitset-backed `Access<T>` replaces old hashmap-based approach everywhere * Query conflicts are determined by component access instead of archetype component access (to avoid random failures at runtime) * With/Without are still taken into account for conflicts, so this should still be comfy to use * Much simpler `IntoSystem` impl * Significantly reduced the amount of hashing throughout the ecs in favor of Sparse Sets (indexed by densely packed ArchetypeId, ComponentId, BundleId, and TableId) * Safety Improvements * Entity reservation uses a normal world reference instead of unsafe transmute * QuerySets no longer transmute lifetimes * Made traits "unsafe" where relevant * More thorough safety docs * WorldCell * Exposes safe mutable access to multiple resources at a time in a World * Replaced "catch all" `System::update_archetypes(world: &World)` with `System::new_archetype(archetype: &Archetype)` * Simpler Bundle implementation * Replaced slow "remove_bundle_one_by_one" used as fallback for Commands::remove_bundle with fast "remove_bundle_intersection" * Removed `Mut<T>` query impl. it is better to only support one way: `&mut T` * Removed with() from `Flags<T>` in favor of `Option<Flags<T>>`, which allows querying for flags to be "filtered" by default * Components now have is_send property (currently only resources support non-send) * More granular module organization * New `RemovedComponents<T>` SystemParam that replaces `query.removed::<T>()` * `world.resource_scope()` for mutable access to resources and world at the same time * WorldQuery and QueryFilter traits unified. FilterFetch trait added to enable "short circuit" filtering. Auto impled for cases that don't need it * Significantly slimmed down SystemState in favor of individual SystemParam state * System Commands changed from `commands: &mut Commands` back to `mut commands: Commands` (to allow Commands to have a World reference) Fixes #1320 ## `World` Rewrite This is a from-scratch rewrite of `World` that fills the niche that `hecs` used to. Yes, this means Bevy ECS is no longer a "fork" of hecs. We're going out our own! (the only shared code between the projects is the entity id allocator, which is already basically ideal) A huge shout out to @SanderMertens (author of [flecs](https://github.com/SanderMertens/flecs)) for sharing some great ideas with me (specifically hybrid ecs storage and archetype graphs). He also helped advise on a number of implementation details. ## Component Storage (The Problem) Two ECS storage paradigms have gained a lot of traction over the years: * **Archetypal ECS**: * Stores components in "tables" with static schemas. Each "column" stores components of a given type. Each "row" is an entity. * Each "archetype" has its own table. Adding/removing an entity's component changes the archetype. * Enables super-fast Query iteration due to its cache-friendly data layout * Comes at the cost of more expensive add/remove operations for an Entity's components, because all components need to be copied to the new archetype's "table" * **Sparse Set ECS**: * Stores components of the same type in densely packed arrays, which are sparsely indexed by densely packed unsigned integers (Entity ids) * Query iteration is slower than Archetypal ECS because each entity's component could be at any position in the sparse set. This "random access" pattern isn't cache friendly. Additionally, there is an extra layer of indirection because you must first map the entity id to an index in the component array. * Adding/removing components is a cheap, constant time operation Bevy ECS V1, hecs, legion, flec, and Unity DOTS are all "archetypal ecs-es". I personally think "archetypal" storage is a good default for game engines. An entity's archetype doesn't need to change frequently in general, and it creates "fast by default" query iteration (which is a much more common operation). It is also "self optimizing". Users don't need to think about optimizing component layouts for iteration performance. It "just works" without any extra boilerplate. Shipyard and EnTT are "sparse set ecs-es". They employ "packing" as a way to work around the "suboptimal by default" iteration performance for specific sets of components. This helps, but I didn't think this was a good choice for a general purpose engine like Bevy because: 1. "packs" conflict with each other. If bevy decides to internally pack the Transform and GlobalTransform components, users are then blocked if they want to pack some custom component with Transform. 2. users need to take manual action to optimize Developers selecting an ECS framework are stuck with a hard choice. Select an "archetypal" framework with "fast iteration everywhere" but without the ability to cheaply add/remove components, or select a "sparse set" framework to cheaply add/remove components but with slower iteration performance. ## Hybrid Component Storage (The Solution) In Bevy ECS V2, we get to have our cake and eat it too. It now has _both_ of the component storage types above (and more can be added later if needed): * **Tables** (aka "archetypal" storage) * The default storage. If you don't configure anything, this is what you get * Fast iteration by default * Slower add/remove operations * **Sparse Sets** * Opt-in * Slower iteration * Faster add/remove operations These storage types complement each other perfectly. By default Query iteration is fast. If developers know that they want to add/remove a component at high frequencies, they can set the storage to "sparse set": ```rust world.register_component( ComponentDescriptor::new::<MyComponent>(StorageType::SparseSet) ).unwrap(); ``` ## Archetypes Archetypes are now "just metadata" ... they no longer store components directly. They do store: * The `ComponentId`s of each of the Archetype's components (and that component's storage type) * Archetypes are uniquely defined by their component layouts * For example: entities with "table" components `[A, B, C]` _and_ "sparse set" components `[D, E]` will always be in the same archetype. * The `TableId` associated with the archetype * For now each archetype has exactly one table (which can have no components), * There is a 1->Many relationship from Tables->Archetypes. A given table could have any number of archetype components stored in it: * Ex: an entity with "table storage" components `[A, B, C]` and "sparse set" components `[D, E]` will share the same `[A, B, C]` table as an entity with `[A, B, C]` table component and `[F]` sparse set components. * This 1->Many relationship is how we preserve fast "cache friendly" iteration performance when possible (more on this later) * A list of entities that are in the archetype and the row id of the table they are in * ArchetypeComponentIds * unique densely packed identifiers for (ArchetypeId, ComponentId) pairs * used by the schedule executor for cheap system access control * "Archetype Graph Edges" (see the next section) ## The "Archetype Graph" Archetype changes in Bevy (and a number of other archetypal ecs-es) have historically been expensive to compute. First, you need to allocate a new vector of the entity's current component ids, add or remove components based on the operation performed, sort it (to ensure it is order-independent), then hash it to find the archetype (if it exists). And thats all before we get to the _already_ expensive full copy of all components to the new table storage. The solution is to build a "graph" of archetypes to cache these results. @SanderMertens first exposed me to the idea (and he got it from @gjroelofs, who came up with it). They propose adding directed edges between archetypes for add/remove component operations. If `ComponentId`s are densely packed, you can use sparse sets to cheaply jump between archetypes. Bevy takes this one step further by using add/remove `Bundle` edges instead of `Component` edges. Bevy encourages the use of `Bundles` to group add/remove operations. This is largely for "clearer game logic" reasons, but it also helps cut down on the number of archetype changes required. `Bundles` now also have densely-packed `BundleId`s. This allows us to use a _single_ edge for each bundle operation (rather than needing to traverse N edges ... one for each component). Single component operations are also bundles, so this is strictly an improvement over a "component only" graph. As a result, an operation that used to be _heavy_ (both for allocations and compute) is now two dirt-cheap array lookups and zero allocations. ## Stateful Queries World queries are now stateful. This allows us to: 1. Cache archetype (and table) matches * This resolves another issue with (naive) archetypal ECS: query performance getting worse as the number of archetypes goes up (and fragmentation occurs). 2. Cache Fetch and Filter state * The expensive parts of fetch/filter operations (such as hashing the TypeId to find the ComponentId) now only happen once when the Query is first constructed 3. Incrementally build up state * When new archetypes are added, we only process the new archetypes (no need to rebuild state for old archetypes) As a result, the direct `World` query api now looks like this: ```rust let mut query = world.query::<(&A, &mut B)>(); for (a, mut b) in query.iter_mut(&mut world) { } ``` Requiring `World` to generate stateful queries (rather than letting the `QueryState` type be constructed separately) allows us to ensure that _all_ queries are properly initialized (and the relevant world state, such as ComponentIds). This enables QueryState to remove branches from its operations that check for initialization status (and also enables query.iter() to take an immutable world reference because it doesn't need to initialize anything in world). However in systems, this is a non-breaking change. State management is done internally by the relevant SystemParam. ## Stateful SystemParams Like Queries, `SystemParams` now also cache state. For example, `Query` system params store the "stateful query" state mentioned above. Commands store their internal `CommandQueue`. This means you can now safely use as many separate `Commands` parameters in your system as you want. `Local<T>` system params store their `T` value in their state (instead of in Resources). SystemParam state also enabled a significant slim-down of SystemState. It is much nicer to look at now. Per-SystemParam state naturally insulates us from an "aliased mut" class of errors we have hit in the past (ex: using multiple `Commands` system params). (credit goes to @DJMcNab for the initial idea and draft pr here #1364) ## Configurable SystemParams @DJMcNab also had the great idea to make SystemParams configurable. This allows users to provide some initial configuration / values for system parameters (when possible). Most SystemParams have no config (the config type is `()`), but the `Local<T>` param now supports user-provided parameters: ```rust fn foo(value: Local<usize>) { } app.add_system(foo.system().config(|c| c.0 = Some(10))); ``` ## Uber Fast "for_each" Query Iterators Developers now have the choice to use a fast "for_each" iterator, which yields ~1.5-3x iteration speed improvements for "fragmented iteration", and minor ~1.2x iteration speed improvements for unfragmented iteration. ```rust fn system(query: Query<(&A, &mut B)>) { // you now have the option to do this for a speed boost query.for_each_mut(|(a, mut b)| { }); // however normal iterators are still available for (a, mut b) in query.iter_mut() { } } ``` I think in most cases we should continue to encourage "normal" iterators as they are more flexible and more "rust idiomatic". But when that extra "oomf" is needed, it makes sense to use `for_each`. We should also consider using `for_each` for internal bevy systems to give our users a nice speed boost (but that should be a separate pr). ## Component Metadata `World` now has a `Components` collection, which is accessible via `world.components()`. This stores mappings from `ComponentId` to `ComponentInfo`, as well as `TypeId` to `ComponentId` mappings (where relevant). `ComponentInfo` stores information about the component, such as ComponentId, TypeId, memory layout, send-ness (currently limited to resources), and storage type. ## Significantly Cheaper `Access<T>` We used to use `TypeAccess<TypeId>` to manage read/write component/archetype-component access. This was expensive because TypeIds must be hashed and compared individually. The parallel executor got around this by "condensing" type ids into bitset-backed access types. This worked, but it had to be re-generated from the `TypeAccess<TypeId>`sources every time archetypes changed. This pr removes TypeAccess in favor of faster bitset access everywhere. We can do this thanks to the move to densely packed `ComponentId`s and `ArchetypeComponentId`s. ## Merged Resources into World Resources had a lot of redundant functionality with Components. They stored typed data, they had access control, they had unique ids, they were queryable via SystemParams, etc. In fact the _only_ major difference between them was that they were unique (and didn't correlate to an entity). Separate resources also had the downside of requiring a separate set of access controls, which meant the parallel executor needed to compare more bitsets per system and manage more state. I initially got the "separate resources" idea from `legion`. I think that design was motivated by the fact that it made the direct world query/resource lifetime interactions more manageable. It certainly made our lives easier when using Resources alongside hecs/bevy_ecs. However we already have a construct for safely and ergonomically managing in-world lifetimes: systems (which use `Access<T>` internally). This pr merges Resources into World: ```rust world.insert_resource(1); world.insert_resource(2.0); let a = world.get_resource::<i32>().unwrap(); let mut b = world.get_resource_mut::<f64>().unwrap(); *b = 3.0; ``` Resources are now just a special kind of component. They have their own ComponentIds (and their own resource TypeId->ComponentId scope, so they don't conflict wit components of the same type). They are stored in a special "resource archetype", which stores components inside the archetype using a new `unique_components` sparse set (note that this sparse set could later be used to implement Tags). This allows us to keep the code size small by reusing existing datastructures (namely Column, Archetype, ComponentFlags, and ComponentInfo). This allows us the executor to use a single `Access<ArchetypeComponentId>` per system. It should also make scripting language integration easier. _But_ this merge did create problems for people directly interacting with `World`. What if you need mutable access to multiple resources at the same time? `world.get_resource_mut()` borrows World mutably! ## WorldCell WorldCell applies the `Access<ArchetypeComponentId>` concept to direct world access: ```rust let world_cell = world.cell(); let a = world_cell.get_resource_mut::<i32>().unwrap(); let b = world_cell.get_resource_mut::<f64>().unwrap(); ``` This adds cheap runtime checks (a sparse set lookup of `ArchetypeComponentId` and a counter) to ensure that world accesses do not conflict with each other. Each operation returns a `WorldBorrow<'w, T>` or `WorldBorrowMut<'w, T>` wrapper type, which will release the relevant ArchetypeComponentId resources when dropped. World caches the access sparse set (and only one cell can exist at a time), so `world.cell()` is a cheap operation. WorldCell does _not_ use atomic operations. It is non-send, does a mutable borrow of world to prevent other accesses, and uses a simple `Rc<RefCell<ArchetypeComponentAccess>>` wrapper in each WorldBorrow pointer. The api is currently limited to resource access, but it can and should be extended to queries / entity component access. ## Resource Scopes WorldCell does not yet support component queries, and even when it does there are sometimes legitimate reasons to want a mutable world ref _and_ a mutable resource ref (ex: bevy_render and bevy_scene both need this). In these cases we could always drop down to the unsafe `world.get_resource_unchecked_mut()`, but that is not ideal! Instead developers can use a "resource scope" ```rust world.resource_scope(|world: &mut World, a: &mut A| { }) ``` This temporarily removes the `A` resource from `World`, provides mutable pointers to both, and re-adds A to World when finished. Thanks to the move to ComponentIds/sparse sets, this is a cheap operation. If multiple resources are required, scopes can be nested. We could also consider adding a "resource tuple" to the api if this pattern becomes common and the boilerplate gets nasty. ## Query Conflicts Use ComponentId Instead of ArchetypeComponentId For safety reasons, systems cannot contain queries that conflict with each other without wrapping them in a QuerySet. On bevy `main`, we use ArchetypeComponentIds to determine conflicts. This is nice because it can take into account filters: ```rust // these queries will never conflict due to their filters fn filter_system(a: Query<&mut A, With<B>>, b: Query<&mut B, Without<B>>) { } ``` But it also has a significant downside: ```rust // these queries will not conflict _until_ an entity with A, B, and C is spawned fn maybe_conflicts_system(a: Query<(&mut A, &C)>, b: Query<(&mut A, &B)>) { } ``` The system above will panic at runtime if an entity with A, B, and C is spawned. This makes it hard to trust that your game logic will run without crashing. In this pr, I switched to using `ComponentId` instead. This _is_ more constraining. `maybe_conflicts_system` will now always fail, but it will do it consistently at startup. Naively, it would also _disallow_ `filter_system`, which would be a significant downgrade in usability. Bevy has a number of internal systems that rely on disjoint queries and I expect it to be a common pattern in userspace. To resolve this, I added a new `FilteredAccess<T>` type, which wraps `Access<T>` and adds with/without filters. If two `FilteredAccess` have with/without values that prove they are disjoint, they will no longer conflict. ## EntityRef / EntityMut World entity operations on `main` require that the user passes in an `entity` id to each operation: ```rust let entity = world.spawn((A, )); // create a new entity with A world.get::<A>(entity); world.insert(entity, (B, C)); world.insert_one(entity, D); ``` This means that each operation needs to look up the entity location / verify its validity. The initial spawn operation also requires a Bundle as input. This can be awkward when no components are required (or one component is required). These operations have been replaced by `EntityRef` and `EntityMut`, which are "builder-style" wrappers around world that provide read and read/write operations on a single, pre-validated entity: ```rust // spawn now takes no inputs and returns an EntityMut let entity = world.spawn() .insert(A) // insert a single component into the entity .insert_bundle((B, C)) // insert a bundle of components into the entity .id() // id returns the Entity id // Returns EntityMut (or panics if the entity does not exist) world.entity_mut(entity) .insert(D) .insert_bundle(SomeBundle::default()); { // returns EntityRef (or panics if the entity does not exist) let d = world.entity(entity) .get::<D>() // gets the D component .unwrap(); // world.get still exists for ergonomics let d = world.get::<D>(entity).unwrap(); } // These variants return Options if you want to check existence instead of panicing world.get_entity_mut(entity) .unwrap() .insert(E); if let Some(entity_ref) = world.get_entity(entity) { let d = entity_ref.get::<D>().unwrap(); } ``` This _does not_ affect the current Commands api or terminology. I think that should be a separate conversation as that is a much larger breaking change. ## Safety Improvements * Entity reservation in Commands uses a normal world borrow instead of an unsafe transmute * QuerySets no longer transmutes lifetimes * Made traits "unsafe" when implementing a trait incorrectly could cause unsafety * More thorough safety docs ## RemovedComponents SystemParam The old approach to querying removed components: `query.removed:<T>()` was confusing because it had no connection to the query itself. I replaced it with the following, which is both clearer and allows us to cache the ComponentId mapping in the SystemParamState: ```rust fn system(removed: RemovedComponents<T>) { for entity in removed.iter() { } } ``` ## Simpler Bundle implementation Bundles are no longer responsible for sorting (or deduping) TypeInfo. They are just a simple ordered list of component types / data. This makes the implementation smaller and opens the door to an easy "nested bundle" implementation in the future (which i might even add in this pr). Duplicate detection is now done once per bundle type by World the first time a bundle is used. ## Unified WorldQuery and QueryFilter types (don't worry they are still separate type _parameters_ in Queries .. this is a non-breaking change) WorldQuery and QueryFilter were already basically identical apis. With the addition of `FetchState` and more storage-specific fetch methods, the overlap was even clearer (and the redundancy more painful). QueryFilters are now just `F: WorldQuery where F::Fetch: FilterFetch`. FilterFetch requires `Fetch<Item = bool>` and adds new "short circuit" variants of fetch methods. This enables a filter tuple like `(With<A>, Without<B>, Changed<C>)` to stop evaluating the filter after the first mismatch is encountered. FilterFetch is automatically implemented for `Fetch` implementations that return bool. This forces fetch implementations that return things like `(bool, bool, bool)` (such as the filter above) to manually implement FilterFetch and decide whether or not to short-circuit. ## More Granular Modules World no longer globs all of the internal modules together. It now exports `core`, `system`, and `schedule` separately. I'm also considering exporting `core` submodules directly as that is still pretty "glob-ey" and unorganized (feedback welcome here). ## Remaining Draft Work (to be done in this pr) * ~~panic on conflicting WorldQuery fetches (&A, &mut A)~~ * ~~bevy `main` and hecs both currently allow this, but we should protect against it if possible~~ * ~~batch_iter / par_iter (currently stubbed out)~~ * ~~ChangedRes~~ * ~~I skipped this while we sort out #1313. This pr should be adapted to account for whatever we land on there~~. * ~~The `Archetypes` and `Tables` collections use hashes of sorted lists of component ids to uniquely identify each archetype/table. This hash is then used as the key in a HashMap to look up the relevant ArchetypeId or TableId. (which doesn't handle hash collisions properly)~~ * ~~It is currently unsafe to generate a Query from "World A", then use it on "World B" (despite the api claiming it is safe). We should probably close this gap. This could be done by adding a randomly generated WorldId to each world, then storing that id in each Query. They could then be compared to each other on each `query.do_thing(&world)` operation. This _does_ add an extra branch to each query operation, so I'm open to other suggestions if people have them.~~ * ~~Nested Bundles (if i find time)~~ ## Potential Future Work * Expand WorldCell to support queries. * Consider not allocating in the empty archetype on `world.spawn()` * ex: return something like EntityMutUninit, which turns into EntityMut after an `insert` or `insert_bundle` op * this actually regressed performance last time i tried it, but in theory it should be faster * Optimize SparseSet::insert (see `PERF` comment on insert) * Replace SparseArray `Option<T>` with T::MAX to cut down on branching * would enable cheaper get_unchecked() operations * upstream fixedbitset optimizations * fixedbitset could be allocation free for small block counts (store blocks in a SmallVec) * fixedbitset could have a const constructor * Consider implementing Tags (archetype-specific by-value data that affects archetype identity) * ex: ArchetypeA could have `[A, B, C]` table components and `[D(1)]` "tag" component. ArchetypeB could have `[A, B, C]` table components and a `[D(2)]` tag component. The archetypes are different, despite both having D tags because the value inside D is different. * this could potentially build on top of the `archetype.unique_components` added in this pr for resource storage. * Consider reverting `all_tuples` proc macro in favor of the old `macro_rules` implementation * all_tuples is more flexible and produces cleaner documentation (the macro_rules version produces weird type parameter orders due to parser constraints) * but unfortunately all_tuples also appears to make Rust Analyzer sad/slow when working inside of `bevy_ecs` (does not affect user code) * Consider "resource queries" and/or "mixed resource and entity component queries" as an alternative to WorldCell * this is basically just "systems" so maybe it's not worth it * Add more world ops * `world.clear()` * `world.reserve<T: Bundle>(count: usize)` * Try using the old archetype allocation strategy (allocate new memory on resize and copy everything over). I expect this to improve batch insertion performance at the cost of unbatched performance. But thats just a guess. I'm not an allocation perf pro :) * Adapt Commands apis for consistency with new World apis ## Benchmarks key: * `bevy_old`: bevy `main` branch * `bevy`: this branch * `_foreach`: uses an optimized for_each iterator * ` _sparse`: uses sparse set storage (if unspecified assume table storage) * `_system`: runs inside a system (if unspecified assume test happens via direct world ops) ### Simple Insert (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109245573-9c3ce100-7795-11eb-9003-bfd41cd5c51f.png) ### Simpler Iter (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109245795-ffc70e80-7795-11eb-92fb-3ffad09aabf7.png) ### Fragment Iter (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109245849-0fdeee00-7796-11eb-8d25-eb6b7a682c48.png) ### Sparse Fragmented Iter Iterate a query that matches 5 entities from a single matching archetype, but there are 100 unmatching archetypes ![image](https://user-images.githubusercontent.com/2694663/109245916-2b49f900-7796-11eb-9a8f-ed89c203f940.png) ### Schedule (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109246428-1fab0200-7797-11eb-8841-1b2161e90fa4.png) ### Add Remove Component (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109246492-39e4e000-7797-11eb-8985-2706bd0495ab.png) ### Add Remove Component Big Same as the test above, but each entity has 5 "large" matrix components and 1 "large" matrix component is added and removed ![image](https://user-images.githubusercontent.com/2694663/109246517-449f7500-7797-11eb-835e-28b6790daeaa.png) ### Get Component Looks up a single component value a large number of times ![image](https://user-images.githubusercontent.com/2694663/109246129-87ad1880-7796-11eb-9fcb-c38012aa7c70.png)
2021-03-05 07:54:35 +00:00
}
}
2020-07-30 01:15:15 +00:00
Camera Driven Rendering (#4745) This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier. Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915): ![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png) Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work". Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id: ```rust // main camera (main window) commands.spawn_bundle(Camera2dBundle::default()); // second camera (other window) commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Window(window_id), ..default() }, ..default() }); ``` Rendering to a texture is as simple as pointing the camera at a texture: ```rust commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle), ..default() }, ..default() }); ``` Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`). ```rust // main pass camera with a default priority of 0 commands.spawn_bundle(Camera2dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle.clone()), priority: -1, ..default() }, ..default() }); commands.spawn_bundle(SpriteBundle { texture: image_handle, ..default() }) ``` Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system: ```rust commands.spawn_bundle(Camera3dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { // this will render 2d entities "on top" of the default 3d camera's render priority: 1, ..default() }, ..default() }); ``` There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active. Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections. ```rust // old 3d perspective camera commands.spawn_bundle(PerspectiveCameraBundle::default()) // new 3d perspective camera commands.spawn_bundle(Camera3dBundle::default()) ``` ```rust // old 2d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_2d()) // new 2d orthographic camera commands.spawn_bundle(Camera2dBundle::default()) ``` ```rust // old 3d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_3d()) // new 3d orthographic camera commands.spawn_bundle(Camera3dBundle { projection: OrthographicProjection { scale: 3.0, scaling_mode: ScalingMode::FixedVertical, ..default() }.into(), ..default() }) ``` Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors. If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component: ```rust commands.spawn_bundle(Camera3dBundle { camera_render_graph: CameraRenderGraph::new(some_render_graph_name), ..default() }) ``` Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added. Speaking of using components to configure graphs / passes, there are a number of new configuration options: ```rust commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // overrides the default global clear color clear_color: ClearColorConfig::Custom(Color::RED), ..default() }, ..default() }) commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // disables clearing clear_color: ClearColorConfig::None, ..default() }, ..default() }) ``` Expect to see more of the "graph configuration Components on Cameras" pattern in the future. By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component: ```rust commands .spawn_bundle(Camera3dBundle::default()) .insert(CameraUi { is_enabled: false, ..default() }) ``` ## Other Changes * The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr. * I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization. * I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler. * All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr. * Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic. * Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals: 1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs. 2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense. ## Follow Up Work * Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen) * Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor) * Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system). * Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable. * Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home.
2022-06-02 00:12:17 +00:00
/// The UI camera is "moved back" by this many units (plus the [`UI_CAMERA_TRANSFORM_OFFSET`]) and also has a view
/// distance of this many units. This ensures that with a left-handed projection,
/// as ui elements are "stacked on top of each other", they are within the camera's view
/// and have room to grow.
// TODO: Consider computing this value at runtime based on the maximum z-value.
const UI_CAMERA_FAR: f32 = 1000.0;
// This value is subtracted from the far distance for the camera's z-position to ensure nodes at z == 0.0 are rendered
// TODO: Evaluate if we still need this.
const UI_CAMERA_TRANSFORM_OFFSET: f32 = -0.1;
#[derive(Component)]
pub struct DefaultCameraView(pub Entity);
pub fn extract_default_ui_camera_view<T: Component>(
mut commands: Commands,
Divide by `UiScale` when converting UI coordinates from physical to logical (#8720) # Objective After the UI layout is computed when the coordinates are converted back from physical coordinates to logical coordinates the `UiScale` is ignored. This results in a confusing situation where we have two different systems of logical coordinates. Example: ```rust use bevy::prelude::*; fn main() { App::new() .add_plugins(DefaultPlugins) .add_systems(Startup, setup) .add_systems(Update, update) .run(); } fn setup(mut commands: Commands, mut ui_scale: ResMut<UiScale>) { ui_scale.scale = 4.; commands.spawn(Camera2dBundle::default()); commands.spawn(NodeBundle { style: Style { align_items: AlignItems::Center, justify_content: JustifyContent::Center, width: Val::Percent(100.), ..Default::default() }, ..Default::default() }) .with_children(|builder| { builder.spawn(NodeBundle { style: Style { width: Val::Px(100.), height: Val::Px(100.), ..Default::default() }, background_color: Color::MAROON.into(), ..Default::default() }).with_children(|builder| { builder.spawn(TextBundle::from_section("", TextStyle::default()); }); }); } fn update( mut text_query: Query<(&mut Text, &Parent)>, node_query: Query<Ref<Node>>, ) { for (mut text, parent) in text_query.iter_mut() { let node = node_query.get(parent.get()).unwrap(); if node.is_changed() { text.sections[0].value = format!("size: {}", node.size()); } } } ``` result: ![Bevy App 30_05_2023 16_54_32](https://github.com/bevyengine/bevy/assets/27962798/a5ecbf31-0a12-4669-87df-b0c32f058732) We asked for a 100x100 UI node but the Node's size is multiplied by the value of `UiScale` to give a logical size of 400x400. ## Solution Divide the output physical coordinates by `UiScale` in `ui_layout_system` and multiply the logical viewport size by `UiScale` when creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. --- ## Changelog * The UI layout's physical coordinates are divided by both the window scale factor and `UiScale` when converting them back to logical coordinates. The logical size of Ui nodes now matches the values given to their size constraints. * Multiply the logical viewport size by `UiScale` before creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. * In `ui_focus_system` the cursor position returned from `Window` is divided by `UiScale`. * Added a scale factor parameter to `Node::physical_size` and `Node::physical_rect`. * The example `viewport_debug` now uses a `UiScale` of 2. to ensure that viewport coordinates are working correctly with a non-unit `UiScale`. ## Migration Guide Physical UI coordinates are now divided by both the `UiScale` and the window's scale factor to compute the logical sizes and positions of UI nodes. This ensures that UI Node size and position values, held by the `Node` and `GlobalTransform` components, conform to the same logical coordinate system as the style constraints from which they are derived, irrespective of the current `scale_factor` and `UiScale`. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-07-06 20:27:54 +00:00
ui_scale: Extract<Res<UiScale>>,
Make `RenderStage::Extract` run on the render world (#4402) # Objective - Currently, the `Extract` `RenderStage` is executed on the main world, with the render world available as a resource. - However, when needing access to resources in the render world (e.g. to mutate them), the only way to do so was to get exclusive access to the whole `RenderWorld` resource. - This meant that effectively only one extract which wrote to resources could run at a time. - We didn't previously make `Extract`ing writing to the world a non-happy path, even though we want to discourage that. ## Solution - Move the extract stage to run on the render world. - Add the main world as a `MainWorld` resource. - Add an `Extract` `SystemParam` as a convenience to access a (read only) `SystemParam` in the main world during `Extract`. ## Future work It should be possible to avoid needing to use `get_or_spawn` for the render commands, since now the `Commands`' `Entities` matches up with the world being executed on. We need to determine how this interacts with https://github.com/bevyengine/bevy/pull/3519 It's theoretically possible to remove the need for the `value` method on `Extract`. However, that requires slightly changing the `SystemParam` interface, which would make it more complicated. That would probably mess up the `SystemState` api too. ## Todo I still need to add doc comments to `Extract`. --- ## Changelog ### Changed - The `Extract` `RenderStage` now runs on the render world (instead of the main world as before). You must use the `Extract` `SystemParam` to access the main world during the extract phase. Resources on the render world can now be accessed using `ResMut` during extract. ### Removed - `Commands::spawn_and_forget`. Use `Commands::get_or_spawn(e).insert_bundle(bundle)` instead ## Migration Guide The `Extract` `RenderStage` now runs on the render world (instead of the main world as before). You must use the `Extract` `SystemParam` to access the main world during the extract phase. `Extract` takes a single type parameter, which is any system parameter (such as `Res`, `Query` etc.). It will extract this from the main world, and returns the result of this extraction when `value` is called on it. For example, if previously your extract system looked like: ```rust fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) { for cloud in clouds.iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` the new version would be: ```rust fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) { for cloud in clouds.value().iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` The diff is: ```diff --- a/src/clouds.rs +++ b/src/clouds.rs @@ -1,5 +1,5 @@ -fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) { - for cloud in clouds.iter() { +fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) { + for cloud in clouds.value().iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` You can now also access resources from the render world using the normal system parameters during `Extract`: ```rust fn extract_assets(mut render_assets: ResMut<MyAssets>, source_assets: Extract<Res<MyAssets>>) { *render_assets = source_assets.clone(); } ``` Please note that all existing extract systems need to be updated to match this new style; even if they currently compile they will not run as expected. A warning will be emitted on a best-effort basis if this is not met. Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-07-08 23:56:33 +00:00
query: Extract<Query<(Entity, &Camera, Option<&UiCameraConfig>), With<T>>>,
Camera Driven Rendering (#4745) This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier. Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915): ![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png) Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work". Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id: ```rust // main camera (main window) commands.spawn_bundle(Camera2dBundle::default()); // second camera (other window) commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Window(window_id), ..default() }, ..default() }); ``` Rendering to a texture is as simple as pointing the camera at a texture: ```rust commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle), ..default() }, ..default() }); ``` Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`). ```rust // main pass camera with a default priority of 0 commands.spawn_bundle(Camera2dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle.clone()), priority: -1, ..default() }, ..default() }); commands.spawn_bundle(SpriteBundle { texture: image_handle, ..default() }) ``` Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system: ```rust commands.spawn_bundle(Camera3dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { // this will render 2d entities "on top" of the default 3d camera's render priority: 1, ..default() }, ..default() }); ``` There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active. Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections. ```rust // old 3d perspective camera commands.spawn_bundle(PerspectiveCameraBundle::default()) // new 3d perspective camera commands.spawn_bundle(Camera3dBundle::default()) ``` ```rust // old 2d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_2d()) // new 2d orthographic camera commands.spawn_bundle(Camera2dBundle::default()) ``` ```rust // old 3d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_3d()) // new 3d orthographic camera commands.spawn_bundle(Camera3dBundle { projection: OrthographicProjection { scale: 3.0, scaling_mode: ScalingMode::FixedVertical, ..default() }.into(), ..default() }) ``` Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors. If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component: ```rust commands.spawn_bundle(Camera3dBundle { camera_render_graph: CameraRenderGraph::new(some_render_graph_name), ..default() }) ``` Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added. Speaking of using components to configure graphs / passes, there are a number of new configuration options: ```rust commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // overrides the default global clear color clear_color: ClearColorConfig::Custom(Color::RED), ..default() }, ..default() }) commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // disables clearing clear_color: ClearColorConfig::None, ..default() }, ..default() }) ``` Expect to see more of the "graph configuration Components on Cameras" pattern in the future. By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component: ```rust commands .spawn_bundle(Camera3dBundle::default()) .insert(CameraUi { is_enabled: false, ..default() }) ``` ## Other Changes * The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr. * I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization. * I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler. * All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr. * Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic. * Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals: 1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs. 2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense. ## Follow Up Work * Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen) * Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor) * Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system). * Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable. * Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home.
2022-06-02 00:12:17 +00:00
) {
let scale = (ui_scale.0 as f32).recip();
for (entity, camera, camera_ui) in &query {
Camera Driven Rendering (#4745) This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier. Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915): ![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png) Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work". Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id: ```rust // main camera (main window) commands.spawn_bundle(Camera2dBundle::default()); // second camera (other window) commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Window(window_id), ..default() }, ..default() }); ``` Rendering to a texture is as simple as pointing the camera at a texture: ```rust commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle), ..default() }, ..default() }); ``` Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`). ```rust // main pass camera with a default priority of 0 commands.spawn_bundle(Camera2dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle.clone()), priority: -1, ..default() }, ..default() }); commands.spawn_bundle(SpriteBundle { texture: image_handle, ..default() }) ``` Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system: ```rust commands.spawn_bundle(Camera3dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { // this will render 2d entities "on top" of the default 3d camera's render priority: 1, ..default() }, ..default() }); ``` There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active. Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections. ```rust // old 3d perspective camera commands.spawn_bundle(PerspectiveCameraBundle::default()) // new 3d perspective camera commands.spawn_bundle(Camera3dBundle::default()) ``` ```rust // old 2d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_2d()) // new 2d orthographic camera commands.spawn_bundle(Camera2dBundle::default()) ``` ```rust // old 3d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_3d()) // new 3d orthographic camera commands.spawn_bundle(Camera3dBundle { projection: OrthographicProjection { scale: 3.0, scaling_mode: ScalingMode::FixedVertical, ..default() }.into(), ..default() }) ``` Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors. If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component: ```rust commands.spawn_bundle(Camera3dBundle { camera_render_graph: CameraRenderGraph::new(some_render_graph_name), ..default() }) ``` Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added. Speaking of using components to configure graphs / passes, there are a number of new configuration options: ```rust commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // overrides the default global clear color clear_color: ClearColorConfig::Custom(Color::RED), ..default() }, ..default() }) commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // disables clearing clear_color: ClearColorConfig::None, ..default() }, ..default() }) ``` Expect to see more of the "graph configuration Components on Cameras" pattern in the future. By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component: ```rust commands .spawn_bundle(Camera3dBundle::default()) .insert(CameraUi { is_enabled: false, ..default() }) ``` ## Other Changes * The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr. * I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization. * I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler. * All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr. * Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic. * Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals: 1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs. 2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense. ## Follow Up Work * Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen) * Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor) * Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system). * Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable. * Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home.
2022-06-02 00:12:17 +00:00
// ignore cameras with disabled ui
if matches!(camera_ui, Some(&UiCameraConfig { show_ui: false, .. })) {
Camera Driven Rendering (#4745) This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier. Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915): ![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png) Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work". Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id: ```rust // main camera (main window) commands.spawn_bundle(Camera2dBundle::default()); // second camera (other window) commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Window(window_id), ..default() }, ..default() }); ``` Rendering to a texture is as simple as pointing the camera at a texture: ```rust commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle), ..default() }, ..default() }); ``` Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`). ```rust // main pass camera with a default priority of 0 commands.spawn_bundle(Camera2dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle.clone()), priority: -1, ..default() }, ..default() }); commands.spawn_bundle(SpriteBundle { texture: image_handle, ..default() }) ``` Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system: ```rust commands.spawn_bundle(Camera3dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { // this will render 2d entities "on top" of the default 3d camera's render priority: 1, ..default() }, ..default() }); ``` There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active. Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections. ```rust // old 3d perspective camera commands.spawn_bundle(PerspectiveCameraBundle::default()) // new 3d perspective camera commands.spawn_bundle(Camera3dBundle::default()) ``` ```rust // old 2d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_2d()) // new 2d orthographic camera commands.spawn_bundle(Camera2dBundle::default()) ``` ```rust // old 3d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_3d()) // new 3d orthographic camera commands.spawn_bundle(Camera3dBundle { projection: OrthographicProjection { scale: 3.0, scaling_mode: ScalingMode::FixedVertical, ..default() }.into(), ..default() }) ``` Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors. If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component: ```rust commands.spawn_bundle(Camera3dBundle { camera_render_graph: CameraRenderGraph::new(some_render_graph_name), ..default() }) ``` Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added. Speaking of using components to configure graphs / passes, there are a number of new configuration options: ```rust commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // overrides the default global clear color clear_color: ClearColorConfig::Custom(Color::RED), ..default() }, ..default() }) commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // disables clearing clear_color: ClearColorConfig::None, ..default() }, ..default() }) ``` Expect to see more of the "graph configuration Components on Cameras" pattern in the future. By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component: ```rust commands .spawn_bundle(Camera3dBundle::default()) .insert(CameraUi { is_enabled: false, ..default() }) ``` ## Other Changes * The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr. * I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization. * I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler. * All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr. * Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic. * Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals: 1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs. 2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense. ## Follow Up Work * Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen) * Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor) * Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system). * Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable. * Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home.
2022-06-02 00:12:17 +00:00
continue;
}
if let (
Some(logical_size),
Some(URect {
min: physical_origin,
..
}),
Some(physical_size),
) = (
Camera Driven Viewports (#4898) # Objective Users should be able to render cameras to specific areas of a render target, which enables scenarios like split screen, minimaps, etc. Builds on the new Camera Driven Rendering added here: #4745 Fixes: #202 Alternative to #1389 and #3626 (which are incompatible with the new Camera Driven Rendering) ## Solution ![image](https://user-images.githubusercontent.com/2694663/171560044-f0694f67-0cd9-4598-83e2-a9658c4fed57.png) Cameras can now configure an optional "viewport", which defines a rectangle within their render target to draw to. If a `Viewport` is defined, the camera's `CameraProjection`, `View`, and visibility calculations will use the viewport configuration instead of the full render target. ```rust // This camera will render to the first half of the primary window (on the left side). commands.spawn_bundle(Camera3dBundle { camera: Camera { viewport: Some(Viewport { physical_position: UVec2::new(0, 0), physical_size: UVec2::new(window.physical_width() / 2, window.physical_height()), depth: 0.0..1.0, }), ..default() }, ..default() }); ``` To account for this, the `Camera` component has received a few adjustments: * `Camera` now has some new getter functions: * `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, `projection_matrix` * All computed camera values are now private and live on the `ComputedCameraValues` field (logical/physical width/height, the projection matrix). They are now exposed on `Camera` via getters/setters This wasn't _needed_ for viewports, but it was long overdue. --- ## Changelog ### Added * `Camera` components now have a `viewport` field, which can be set to draw to a portion of a render target instead of the full target. * `Camera` component has some new functions: `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, and `projection_matrix` * Added a new split_screen example illustrating how to render two cameras to the same scene ## Migration Guide `Camera::projection_matrix` is no longer a public field. Use the new `Camera::projection_matrix()` method instead: ```rust // Bevy 0.7 let projection = camera.projection_matrix; // Bevy 0.8 let projection = camera.projection_matrix(); ```
2022-06-05 00:27:49 +00:00
camera.logical_viewport_size(),
camera.physical_viewport_rect(),
Camera Driven Viewports (#4898) # Objective Users should be able to render cameras to specific areas of a render target, which enables scenarios like split screen, minimaps, etc. Builds on the new Camera Driven Rendering added here: #4745 Fixes: #202 Alternative to #1389 and #3626 (which are incompatible with the new Camera Driven Rendering) ## Solution ![image](https://user-images.githubusercontent.com/2694663/171560044-f0694f67-0cd9-4598-83e2-a9658c4fed57.png) Cameras can now configure an optional "viewport", which defines a rectangle within their render target to draw to. If a `Viewport` is defined, the camera's `CameraProjection`, `View`, and visibility calculations will use the viewport configuration instead of the full render target. ```rust // This camera will render to the first half of the primary window (on the left side). commands.spawn_bundle(Camera3dBundle { camera: Camera { viewport: Some(Viewport { physical_position: UVec2::new(0, 0), physical_size: UVec2::new(window.physical_width() / 2, window.physical_height()), depth: 0.0..1.0, }), ..default() }, ..default() }); ``` To account for this, the `Camera` component has received a few adjustments: * `Camera` now has some new getter functions: * `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, `projection_matrix` * All computed camera values are now private and live on the `ComputedCameraValues` field (logical/physical width/height, the projection matrix). They are now exposed on `Camera` via getters/setters This wasn't _needed_ for viewports, but it was long overdue. --- ## Changelog ### Added * `Camera` components now have a `viewport` field, which can be set to draw to a portion of a render target instead of the full target. * `Camera` component has some new functions: `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, and `projection_matrix` * Added a new split_screen example illustrating how to render two cameras to the same scene ## Migration Guide `Camera::projection_matrix` is no longer a public field. Use the new `Camera::projection_matrix()` method instead: ```rust // Bevy 0.7 let projection = camera.projection_matrix; // Bevy 0.8 let projection = camera.projection_matrix(); ```
2022-06-05 00:27:49 +00:00
camera.physical_viewport_size(),
) {
Change UI coordinate system to have origin at top left corner (#6000) # Objective Fixes #5572 ## Solution Approach is to invert the Y-axis of the UI Camera by changing the UI projection matrix to render the UI upside down. After that I'm trying to fix all issues, that pop up: - interaction expected the "old" position - images and text were displayed upside-down - baseline of text was based on the top of the glyph instead of bottom ... probably a lot more. --- Result when running examples: <details> <summary>Button example</summary> main branch: ![button main](https://user-images.githubusercontent.com/4232644/190856087-61dd1d98-42b5-4238-bd97-149744ddfeba.png) this pr: ![button pr](https://user-images.githubusercontent.com/4232644/190856097-3f4bc97a-ed15-4e97-b7f1-2b2dd6bb8b14.png) </details> <details> <summary>Text example</summary> m ![text main](https://user-images.githubusercontent.com/4232644/192142831-4cf19aa1-f49a-485e-af7b-374d6f5c396c.png) ain branch: this pr: ![text pr fixed](https://user-images.githubusercontent.com/4232644/192142829-c433db3b-32e1-4ee8-b493-0b4a4d9c8e70.png) </details> <details> <summary>Text debug example</summary> main branch: ![text_debug main](https://user-images.githubusercontent.com/4232644/192142822-940aefa6-e502-410b-8da4-5570f77b5df2.png) this pr: ![text_debug pr fixed](https://user-images.githubusercontent.com/4232644/194547010-8c968f5c-5a71-4ffc-871d-790c06d48016.png) </details> <details> <summary>Transparency UI example</summary> main branch: ![transparency_ui main](https://user-images.githubusercontent.com/4232644/190856172-328c60fe-3622-4598-97d5-2f1595db13b3.png) this pr: ![transperency_ui pr](https://user-images.githubusercontent.com/4232644/190856179-a2dafb99-41ea-45a9-9dd6-400fa3ef24b9.png) </details> <details> <summary>UI example</summary> **ui example** main branch: ![ui main](https://user-images.githubusercontent.com/4232644/192142812-e20ba31a-6841-46d9-a785-4198cf22dc99.png) this pr: ![ui pr fixed](https://user-images.githubusercontent.com/4232644/192142788-cc0b74e0-7710-4faa-b5a2-60270a5da77c.png) </details> ## Changelog UI coordinate system and cursor position was changed from bottom left origin, y+ up to top left origin, y+ down. ## Migration Guide All flex layout should be inverted (ColumnReverse => Column, FlexStart => FlexEnd, WrapReverse => Wrap) System where dealing with cursor position should be changed to account for cursor position being based on the top left instead of bottom left
2022-10-11 12:51:44 +00:00
// use a projection matrix with the origin in the top left instead of the bottom left that comes with OrthographicProjection
Divide by `UiScale` when converting UI coordinates from physical to logical (#8720) # Objective After the UI layout is computed when the coordinates are converted back from physical coordinates to logical coordinates the `UiScale` is ignored. This results in a confusing situation where we have two different systems of logical coordinates. Example: ```rust use bevy::prelude::*; fn main() { App::new() .add_plugins(DefaultPlugins) .add_systems(Startup, setup) .add_systems(Update, update) .run(); } fn setup(mut commands: Commands, mut ui_scale: ResMut<UiScale>) { ui_scale.scale = 4.; commands.spawn(Camera2dBundle::default()); commands.spawn(NodeBundle { style: Style { align_items: AlignItems::Center, justify_content: JustifyContent::Center, width: Val::Percent(100.), ..Default::default() }, ..Default::default() }) .with_children(|builder| { builder.spawn(NodeBundle { style: Style { width: Val::Px(100.), height: Val::Px(100.), ..Default::default() }, background_color: Color::MAROON.into(), ..Default::default() }).with_children(|builder| { builder.spawn(TextBundle::from_section("", TextStyle::default()); }); }); } fn update( mut text_query: Query<(&mut Text, &Parent)>, node_query: Query<Ref<Node>>, ) { for (mut text, parent) in text_query.iter_mut() { let node = node_query.get(parent.get()).unwrap(); if node.is_changed() { text.sections[0].value = format!("size: {}", node.size()); } } } ``` result: ![Bevy App 30_05_2023 16_54_32](https://github.com/bevyengine/bevy/assets/27962798/a5ecbf31-0a12-4669-87df-b0c32f058732) We asked for a 100x100 UI node but the Node's size is multiplied by the value of `UiScale` to give a logical size of 400x400. ## Solution Divide the output physical coordinates by `UiScale` in `ui_layout_system` and multiply the logical viewport size by `UiScale` when creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. --- ## Changelog * The UI layout's physical coordinates are divided by both the window scale factor and `UiScale` when converting them back to logical coordinates. The logical size of Ui nodes now matches the values given to their size constraints. * Multiply the logical viewport size by `UiScale` before creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. * In `ui_focus_system` the cursor position returned from `Window` is divided by `UiScale`. * Added a scale factor parameter to `Node::physical_size` and `Node::physical_rect`. * The example `viewport_debug` now uses a `UiScale` of 2. to ensure that viewport coordinates are working correctly with a non-unit `UiScale`. ## Migration Guide Physical UI coordinates are now divided by both the `UiScale` and the window's scale factor to compute the logical sizes and positions of UI nodes. This ensures that UI Node size and position values, held by the `Node` and `GlobalTransform` components, conform to the same logical coordinate system as the style constraints from which they are derived, irrespective of the current `scale_factor` and `UiScale`. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-07-06 20:27:54 +00:00
let projection_matrix = Mat4::orthographic_rh(
0.0,
logical_size.x * scale,
logical_size.y * scale,
0.0,
0.0,
UI_CAMERA_FAR,
);
Make `RenderStage::Extract` run on the render world (#4402) # Objective - Currently, the `Extract` `RenderStage` is executed on the main world, with the render world available as a resource. - However, when needing access to resources in the render world (e.g. to mutate them), the only way to do so was to get exclusive access to the whole `RenderWorld` resource. - This meant that effectively only one extract which wrote to resources could run at a time. - We didn't previously make `Extract`ing writing to the world a non-happy path, even though we want to discourage that. ## Solution - Move the extract stage to run on the render world. - Add the main world as a `MainWorld` resource. - Add an `Extract` `SystemParam` as a convenience to access a (read only) `SystemParam` in the main world during `Extract`. ## Future work It should be possible to avoid needing to use `get_or_spawn` for the render commands, since now the `Commands`' `Entities` matches up with the world being executed on. We need to determine how this interacts with https://github.com/bevyengine/bevy/pull/3519 It's theoretically possible to remove the need for the `value` method on `Extract`. However, that requires slightly changing the `SystemParam` interface, which would make it more complicated. That would probably mess up the `SystemState` api too. ## Todo I still need to add doc comments to `Extract`. --- ## Changelog ### Changed - The `Extract` `RenderStage` now runs on the render world (instead of the main world as before). You must use the `Extract` `SystemParam` to access the main world during the extract phase. Resources on the render world can now be accessed using `ResMut` during extract. ### Removed - `Commands::spawn_and_forget`. Use `Commands::get_or_spawn(e).insert_bundle(bundle)` instead ## Migration Guide The `Extract` `RenderStage` now runs on the render world (instead of the main world as before). You must use the `Extract` `SystemParam` to access the main world during the extract phase. `Extract` takes a single type parameter, which is any system parameter (such as `Res`, `Query` etc.). It will extract this from the main world, and returns the result of this extraction when `value` is called on it. For example, if previously your extract system looked like: ```rust fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) { for cloud in clouds.iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` the new version would be: ```rust fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) { for cloud in clouds.value().iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` The diff is: ```diff --- a/src/clouds.rs +++ b/src/clouds.rs @@ -1,5 +1,5 @@ -fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) { - for cloud in clouds.iter() { +fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) { + for cloud in clouds.value().iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` You can now also access resources from the render world using the normal system parameters during `Extract`: ```rust fn extract_assets(mut render_assets: ResMut<MyAssets>, source_assets: Extract<Res<MyAssets>>) { *render_assets = source_assets.clone(); } ``` Please note that all existing extract systems need to be updated to match this new style; even if they currently compile they will not run as expected. A warning will be emitted on a best-effort basis if this is not met. Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-07-08 23:56:33 +00:00
let default_camera_view = commands
Spawn now takes a Bundle (#6054) # Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ```
2022-09-23 19:55:54 +00:00
.spawn(ExtractedView {
Change UI coordinate system to have origin at top left corner (#6000) # Objective Fixes #5572 ## Solution Approach is to invert the Y-axis of the UI Camera by changing the UI projection matrix to render the UI upside down. After that I'm trying to fix all issues, that pop up: - interaction expected the "old" position - images and text were displayed upside-down - baseline of text was based on the top of the glyph instead of bottom ... probably a lot more. --- Result when running examples: <details> <summary>Button example</summary> main branch: ![button main](https://user-images.githubusercontent.com/4232644/190856087-61dd1d98-42b5-4238-bd97-149744ddfeba.png) this pr: ![button pr](https://user-images.githubusercontent.com/4232644/190856097-3f4bc97a-ed15-4e97-b7f1-2b2dd6bb8b14.png) </details> <details> <summary>Text example</summary> m ![text main](https://user-images.githubusercontent.com/4232644/192142831-4cf19aa1-f49a-485e-af7b-374d6f5c396c.png) ain branch: this pr: ![text pr fixed](https://user-images.githubusercontent.com/4232644/192142829-c433db3b-32e1-4ee8-b493-0b4a4d9c8e70.png) </details> <details> <summary>Text debug example</summary> main branch: ![text_debug main](https://user-images.githubusercontent.com/4232644/192142822-940aefa6-e502-410b-8da4-5570f77b5df2.png) this pr: ![text_debug pr fixed](https://user-images.githubusercontent.com/4232644/194547010-8c968f5c-5a71-4ffc-871d-790c06d48016.png) </details> <details> <summary>Transparency UI example</summary> main branch: ![transparency_ui main](https://user-images.githubusercontent.com/4232644/190856172-328c60fe-3622-4598-97d5-2f1595db13b3.png) this pr: ![transperency_ui pr](https://user-images.githubusercontent.com/4232644/190856179-a2dafb99-41ea-45a9-9dd6-400fa3ef24b9.png) </details> <details> <summary>UI example</summary> **ui example** main branch: ![ui main](https://user-images.githubusercontent.com/4232644/192142812-e20ba31a-6841-46d9-a785-4198cf22dc99.png) this pr: ![ui pr fixed](https://user-images.githubusercontent.com/4232644/192142788-cc0b74e0-7710-4faa-b5a2-60270a5da77c.png) </details> ## Changelog UI coordinate system and cursor position was changed from bottom left origin, y+ up to top left origin, y+ down. ## Migration Guide All flex layout should be inverted (ColumnReverse => Column, FlexStart => FlexEnd, WrapReverse => Wrap) System where dealing with cursor position should be changed to account for cursor position being based on the top left instead of bottom left
2022-10-11 12:51:44 +00:00
projection: projection_matrix,
Camera Driven Rendering (#4745) This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier. Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915): ![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png) Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work". Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id: ```rust // main camera (main window) commands.spawn_bundle(Camera2dBundle::default()); // second camera (other window) commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Window(window_id), ..default() }, ..default() }); ``` Rendering to a texture is as simple as pointing the camera at a texture: ```rust commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle), ..default() }, ..default() }); ``` Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`). ```rust // main pass camera with a default priority of 0 commands.spawn_bundle(Camera2dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle.clone()), priority: -1, ..default() }, ..default() }); commands.spawn_bundle(SpriteBundle { texture: image_handle, ..default() }) ``` Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system: ```rust commands.spawn_bundle(Camera3dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { // this will render 2d entities "on top" of the default 3d camera's render priority: 1, ..default() }, ..default() }); ``` There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active. Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections. ```rust // old 3d perspective camera commands.spawn_bundle(PerspectiveCameraBundle::default()) // new 3d perspective camera commands.spawn_bundle(Camera3dBundle::default()) ``` ```rust // old 2d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_2d()) // new 2d orthographic camera commands.spawn_bundle(Camera2dBundle::default()) ``` ```rust // old 3d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_3d()) // new 3d orthographic camera commands.spawn_bundle(Camera3dBundle { projection: OrthographicProjection { scale: 3.0, scaling_mode: ScalingMode::FixedVertical, ..default() }.into(), ..default() }) ``` Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors. If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component: ```rust commands.spawn_bundle(Camera3dBundle { camera_render_graph: CameraRenderGraph::new(some_render_graph_name), ..default() }) ``` Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added. Speaking of using components to configure graphs / passes, there are a number of new configuration options: ```rust commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // overrides the default global clear color clear_color: ClearColorConfig::Custom(Color::RED), ..default() }, ..default() }) commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // disables clearing clear_color: ClearColorConfig::None, ..default() }, ..default() }) ``` Expect to see more of the "graph configuration Components on Cameras" pattern in the future. By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component: ```rust commands .spawn_bundle(Camera3dBundle::default()) .insert(CameraUi { is_enabled: false, ..default() }) ``` ## Other Changes * The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr. * I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization. * I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler. * All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr. * Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic. * Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals: 1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs. 2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense. ## Follow Up Work * Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen) * Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor) * Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system). * Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable. * Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home.
2022-06-02 00:12:17 +00:00
transform: GlobalTransform::from_xyz(
0.0,
0.0,
UI_CAMERA_FAR + UI_CAMERA_TRANSFORM_OFFSET,
),
view_projection: None,
separate tonemapping and upscaling passes (#3425) Attempt to make features like bloom https://github.com/bevyengine/bevy/pull/2876 easier to implement. **This PR:** - Moves the tonemapping from `pbr.wgsl` into a separate pass - also add a separate upscaling pass after the tonemapping which writes to the swap chain (enables resolution-independant rendering and post-processing after tonemapping) - adds a `hdr` bool to the camera which controls whether the pbr and sprite shaders render into a `Rgba16Float` texture **Open questions:** - ~should the 2d graph work the same as the 3d one?~ it is the same now - ~The current solution is a bit inflexible because while you can add a post processing pass that writes to e.g. the `hdr_texture`, you can't write to a separate `user_postprocess_texture` while reading the `hdr_texture` and tell the tone mapping pass to read from the `user_postprocess_texture` instead. If the tonemapping and upscaling render graph nodes were to take in a `TextureView` instead of the view entity this would almost work, but the bind groups for their respective input textures are already created in the `Queue` render stage in the hardcoded order.~ solved by creating bind groups in render node **New render graph:** ![render_graph](https://user-images.githubusercontent.com/22177966/147767249-57dd4229-cfab-4ec5-9bf3-dc76dccf8e8b.png) <details> <summary>Before</summary> ![render_graph_old](https://user-images.githubusercontent.com/22177966/147284579-c895fdbd-4028-41cf-914c-e1ffef60e44e.png) </details> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-10-26 20:13:59 +00:00
hdr: camera.hdr,
viewport: UVec4::new(
physical_origin.x,
physical_origin.y,
physical_size.x,
physical_size.y,
),
color_grading: Default::default(),
Make `RenderStage::Extract` run on the render world (#4402) # Objective - Currently, the `Extract` `RenderStage` is executed on the main world, with the render world available as a resource. - However, when needing access to resources in the render world (e.g. to mutate them), the only way to do so was to get exclusive access to the whole `RenderWorld` resource. - This meant that effectively only one extract which wrote to resources could run at a time. - We didn't previously make `Extract`ing writing to the world a non-happy path, even though we want to discourage that. ## Solution - Move the extract stage to run on the render world. - Add the main world as a `MainWorld` resource. - Add an `Extract` `SystemParam` as a convenience to access a (read only) `SystemParam` in the main world during `Extract`. ## Future work It should be possible to avoid needing to use `get_or_spawn` for the render commands, since now the `Commands`' `Entities` matches up with the world being executed on. We need to determine how this interacts with https://github.com/bevyengine/bevy/pull/3519 It's theoretically possible to remove the need for the `value` method on `Extract`. However, that requires slightly changing the `SystemParam` interface, which would make it more complicated. That would probably mess up the `SystemState` api too. ## Todo I still need to add doc comments to `Extract`. --- ## Changelog ### Changed - The `Extract` `RenderStage` now runs on the render world (instead of the main world as before). You must use the `Extract` `SystemParam` to access the main world during the extract phase. Resources on the render world can now be accessed using `ResMut` during extract. ### Removed - `Commands::spawn_and_forget`. Use `Commands::get_or_spawn(e).insert_bundle(bundle)` instead ## Migration Guide The `Extract` `RenderStage` now runs on the render world (instead of the main world as before). You must use the `Extract` `SystemParam` to access the main world during the extract phase. `Extract` takes a single type parameter, which is any system parameter (such as `Res`, `Query` etc.). It will extract this from the main world, and returns the result of this extraction when `value` is called on it. For example, if previously your extract system looked like: ```rust fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) { for cloud in clouds.iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` the new version would be: ```rust fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) { for cloud in clouds.value().iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` The diff is: ```diff --- a/src/clouds.rs +++ b/src/clouds.rs @@ -1,5 +1,5 @@ -fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) { - for cloud in clouds.iter() { +fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) { + for cloud in clouds.value().iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` You can now also access resources from the render world using the normal system parameters during `Extract`: ```rust fn extract_assets(mut render_assets: ResMut<MyAssets>, source_assets: Extract<Res<MyAssets>>) { *render_assets = source_assets.clone(); } ``` Please note that all existing extract systems need to be updated to match this new style; even if they currently compile they will not run as expected. A warning will be emitted on a best-effort basis if this is not met. Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-07-08 23:56:33 +00:00
})
.id();
Accept Bundles for insert and remove. Deprecate insert/remove_bundle (#6039) # Objective Take advantage of the "impl Bundle for Component" changes in #2975 / add the follow up changes discussed there. ## Solution - Change `insert` and `remove` to accept a Bundle instead of a Component (for both Commands and World) - Deprecate `insert_bundle`, `remove_bundle`, and `remove_bundle_intersection` - Add `remove_intersection` --- ## Changelog - Change `insert` and `remove` now accept a Bundle instead of a Component (for both Commands and World) - `insert_bundle` and `remove_bundle` are deprecated ## Migration Guide Replace `insert_bundle` with `insert`: ```rust // Old (0.8) commands.spawn().insert_bundle(SomeBundle::default()); // New (0.9) commands.spawn().insert(SomeBundle::default()); ``` Replace `remove_bundle` with `remove`: ```rust // Old (0.8) commands.entity(some_entity).remove_bundle::<SomeBundle>(); // New (0.9) commands.entity(some_entity).remove::<SomeBundle>(); ``` Replace `remove_bundle_intersection` with `remove_intersection`: ```rust // Old (0.8) world.entity_mut(some_entity).remove_bundle_intersection::<SomeBundle>(); // New (0.9) world.entity_mut(some_entity).remove_intersection::<SomeBundle>(); ``` Consider consolidating as many operations as possible to improve ergonomics and cut down on archetype moves: ```rust // Old (0.8) commands.spawn() .insert_bundle(SomeBundle::default()) .insert(SomeComponent); // New (0.9) - Option 1 commands.spawn().insert(( SomeBundle::default(), SomeComponent, )) // New (0.9) - Option 2 commands.spawn_bundle(( SomeBundle::default(), SomeComponent, )) ``` ## Next Steps Consider changing `spawn` to accept a bundle and deprecate `spawn_bundle`.
2022-09-21 21:47:53 +00:00
commands.get_or_spawn(entity).insert((
Camera Driven Rendering (#4745) This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier. Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915): ![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png) Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work". Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id: ```rust // main camera (main window) commands.spawn_bundle(Camera2dBundle::default()); // second camera (other window) commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Window(window_id), ..default() }, ..default() }); ``` Rendering to a texture is as simple as pointing the camera at a texture: ```rust commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle), ..default() }, ..default() }); ``` Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`). ```rust // main pass camera with a default priority of 0 commands.spawn_bundle(Camera2dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle.clone()), priority: -1, ..default() }, ..default() }); commands.spawn_bundle(SpriteBundle { texture: image_handle, ..default() }) ``` Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system: ```rust commands.spawn_bundle(Camera3dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { // this will render 2d entities "on top" of the default 3d camera's render priority: 1, ..default() }, ..default() }); ``` There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active. Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections. ```rust // old 3d perspective camera commands.spawn_bundle(PerspectiveCameraBundle::default()) // new 3d perspective camera commands.spawn_bundle(Camera3dBundle::default()) ``` ```rust // old 2d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_2d()) // new 2d orthographic camera commands.spawn_bundle(Camera2dBundle::default()) ``` ```rust // old 3d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_3d()) // new 3d orthographic camera commands.spawn_bundle(Camera3dBundle { projection: OrthographicProjection { scale: 3.0, scaling_mode: ScalingMode::FixedVertical, ..default() }.into(), ..default() }) ``` Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors. If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component: ```rust commands.spawn_bundle(Camera3dBundle { camera_render_graph: CameraRenderGraph::new(some_render_graph_name), ..default() }) ``` Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added. Speaking of using components to configure graphs / passes, there are a number of new configuration options: ```rust commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // overrides the default global clear color clear_color: ClearColorConfig::Custom(Color::RED), ..default() }, ..default() }) commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // disables clearing clear_color: ClearColorConfig::None, ..default() }, ..default() }) ``` Expect to see more of the "graph configuration Components on Cameras" pattern in the future. By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component: ```rust commands .spawn_bundle(Camera3dBundle::default()) .insert(CameraUi { is_enabled: false, ..default() }) ``` ## Other Changes * The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr. * I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization. * I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler. * All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr. * Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic. * Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals: 1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs. 2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense. ## Follow Up Work * Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen) * Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor) * Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system). * Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable. * Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home.
2022-06-02 00:12:17 +00:00
DefaultCameraView(default_camera_view),
RenderPhase::<TransparentUi>::default(),
));
}
}
}
#[cfg(feature = "bevy_text")]
pub fn extract_text_uinodes(
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
mut commands: Commands,
Make `RenderStage::Extract` run on the render world (#4402) # Objective - Currently, the `Extract` `RenderStage` is executed on the main world, with the render world available as a resource. - However, when needing access to resources in the render world (e.g. to mutate them), the only way to do so was to get exclusive access to the whole `RenderWorld` resource. - This meant that effectively only one extract which wrote to resources could run at a time. - We didn't previously make `Extract`ing writing to the world a non-happy path, even though we want to discourage that. ## Solution - Move the extract stage to run on the render world. - Add the main world as a `MainWorld` resource. - Add an `Extract` `SystemParam` as a convenience to access a (read only) `SystemParam` in the main world during `Extract`. ## Future work It should be possible to avoid needing to use `get_or_spawn` for the render commands, since now the `Commands`' `Entities` matches up with the world being executed on. We need to determine how this interacts with https://github.com/bevyengine/bevy/pull/3519 It's theoretically possible to remove the need for the `value` method on `Extract`. However, that requires slightly changing the `SystemParam` interface, which would make it more complicated. That would probably mess up the `SystemState` api too. ## Todo I still need to add doc comments to `Extract`. --- ## Changelog ### Changed - The `Extract` `RenderStage` now runs on the render world (instead of the main world as before). You must use the `Extract` `SystemParam` to access the main world during the extract phase. Resources on the render world can now be accessed using `ResMut` during extract. ### Removed - `Commands::spawn_and_forget`. Use `Commands::get_or_spawn(e).insert_bundle(bundle)` instead ## Migration Guide The `Extract` `RenderStage` now runs on the render world (instead of the main world as before). You must use the `Extract` `SystemParam` to access the main world during the extract phase. `Extract` takes a single type parameter, which is any system parameter (such as `Res`, `Query` etc.). It will extract this from the main world, and returns the result of this extraction when `value` is called on it. For example, if previously your extract system looked like: ```rust fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) { for cloud in clouds.iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` the new version would be: ```rust fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) { for cloud in clouds.value().iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` The diff is: ```diff --- a/src/clouds.rs +++ b/src/clouds.rs @@ -1,5 +1,5 @@ -fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) { - for cloud in clouds.iter() { +fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) { + for cloud in clouds.value().iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` You can now also access resources from the render world using the normal system parameters during `Extract`: ```rust fn extract_assets(mut render_assets: ResMut<MyAssets>, source_assets: Extract<Res<MyAssets>>) { *render_assets = source_assets.clone(); } ``` Please note that all existing extract systems need to be updated to match this new style; even if they currently compile they will not run as expected. A warning will be emitted on a best-effort basis if this is not met. Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-07-08 23:56:33 +00:00
mut extracted_uinodes: ResMut<ExtractedUiNodes>,
texture_atlases: Extract<Res<Assets<TextureAtlas>>>,
Windows as Entities (#5589) # Objective Fix https://github.com/bevyengine/bevy/issues/4530 - Make it easier to open/close/modify windows by setting them up as `Entity`s with a `Window` component. - Make multiple windows very simple to set up. (just add a `Window` component to an entity and it should open) ## Solution - Move all properties of window descriptor to ~components~ a component. - Replace `WindowId` with `Entity`. - ~Use change detection for components to update backend rather than events/commands. (The `CursorMoved`/`WindowResized`/... events are kept for user convenience.~ Check each field individually to see what we need to update, events are still kept for user convenience. --- ## Changelog - `WindowDescriptor` renamed to `Window`. - Width/height consolidated into a `WindowResolution` component. - Requesting maximization/minimization is done on the [`Window::state`] field. - `WindowId` is now `Entity`. ## Migration Guide - Replace `WindowDescriptor` with `Window`. - Change `width` and `height` fields in a `WindowResolution`, either by doing ```rust WindowResolution::new(width, height) // Explicitly // or using From<_> for tuples for convenience (1920., 1080.).into() ``` - Replace any `WindowCommand` code to just modify the `Window`'s fields directly and creating/closing windows is now by spawning/despawning an entity with a `Window` component like so: ```rust let window = commands.spawn(Window { ... }).id(); // open window commands.entity(window).despawn(); // close window ``` ## Unresolved - ~How do we tell when a window is minimized by a user?~ ~Currently using the `Resize(0, 0)` as an indicator of minimization.~ No longer attempting to tell given how finnicky this was across platforms, now the user can only request that a window be maximized/minimized. ## Future work - Move `exit_on_close` functionality out from windowing and into app(?) - https://github.com/bevyengine/bevy/issues/5621 - https://github.com/bevyengine/bevy/issues/7099 - https://github.com/bevyengine/bevy/issues/7098 Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-01-19 00:38:28 +00:00
windows: Extract<Query<&Window, With<PrimaryWindow>>>,
Add z-index support with a predictable UI stack (#5877) # Objective Add consistent UI rendering and interaction where deep nodes inside two different hierarchies will never render on top of one-another by default and offer an escape hatch (z-index) for nodes to change their depth. ## The problem with current implementation The current implementation of UI rendering is broken in that regard, mainly because [it sets the Z value of the `Transform` component based on a "global Z" space](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/update.rs#L43) shared by all nodes in the UI. This doesn't account for the fact that each node's final `GlobalTransform` value will be relative to its parent. This effectively makes the depth unpredictable when two deep trees are rendered on top of one-another. At the moment, it's also up to each part of the UI code to sort all of the UI nodes. The solution that's offered here does the full sorting of UI node entities once and offers the result through a resource so that all systems can use it. ## Solution ### New ZIndex component This adds a new optional `ZIndex` enum component for nodes which offers two mechanism: - `ZIndex::Local(i32)`: Overrides the depth of the node relative to its siblings. - `ZIndex::Global(i32)`: Overrides the depth of the node relative to the UI root. This basically allows any node in the tree to "escape" the parent and be ordered relative to the entire UI. Note that in the current implementation, omitting `ZIndex` on a node has the same result as adding `ZIndex::Local(0)`. Additionally, the "global" stacking context is essentially a way to add your node to the root stacking context, so using `ZIndex::Local(n)` on a root node (one without parent) will share that space with all nodes using `Index::Global(n)`. ### New UiStack resource This adds a new `UiStack` resource which is calculated from both hierarchy and `ZIndex` during UI update and contains a vector of all node entities in the UI, ordered by depth (from farthest from camera to closest). This is exposed publicly by the bevy_ui crate with the hope that it can be used for consistent ordering and to reduce the amount of sorting that needs to be done by UI systems (i.e. instead of sorting everything by `global_transform.z` in every system, this array can be iterated over). ### New z_index example This also adds a new z_index example that showcases the new `ZIndex` component. It's also a good general demo of the new UI stack system, because making this kind of UI was very broken with the old system (e.g. nodes would render on top of each other, not respecting hierarchy or insert order at all). ![image](https://user-images.githubusercontent.com/1060971/189015985-8ea8f989-0e9d-4601-a7e0-4a27a43a53f9.png) --- ## Changelog - Added the `ZIndex` component to bevy_ui. - Added the `UiStack` resource to bevy_ui, and added implementation in a new `stack.rs` module. - Removed the previous Z updating system from bevy_ui, because it was replaced with the above. - Changed bevy_ui rendering to use UiStack instead of z ordering. - Changed bevy_ui focus/interaction system to use UiStack instead of z ordering. - Added a new z_index example. ## ZIndex demo Here's a demo I wrote to test these features https://user-images.githubusercontent.com/1060971/188329295-d7beebd6-9aee-43ab-821e-d437df5dbe8a.mp4 Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-11-02 22:06:04 +00:00
ui_stack: Extract<Res<UiStack>>,
Divide by `UiScale` when converting UI coordinates from physical to logical (#8720) # Objective After the UI layout is computed when the coordinates are converted back from physical coordinates to logical coordinates the `UiScale` is ignored. This results in a confusing situation where we have two different systems of logical coordinates. Example: ```rust use bevy::prelude::*; fn main() { App::new() .add_plugins(DefaultPlugins) .add_systems(Startup, setup) .add_systems(Update, update) .run(); } fn setup(mut commands: Commands, mut ui_scale: ResMut<UiScale>) { ui_scale.scale = 4.; commands.spawn(Camera2dBundle::default()); commands.spawn(NodeBundle { style: Style { align_items: AlignItems::Center, justify_content: JustifyContent::Center, width: Val::Percent(100.), ..Default::default() }, ..Default::default() }) .with_children(|builder| { builder.spawn(NodeBundle { style: Style { width: Val::Px(100.), height: Val::Px(100.), ..Default::default() }, background_color: Color::MAROON.into(), ..Default::default() }).with_children(|builder| { builder.spawn(TextBundle::from_section("", TextStyle::default()); }); }); } fn update( mut text_query: Query<(&mut Text, &Parent)>, node_query: Query<Ref<Node>>, ) { for (mut text, parent) in text_query.iter_mut() { let node = node_query.get(parent.get()).unwrap(); if node.is_changed() { text.sections[0].value = format!("size: {}", node.size()); } } } ``` result: ![Bevy App 30_05_2023 16_54_32](https://github.com/bevyengine/bevy/assets/27962798/a5ecbf31-0a12-4669-87df-b0c32f058732) We asked for a 100x100 UI node but the Node's size is multiplied by the value of `UiScale` to give a logical size of 400x400. ## Solution Divide the output physical coordinates by `UiScale` in `ui_layout_system` and multiply the logical viewport size by `UiScale` when creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. --- ## Changelog * The UI layout's physical coordinates are divided by both the window scale factor and `UiScale` when converting them back to logical coordinates. The logical size of Ui nodes now matches the values given to their size constraints. * Multiply the logical viewport size by `UiScale` before creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. * In `ui_focus_system` the cursor position returned from `Window` is divided by `UiScale`. * Added a scale factor parameter to `Node::physical_size` and `Node::physical_rect`. * The example `viewport_debug` now uses a `UiScale` of 2. to ensure that viewport coordinates are working correctly with a non-unit `UiScale`. ## Migration Guide Physical UI coordinates are now divided by both the `UiScale` and the window's scale factor to compute the logical sizes and positions of UI nodes. This ensures that UI Node size and position values, held by the `Node` and `GlobalTransform` components, conform to the same logical coordinate system as the style constraints from which they are derived, irrespective of the current `scale_factor` and `UiScale`. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-07-06 20:27:54 +00:00
ui_scale: Extract<Res<UiScale>>,
Make `RenderStage::Extract` run on the render world (#4402) # Objective - Currently, the `Extract` `RenderStage` is executed on the main world, with the render world available as a resource. - However, when needing access to resources in the render world (e.g. to mutate them), the only way to do so was to get exclusive access to the whole `RenderWorld` resource. - This meant that effectively only one extract which wrote to resources could run at a time. - We didn't previously make `Extract`ing writing to the world a non-happy path, even though we want to discourage that. ## Solution - Move the extract stage to run on the render world. - Add the main world as a `MainWorld` resource. - Add an `Extract` `SystemParam` as a convenience to access a (read only) `SystemParam` in the main world during `Extract`. ## Future work It should be possible to avoid needing to use `get_or_spawn` for the render commands, since now the `Commands`' `Entities` matches up with the world being executed on. We need to determine how this interacts with https://github.com/bevyengine/bevy/pull/3519 It's theoretically possible to remove the need for the `value` method on `Extract`. However, that requires slightly changing the `SystemParam` interface, which would make it more complicated. That would probably mess up the `SystemState` api too. ## Todo I still need to add doc comments to `Extract`. --- ## Changelog ### Changed - The `Extract` `RenderStage` now runs on the render world (instead of the main world as before). You must use the `Extract` `SystemParam` to access the main world during the extract phase. Resources on the render world can now be accessed using `ResMut` during extract. ### Removed - `Commands::spawn_and_forget`. Use `Commands::get_or_spawn(e).insert_bundle(bundle)` instead ## Migration Guide The `Extract` `RenderStage` now runs on the render world (instead of the main world as before). You must use the `Extract` `SystemParam` to access the main world during the extract phase. `Extract` takes a single type parameter, which is any system parameter (such as `Res`, `Query` etc.). It will extract this from the main world, and returns the result of this extraction when `value` is called on it. For example, if previously your extract system looked like: ```rust fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) { for cloud in clouds.iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` the new version would be: ```rust fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) { for cloud in clouds.value().iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` The diff is: ```diff --- a/src/clouds.rs +++ b/src/clouds.rs @@ -1,5 +1,5 @@ -fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) { - for cloud in clouds.iter() { +fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) { + for cloud in clouds.value().iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` You can now also access resources from the render world using the normal system parameters during `Extract`: ```rust fn extract_assets(mut render_assets: ResMut<MyAssets>, source_assets: Extract<Res<MyAssets>>) { *render_assets = source_assets.clone(); } ``` Please note that all existing extract systems need to be updated to match this new style; even if they currently compile they will not run as expected. A warning will be emitted on a best-effort basis if this is not met. Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-07-08 23:56:33 +00:00
uinode_query: Extract<
Query<(
&Node,
&GlobalTransform,
&Text,
&TextLayoutInfo,
Split `ComputedVisibility` into two components to allow for accurate change detection and speed up visibility propagation (#9497) # Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
&ViewVisibility,
Make `RenderStage::Extract` run on the render world (#4402) # Objective - Currently, the `Extract` `RenderStage` is executed on the main world, with the render world available as a resource. - However, when needing access to resources in the render world (e.g. to mutate them), the only way to do so was to get exclusive access to the whole `RenderWorld` resource. - This meant that effectively only one extract which wrote to resources could run at a time. - We didn't previously make `Extract`ing writing to the world a non-happy path, even though we want to discourage that. ## Solution - Move the extract stage to run on the render world. - Add the main world as a `MainWorld` resource. - Add an `Extract` `SystemParam` as a convenience to access a (read only) `SystemParam` in the main world during `Extract`. ## Future work It should be possible to avoid needing to use `get_or_spawn` for the render commands, since now the `Commands`' `Entities` matches up with the world being executed on. We need to determine how this interacts with https://github.com/bevyengine/bevy/pull/3519 It's theoretically possible to remove the need for the `value` method on `Extract`. However, that requires slightly changing the `SystemParam` interface, which would make it more complicated. That would probably mess up the `SystemState` api too. ## Todo I still need to add doc comments to `Extract`. --- ## Changelog ### Changed - The `Extract` `RenderStage` now runs on the render world (instead of the main world as before). You must use the `Extract` `SystemParam` to access the main world during the extract phase. Resources on the render world can now be accessed using `ResMut` during extract. ### Removed - `Commands::spawn_and_forget`. Use `Commands::get_or_spawn(e).insert_bundle(bundle)` instead ## Migration Guide The `Extract` `RenderStage` now runs on the render world (instead of the main world as before). You must use the `Extract` `SystemParam` to access the main world during the extract phase. `Extract` takes a single type parameter, which is any system parameter (such as `Res`, `Query` etc.). It will extract this from the main world, and returns the result of this extraction when `value` is called on it. For example, if previously your extract system looked like: ```rust fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) { for cloud in clouds.iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` the new version would be: ```rust fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) { for cloud in clouds.value().iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` The diff is: ```diff --- a/src/clouds.rs +++ b/src/clouds.rs @@ -1,5 +1,5 @@ -fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) { - for cloud in clouds.iter() { +fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) { + for cloud in clouds.value().iter() { commands.get_or_spawn(cloud).insert(Cloud); } } ``` You can now also access resources from the render world using the normal system parameters during `Extract`: ```rust fn extract_assets(mut render_assets: ResMut<MyAssets>, source_assets: Extract<Res<MyAssets>>) { *render_assets = source_assets.clone(); } ``` Please note that all existing extract systems need to be updated to match this new style; even if they currently compile they will not run as expected. A warning will be emitted on a best-effort basis if this is not met. Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-07-08 23:56:33 +00:00
Option<&CalculatedClip>,
)>,
>,
) {
Windows as Entities (#5589) # Objective Fix https://github.com/bevyengine/bevy/issues/4530 - Make it easier to open/close/modify windows by setting them up as `Entity`s with a `Window` component. - Make multiple windows very simple to set up. (just add a `Window` component to an entity and it should open) ## Solution - Move all properties of window descriptor to ~components~ a component. - Replace `WindowId` with `Entity`. - ~Use change detection for components to update backend rather than events/commands. (The `CursorMoved`/`WindowResized`/... events are kept for user convenience.~ Check each field individually to see what we need to update, events are still kept for user convenience. --- ## Changelog - `WindowDescriptor` renamed to `Window`. - Width/height consolidated into a `WindowResolution` component. - Requesting maximization/minimization is done on the [`Window::state`] field. - `WindowId` is now `Entity`. ## Migration Guide - Replace `WindowDescriptor` with `Window`. - Change `width` and `height` fields in a `WindowResolution`, either by doing ```rust WindowResolution::new(width, height) // Explicitly // or using From<_> for tuples for convenience (1920., 1080.).into() ``` - Replace any `WindowCommand` code to just modify the `Window`'s fields directly and creating/closing windows is now by spawning/despawning an entity with a `Window` component like so: ```rust let window = commands.spawn(Window { ... }).id(); // open window commands.entity(window).despawn(); // close window ``` ## Unresolved - ~How do we tell when a window is minimized by a user?~ ~Currently using the `Resize(0, 0)` as an indicator of minimization.~ No longer attempting to tell given how finnicky this was across platforms, now the user can only request that a window be maximized/minimized. ## Future work - Move `exit_on_close` functionality out from windowing and into app(?) - https://github.com/bevyengine/bevy/issues/5621 - https://github.com/bevyengine/bevy/issues/7099 - https://github.com/bevyengine/bevy/issues/7098 Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-01-19 00:38:28 +00:00
// TODO: Support window-independent UI scale: https://github.com/bevyengine/bevy/issues/5621
let scale_factor = windows
.get_single()
Divide by `UiScale` when converting UI coordinates from physical to logical (#8720) # Objective After the UI layout is computed when the coordinates are converted back from physical coordinates to logical coordinates the `UiScale` is ignored. This results in a confusing situation where we have two different systems of logical coordinates. Example: ```rust use bevy::prelude::*; fn main() { App::new() .add_plugins(DefaultPlugins) .add_systems(Startup, setup) .add_systems(Update, update) .run(); } fn setup(mut commands: Commands, mut ui_scale: ResMut<UiScale>) { ui_scale.scale = 4.; commands.spawn(Camera2dBundle::default()); commands.spawn(NodeBundle { style: Style { align_items: AlignItems::Center, justify_content: JustifyContent::Center, width: Val::Percent(100.), ..Default::default() }, ..Default::default() }) .with_children(|builder| { builder.spawn(NodeBundle { style: Style { width: Val::Px(100.), height: Val::Px(100.), ..Default::default() }, background_color: Color::MAROON.into(), ..Default::default() }).with_children(|builder| { builder.spawn(TextBundle::from_section("", TextStyle::default()); }); }); } fn update( mut text_query: Query<(&mut Text, &Parent)>, node_query: Query<Ref<Node>>, ) { for (mut text, parent) in text_query.iter_mut() { let node = node_query.get(parent.get()).unwrap(); if node.is_changed() { text.sections[0].value = format!("size: {}", node.size()); } } } ``` result: ![Bevy App 30_05_2023 16_54_32](https://github.com/bevyengine/bevy/assets/27962798/a5ecbf31-0a12-4669-87df-b0c32f058732) We asked for a 100x100 UI node but the Node's size is multiplied by the value of `UiScale` to give a logical size of 400x400. ## Solution Divide the output physical coordinates by `UiScale` in `ui_layout_system` and multiply the logical viewport size by `UiScale` when creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. --- ## Changelog * The UI layout's physical coordinates are divided by both the window scale factor and `UiScale` when converting them back to logical coordinates. The logical size of Ui nodes now matches the values given to their size constraints. * Multiply the logical viewport size by `UiScale` before creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. * In `ui_focus_system` the cursor position returned from `Window` is divided by `UiScale`. * Added a scale factor parameter to `Node::physical_size` and `Node::physical_rect`. * The example `viewport_debug` now uses a `UiScale` of 2. to ensure that viewport coordinates are working correctly with a non-unit `UiScale`. ## Migration Guide Physical UI coordinates are now divided by both the `UiScale` and the window's scale factor to compute the logical sizes and positions of UI nodes. This ensures that UI Node size and position values, held by the `Node` and `GlobalTransform` components, conform to the same logical coordinate system as the style constraints from which they are derived, irrespective of the current `scale_factor` and `UiScale`. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-07-06 20:27:54 +00:00
.map(|window| window.resolution.scale_factor())
.unwrap_or(1.0)
* ui_scale.0;
Windows as Entities (#5589) # Objective Fix https://github.com/bevyengine/bevy/issues/4530 - Make it easier to open/close/modify windows by setting them up as `Entity`s with a `Window` component. - Make multiple windows very simple to set up. (just add a `Window` component to an entity and it should open) ## Solution - Move all properties of window descriptor to ~components~ a component. - Replace `WindowId` with `Entity`. - ~Use change detection for components to update backend rather than events/commands. (The `CursorMoved`/`WindowResized`/... events are kept for user convenience.~ Check each field individually to see what we need to update, events are still kept for user convenience. --- ## Changelog - `WindowDescriptor` renamed to `Window`. - Width/height consolidated into a `WindowResolution` component. - Requesting maximization/minimization is done on the [`Window::state`] field. - `WindowId` is now `Entity`. ## Migration Guide - Replace `WindowDescriptor` with `Window`. - Change `width` and `height` fields in a `WindowResolution`, either by doing ```rust WindowResolution::new(width, height) // Explicitly // or using From<_> for tuples for convenience (1920., 1080.).into() ``` - Replace any `WindowCommand` code to just modify the `Window`'s fields directly and creating/closing windows is now by spawning/despawning an entity with a `Window` component like so: ```rust let window = commands.spawn(Window { ... }).id(); // open window commands.entity(window).despawn(); // close window ``` ## Unresolved - ~How do we tell when a window is minimized by a user?~ ~Currently using the `Resize(0, 0)` as an indicator of minimization.~ No longer attempting to tell given how finnicky this was across platforms, now the user can only request that a window be maximized/minimized. ## Future work - Move `exit_on_close` functionality out from windowing and into app(?) - https://github.com/bevyengine/bevy/issues/5621 - https://github.com/bevyengine/bevy/issues/7099 - https://github.com/bevyengine/bevy/issues/7098 Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-01-19 00:38:28 +00:00
Divide by `UiScale` when converting UI coordinates from physical to logical (#8720) # Objective After the UI layout is computed when the coordinates are converted back from physical coordinates to logical coordinates the `UiScale` is ignored. This results in a confusing situation where we have two different systems of logical coordinates. Example: ```rust use bevy::prelude::*; fn main() { App::new() .add_plugins(DefaultPlugins) .add_systems(Startup, setup) .add_systems(Update, update) .run(); } fn setup(mut commands: Commands, mut ui_scale: ResMut<UiScale>) { ui_scale.scale = 4.; commands.spawn(Camera2dBundle::default()); commands.spawn(NodeBundle { style: Style { align_items: AlignItems::Center, justify_content: JustifyContent::Center, width: Val::Percent(100.), ..Default::default() }, ..Default::default() }) .with_children(|builder| { builder.spawn(NodeBundle { style: Style { width: Val::Px(100.), height: Val::Px(100.), ..Default::default() }, background_color: Color::MAROON.into(), ..Default::default() }).with_children(|builder| { builder.spawn(TextBundle::from_section("", TextStyle::default()); }); }); } fn update( mut text_query: Query<(&mut Text, &Parent)>, node_query: Query<Ref<Node>>, ) { for (mut text, parent) in text_query.iter_mut() { let node = node_query.get(parent.get()).unwrap(); if node.is_changed() { text.sections[0].value = format!("size: {}", node.size()); } } } ``` result: ![Bevy App 30_05_2023 16_54_32](https://github.com/bevyengine/bevy/assets/27962798/a5ecbf31-0a12-4669-87df-b0c32f058732) We asked for a 100x100 UI node but the Node's size is multiplied by the value of `UiScale` to give a logical size of 400x400. ## Solution Divide the output physical coordinates by `UiScale` in `ui_layout_system` and multiply the logical viewport size by `UiScale` when creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. --- ## Changelog * The UI layout's physical coordinates are divided by both the window scale factor and `UiScale` when converting them back to logical coordinates. The logical size of Ui nodes now matches the values given to their size constraints. * Multiply the logical viewport size by `UiScale` before creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. * In `ui_focus_system` the cursor position returned from `Window` is divided by `UiScale`. * Added a scale factor parameter to `Node::physical_size` and `Node::physical_rect`. * The example `viewport_debug` now uses a `UiScale` of 2. to ensure that viewport coordinates are working correctly with a non-unit `UiScale`. ## Migration Guide Physical UI coordinates are now divided by both the `UiScale` and the window's scale factor to compute the logical sizes and positions of UI nodes. This ensures that UI Node size and position values, held by the `Node` and `GlobalTransform` components, conform to the same logical coordinate system as the style constraints from which they are derived, irrespective of the current `scale_factor` and `UiScale`. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-07-06 20:27:54 +00:00
let inverse_scale_factor = (scale_factor as f32).recip();
Add z-index support with a predictable UI stack (#5877) # Objective Add consistent UI rendering and interaction where deep nodes inside two different hierarchies will never render on top of one-another by default and offer an escape hatch (z-index) for nodes to change their depth. ## The problem with current implementation The current implementation of UI rendering is broken in that regard, mainly because [it sets the Z value of the `Transform` component based on a "global Z" space](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/update.rs#L43) shared by all nodes in the UI. This doesn't account for the fact that each node's final `GlobalTransform` value will be relative to its parent. This effectively makes the depth unpredictable when two deep trees are rendered on top of one-another. At the moment, it's also up to each part of the UI code to sort all of the UI nodes. The solution that's offered here does the full sorting of UI node entities once and offers the result through a resource so that all systems can use it. ## Solution ### New ZIndex component This adds a new optional `ZIndex` enum component for nodes which offers two mechanism: - `ZIndex::Local(i32)`: Overrides the depth of the node relative to its siblings. - `ZIndex::Global(i32)`: Overrides the depth of the node relative to the UI root. This basically allows any node in the tree to "escape" the parent and be ordered relative to the entire UI. Note that in the current implementation, omitting `ZIndex` on a node has the same result as adding `ZIndex::Local(0)`. Additionally, the "global" stacking context is essentially a way to add your node to the root stacking context, so using `ZIndex::Local(n)` on a root node (one without parent) will share that space with all nodes using `Index::Global(n)`. ### New UiStack resource This adds a new `UiStack` resource which is calculated from both hierarchy and `ZIndex` during UI update and contains a vector of all node entities in the UI, ordered by depth (from farthest from camera to closest). This is exposed publicly by the bevy_ui crate with the hope that it can be used for consistent ordering and to reduce the amount of sorting that needs to be done by UI systems (i.e. instead of sorting everything by `global_transform.z` in every system, this array can be iterated over). ### New z_index example This also adds a new z_index example that showcases the new `ZIndex` component. It's also a good general demo of the new UI stack system, because making this kind of UI was very broken with the old system (e.g. nodes would render on top of each other, not respecting hierarchy or insert order at all). ![image](https://user-images.githubusercontent.com/1060971/189015985-8ea8f989-0e9d-4601-a7e0-4a27a43a53f9.png) --- ## Changelog - Added the `ZIndex` component to bevy_ui. - Added the `UiStack` resource to bevy_ui, and added implementation in a new `stack.rs` module. - Removed the previous Z updating system from bevy_ui, because it was replaced with the above. - Changed bevy_ui rendering to use UiStack instead of z ordering. - Changed bevy_ui focus/interaction system to use UiStack instead of z ordering. - Added a new z_index example. ## ZIndex demo Here's a demo I wrote to test these features https://user-images.githubusercontent.com/1060971/188329295-d7beebd6-9aee-43ab-821e-d437df5dbe8a.mp4 Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-11-02 22:06:04 +00:00
for (stack_index, entity) in ui_stack.uinodes.iter().enumerate() {
Split `ComputedVisibility` into two components to allow for accurate change detection and speed up visibility propagation (#9497) # Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
if let Ok((uinode, global_transform, text, text_layout_info, view_visibility, clip)) =
Add z-index support with a predictable UI stack (#5877) # Objective Add consistent UI rendering and interaction where deep nodes inside two different hierarchies will never render on top of one-another by default and offer an escape hatch (z-index) for nodes to change their depth. ## The problem with current implementation The current implementation of UI rendering is broken in that regard, mainly because [it sets the Z value of the `Transform` component based on a "global Z" space](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/update.rs#L43) shared by all nodes in the UI. This doesn't account for the fact that each node's final `GlobalTransform` value will be relative to its parent. This effectively makes the depth unpredictable when two deep trees are rendered on top of one-another. At the moment, it's also up to each part of the UI code to sort all of the UI nodes. The solution that's offered here does the full sorting of UI node entities once and offers the result through a resource so that all systems can use it. ## Solution ### New ZIndex component This adds a new optional `ZIndex` enum component for nodes which offers two mechanism: - `ZIndex::Local(i32)`: Overrides the depth of the node relative to its siblings. - `ZIndex::Global(i32)`: Overrides the depth of the node relative to the UI root. This basically allows any node in the tree to "escape" the parent and be ordered relative to the entire UI. Note that in the current implementation, omitting `ZIndex` on a node has the same result as adding `ZIndex::Local(0)`. Additionally, the "global" stacking context is essentially a way to add your node to the root stacking context, so using `ZIndex::Local(n)` on a root node (one without parent) will share that space with all nodes using `Index::Global(n)`. ### New UiStack resource This adds a new `UiStack` resource which is calculated from both hierarchy and `ZIndex` during UI update and contains a vector of all node entities in the UI, ordered by depth (from farthest from camera to closest). This is exposed publicly by the bevy_ui crate with the hope that it can be used for consistent ordering and to reduce the amount of sorting that needs to be done by UI systems (i.e. instead of sorting everything by `global_transform.z` in every system, this array can be iterated over). ### New z_index example This also adds a new z_index example that showcases the new `ZIndex` component. It's also a good general demo of the new UI stack system, because making this kind of UI was very broken with the old system (e.g. nodes would render on top of each other, not respecting hierarchy or insert order at all). ![image](https://user-images.githubusercontent.com/1060971/189015985-8ea8f989-0e9d-4601-a7e0-4a27a43a53f9.png) --- ## Changelog - Added the `ZIndex` component to bevy_ui. - Added the `UiStack` resource to bevy_ui, and added implementation in a new `stack.rs` module. - Removed the previous Z updating system from bevy_ui, because it was replaced with the above. - Changed bevy_ui rendering to use UiStack instead of z ordering. - Changed bevy_ui focus/interaction system to use UiStack instead of z ordering. - Added a new z_index example. ## ZIndex demo Here's a demo I wrote to test these features https://user-images.githubusercontent.com/1060971/188329295-d7beebd6-9aee-43ab-821e-d437df5dbe8a.mp4 Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-11-02 22:06:04 +00:00
uinode_query.get(*entity)
{
// Skip if not visible or if size is set to zero (e.g. when a parent is set to `Display::None`)
Split `ComputedVisibility` into two components to allow for accurate change detection and speed up visibility propagation (#9497) # Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
if !view_visibility.get() || uinode.size().x == 0. || uinode.size().y == 0. {
Add z-index support with a predictable UI stack (#5877) # Objective Add consistent UI rendering and interaction where deep nodes inside two different hierarchies will never render on top of one-another by default and offer an escape hatch (z-index) for nodes to change their depth. ## The problem with current implementation The current implementation of UI rendering is broken in that regard, mainly because [it sets the Z value of the `Transform` component based on a "global Z" space](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/update.rs#L43) shared by all nodes in the UI. This doesn't account for the fact that each node's final `GlobalTransform` value will be relative to its parent. This effectively makes the depth unpredictable when two deep trees are rendered on top of one-another. At the moment, it's also up to each part of the UI code to sort all of the UI nodes. The solution that's offered here does the full sorting of UI node entities once and offers the result through a resource so that all systems can use it. ## Solution ### New ZIndex component This adds a new optional `ZIndex` enum component for nodes which offers two mechanism: - `ZIndex::Local(i32)`: Overrides the depth of the node relative to its siblings. - `ZIndex::Global(i32)`: Overrides the depth of the node relative to the UI root. This basically allows any node in the tree to "escape" the parent and be ordered relative to the entire UI. Note that in the current implementation, omitting `ZIndex` on a node has the same result as adding `ZIndex::Local(0)`. Additionally, the "global" stacking context is essentially a way to add your node to the root stacking context, so using `ZIndex::Local(n)` on a root node (one without parent) will share that space with all nodes using `Index::Global(n)`. ### New UiStack resource This adds a new `UiStack` resource which is calculated from both hierarchy and `ZIndex` during UI update and contains a vector of all node entities in the UI, ordered by depth (from farthest from camera to closest). This is exposed publicly by the bevy_ui crate with the hope that it can be used for consistent ordering and to reduce the amount of sorting that needs to be done by UI systems (i.e. instead of sorting everything by `global_transform.z` in every system, this array can be iterated over). ### New z_index example This also adds a new z_index example that showcases the new `ZIndex` component. It's also a good general demo of the new UI stack system, because making this kind of UI was very broken with the old system (e.g. nodes would render on top of each other, not respecting hierarchy or insert order at all). ![image](https://user-images.githubusercontent.com/1060971/189015985-8ea8f989-0e9d-4601-a7e0-4a27a43a53f9.png) --- ## Changelog - Added the `ZIndex` component to bevy_ui. - Added the `UiStack` resource to bevy_ui, and added implementation in a new `stack.rs` module. - Removed the previous Z updating system from bevy_ui, because it was replaced with the above. - Changed bevy_ui rendering to use UiStack instead of z ordering. - Changed bevy_ui focus/interaction system to use UiStack instead of z ordering. - Added a new z_index example. ## ZIndex demo Here's a demo I wrote to test these features https://user-images.githubusercontent.com/1060971/188329295-d7beebd6-9aee-43ab-821e-d437df5dbe8a.mp4 Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-11-02 22:06:04 +00:00
continue;
}
let transform = global_transform.compute_matrix()
* Mat4::from_translation(-0.5 * uinode.size().extend(0.));
Add z-index support with a predictable UI stack (#5877) # Objective Add consistent UI rendering and interaction where deep nodes inside two different hierarchies will never render on top of one-another by default and offer an escape hatch (z-index) for nodes to change their depth. ## The problem with current implementation The current implementation of UI rendering is broken in that regard, mainly because [it sets the Z value of the `Transform` component based on a "global Z" space](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/update.rs#L43) shared by all nodes in the UI. This doesn't account for the fact that each node's final `GlobalTransform` value will be relative to its parent. This effectively makes the depth unpredictable when two deep trees are rendered on top of one-another. At the moment, it's also up to each part of the UI code to sort all of the UI nodes. The solution that's offered here does the full sorting of UI node entities once and offers the result through a resource so that all systems can use it. ## Solution ### New ZIndex component This adds a new optional `ZIndex` enum component for nodes which offers two mechanism: - `ZIndex::Local(i32)`: Overrides the depth of the node relative to its siblings. - `ZIndex::Global(i32)`: Overrides the depth of the node relative to the UI root. This basically allows any node in the tree to "escape" the parent and be ordered relative to the entire UI. Note that in the current implementation, omitting `ZIndex` on a node has the same result as adding `ZIndex::Local(0)`. Additionally, the "global" stacking context is essentially a way to add your node to the root stacking context, so using `ZIndex::Local(n)` on a root node (one without parent) will share that space with all nodes using `Index::Global(n)`. ### New UiStack resource This adds a new `UiStack` resource which is calculated from both hierarchy and `ZIndex` during UI update and contains a vector of all node entities in the UI, ordered by depth (from farthest from camera to closest). This is exposed publicly by the bevy_ui crate with the hope that it can be used for consistent ordering and to reduce the amount of sorting that needs to be done by UI systems (i.e. instead of sorting everything by `global_transform.z` in every system, this array can be iterated over). ### New z_index example This also adds a new z_index example that showcases the new `ZIndex` component. It's also a good general demo of the new UI stack system, because making this kind of UI was very broken with the old system (e.g. nodes would render on top of each other, not respecting hierarchy or insert order at all). ![image](https://user-images.githubusercontent.com/1060971/189015985-8ea8f989-0e9d-4601-a7e0-4a27a43a53f9.png) --- ## Changelog - Added the `ZIndex` component to bevy_ui. - Added the `UiStack` resource to bevy_ui, and added implementation in a new `stack.rs` module. - Removed the previous Z updating system from bevy_ui, because it was replaced with the above. - Changed bevy_ui rendering to use UiStack instead of z ordering. - Changed bevy_ui focus/interaction system to use UiStack instead of z ordering. - Added a new z_index example. ## ZIndex demo Here's a demo I wrote to test these features https://user-images.githubusercontent.com/1060971/188329295-d7beebd6-9aee-43ab-821e-d437df5dbe8a.mp4 Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-11-02 22:06:04 +00:00
let mut color = Color::WHITE;
let mut current_section = usize::MAX;
for PositionedGlyph {
position,
atlas_info,
section_index,
..
} in &text_layout_info.glyphs
{
if *section_index != current_section {
color = text.sections[*section_index].style.color.as_rgba_linear();
current_section = *section_index;
Add z-index support with a predictable UI stack (#5877) # Objective Add consistent UI rendering and interaction where deep nodes inside two different hierarchies will never render on top of one-another by default and offer an escape hatch (z-index) for nodes to change their depth. ## The problem with current implementation The current implementation of UI rendering is broken in that regard, mainly because [it sets the Z value of the `Transform` component based on a "global Z" space](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/update.rs#L43) shared by all nodes in the UI. This doesn't account for the fact that each node's final `GlobalTransform` value will be relative to its parent. This effectively makes the depth unpredictable when two deep trees are rendered on top of one-another. At the moment, it's also up to each part of the UI code to sort all of the UI nodes. The solution that's offered here does the full sorting of UI node entities once and offers the result through a resource so that all systems can use it. ## Solution ### New ZIndex component This adds a new optional `ZIndex` enum component for nodes which offers two mechanism: - `ZIndex::Local(i32)`: Overrides the depth of the node relative to its siblings. - `ZIndex::Global(i32)`: Overrides the depth of the node relative to the UI root. This basically allows any node in the tree to "escape" the parent and be ordered relative to the entire UI. Note that in the current implementation, omitting `ZIndex` on a node has the same result as adding `ZIndex::Local(0)`. Additionally, the "global" stacking context is essentially a way to add your node to the root stacking context, so using `ZIndex::Local(n)` on a root node (one without parent) will share that space with all nodes using `Index::Global(n)`. ### New UiStack resource This adds a new `UiStack` resource which is calculated from both hierarchy and `ZIndex` during UI update and contains a vector of all node entities in the UI, ordered by depth (from farthest from camera to closest). This is exposed publicly by the bevy_ui crate with the hope that it can be used for consistent ordering and to reduce the amount of sorting that needs to be done by UI systems (i.e. instead of sorting everything by `global_transform.z` in every system, this array can be iterated over). ### New z_index example This also adds a new z_index example that showcases the new `ZIndex` component. It's also a good general demo of the new UI stack system, because making this kind of UI was very broken with the old system (e.g. nodes would render on top of each other, not respecting hierarchy or insert order at all). ![image](https://user-images.githubusercontent.com/1060971/189015985-8ea8f989-0e9d-4601-a7e0-4a27a43a53f9.png) --- ## Changelog - Added the `ZIndex` component to bevy_ui. - Added the `UiStack` resource to bevy_ui, and added implementation in a new `stack.rs` module. - Removed the previous Z updating system from bevy_ui, because it was replaced with the above. - Changed bevy_ui rendering to use UiStack instead of z ordering. - Changed bevy_ui focus/interaction system to use UiStack instead of z ordering. - Added a new z_index example. ## ZIndex demo Here's a demo I wrote to test these features https://user-images.githubusercontent.com/1060971/188329295-d7beebd6-9aee-43ab-821e-d437df5dbe8a.mp4 Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-11-02 22:06:04 +00:00
}
let atlas = texture_atlases.get(&atlas_info.texture_atlas).unwrap();
Add z-index support with a predictable UI stack (#5877) # Objective Add consistent UI rendering and interaction where deep nodes inside two different hierarchies will never render on top of one-another by default and offer an escape hatch (z-index) for nodes to change their depth. ## The problem with current implementation The current implementation of UI rendering is broken in that regard, mainly because [it sets the Z value of the `Transform` component based on a "global Z" space](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/update.rs#L43) shared by all nodes in the UI. This doesn't account for the fact that each node's final `GlobalTransform` value will be relative to its parent. This effectively makes the depth unpredictable when two deep trees are rendered on top of one-another. At the moment, it's also up to each part of the UI code to sort all of the UI nodes. The solution that's offered here does the full sorting of UI node entities once and offers the result through a resource so that all systems can use it. ## Solution ### New ZIndex component This adds a new optional `ZIndex` enum component for nodes which offers two mechanism: - `ZIndex::Local(i32)`: Overrides the depth of the node relative to its siblings. - `ZIndex::Global(i32)`: Overrides the depth of the node relative to the UI root. This basically allows any node in the tree to "escape" the parent and be ordered relative to the entire UI. Note that in the current implementation, omitting `ZIndex` on a node has the same result as adding `ZIndex::Local(0)`. Additionally, the "global" stacking context is essentially a way to add your node to the root stacking context, so using `ZIndex::Local(n)` on a root node (one without parent) will share that space with all nodes using `Index::Global(n)`. ### New UiStack resource This adds a new `UiStack` resource which is calculated from both hierarchy and `ZIndex` during UI update and contains a vector of all node entities in the UI, ordered by depth (from farthest from camera to closest). This is exposed publicly by the bevy_ui crate with the hope that it can be used for consistent ordering and to reduce the amount of sorting that needs to be done by UI systems (i.e. instead of sorting everything by `global_transform.z` in every system, this array can be iterated over). ### New z_index example This also adds a new z_index example that showcases the new `ZIndex` component. It's also a good general demo of the new UI stack system, because making this kind of UI was very broken with the old system (e.g. nodes would render on top of each other, not respecting hierarchy or insert order at all). ![image](https://user-images.githubusercontent.com/1060971/189015985-8ea8f989-0e9d-4601-a7e0-4a27a43a53f9.png) --- ## Changelog - Added the `ZIndex` component to bevy_ui. - Added the `UiStack` resource to bevy_ui, and added implementation in a new `stack.rs` module. - Removed the previous Z updating system from bevy_ui, because it was replaced with the above. - Changed bevy_ui rendering to use UiStack instead of z ordering. - Changed bevy_ui focus/interaction system to use UiStack instead of z ordering. - Added a new z_index example. ## ZIndex demo Here's a demo I wrote to test these features https://user-images.githubusercontent.com/1060971/188329295-d7beebd6-9aee-43ab-821e-d437df5dbe8a.mp4 Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-11-02 22:06:04 +00:00
let mut rect = atlas.textures[atlas_info.glyph_index];
rect.min *= inverse_scale_factor;
rect.max *= inverse_scale_factor;
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
extracted_uinodes.uinodes.insert(
commands.spawn_empty().id(),
ExtractedUiNode {
stack_index,
transform: transform
* Mat4::from_translation(position.extend(0.) * inverse_scale_factor),
color,
rect,
image: atlas.texture.clone_weak(),
atlas_size: Some(atlas.size * inverse_scale_factor),
clip: clip.map(|clip| clip.clip),
flip_x: false,
flip_y: false,
},
);
}
}
}
}
#[repr(C)]
#[derive(Copy, Clone, Pod, Zeroable)]
struct UiVertex {
pub position: [f32; 3],
pub uv: [f32; 2],
pub color: [f32; 4],
pub mode: u32,
}
Make `Resource` trait opt-in, requiring `#[derive(Resource)]` V2 (#5577) *This PR description is an edited copy of #5007, written by @alice-i-cecile.* # Objective Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds. While ergonomic, this results in several drawbacks: * it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource * it is challenging to discover if a type is intended to be used as a resource * we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component). * dependencies can use the same Rust type as a resource in invisibly conflicting ways * raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values * we cannot capture a definitive list of possible resources to display to users in an editor ## Notes to reviewers * Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits. *ira: My commits are not as well organized :')* * I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does. * I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981. ## Changelog `Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro. ## Migration Guide Add `#[derive(Resource)]` to all types you are using as a resource. If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics. `ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing. Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead. Co-authored-by: Alice <alice.i.cecile@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: devil-ira <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00
#[derive(Resource)]
pub struct UiMeta {
vertices: BufferVec<UiVertex>,
view_bind_group: Option<BindGroup>,
}
impl Default for UiMeta {
fn default() -> Self {
Self {
vertices: BufferVec::new(BufferUsages::VERTEX),
view_bind_group: None,
}
}
}
const QUAD_VERTEX_POSITIONS: [Vec3; 4] = [
Vec3::new(-0.5, -0.5, 0.0),
Vec3::new(0.5, -0.5, 0.0),
Vec3::new(0.5, 0.5, 0.0),
Vec3::new(-0.5, 0.5, 0.0),
];
const QUAD_INDICES: [usize; 6] = [0, 2, 3, 0, 1, 2];
#[derive(Component)]
pub struct UiBatch {
pub range: Range<u32>,
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
pub image_handle_id: HandleId,
}
const TEXTURED_QUAD: u32 = 0;
const UNTEXTURED_QUAD: u32 = 1;
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
#[allow(clippy::too_many_arguments)]
pub fn queue_uinodes(
extracted_uinodes: Res<ExtractedUiNodes>,
ui_pipeline: Res<UiPipeline>,
mut pipelines: ResMut<SpecializedRenderPipelines<UiPipeline>>,
mut views: Query<(&ExtractedView, &mut RenderPhase<TransparentUi>)>,
pipeline_cache: Res<PipelineCache>,
draw_functions: Res<DrawFunctions<TransparentUi>>,
) {
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
let draw_function = draw_functions.read().id::<DrawUi>();
for (view, mut transparent_phase) in &mut views {
let pipeline = pipelines.specialize(
&pipeline_cache,
&ui_pipeline,
UiPipelineKey { hdr: view.hdr },
);
transparent_phase
.items
.reserve(extracted_uinodes.uinodes.len());
for (entity, extracted_uinode) in extracted_uinodes.uinodes.iter() {
transparent_phase.add(TransparentUi {
draw_function,
pipeline,
entity: *entity,
sort_key: FloatOrd(extracted_uinode.stack_index as f32),
// batch_size will be calculated in prepare_uinodes
batch_size: 0,
});
}
}
}
Make `Resource` trait opt-in, requiring `#[derive(Resource)]` V2 (#5577) *This PR description is an edited copy of #5007, written by @alice-i-cecile.* # Objective Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds. While ergonomic, this results in several drawbacks: * it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource * it is challenging to discover if a type is intended to be used as a resource * we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component). * dependencies can use the same Rust type as a resource in invisibly conflicting ways * raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values * we cannot capture a definitive list of possible resources to display to users in an editor ## Notes to reviewers * Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits. *ira: My commits are not as well organized :')* * I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does. * I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981. ## Changelog `Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro. ## Migration Guide Add `#[derive(Resource)]` to all types you are using as a resource. If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics. `ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing. Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead. Co-authored-by: Alice <alice.i.cecile@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: devil-ira <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00
#[derive(Resource, Default)]
pub struct UiImageBindGroups {
pub values: HashMap<Handle<Image>, BindGroup>,
}
#[allow(clippy::too_many_arguments)]
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
pub fn prepare_uinodes(
mut commands: Commands,
render_device: Res<RenderDevice>,
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
render_queue: Res<RenderQueue>,
mut ui_meta: ResMut<UiMeta>,
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
mut extracted_uinodes: ResMut<ExtractedUiNodes>,
view_uniforms: Res<ViewUniforms>,
ui_pipeline: Res<UiPipeline>,
mut image_bind_groups: ResMut<UiImageBindGroups>,
gpu_images: Res<RenderAssets<Image>>,
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
mut phases: Query<&mut RenderPhase<TransparentUi>>,
events: Res<SpriteAssetEvents>,
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
mut previous_len: Local<usize>,
) {
// If an image has changed, the GpuImage has (probably) changed
for event in &events.images {
match event {
AssetEvent::Created { .. } => None,
AssetEvent::Modified { handle } | AssetEvent::Removed { handle } => {
image_bind_groups.values.remove(handle)
}
};
}
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
#[inline]
fn is_textured(image: &Handle<Image>) -> bool {
image.id() != DEFAULT_IMAGE_HANDLE.id()
}
if let Some(view_binding) = view_uniforms.uniforms.binding() {
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
let mut batches: Vec<(Entity, UiBatch)> = Vec::with_capacity(*previous_len);
ui_meta.vertices.clear();
ui_meta.view_bind_group = Some(render_device.create_bind_group(&BindGroupDescriptor {
entries: &[BindGroupEntry {
binding: 0,
resource: view_binding,
}],
label: Some("ui_view_bind_group"),
layout: &ui_pipeline.view_layout,
}));
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
// Vertex buffer index
let mut index = 0;
for mut ui_phase in &mut phases {
let mut batch_item_index = 0;
let mut batch_image_handle = HandleId::Id(Uuid::nil(), u64::MAX);
for item_index in 0..ui_phase.items.len() {
let item = &mut ui_phase.items[item_index];
if let Some(extracted_uinode) = extracted_uinodes.uinodes.get(item.entity) {
let mut existing_batch = batches
.last_mut()
.filter(|_| batch_image_handle == extracted_uinode.image.id());
if existing_batch.is_none() {
if let Some(gpu_image) = gpu_images.get(&extracted_uinode.image) {
batch_item_index = item_index;
batch_image_handle = extracted_uinode.image.id();
let new_batch = UiBatch {
range: index..index,
image_handle_id: extracted_uinode.image.id(),
};
batches.push((item.entity, new_batch));
image_bind_groups
.values
.entry(Handle::weak(batch_image_handle))
.or_insert_with(|| {
render_device.create_bind_group(&BindGroupDescriptor {
entries: &[
BindGroupEntry {
binding: 0,
resource: BindingResource::TextureView(
&gpu_image.texture_view,
),
},
BindGroupEntry {
binding: 1,
resource: BindingResource::Sampler(
&gpu_image.sampler,
),
},
],
label: Some("ui_material_bind_group"),
layout: &ui_pipeline.image_layout,
})
});
existing_batch = batches.last_mut();
} else {
continue;
}
}
let mode = if is_textured(&extracted_uinode.image) {
TEXTURED_QUAD
} else {
UNTEXTURED_QUAD
};
let mut uinode_rect = extracted_uinode.rect;
let rect_size = uinode_rect.size().extend(1.0);
// Specify the corners of the node
let positions = QUAD_VERTEX_POSITIONS.map(|pos| {
(extracted_uinode.transform * (pos * rect_size).extend(1.)).xyz()
});
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
// Calculate the effect of clipping
// Note: this won't work with rotation/scaling, but that's much more complex (may need more that 2 quads)
let mut positions_diff = if let Some(clip) = extracted_uinode.clip {
[
Vec2::new(
f32::max(clip.min.x - positions[0].x, 0.),
f32::max(clip.min.y - positions[0].y, 0.),
),
Vec2::new(
f32::min(clip.max.x - positions[1].x, 0.),
f32::max(clip.min.y - positions[1].y, 0.),
),
Vec2::new(
f32::min(clip.max.x - positions[2].x, 0.),
f32::min(clip.max.y - positions[2].y, 0.),
),
Vec2::new(
f32::max(clip.min.x - positions[3].x, 0.),
f32::min(clip.max.y - positions[3].y, 0.),
),
]
} else {
[Vec2::ZERO; 4]
};
let positions_clipped = [
positions[0] + positions_diff[0].extend(0.),
positions[1] + positions_diff[1].extend(0.),
positions[2] + positions_diff[2].extend(0.),
positions[3] + positions_diff[3].extend(0.),
];
let transformed_rect_size =
extracted_uinode.transform.transform_vector3(rect_size);
// Don't try to cull nodes that have a rotation
// In a rotation around the Z-axis, this value is 0.0 for an angle of 0.0 or π
// In those two cases, the culling check can proceed normally as corners will be on
// horizontal / vertical lines
// For all other angles, bypass the culling check
// This does not properly handles all rotations on all axis
if extracted_uinode.transform.x_axis[1] == 0.0 {
// Cull nodes that are completely clipped
if positions_diff[0].x - positions_diff[1].x >= transformed_rect_size.x
|| positions_diff[1].y - positions_diff[2].y >= transformed_rect_size.y
{
continue;
}
}
let uvs = if mode == UNTEXTURED_QUAD {
[Vec2::ZERO, Vec2::X, Vec2::ONE, Vec2::Y]
} else {
let atlas_extent = extracted_uinode.atlas_size.unwrap_or(uinode_rect.max);
if extracted_uinode.flip_x {
std::mem::swap(&mut uinode_rect.max.x, &mut uinode_rect.min.x);
positions_diff[0].x *= -1.;
positions_diff[1].x *= -1.;
positions_diff[2].x *= -1.;
positions_diff[3].x *= -1.;
}
if extracted_uinode.flip_y {
std::mem::swap(&mut uinode_rect.max.y, &mut uinode_rect.min.y);
positions_diff[0].y *= -1.;
positions_diff[1].y *= -1.;
positions_diff[2].y *= -1.;
positions_diff[3].y *= -1.;
}
[
Vec2::new(
uinode_rect.min.x + positions_diff[0].x,
uinode_rect.min.y + positions_diff[0].y,
),
Vec2::new(
uinode_rect.max.x + positions_diff[1].x,
uinode_rect.min.y + positions_diff[1].y,
),
Vec2::new(
uinode_rect.max.x + positions_diff[2].x,
uinode_rect.max.y + positions_diff[2].y,
),
Vec2::new(
uinode_rect.min.x + positions_diff[3].x,
uinode_rect.max.y + positions_diff[3].y,
),
]
.map(|pos| pos / atlas_extent)
};
let color = extracted_uinode.color.as_linear_rgba_f32();
for i in QUAD_INDICES {
ui_meta.vertices.push(UiVertex {
position: positions_clipped[i].into(),
uv: uvs[i].into(),
color,
mode,
});
}
index += QUAD_INDICES.len() as u32;
existing_batch.unwrap().1.range.end = index;
ui_phase.items[batch_item_index].batch_size += 1;
} else {
batch_image_handle = HandleId::Id(Uuid::nil(), u64::MAX);
}
}
}
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
ui_meta.vertices.write_buffer(&render_device, &render_queue);
*previous_len = batches.len();
commands.insert_or_spawn_batch(batches);
}
Reorder render sets, refactor bevy_sprite to take advantage (#9236) This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
extracted_uinodes.uinodes.clear();
2020-05-04 18:20:12 +00:00
}