# Objective
- Folder handles are not shared. Loading the same folder multiple times
will result in different handles.
- Once folder handles are shared, they can no longer be manually
reloaded, so we should add support for hot-reloading them
## Solution
- Reuse folder handles based on their path
- Trigger a reload of a folder if a file contained in it (or a sub
folder) is added or removed
- This also covers adding/removing/moving sub folders containing files
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Assets v2 does not currently offer a public API to load untyped assets
## Solution
- Wrap the untyped handle in a `LoadedUntypedAsset` asset to offer a
non-blocking load for untyped assets. The user does not need to know the
actual asset type.
- Handles to `LoadedUntypedAsset` have the same path as the wrapped
asset, but their handles are shared using a label.
The user side of `load_untyped` looks like this:
```rust
use bevy::prelude::*;
use bevy_internal::asset::LoadedUntypedAsset;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(Update, check)
.run();
}
#[derive(Resource)]
struct UntypedAsset {
handle: Handle<LoadedUntypedAsset>,
}
fn setup(
mut commands: Commands,
asset_server: Res<AssetServer>,
) {
let handle = asset_server.load_untyped("branding/banner.png");
commands.insert_resource(UntypedAsset { handle });
commands.spawn(Camera2dBundle::default());
}
fn check(
mut commands: Commands,
res: Option<Res<UntypedAsset>>,
assets: Res<Assets<LoadedUntypedAsset>>,
) {
if let Some(untyped_asset) = res {
if let Some(asset) = assets.get(&untyped_asset.handle) {
commands.spawn(SpriteBundle {
texture: asset.handle.clone().typed(),
..default()
});
commands.remove_resource::<UntypedAsset>();
}
}
}
```
---
## Changelog
- `load_untyped` on the asset server now returns a handle to a
`LoadedUntypedAsset` instead of an untyped handle to the asset at the
given path. The untyped handle for the given path can be retrieved from
the `LoadedUntypedAsset` once it is done loading.
## Migration Guide
Whenever possible use the typed API in order to directly get a handle to
your asset. If you do not know the type or need to use `load_untyped`
for a different reason, Bevy 0.12 introduces an additional layer of
indirection. The asset server will return a handle to a
`LoadedUntypedAsset`, which will load in the background. Once it is
loaded, the untyped handle to the asset file can be retrieved from the
`LoadedUntypedAsset`s field `handle`.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Fixes#9395
Alternative to #9415 (See discussion here)
## Solution
Do clamping like
[`fit-content`](https://www.w3.org/TR/css-sizing-3/#column-sizing).
## Notes
I am not sure if this is a valid approach. It doesn't seem to cause any
obvious issues with our existing examples.
# Objective
- Hot reloading doesn't work the first time it is used
## Solution
- Currently, Bevy processor:
1. Create the `imported_assets` folder
2. Setup a watcher on it
3. Clear empty folders, so the `imported_assets` folder is deleted
4. Recreate the `imported_assets` folder and add all the imported assets
- On a first run without an existing `imported_assets` with some
content, hot reloading won't work as step 3 breaks the file watcher
- This PR stops the empty root folder from being deleted
- Also don't setup the processor internal asset server for file
watching, freeing up a thread
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Fixes#9473
## Solution
Added `resolve()` method to AssetPath. This method accepts a relative
asset path string and returns a "full" path that has been resolved
relative to the current (self) path.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
First of all, this PR took heavy inspiration from #7760 and #5715. It
intends to also fix#5569, but with a slightly different approach.
This also fixes#9335 by reexporting `DynEq`.
## Solution
The advantage of this API is that we can intern a value without
allocating for zero-sized-types and for enum variants that have no
fields. This PR does this automatically in the `SystemSet` and
`ScheduleLabel` derive macros for unit structs and fieldless enum
variants. So this should cover many internal and external use cases of
`SystemSet` and `ScheduleLabel`. In these optimal use cases, no memory
will be allocated.
- The interning returns a `Interned<dyn SystemSet>`, which is just a
wrapper around a `&'static dyn SystemSet`.
- `Hash` and `Eq` are implemented in terms of the pointer value of the
reference, similar to my first approach of anonymous system sets in
#7676.
- Therefore, `Interned<T>` does not implement `Borrow<T>`, only `Deref`.
- The debug output of `Interned<T>` is the same as the interned value.
Edit:
- `AppLabel` is now also interned and the old
`derive_label`/`define_label` macros were replaced with the new
interning implementation.
- Anonymous set ids are reused for different `Schedule`s, reducing the
amount of leaked memory.
### Pros
- `InternedSystemSet` and `InternedScheduleLabel` behave very similar to
the current `BoxedSystemSet` and `BoxedScheduleLabel`, but can be copied
without an allocation.
- Many use cases don't allocate at all.
- Very fast lookups and comparisons when using `InternedSystemSet` and
`InternedScheduleLabel`.
- The `intern` module might be usable in other areas.
- `Interned{ScheduleLabel, SystemSet, AppLabel}` does implement
`{ScheduleLabel, SystemSet, AppLabel}`, increasing ergonomics.
### Cons
- Implementors of `SystemSet` and `ScheduleLabel` still need to
implement `Hash` and `Eq` (and `Clone`) for it to work.
## Changelog
### Added
- Added `intern` module to `bevy_utils`.
- Added reexports of `DynEq` to `bevy_ecs` and `bevy_app`.
### Changed
- Replaced `BoxedSystemSet` and `BoxedScheduleLabel` with
`InternedSystemSet` and `InternedScheduleLabel`.
- Replaced `impl AsRef<dyn ScheduleLabel>` with `impl ScheduleLabel`.
- Replaced `AppLabelId` with `InternedAppLabel`.
- Changed `AppLabel` to use `Debug` for error messages.
- Changed `AppLabel` to use interning.
- Changed `define_label`/`derive_label` to use interning.
- Replaced `define_boxed_label`/`derive_boxed_label` with
`define_label`/`derive_label`.
- Changed anonymous set ids to be only unique inside a schedule, not
globally.
- Made interned label types implement their label trait.
### Removed
- Removed `define_boxed_label` and `derive_boxed_label`.
## Migration guide
- Replace `BoxedScheduleLabel` and `Box<dyn ScheduleLabel>` with
`InternedScheduleLabel` or `Interned<dyn ScheduleLabel>`.
- Replace `BoxedSystemSet` and `Box<dyn SystemSet>` with
`InternedSystemSet` or `Interned<dyn SystemSet>`.
- Replace `AppLabelId` with `InternedAppLabel` or `Interned<dyn
AppLabel>`.
- Types manually implementing `ScheduleLabel`, `AppLabel` or `SystemSet`
need to implement:
- `dyn_hash` directly instead of implementing `DynHash`
- `as_dyn_eq`
- Pass labels to `World::try_schedule_scope`, `World::schedule_scope`,
`World::try_run_schedule`. `World::run_schedule`, `Schedules::remove`,
`Schedules::remove_entry`, `Schedules::contains`, `Schedules::get` and
`Schedules::get_mut` by value instead of by reference.
---------
Co-authored-by: Joseph <21144246+JoJoJet@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
When a mesh vertex attribute has a vertex count mismatch, a warning
message is printed with the index of the attribute which did not match.
Change to name the attribute, or fall back to the old behaviour if it
was not a known attribute.
Before:
```
MeshVertexAttributeId(2) has a different vertex count (32) than other attributes (64) in this mesh, all attributes will be truncated to match the smallest.
```
After:
```
Vertex_Uv has a different vertex count (32) than other attributes (64) in this mesh, all attributes will be truncated to match the smallest.
```
## Solution
Name the mesh attribute which had a count mismatch.
## Changelog
- If a mesh vertex attribute has a different count than other vertex
attributes, name the offending attribute using a human readable name
Signed-off-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
Co-authored-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
# Objective
- the style of import used by bevy guarantees merge conflicts when any
file change
- This is especially true when import lists are large, such as in
`bevy_pbr`
- Merge conflicts are tricky to resolve. This bogs down rendering PRs
and makes contributing to bevy's rendering system more difficult than it
needs to
## Solution
- Use wildcard imports to replace multiline import list in `bevy_pbr`
I suspect this is controversial, but I'd like to hear alternatives.
Because this is one of many papercuts that makes developing render
features near impossible.
Closes#9946
# Objective
Add a new type mirroring `wgpu::SamplerDescriptor` for
`ImageLoaderSettings` to control how a loaded image should be sampled.
Fix issues with texture sampler descriptors not being set when loading
gltf texture from URI.
## Solution
Add a new `ImageSamplerDescriptor` and its affiliated types that mirrors
`wgpu::SamplerDescriptor`, use it in the image loader settings.
---
## Changelog
### Added
- Added new types `ImageSamplerDescriptor`, `ImageAddressMode`,
`ImageFilterMode`, `ImageCompareFunction` and `ImageSamplerBorderColor`
that mirrors the corresponding wgpu types.
- `ImageLoaderSettings` now carries an `ImageSamplerDescriptor` field
that will be used to determine how the loaded image is sampled, and will
be serialized as part of the image assets `.meta` files.
### Changed
- `Image::from_buffer` now takes the sampler descriptor to use as an
additional parameter.
### Fixed
- Sampler descriptors are set for gltf textures loaded from URI.
# Objective
- Fixes#10250
```
[Log] ERROR crates/bevy_render/src/render_resource/pipeline_cache.rs:823 failed to process shader: (wasm_example.js, line 376)
error: no definition in scope for identifier: 'bevy_pbr::pbr_deferred_functions::unpack_unorm3x4_plus_unorm_20_'
┌─ crates/bevy_pbr/src/deferred/deferred_lighting.wgsl:44:20
│
44 │ frag_coord.z = bevy_pbr::pbr_deferred_functions::unpack_unorm3x4_plus_unorm_20_(deferred_data.b).w;
│ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ unknown identifier
│
= no definition in scope for identifier: 'bevy_pbr::pbr_deferred_functions::unpack_unorm3x4_plus_unorm_20_'
```
## Solution
- Fix the import path
The "gray" issue is since #9258 on macOS
... at least they're not white anymore
<img width="1294" alt="Screenshot 2023-10-25 at 00 14 11"
src="https://github.com/bevyengine/bevy/assets/8672791/df1a1138-c26c-4417-9b49-a00fbb8561d7">
Updates the requirements on
[async-io](https://github.com/smol-rs/async-io) to permit the latest
version.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/smol-rs/async-io/releases">async-io's
releases</a>.</em></p>
<blockquote>
<h2>v2.0.0</h2>
<ul>
<li><strong>Breaking:</strong> <code>Async::new()</code> now takes types
that implement <code>AsFd</code>/<code>AsSocket</code> instead of
<code>AsRawFd</code>/<code>AsRawSocket</code>, in order to implement I/O
safety. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/142">#142</a>)</li>
<li><strong>Breaking:</strong> <code>Async::get_mut()</code>,
<code>Async::read_with_mut()</code> and
<code>Async::write_with_mut()</code> are now <code>unsafe</code>. The
underlying source is technically "borrowed" by the polling
instance, so moving it out would be unsound. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/142">#142</a>)</li>
<li>Expose miscellaneous <code>kqueue</code> filters in the
<code>os::kqueue</code> module. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/112">#112</a>)</li>
<li>Expose a way to get the underlying <code>Poller</code>'s file
descriptor on Unix. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/125">#125</a>)</li>
<li>Add a new <code>Async::new_nonblocking</code> method to allow users
to avoid duplicating an already nonblocking socket. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/159">#159</a>)</li>
<li>Remove the unused <code>fastrand</code> and <code>memchr</code>
dependencies. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/131">#131</a>)</li>
<li>Use <code>tracing</code> instead of <code>log</code>. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/140">#140</a>)</li>
<li>Support ESP-IDF. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/144">#144</a>)</li>
<li>Optimize the <code>block_on</code> function to reduce allocation,
leading to a slight performance improvement. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/149">#149</a>)</li>
</ul>
</blockquote>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/smol-rs/async-io/blob/master/CHANGELOG.md">async-io's
changelog</a>.</em></p>
<blockquote>
<h1>Version 2.0.0</h1>
<ul>
<li><strong>Breaking:</strong> <code>Async::new()</code> now takes types
that implement <code>AsFd</code>/<code>AsSocket</code> instead of
<code>AsRawFd</code>/<code>AsRawSocket</code>, in order to implement I/O
safety. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/142">#142</a>)</li>
<li><strong>Breaking:</strong> <code>Async::get_mut()</code>,
<code>Async::read_with_mut()</code> and
<code>Async::write_with_mut()</code> are now <code>unsafe</code>. The
underlying source is technically "borrowed" by the polling
instance, so moving it out would be unsound. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/142">#142</a>)</li>
<li>Expose miscellaneous <code>kqueue</code> filters in the
<code>os::kqueue</code> module. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/112">#112</a>)</li>
<li>Expose a way to get the underlying <code>Poller</code>'s file
descriptor on Unix. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/125">#125</a>)</li>
<li>Add a new <code>Async::new_nonblocking</code> method to allow users
to avoid duplicating an already nonblocking socket. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/159">#159</a>)</li>
<li>Remove the unused <code>fastrand</code> and <code>memchr</code>
dependencies. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/131">#131</a>)</li>
<li>Use <code>tracing</code> instead of <code>log</code>. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/140">#140</a>)</li>
<li>Support ESP-IDF. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/144">#144</a>)</li>
<li>Optimize the <code>block_on</code> function to reduce allocation,
leading to a slight performance improvement. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/149">#149</a>)</li>
</ul>
<h1>Version 1.13.0</h1>
<ul>
<li>Use <a
href="https://crates.io/crates/rustix/"><code>rustix</code></a> instead
of <a href="https://crates.io/crates/libc/"><code>libc</code></a>/<a
href="https://crates.io/crates/windows-sys/"><code>windows-sys</code></a>
for system calls (<a
href="https://redirect.github.com/smol-rs/async-io/issues/76">#76</a>)</li>
<li>Add a <code>will_fire</code> method to <code>Timer</code> to test if
it will ever fire (<a
href="https://redirect.github.com/smol-rs/async-io/issues/106">#106</a>)</li>
<li>Reduce syscalls in <code>Async::new</code> (<a
href="https://redirect.github.com/smol-rs/async-io/issues/107">#107</a>)</li>
<li>Improve the drop ergonomics of <code>Readable</code> and
<code>Writable</code> (<a
href="https://redirect.github.com/smol-rs/async-io/issues/109">#109</a>)</li>
<li>Change the "<code>wepoll</code>" in documentation to
"<code>IOCP</code>" (<a
href="https://redirect.github.com/smol-rs/async-io/issues/116">#116</a>)</li>
</ul>
<h1>Version 1.12.0</h1>
<ul>
<li>Switch from <code>winapi</code> to <code>windows-sys</code> (<a
href="https://redirect.github.com/smol-rs/async-io/issues/102">#102</a>)</li>
</ul>
<h1>Version 1.11.0</h1>
<ul>
<li>Update <code>concurrent-queue</code> to v2. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/99">#99</a>)</li>
</ul>
<h1>Version 1.10.0</h1>
<ul>
<li>Remove the dependency on the <code>once_cell</code> crate to restore
the MSRV. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/95">#95</a>)</li>
</ul>
<h1>Version 1.9.0</h1>
<ul>
<li>Fix panic on very large durations. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/87">#87</a>)</li>
<li>Add <code>Timer::never</code> (<a
href="https://redirect.github.com/smol-rs/async-io/issues/87">#87</a>)</li>
</ul>
<h1>Version 1.8.0</h1>
<ul>
<li>Implement I/O safety traits on Rust 1.63+ (<a
href="https://redirect.github.com/smol-rs/async-io/issues/84">#84</a>)</li>
</ul>
<h1>Version 1.7.0</h1>
<ul>
<li>Process timers set for exactly <code>now</code>. (<a
href="https://redirect.github.com/smol-rs/async-io/issues/73">#73</a>)</li>
</ul>
<h1>Version 1.6.0</h1>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="7e89eec4d1"><code>7e89eec</code></a>
v2.0.0</li>
<li><a
href="356431754c"><code>3564317</code></a>
tests: Add test for <a
href="https://redirect.github.com/smol-rs/async-io/issues/154">#154</a></li>
<li><a
href="a5da16f072"><code>a5da16f</code></a>
Expose Async::new_nonblocking</li>
<li><a
href="0f2af634d8"><code>0f2af63</code></a>
Avoid needless set_nonblocking calls</li>
<li><a
href="62e3454f38"><code>62e3454</code></a>
Migrate to Rust 2021 (<a
href="https://redirect.github.com/smol-rs/async-io/issues/160">#160</a>)</li>
<li><a
href="59ee2ea27c"><code>59ee2ea</code></a>
Use set_nonblocking in Async::new on Windows (<a
href="https://redirect.github.com/smol-rs/async-io/issues/157">#157</a>)</li>
<li><a
href="d5bc619021"><code>d5bc619</code></a>
Remove needless as_fd/as_socket calls (<a
href="https://redirect.github.com/smol-rs/async-io/issues/158">#158</a>)</li>
<li><a
href="0b5016e567"><code>0b5016e</code></a>
m: Replace socket2 calls with rustix</li>
<li><a
href="8c3c3bd80b"><code>8c3c3bd</code></a>
m: Optimize block_on by caching Parker and Waker</li>
<li><a
href="1b1466a6c1"><code>1b1466a</code></a>
Update this crate to use the new polling breaking changes (<a
href="https://redirect.github.com/smol-rs/async-io/issues/142">#142</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/smol-rs/async-io/compare/v1.13.0...v2.0.0">compare
view</a></li>
</ul>
</details>
<br />
Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.
[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)
---
<details>
<summary>Dependabot commands and options</summary>
<br />
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
</details>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
# Objective
A follow-up PR for https://github.com/bevyengine/bevy/pull/10221
## Changelog
Replaced usages of texture_descriptor.size with the helper methods of
`Image` through the entire engine codebase
# Objective
Reduce code duplication and improve APIs of Bevy's [global
taskpools](https://github.com/bevyengine/bevy/blob/main/crates/bevy_tasks/src/usages.rs).
## Solution
- As all three of the global taskpools have identical implementations
and only differ in their identifiers, this PR moves the implementation
into a macro to reduce code duplication.
- The `init` method is renamed to `get_or_init` to more accurately
reflect what it really does.
- Add a new `try_get` method that just returns `None` when the pool is
uninitialized, to complement the other getter methods.
- Minor documentation improvements to accompany the above changes.
---
## Changelog
- Added a new `try_get` method to the global TaskPools
- The global TaskPools' `init` method has been renamed to `get_or_init`
for clarity
- Documentation improvements
## Migration Guide
- Uses of `ComputeTaskPool::init`, `AsyncComputeTaskPool::init` and
`IoTaskPool::init` should be changed to `::get_or_init`.
# Objective
- Handle pausing audio when Android app is suspended
## Solution
- This is the start of application lifetime events. They are mostly
useful on mobile
- Next version of winit should add a few more
- When application is suspended, send an event to notify the
application, and run the schedule one last time before actually
suspending the app
- Audio is now suspended too 🎉https://github.com/bevyengine/bevy/assets/8672791/d74e2e09-ee29-4f40-adf2-36a0c064f94e
---------
Co-authored-by: Marco Buono <418473+coreh@users.noreply.github.com>
# Objective
Fog color was passed to shaders without conversion from sRGB to linear
color space. Because shaders expect colors in linear space this resulted
in wrong color being used. This is most noticeable in open scenes with
dark fog color and clear color set to the same color. In such case
background/clear color (which is properly processed) is going to be
darker than very far objects.
Example:
![image](https://github.com/bevyengine/bevy/assets/160391/89b70d97-b2d0-4bc5-80f4-c9e8b8801c4c)
[bevy-fog-color-bug.zip](https://github.com/bevyengine/bevy/files/13063718/bevy-fog-color-bug.zip)
## Solution
Add missing conversion of fog color to linear color space.
---
## Changelog
* Fixed conversion of fog color
## Migration Guide
- Colors in `FogSettings` struct (`color` and `directional_light_color`)
are now sent to the GPU in linear space. If you were using
`Color::rgb()`/`Color::rgba()` and would like to retain the previous
colors, you can quickly fix it by switching to
`Color::rgb_linear()`/`Color::rgba_linear()`.
# Objective
- After #9826, there are issues on "run once runners"
- example `without_winit` crashes:
```
2023-10-19T22:06:01.810019Z INFO bevy_render::renderer: AdapterInfo { name: "llvmpipe (LLVM 15.0.7, 256 bits)", vendor: 65541, device: 0, device_type: Cpu, driver: "llvmpipe", driver_info: "Mesa 23.2.1 - kisak-mesa PPA (LLVM 15.0.7)", backend: Vulkan }
2023-10-19T22:06:02.860331Z WARN bevy_audio::audio_output: No audio device found.
2023-10-19T22:06:03.215154Z INFO bevy_diagnostic::system_information_diagnostics_plugin::internal: SystemInfo { os: "Linux 22.04 Ubuntu", kernel: "6.2.0-1014-azure", cpu: "Intel(R) Xeon(R) CPU E5-2673 v3 @ 2.40GHz", core_count: "2", memory: "6.8 GiB" }
thread 'main' panicked at crates/bevy_render/src/pipelined_rendering.rs:91:14:
Unable to get RenderApp. Another plugin may have removed the RenderApp before PipelinedRenderingPlugin
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
```
- example `headless` runs the app twice with the `run_once` schedule
## Solution
- Expose a more complex state of an app than just "ready"
- Also block adding plugins to an app after it has finished or cleaned
up its plugins as that wouldn't work anyway
## Migration Guide
* `app.ready()` has been replaced by `app.plugins_state()` which will
return more details on the current state of plugins in the app
# Objective
- Replace md5 by another hasher, as suggested in
https://github.com/bevyengine/bevy/pull/8624#discussion_r1359291028
- md5 is not secure, and is slow. use something more secure and faster
## Solution
- Replace md5 by blake3
Putting this PR in the 0.12 as once it's released, changing the hash
algorithm will be a painful breaking change
# Objective
Even at `reflectance == 0.0`, our ambient and environment map light
implementations still produce fresnel/specular highlights.
Such a low `reflectance` value lies outside of the physically possible
range and is already used by our directional, point and spot light
implementations (via the `fresnel()` function) to enable artistic
control, effectively disabling the fresnel "look" for non-physically
realistic materials. Since ambient and environment lights use a
different formulation, they were not honoring this same principle.
This PR aims to bring consistency to all light types, offering the same
fresnel extinguishing control to ambient and environment lights.
Thanks to `@nathanf` for [pointing
out](https://discord.com/channels/691052431525675048/743663924229963868/1164083373514440744)
the [Filament docs section about
this](https://google.github.io/filament/Filament.md.html#lighting/occlusion/specularocclusion).
## Solution
- We use [the same
formulation](ffc572728f/crates/bevy_pbr/src/render/pbr_lighting.wgsl (L99))
already used by the `fresnel()` function in `bevy_pbr::lighting` to
modulate the F90, to modulate the specular component of Ambient and
Environment Map lights.
## Comparison
⚠️ **Modified version of the PBR example for demo purposes, that shows
reflectance (_NOT_ part of this PR)** ⚠️
Also, keep in mind this is a very subtle difference (look for the
fresnel highlights on the lower left spheres, you might need to zoom in.
### Before
<img width="1392" alt="Screenshot 2023-10-18 at 23 02 25"
src="https://github.com/bevyengine/bevy/assets/418473/ec0efb58-9a98-4377-87bc-726a1b0a3ff3">
### After
<img width="1392" alt="Screenshot 2023-10-18 at 23 01 43"
src="https://github.com/bevyengine/bevy/assets/418473/a2809325-5728-405e-af02-9b5779767843">
---
## Changelog
- Ambient and Environment Map lights will now honor values of
`reflectance` that are below the physically possible range (⪅ 0.35) by
extinguishing their fresnel highlights. (Just like point, directional
and spot lights already did.) This allows for more consistent artistic
control and for non-physically realistic looks with all light types.
## Migration Guide
- If Fresnel highlights from Ambient and Environment Map lights are no
longer visible in your materials, make sure you're using a higher,
physically plausible value of `reflectance` (⪆ 0.35).
# Objective
- I want to use the `debug_glam_assert` feature with bevy.
## Solution
- Re-export the feature flag
---
## Changelog
- Re-export `debug_glam_assert` feature flag from glam.
# Objective
Fixes#5101
Alternative to #6511
## Solution
Corrected the behavior for ignored fields in `FromReflect`, which was
previously using the incorrect field indexes.
Similarly, fields marked with `#[reflect(skip_serializing)]` no longer
break when using `FromReflect` after deserialization. This was done by
modifying `SerializationData` to store a function pointer that can later
be used to generate a default instance of the skipped field during
deserialization.
The function pointer points to a function generated by the derive macro
using the behavior designated by `#[reflect(default)]` (or just
`Default` if none provided). The entire output of the macro is now
wrapped in an [unnamed
constant](https://doc.rust-lang.org/stable/reference/items/constant-items.html#unnamed-constant)
which keeps this behavior hygienic.
#### Rationale
The biggest downside to this approach is that it requires fields marked
`#[reflect(skip_serializing)]` to provide the ability to create a
default instance— either via a `Default` impl or by specifying a custom
one. While this isn't great, I think it might be justified by the fact
that we really need to create this value when using `FromReflect` on a
deserialized object. And we need to do this _during_ deserialization
because after that (at least for tuples and tuple structs) we lose
information about which field is which: _"is the value at index 1 in
this `DynamicTupleStruct` the actual value for index 1 or is it really
the value for index 2 since index 1 is skippable...?"_
#### Alternatives
An alternative would be to store `Option<Box<dyn Reflect>>` within
`DynamicTuple` and `DynamicTupleStruct` instead of just `Box<dyn
Reflect>`. This would allow us to insert "empty"/"missing" fields during
deserialization, thus saving the positional information of the skipped
fields. However, this may require changing the API of `Tuple` and
`TupleStruct` such that they can account for their dynamic counterparts
returning `None` for a skipped field. In practice this would probably
mean exposing the `Option`-ness of the dynamics onto implementors via
methods like `Tuple::drain` or `TupleStruct::field`.
Personally, I think requiring `Default` would be better than muddying up
the API to account for these special cases. But I'm open to trying out
this other approach if the community feels that it's better.
---
## Changelog
### Public Changes
#### Fixed
- The behaviors of `#[reflect(ignore)]` and
`#[reflect(skip_serializing)]` are no longer dependent on field order
#### Changed
- Fields marked with `#[reflect(skip_serializing)]` now need to either
implement `Default` or specify a custom default function using
`#[reflect(default = "path::to::some_func")]`
- Deserializing a type with fields marked `#[reflect(skip_serializing)]`
will now include that field initialized to its specified default value
- `SerializationData::new` now takes the new `SkippedField` struct along
with the skipped field index
- Renamed `SerializationData::is_ignored_field` to
`SerializationData::is_field_skipped`
#### Added
- Added `SkippedField` struct
- Added methods `SerializationData::generate_default` and
`SerializationData::iter_skipped`
### Internal Changes
#### Changed
- Replaced `members_to_serialization_denylist` and `BitSet<u32>` with
`SerializationDataDef`
- The `Reflect` derive is more hygienic as it now outputs within an
[unnamed
constant](https://doc.rust-lang.org/stable/reference/items/constant-items.html#unnamed-constant)
- `StructField::index` has been split up into
`StructField::declaration_index` and `StructField::reflection_index`
#### Removed
- Removed `bitset` dependency
## Migration Guide
* Fields marked `#[reflect(skip_serializing)]` now must implement
`Default` or specify a custom default function with `#[reflect(default =
"path::to::some_func")]`
```rust
#[derive(Reflect)]
struct MyStruct {
#[reflect(skip_serializing)]
#[reflect(default = "get_foo_default")]
foo: Foo, // <- `Foo` does not impl `Default` so requires a custom
function
#[reflect(skip_serializing)]
bar: Bar, // <- `Bar` impls `Default`
}
#[derive(Reflect)]
struct Foo(i32);
#[derive(Reflect, Default)]
struct Bar(i32);
fn get_foo_default() -> Foo {
Foo(123)
}
```
* `SerializationData::new` has been changed to expect an iterator of
`(usize, SkippedField)` rather than one of just `usize`
```rust
// BEFORE
SerializationData::new([0, 3].into_iter());
// AFTER
SerializationData::new([
(0, SkippedField::new(field_0_default_fn)),
(3, SkippedField::new(field_3_default_fn)),
].into_iter());
```
* `Serialization::is_ignored_field` has been renamed to
`Serialization::is_field_skipped`
* Fields marked `#[reflect(skip_serializing)]` are now included in
deserialization output. This may affect logic that expected those fields
to be absent.
# Objective
To get the width or height of an image you do:
```rust
self.texture_descriptor.size.{width, height}
```
that is quite verbose.
This PR adds some convenient methods for Image to reduce verbosity.
## Changelog
* Add a `width()` method for getting the width of an image.
* Add a `height()` method for getting the height of an image.
* Rename the `size()` method to `size_f32()`.
* Add a `size()` method for getting the size of an image as u32.
* Renamed the `aspect_2d()` method to `aspect_ratio()`.
## Migration Guide
Replace calls to the `Image::size()` method with `size_f32()`.
Replace calls to the `Image::aspect_2d()` method with `aspect_ratio()`.
# Objective
- Fix#10165
- On iOS simulator on apple silicon Macs, shader validation is going
through the host, but device limits are reported for the device. They
sometimes differ, and cause the validation to crash on something that
should work
```
-[MTLDebugRenderCommandEncoder validateCommonDrawErrors:]:5775: failed assertion `Draw Errors Validation
Fragment Function(fragment_): the offset into the buffer _naga_oil_mod_MJSXM6K7OBRHEOR2NVSXG2C7OZUWK527MJUW4ZDJNZTXG_memberfog that is bound at buffer index 6 must be a multiple of 256 but was set to 448.
```
## Solution
- Add a custom flag when building for the simulator and override the
buffer alignment
# Objective
- Closes#10049.
- Detect DDS texture containing a cubemap or a cubemap array.
## Solution
- When loading a dds texture, the header capabilities are checked for
the cubemap flag. An error is returned if not all faces are provided.
---
## Changelog
### Added
- Added a new texture error `TextureError::IncompleteCubemap`, used for
dds cubemap textures containing less than 6 faces, as that is not
supported on modern graphics APIs.
### Fixed
- DDS cubemaps are now loaded as cubemaps instead of 2D textures.
## Migration Guide
If you are matching on a `TextureError`, you will need to add a new
branch to handle `TextureError::IncompleteCubemap`.
# Objective
While reviewing #10187 I noticed some other mistakes in the UI node
docs.
## Solution
I did a quick proofreading pass and fixed a few things. And of course,
the typo from that other PR.
## Notes
I occasionally insert a period to make a section of doc self-consistent
but didn't go one way or the other on all periods in the file.
---------
Co-authored-by: Noah <noahshomette@gmail.com>
# Objective
Simplify bind group creation code. alternative to (and based on) #9476
## Solution
- Add a `BindGroupEntries` struct that can transparently be used where
`&[BindGroupEntry<'b>]` is required in BindGroupDescriptors.
Allows constructing the descriptor's entries as:
```rust
render_device.create_bind_group(
"my_bind_group",
&my_layout,
&BindGroupEntries::with_indexes((
(2, &my_sampler),
(3, my_uniform),
)),
);
```
instead of
```rust
render_device.create_bind_group(
"my_bind_group",
&my_layout,
&[
BindGroupEntry {
binding: 2,
resource: BindingResource::Sampler(&my_sampler),
},
BindGroupEntry {
binding: 3,
resource: my_uniform,
},
],
);
```
or
```rust
render_device.create_bind_group(
"my_bind_group",
&my_layout,
&BindGroupEntries::sequential((&my_sampler, my_uniform)),
);
```
instead of
```rust
render_device.create_bind_group(
"my_bind_group",
&my_layout,
&[
BindGroupEntry {
binding: 0,
resource: BindingResource::Sampler(&my_sampler),
},
BindGroupEntry {
binding: 1,
resource: my_uniform,
},
],
);
```
the structs has no user facing macros, is tuple-type-based so stack
allocated, and has no noticeable impact on compile time.
- Also adds a `DynamicBindGroupEntries` struct with a similar api that
uses a `Vec` under the hood and allows extending the entries.
- Modifies `RenderDevice::create_bind_group` to take separate arguments
`label`, `layout` and `entries` instead of a `BindGroupDescriptor`
struct. The struct can't be stored due to the internal references, and
with only 3 members arguably does not add enough context to justify
itself.
- Modify the codebase to use the new api and the `BindGroupEntries` /
`DynamicBindGroupEntries` structs where appropriate (whenever the
entries slice contains more than 1 member).
## Migration Guide
- Calls to `RenderDevice::create_bind_group({BindGroupDescriptor {
label, layout, entries })` must be amended to
`RenderDevice::create_bind_group(label, layout, entries)`.
- If `label`s have been specified as `"bind_group_name".into()`, they
need to change to just `"bind_group_name"`. `Some("bind_group_name")`
and `None` will still work, but `Some("bind_group_name")` can optionally
be simplified to just `"bind_group_name"`.
---------
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
# Objective
- bump naga_oil to 0.10
- update shader imports to use rusty syntax
## Migration Guide
naga_oil 0.10 reworks the import mechanism to support more syntax to
make it more rusty, and test for item use before importing to determine
which imports are modules and which are items, which allows:
- use rust-style imports
```
#import bevy_pbr::{
pbr_functions::{alpha_discard as discard, apply_pbr_lighting},
mesh_bindings,
}
```
- import partial paths:
```
#import part::of::path
...
path::remainder::function();
```
which will call to `part::of::path::remainder::function`
- use fully qualified paths without importing:
```
// #import bevy_pbr::pbr_functions
bevy_pbr::pbr_functions::pbr()
```
- use imported items without qualifying
```
#import bevy_pbr::pbr_functions::pbr
// for backwards compatibility the old style is still supported:
// #import bevy_pbr::pbr_functions pbr
...
pbr()
```
- allows most imported items to end with `_` and numbers (naga_oil#30).
still doesn't allow struct members to end with `_` or numbers but it's
progress.
- the vast majority of existing shader code will work without changes,
but will emit "deprecated" warnings for old-style imports. these can be
suppressed with the `allow-deprecated` feature.
- partly breaks overrides (as far as i'm aware nobody uses these yet) -
now overrides will only be applied if the overriding module is added as
an additional import in the arguments to `Composer::make_naga_module` or
`Composer::add_composable_module`. this is necessary to support
determining whether imports are modules or items.
# Objective
This PR aims to make it so that we don't accidentally go over
`MAX_TEXTURE_IMAGE_UNITS` (in WebGL) or
`maxSampledTexturesPerShaderStage` (in WebGPU), giving us some extra
leeway to add more view bind group textures.
(This PR is extracted from—and unblocks—#8015)
## Solution
- We replace the existing `view_layout` and `view_layout_multisampled`
pair with an array of 32 bind group layouts, generated ahead of time;
- For now, these layouts cover all the possible combinations of:
`multisampled`, `depth_prepass`, `normal_prepass`,
`motion_vector_prepass` and `deferred_prepass`:
- In the future, as @JMS55 pointed out, we can likely take out
`motion_vector_prepass` and `deferred_prepass`, as these are not really
needed for the mesh pipeline and can use separate pipelines. This would
bring the possible combinations down to 8;
- We can also add more "optional" textures as they become needed,
allowing the engine to scale to a wider variety of use cases in lower
end/web environments (e.g. some apps might just want normal and depth
prepasses, others might only want light probes), while still keeping a
high ceiling for high end native environments where more textures are
supported.
- While preallocating bind group layouts is relatively cheap, the number
of combinations grows exponentially, so we should likely limit ourselves
to something like at most 256–1024 total layouts until we find a better
solution (like generating them lazily)
- To make this mechanism a little bit more explicit/discoverable, so
that compatibility with WebGPU/WebGL is not broken by accident, we add a
`MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` const and warn whenever
the number of textures in the layout crosses it.
- The warning is gated by `#[cfg(debug_assertions)]` and not issued in
release builds;
- We're counting the actual textures in the bind group layout instead of
using some roundabout metric so it should be accurate;
- Right now `MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` is set to 10
in order to leave 6 textures free for other groups;
- Currently there's no combination that would cause us to go over the
limit, but that will change once #8015 lands.
---
## Changelog
- `MeshPipeline` view bind group layouts now vary based on the current
multisampling and prepass states, saving a couple of texture binding
entries when prepasses are not in use.
## Migration Guide
- `MeshPipeline::view_layout` and
`MeshPipeline::view_layout_multisampled` have been replaced with a
private array to accomodate for variable view bind group layouts. To
obtain a view bind group layout for the current pipeline state, use the
new `MeshPipeline::get_view_layout()` or
`MeshPipeline::get_view_layout_from_key()` methods.
# Objective
Users shouldn't need to change their source code between "development
workflows" and "releasing". Currently, Bevy Asset V2 has two "processed"
asset modes `Processed` (assumes assets are already processed) and
`ProcessedDev` (starts an asset processor and processes assets). This
means that the mode must be changed _in code_ when switching from "app
dev" to "release". Very suboptimal.
We have already removed "runtime opt-in" for hot-reloading. Enabling the
`file_watcher` feature _automatically_ enables file watching in code.
This means deploying a game (without hot reloading enabled) just means
calling `cargo build --release` instead of `cargo run --features
bevy/file_watcher`.
We should adopt this pattern for asset processing.
## Solution
This adds the `asset_processor` feature, which will start the
`AssetProcessor` when an `AssetPlugin` runs in `AssetMode::Processed`.
The "asset processing workflow" is now:
1. Enable `AssetMode::Processed` on `AssetPlugin`
2. When developing, run with the `asset_processor` and `file_watcher`
features
3. When releasing, build without these features.
The `AssetMode::ProcessedDev` mode has been removed.
# Objective
I encountered a problem where I had a plugin `FooPlugin` which did
```rust
impl Plugin for FooPlugin {
fn build(&self, app: &mut App) {
app
.register_asset_source(...); // more stuff after
}
}
```
And when I tried using it, e.g.
```rust
asset_server.load("foo://data/asset.custom");
```
I got an error that `foo` was not recognized as a source.
I found that this is because asset sources must be registered _before_
`AssetPlugin` is added, and I had `FooPlugin` _after_.
## Solution
Add clarifying note about having to register sources before
`AssetPlugin` is added.
Signed-off-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
Co-authored-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
# Objective
- Provides actionable feedback when users encounter the error in
https://github.com/bevyengine/bevy/issues/10162
- Complements https://github.com/bevyengine/bevy/pull/10186
## Solution
- Log an error when registering an AssetSource after the AssetPlugin has
been built (via DefaultPlugins). This will let users know that their
registration order needs changing
The outputted error message will look like this:
```rust
ERROR bevy_asset::server: 'AssetSourceId::Name(test)' must be registered before `AssetPlugin` (typically added as part of `DefaultPlugins`)
```
---------
Co-authored-by: 66OJ66 <hi0obxud@anonaddy.me>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Fixes#10177 .
## Solution
Added a new run condition and tweaked the docs for `on_timer`.
## Changelog
### Added
- `on_real_time_timer` run condition
# Objective
This PR addresses the issue where Bevy displays one or several black
frames before the scene is first rendered. This is particularly
noticeable on iOS, where the black frames disrupt the transition from
the launch screen to the game UI. I have written about my search to
solve this issue on the Bevy discord:
https://discord.com/channels/691052431525675048/1151047604520632352
While I can attest this PR works on both iOS and Linux/Wayland (and even
seems to resolve a slight flicker during startup with the latter as
well), I'm not familiar enough with Bevy to judge the full implications
of these changes. I hope a reviewer or tester can help me confirm
whether this is the right approach, or what might be a cleaner solution
to resolve this issue.
## Solution
I have moved the "startup phase" as well as the plugin finalization into
the `app.run()` function so those things finish synchronously before the
"main schedule" starts. I even move one frame forward as well, using
`app.update()`, to make sure the rendering has caught up with the state
of the finalized plugins as well.
I admit that part of this was achieved through trial-and-error, since
not doing the "startup phase" *before* `app.finish()` resulted in
panics, while not calling an extra `app.update()` didn't fully resolve
the issue.
What I *can* say, is that the iOS launch screen animation works in such
a way that the OS initiates the transition once the framework's
[`didFinishLaunching()`](https://developer.apple.com/documentation/uikit/uiapplicationdelegate/1622921-application)
returns, meaning app developers **must** finish setting up their UI
before that function returns. This is what basically led me on the path
to try to "finish stuff earlier" :)
## Changelog
### Changed
- The startup phase and the first frame are rendered synchronously when
calling `app.run()`, before the "main schedule" is started. This fixes
black frames during the iOS launch transition and possible flickering on
other platforms, but may affect initialization order in your
application.
## Migration Guide
Because of this change, the timing of the first few frames might have
changed, and I think it could be that some things one may expect to be
initialized in a system may no longer be. To be honest, I feel out of my
depth to judge the exact impact here.
# Objective
Add a way to easily compute the up-to-date `GlobalTransform` of an
entity.
## Solution
Add the `TransformHelper`(Name pending) system parameter with the
`compute_global_transform` method that takes an `Entity` and returns a
`GlobalTransform` if successful.
## Changelog
- Added the `TransformHelper` system parameter for computing the
up-to-date `GlobalTransform` of an entity.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Noah <noahshomette@gmail.com>
# Objective
allow extending `Material`s (including the built in `StandardMaterial`)
with custom vertex/fragment shaders and additional data, to easily get
pbr lighting with custom modifications, or otherwise extend a base
material.
# Solution
- added `ExtendedMaterial<B: Material, E: MaterialExtension>` which
contains a base material and a user-defined extension.
- added example `extended_material` showing how to use it
- modified AsBindGroup to have "unprepared" functions that return raw
resources / layout entries so that the extended material can combine
them
note: doesn't currently work with array resources, as i can't figure out
how to make the OwnedBindingResource::get_binding() work, as wgpu
requires a `&'a[&'a TextureView]` and i have a `Vec<TextureView>`.
# Migration Guide
manual implementations of `AsBindGroup` will need to be adjusted, the
changes are pretty straightforward and can be seen in the diff for e.g.
the `texture_binding_array` example.
---------
Co-authored-by: Robert Swain <robert.swain@gmail.com>
# Objective
deferred doesn't currently run unless one of `DepthPrepass`,
`ForwardPrepass` or `MotionVectorPrepass` is also present on the camera.
## Solution
modify the `queue_prepass_material_meshes` view query to check for any
relevant phase, instead of requiring `Opaque3dPrepass` and
`AlphaMask3dPrepass` to be present
# Objective
- Correct the description of an error type for the scene loader
## Solution
- Correct the description of an error type for the scene loader
# Objective
- This PR aims to make the various `*_PREPASS` shader defs we have
(`NORMAL_PREPASS`, `DEPTH_PREPASS`, `MOTION_VECTORS_PREPASS` AND
`DEFERRED_PREPASS`) easier to use and understand:
- So that their meaning is now consistent across all contexts; (“prepass
X is enabled for the current view”)
- So that they're also consistently set across all contexts.
- It also aims to enable us to (with a follow up PR) to conditionally
gate the `BindGroupEntry` and `BindGroupLayoutEntry` items associated
with these prepasses, saving us up to 4 texture slots in WebGL
(currently globally limited to 16 per shader, regardless of bind groups)
## Solution
- We now consistently set these from `PrepassPipeline`, the
`MeshPipeline` and the `DeferredLightingPipeline`, we also set their
`MeshPipelineKey`s;
- We introduce `PREPASS_PIPELINE`, `MESH_PIPELINE` and
`DEFERRED_LIGHTING_PIPELINE` that can be used to detect where the code
is running, without overloading the meanings of the prepass shader defs;
- We also gate the WGSL functions in `bevy_pbr::prepass_utils` with
`#ifdef`s for their respective shader defs, so that shader code can
provide a fallback whenever they're not available.
- This allows us to conditionally include the bindings for these prepass
textures (My next PR, which will hopefully unblock #8015)
- @robtfm mentioned [these were being used to prevent accessing the same
binding as read/write in the
prepass](https://discord.com/channels/691052431525675048/743663924229963868/1163270458393759814),
however even after reversing the `#ifndef`s I had no issues running the
code, so perhaps the compiler is already smart enough even without tree
shaking to know they're not being used, thanks to `#ifdef
PREPASS_PIPELINE`?
## Comparison
### Before
| Shader Def | `PrepassPipeline` | `MeshPipeline` |
`DeferredLightingPipeline` |
| ------------------------ | ----------------- | -------------- |
-------------------------- |
| `NORMAL_PREPASS` | Yes | No | No |
| `DEPTH_PREPASS` | Yes | No | No |
| `MOTION_VECTORS_PREPASS` | Yes | No | No |
| `DEFERRED_PREPASS` | Yes | No | No |
| View Key | `PrepassPipeline` | `MeshPipeline` |
`DeferredLightingPipeline` |
| ------------------------ | ----------------- | -------------- |
-------------------------- |
| `NORMAL_PREPASS` | Yes | Yes | No |
| `DEPTH_PREPASS` | Yes | No | No |
| `MOTION_VECTORS_PREPASS` | Yes | No | No |
| `DEFERRED_PREPASS` | Yes | Yes\* | No |
\* Accidentally was being set twice, once with only
`deferred_prepass.is_some()` as a condition,
and once with `deferred_p repass.is_some() && !forward` as a condition.
### After
| Shader Def | `PrepassPipeline` | `MeshPipeline` |
`DeferredLightingPipeline` |
| ---------------------------- | ----------------- | --------------- |
-------------------------- |
| `NORMAL_PREPASS` | Yes | Yes | Yes |
| `DEPTH_PREPASS` | Yes | Yes | Yes |
| `MOTION_VECTORS_PREPASS` | Yes | Yes | Yes |
| `DEFERRED_PREPASS` | Yes | Yes | Unconditionally |
| `PREPASS_PIPELINE` | Unconditionally | No | No |
| `MESH_PIPELINE` | No | Unconditionally | No |
| `DEFERRED_LIGHTING_PIPELINE` | No | No | Unconditionally |
| View Key | `PrepassPipeline` | `MeshPipeline` |
`DeferredLightingPipeline` |
| ------------------------ | ----------------- | -------------- |
-------------------------- |
| `NORMAL_PREPASS` | Yes | Yes | Yes |
| `DEPTH_PREPASS` | Yes | Yes | Yes |
| `MOTION_VECTORS_PREPASS` | Yes | Yes | Yes |
| `DEFERRED_PREPASS` | Yes | Yes | Unconditionally |
---
## Changelog
- Cleaned up WGSL `*_PREPASS` shader defs so they're now consistently
used everywhere;
- Introduced `PREPASS_PIPELINE`, `MESH_PIPELINE` and
`DEFERRED_LIGHTING_PIPELINE` WGSL shader defs for conditionally
compiling logic based the current pipeline;
- WGSL functions from `bevy_pbr::prepass_utils` are now guarded with
`#ifdef` based on the currently enabled prepasses;
## Migration Guide
- When using functions from `bevy_pbr::prepass_utils`
(`prepass_depth()`, `prepass_normal()`, `prepass_motion_vector()`) in
contexts where these prepasses might be disabled, you should now wrap
your calls with the appropriate `#ifdef` guards, (`#ifdef
DEPTH_PREPASS`, `#ifdef NORMAL_PREPASS`, `#ifdef MOTION_VECTOR_PREPASS`)
providing fallback logic where applicable.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
# Objective
Fixes#10086
## Solution
Instead of serializing via `DynamicTypePath::reflect_type_path`, now
uses the `TypePath` found on the `TypeInfo` returned by
`Reflect::get_represented_type_info`.
This issue was happening because the dynamic types implement `TypePath`
themselves and do not (and cannot) forward their proxy's `TypePath`
data. The solution was to access the proxy's type information in order
to get the correct `TypePath` data.
## Changed
- The `Debug` impl for `TypePathTable` now includes output for all
fields.
# Objective
Time clamping happens consistently for apps that load non-trivial
things. While this _is_ an indicator that we should probably try to move
this work to a thread that doesn't block the Update, this is common
enough (and unactionable enough) that I think we should demote it for
now.
```
2023-10-16T18:46:14.918781Z WARN bevy_time::virt: delta time larger than maximum delta, clamping delta to 250ms and skipping 63.649253ms
2023-10-16T18:46:15.178048Z WARN bevy_time::virt: delta time larger than maximum delta, clamping delta to 250ms and skipping 1.71611ms
```
## Solution
Change `warn` to `debug` for this message
# Objective
Closes#10107
The visibility of `bevy::core::update_frame_count` should be `pub` so it
can be used in third-party code like this:
```rust
impl Plugin for MyPlugin {
fn build(&self, app: &mut App) {
app.add_systems(Last, use_frame_count.before(bevy::core::update_frame_count));
}
}
```
## Solution
Make `bevy::core::update_frame_count` public.
---
## Changelog
### Added
- Documentation for `bevy::core::update_frame_count`
### Changed
- Visibility of `bevy::core::update_frame_count` is now `pub`
# Objective
- Added support for newer AMD Radeon cards in the mod.rs file located at
``crates/bevy_render/src/view/window/mod.rs``
## Solution
- All I needed to add was ``name.starts_with("Radeon") ||`` to the
existing code on line 347 of
``crates/bevy_render/src/view/window/mod.rs``
---
## Changelog
- Changed ``crates/bevy_render/src/view/window/mod.rs``
# Objective
Current `FixedTime` and `Time` have several problems. This pull aims to
fix many of them at once.
- If there is a longer pause between app updates, time will jump forward
a lot at once and fixed time will iterate on `FixedUpdate` for a large
number of steps. If the pause is merely seconds, then this will just
mean jerkiness and possible unexpected behaviour in gameplay. If the
pause is hours/days as with OS suspend, the game will appear to freeze
until it has caught up with real time.
- If calculating a fixed step takes longer than specified fixed step
period, the game will enter a death spiral where rendering each frame
takes longer and longer due to more and more fixed step updates being
run per frame and the game appears to freeze.
- There is no way to see current fixed step elapsed time inside fixed
steps. In order to track this, the game designer needs to add a custom
system inside `FixedUpdate` that calculates elapsed or step count in a
resource.
- Access to delta time inside fixed step is `FixedStep::period` rather
than `Time::delta`. This, coupled with the issue that `Time::elapsed`
isn't available at all for fixed steps, makes it that time requiring
systems are either implemented to be run in `FixedUpdate` or `Update`,
but rarely work in both.
- Fixes#8800
- Fixes#8543
- Fixes#7439
- Fixes#5692
## Solution
- Create a generic `Time<T>` clock that has no processing logic but
which can be instantiated for multiple usages. This is also exposed for
users to add custom clocks.
- Create three standard clocks, `Time<Real>`, `Time<Virtual>` and
`Time<Fixed>`, all of which contain their individual logic.
- Create one "default" clock, which is just `Time` (or `Time<()>`),
which will be overwritten from `Time<Virtual>` on each update, and
`Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do
not care specifically which time they track can work both in `Update`
and `FixedUpdate` without changes and the behaviour is intuitive.
- Add `max_delta` to virtual time update, which limits how much can be
added to virtual time by a single update. This fixes both the behaviour
after a long freeze, and also the death spiral by limiting how many
fixed timestep iterations there can be per update. Possible future work
could be adding `max_accumulator` to add a sort of "leaky bucket" time
processing to possibly smooth out jumps in time while keeping frame rate
stable.
- Many minor tweaks and clarifications to the time functions and their
documentation.
## Changelog
- `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are
moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match
`Time` API
- `FixedTime` is now `Time<Fixed>` and matches `Time` API.
- `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds.
- `Time` inside `FixedUpdate` now reflects fixed timestep time, making
systems portable between `Update ` and `FixedUpdate`.
- `Time::pause()`, `Time::set_relative_speed()` and related methods must
now be called as `Time<Virtual>::pause()` etc.
- There is a new `max_delta` setting in `Time<Virtual>` that limits how
much the clock can jump by a single update. The default value is 0.25
seconds.
- Removed `on_fixed_timer()` condition as `on_timer()` does the right
thing inside `FixedUpdate` now.
## Migration Guide
- Change all `Res<Time>` instances that access `raw_delta()`,
`raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`,
`elapsed()`, etc.
- Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>`
and use `delta()`.
- The default timestep has been changed from 60 Hz to 64 Hz. If you wish
to restore the old behaviour, use
`app.insert_resource(Time::<Fixed>::from_hz(60.0))`.
- Change `app.insert_resource(FixedTime::new(duration))` to
`app.insert_resource(Time::<Fixed>::from_duration(duration))`
- Change `app.insert_resource(FixedTime::new_from_secs(secs))` to
`app.insert_resource(Time::<Fixed>::from_seconds(secs))`
- Change `system.on_fixed_timer(duration)` to
`system.on_timer(duration)`. Timers in systems placed in `FixedUpdate`
schedule automatically use the fixed time clock.
- Change `ResMut<Time>` calls to `pause()`, `is_paused()`,
`set_relative_speed()` and related methods to `ResMut<Time<Virtual>>`
calls. The API is the same, with the exception that `relative_speed()`
will return the actual last ste relative speed, while
`effective_relative_speed()` returns 0.0 if the time is paused and
corresponds to the speed that was set when the update for the current
frame started.
## Todo
- [x] Update pull name and description
- [x] Top level documentation on usage
- [x] Fix examples
- [x] Decide on default `max_delta` value
- [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed`
good?
- [x] Decide if the three clock inner structures should be in prelude
- [x] Decide on best way to configure values at startup: is manually
inserting a new clock instance okay, or should there be config struct
separately?
- [x] Fix links in docs
- [x] Decide what should be public and what not
- [x] Decide how `wrap_period` should be handled when it is changed
- [x] ~~Add toggles to disable setting the clock as default?~~ No,
separate pull if needed.
- [x] Add tests
- [x] Reformat, ensure adheres to conventions etc.
- [x] Build documentation and see that it looks correct
## Contributors
Huge thanks to @alice-i-cecile and @maniwani while building this pull.
It was a shared effort!
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com>
Co-authored-by: Jerome Humbert <djeedai@gmail.com>
# Objective
Calling `asset_server.load("scene.gltf#SomeLabel")` will silently fail
if `SomeLabel` does not exist.
Referenced in #9714
## Solution
We now detect this case and return an error. I also slightly refactored
`load_internal` to make the logic / dataflow much clearer.
---------
Co-authored-by: Pascal Hertleif <killercup@gmail.com>
# Objective
As called out in #9714, Bevy Asset V2 fails to hot-reload labeled assets
whose source asset has changed (in cases where the root asset is not
alive).
## Solution
Track alive labeled assets for a given source asset and allow hot
reloads in cases where a labeled asset is still alive.
# Objective
- Since #9885, running on an iOS device crashes trying to create the
processed folder
- This only happens on real device, not on the simulator
## Solution
- Setup processed assets only if needed
# Objective
On nightly there is a warning on a missing lifetime:
```bash
warning: `&` without an explicit lifetime name cannot be used here
```
The details are in https://github.com/rust-lang/rust/issues/115010, but
the bottom line is that in associated constants elided lifetimes are no
longer allowed to be implicitly defined.
This fixes the only place where it is missing.
## Solution
- Add explicit `'static` lifetime
# Objective
Currently, the asset loader outputs
```
2023-10-14T15:11:09.328850Z WARN bevy_asset::asset_server: no `AssetLoader` found
```
when user forgets to add an extension to a file. This is very confusing
behaviour, it sounds like there aren't any asset loaders existing.
## Solution
Add an extra message on the end when there are no file extensions.
# Objective
#10105 changed the ssao input color from the material base color to
white. i can't actually see a difference in the example but there should
be one in some cases.
## Solution
change it back.
# Objective
From my understanding, although resources are not meant to be created
and removed at every frame, they are still meant to be created
dynamically during the lifetime of the App.
But because the extract_resource API does not allow optional resources
from the main world, it's impossible to use resources in the render
phase that were not created before the render sub-app itself.
## Solution
Because the ECS engine already allows for system parameters to be
`Option<Res>`, it just had to be added.
---
## Changelog
- Changed
- `extract_resource` now takes an optional main world resource
- Fixed
- `ExtractResourcePlugin` doesn't cause panics anymore if the resource
is not already inserted
This adds support for **Multiple Asset Sources**. You can now register a
named `AssetSource`, which you can load assets from like you normally
would:
```rust
let shader: Handle<Shader> = asset_server.load("custom_source://path/to/shader.wgsl");
```
Notice that `AssetPath` now supports `some_source://` syntax. This can
now be accessed through the `asset_path.source()` accessor.
Asset source names _are not required_. If one is not specified, the
default asset source will be used:
```rust
let shader: Handle<Shader> = asset_server.load("path/to/shader.wgsl");
```
The behavior of the default asset source has not changed. Ex: the
`assets` folder is still the default.
As referenced in #9714
## Why?
**Multiple Asset Sources** enables a number of often-asked-for
scenarios:
* **Loading some assets from other locations on disk**: you could create
a `config` asset source that reads from the OS-default config folder
(not implemented in this PR)
* **Loading some assets from a remote server**: you could register a new
`remote` asset source that reads some assets from a remote http server
(not implemented in this PR)
* **Improved "Binary Embedded" Assets**: we can use this system for
"embedded-in-binary assets", which allows us to replace the old
`load_internal_asset!` approach, which couldn't support asset
processing, didn't support hot-reloading _well_, and didn't make
embedded assets accessible to the `AssetServer` (implemented in this pr)
## Adding New Asset Sources
An `AssetSource` is "just" a collection of `AssetReader`, `AssetWriter`,
and `AssetWatcher` entries. You can configure new asset sources like
this:
```rust
app.register_asset_source(
"other",
AssetSource::build()
.with_reader(|| Box::new(FileAssetReader::new("other")))
)
)
```
Note that `AssetSource` construction _must_ be repeatable, which is why
a closure is accepted.
`AssetSourceBuilder` supports `with_reader`, `with_writer`,
`with_watcher`, `with_processed_reader`, `with_processed_writer`, and
`with_processed_watcher`.
Note that the "asset source" system replaces the old "asset providers"
system.
## Processing Multiple Sources
The `AssetProcessor` now supports multiple asset sources! Processed
assets can refer to assets in other sources and everything "just works".
Each `AssetSource` defines an unprocessed and processed `AssetReader` /
`AssetWriter`.
Currently this is all or nothing for a given `AssetSource`. A given
source is either processed or it is not. Later we might want to add
support for "lazy asset processing", where an `AssetSource` (such as a
remote server) can be configured to only process assets that are
directly referenced by local assets (in order to save local disk space
and avoid doing extra work).
## A new `AssetSource`: `embedded`
One of the big features motivating **Multiple Asset Sources** was
improving our "embedded-in-binary" asset loading. To prove out the
**Multiple Asset Sources** implementation, I chose to build a new
`embedded` `AssetSource`, which replaces the old `load_interal_asset!`
system.
The old `load_internal_asset!` approach had a number of issues:
* The `AssetServer` was not aware of (or capable of loading) internal
assets.
* Because internal assets weren't visible to the `AssetServer`, they
could not be processed (or used by assets that are processed). This
would prevent things "preprocessing shaders that depend on built in Bevy
shaders", which is something we desperately need to start doing.
* Each "internal asset" needed a UUID to be defined in-code to reference
it. This was very manual and toilsome.
The new `embedded` `AssetSource` enables the following pattern:
```rust
// Called in `crates/bevy_pbr/src/render/mesh.rs`
embedded_asset!(app, "mesh.wgsl");
// later in the app
let shader: Handle<Shader> = asset_server.load("embedded://bevy_pbr/render/mesh.wgsl");
```
Notice that this always treats the crate name as the "root path", and it
trims out the `src` path for brevity. This is generally predictable, but
if you need to debug you can use the new `embedded_path!` macro to get a
`PathBuf` that matches the one used by `embedded_asset`.
You can also reference embedded assets in arbitrary assets, such as WGSL
shaders:
```rust
#import "embedded://bevy_pbr/render/mesh.wgsl"
```
This also makes `embedded` assets go through the "normal" asset
lifecycle. They are only loaded when they are actually used!
We are also discussing implicitly converting asset paths to/from shader
modules, so in the future (not in this PR) you might be able to load it
like this:
```rust
#import bevy_pbr::render::mesh::Vertex
```
Compare that to the old system!
```rust
pub const MESH_SHADER_HANDLE: Handle<Shader> = Handle::weak_from_u128(3252377289100772450);
load_internal_asset!(app, MESH_SHADER_HANDLE, "mesh.wgsl", Shader::from_wgsl);
// The mesh asset is the _only_ accessible via MESH_SHADER_HANDLE and _cannot_ be loaded via the AssetServer.
```
## Hot Reloading `embedded`
You can enable `embedded` hot reloading by enabling the
`embedded_watcher` cargo feature:
```
cargo run --features=embedded_watcher
```
## Improved Hot Reloading Workflow
First: the `filesystem_watcher` cargo feature has been renamed to
`file_watcher` for brevity (and to match the `FileAssetReader` naming
convention).
More importantly, hot asset reloading is no longer configured in-code by
default. If you enable any asset watcher feature (such as `file_watcher`
or `rust_source_watcher`), asset watching will be automatically enabled.
This removes the need to _also_ enable hot reloading in your app code.
That means you can replace this:
```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::default().watch_for_changes()))
```
with this:
```rust
app.add_plugins(DefaultPlugins)
```
If you want to hot reload assets in your app during development, just
run your app like this:
```
cargo run --features=file_watcher
```
This means you can use the same code for development and deployment! To
deploy an app, just don't include the watcher feature
```
cargo build --release
```
My intent is to move to this approach for pretty much all dev workflows.
In a future PR I would like to replace `AssetMode::ProcessedDev` with a
`runtime-processor` cargo feature. We could then group all common "dev"
cargo features under a single `dev` feature:
```sh
# this would enable file_watcher, embedded_watcher, runtime-processor, and more
cargo run --features=dev
```
## AssetMode
`AssetPlugin::Unprocessed`, `AssetPlugin::Processed`, and
`AssetPlugin::ProcessedDev` have been replaced with an `AssetMode` field
on `AssetPlugin`.
```rust
// before
app.add_plugins(DefaultPlugins.set(AssetPlugin::Processed { /* fields here */ })
// after
app.add_plugins(DefaultPlugins.set(AssetPlugin { mode: AssetMode::Processed, ..default() })
```
This aligns `AssetPlugin` with our other struct-like plugins. The old
"source" and "destination" `AssetProvider` fields in the enum variants
have been replaced by the "asset source" system. You no longer need to
configure the AssetPlugin to "point" to custom asset providers.
## AssetServerMode
To improve the implementation of **Multiple Asset Sources**,
`AssetServer` was made aware of whether or not it is using "processed"
or "unprocessed" assets. You can check that like this:
```rust
if asset_server.mode() == AssetServerMode::Processed {
/* do something */
}
```
Note that this refactor should also prepare the way for building "one to
many processed output files", as it makes the server aware of whether it
is loading from processed or unprocessed sources. Meaning we can store
and read processed and unprocessed assets differently!
## AssetPath can now refer to folders
The "file only" restriction has been removed from `AssetPath`. The
`AssetServer::load_folder` API now accepts an `AssetPath` instead of a
`Path`, meaning you can load folders from other asset sources!
## Improved AssetPath Parsing
AssetPath parsing was reworked to support sources, improve error
messages, and to enable parsing with a single pass over the string.
`AssetPath::new` was replaced by `AssetPath::parse` and
`AssetPath::try_parse`.
## AssetWatcher broken out from AssetReader
`AssetReader` is no longer responsible for constructing `AssetWatcher`.
This has been moved to `AssetSourceBuilder`.
## Duplicate Event Debouncing
Asset V2 already debounced duplicate filesystem events, but this was
_input_ events. Multiple input event types can produce the same _output_
`AssetSourceEvent`. Now that we have `embedded_watcher`, which does
expensive file io on events, it made sense to debounce output events
too, so I added that! This will also benefit the AssetProcessor by
preventing integrity checks for duplicate events (and helps keep the
noise down in trace logs).
## Next Steps
* **Port Built-in Shaders**: Currently the primary (and essentially
only) user of `load_interal_asset` in Bevy's source code is "built-in
shaders". I chose not to do that in this PR for a few reasons:
1. We need to add the ability to pass shader defs in to shaders via meta
files. Some shaders (such as MESH_VIEW_TYPES) need to pass shader def
values in that are defined in code.
2. We need to revisit the current shader module naming system. I think
we _probably_ want to imply modules from source structure (at least by
default). Ideally in a way that can losslessly convert asset paths
to/from shader modules (to enable the asset system to resolve modules
using the asset server).
3. I want to keep this change set minimal / get this merged first.
* **Deprecate `load_internal_asset`**: we can't do that until we do (1)
and (2)
* **Relative Asset Paths**: This PR significantly increases the need for
relative asset paths (which was already pretty high). Currently when
loading dependencies, it is assumed to be an absolute path, which means
if in an `AssetLoader` you call `context.load("some/path/image.png")` it
will assume that is the "default" asset source, _even if the current
asset is in a different asset source_. This will cause breakage for
AssetLoaders that are not designed to add the current source to whatever
paths are being used. AssetLoaders should generally not need to be aware
of the name of their current asset source, or need to think about the
"current asset source" generally. We should build apis that support
relative asset paths and then encourage using relative paths as much as
possible (both via api design and docs). Relative paths are also
important because they will allow developers to move folders around
(even across providers) without reprocessing, provided there is no path
breakage.
# Objective
- According to the GLTF spec, it should not be possible to have a non
skinned mesh on a skinned node
> When the node contains skin, all mesh.primitives MUST contain JOINTS_0
and WEIGHTS_0 attributes
>
https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#reference-node
- However, the reverse (a skinned mesh on a non skinned node) is just a
warning, see `NODE_SKINNED_MESH_WITHOUT_SKIN` in
https://github.com/KhronosGroup/glTF-Validator/blob/main/ISSUES.md#linkerror
- This causes a crash in Bevy because the bind group layout is made from
the mesh which is skinned, but filled from the entity which is not
```
thread '<unnamed>' panicked at 'wgpu error: Validation Error
Caused by:
In a RenderPass
note: encoder = `<CommandBuffer-(0, 5, Metal)>`
In a set_bind_group command
note: bind group = `<BindGroup-(27, 1, Metal)>`
Bind group 2 expects 2 dynamic offsets. However 1 dynamic offset were provided.
```
- Blender can export GLTF files with this kind of issues
## Solution
- When a skinned mesh is only used on non skinned nodes, ignore skinned
information from the mesh and warn the user (this is what three.js is
doing)
- When a skinned mesh is used on both skinned and non skinned nodes, log
an error
# Objective
Fixes#9676
Possible alternative to #9708
`Text2dBundles` are not currently drawn because the render-world-only
entities for glyphs that are created in `extract_text2d_sprite` are not
tracked by the per-view `VisibleEntities`.
## Solution
Add an `Option<Entity>` to `ExtractedSprite` that keeps track of the
original entity that caused a "glyph entity" to be created.
Use that in `queue_sprites` if it exists when checking view visibility.
## Benchmarks
Quick benchmarks. Average FPS over 1500 frames.
| bench | before fps | after fps | diff |
|-|-|-|-|
|many_sprites|884.93|879.00|🟡 -0.7%|
|bevymark -- --benchmark --waves 100 --per-wave 1000 --mode
sprite|75.99|75.93|🟡 -0.1%|
|bevymark -- --benchmark --waves 50 --per-wave 1000 --mode
mesh2d|32.85|32.58|🟡 -0.8%|
# Objective
cleanup some pbr shader code. improve shader stage io consistency and
make pbr.wgsl (probably many people's first foray into bevy shader code)
a little more human-readable. also fix a couple of small issues with
deferred rendering.
## Solution
mesh_vertex_output:
- rename to forward_io (to align with prepass_io)
- rename `MeshVertexOutput` to `VertexOutput` (to align with prepass_io)
- move `Vertex` from mesh.wgsl into here (to align with prepass_io)
prepass_io:
- remove `FragmentInput`, use `VertexOutput` directly (to align with
forward_io)
- rename `VertexOutput::clip_position` to `position` (to align with
forward_io)
pbr.wgsl:
- restructure so we don't need `#ifdefs` on the actual entrypoint, use
VertexOutput and FragmentOutput in all cases and use #ifdefs to import
the right struct definitions.
- rearrange to make the flow clearer
- move alpha_discard up from `pbr_functions::pbr` to avoid needing to
call it on some branches and not others
- add a bunch of comments
deferred_lighting:
- move ssao into the `!unlit` block to reflect forward behaviour
correctly
- fix compile error with deferred + premultiply_alpha
## Migration Guide
in custom material shaders:
- `pbr_functions::pbr` no longer calls to
`pbr_functions::alpha_discard`. if you were using the `pbr` function in
a custom shader with alpha mask mode you now also need to call
alpha_discard manually
- rename imports of `bevy_pbr::mesh_vertex_output` to
`bevy_pbr::forward_io`
- rename instances of `MeshVertexOutput` to `VertexOutput`
in custom material prepass shaders:
- rename instances of `VertexOutput::clip_position` to
`VertexOutput::position`
# Objective
Fixes#10069
## Solution
Extracted UI nodes were previously stored in a `SparseSet` and had a
predictable iteration order. UI borders and outlines relied on this. Now
they are stored in a HashMap and that is no longer true.
This adds `entity.index()` to the sort key for `TransparentUi` so that
the iteration order is predictable and the "border entities" that get
spawned during extraction are guaranteed to get drawn after their
respective container nodes again.
I **think** that everything still works for overlapping ui nodes etc,
because the z value / primary sort is still controlled by the "ui
stack."
Text above is just my current understanding. A rendering expert should
check this out.
I will do some more testing when I can.
# Objective
Fixes [#10061]
## Solution
Renamed `RenderInstance` to `ExtractInstance`, `RenderInstances` to
`ExtractedInstances` and `RenderInstancePlugin` to
`ExtractInstancesPlugin`
# Objective
- Add a [Deferred
Renderer](https://en.wikipedia.org/wiki/Deferred_shading) to Bevy.
- This allows subsequent passes to access per pixel material information
before/during shading.
- Accessing this per pixel material information is needed for some
features, like GI. It also makes other features (ex. Decals) simpler to
implement and/or improves their capability. There are multiple
approaches to accomplishing this. The deferred shading approach works
well given the limitations of WebGPU and WebGL2.
Motivation: [I'm working on a GI solution for
Bevy](https://youtu.be/eH1AkL-mwhI)
# Solution
- The deferred renderer is implemented with a prepass and a deferred
lighting pass.
- The prepass renders opaque objects into the Gbuffer attachment
(`Rgba32Uint`). The PBR shader generates a `PbrInput` in mostly the same
way as the forward implementation and then [packs it into the
Gbuffer](ec1465559f/crates/bevy_pbr/src/render/pbr.wgsl (L168)).
- The deferred lighting pass unpacks the `PbrInput` and [feeds it into
the pbr()
function](ec1465559f/crates/bevy_pbr/src/deferred/deferred_lighting.wgsl (L65)),
then outputs the shaded color data.
- There is now a resource
[DefaultOpaqueRendererMethod](ec1465559f/crates/bevy_pbr/src/material.rs (L599))
that can be used to set the default render method for opaque materials.
If materials return `None` from
[opaque_render_method()](ec1465559f/crates/bevy_pbr/src/material.rs (L131))
the `DefaultOpaqueRendererMethod` will be used. Otherwise, custom
materials can also explicitly choose to only support Deferred or Forward
by returning the respective
[OpaqueRendererMethod](ec1465559f/crates/bevy_pbr/src/material.rs (L603))
- Deferred materials can be used seamlessly along with both opaque and
transparent forward rendered materials in the same scene. The [deferred
rendering
example](https://github.com/DGriffin91/bevy/blob/deferred/examples/3d/deferred_rendering.rs)
does this.
- The deferred renderer does not support MSAA. If any deferred materials
are used, MSAA must be disabled. Both TAA and FXAA are supported.
- Deferred rendering supports WebGL2/WebGPU.
## Custom deferred materials
- Custom materials can support both deferred and forward at the same
time. The
[StandardMaterial](ec1465559f/crates/bevy_pbr/src/render/pbr.wgsl (L166))
does this. So does [this
example](https://github.com/DGriffin91/bevy_glowy_orb_tutorial/blob/deferred/assets/shaders/glowy.wgsl#L56).
- Custom deferred materials that require PBR lighting can create a
`PbrInput`, write it to the deferred GBuffer and let it be rendered by
the `PBRDeferredLightingPlugin`.
- Custom deferred materials that require custom lighting have two
options:
1. Use the base_color channel of the `PbrInput` combined with the
`STANDARD_MATERIAL_FLAGS_UNLIT_BIT` flag.
[Example.](https://github.com/DGriffin91/bevy_glowy_orb_tutorial/blob/deferred/assets/shaders/glowy.wgsl#L56)
(If the unlit bit is set, the base_color is stored as RGB9E5 for extra
precision)
2. A Custom Deferred Lighting pass can be created, either overriding the
default, or running in addition. The a depth buffer is used to limit
rendering to only the required fragments for each deferred lighting
pass. Materials can set their respective depth id via the
[deferred_lighting_pass_id](b79182d2a3/crates/bevy_pbr/src/prepass/prepass_io.wgsl (L95))
attachment. The custom deferred lighting pass plugin can then set [its
corresponding
depth](ec1465559f/crates/bevy_pbr/src/deferred/deferred_lighting.wgsl (L37)).
Then with the lighting pass using
[CompareFunction::Equal](ec1465559f/crates/bevy_pbr/src/deferred/mod.rs (L335)),
only the fragments with a depth that equal the corresponding depth
written in the material will be rendered.
Custom deferred lighting plugins can also be created to render the
StandardMaterial. The default deferred lighting plugin can be bypassed
with `DefaultPlugins.set(PBRDeferredLightingPlugin { bypass: true })`
---------
Co-authored-by: nickrart <nickolas.g.russell@gmail.com>
# Objective
While using joysticks for player aiming, I noticed that there was as
`0.05` value snap on the axis. After searching through Bevy's code, I
saw it was the default livezone being at `0.95`. This causes any value
higher to snap to `1.0`. I think `1.0` and `-1.0` would be a better
default, as it gives all values to the joystick arc.
This default livezone stumped me for a bit as I thought either something
was broken or I was doing something wrong.
## Solution
Change the livezone defaults to ` livezone_upperbound: 1.0` and
`livezone_lowerbound: -1.0`.
---
## Migration Guide
If the default 0.05 was relied on, the default or gamepad `AxisSettings`
on the resource `GamepadSettings` will have to be changed.
# Objective
- Fixes#8303
## Solution
- Replaced 1 instance of `OnceBox<T>` with `OnceLock<T>` in
`NonGenericTypeCell`
## Notes
All changes are in the private side of Bevy, and appear to have no
observable change in performance or compilation time. This is purely to
reduce the quantity of direct dependencies in Bevy.
# Objective
- The filter type on the `apply_global_wireframe_material` system had
duplicate filter code and the `clippy::type_complexity` attribute.
## Solution
- Extract the common part of the filter into a type alias
# Objective
- Use the `Material` abstraction for the Wireframes
- Right now this doesn't have many benefits other than simplifying some
of the rendering code
- We can reuse the default vertex shader and avoid rendering
inconsistencies
- The goal is to have a material with a color on each mesh so this
approach will make it easier to implement
- Originally done in https://github.com/bevyengine/bevy/pull/5303 but I
decided to split the Material part to it's own PR and then adding
per-entity colors and globally configurable colors will be a much
simpler diff.
## Solution
- Use the new `Material` abstraction for the Wireframes
## Notes
It's possible this isn't ideal since this adds a
`Handle<WireframeMaterial>` to all the meshes compared to the original
approach that didn't need anything. I didn't notice any performance
impact on my machine.
This might be a surprising usage of `Material` at first, because
intuitively you only have one material per mesh, but the way it's
implemented you can have as many different types of materials as you
want on a mesh.
## Migration Guide
`WireframePipeline` was removed. If you were using it directly, please
create an issue explaining your use case.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Add serde Deserialize and Serialize for structs that doesn't implement
it, even if they could benefit from it
## Solution
- Derive these traits for the structs Style, BackgroundColor,
BorderColor and Outline.
---
Adopted from #8954, co-authored by @pyrotechnick
# Objective
The Bevy ecosystem currently reflects `Quat` via "value" rather than the
more appropriate "struct" strategy. This behaviour is inconsistent to
that of similar types, i.e. `Vec3`. Additionally, employing the "value"
strategy causes instances of `Quat` to be serialised as a sequence `[x,
y, z, w]` rather than structures of shape `{ x, y, z, w }`.
The [comments surrounding the applicable
code](bec299fa6e/crates/bevy_reflect/src/impls/glam.rs (L254))
give context and historical reasons for this discrepancy:
```
// Quat fields are read-only (as of now), and reflection is currently missing
// mechanisms for read-only fields. I doubt those mechanisms would be added,
// so for now quaternions will remain as values. They are represented identically
// to Vec4 and DVec4, so you may use those instead and convert between.
```
This limitation has [since been lifted by the upstream
crate](374625163e),
glam.
## Solution
Migrating the reflect strategy of Quat from "value" to "struct" via
replacing `impl_reflect_value` with `impl_reflect_struct` resolves the
issue.
## Changelog
Migrated `Quat` reflection strategy to "struct" from "value"
Migration Guide
Changed Quat serialization/deserialization from sequences `[x, y, z, w]`
to structures `{ x, y, z, w }`.
---------
Co-authored-by: pyrotechnick <13998+pyrotechnick@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
~~Currently blocked on an upstream bug that causes crashes when
minimizing/resizing on dx12 https://github.com/gfx-rs/wgpu/issues/3967~~
wgpu 0.17.1 is out which fixes it
# Objective
Keep wgpu up to date.
## Solution
Update wgpu and naga_oil.
Currently this depends on an unreleased (and unmerged) branch of
naga_oil, and hasn't been properly tested yet.
The wgpu side of this seems to have been an extremely trivial upgrade
(all the upgrade work seems to be in naga_oil). This also lets us remove
the workarounds for pack/unpack4x8unorm in the SSAO shaders.
Lets us close the dx12 part of
https://github.com/bevyengine/bevy/issues/8888
related: https://github.com/bevyengine/bevy/issues/9304
---
## Changelog
Update to wgpu 0.17 and naga_oil 0.9
# Objective
- This PR aims to make creating meshes a little bit more ergonomic,
specifically by removing the need for intermediate mutable variables.
## Solution
- We add methods that consume the `Mesh` and return a mesh with the
specified changes, so that meshes can be entirely constructed via
builder-style calls, without intermediate variables;
- Methods are flagged with `#[must_use]` to ensure proper use;
- Examples are updated to use the new methods where applicable. Some
examples are kept with the mutating methods so that users can still
easily discover them, and also where the new methods wouldn't really be
an improvement.
## Examples
Before:
```rust
let mut mesh = Mesh::new(PrimitiveTopology::TriangleList);
mesh.insert_attribute(Mesh::ATTRIBUTE_POSITION, vs);
mesh.insert_attribute(Mesh::ATTRIBUTE_NORMAL, vns);
mesh.insert_attribute(Mesh::ATTRIBUTE_UV_0, vts);
mesh.set_indices(Some(Indices::U32(tris)));
mesh
```
After:
```rust
Mesh::new(PrimitiveTopology::TriangleList)
.with_inserted_attribute(Mesh::ATTRIBUTE_POSITION, vs)
.with_inserted_attribute(Mesh::ATTRIBUTE_NORMAL, vns)
.with_inserted_attribute(Mesh::ATTRIBUTE_UV_0, vts)
.with_indices(Some(Indices::U32(tris)))
```
Before:
```rust
let mut cube = Mesh::from(shape::Cube { size: 1.0 });
cube.generate_tangents().unwrap();
PbrBundle {
mesh: meshes.add(cube),
..default()
}
```
After:
```rust
PbrBundle {
mesh: meshes.add(
Mesh::from(shape::Cube { size: 1.0 })
.with_generated_tangents()
.unwrap(),
),
..default()
}
```
---
## Changelog
- Added consuming builder methods for more ergonomic `Mesh` creation:
`with_inserted_attribute()`, `with_removed_attribute()`,
`with_indices()`, `with_duplicated_vertices()`,
`with_computed_flat_normals()`, `with_generated_tangents()`,
`with_morph_targets()`, `with_morph_target_names()`.
# Objective
Closes#9955.
Use the same interface for all "pure" builder types: taking and
returning `Self` (and not `&mut Self`).
## Solution
Changed `DynamicSceneBuilder`, `SceneFilter` and `TableBuilder` to take
and return `Self`.
## Changelog
### Changed
- `DynamicSceneBuilder` and `SceneBuilder` methods in `bevy_ecs` now
take and return `Self`.
## Migration guide
When using `bevy_ecs::DynamicSceneBuilder` and `bevy_ecs::SceneBuilder`,
instead of binding the builder to a variable, directly use it. Methods
on those types now consume `Self`, so you will need to re-bind the
builder if you don't `build` it immediately.
Before:
```rust
let mut scene_builder = DynamicSceneBuilder::from_world(&world);
let scene = scene_builder.extract_entity(a).extract_entity(b).build();
```
After:
```rust
let scene = DynamicSceneBuilder::from_world(&world)
.extract_entity(a)
.extract_entity(b)
.build();
```
# Objective
Spatial audio was heroically thrown together at the last minute for Bevy
0.10, but right now it's a bit of a pain to use -- users need to
manually update audio sinks with the position of the listener / emitter.
Hopefully the migration guide entry speaks for itself.
## Solution
Add a new `SpatialListener` component and automatically update sinks
with the position of the listener and and emitter.
## Changelog
`SpatialAudioSink`s are now automatically updated with positions of
emitters and listeners.
## Migration Guide
Spatial audio now automatically uses the transform of the `AudioBundle`
and of an entity with a `SpatialListener` component.
If you were manually scaling emitter/listener positions, you can use the
`spatial_scale` field of `AudioPlugin` instead.
```rust
// Old
commands.spawn(
SpatialAudioBundle {
source: asset_server.load("sounds/Windless Slopes.ogg"),
settings: PlaybackSettings::LOOP,
spatial: SpatialSettings::new(listener_position, gap, emitter_position),
},
);
fn update(
emitter_query: Query<(&Transform, &SpatialAudioSink)>,
listener_query: Query<&Transform, With<Listener>>,
) {
let listener = listener_query.single();
for (transform, sink) in &emitter_query {
sink.set_emitter_position(transform.translation);
sink.set_listener_position(*listener, gap);
}
}
// New
commands.spawn((
SpatialBundle::from_transform(Transform::from_translation(emitter_position)),
AudioBundle {
source: asset_server.load("sounds/Windless Slopes.ogg"),
settings: PlaybackSettings::LOOP.with_spatial(true),
},
));
commands.spawn((
SpatialBundle::from_transform(Transform::from_translation(listener_position)),
SpatialListener::new(gap),
));
```
## Discussion
I removed `SpatialAudioBundle` because the `SpatialSettings` component
was made mostly redundant, and without that it was identical to
`AudioBundle`.
`SpatialListener` is a bare component and not a bundle which is feeling
like a maybe a strange choice. That happened from a natural aversion
both to nested bundles and to duplicating `Transform` etc in bundles and
from figuring that it is likely to just be tacked on to some other
bundle (player, head, camera) most of the time.
Let me know what you think about these things / everything else.
---------
Co-authored-by: Mike <mike.hsu@gmail.com>
# Objective
- Followup to #7184.
- ~Deprecate `TypeUuid` and remove its internal references.~ No longer
part of this PR.
- Use `TypePath` for the type registry, and (de)serialisation instead of
`std::any::type_name`.
- Allow accessing type path information behind proxies.
## Solution
- Introduce methods on `TypeInfo` and friends for dynamically querying
type path. These methods supersede the old `type_name` methods.
- Remove `Reflect::type_name` in favor of `DynamicTypePath::type_path`
and `TypeInfo::type_path_table`.
- Switch all uses of `std::any::type_name` in reflection, non-debugging
contexts to use `TypePath`.
---
## Changelog
- Added `TypePathTable` for dynamically accessing methods on `TypePath`
through `TypeInfo` and the type registry.
- Removed `type_name` from all `TypeInfo`-like structs.
- Added `type_path` and `type_path_table` methods to all `TypeInfo`-like
structs.
- Removed `Reflect::type_name` in favor of
`DynamicTypePath::reflect_type_path` and `TypeInfo::type_path`.
- Changed the signature of all `DynamicTypePath` methods to return
strings with a static lifetime.
## Migration Guide
- Rely on `TypePath` instead of `std::any::type_name` for all stability
guarantees and for use in all reflection contexts, this is used through
with one of the following APIs:
- `TypePath::type_path` if you have a concrete type and not a value.
- `DynamicTypePath::reflect_type_path` if you have an `dyn Reflect`
value without a concrete type.
- `TypeInfo::type_path` for use through the registry or if you want to
work with the represented type of a `DynamicFoo`.
- Remove `type_name` from manual `Reflect` implementations.
- Use `type_path` and `type_path_table` in place of `type_name` on
`TypeInfo`-like structs.
- Use `get_with_type_path(_mut)` over `get_with_type_name(_mut)`.
## Note to reviewers
I think if anything we were a little overzealous in merging #7184 and we
should take that extra care here.
In my mind, this is the "point of no return" for `TypePath` and while I
think we all agree on the design, we should carefully consider if the
finer details and current implementations are actually how we want them
moving forward.
For example [this incorrect `TypePath` implementation for
`String`](3fea3c6c0b/crates/bevy_reflect/src/impls/std.rs (L90))
(note that `String` is in the default Rust prelude) snuck in completely
under the radar.
Updates the requirements on [toml_edit](https://github.com/toml-rs/toml)
to permit the latest version.
<details>
<summary>Commits</summary>
<ul>
<li><a
href="ed597ebad1"><code>ed597eb</code></a>
chore: Release</li>
<li><a
href="257a0fdc59"><code>257a0fd</code></a>
docs: Update changelog</li>
<li><a
href="4b44f53a31"><code>4b44f53</code></a>
Merge pull request <a
href="https://redirect.github.com/toml-rs/toml/issues/617">#617</a> from
epage/update</li>
<li><a
href="7eaf286110"><code>7eaf286</code></a>
fix(parser): Failed on mixed inline tables</li>
<li><a
href="e1f20378a2"><code>e1f2037</code></a>
test: Verify with latest data</li>
<li><a
href="2f9253c9eb"><code>2f9253c</code></a>
chore: Update toml-test</li>
<li><a
href="c9b481cab5"><code>c9b481c</code></a>
test(toml): Ensure tables are used for validation</li>
<li><a
href="43d7f29cfd"><code>43d7f29</code></a>
Merge pull request <a
href="https://redirect.github.com/toml-rs/toml/issues/615">#615</a> from
toml-rs/renovate/actions-checkout-4.x</li>
<li><a
href="ef9b8372c8"><code>ef9b837</code></a>
chore(deps): update actions/checkout action to v4</li>
<li><a
href="d308188db7"><code>d308188</code></a>
chore: Release</li>
<li>Additional commits viewable in <a
href="https://github.com/toml-rs/toml/compare/v0.19.0...v0.20.2">compare
view</a></li>
</ul>
</details>
<br />
Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.
[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)
---
<details>
<summary>Dependabot commands and options</summary>
<br />
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
</details>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
# Objective
fix#9605
spotlight culling uses an incorrect cluster aabb for orthographic
projections: it does not take into account the near and far cluster
bounds at all.
## Solution
use z_near and z_far to determine cluster aabb in orthographic mode.
i'm not 100% sure this is the only change that's needed, but i am sure
this change is needed, and the example seems to work well now
(CLUSTERED_FORWARD_DEBUG_CLUSTER_LIGHT_COMPLEXITY shows good bounds
around the cone for a variety of orthographic setups).
# Objective
Webgl2 broke when pcf was merged.
Fixes#10048
## Solution
Change the `textureSampleCompareLevel` in shadow_sampling.wgsl to
`textureSampleCompare` to make it work again.
# Objective
Currently, the only way for custom components that participate in
rendering to opt into the higher-performance extraction method in #9903
is to implement the `RenderInstances` data structure and the extraction
logic manually. This is inconvenient compared to the `ExtractComponent`
API.
## Solution
This commit creates a new `RenderInstance` trait that mirrors the
existing `ExtractComponent` method but uses the higher-performance
approach that #9903 uses. Additionally, `RenderInstance` is more
flexible than `ExtractComponent`, because it can extract multiple
components at once. This makes high-performance rendering components
essentially as easy to write as the existing ones based on component
extraction.
---
## Changelog
### Added
A new `RenderInstance` trait is available mirroring `ExtractComponent`,
but using a higher-performance method to extract one or more components
to the render world. If you have custom components that rendering takes
into account, you may consider migration from `ExtractComponent` to
`RenderInstance` for higher performance.
# Objective
- Improve antialiasing for non-point light shadow edges.
- Very partially addresses
https://github.com/bevyengine/bevy/issues/3628.
## Solution
- Implements "The Witness"'s shadow map sampling technique.
- Ported from @superdump's old branch, all credit to them :)
- Implements "Call of Duty: Advanced Warfare"'s stochastic shadow map
sampling technique when the velocity prepass is enabled, for use with
TAA.
- Uses interleaved gradient noise to generate a random angle, and then
averages 8 samples in a spiral pattern, rotated by the random angle.
- I also tried spatiotemporal blue noise, but it was far too noisy to be
filtered by TAA alone. In the future, we should try spatiotemporal blue
noise + a specialized shadow denoiser such as
https://gpuopen.com/fidelityfx-denoiser/#shadow. This approach would
also be useful for hybrid rasterized applications with raytraced
shadows.
- The COD presentation has an interesting temporal dithering of the
noise for use with temporal supersampling that we should revisit when we
get DLSS/FSR/other TSR.
---
## Changelog
* Added `ShadowFilteringMethod`. Improved directional light and
spotlight shadow edges to be less aliased.
## Migration Guide
* Shadows cast by directional lights or spotlights now have smoother
edges. To revert to the old behavior, add
`ShadowFilteringMethod::Hardware2x2` to your cameras.
---------
Co-authored-by: IceSentry <c.giguere42@gmail.com>
Co-authored-by: Daniel Chia <danstryder@gmail.com>
Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
Co-authored-by: Brandon Dyer <brandondyer64@gmail.com>
Co-authored-by: Edgar Geier <geieredgar@gmail.com>
Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
# Objective
- After https://github.com/bevyengine/bevy/pull/9903, example
`mesh2d_manual` doesn't render anything
## Solution
- Fix the example using the new `RenderMesh2dInstances`
# Objective
- Fix TextureAtlasBuilder padding issue
TextureAtlasBuilder padding is reserved during add_texture() but can
still be changed afterwards. This means that changing padding after the
textures will be wrongly applied, either distorting the textures or
panicking if new padding is higher than texture+old padding.
## Solution
- Delay applying padding until finish()
# Objective
Allow Bevy apps to run without requiring to start from the main thread.
This allows other projects and applications to do things like spawning a
normal or scoped
thread and run Bevy applications there.
The current behaviour if you try this is a panic.
## Solution
Allow this by default on platforms winit supports this behaviour on
(x11, Wayland, Windows).
---
## Changelog
### Added
- Added the ability to start Bevy apps outside of the main thread on
x11, Wayland, Windows
---------
Signed-off-by: Torstein Grindvik <torstein.grindvik@nordicsemi.no>
Signed-off-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
Co-authored-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
Co-authored-by: James Liu <contact@jamessliu.com>
# Objective
- Fixes#8140
## Solution
- Added Explicit Error Typing for `AssetLoader` and `AssetSaver`, which
were the last instances of `anyhow` in use across Bevy.
---
## Changelog
- Added an associated type `Error` to `AssetLoader` and `AssetSaver` for
use with the `load` and `save` methods respectively.
- Changed `ErasedAssetLoader` and `ErasedAssetSaver` `load` and `save`
methods to use `Box<dyn Error + Send + Sync + 'static>` to allow for
arbitrary `Error` types from the non-erased trait variants. Note the
strict requirements match the pre-existing requirements around
`anyhow::Error`.
## Migration Guide
- `anyhow` is no longer exported by `bevy_asset`; Add it to your own
project (if required).
- `AssetLoader` and `AssetSaver` have an associated type `Error`; Define
an appropriate error type (e.g., using `thiserror`), or use a pre-made
error type (e.g., `anyhow::Error`). Note that using `anyhow::Error` is a
drop-in replacement.
- `AssetLoaderError` has been removed; Define a new error type, or use
an alternative (e.g., `anyhow::Error`)
- All the first-party `AssetLoader`'s and `AssetSaver`'s now return
relevant (and narrow) error types instead of a single ambiguous type;
Match over the specific error type, or encapsulate (`Box<dyn>`,
`thiserror`, `anyhow`, etc.)
## Notes
A simpler PR to resolve this issue would simply define a Bevy `Error`
type defined as `Box<dyn std::error::Error + Send + Sync + 'static>`,
but I think this type of error handling should be discouraged when
possible. Since only 2 traits required the use of `anyhow`, it isn't a
substantive body of work to solidify these error types, and remove
`anyhow` entirely. End users are still encouraged to use `anyhow` if
that is their preferred error handling style. Arguably, adding the
`Error` associated type gives more freedom to end-users to decide
whether they want more or less explicit error handling (`anyhow` vs
`thiserror`).
As an aside, I didn't perform any testing on Android or WASM. CI passed
locally, but there may be mistakes for those platforms I missed.
# Objective
assets v2 broke custom shader imports. fix them
## Solution
store handles of any file dependencies in the `Shader` to avoid them
being immediately dropped.
also added a use into the `shader_material` example so that it'll be
harder to break support in future.
# Objective
- Updates for rust 1.73
## Solution
- new doc check for `redundant_explicit_links`
- updated to text for compile fail tests
---
## Changelog
- updates for rust 1.73
# Objective
https://github.com/bevyengine/bevy/pull/7328 introduced an API to
override the global wireframe config. I believe it is flawed for a few
reasons.
This PR uses a non-breaking API. Instead of making the `Wireframe` an
enum I introduced the `NeverRenderWireframe` component. Here's the
reason why I think this is better:
- Easier to migrate since it doesn't change the old behaviour.
Essentially nothing to migrate. Right now this PR is a breaking change
but I don't think it has to be.
- It's similar to other "per mesh" rendering features like
NotShadowCaster/NotShadowReceiver
- It doesn't force new users to also think about global vs not global if
all they want is to render a wireframe
- This would also let you filter at the query definition level instead
of filtering when running the query
## Solution
- Introduce a `NeverRenderWireframe` component that ignores the global
config
---
## Changelog
- Added a `NeverRenderWireframe` component that ignores the global
`WireframeConfig`
# Objective
Add support for drawing outlines outside the borders of UI nodes.
## Solution
Add a new `Outline` component with `width`, `offset` and `color` fields.
Added `outline_width` and `outline_offset` fields to `Node`. This is set
after layout recomputation by the `resolve_outlines_system`.
Properties of outlines:
* Unlike borders, outlines have to be the same width on each edge.
* Outlines do not occupy any space in the layout.
* The `Outline` component won't be added to any of the UI node bundles,
it needs to be inserted separately.
* Outlines are drawn outside the node's border, so they are clipped
using the clipping rect of their entity's parent UI node (if it exists).
* `Val::Percent` outline widths are resolved based on the width of the
outlined UI node.
* The offset of the `Outline` adds space between an outline and the edge
of its node.
I was leaning towards adding an `outline` field to `Style` but a
separate component seems more efficient for queries and change
detection. The `Outline` component isn't added to bundles for the same
reason.
---
## Examples
* This image is from the `borders` example from the Bevy UI examples but
modified to include outlines. The UI nodes are the dark red rectangles,
the bright red rectangles are borders and the white lines offset from
each node are the outlines. The yellow rectangles are separate nodes
contained with the dark red nodes:
<img width="406" alt="outlines"
src="https://github.com/bevyengine/bevy/assets/27962798/4e6f315a-019f-42a4-94ee-cca8e684d64a">
* This is from the same example but using a branch that implements
border-radius. Here the the outlines are in orange and there is no
offset applied. I broke the borders implementation somehow during the
merge, which is why some of the borders from the first screenshot are
missing 😅. The outlines work nicely though (as long as you
can forgive the lack of anti-aliasing):
![image](https://github.com/bevyengine/bevy/assets/27962798/d15560b6-6cd6-42e5-907b-56ccf2ad5e02)
---
## Notes
As I explained above, I don't think the `Outline` component should be
added to UI node bundles. We can have helper functions though, perhaps
something as simple as:
```rust
impl NodeBundle {
pub fn with_outline(self, outline: Outline) -> (Self, Outline) {
(self, outline)
}
}
```
I didn't include anything like this as I wanted to keep the PR's scope
as narrow as possible. Maybe `with_outline` should be in a trait that we
implement for each UI node bundle.
---
## Changelog
Added support for outlines to Bevy UI.
* The `Outline` component adds an outline to a UI node.
* The `outline_width` field added to `Node` holds the resolved width of
the outline, which is set by the `resolve_outlines_system` after layout
recomputation.
* Outlines are drawn by the system `extract_uinode_outlines`.
# Objective
- When I've tested alternative async executors with bevy a common
problem is that they deadlock when we try to run nested scopes. i.e.
running a multithreaded schedule from inside another multithreaded
schedule. This adds a test to bevy_tasks for that so the issue can be
spotted earlier while developing.
## Changelog
- add a test for nested scopes.
# Objective
Fix warnings:
- #[warn(clippy::needless_pass_by_ref_mut)]
- #[warn(elided_lifetimes_in_associated_constant)]
## Solution
- Remove mut
- add &'static
## Errors
```rust
warning: this argument is a mutable reference, but not used mutably
--> crates/bevy_hierarchy/src/child_builder.rs:672:31
|
672 | fn assert_children(world: &mut World, parent: Entity, children: Option<&[Entity]>) {
| ^^^^^^^^^^ help: consider changing to: `&World`
|
= note: this is cfg-gated and may require further changes
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_pass_by_ref_mut
= note: `#[warn(clippy::needless_pass_by_ref_mut)]` on by default
```
```rust
warning: `&` without an explicit lifetime name cannot be used here
--> examples/shader/post_processing.rs:120:21
|
120 | pub const NAME: &str = "post_process";
| ^
|
= warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
= note: for more information, see issue #115010 <https://github.com/rust-lang/rust/issues/115010>
= note: `#[warn(elided_lifetimes_in_associated_constant)]` on by default
help: use the `'static` lifetime
|
120 | pub const NAME: &'static str = "post_process";
| +++++++
```