# Objective
#10644 introduced nice "statically typed" labels that replace the old
strings. I would like to propose some changes to the names introduced:
* `SubGraph2d` -> `Core2d` and `SubGraph3d` -> `Core3d`. The names of
these graphs have been / should continue to be the "core 2d" graph not
the "sub graph 2d" graph. The crate is called `bevy_core_pipeline`, the
modules are still `core_2d` and `core_3d`, etc.
* `Labels2d` and `Labels3d`, at the very least, should not be plural to
follow naming conventions. A Label enum is not a "collection of labels",
it is a _specific_ Label. However I think `Label2d` and `Label3d` is
significantly less clear than `Node2d` and `Node3d`, so I propose those
changes here. I've done the same for `LabelsPbr` -> `NodePbr` and
`LabelsUi` -> `NodeUi`
Additionally, #10644 accidentally made one of the Camera2dBundle
constructors use the 3D graph instead of the 2D graph. I've fixed that
here.
---
## Changelog
* Renamed `SubGraph2d` -> `Core2d`, `SubGraph3d` -> `Core3d`, `Labels2d`
-> `Node2d`, `Labels3d` -> `Node3d`, `LabelsUi` -> `NodeUi`, `LabelsPbr`
-> `NodePbr`
# Objective
After adding configurable exposure, we set the default ev100 value to
`7` (indoor). This brought us out of sync with Blender's configuration
and defaults. This PR changes the default to `9.7` (bright indoor or
very overcast outdoors), as I calibrated in #11577. This feels like a
very reasonable default.
The other changes generally center around tweaking Bevy's lighting
defaults and examples to play nicely with this number, alongside a few
other tweaks and improvements.
Note that for artistic reasons I have reverted some examples, which
changed to directional lights in #11581, back to point lights.
Fixes#11577
---
## Changelog
- Changed `Exposure::ev100` from `7` to `9.7` to better match Blender
- Renamed `ExposureSettings` to `Exposure`
- `Camera3dBundle` now includes `Exposure` for discoverability
- Bumped `FULL_DAYLIGHT ` and `DIRECT_SUNLIGHT` to represent the
middle-to-top of those ranges instead of near the bottom
- Added new `AMBIENT_DAYLIGHT` constant and set that as the new
`DirectionalLight` default illuminance.
- `PointLight` and `SpotLight` now have a default `intensity` of
1,000,000 lumens. This makes them actually useful in the context of the
new "semi-outdoor" exposure and puts them in the "cinema lighting"
category instead of the "common household light" category. They are also
reasonably close to the Blender default.
- `AmbientLight` default has been bumped from `20` to `80`.
## Migration Guide
- The increased `Exposure::ev100` means that all existing 3D lighting
will need to be adjusted to match (DirectionalLights, PointLights,
SpotLights, EnvironmentMapLights, etc). Or alternatively, you can adjust
the `Exposure::ev100` on your cameras to work nicely with your current
lighting values. If you are currently relying on default intensity
values, you might need to change the intensity to achieve the same
effect. Note that in Bevy 0.12, point/spot lights had a different hard
coded ev100 value than directional lights. In Bevy 0.13, they use the
same ev100, so if you have both in your scene, the _scale_ between these
light types has changed and you will likely need to adjust one or both
of them.
# Objective
Loading some textures from the days of yonder give me errors cause the
mipmap level is 0
## Solution
Set a minimum of 1
## Changelog
Make mipmap level at least 1
# Objective
- Encoding many GPU commands (such as in a renderpass with many draws,
such as the main opaque pass) onto a `wgpu::CommandEncoder` is very
expensive, and takes a long time.
- To improve performance, we want to perform the command encoding for
these heavy passes in parallel.
## Solution
- `RenderContext` can now queue up "command buffer generation tasks"
which are closures that will generate a command buffer when called.
- When finalizing the render context to produce the final list of
command buffers, these tasks are run in parallel on the
`ComputeTaskPool` to produce their corresponding command buffers.
- The general idea is that the node graph will run in serial, but in a
node, instead of doing rendering work, you can add tasks to do render
work in parallel with other node's tasks that get ran at the end of the
graph execution.
## Nodes Parallelized
- `MainOpaquePass3dNode`
- `PrepassNode`
- `DeferredGBufferPrepassNode`
- `ShadowPassNode` (One task per view)
## Future Work
- For large number of draws calls, might be worth further subdividing
passes into 2+ tasks.
- Extend this to UI, 2d, transparent, and transmissive nodes?
- Needs testing - small command buffers are inefficient - it may be
worth reverting to the serial command encoder usage for render phases
with few items.
- All "serial" (traditional) rendering work must finish before parallel
rendering tasks (the new stuff) can start to run.
- There is still only one submission to the graphics queue at the end of
the graph execution. There is still no ability to submit work earlier.
## Performance Improvement
Thanks to @Elabajaba for testing on Bistro.
![image](https://github.com/bevyengine/bevy/assets/47158642/be50dafa-85eb-4da5-a5cd-c0a044f1e76f)
TLDR: Without shadow mapping, this PR has no impact. _With_ shadow
mapping, this PR gives **~40 more fps** than main.
---
## Changelog
- `MainOpaquePass3dNode`, `PrepassNode`, `DeferredGBufferPrepassNode`,
and each shadow map within `ShadowPassNode` are now encoded in parallel,
giving _greatly_ increased CPU performance, mainly when shadow mapping
is enabled.
- Does not work on WASM or AMD+Windows+Vulkan.
- Added `RenderContext::add_command_buffer_generation_task()`.
- `RenderContext::new()` now takes adapter info
- Some render graph and Node related types and methods now have
additional lifetime constraints.
## Migration Guide
`RenderContext::new()` now takes adapter info
- Some render graph and Node related types and methods now have
additional lifetime constraints.
---------
Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
Co-authored-by: François <mockersf@gmail.com>
# Objective
- This aims to fix#11755
- After #10812 some pipeline compilation can take more time than before
and all call to `get_render_pipeline` should check the result.
## Solution
- Check `get_render_pipeline` call result for msaa_writeback
- I checked that no other call to `get_render_pipeline` in bevy code
base is missng the checking on the result.
# Objective
Bevy could benefit from *irradiance volumes*, also known as *voxel
global illumination* or simply as light probes (though this term is not
preferred, as multiple techniques can be called light probes).
Irradiance volumes are a form of baked global illumination; they work by
sampling the light at the centers of each voxel within a cuboid. At
runtime, the voxels surrounding the fragment center are sampled and
interpolated to produce indirect diffuse illumination.
## Solution
This is divided into two sections. The first is copied and pasted from
the irradiance volume module documentation and describes the technique.
The second part consists of notes on the implementation.
### Overview
An *irradiance volume* is a cuboid voxel region consisting of
regularly-spaced precomputed samples of diffuse indirect light. They're
ideal if you have a dynamic object such as a character that can move
about
static non-moving geometry such as a level in a game, and you want that
dynamic object to be affected by the light bouncing off that static
geometry.
To use irradiance volumes, you need to precompute, or *bake*, the
indirect
light in your scene. Bevy doesn't currently come with a way to do this.
Fortunately, [Blender] provides a [baking tool] as part of the Eevee
renderer, and its irradiance volumes are compatible with those used by
Bevy.
The [`bevy-baked-gi`] project provides a tool, `export-blender-gi`, that
can
extract the baked irradiance volumes from the Blender `.blend` file and
package them up into a `.ktx2` texture for use by the engine. See the
documentation in the `bevy-baked-gi` project for more details as to this
workflow.
Like all light probes in Bevy, irradiance volumes are 1×1×1 cubes that
can
be arbitrarily scaled, rotated, and positioned in a scene with the
[`bevy_transform::components::Transform`] component. The 3D voxel grid
will
be stretched to fill the interior of the cube, and the illumination from
the
irradiance volume will apply to all fragments within that bounding
region.
Bevy's irradiance volumes are based on Valve's [*ambient cubes*] as used
in
*Half-Life 2* ([Mitchell 2006], slide 27). These encode a single color
of
light from the six 3D cardinal directions and blend the sides together
according to the surface normal.
The primary reason for choosing ambient cubes is to match Blender, so
that
its Eevee renderer can be used for baking. However, they also have some
advantages over the common second-order spherical harmonics approach:
ambient cubes don't suffer from ringing artifacts, they are smaller (6
colors for ambient cubes as opposed to 9 for spherical harmonics), and
evaluation is faster. A smaller basis allows for a denser grid of voxels
with the same storage requirements.
If you wish to use a tool other than `export-blender-gi` to produce the
irradiance volumes, you'll need to pack the irradiance volumes in the
following format. The irradiance volume of resolution *(Rx, Ry, Rz)* is
expected to be a 3D texture of dimensions *(Rx, 2Ry, 3Rz)*. The
unnormalized
texture coordinate *(s, t, p)* of the voxel at coordinate *(x, y, z)*
with
side *S* ∈ *{-X, +X, -Y, +Y, -Z, +Z}* is as follows:
```text
s = x
t = y + ⎰ 0 if S ∈ {-X, -Y, -Z}
⎱ Ry if S ∈ {+X, +Y, +Z}
⎧ 0 if S ∈ {-X, +X}
p = z + ⎨ Rz if S ∈ {-Y, +Y}
⎩ 2Rz if S ∈ {-Z, +Z}
```
Visually, in a left-handed coordinate system with Y up, viewed from the
right, the 3D texture looks like a stacked series of voxel grids, one
for
each cube side, in this order:
| **+X** | **+Y** | **+Z** |
| ------ | ------ | ------ |
| **-X** | **-Y** | **-Z** |
A terminology note: Other engines may refer to irradiance volumes as
*voxel
global illumination*, *VXGI*, or simply as *light probes*. Sometimes
*light
probe* refers to what Bevy calls a reflection probe. In Bevy, *light
probe*
is a generic term that encompasses all cuboid bounding regions that
capture
indirect illumination, whether based on voxels or not.
Note that, if binding arrays aren't supported (e.g. on WebGPU or WebGL
2),
then only the closest irradiance volume to the view will be taken into
account during rendering.
[*ambient cubes*]:
https://advances.realtimerendering.com/s2006/Mitchell-ShadingInValvesSourceEngine.pdf
[Mitchell 2006]:
https://advances.realtimerendering.com/s2006/Mitchell-ShadingInValvesSourceEngine.pdf
[Blender]: http://blender.org/
[baking tool]:
https://docs.blender.org/manual/en/latest/render/eevee/render_settings/indirect_lighting.html
[`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi
### Implementation notes
This patch generalizes light probes so as to reuse as much code as
possible between irradiance volumes and the existing reflection probes.
This approach was chosen because both techniques share numerous
similarities:
1. Both irradiance volumes and reflection probes are cuboid bounding
regions.
2. Both are responsible for providing baked indirect light.
3. Both techniques involve presenting a variable number of textures to
the shader from which indirect light is sampled. (In the current
implementation, this uses binding arrays.)
4. Both irradiance volumes and reflection probes require gathering and
sorting probes by distance on CPU.
5. Both techniques require the GPU to search through a list of bounding
regions.
6. Both will eventually want to have falloff so that we can smoothly
blend as objects enter and exit the probes' influence ranges. (This is
not implemented yet to keep this patch relatively small and reviewable.)
To do this, we generalize most of the methods in the reflection probes
patch #11366 to be generic over a trait, `LightProbeComponent`. This
trait is implemented by both `EnvironmentMapLight` (for reflection
probes) and `IrradianceVolume` (for irradiance volumes). Using a trait
will allow us to add more types of light probes in the future. In
particular, I highly suspect we will want real-time reflection planes
for mirrors in the future, which can be easily slotted into this
framework.
## Changelog
> This section is optional. If this was a trivial fix, or has no
externally-visible impact, you can delete this section.
### Added
* A new `IrradianceVolume` asset type is available for baked voxelized
light probes. You can bake the global illumination using Blender or
another tool of your choice and use it in Bevy to apply indirect
illumination to dynamic objects.
# Objective
Bevy does ridiculous amount of drawcalls, and our batching isn't very
effective because we sort by distance and only batch if we get multiple
of the same object in a row. This can give us slightly better GPU
performance when not using the depth prepass (due to less overdraw), but
ends up being massively CPU bottlenecked due to doing thousands of
unnecessary drawcalls.
## Solution
Change the sort functions to sort by pipeline key then by mesh id for
large performance gains in more realistic scenes than our stress tests.
Pipelines changed:
- Opaque3d
- Opaque3dDeferred
- Opaque3dPrepass
![image](https://github.com/bevyengine/bevy/assets/177631/8c355256-ad86-4b47-81a0-f3906797fe7e)
---
## Changelog
- Opaque3d drawing order is now sorted by pipeline and mesh, rather than
by distance. This trades off a bit of GPU time in exchange for massively
better batching in scenes that aren't only drawing huge amounts of a
single object.
# Objective
- Pipeline compilation is slow and blocks the frame
- Closes https://github.com/bevyengine/bevy/issues/8224
## Solution
- Compile pipelines in a Task on the AsyncComputeTaskPool
---
## Changelog
- Render/compute pipeline compilation is now done asynchronously over
multiple frames when the multi-threaded feature is enabled and on
non-wasm and non-macOS platforms
- Added `CachedPipelineState::Creating`
- Added `PipelineCache::block_on_render_pipeline()`
- Added `bevy_utils::futures::check_ready`
- Added `bevy_render/multi-threaded` cargo feature
## Migration Guide
- Match on the new `Creating` variant for exhaustive matches of
`CachedPipelineState`
Frustum computation is nontrivial amount of code private in
`update_frusta` system.
Make it public.
This is needed to decide which entities to spawn/despawn in `Update`
based on camera changes. But if `Update` also changed camera, frustum is
not yet recomputed.
Technically it is probably possible to run an iteration of
`update_frusta` system by a user in `Update` schedule after propagating
`GlobalTransform` to the cameras, but it is easier to just compute
frustum manually using API added in this PR.
Also replace two places where this code is used.
---------
Co-authored-by: vero <email@atlasdostal.com>
# Objective
Currently the `missing_docs` lint is allowed-by-default and enabled at
crate level when their documentations is complete (see #3492).
This PR proposes to inverse this logic by making `missing_docs`
warn-by-default and mark crates with imcomplete docs allowed.
## Solution
Makes `missing_docs` warn at workspace level and allowed at crate level
when the docs is imcomplete.
# Objective
The whole `Cow<'static, str>` naming for nodes and subgraphs in
`RenderGraph` is a mess.
## Solution
Replaces hardcoded and potentially overlapping strings for nodes and
subgraphs inside `RenderGraph` with bevy's labelsystem.
---
## Changelog
* Two new labels: `RenderLabel` and `RenderSubGraph`.
* Replaced all uses for hardcoded strings with those labels
* Moved `Taa` label from its own mod to all the other `Labels3d`
* `add_render_graph_edges` now needs a tuple of labels
* Moved `ScreenSpaceAmbientOcclusion` label from its own mod with the
`ShadowPass` label to `LabelsPbr`
* Removed `NodeId`
* Renamed `Edges.id()` to `Edges.label()`
* Removed `NodeLabel`
* Changed examples according to the new label system
* Introduced new `RenderLabel`s: `Labels2d`, `Labels3d`, `LabelsPbr`,
`LabelsUi`
* Introduced new `RenderSubGraph`s: `SubGraph2d`, `SubGraph3d`,
`SubGraphUi`
* Removed `Reflect` and `Default` derive from `CameraRenderGraph`
component struct
* Improved some error messages
## Migration Guide
For Nodes and SubGraphs, instead of using hardcoded strings, you now
pass labels, which can be derived with structs and enums.
```rs
// old
#[derive(Default)]
struct MyRenderNode;
impl MyRenderNode {
pub const NAME: &'static str = "my_render_node"
}
render_app
.add_render_graph_node::<ViewNodeRunner<MyRenderNode>>(
core_3d::graph::NAME,
MyRenderNode::NAME,
)
.add_render_graph_edges(
core_3d::graph::NAME,
&[
core_3d::graph::node::TONEMAPPING,
MyRenderNode::NAME,
core_3d::graph::node::END_MAIN_PASS_POST_PROCESSING,
],
);
// new
use bevy::core_pipeline::core_3d::graph::{Labels3d, SubGraph3d};
#[derive(Debug, Hash, PartialEq, Eq, Clone, RenderLabel)]
pub struct MyRenderLabel;
#[derive(Default)]
struct MyRenderNode;
render_app
.add_render_graph_node::<ViewNodeRunner<MyRenderNode>>(
SubGraph3d,
MyRenderLabel,
)
.add_render_graph_edges(
SubGraph3d,
(
Labels3d::Tonemapping,
MyRenderLabel,
Labels3d::EndMainPassPostProcessing,
),
);
```
### SubGraphs
#### in `bevy_core_pipeline::core_2d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `NAME` | `SubGraph2d` |
#### in `bevy_core_pipeline::core_3d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `NAME` | `SubGraph3d` |
#### in `bevy_ui::render`
| old string-based path | new label |
|-----------------------|-----------|
| `draw_ui_graph::NAME` | `graph::SubGraphUi` |
### Nodes
#### in `bevy_core_pipeline::core_2d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `node::MSAA_WRITEBACK` | `Labels2d::MsaaWriteback` |
| `node::MAIN_PASS` | `Labels2d::MainPass` |
| `node::BLOOM` | `Labels2d::Bloom` |
| `node::TONEMAPPING` | `Labels2d::Tonemapping` |
| `node::FXAA` | `Labels2d::Fxaa` |
| `node::UPSCALING` | `Labels2d::Upscaling` |
| `node::CONTRAST_ADAPTIVE_SHARPENING` |
`Labels2d::ConstrastAdaptiveSharpening` |
| `node::END_MAIN_PASS_POST_PROCESSING` |
`Labels2d::EndMainPassPostProcessing` |
#### in `bevy_core_pipeline::core_3d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `node::MSAA_WRITEBACK` | `Labels3d::MsaaWriteback` |
| `node::PREPASS` | `Labels3d::Prepass` |
| `node::DEFERRED_PREPASS` | `Labels3d::DeferredPrepass` |
| `node::COPY_DEFERRED_LIGHTING_ID` | `Labels3d::CopyDeferredLightingId`
|
| `node::END_PREPASSES` | `Labels3d::EndPrepasses` |
| `node::START_MAIN_PASS` | `Labels3d::StartMainPass` |
| `node::MAIN_OPAQUE_PASS` | `Labels3d::MainOpaquePass` |
| `node::MAIN_TRANSMISSIVE_PASS` | `Labels3d::MainTransmissivePass` |
| `node::MAIN_TRANSPARENT_PASS` | `Labels3d::MainTransparentPass` |
| `node::END_MAIN_PASS` | `Labels3d::EndMainPass` |
| `node::BLOOM` | `Labels3d::Bloom` |
| `node::TONEMAPPING` | `Labels3d::Tonemapping` |
| `node::FXAA` | `Labels3d::Fxaa` |
| `node::UPSCALING` | `Labels3d::Upscaling` |
| `node::CONTRAST_ADAPTIVE_SHARPENING` |
`Labels3d::ContrastAdaptiveSharpening` |
| `node::END_MAIN_PASS_POST_PROCESSING` |
`Labels3d::EndMainPassPostProcessing` |
#### in `bevy_core_pipeline`
| old string-based path | new label |
|-----------------------|-----------|
| `taa::draw_3d_graph::node::TAA` | `Labels3d::Taa` |
#### in `bevy_pbr`
| old string-based path | new label |
|-----------------------|-----------|
| `draw_3d_graph::node::SHADOW_PASS` | `LabelsPbr::ShadowPass` |
| `ssao::draw_3d_graph::node::SCREEN_SPACE_AMBIENT_OCCLUSION` |
`LabelsPbr::ScreenSpaceAmbientOcclusion` |
| `deferred::DEFFERED_LIGHTING_PASS` | `LabelsPbr::DeferredLightingPass`
|
#### in `bevy_render`
| old string-based path | new label |
|-----------------------|-----------|
| `main_graph::node::CAMERA_DRIVER` | `graph::CameraDriverLabel` |
#### in `bevy_ui::render`
| old string-based path | new label |
|-----------------------|-----------|
| `draw_ui_graph::node::UI_PASS` | `graph::LabelsUi::UiPass` |
---
## Future work
* Make `NodeSlot`s also use types. Ideally, we have an enum with unit
variants where every variant resembles one slot. Then to make sure you
are using the right slot enum and make rust-analyzer play nicely with
it, we should make an associated type in the `Node` trait. With today's
system, we can introduce 3rd party slots to a node, and i wasnt sure if
this was used, so I didn't do this in this PR.
## Unresolved Questions
When looking at the `post_processing` example, we have a struct for the
label and a struct for the node, this seems like boilerplate and on
discord, @IceSentry (sowy for the ping)
[asked](https://discord.com/channels/691052431525675048/743663924229963868/1175197016947699742)
if a node could automatically introduce a label (or i completely
misunderstood that). The problem with that is, that nodes like
`EmptyNode` exist multiple times *inside the same* (sub)graph, so there
we need extern labels to distinguish between those. Hopefully we can
find a way to reduce boilerplate and still have everything unique. For
EmptyNode, we could maybe make a macro which implements an "empty node"
for a type, but for nodes which contain code and need to be present
multiple times, this could get nasty...
# Objective
Right now, all assets in the main world get extracted and prepared in
the render world (if the asset's using the RenderAssetPlugin). This is
unfortunate for two cases:
1. **TextureAtlas** / **FontAtlas**: This one's huge. The individual
`Image` assets that make up the atlas are cloned and prepared
individually when there's no reason for them to be. The atlas textures
are built on the CPU in the main world. *There can be hundreds of images
that get prepared for rendering only not to be used.*
2. If one loads an Image and needs to transform it in a system before
rendering it, kind of like the [decompression
example](https://github.com/bevyengine/bevy/blob/main/examples/asset/asset_decompression.rs#L120),
there's a price paid for extracting & preparing the asset that's not
intended to be rendered yet.
------
* References #10520
* References #1782
## Solution
This changes the `RenderAssetPersistencePolicy` enum to bitflags. I felt
that the objective with the parameter is so similar in nature to wgpu's
[`TextureUsages`](https://docs.rs/wgpu/latest/wgpu/struct.TextureUsages.html)
and
[`BufferUsages`](https://docs.rs/wgpu/latest/wgpu/struct.BufferUsages.html),
that it may as well be just like that.
```rust
// This asset only needs to be in the main world. Don't extract and prepare it.
RenderAssetUsages::MAIN_WORLD
// Keep this asset in the main world and
RenderAssetUsages::MAIN_WORLD | RenderAssetUsages::RENDER_WORLD
// This asset is only needed in the render world. Remove it from the asset server once extracted.
RenderAssetUsages::RENDER_WORLD
```
### Alternate Solution
I considered introducing a third field to `RenderAssetPersistencePolicy`
enum:
```rust
enum RenderAssetPersistencePolicy {
/// Keep the asset in the main world after extracting to the render world.
Keep,
/// Remove the asset from the main world after extracting to the render world.
Unload,
/// This doesn't need to be in the render world at all.
NoExtract, // <-----
}
```
Functional, but this seemed like shoehorning. Another option is renaming
the enum to something like:
```rust
enum RenderAssetExtractionPolicy {
/// Extract the asset and keep it in the main world.
Extract,
/// Remove the asset from the main world after extracting to the render world.
ExtractAndUnload,
/// This doesn't need to be in the render world at all.
NoExtract,
}
```
I think this last one could be a good option if the bitflags are too
clunky.
## Migration Guide
* `RenderAssetPersistencePolicy::Keep` → `RenderAssetUsage::MAIN_WORLD |
RenderAssetUsage::RENDER_WORLD` (or `RenderAssetUsage::default()`)
* `RenderAssetPersistencePolicy::Unload` →
`RenderAssetUsage::RENDER_WORLD`
* For types implementing the `RenderAsset` trait, change `fn
persistence_policy(&self) -> RenderAssetPersistencePolicy` to `fn
asset_usage(&self) -> RenderAssetUsages`.
* Change any references to `cpu_persistent_access`
(`RenderAssetPersistencePolicy`) to `asset_usage` (`RenderAssetUsage`).
This applies to `Image`, `Mesh`, and a few other types.
# Objective
Keep core dependencies up to date.
## Solution
Update the dependencies.
wgpu 0.19 only supports raw-window-handle (rwh) 0.6, so bumping that was
included in this.
The rwh 0.6 version bump is just the simplest way of doing it. There
might be a way we can take advantage of wgpu's new safe surface creation
api, but I'm not familiar enough with bevy's window management to
untangle it and my attempt ended up being a mess of lifetimes and rustc
complaining about missing trait impls (that were implemented). Thanks to
@MiniaczQ for the (much simpler) rwh 0.6 version bump code.
Unblocks https://github.com/bevyengine/bevy/pull/9172 and
https://github.com/bevyengine/bevy/pull/10812
~~This might be blocked on cpal and oboe updating their ndk versions to
0.8, as they both currently target ndk 0.7 which uses rwh 0.5.2~~ Tested
on android, and everything seems to work correctly (audio properly stops
when minimized, and plays when re-focusing the app).
---
## Changelog
- `wgpu` has been updated to 0.19! The long awaited arcanization has
been merged (for more info, see
https://gfx-rs.github.io/2023/11/24/arcanization.html), and Vulkan
should now be working again on Intel GPUs.
- Targeting WebGPU now requires that you add the new `webgpu` feature
(setting the `RUSTFLAGS` environment variable to
`--cfg=web_sys_unstable_apis` is still required). This feature currently
overrides the `webgl2` feature if you have both enabled (the `webgl2`
feature is enabled by default), so it is not recommended to add it as a
default feature to libraries without putting it behind a flag that
allows library users to opt out of it! In the future we plan on
supporting wasm binaries that can target both webgl2 and webgpu now that
wgpu added support for doing so (see
https://github.com/bevyengine/bevy/issues/11505).
- `raw-window-handle` has been updated to version 0.6.
## Migration Guide
- `bevy_render::instance_index::get_instance_index()` has been removed
as the webgl2 workaround is no longer required as it was fixed upstream
in wgpu. The `BASE_INSTANCE_WORKAROUND` shaderdef has also been removed.
- WebGPU now requires the new `webgpu` feature to be enabled. The
`webgpu` feature currently overrides the `webgl2` feature so you no
longer need to disable all default features and re-add them all when
targeting `webgpu`, but binaries built with both the `webgpu` and
`webgl2` features will only target the webgpu backend, and will only
work on browsers that support WebGPU.
- Places where you conditionally compiled things for webgl2 need to be
updated because of this change, eg:
- `#[cfg(any(not(feature = "webgl"), not(target_arch = "wasm32")))]`
becomes `#[cfg(any(not(feature = "webgl") ,not(target_arch = "wasm32"),
feature = "webgpu"))]`
- `#[cfg(all(feature = "webgl", target_arch = "wasm32"))]` becomes
`#[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature =
"webgpu")))]`
- `if cfg!(all(feature = "webgl", target_arch = "wasm32"))` becomes `if
cfg!(all(feature = "webgl", target_arch = "wasm32", not(feature =
"webgpu")))`
- `create_texture_with_data` now also takes a `TextureDataOrder`. You
can probably just set this to `TextureDataOrder::default()`
- `TextureFormat`'s `block_size` has been renamed to `block_copy_size`
- See the `wgpu` changelog for anything I might've missed:
https://github.com/gfx-rs/wgpu/blob/trunk/CHANGELOG.md
---------
Co-authored-by: François <mockersf@gmail.com>
# Objective
- Some passes recreate a sampler when creating a bind group to be
cached, even if the sampler is always the same.
## Solution
- Store the sampler in the corresponding pipeline resource.
# Objective
- Prep for https://github.com/bevyengine/bevy/pull/10164
- Make deferred_lighting_pass_id a ColorAttachment
- Correctly extract shadow view frusta so that the view uniforms get
populated
- Make some needed things public
- Misc formatting
# Objective
> Can anyone explain to me the reasoning of renaming all the types named
Query to Data. I'm talking about this PR
https://github.com/bevyengine/bevy/pull/10779 It doesn't make sense to
me that a bunch of types that are used to run queries aren't named Query
anymore. Like ViewQuery on the ViewNode is the type of the Query. I
don't really understand the point of the rename, it just seems like it
hides the fact that a query will run based on those types.
[@IceSentry](https://discord.com/channels/691052431525675048/692572690833473578/1184946251431694387)
## Solution
Revert several renames in #10779.
## Changelog
- `ViewNode::ViewData` is now `ViewNode::ViewQuery` again.
## Migration Guide
- This PR amends the migration guide in
https://github.com/bevyengine/bevy/pull/10779
---------
Co-authored-by: atlas dostal <rodol@rivalrebels.com>
This pull request re-submits #10057, which was backed out for breaking
macOS, iOS, and Android. I've tested this version on macOS and Android
and on the iOS simulator.
# Objective
This pull request implements *reflection probes*, which generalize
environment maps to allow for multiple environment maps in the same
scene, each of which has an axis-aligned bounding box. This is a
standard feature of physically-based renderers and was inspired by [the
corresponding feature in Blender's Eevee renderer].
## Solution
This is a minimal implementation of reflection probes that allows
artists to define cuboid bounding regions associated with environment
maps. For every view, on every frame, a system builds up a list of the
nearest 4 reflection probes that are within the view's frustum and
supplies that list to the shader. The PBR fragment shader searches
through the list, finds the first containing reflection probe, and uses
it for indirect lighting, falling back to the view's environment map if
none is found. Both forward and deferred renderers are fully supported.
A reflection probe is an entity with a pair of components, *LightProbe*
and *EnvironmentMapLight* (as well as the standard *SpatialBundle*, to
position it in the world). The *LightProbe* component (along with the
*Transform*) defines the bounding region, while the
*EnvironmentMapLight* component specifies the associated diffuse and
specular cubemaps.
A frequent question is "why two components instead of just one?" The
advantages of this setup are:
1. It's readily extensible to other types of light probes, in particular
*irradiance volumes* (also known as ambient cubes or voxel global
illumination), which use the same approach of bounding cuboids. With a
single component that applies to both reflection probes and irradiance
volumes, we can share the logic that implements falloff and blending
between multiple light probes between both of those features.
2. It reduces duplication between the existing *EnvironmentMapLight* and
these new reflection probes. Systems can treat environment maps attached
to cameras the same way they treat environment maps applied to
reflection probes if they wish.
Internally, we gather up all environment maps in the scene and place
them in a cubemap array. At present, this means that all environment
maps must have the same size, mipmap count, and texture format. A
warning is emitted if this restriction is violated. We could potentially
relax this in the future as part of the automatic mipmap generation
work, which could easily do texture format conversion as part of its
preprocessing.
An easy way to generate reflection probe cubemaps is to bake them in
Blender and use the `export-blender-gi` tool that's part of the
[`bevy-baked-gi`] project. This tool takes a `.blend` file containing
baked cubemaps as input and exports cubemap images, pre-filtered with an
embedded fork of the [glTF IBL Sampler], alongside a corresponding
`.scn.ron` file that the scene spawner can use to recreate the
reflection probes.
Note that this is intentionally a minimal implementation, to aid
reviewability. Known issues are:
* Reflection probes are basically unsupported on WebGL 2, because WebGL
2 has no cubemap arrays. (Strictly speaking, you can have precisely one
reflection probe in the scene if you have no other cubemaps anywhere,
but this isn't very useful.)
* Reflection probes have no falloff, so reflections will abruptly change
when objects move from one bounding region to another.
* As mentioned before, all cubemaps in the world of a given type
(diffuse or specular) must have the same size, format, and mipmap count.
Future work includes:
* Blending between multiple reflection probes.
* A falloff/fade-out region so that reflected objects disappear
gradually instead of vanishing all at once.
* Irradiance volumes for voxel-based global illumination. This should
reuse much of the reflection probe logic, as they're both GI techniques
based on cuboid bounding regions.
* Support for WebGL 2, by breaking batches when reflection probes are
used.
These issues notwithstanding, I think it's best to land this with
roughly the current set of functionality, because this patch is useful
as is and adding everything above would make the pull request
significantly larger and harder to review.
---
## Changelog
### Added
* A new *LightProbe* component is available that specifies a bounding
region that an *EnvironmentMapLight* applies to. The combination of a
*LightProbe* and an *EnvironmentMapLight* offers *reflection probe*
functionality similar to that available in other engines.
[the corresponding feature in Blender's Eevee renderer]:
https://docs.blender.org/manual/en/latest/render/eevee/light_probes/reflection_cubemaps.html
[`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi
[glTF IBL Sampler]: https://github.com/KhronosGroup/glTF-IBL-Sampler
# Objective
- Some users want to change the default texture usage of the main camera
but they are currently hardcoded
## Solution
- Add a component that is used to configure the main texture usage field
---
## Changelog
Added `CameraMainTextureUsage`
Added `CameraMainTextureUsage` to `Camera3dBundle` and `Camera2dBundle`
## Migration Guide
Add `main_texture_usages: Default::default()` to your camera bundle.
# Notes
Inspired by: #6815
Rebased and finished version of
https://github.com/bevyengine/bevy/pull/8407. Huge thanks to @GitGhillie
for adjusting all the examples, and the many other people who helped
write this PR (@superdump , @coreh , among others) :)
Fixes https://github.com/bevyengine/bevy/issues/8369
---
## Changelog
- Added a `brightness` control to `Skybox`.
- Added an `intensity` control to `EnvironmentMapLight`.
- Added `ExposureSettings` and `PhysicalCameraParameters` for
controlling exposure of 3D cameras.
- Removed the baked-in `DirectionalLight` exposure Bevy previously
hardcoded internally.
## Migration Guide
- If using a `Skybox` or `EnvironmentMapLight`, use the new `brightness`
and `intensity` controls to adjust their strength.
- All 3D scene will now have different apparent brightnesses due to Bevy
implementing proper exposure controls. You will have to adjust the
intensity of your lights and/or your camera exposure via the new
`ExposureSettings` component to compensate.
---------
Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: GitGhillie <jillisnoordhoek@gmail.com>
Co-authored-by: Marco Buono <thecoreh@gmail.com>
Co-authored-by: vero <email@atlasdostal.com>
Co-authored-by: atlas dostal <rodol@rivalrebels.com>
# Objective
This pull request implements *reflection probes*, which generalize
environment maps to allow for multiple environment maps in the same
scene, each of which has an axis-aligned bounding box. This is a
standard feature of physically-based renderers and was inspired by [the
corresponding feature in Blender's Eevee renderer].
## Solution
This is a minimal implementation of reflection probes that allows
artists to define cuboid bounding regions associated with environment
maps. For every view, on every frame, a system builds up a list of the
nearest 4 reflection probes that are within the view's frustum and
supplies that list to the shader. The PBR fragment shader searches
through the list, finds the first containing reflection probe, and uses
it for indirect lighting, falling back to the view's environment map if
none is found. Both forward and deferred renderers are fully supported.
A reflection probe is an entity with a pair of components, *LightProbe*
and *EnvironmentMapLight* (as well as the standard *SpatialBundle*, to
position it in the world). The *LightProbe* component (along with the
*Transform*) defines the bounding region, while the
*EnvironmentMapLight* component specifies the associated diffuse and
specular cubemaps.
A frequent question is "why two components instead of just one?" The
advantages of this setup are:
1. It's readily extensible to other types of light probes, in particular
*irradiance volumes* (also known as ambient cubes or voxel global
illumination), which use the same approach of bounding cuboids. With a
single component that applies to both reflection probes and irradiance
volumes, we can share the logic that implements falloff and blending
between multiple light probes between both of those features.
2. It reduces duplication between the existing *EnvironmentMapLight* and
these new reflection probes. Systems can treat environment maps attached
to cameras the same way they treat environment maps applied to
reflection probes if they wish.
Internally, we gather up all environment maps in the scene and place
them in a cubemap array. At present, this means that all environment
maps must have the same size, mipmap count, and texture format. A
warning is emitted if this restriction is violated. We could potentially
relax this in the future as part of the automatic mipmap generation
work, which could easily do texture format conversion as part of its
preprocessing.
An easy way to generate reflection probe cubemaps is to bake them in
Blender and use the `export-blender-gi` tool that's part of the
[`bevy-baked-gi`] project. This tool takes a `.blend` file containing
baked cubemaps as input and exports cubemap images, pre-filtered with an
embedded fork of the [glTF IBL Sampler], alongside a corresponding
`.scn.ron` file that the scene spawner can use to recreate the
reflection probes.
Note that this is intentionally a minimal implementation, to aid
reviewability. Known issues are:
* Reflection probes are basically unsupported on WebGL 2, because WebGL
2 has no cubemap arrays. (Strictly speaking, you can have precisely one
reflection probe in the scene if you have no other cubemaps anywhere,
but this isn't very useful.)
* Reflection probes have no falloff, so reflections will abruptly change
when objects move from one bounding region to another.
* As mentioned before, all cubemaps in the world of a given type
(diffuse or specular) must have the same size, format, and mipmap count.
Future work includes:
* Blending between multiple reflection probes.
* A falloff/fade-out region so that reflected objects disappear
gradually instead of vanishing all at once.
* Irradiance volumes for voxel-based global illumination. This should
reuse much of the reflection probe logic, as they're both GI techniques
based on cuboid bounding regions.
* Support for WebGL 2, by breaking batches when reflection probes are
used.
These issues notwithstanding, I think it's best to land this with
roughly the current set of functionality, because this patch is useful
as is and adding everything above would make the pull request
significantly larger and harder to review.
---
## Changelog
### Added
* A new *LightProbe* component is available that specifies a bounding
region that an *EnvironmentMapLight* applies to. The combination of a
*LightProbe* and an *EnvironmentMapLight* offers *reflection probe*
functionality similar to that available in other engines.
[the corresponding feature in Blender's Eevee renderer]:
https://docs.blender.org/manual/en/latest/render/eevee/light_probes/reflection_cubemaps.html
[`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi
[glTF IBL Sampler]: https://github.com/KhronosGroup/glTF-IBL-Sampler
# Objective
- No point in keeping Meshes/Images in RAM once they're going to be sent
to the GPU, and kept in VRAM. This saves a _significant_ amount of
memory (several GBs) on scenes like bistro.
- References
- https://github.com/bevyengine/bevy/pull/1782
- https://github.com/bevyengine/bevy/pull/8624
## Solution
- Augment RenderAsset with the capability to unload the underlying asset
after extracting to the render world.
- Mesh/Image now have a cpu_persistent_access field. If this field is
RenderAssetPersistencePolicy::Unload, the asset will be unloaded from
Assets<T>.
- A new AssetEvent is sent upon dropping the last strong handle for the
asset, which signals to the RenderAsset to remove the GPU version of the
asset.
---
## Changelog
- Added `AssetEvent::NoLongerUsed` and
`AssetEvent::is_no_longer_used()`. This event is sent when the last
strong handle of an asset is dropped.
- Rewrote the API for `RenderAsset` to allow for unloading the asset
data from the CPU.
- Added `RenderAssetPersistencePolicy`.
- Added `Mesh::cpu_persistent_access` for memory savings when the asset
is not needed except for on the GPU.
- Added `Image::cpu_persistent_access` for memory savings when the asset
is not needed except for on the GPU.
- Added `ImageLoaderSettings::cpu_persistent_access`.
- Added `ExrTextureLoaderSettings`.
- Added `HdrTextureLoaderSettings`.
## Migration Guide
- Asset loaders (GLTF, etc) now load meshes and textures without
`cpu_persistent_access`. These assets will be removed from
`Assets<Mesh>` and `Assets<Image>` once `RenderAssets<Mesh>` and
`RenderAssets<Image>` contain the GPU versions of these assets, in order
to reduce memory usage. If you require access to the asset data from the
CPU in future frames after the GLTF asset has been loaded, modify all
dependent `Mesh` and `Image` assets and set `cpu_persistent_access` to
`RenderAssetPersistencePolicy::Keep`.
- `Mesh` now requires a new `cpu_persistent_access` field. Set it to
`RenderAssetPersistencePolicy::Keep` to mimic the previous behavior.
- `Image` now requires a new `cpu_persistent_access` field. Set it to
`RenderAssetPersistencePolicy::Keep` to mimic the previous behavior.
- `MorphTargetImage::new()` now requires a new `cpu_persistent_access`
parameter. Set it to `RenderAssetPersistencePolicy::Keep` to mimic the
previous behavior.
- `DynamicTextureAtlasBuilder::add_texture()` now requires that the
`TextureAtlas` you pass has an `Image` with `cpu_persistent_access:
RenderAssetPersistencePolicy::Keep`. Ensure you construct the image
properly for the texture atlas.
- The `RenderAsset` trait has significantly changed, and requires
adapting your existing implementations.
- The trait now requires `Clone`.
- The `ExtractedAsset` associated type has been removed (the type itself
is now extracted).
- The signature of `prepare_asset()` is slightly different
- A new `persistence_policy()` method is now required (return
RenderAssetPersistencePolicy::Unload to match the previous behavior).
- Match on the new `NoLongerUsed` variant for exhaustive matches of
`AssetEvent`.
# Objective
- Custom render passes, or future passes in the engine (such as
https://github.com/bevyengine/bevy/pull/10164) need a better way to know
and indicate to the core passes whether the view color/depth/prepass
attachments have been cleared or not yet this frame, to know if they
should clear it themselves or load it.
## Solution
- For all render targets (depth textures, shadow textures, prepass
textures, main textures) use an atomic bool to track whether or not each
texture has been cleared this frame. Abstracted away in the new
ColorAttachment and DepthAttachment wrappers.
---
## Changelog
- Changed `ViewTarget::get_color_attachment()`, removed arguments.
- Changed `ViewTarget::get_unsampled_color_attachment()`, removed
arguments.
- Removed `Camera3d::clear_color`.
- Removed `Camera2d::clear_color`.
- Added `Camera::clear_color`.
- Added `ExtractedCamera::clear_color`.
- Added `ColorAttachment` and `DepthAttachment` wrappers.
- Moved `ClearColor` and `ClearColorConfig` from
`bevy::core_pipeline::clear_color` to `bevy::render::camera`.
- Core render passes now track when a texture is first bound as an
attachment in order to decide whether to clear or load it.
## Migration Guide
- Remove arguments to `ViewTarget::get_color_attachment()` and
`ViewTarget::get_unsampled_color_attachment()`.
- Configure clear color on `Camera` instead of on `Camera3d` and
`Camera2d`.
- Moved `ClearColor` and `ClearColorConfig` from
`bevy::core_pipeline::clear_color` to `bevy::render::camera`.
- `ViewDepthTexture` must now be created via the `new()` method
---------
Co-authored-by: vero <email@atlasdostal.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Register and Serialize `Camera3dDepthTextureUsage` and
`ScreenSpaceTransmissionQuality`.
Fixes: #11036
## Solution
Added the relevant derives for reflection and serialization and type
registrations.
# Objective
- Fix an inconsistency in the calculation of aspect ratio's.
- Fixes#10288
## Solution
- Created an intermediate `AspectRatio` struct, as suggested in the
issue. This is currently just used in any places where aspect ratio
calculations happen, to prevent doing it wrong. In my and @mamekoro 's
opinion, it would be better if this was used instead of a normal `f32`
in various places, but I didn't want to make too many changes to begin
with.
## Migration Guide
- Anywhere where you are currently expecting a f32 when getting aspect
ratios, you will now receive a `AspectRatio` struct. this still holds
the same value.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Keep up to date with wgpu.
## Solution
Update the wgpu version.
Currently blocked on naga_oil updating to naga 0.14 and releasing a new
version.
3d scenes (or maybe any scene with lighting?) currently don't render
anything due to
```
error: naga_oil bug, please file a report: composer failed to build a valid header: Type [2] '' is invalid
= Capability Capabilities(CUBE_ARRAY_TEXTURES) is required
```
I'm not sure what should be passed in for `wgpu::InstanceFlags`, or if we want to make the gles3minorversion configurable (might be useful for debugging?)
Currently blocked on https://github.com/bevyengine/naga_oil/pull/63, and https://github.com/gfx-rs/wgpu/issues/4569 to be fixed upstream in wgpu first.
## Known issues
Amd+windows+vulkan has issues with texture_binding_arrays (see the image [here](https://github.com/bevyengine/bevy/pull/10266#issuecomment-1819946278)), but that'll be fixed in the next wgpu/naga version, and you can just use dx12 as a workaround for now (Amd+linux mesa+vulkan texture_binding_arrays are fixed though).
---
## Changelog
Updated wgpu to 0.18, naga to 0.14.2, and naga_oil to 0.11.
- Windows desktop GL should now be less painful as it no longer requires Angle.
- You can now toggle shader validation and debug information for debug and release builds using `WgpuSettings.instance_flags` and [InstanceFlags](https://docs.rs/wgpu/0.18.0/wgpu/struct.InstanceFlags.html)
## Migration Guide
- `RenderPassDescriptor` `color_attachments` (as well as `RenderPassColorAttachment`, and `RenderPassDepthStencilAttachment`) now use `StoreOp::Store` or `StoreOp::Discard` instead of a `boolean` to declare whether or not they should be stored.
- `RenderPassDescriptor` now have `timestamp_writes` and `occlusion_query_set` fields. These can safely be set to `None`.
- `ComputePassDescriptor` now have a `timestamp_writes` field. This can be set to `None` for now.
- See the [wgpu changelog](https://github.com/gfx-rs/wgpu/blob/trunk/CHANGELOG.md#v0180-2023-10-25) for additional details
# Objective
- Shorten paths by removing unnecessary prefixes
## Solution
- Remove the prefixes from many paths which do not need them. Finding
the paths was done automatically using built-in refactoring tools in
Jetbrains RustRover.
# Objective
Related to #10612.
Enable the
[`clippy::manual_let_else`](https://rust-lang.github.io/rust-clippy/master/#manual_let_else)
lint as a warning. The `let else` form seems more idiomatic to me than a
`match`/`if else` that either match a pattern or diverge, and from the
clippy doc, the lint doesn't seem to have any possible false positive.
## Solution
Add the lint as warning in `Cargo.toml`, refactor places where the lint
triggers.
# Objective
- Follow up to #9694
## Solution
- Same api as #9694 but adapted for `BindGroupLayoutEntry`
- Use the same `ShaderStages` visibilty for all entries by default
- Add `BindingType` helper function that mirror the wgsl equivalent and
that make writing layouts much simpler.
Before:
```rust
let layout = render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
label: Some("post_process_bind_group_layout"),
entries: &[
BindGroupLayoutEntry {
binding: 0,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Texture {
sample_type: TextureSampleType::Float { filterable: true },
view_dimension: TextureViewDimension::D2,
multisampled: false,
},
count: None,
},
BindGroupLayoutEntry {
binding: 1,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Sampler(SamplerBindingType::Filtering),
count: None,
},
BindGroupLayoutEntry {
binding: 2,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Buffer {
ty: bevy::render::render_resource::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: Some(PostProcessSettings::min_size()),
},
count: None,
},
],
});
```
After:
```rust
let layout = render_device.create_bind_group_layout(
"post_process_bind_group_layout"),
&BindGroupLayoutEntries::sequential(
ShaderStages::FRAGMENT,
(
texture_2d_f32(),
sampler(SamplerBindingType::Filtering),
uniform_buffer(false, Some(PostProcessSettings::min_size())),
),
),
);
```
Here's a more extreme example in bevy_solari:
86dab7f5da
---
## Changelog
- Added `BindGroupLayoutEntries` and all `BindingType` helper functions.
## Migration Guide
`RenderDevice::create_bind_group_layout()` doesn't take a
`BindGroupLayoutDescriptor` anymore. You need to provide the parameters
separately
```rust
// 0.12
let layout = render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
label: Some("post_process_bind_group_layout"),
entries: &[
BindGroupLayoutEntry {
// ...
},
],
});
// 0.13
let layout = render_device.create_bind_group_layout(
"post_process_bind_group_layout",
&[
BindGroupLayoutEntry {
// ...
},
],
);
```
## TODO
- [x] implement a `Dynamic` variant
- [x] update the `RenderDevice::create_bind_group_layout()` api to match
the one from `RenderDevice::creat_bind_group()`
- [x] docs
# Objective
I tried setting `ClearColorConfig` in my app via `Color::FOO.into()`
expecting it to work, but the impl was missing.
## Solution
- Add `impl From<Color> for ClearColorConfig`
- Change examples to use this impl
## Changelog
### Added
- `ClearColorConfig` can be constructed via `.into()` on a `Color`
---------
Signed-off-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
Co-authored-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
# Objective
- Fix adding `#![allow(clippy::type_complexity)]` everywhere. like #9796
## Solution
- Use the new [lints] table that will land in 1.74
(https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#lints)
- inherit lint to the workspace, crates and examples.
```
[lints]
workspace = true
```
## Changelog
- Bump rust version to 1.74
- Enable lints table for the workspace
```toml
[workspace.lints.clippy]
type_complexity = "allow"
```
- Allow type complexity for all crates and examples
```toml
[lints]
workspace = true
```
---------
Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com>
# Objective
- Changes the default clear color to match the code block color on
Bevy's website.
## Solution
- Changed the clear color, updated text in examples to ensure adequate
contrast. Inconsistent usage of white text color set to use the default
color instead, which is already white.
- Additionally, updated the `3d_scene` example to make it look a bit
better, and use bevy's branding colors.
![image](https://github.com/bevyengine/bevy/assets/2632925/540a22c0-826c-4c33-89aa-34905e3e313a)
# Objective
fix crash / misbehaviour when `DeferredPrepass` is used without
`DepthPrepass`.
- Deferred lighting requires the depth prepass texture to be present, so
that the depth texture is available for binding. without it the deferred
lighting pass will use 0 for depth of all meshes.
- When `DeferredPrepass` is used without other prepass markers, and with
any materials that use `OpaqueRenderMode::Forward`, those entities will
try to queue to the `Opaque3dPrepass` render phase, which doesn't exist,
causing a crash.
## Solution
- check if the prepass phases exist before queueing
- generate prepass textures if `Opaque3dDeferred` is present
- add a note to the DeferredPrepass marker to note that DepthPrepass is
also required by the default deferred lighting pass
- also changed some `With<T>.is_some()`s to `Has<T>`s
# Objective
<img width="1920" alt="Screenshot 2023-04-26 at 01 07 34"
src="https://user-images.githubusercontent.com/418473/234467578-0f34187b-5863-4ea1-88e9-7a6bb8ce8da3.png">
This PR adds both diffuse and specular light transmission capabilities
to the `StandardMaterial`, with support for screen space refractions.
This enables realistically representing a wide range of real-world
materials, such as:
- Glass; (Including frosted glass)
- Transparent and translucent plastics;
- Various liquids and gels;
- Gemstones;
- Marble;
- Wax;
- Paper;
- Leaves;
- Porcelain.
Unlike existing support for transparency, light transmission does not
rely on fixed function alpha blending, and therefore works with both
`AlphaMode::Opaque` and `AlphaMode::Mask` materials.
## Solution
- Introduces a number of transmission related fields in the
`StandardMaterial`;
- For specular transmission:
- Adds logic to take a view main texture snapshot after the opaque
phase; (in order to perform screen space refractions)
- Introduces a new `Transmissive3d` phase to the renderer, to which all
meshes with `transmission > 0.0` materials are sent.
- Calculates a light exit point (of the approximate mesh volume) using
`ior` and `thickness` properties
- Samples the snapshot texture with an adaptive number of taps across a
`roughness`-controlled radius enabling “blurry” refractions
- For diffuse transmission:
- Approximates transmitted diffuse light by using a second, flipped +
displaced, diffuse-only Lambertian lobe for each light source.
## To Do
- [x] Figure out where `fresnel_mix()` is taking place, if at all, and
where `dielectric_specular` is being calculated, if at all, and update
them to use the `ior` value (Not a blocker, just a nice-to-have for more
correct BSDF)
- To the _best of my knowledge, this is now taking place, after
964340cdd. The fresnel mix is actually "split" into two parts in our
implementation, one `(1 - fresnel(...))` in the transmission, and
`fresnel()` in the light implementations. A surface with more
reflectance now will produce slightly dimmer transmission towards the
grazing angle, as more of the light gets reflected.
- [x] Add `transmission_texture`
- [x] Add `diffuse_transmission_texture`
- [x] Add `thickness_texture`
- [x] Add `attenuation_distance` and `attenuation_color`
- [x] Connect values to glTF loader
- [x] `transmission` and `transmission_texture`
- [x] `thickness` and `thickness_texture`
- [x] `ior`
- [ ] `diffuse_transmission` and `diffuse_transmission_texture` (needs
upstream support in `gltf` crate, not a blocker)
- [x] Add support for multiple screen space refraction “steps”
- [x] Conditionally create no transmission snapshot texture at all if
`steps == 0`
- [x] Conditionally enable/disable screen space refraction transmission
snapshots
- [x] Read from depth pre-pass to prevent refracting pixels in front of
the light exit point
- [x] Use `interleaved_gradient_noise()` function for sampling blur in a
way that benefits from TAA
- [x] Drill down a TAA `#define`, tweak some aspects of the effect
conditionally based on it
- [x] Remove const array that's crashing under HLSL (unless a new `naga`
release with https://github.com/gfx-rs/naga/pull/2496 comes out before
we merge this)
- [ ] Look into alternatives to the `switch` hack for dynamically
indexing the const array (might not be needed, compilers seem to be
decent at expanding it)
- [ ] Add pipeline keys for gating transmission (do we really want/need
this?)
- [x] Tweak some material field/function names?
## A Note on Texture Packing
_This was originally added as a comment to the
`specular_transmission_texture`, `thickness_texture` and
`diffuse_transmission_texture` documentation, I removed it since it was
more confusing than helpful, and will likely be made redundant/will need
to be updated once we have a better infrastructure for preprocessing
assets_
Due to how channels are mapped, you can more efficiently use a single
shared texture image
for configuring the following:
- R - `specular_transmission_texture`
- G - `thickness_texture`
- B - _unused_
- A - `diffuse_transmission_texture`
The `KHR_materials_diffuse_transmission` glTF extension also defines a
`diffuseTransmissionColorTexture`,
that _we don't currently support_. One might choose to pack the
intensity and color textures together,
using RGB for the color and A for the intensity, in which case this
packing advice doesn't really apply.
---
## Changelog
- Added a new `Transmissive3d` render phase for rendering specular
transmissive materials with screen space refractions
- Added rendering support for transmitted environment map light on the
`StandardMaterial` as a fallback for screen space refractions
- Added `diffuse_transmission`, `specular_transmission`, `thickness`,
`ior`, `attenuation_distance` and `attenuation_color` to the
`StandardMaterial`
- Added `diffuse_transmission_texture`, `specular_transmission_texture`,
`thickness_texture` to the `StandardMaterial`, gated behind a new
`pbr_transmission_textures` cargo feature (off by default, for maximum
hardware compatibility)
- Added `Camera3d::screen_space_specular_transmission_steps` for
controlling the number of “layers of transparency” rendered for
transmissive objects
- Added a `TransmittedShadowReceiver` component for enabling shadows in
(diffusely) transmitted light. (disabled by default, as it requires
carefully setting up the `thickness` to avoid self-shadow artifacts)
- Added support for the `KHR_materials_transmission`,
`KHR_materials_ior` and `KHR_materials_volume` glTF extensions
- Renamed items related to temporal jitter for greater consistency
## Migration Guide
- `SsaoPipelineKey::temporal_noise` has been renamed to
`SsaoPipelineKey::temporal_jitter`
- The `TAA` shader def (controlled by the presence of the
`TemporalAntiAliasSettings` component in the camera) has been replaced
with the `TEMPORAL_JITTER` shader def (controlled by the presence of the
`TemporalJitter` component in the camera)
- `MeshPipelineKey::TAA` has been replaced by
`MeshPipelineKey::TEMPORAL_JITTER`
- The `TEMPORAL_NOISE` shader def has been consolidated with
`TEMPORAL_JITTER`
Extracted the easy stuff from #8974 .
# Problem
1. Commands from `update_previous_view_projections` would crash when
matching entities were despawned.
2. `TaaPipelineId` and `draw_3d_graph` module were not public.
3. When the motion vectors pointed to pixels that are now off screen, a
smearing artifact could occur.
# Solution
1. Use `try_insert` command instead.
2. Make them public, renaming to `TemporalAntiAliasPipelineId`.
3. Check for this case, and ignore history for pixels that are
off-screen.
# Objective
- Remove special cases where `clippy::doc_markdown` lint is disabled.
## Solution
- Add default values back into `clippy.toml` by adding `".."` to the
list of `doc-valid-idents`.
- Add `"VSync"` and `"WebGL2"` to the list of `doc-valid-idents`.
- Remove all instances where `clippy::doc_markdown` is allowed.
- Fix `max_mip` formatting so that there isn't a warning.
# Objective
Make it obvious why stuff renders pink when rendering stuff with bevy
with `default_features = false` and bevy's default tonemapper
(TonyMcMapFace, it requires a LUT which requires the `tonemapping_luts`,
`ktx2`, and `zstd` features).
Not sure if this should be considered as fixing these issues, but in my
previous PR (https://github.com/bevyengine/bevy/pull/9073, and old
discussions on discord that I only somewhat remember) it seemed like we
didn't want to make ktx2 and zstd required features for
bevy_core_pipeline.
Related https://github.com/bevyengine/bevy/issues/9179
Related https://github.com/bevyengine/bevy/issues/9098
## Solution
This logs an error when a LUT based tonemapper is used without the
`tonemapping_luts` feature enabled, and cleans up the default features a
bit (`tonemapping_luts` now includes the `ktx2` and `zstd` features,
since it panics without them).
Another solution would be to fall back to a non-lut based tonemapper,
but I don't like this solution as then it's not explicitly clear to
users why eg. a library example renders differently than a normal bevy
app (if the library forgot the `tonemapping_luts` feature).
I did remove the `ktx2` and `zstd` features from the list of default
features in Cargo.toml, as I don't believe anything else currently in
bevy relies on them (or at least searching through every hit for `ktx2`
and `zstd` didn't show anything except loading an environment map in
some examples), and they still show up in the `cargo_features` doc as
default features.
---
## Changelog
- The `tonemapping_luts` feature now includes both the `ktx2` and `zstd`
features to avoid a panic when the `tonemapping_luts` feature was enable
without both the `ktx2` and `zstd` feature enabled.
# Objective
- Build on the changes in https://github.com/bevyengine/bevy/pull/9982
- Use `ImageSamplerDescriptor` as the "public image sampler descriptor"
interface in all places (for consistency)
- Make it possible to configure textures to use the "default" sampler
(as configured in the `DefaultImageSampler` resource)
- Fix a bug introduced in #9982 that prevents configured samplers from
being used in Basis, KTX2, and DDS textures
---
## Migration Guide
- When using the `Image` API, use `ImageSamplerDescriptor` instead of
`wgpu::SamplerDescriptor`
- If writing custom wgpu renderer features that work with `Image`, call
`&image_sampler.as_wgpu()` to convert to a wgpu descriptor.
Closes#9946
# Objective
Add a new type mirroring `wgpu::SamplerDescriptor` for
`ImageLoaderSettings` to control how a loaded image should be sampled.
Fix issues with texture sampler descriptors not being set when loading
gltf texture from URI.
## Solution
Add a new `ImageSamplerDescriptor` and its affiliated types that mirrors
`wgpu::SamplerDescriptor`, use it in the image loader settings.
---
## Changelog
### Added
- Added new types `ImageSamplerDescriptor`, `ImageAddressMode`,
`ImageFilterMode`, `ImageCompareFunction` and `ImageSamplerBorderColor`
that mirrors the corresponding wgpu types.
- `ImageLoaderSettings` now carries an `ImageSamplerDescriptor` field
that will be used to determine how the loaded image is sampled, and will
be serialized as part of the image assets `.meta` files.
### Changed
- `Image::from_buffer` now takes the sampler descriptor to use as an
additional parameter.
### Fixed
- Sampler descriptors are set for gltf textures loaded from URI.
# Objective
Simplify bind group creation code. alternative to (and based on) #9476
## Solution
- Add a `BindGroupEntries` struct that can transparently be used where
`&[BindGroupEntry<'b>]` is required in BindGroupDescriptors.
Allows constructing the descriptor's entries as:
```rust
render_device.create_bind_group(
"my_bind_group",
&my_layout,
&BindGroupEntries::with_indexes((
(2, &my_sampler),
(3, my_uniform),
)),
);
```
instead of
```rust
render_device.create_bind_group(
"my_bind_group",
&my_layout,
&[
BindGroupEntry {
binding: 2,
resource: BindingResource::Sampler(&my_sampler),
},
BindGroupEntry {
binding: 3,
resource: my_uniform,
},
],
);
```
or
```rust
render_device.create_bind_group(
"my_bind_group",
&my_layout,
&BindGroupEntries::sequential((&my_sampler, my_uniform)),
);
```
instead of
```rust
render_device.create_bind_group(
"my_bind_group",
&my_layout,
&[
BindGroupEntry {
binding: 0,
resource: BindingResource::Sampler(&my_sampler),
},
BindGroupEntry {
binding: 1,
resource: my_uniform,
},
],
);
```
the structs has no user facing macros, is tuple-type-based so stack
allocated, and has no noticeable impact on compile time.
- Also adds a `DynamicBindGroupEntries` struct with a similar api that
uses a `Vec` under the hood and allows extending the entries.
- Modifies `RenderDevice::create_bind_group` to take separate arguments
`label`, `layout` and `entries` instead of a `BindGroupDescriptor`
struct. The struct can't be stored due to the internal references, and
with only 3 members arguably does not add enough context to justify
itself.
- Modify the codebase to use the new api and the `BindGroupEntries` /
`DynamicBindGroupEntries` structs where appropriate (whenever the
entries slice contains more than 1 member).
## Migration Guide
- Calls to `RenderDevice::create_bind_group({BindGroupDescriptor {
label, layout, entries })` must be amended to
`RenderDevice::create_bind_group(label, layout, entries)`.
- If `label`s have been specified as `"bind_group_name".into()`, they
need to change to just `"bind_group_name"`. `Some("bind_group_name")`
and `None` will still work, but `Some("bind_group_name")` can optionally
be simplified to just `"bind_group_name"`.
---------
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
# Objective
- bump naga_oil to 0.10
- update shader imports to use rusty syntax
## Migration Guide
naga_oil 0.10 reworks the import mechanism to support more syntax to
make it more rusty, and test for item use before importing to determine
which imports are modules and which are items, which allows:
- use rust-style imports
```
#import bevy_pbr::{
pbr_functions::{alpha_discard as discard, apply_pbr_lighting},
mesh_bindings,
}
```
- import partial paths:
```
#import part::of::path
...
path::remainder::function();
```
which will call to `part::of::path::remainder::function`
- use fully qualified paths without importing:
```
// #import bevy_pbr::pbr_functions
bevy_pbr::pbr_functions::pbr()
```
- use imported items without qualifying
```
#import bevy_pbr::pbr_functions::pbr
// for backwards compatibility the old style is still supported:
// #import bevy_pbr::pbr_functions pbr
...
pbr()
```
- allows most imported items to end with `_` and numbers (naga_oil#30).
still doesn't allow struct members to end with `_` or numbers but it's
progress.
- the vast majority of existing shader code will work without changes,
but will emit "deprecated" warnings for old-style imports. these can be
suppressed with the `allow-deprecated` feature.
- partly breaks overrides (as far as i'm aware nobody uses these yet) -
now overrides will only be applied if the overriding module is added as
an additional import in the arguments to `Composer::make_naga_module` or
`Composer::add_composable_module`. this is necessary to support
determining whether imports are modules or items.
# Objective
On nightly there is a warning on a missing lifetime:
```bash
warning: `&` without an explicit lifetime name cannot be used here
```
The details are in https://github.com/rust-lang/rust/issues/115010, but
the bottom line is that in associated constants elided lifetimes are no
longer allowed to be implicitly defined.
This fixes the only place where it is missing.
## Solution
- Add explicit `'static` lifetime
# Objective
- Add a [Deferred
Renderer](https://en.wikipedia.org/wiki/Deferred_shading) to Bevy.
- This allows subsequent passes to access per pixel material information
before/during shading.
- Accessing this per pixel material information is needed for some
features, like GI. It also makes other features (ex. Decals) simpler to
implement and/or improves their capability. There are multiple
approaches to accomplishing this. The deferred shading approach works
well given the limitations of WebGPU and WebGL2.
Motivation: [I'm working on a GI solution for
Bevy](https://youtu.be/eH1AkL-mwhI)
# Solution
- The deferred renderer is implemented with a prepass and a deferred
lighting pass.
- The prepass renders opaque objects into the Gbuffer attachment
(`Rgba32Uint`). The PBR shader generates a `PbrInput` in mostly the same
way as the forward implementation and then [packs it into the
Gbuffer](ec1465559f/crates/bevy_pbr/src/render/pbr.wgsl (L168)).
- The deferred lighting pass unpacks the `PbrInput` and [feeds it into
the pbr()
function](ec1465559f/crates/bevy_pbr/src/deferred/deferred_lighting.wgsl (L65)),
then outputs the shaded color data.
- There is now a resource
[DefaultOpaqueRendererMethod](ec1465559f/crates/bevy_pbr/src/material.rs (L599))
that can be used to set the default render method for opaque materials.
If materials return `None` from
[opaque_render_method()](ec1465559f/crates/bevy_pbr/src/material.rs (L131))
the `DefaultOpaqueRendererMethod` will be used. Otherwise, custom
materials can also explicitly choose to only support Deferred or Forward
by returning the respective
[OpaqueRendererMethod](ec1465559f/crates/bevy_pbr/src/material.rs (L603))
- Deferred materials can be used seamlessly along with both opaque and
transparent forward rendered materials in the same scene. The [deferred
rendering
example](https://github.com/DGriffin91/bevy/blob/deferred/examples/3d/deferred_rendering.rs)
does this.
- The deferred renderer does not support MSAA. If any deferred materials
are used, MSAA must be disabled. Both TAA and FXAA are supported.
- Deferred rendering supports WebGL2/WebGPU.
## Custom deferred materials
- Custom materials can support both deferred and forward at the same
time. The
[StandardMaterial](ec1465559f/crates/bevy_pbr/src/render/pbr.wgsl (L166))
does this. So does [this
example](https://github.com/DGriffin91/bevy_glowy_orb_tutorial/blob/deferred/assets/shaders/glowy.wgsl#L56).
- Custom deferred materials that require PBR lighting can create a
`PbrInput`, write it to the deferred GBuffer and let it be rendered by
the `PBRDeferredLightingPlugin`.
- Custom deferred materials that require custom lighting have two
options:
1. Use the base_color channel of the `PbrInput` combined with the
`STANDARD_MATERIAL_FLAGS_UNLIT_BIT` flag.
[Example.](https://github.com/DGriffin91/bevy_glowy_orb_tutorial/blob/deferred/assets/shaders/glowy.wgsl#L56)
(If the unlit bit is set, the base_color is stored as RGB9E5 for extra
precision)
2. A Custom Deferred Lighting pass can be created, either overriding the
default, or running in addition. The a depth buffer is used to limit
rendering to only the required fragments for each deferred lighting
pass. Materials can set their respective depth id via the
[deferred_lighting_pass_id](b79182d2a3/crates/bevy_pbr/src/prepass/prepass_io.wgsl (L95))
attachment. The custom deferred lighting pass plugin can then set [its
corresponding
depth](ec1465559f/crates/bevy_pbr/src/deferred/deferred_lighting.wgsl (L37)).
Then with the lighting pass using
[CompareFunction::Equal](ec1465559f/crates/bevy_pbr/src/deferred/mod.rs (L335)),
only the fragments with a depth that equal the corresponding depth
written in the material will be rendered.
Custom deferred lighting plugins can also be created to render the
StandardMaterial. The default deferred lighting plugin can be bypassed
with `DefaultPlugins.set(PBRDeferredLightingPlugin { bypass: true })`
---------
Co-authored-by: nickrart <nickolas.g.russell@gmail.com>
# Objective
- Fixes#9707
## Solution
- At large translations (a few thousand units), the precision of
calculating the ray direction from the fragment world position and
camera world position seems to break down. Sampling the cubemap only
needs the ray direction. As such we can use the view space fragment
position, normalise it, rotate it to world space, and use that.
---
## Changelog
- Fixed: Jittery skybox at large translations.