use crate::innerlude::*; use fxhash::FxHashMap; use std::{ any::{Any, TypeId}, cell::{Cell, RefCell}, collections::HashMap, future::Future, pin::Pin, rc::Rc, }; use crate::{innerlude::*, lazynodes::LazyNodes}; use bumpalo::{boxed::Box as BumpBox, Bump}; use std::ops::Deref; /// Components in Dioxus use the "Context" object to interact with their lifecycle. /// /// This lets components access props, schedule updates, integrate hooks, and expose shared state. /// /// Note: all of these methods are *imperative* - they do not act as hooks! They are meant to be used by hooks /// to provide complex behavior. For instance, calling "add_shared_state" on every render is considered a leak. This method /// exists for the `use_provide_state` hook to provide a shared state object. /// /// For the most part, the only method you should be using regularly is `render`. /// /// ## Example /// /// ```ignore /// #[derive(Properties)] /// struct Props { /// name: String /// } /// /// fn example(cx: Context) -> VNode { /// html! { ///
"Hello, {cx.name}"
/// } /// } /// ``` pub type Context<'a> = &'a ScopeInner; /// Every component in Dioxus is represented by a `Scope`. /// /// Scopes contain the state for hooks, the component's props, and other lifecycle information. /// /// Scopes are allocated in a generational arena. As components are mounted/unmounted, they will replace slots of dead components. /// The actual contents of the hooks, though, will be allocated with the standard allocator. These should not allocate as frequently. /// /// We expose the `Scope` type so downstream users can traverse the Dioxus VirtualDOM for whatever /// use case they might have. pub struct ScopeInner { // Book-keeping about our spot in the arena pub(crate) parent_idx: Option, pub(crate) our_arena_idx: ScopeId, pub(crate) height: u32, pub(crate) subtree: Cell, pub(crate) is_subtree_root: Cell, // Nodes pub(crate) frames: ActiveFrame, pub(crate) caller: BumpBox<'static, dyn for<'b> Fn(&'b ScopeInner) -> Element<'b>>, /* we care about: - listeners (and how to call them when an event is triggered) - borrowed props (and how to drop them when the parent is dropped) - suspended nodes (and how to call their callback when their associated tasks are complete) */ pub(crate) listeners: RefCell>>, pub(crate) borrowed_props: RefCell>>, pub(crate) suspended_nodes: RefCell>>, pub(crate) tasks: RefCell>>>, pub(crate) pending_effects: RefCell>>, // State pub(crate) hooks: HookList, // todo: move this into a centralized place - is more memory efficient pub(crate) shared_contexts: RefCell>>, // whenever set_state is called, we fire off a message to the scheduler // this closure _is_ the method called by schedule_update that marks this component as dirty pub(crate) memoized_updater: Rc, pub(crate) shared: EventChannel, } /// Public interface for Scopes. impl ScopeInner { /// Get the root VNode for this Scope. /// /// This VNode is the "entrypoint" VNode. If the component renders multiple nodes, then this VNode will be a fragment. /// /// # Example /// ```rust /// let mut dom = VirtualDom::new(|(cx, props)|cx.render(rsx!{ div {} })); /// dom.rebuild(); /// /// let base = dom.base_scope(); /// /// if let VNode::VElement(node) = base.root_node() { /// assert_eq!(node.tag_name, "div"); /// } /// ``` pub fn root_node(&self) -> &VNode { self.frames.fin_head() } /// Get the subtree ID that this scope belongs to. /// /// Each component has its own subtree ID - the root subtree has an ID of 0. This ID is used by the renderer to route /// the mutations to the correct window/portal/subtree. /// /// /// # Example /// /// ```rust /// let mut dom = VirtualDom::new(|(cx, props)|cx.render(rsx!{ div {} })); /// dom.rebuild(); /// /// let base = dom.base_scope(); /// /// assert_eq!(base.subtree(), 0); /// ``` pub fn subtree(&self) -> u32 { self.subtree.get() } pub(crate) fn new_subtree(&self) -> Option { if self.is_subtree_root.get() { None } else { let cur = self.shared.cur_subtree.get(); self.shared.cur_subtree.set(cur + 1); Some(cur) } } /// Get the height of this Scope - IE the number of scopes above it. /// /// A Scope with a height of `0` is the root scope - there are no other scopes above it. /// /// # Example /// /// ```rust /// let mut dom = VirtualDom::new(|(cx, props)|cx.render(rsx!{ div {} })); /// dom.rebuild(); /// /// let base = dom.base_scope(); /// /// assert_eq!(base.height(), 0); /// ``` pub fn height(&self) -> u32 { self.height } /// Get the Parent of this Scope within this Dioxus VirtualDOM. /// /// This ID is not unique across Dioxus VirtualDOMs or across time. IDs will be reused when components are unmounted. /// /// The base component will not have a parent, and will return `None`. /// /// # Example /// /// ```rust /// let mut dom = VirtualDom::new(|(cx, props)|cx.render(rsx!{ div {} })); /// dom.rebuild(); /// /// let base = dom.base_scope(); /// /// assert_eq!(base.parent(), None); /// ``` pub fn parent(&self) -> Option { self.parent_idx } /// Get the ID of this Scope within this Dioxus VirtualDOM. /// /// This ID is not unique across Dioxus VirtualDOMs or across time. IDs will be reused when components are unmounted. /// /// # Example /// /// ```rust /// let mut dom = VirtualDom::new(|(cx, props)|cx.render(rsx!{ div {} })); /// dom.rebuild(); /// let base = dom.base_scope(); /// /// assert_eq!(base.scope_id(), 0); /// ``` pub fn scope_id(&self) -> ScopeId { self.our_arena_idx } } // The type of closure that wraps calling components /// The type of task that gets sent to the task scheduler /// Submitting a fiber task returns a handle to that task, which can be used to wake up suspended nodes pub type FiberTask = Pin>>; /// Private interface for Scopes. impl ScopeInner { // we are being created in the scope of an existing component (where the creator_node lifetime comes into play) // we are going to break this lifetime by force in order to save it on ourselves. // To make sure that the lifetime isn't truly broken, we receive a Weak RC so we can't keep it around after the parent dies. // This should never happen, but is a good check to keep around // // Scopes cannot be made anywhere else except for this file // Therefore, their lifetimes are connected exclusively to the virtual dom pub(crate) fn new( caller: BumpBox Fn(&'b ScopeInner) -> Element<'b>>, our_arena_idx: ScopeId, parent_idx: Option, height: u32, subtree: u32, shared: EventChannel, ) -> Self { let schedule_any_update = shared.schedule_any_immediate.clone(); let memoized_updater = Rc::new(move || schedule_any_update(our_arena_idx)); // wipe away the associated lifetime - we are going to manually manage the one-way lifetime graph let caller = unsafe { std::mem::transmute(caller) }; Self { memoized_updater, shared, caller, parent_idx, our_arena_idx, height, subtree: Cell::new(subtree), is_subtree_root: Cell::new(false), tasks: Default::default(), frames: ActiveFrame::new(), hooks: Default::default(), pending_effects: Default::default(), suspended_nodes: Default::default(), shared_contexts: Default::default(), listeners: Default::default(), borrowed_props: Default::default(), } } pub(crate) fn update_scope_dependencies( &mut self, caller: &dyn for<'b> Fn(&'b ScopeInner) -> Element<'b>, ) { log::debug!("Updating scope dependencies {:?}", self.our_arena_idx); let caller = caller as *const _; self.caller = unsafe { std::mem::transmute(caller) }; } /// This method cleans up any references to data held within our hook list. This prevents mutable aliasing from /// causing UB in our tree. /// /// This works by cleaning up our references from the bottom of the tree to the top. The directed graph of components /// essentially forms a dependency tree that we can traverse from the bottom to the top. As we traverse, we remove /// any possible references to the data in the hook list. /// /// References to hook data can only be stored in listeners and component props. During diffing, we make sure to log /// all listeners and borrowed props so we can clear them here. /// /// This also makes sure that drop order is consistent and predictable. All resources that rely on being dropped will /// be dropped. pub(crate) fn ensure_drop_safety(&mut self, pool: &ResourcePool) { // make sure we drop all borrowed props manually to guarantee that their drop implementation is called before we // run the hooks (which hold an &mut Reference) // right now, we don't drop self.borrowed_props .get_mut() .drain(..) .map(|li| unsafe { &*li }) .for_each(|comp| { // First drop the component's undropped references let scope_id = comp .associated_scope .get() .expect("VComponents should be associated with a valid Scope"); if let Some(scope) = pool.get_scope_mut(scope_id) { scope.ensure_drop_safety(pool); let mut drop_props = comp.drop_props.borrow_mut().take().unwrap(); drop_props(); } }); // Now that all the references are gone, we can safely drop our own references in our listeners. self.listeners .get_mut() .drain(..) .map(|li| unsafe { &*li }) .for_each(|listener| drop(listener.callback.borrow_mut().take())); } /// A safe wrapper around calling listeners pub(crate) fn call_listener(&mut self, event: UserEvent, element: ElementId) { let listners = self.listeners.borrow_mut(); let raw_listener = listners.iter().find(|lis| { let search = unsafe { &***lis }; if search.event == event.name { let search_id = search.mounted_node.get(); search_id.map(|f| f == element).unwrap_or(false) } else { false } }); if let Some(raw_listener) = raw_listener { let listener = unsafe { &**raw_listener }; let mut cb = listener.callback.borrow_mut(); if let Some(cb) = cb.as_mut() { (cb)(event.event); } } else { log::warn!("An event was triggered but there was no listener to handle it"); } } /* General strategy here is to load up the appropriate suspended task and then run it. Suspended nodes cannot be called repeatedly. */ pub(crate) fn call_suspended_node<'a>(&'a mut self, task_id: u64) { let mut nodes = self.suspended_nodes.borrow_mut(); if let Some(suspended) = nodes.remove(&task_id) { let sus: &'a VSuspended<'static> = unsafe { &*suspended }; let sus: &'a VSuspended<'a> = unsafe { std::mem::transmute(sus) }; let mut boxed = sus.callback.borrow_mut().take().unwrap(); let new_node: Element<'a> = boxed(); } } // run the list of effects pub(crate) fn run_effects(&mut self, pool: &ResourcePool) { todo!() // let mut effects = self.frames.effects.borrow_mut(); // let mut effects = effects.drain(..).collect::>(); // for effect in effects { // let effect = unsafe { &*effect }; // let effect = effect.as_ref(); // let mut effect = effect.borrow_mut(); // let mut effect = effect.as_mut(); // effect.run(pool); // } } /// Render this component. /// /// Returns true if the scope completed successfully and false if running failed (IE a None error was propagated). pub(crate) fn run_scope<'sel>(&'sel mut self, pool: &ResourcePool) -> bool { // Cycle to the next frame and then reset it // This breaks any latent references, invalidating every pointer referencing into it. // Remove all the outdated listeners self.ensure_drop_safety(pool); // Safety: // - We dropped the listeners, so no more &mut T can be used while these are held // - All children nodes that rely on &mut T are replaced with a new reference unsafe { self.hooks.reset() }; // Safety: // - We've dropped all references to the wip bump frame unsafe { self.frames.reset_wip_frame() }; // just forget about our suspended nodes while we're at it self.suspended_nodes.get_mut().clear(); // guarantee that we haven't screwed up - there should be no latent references anywhere debug_assert!(self.listeners.borrow().is_empty()); debug_assert!(self.suspended_nodes.borrow().is_empty()); debug_assert!(self.borrowed_props.borrow().is_empty()); log::debug!("Borrowed stuff is successfully cleared"); // Cast the caller ptr from static to one with our own reference let render: &dyn for<'b> Fn(&'b ScopeInner) -> Element<'b> = unsafe { &*self.caller }; // Todo: see if we can add stronger guarantees around internal bookkeeping and failed component renders. if let Some(builder) = render(self) { let new_head = builder.into_vnode(NodeFactory { bump: &self.frames.wip_frame().bump, }); log::debug!("Render is successful"); // the user's component succeeded. We can safely cycle to the next frame self.frames.wip_frame_mut().head_node = unsafe { std::mem::transmute(new_head) }; self.frames.cycle_frame(); true } else { false } } /// Create a subscription that schedules a future render for the reference component /// /// ## Notice: you should prefer using prepare_update and get_scope_id pub fn schedule_update(&self) -> Rc { self.memoized_updater.clone() } /// Get the [`ScopeId`] of a mounted component. /// /// `ScopeId` is not unique for the lifetime of the VirtualDom - a ScopeId will be reused if a component is unmounted. pub fn needs_update(&self) { (self.memoized_updater)() } /// Get the [`ScopeId`] of a mounted component. /// /// `ScopeId` is not unique for the lifetime of the VirtualDom - a ScopeId will be reused if a component is unmounted. pub fn needs_update_any(&self, id: ScopeId) { (self.shared.schedule_any_immediate)(id) } /// Schedule an update for any component given its ScopeId. /// /// A component's ScopeId can be obtained from `use_hook` or the [`Context::scope_id`] method. /// /// This method should be used when you want to schedule an update for a component pub fn schedule_update_any(&self) -> Rc { self.shared.schedule_any_immediate.clone() } /// Get the [`ScopeId`] of a mounted component. /// /// `ScopeId` is not unique for the lifetime of the VirtualDom - a ScopeId will be reused if a component is unmounted. pub fn bump(&self) -> &Bump { let bump = &self.frames.wip_frame().bump; bump } /// Take a lazy VNode structure and actually build it with the context of the VDom's efficient VNode allocator. /// /// This function consumes the context and absorb the lifetime, so these VNodes *must* be returned. /// /// ## Example /// /// ```ignore /// fn Component(cx: Context<()>) -> VNode { /// // Lazy assemble the VNode tree /// let lazy_tree = html! {
"Hello World"
}; /// /// // Actually build the tree and allocate it /// cx.render(lazy_tree) /// } ///``` pub fn render<'src>( &'src self, lazy_nodes: Option>, ) -> Option> { let bump = &self.frames.wip_frame().bump; let factory = NodeFactory { bump }; lazy_nodes.map(|f| f.call(factory)) } /// Push an effect to be ran after the component has been successfully mounted to the dom /// Returns the effect's position in the stack pub fn push_effect<'src>(&'src self, effect: impl FnOnce() + 'src) -> usize { // this is some tricker to get around not being able to actually call fnonces let mut slot = Some(effect); let fut: &mut dyn FnMut() = self.bump().alloc(move || slot.take().unwrap()()); // wrap it in a type that will actually drop the contents let boxed_fut = unsafe { BumpBox::from_raw(fut) }; // erase the 'src lifetime for self-referential storage let self_ref_fut = unsafe { std::mem::transmute(boxed_fut) }; self.pending_effects.borrow_mut().push(self_ref_fut); self.pending_effects.borrow().len() - 1 } /// Pushes the future onto the poll queue to be polled /// The future is forcibly dropped if the component is not ready by the next render pub fn push_task<'src>(&'src self, fut: impl Future + 'src) -> usize { // allocate the future let fut: &mut dyn Future = self.bump().alloc(fut); // wrap it in a type that will actually drop the contents let boxed_fut: BumpBox> = unsafe { BumpBox::from_raw(fut) }; // erase the 'src lifetime for self-referential storage let self_ref_fut = unsafe { std::mem::transmute(boxed_fut) }; self.tasks.borrow_mut().push(self_ref_fut); self.tasks.borrow().len() - 1 } /// This method enables the ability to expose state to children further down the VirtualDOM Tree. /// /// This is a "fundamental" operation and should only be called during initialization of a hook. /// /// For a hook that provides the same functionality, use `use_provide_state` and `use_consume_state` instead. /// /// When the component is dropped, so is the context. Be aware of this behavior when consuming /// the context via Rc/Weak. /// /// # Example /// /// ``` /// struct SharedState(&'static str); /// /// static App: FC<()> = |(cx, props)|{ /// cx.use_hook(|_| cx.provide_state(SharedState("world")), |_| {}, |_| {}); /// rsx!(cx, Child {}) /// } /// /// static Child: FC<()> = |(cx, props)|{ /// let state = cx.consume_state::(); /// rsx!(cx, div { "hello {state.0}" }) /// } /// ``` pub fn provide_state(self, value: T) where T: 'static, { self.shared_contexts .borrow_mut() .insert(TypeId::of::(), Rc::new(value)) .map(|f| f.downcast::().ok()) .flatten(); } /// Try to retrieve a SharedState with type T from the any parent Scope. pub fn consume_state(self) -> Option> { let getter = &self.shared.get_shared_context; let ty = TypeId::of::(); let idx = self.our_arena_idx; getter(idx, ty).map(|f| f.downcast().unwrap()) } /// Create a new subtree with this scope as the root of the subtree. /// /// Each component has its own subtree ID - the root subtree has an ID of 0. This ID is used by the renderer to route /// the mutations to the correct window/portal/subtree. /// /// This method /// /// # Example /// /// ```rust /// static App: FC<()> = |(cx, props)| { /// todo!(); /// rsx!(cx, div { "Subtree {id}"}) /// }; /// ``` pub fn create_subtree(self) -> Option { self.new_subtree() } /// Get the subtree ID that this scope belongs to. /// /// Each component has its own subtree ID - the root subtree has an ID of 0. This ID is used by the renderer to route /// the mutations to the correct window/portal/subtree. /// /// # Example /// /// ```rust /// static App: FC<()> = |(cx, props)| { /// let id = cx.get_current_subtree(); /// rsx!(cx, div { "Subtree {id}"}) /// }; /// ``` pub fn get_current_subtree(self) -> u32 { self.subtree() } /// Store a value between renders /// /// This is *the* foundational hook for all other hooks. /// /// - Initializer: closure used to create the initial hook state /// - Runner: closure used to output a value every time the hook is used /// - Cleanup: closure used to teardown the hook once the dom is cleaned up /// /// /// # Example /// /// ```ignore /// // use_ref is the simplest way of storing a value between renders /// fn use_ref(initial_value: impl FnOnce() -> T) -> &RefCell { /// use_hook( /// || Rc::new(RefCell::new(initial_value())), /// |state| state, /// |_| {}, /// ) /// } /// ``` pub fn use_hook<'src, State, Output, Init, Run, Cleanup>( &'src self, initializer: Init, runner: Run, cleanup: Cleanup, ) -> Output where State: 'static, Output: 'src, Init: FnOnce(usize) -> State, Run: FnOnce(&'src mut State) -> Output, Cleanup: FnOnce(Box) + 'static, { // If the idx is the same as the hook length, then we need to add the current hook if self.hooks.at_end() { self.hooks.push_hook( initializer(self.hooks.len()), Box::new(|raw| { let s = raw.downcast::().unwrap(); cleanup(s); }), ); } runner(self.hooks.next::().expect(HOOK_ERR_MSG)) } } const HOOK_ERR_MSG: &str = r###" Unable to retrieve the hook that was initialized at this index. Consult the `rules of hooks` to understand how to use hooks properly. You likely used the hook in a conditional. Hooks rely on consistent ordering between renders. Functions prefixed with "use" should never be called conditionally. "###;