Erratum A-005812 Incorrect reservation clearing in Write Shadow mode can
result in invalid atomic operations. For u-boot, this erratum only impacts
SoCs running in write shadow mode.
Signed-off-by: York Sun <yorksun@freescale.com>
JEDEC spec requires the clocks to be stable before deasserting reset
signal for RDIMMs. Clocks start when any chip select is enabled and
clock control register is set. This patch also adds the interface to
toggle memory reset signal if needed by the boards.
Signed-off-by: York Sun <yorksun@freescale.com>
On selected platforms, x4 DDR devices can be supported. Using x4 devices may
lower the performance, but generally they are available for higher density.
Tested on MT36JSF2G72PZ-1G9E1 RDIMM.
Signed-off-by: York Sun <yorksun@freescale.com>
Move CONFIG_FSL_CORENET define to config_mpc85xx.h. It is not board
specific feature and belongs to SoC header.
Signed-off-by: York Sun <yorksun@freescale.com>
For some PowerPC platforms, LIODN registers for SRIO ports are
in SRIO register address space. So the ccsr_rio structure should
be updated for those LIODN registers.
In addition, add a new macro "SET_SRIO_LIODN_BASE" to create
the SRIO LIODN ID table based on the SRIO LIODN register address.
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Acked-by: York Sun <yorksun@freescale.com>
The sandburst-specific i2c drivers have been deleted, conflict was just
over the SPDX conversion.
Conflicts:
board/sandburst/common/ppc440gx_i2c.c
board/sandburst/common/ppc440gx_i2c.h
Signed-off-by: Tom Rini <trini@ti.com>
Erratum A-006593 is "Atomic store may report failure but still allow
the store data to be visible".
The workaround is: "Set CoreNet Platform Cache register CPCHDBCR0 bit
21 to 1'b1. This may have a small impact on synthetic write bandwidth
benchmarks but should have a negligible impact on real code."
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Calculate reserved fields according to IFC bank count
1. Move csor_ext register behind csor register and fix res offset
2. Move ifc bank count to config_mpc85xx.h to support 8 bank count
3. Guard fsl_ifc.h with CONFIG_FSL_IFC macro to eliminate the compile
error on some devices that does not have IFC controller.
Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
When a T4 board boots from SRIO or PCIE, it needs to finish these processes:
1. Set all the cores in holdoff status.
2. Set the boot location to one PCIE or SRIO interface by RCW.
3. Set a specific TLB entry for the boot process.
4. Set a LAW entry with the TargetID of one PCIE or SRIO for the boot.
5. Set a specific TLB entry in order to fetch ucode and ENV from
master.
6. Set a LAW entry with the TargetID one of the PCIE ports for
ucode and ENV.
7. Slave's u-boot image should be generated specifically by
make xxxx_SRIO_PCIE_BOOT_config.
This will set SYS_TEXT_BASE=0xFFF80000 and other configurations.
For more information about the feature of Boot from SRIO/PCIE, please
refer to the document doc/README.srio-pcie-boot-corenet.
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
When a b4860qds board boots from SRIO or PCIE, it needs to finish these
processes:
1. Set all the cores in holdoff status.
2. Set the boot location to one PCIE or SRIO interface by RCW.
3. Set a specific TLB entry for the boot process.
4. Set a LAW entry with the TargetID of one PCIE or SRIO for the boot.
5. Set a specific TLB entry in order to fetch ucode and ENV from
master.
6. Set a LAW entry with the TargetID one of the PCIE ports for
ucode and ENV.
7. Slave's u-boot image should be generated specifically by
make xxxx_SRIO_PCIE_BOOT_config.
This will set SYS_TEXT_BASE=0xFFF80000 and other configurations.
For more information about the feature of Boot from SRIO/PCIE, please
refer to the document doc/README.srio-pcie-boot-corenet.
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Currently, the macro "CONFIG_SYS_FSL_SRIO_PCIE_BOOT_MASTER" can enable
the master module of Boot from SRIO and PCIE on a platform. But this
is not a silicon feature, it's just a specific booting mode based on
the SRIO and PCIE interfaces. So it's inappropriate to put the macro
into the file arch/powerpc/include/asm/config_mpc85xx.h.
Change the macro "CONFIG_SYS_FSL_SRIO_PCIE_BOOT_MASTER" to
"CONFIG_SRIO_PCIE_BOOT_MASTER", remove them from
arch/powerpc/include/asm/config_mpc85xx.h file, and add those macros
in configuration header file of each board which can support the
master module of Boot from SRIO and PCIE.
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
BSC9131RDB is a Freescale Reference Design Board for
BSC9131 SoC which is a integrated device that contains
one powerpc e500v2 core and one DSP starcore.
To support DSP starcore
-Creating LAW and TLB for DSP-CCSR space.
-Creating LAW for DSP-core subsystem M2 memory
Signed-off-by: Priyanka Jain <Priyanka.Jain@freescale.com>
Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
C99's strict aliasing rules are insane to use in low-level code such as a
bootloader, but as Wolfgang has rejected -fno-strict-aliasing in the
past, add a union so that 16-bit accesses can be performed.
Compile-tested only.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Acked-by: Wolfgang Denk <wd@denx.de>
Boot ROM code creates TLB entries for 3.5G space before entering
the u-boot. Earlier we were deleting these entries after early
initialization of CPU. In recent past, code has been added
to invalidate all these entries before relocation of u-boot code.
So this code to delete TLB entries after CPU initialization
is no longer required.
Signed-off-by: Ruchika Gupta <ruchika.gupta@freescale.com>
Acked-by: Matthew McClintock <msm@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
B4420 is a subset of B4860. Merge them in config_mpc85xx.h to simplify
the defines.
- Removed #define CONFIG_SYS_FSL_NUM_CLUSTERS as this is used nowhere.
- defined CONFIG_SYS_NUM_FM1_10GEC to 0 for B4420 as it does not have 10G.
Also move CONFIG_E6500 out of B4860QDSds.h into config_mpc85xx.h.
Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
To align with chassis generation 2 spec, all cores are numbered in sequence.
The cores may reside across multiple clusters. Each cluster has zero to four
cores. The first available core is numbered as core 0. The second available
core is numbered as core 1 and so on.
Core clocks are generated by each clusters. To identify the cluster of each
core, topology registers are examined.
Cluster clock registers are reorganized to be easily indexed.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
T1040 and variants have e5500 cores and are compliant to QorIQ Chassis
Generation 2. The major difference between T1040 and its variants is the
number of cores and the number of L2 switch ports.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
T4160 is a subset of T4240. Merge them in config_mpc85xx.h to simplify
the defines. Also move CONFIG_E6500 out of t4qds.h into config_mpc85xx.h.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The Freescale MPC8220 Power Architecture processors have long reached
EOL; Freescale does not even list these any more on their web site.
Remove the code to avoid wasting maitaining efforts on dead stuff.
Signed-off-by: Wolfgang Denk <wd@denx.de>
Cc: Andy Fleming <afleming@gmail.com>
Removed unused declare serdes_get_prtcl() which was no longer needed.
Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
1, Implemented board_ft_fman_fixup_port() to fix port for kernel.
2, Implemented fdt_fixup_board_enet() to fix node status of different
slots and interfaces.
3, Adding detection of slot present for XGMII interface.
4, There is no PHY for XFI, so removed related phy address settings.
Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
T4160 SoC is low power version of T4240. The T4160 combines eight dual
threaded Power Architecture e6500 cores and two memory complexes (CoreNet
platform cache and DDR3 memory controller) with the same high-performance
datapath acceleration, networking, and peripheral bus interfaces.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
T4240 internal UTMI phy is different comparing to previous UTMI PHY
in P3041.
This patch adds USB 2.0 UTMI Dual PHY new memory map and enable it for
T4240.
The phy timing is very sensitive and moving the phy enable code to
cpu_init.c will not work.
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Fix ccsr_gur for corenet platform. Remove non-exist registers. Add fuse
status register.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Makes it a bit easier to see if we've properly set them. While
we're in there, modify the accesses to HDBCR0 and HDBCR1 to actually
use those definitions.
Signed-off-by: Andy Fleming <afleming@freescale.com>
Erratum DDR_A003 applies to P5020, P3041, P4080, P3060, P2041, P5040.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
As per Errata list of BSC9131 and BSC9132, IFC Errata A003399 is no more
valid. So donot compile its workaround.
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
On P204x/P304x/P50x0 Rev1.0, USB transmit will result in false internal
multi-bit ECC errors, which has impact on performance, so software should
disable all ECC reporting from USB1 and USB2.
In formal release document, the errata number should be USB14 instead of USB138.
Signed-off-by: xulei <Lei.Xu@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: xulei <B33228@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Some legacy RGMII phys don't have in band signaling for the
speed information. so set the RGMII MAC mode according to
the speed got from PHY.
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Reported-by: John Traill <john.traill@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Per the latest errata updated, B4860/B4420 Rev 1.0 has also
errata A-005871, so adding define A-005871 for B4 SoCs.
Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
B4420/B4860 PCIE can not work because of the wrong definition of
the PCIE register offset in the file:
arch/powerpc/include/asm/immap_85xx.h
Add the judgement of B4420/B4860 to make the register offset to:
#define CONFIG_SYS_MPC85xx_PCIE1_OFFSET 0x200000
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
We create a separate header file for link symbols defined by the link
scripts. It is helpful to have these all in one place and try to
make them common across architectures. Since Linux already has a similar
file, we bring this in even though many of the symbols there are not
relevant to us.
Each architecture has its own asm/sections.h where symbols specifc to
that architecture can be added. For now everything except AVR32 just
includes the generic header.
One change is needed in arch/avr32/lib/board.c to make this conversion
work.
Reviewed-by: Tom Rini <trini@ti.com> (version 5)
Signed-off-by: Simon Glass <sjg@chromium.org>
Note this is a tree-wide change affecting multiple architectures.
At present we use __bss_start, but mostly __bss_end__. This seems
inconsistent and in a number of places __bss_end is used instead.
Change to use __bss_end for the BSS end symbol throughout U-Boot. This
makes it possible to use the asm-generic/sections.h file on all
archs.
Signed-off-by: Simon Glass <sjg@chromium.org>
Do maintain a 200 usecs period of stable power and clock before
asserting the CKE signal and sending commands, have at least 200
DRAM clock cycles pass after initialization before data access.
Signed-off-by: Anatolij Gustschin <agust@denx.de>
Add new mpc5121e based ac14xx board and a new pinmux config
function for setting individual pinmux bit groups. This
function is used in ac14xx board code.
Signed-off-by: Anatolij Gustschin <agust@denx.de>
Boards may define own IPS divider in the config file if
the default IPS divider doesn't fit their needs.
Signed-off-by: Anatolij Gustschin <agust@denx.de>
Move these fields into arch_global_data and tidy up. The bExtUart field
does not appear to be used, so punt it.
Signed-off-by: Simon Glass <sjg@chromium.org>
Move these fields into arch_global_data and tidy up. This is needed for
both ppc and m68k since they share the i2c driver.
Signed-off-by: Simon Glass <sjg@chromium.org>
Move these fields into arch_global_data and tidy up.
Signed-off-by: Simon Glass <sjg@chromium.org>
[trini: Update for bsc9132qds.c, b4860qds.c]
Signed-off-by: Tom Rini <trini@ti.com>
Move vco_out, cpm_clk, scc_clk, brg_clk into arch_global_data and tidy
up. Leave pci_clk on its own since this should really depend only on
CONFIG_PCI and not any particular chip type.
Signed-off-by: Simon Glass <sjg@chromium.org>
PPC has several of these fields, selected by chip type, although only one
is ever compiled in.
Instead, use a single field. It would be nice if this could be selected
by CONFIG_PCI, but some chips (e.g. mpc5xxx) use pci_clk even when
CONFIG_PCI is not enabled.
Signed-off-by: Simon Glass <sjg@chromium.org>
We plan to move architecture-specific data into a separate structure so
that we can make the rest of it common.
As a first step, create struct arch_global_data to hold these fields.
Initially it is empty.
This patch applies to all archs at once. I can split it if this is really
a pain.
Signed-off-by: Simon Glass <sjg@chromium.org>
When CoreNet Fabric (CCF) internal resources are consumed by the cores,
inbound SRIO messaging traffic through RMan can put the device into a
deadlock condition.
This errata workaround forces internal resources to be reserved for
upstream transactions. This ensures resources exist on the device for
upstream transactions and removes the deadlock condition.
The Workaround is for the T4240 silicon rev 1.0.
Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
If property 'fsl,sec-era' is already present, it is updated.
This property is required so that applications can ascertain which
descriptor commands are supported on a particular CAAM version.
Signed-off-by: Vakul Garg <vakul@freescale.com>
Cc: Andy Fleming <afleming@gmail.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
e6500 implements MMUv2 and supports power-of-2 page sizes rather than
power-of-4. Add support for such pages.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The BSC9132 is a highly integrated device that targets the evolving
Microcell, Picocell, and Enterprise-Femto base station market subsegments.
The BSC9132 device combines Power Architecture e500 and DSP StarCore SC3850
core technologies with MAPLE-B2P baseband acceleration processing elements
to address the need for a high performance, low cost, integrated solution
that handles all required processing layers without the need for an
external device except for an RF transceiver or, in a Micro base station
configuration, a host device that handles the L3/L4 and handover between
sectors.
The BSC9132 SoC includes the following function and features:
- Power Architecture subsystem including two e500 processors with
512-Kbyte shared L2 cache
- Two StarCore SC3850 DSP subsystems, each with a 512-Kbyte private L2
cache
- 32 Kbyte of shared M3 memory
- The Multi Accelerator Platform Engine for Pico BaseStation Baseband
Processing (MAPLE-B2P)
- Two DDR3/3L memory interfaces with 32-bit data width (40 bits including
ECC), up to 1333 MHz data rate
- Dedicated security engine featuring trusted boot
- Two DMA controllers
- OCNDMA with four bidirectional channels
- SysDMA with sixteen bidirectional channels
- Interfaces
- Four-lane SerDes PHY
- PCI Express controller complies with the PEX Specification-Rev 2.0
- Two Common Public Radio Interface (CPRI) controller lanes
- High-speed USB 2.0 host and device controller with ULPI interface
- Enhanced secure digital (SD/MMC) host controller (eSDHC)
- Antenna interface controller (AIC), supporting four industry
standard JESD207/four custom ADI RF interfaces
- ADI lanes support both full duplex FDD support & half duplex TDD
- Universal Subscriber Identity Module (USIM) interface that
facilitates communication to SIM cards or Eurochip pre-paid phone
cards
- Two DUART, two eSPI, and two I2C controllers
- Integrated Flash memory controller (IFC)
- GPIO
- Sixteen 32-bit timers
Signed-off-by: Naveen Burmi <NaveenBurmi@freescale.com>
Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
strncasecmp() is present as strnicmp() but disabled. Make it available
and define strcasecmp() also. There is a only a small performance penalty
to having strcasecmp() call strncasecmp(), so do this instead of a
standalone function, to save code space.
Update the prototype in arch-specific headers as needed to avoid warnings.
Signed-off-by: Simon Glass <sjg@chromium.org>
By extracting these defines into a header, they can be re-used by other
C sources as well. This will be done by the SPL framework OS boot
support.
Signed-off-by: Stefan Roese <sr@denx.de>
The documented work-around for P4080 erratum SERDES-9 has been updated.
It is now compatible with the work-around for erratum A-4580.
This requires adding a few bitfield macros for the BnTTLCRy0 register.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Due to SerDes configuration error, if we set the PCI-e controller link width
as x8 in RCW and add a narrower width(such as x4, x2 or x1) PCI-e device to
PCI-e slot, it fails to train down to the PCI-e device's link width. According
to p4080ds errata PCIe-A003, we reset the PCI-e controller link width to x4 in
u-boot. Then it can train down to x2 or x1 width to make the PCI-e link between
RC and EP.
Signed-off-by: Yuanquan Chen <B41889@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
board configuration file is included before asm/config_mpc85xx.h.
however, CONFIG_FSL_SATA_V2 is defined in asm/config_mpc85xx.h.
it will never take effective in the board configuration file for
this kind of code :
#ifdef CONFIG_FSL_SATA_V2
...
#endif
To solve this problem, move CONFIG_FSL_SATA_V2 to board
configuration header file.
This patch reverts Timur's
commit:3e0529f742e893653848494ffb9f7cd0d91304bf
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The work-around for erratum A-004580 ("Internal tracking loop can falsely
lock causing unrecoverable bit errors") is implemented via the PBI
(pre-boot initialization code, typically attached to the RCW binary).
This is because the work-around is easier to implement in PBI than in
U-Boot itself.
It is still useful, however, for the 'errata' command to tell us whether
the work-around has been applied. For A-004580, we can do this by verifying
that the values in the specific registers that the work-around says to
update.
This change requires access to the SerDes lane sub-structure in
serdes_corenet_t, so we make it a named struct.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Once u-boot sets the spin table to cache-enabled memory, old kernel which
uses cache-inhibit mapping without coherence will not work properly. We
use this temporary fix until kernel has updated its spin table code.
For now this fix is activated by default. To disable this fix for new
kernel, set environmental variable "spin_table_compat=no". After kernel
has updated spin table code, this default shall be changed.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The work-around for erratum A-004849 ("CoreNet fabric (CCF) can exhibit a
deadlock under certain traffic patterns causing the system to hang") is
implemented via the PBI (pre-boot initialization code, typically attached
to the RCW binary). This is because the work-around is easier to implement
in PBI than in U-Boot itself.
It is still useful, however, for the 'errata' command to tell us whether
the work-around has been applied. For A-004849, we can do this by verifying
that the values in the specific registers that the work-around says to
update.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The P5040 has an e5500 core, so CONFIG_SYS_PPC64 should be defined in
config_mpc85xx.h. This macro was absent in the initial P5040 patch because
it crossed paths with the patch that introduced the macro.
Also delete CONFIG_SYS_FSL_ELBC_MULTIBIT_ECC, since it's not used in the
upstream U-Boot. It's a holdover from the SDK.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
There were a number of shared files that were using
CONFIG_SYS_MPC85xx_DDR_ADDR, or CONFIG_SYS_MPC86xx_DDR_ADDR, and
several variants (DDR2, DDR3). A recent patchset added
85xx-specific ones to code which was used by 86xx systems.
After reviewing places where these constants were used, and
noting that the type definitions of the pointers assigned to
point to those addresses were the same, the cleanest approach
to fixing this problem was to unify the namespace for the
85xx, 83xx, and 86xx DDR address definitions.
This patch does:
s/CONFIG_SYS_MPC8.xx_DDR/CONFIG_SYS_MPC8xxx_DDR/g
All 85xx, 86xx, and 83xx have been built with this change.
Signed-off-by: Andy Fleming <afleming@freescale.com>
Tested-by: Andy Fleming <afleming@freescale.com>
Acked-by: Kim Phillips <kim.phillips@freescale.com>
a fixup __iomem definition in arch code appears to be placed there as a cover
up from a code import from linux when u-boot didn't yet have a compiler.h,
introduced by commit 812711ce6b "Implement
__raw_{read,write}[bwl] on all architectures".
git show 812711ce6b3a386125dcf0d6a59588e461abbb87:include/linux/compiler.h
fatal: Path 'include/linux/compiler.h' exists on disk, but not in '812711ce6b3a386125dcf0d6a59588e461abbb87'.
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
u-boot's byteorder headers did not contain endianness attributions
for use with sparse, causing a lot of false positives. Import the
kernel's latest definitions, and enable them by including compiler.h
and types.h. They come with 'const' added for some swab functions, so
fix those up, too:
include/linux/byteorder/big_endian.h:46:2: warning: passing argument 1 of '__swab64p' discards 'const' qualifier from pointer target type [enabled by default]
Also, note: u-boot's historic __BYTE_ORDER definition has been
preserved (for the time being at least).
We also remove ad-hoc barrier() definitions, since we're including
compiler.h in files that hadn't in the past:
macb.c:54:0: warning: "barrier" redefined [enabled by default]
In addition, including compiler.h in byteorder changes the 'noinline'
definition to expand to __attribute__((noinline)). This fixes
arch/powerpc/lib/bootm.c:
bootm.c:329:16: error: attribute '__attribute__': unknown attribute
bootm.c:329:16: error: expected ')' before '__attribute__'
bootm.c:329:25: error: expected identifier or '(' before ')' token
powerpc sparse builds yield:
include/common.h:356:22: error: marked inline, but without a definition
the unknown-reason inlining without a definition is considered obsolete
given it was part of the 2002 initial commit, and no arm version was
'fixed.'
also fixed:
ydirectenv.h:60:0: warning: "inline" redefined [enabled by default]
and:
Configuring for devconcenter - Board: intip, Options: DEVCONCENTER
make[1]: *** [4xx_ibm_ddr2_autocalib.o] Error 1
make: *** [arch/powerpc/cpu/ppc4xx/libppc4xx.o] Error 2
powerpc-fsl-linux-size: './u-boot': No such file
4xx_ibm_ddr2_autocalib.c: In function 'DQS_autocalibration':
include/asm/ppc4xx-sdram.h:1407:13: sorry, unimplemented: inlining failed in call to 'ppc4xx_ibm_ddr2_register_dump': function body not available
4xx_ibm_ddr2_autocalib.c:1243:32: sorry, unimplemented: called from here
and:
In file included from crc32.c:50:0:
crc32table.h:4:1: warning: implicit declaration of function '___constant_swab32' [-Wimplicit-function-declaration]
crc32table.h:4:1: error: initializer element is not constant
crc32table.h:4:1: error: (near initialization for 'crc32table_le[0]')
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
[trini: Remove '#endif' in include/common.h around setenv portion]
Signed-off-by: Tom Rini <trini@ti.com>
This processor, though very similar to other members of the
PowerQUICC II Pro family (namely 8308, 8360 and 832x), provides
yet another feature set than any supported sibling.
Signed-off-by: Gerlando Falauto <gerlando.falauto@keymile.com>
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
Introduce a new configuration token CONFIG_MPC830x to be shared among
mpc8308 and mpc8309. Define it for existing 8308 boards, and refactor
existing common code so to make future introduction of 8309 simpler.
Signed-off-by: Gerlando Falauto <gerlando.falauto@keymile.com>
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
Currently, the SRIO and PCIE boot master module will be compiled into the
u-boot image if the macro "CONFIG_FSL_CORENET" has been defined. And this
macro has been included by all the corenet architecture platform boards.
But in fact, it's uncertain whether all corenet platform boards support
this feature.
So it may be better to get rid of the macro "CONFIG_FSL_CORENET", and add
a special macro for every board which can support the feature. This
special macro will be defined in the header file
"arch/powerpc/include/asm/config_mpc85xx.h". It will decide if the SRIO
and PCIE boot master module should be compiled into the board u-boot image.
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Move spin table to cached memory to comply with ePAPR v1.1.
Load R3 with 64-bit value if CONFIG_SYS_PPC64 is defined.
'M' bit is set for DDR TLB to maintain cache coherence.
See details in doc/README.mpc85xx-spin-table.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
After DDR controller is enabled, it performs a calibration for the
transmit data vs DQS paths. During this calibration, the DDR controller
may make an inaccurate calculation, resulting in a non-optimal tap point.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Boot space translation utilizes the pre-translation address to select
the DDR controller target. However, the post-translation address will be
presented to the selected DDR controller. It is possible that the pre-
translation address selects one DDR controller but the post-translation
address exists in a different DDR controller when using certain DDR
controller interleaving modes. The device may fail to boot under these
circumstances. Note that a DDR MSE error will not be detected since DDR
controller bounds registers are programmed to be the same when configured
for DDR controller interleaving.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
When ECC is enabled, DDR controller needs to initialize the data and ecc.
The wait time can be calcuated with total memory size, bus width, bus speed
and interleaving mode. If it went wrong, it is bettert to timeout than
waiting for D_INIT to clear, where it probably hangs.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Fix handling quad-rank DIMMs in a system with two DIMM slots and first
slot supports both dual-rank DIMM and quad-rank DIMM.
For systems with quad-rank DIMM and double dual-rank DIMMs, cs_config
registers need to be enabled to maintain proper ODT operation. The
inactive CS should have bnds registers cleared.
Fix the turnaround timing for systems with all chip-selects enabled. This
wasn't an issue before because DDR was running lower than 1600MT/s with
this interleaving mode.
Fix DDR address calculation. It wasn't an issue until we have multiple
controllers with each more than 4GB and interleaving is disabled.
It also fixes the message of DDR: 2 GiB (DDR3, 64-bit, CL=0.5, ECC off)
when debugging DDR and first DDR controller is disabled. With the fix,
the first enabled controller information will be displayed.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
DDRC ver 4.7 adds DDR_SLOW bit in sdram_cfg_2 register. This bit needs to be
set for speed lower than 1250MT/s.
CDR1 and CDR2 are control driver registers. ODT termination valueis for
IOs are defined. Starting from DDRC 4.7, the decoding of ODT for IOs is
000 -> Termsel off
001 -> 120 Ohm
010 -> 180 Ohm
011 -> 75 Ohm
100 -> 110 Ohm
101 -> 60 Ohm
110 -> 70 Ohm
111 -> 47 Ohm
Add two write leveling registers. Each QDS now has its own write leveling
start value. In case of zero value, the value of QDS0 will be used. These
values are board-specific and are set in board files.
Extend DDR register timing_cfg_1 to have 4 bits for each field.
DDR control driver registers and write leveling registers are added to
interactive debugging for easy access.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The multirate ethernet media access controller (mEMAC) interfaces to
10Gbps and below Ethernet/IEEE 802.3 networks via either RGMII/RMII
interfaces or XAUI/XFI/SGMII/QSGMII using the high-speed SerDes interface.
Signed-off-by: Sandeep Singh <Sandeep@freescale.com>
Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Add support for Freescale B4860 and variant SoCs. Features of B4860 are
(incomplete list):
Six fully-programmable StarCore SC3900 FVP subsystems, divided into three
clusters-each core runs up to 1.2 GHz, with an architecture highly
optimized for wireless base station applications
Four dual-thread e6500 Power Architecture processors organized in one
cluster-each core runs up to 1.8 GHz
Two DDR3/3L controllers for high-speed, industry-standard memory interface
each runs at up to 1866.67 MHz
MAPLE-B3 hardware acceleration-for forward error correction schemes
including Turbo or Viterbi decoding, Turbo encoding and rate matching,
MIMO MMSE equalization scheme, matrix operations, CRC insertion and
check, DFT/iDFT and FFT/iFFT calculations, PUSCH/PDSCH acceleration,
and UMTS chip rate acceleration
CoreNet fabric that fully supports coherency using MESI protocol between
the e6500 cores, SC3900 FVP cores, memories and external interfaces.
CoreNet fabric interconnect runs at 667 MHz and supports coherent and
non-coherent out of order transactions with prioritization and
bandwidth allocation amongst CoreNet endpoints.
Data Path Acceleration Architecture, which includes the following:
Frame Manager (FMan), which supports in-line packet parsing and general
classification to enable policing and QoS-based packet distribution
Queue Manager (QMan) and Buffer Manager (BMan), which allow offloading
of queue management, task management, load distribution, flow ordering,
buffer management, and allocation tasks from the cores
Security engine (SEC 5.3)-crypto-acceleration for protocols such as
IPsec, SSL, and 802.16
RapidIO manager (RMAN) - Support SRIO types 8, 9, 10, and 11 (inbound and
outbound). Supports types 5, 6 (outbound only)
Large internal cache memory with snooping and stashing capabilities for
bandwidth saving and high utilization of processor elements. The
9856-Kbyte internal memory space includes the following:
32 Kbyte L1 ICache per e6500/SC3900 core
32 Kbyte L1 DCache per e6500/SC3900 core
2048 Kbyte unified L2 cache for each SC3900 FVP cluster
2048 Kbyte unified L2 cache for the e6500 cluster
Two 512 Kbyte shared L3 CoreNet platform caches (CPC)
Sixteen 10-GHz SerDes lanes serving:
Two Serial RapidIO interfaces. Each supports up to 4 lanes and a total
of up to 8 lanes
Up to 8-lanes Common Public Radio Interface (CPRI) controller for glue-
less antenna connection
Two 10-Gbit Ethernet controllers (10GEC)
Six 1G/2.5-Gbit Ethernet controllers for network communications
PCI Express controller
Debug (Aurora)
Two OCeaN DMAs
Various system peripherals
182 32-bit timers
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Add support for Freescale T4240 SoC. Feature of T4240 are
(incomplete list):
12 dual-threaded e6500 cores built on Power Architecture® technology
Arranged as clusters of four cores sharing a 2 MB L2 cache.
Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture
v2.06-compliant)
Three levels of instruction: user, supervisor, and hypervisor
1.5 MB CoreNet Platform Cache (CPC)
Hierarchical interconnect fabric
CoreNet fabric supporting coherent and non-coherent transactions with
prioritization and bandwidth allocation amongst CoreNet end-points
1.6 Tbps coherent read bandwidth
Queue Manager (QMan) fabric supporting packet-level queue management and
quality of service scheduling
Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving
support
Memory prefetch engine (PMan)
Data Path Acceleration Architecture (DPAA) incorporating acceleration for
the following functions:
Packet parsing, classification, and distribution (Frame Manager 1.1)
Queue management for scheduling, packet sequencing, and congestion
management (Queue Manager 1.1)
Hardware buffer management for buffer allocation and de-allocation
(BMan 1.1)
Cryptography acceleration (SEC 5.0) at up to 40 Gbps
RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps
Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps
DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0)
32 SerDes lanes at up to 10.3125 GHz
Ethernet interfaces
Up to four 10 Gbps Ethernet MACs
Up to sixteen 1 Gbps Ethernet MACs
Maximum configuration of 4 x 10 GE + 8 x 1 GE
High-speed peripheral interfaces
Four PCI Express 2.0/3.0 controllers
Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with
Type 11 messaging and Type 9 data streaming support
Interlaken look-aside interface for serial TCAM connection
Additional peripheral interfaces
Two serial ATA (SATA 2.0) controllers
Two high-speed USB 2.0 controllers with integrated PHY
Enhanced secure digital host controller (SD/MMC/eMMC)
Enhanced serial peripheral interface (eSPI)
Four I2C controllers
Four 2-pin or two 4-pin UARTs
Integrated Flash controller supporting NAND and NOR flash
Two eight-channel DMA engines
Support for hardware virtualization and partitioning enforcement
QorIQ Platform's Trust Architecture 1.1
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The T4 has added devices to previous corenet implementations:
* SEC has 3 more DECO units
* New PMAN device
* New DCE device
This doesn't add full support for the new devices. Just some
preliminary support.
Move PMAN LIODN to upper half of register
Despite having only one LIODN, the PMAN LIODN is stored in the
upper half of the register. Re-use the 2-LIODN code and just
set the LIODN as if the second one is 0. This results in the
actual LIODN being written to the upper half of the register.
Signed-off-by: Andy Fleming <afleming@freescale.com>
Create new files to handle 2nd generation Chassis as the registers are
organized differently.
- Add SerDes protocol parsing and detection
- Add support of 4 SerDes
- Add CPRI protocol in fsl_serdes.h
The Common Public Radio Interface (CPRI) is publicly available
specification that standardizes the protocol interface between the
radio equipment control (REC) and the radio equipment (RE) in wireless
basestations. This allows interoperability of equipment from different
vendors,and preserves the software investment made by wireless service
providers.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Corenet 2nd generation Chassis has different RCW and registers for SerDes.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The QCSP registers are expanded and moved from offset 0 to offset 0x1000
for SoCs with QMan v3.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Expand the reference clock select to three bits
000: 100 MHz
001: 125 MHz
010: 156.25MHz
011: 150 MHz
100: 161.1328125 MHz
All others reserved
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Corenet based SoCs have different core clocks starting from Chassis
generation 2. Cores are organized into clusters. Each cluster has up to
4 cores sharing same clock, which can be chosen from one of three PLLs in
the cluster group with one of the devisors /1, /2 or /4. Two clusters are
put together as a cluster group. These two clusters share the PLLs but may
have different divisor. For example, core 0~3 are in cluster 1. Core 4~7
are in cluster 2. Core 8~11 are in cluster 3 and so on. Cluster 1 and 2
are cluster group A. Cluster 3 and 4 are in cluster group B. Cluster group
A has PLL1, PLL2, PLL3. Cluster group B has PLL4, PLL5. Core 0~3 may have
PLL1/2, core 4~7 may have PLL2/2. Core 8~11 may have PLL4/1.
PME and FMan blocks can take different PLLs, configured by RCW.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Chassis generation 2 has different mask and shift. Use macro instead of
magic numbers.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Using E6500 L1 cache as initram requires L2 cache enabled.
Add l2-cache cluster enabling.
Setup stash id for L1 cache as (coreID) * 2 + 32 + 0
Setup stash id for L2 cache as (cluster) * 2 + 32 + 1
Stash id for L2 is only set for Chassis 2.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andy Fleming <afleming@freescale.com>
FSL_HW_PORTAL_PME is used even when CONFIG_SYS_DPAA_PME is not defined.
Remove the #ifdef.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Add support for the Freescale P5040 SOC, which is similar to the P5020.
Features of the P5040 are:
Four P5040 single-threaded e5500 cores built
Up to 2.4 GHz with 64-bit ISA support
Three levels of instruction: user, supervisor, hypervisor
CoreNet platform cache (CPC)
2.0 MB configures as dual 1 MB blocks hierarchical interconnect fabric
Two 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving
support Up to 1600MT/s
Memory pre-fetch engine
DPAA incorporating acceleration for the following functions
Packet parsing, classification, and distribution (FMAN)
Queue management for scheduling, packet sequencing and
congestion management (QMAN)
Hardware buffer management for buffer allocation and
de-allocation (BMAN)
Cryptography acceleration (SEC 5.2) at up to 40 Gbps SerDes
20 lanes at up to 5 Gbps
Supports SGMII, XAUI, PCIe rev1.1/2.0, SATA Ethernet interfaces
Two 10 Gbps Ethernet MACs
Ten 1 Gbps Ethernet MACs
High-speed peripheral interfaces
Two PCI Express 2.0/3.0 controllers
Additional peripheral interfaces
Two serial ATA (SATA 2.0) controllers
Two high-speed USB 2.0 controllers with integrated PHY
Enhanced secure digital host controller (SD/MMC/eMMC)
Enhanced serial peripheral interface (eSPI)
Two I2C controllers
Four UARTs
Integrated flash controller supporting NAND and NOR flash
DMA
Dual four channel
Support for hardware virtualization and partitioning enforcement
Extra privileged level for hypervisor support
QorIQ Trust Architecture 1.1
Secure boot, secure debug, tamper detection, volatile key storage
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The P5040 does not have SRIO support, so there are no SRIO LIODNs.
Therefore, the functions that set the SRIO LIODNs should not be compiled.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The liodn for the new PCIE controller included in P5040DS is no longer set
through a register in the guts register block but with one in the PCIE
register block itself. Update the PCIE CCSR structure to add the new liodn
register and add a new dedicated SET_PCI_LIODN_BASE macro that puts
the liodn in the correct register.
Signed-off-by: Laurentiu Tudor <Laurentiu.Tudor@freescale.com>
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Erratum: A-004034
Affects: SRIO
Description: During port initialization, the SRIO port performs
lane synchronization (detecting valid symbols on a lane) and
lane alignment (coordinating multiple lanes to receive valid data
across lanes). Internal errors in lane synchronization and lane
alignment may cause failure to achieve link initialization at
the configured port width.
An SRIO port configured as a 4x port may see one of these scenarios:
1. One or more lanes fails to achieve lane synchronization.
Depending on which lanes fail, this may result in downtraining
from 4x to 1x on lane 0, 4x to 1x on lane R (redundant lane).
2. The link may fail to achieve lane alignment as a 4x, even
though all 4 lanes achieve lane synchronization, and downtrain
to a 1x. An SRIO port configured as a 1x port may fail to complete
port initialization (PnESCSR[PU] never deasserts) because of
scenario 1.
Impact: SRIO port may downtrain to 1x, or may fail to complete
link initialization. Once a port completes link initialization
successfully, it will operate normally.
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
P4080 Rev3.0 fixes ESDHC13 errata, so update the code to make the
workaround conditional.
In formal release document, the errata number should be ESDHC13 instead
of ESDHC136.
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Users of familiar with the Linux gpiolib API expect that value parameter
to gpio_direction_output reflects the initial state of the output pin.
gpio_direction_output was always driving the output low, now it drives
it high or low according to the value provided.
Signed-off-by: Chris Packham <chris.packham@alliedtelesis.co.nz>
Cc: Kyle Moffett <Kyle.D.Moffett@boeing.com>
Cc: Andy Fleming <afleming@gmail.com>
Cc: Peter Tyser <ptyser@xes-inc.com>
Cc: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andy Fleming <afleming@freescale.com>
As the board seems to be unmaintained for some time, lets remove
the support in mainline completely.
Signed-off-by: Stefan Roese <sr@denx.de>
Cc: James MacAulay <james.macaulay@amirix.com>
Acked-by: Marek Vasut <marex@denx.de>
As the board seems to be unmaintained for some time, lets remove
the support in mainline completely.
Signed-off-by: Stefan Roese <sr@denx.de>
Cc: Peter De Schrijver <p2@mind.be>
Acked-by: Marek Vasut <marex@denx.de>
Since the IOP480 (PPC401/3 variant from PLX) is only used on 2
boards that are not actively maintained, lets remove support
for it completely. This way the ppc4xx code will get a bit cleaner.
Signed-off-by: Stefan Roese <sr@denx.de>
Acked-by: Matthias Fuchs <matthias.fuchs@esd.eu>
Acked-by: Marek Vasut <marex@denx.de>
Since commit 50a47d0523
(net: punt bd->bi_ip_addr) booting old 2.4.x ppc kernels
is broken due to changed offsets of the fields in struct bd_t.
Offsets of the fields after removed bi_ip_addr are wrong,
causing wrong bus clocks and console baudrate configurations
and various other issues. Re-add the bi_ip_addr field to preserve
backward compatibility with older ppc kernels. Setting bi_ip_addr
in board.c is not really needed, grepping in the 2.4 linux tree
shows that bi_ip_addr is not accessed there. Adding bi_ip_addr
to struct bd_t for other arches isn't needed it seems. bd_t is
not used by other arches in the 2.4 linux tree.
Signed-off-by: Anatolij Gustschin <agust@denx.de>
Acked-by: Wolfgang Denk <wd@denx.de>
Instead of just shooting down the entry that covers CCSR, clear out
every TLB entry that isn't the one that we're executing out of.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Before proper environment is setup, we extract hwconfig and put it into a
buffer with size HWCONFIG_BUFFER_SIZE. We need to enlarge the buffer to
accommodate longer string. Since this macro is used in multiple files, we
move it into arch/powerpc/include/asm/config.h.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Restructure DDR interleaving option to support 3 and 4 DDR controllers
for 2-, 3- and 4-way interleaving.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
When the DDR3 speed goes higher, we need to utilize fine offset
from SPD.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
For the cores with multiple threads, we need to figure out which physical
core a thread belongs. To match the core ids, update PIR registers and
spin tables.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andy Fleming <afleming@freescale.com>
In case more than 32 bit address is used, the EXT bit should be set.
Need to fix up address map for IFC #CS for 4, also need to move # of IFC
banks into config_mpc85xx.h
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
We have actual topology infomation to find out exactly which core is present.
Calculate the number of cores if not specified.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Freescale's High-End SoC are going to have Integrated Flash controller
(IFC)'s support.
So add IFC LAW target ID support for High-End SoC or corenet SoC.
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Freescale's e500v1 and e500v2 cores (used in mpc85xx chips) have some
restrictions on external debugging (JTAG). Need to define define
CONFIG_SYS_PPC_E500_DEBUG_TLB to enable a temporary TLB entry to be
used during boot to work around the limitations.
Enable missed e500v2 SoC i.e. MPC8536, MPC8544, MPC8548 and MPC8572 for
debug support.
Signed-off-by: Radu Lazarescu <radu.lazarescu@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Cc: Tang Yuantian <Yuantian.Tang@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Erratum A004510 says that under certain load conditions, modified
cache lines can be discarded, causing data corruption.
To work around this, several CCSR and DCSR register updates need to be
made in a careful manner, so that there is no other transaction in
corenet when the update is made.
The update is made from a locked cacheline, with a delay before to flush
any previous activity, and a delay after to flush the CCSR/DCSR update.
We can't use a readback because that would be another corenet
transaction, which is not allowed.
We lock the subsequent cacheline to prevent it from being fetched while
we're executing the previous cacheline. It is filled with nops so that a
branch doesn't cause us to fetch another cacheline.
Ordinarily we are running in a cache-inhibited mapping at this point, so
we temporarily change that. We make it guarded so that we should never
see a speculative load, and we never do an explicit load. Thus, only the
I-cache should ever fill from this mapping, and we flush/unlock it
afterward. Thus we should avoid problems from any potential cache
aliasing between inhibited and non-inhibited mappings.
NOTE that if PAMU is used with this patch, it will need to use a
dedicated LAW as described in the erratum. This is the responsibility
of the OS that sets up PAMU.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
These are not supported as individual build targets, but instead
are supported by another target.
The dead p4040 defines in particular had bitrotted significantly.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andy Fleming <afleming@freescale.com>
The P3060 was cancelled before it went into production, so there's no point
in supporting it.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Unlike previous SOCs, the Freescale P5040 has a fifth DTSEC on the second
Fman, so add the Fman and SerDes macros for that DTSEC.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Currently, for NAND boot for the P1010/4RDB we hard code the DDR
configuration. We can still dynamically set the DDR bus width in
the nand spl so the P1010/4RDB boards can boot from the same
u-boot image
Signed-off-by: Matthew McClintock <msm@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
P1015 is the same as P1011 and P1016 is the same as P1012 from software
point of view. They have different packages but share SVRs.
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
When compile the slave image for boot from SRIO, no longer need to
specify which SRIO port it will boot from. The code will get this
information from RCW and then finishes corresponding configurations.
This has the following advantages:
1. No longer need to rebuild an image when change the SRIO port for
boot from SRIO, just rewrite the new RCW with selected port,
then the code will get the port information by reading new RCW.
2. It will be easier to support other boot location options, for
example, boot from PCIE.
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Get rid of the SRIOBOOT_MASTER build target, and to support for serving as
a SRIO boot master via environment variable. Set the environment variable
"bootmaster" to "SRIO1" or "SRIO2" using the following command:
setenv bootmaster SRIO1
saveenv
The "bootmaster" will enable the function of the SRIO boot master, and
this has the following advantages compared with SRIOBOOT_MASTER build
configuration:
1. Reduce a build configuration item in boards.cfg file.
No longer need to build a special image for master, just use a
normal target image and set the "bootmaster" variable.
2. No longer need to rebuild an image when change the SRIO port for
boot from SRIO, just set the corresponding value to "bootmaster"
based on the using SRIO port.
Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
This erratum applies to the following SoCs:
P4080 rev 1.0, 2.0, fixed in rev 3.0
P2041 rev 1.0, 1.1, fixed in rev 2.0
P3041 rev 1.0, 1.1, fixed in rev 2.0.
Workaround for erratum NMG_CPU_A011 is enabled by default. This workaround
may degrade performance. P4080 erratum CPU22 shares the same workaround.
So it is always enabled for P4080. For other SoCs, it can be disabled by
hwconfig with syntax:
fsl_cpu_a011:disable
Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Prototype declaration of I/O operation functions are not correct. as both
'extern' and function definition are at same place.
Chage protoype declaration as static.
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Return type of in_8, in_be16 and in_le16 should not be'int'. Update it to type
u8/u16/u32.
Although 'unsigned' for in_be32 and in_le32 is correct. But to make return type
uniform across the file changed to u32
Similarly, parameter passed to out_8, out_be16, out_le16 ,out_be32 & out_le32
should not be 'int'.Change it to type u8/u16/u32.
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>