# Objective
- Fixes#10909
- Fixes#8492
## Solution
- Name all matrices `x_from_y`, for example `world_from_view`.
## Testing
- I've tested most of the 3D examples. The `lighting` example
particularly should hit a lot of the changes and appears to run fine.
---
## Changelog
- Renamed matrices across the engine to follow a `y_from_x` naming,
making the space conversion more obvious.
## Migration Guide
- `Frustum`'s `from_view_projection`, `from_view_projection_custom_far`
and `from_view_projection_no_far` were renamed to
`from_clip_from_world`, `from_clip_from_world_custom_far` and
`from_clip_from_world_no_far`.
- `ComputedCameraValues::projection_matrix` was renamed to
`clip_from_view`.
- `CameraProjection::get_projection_matrix` was renamed to
`get_clip_from_view` (this affects implementations on `Projection`,
`PerspectiveProjection` and `OrthographicProjection`).
- `ViewRangefinder3d::from_view_matrix` was renamed to
`from_world_from_view`.
- `PreviousViewData`'s members were renamed to `view_from_world` and
`clip_from_world`.
- `ExtractedView`'s `projection`, `transform` and `view_projection` were
renamed to `clip_from_view`, `world_from_view` and `clip_from_world`.
- `ViewUniform`'s `view_proj`, `unjittered_view_proj`,
`inverse_view_proj`, `view`, `inverse_view`, `projection` and
`inverse_projection` were renamed to `clip_from_world`,
`unjittered_clip_from_world`, `world_from_clip`, `world_from_view`,
`view_from_world`, `clip_from_view` and `view_from_clip`.
- `GpuDirectionalCascade::view_projection` was renamed to
`clip_from_world`.
- `MeshTransforms`' `transform` and `previous_transform` were renamed to
`world_from_local` and `previous_world_from_local`.
- `MeshUniform`'s `transform`, `previous_transform`,
`inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed
to `world_from_local`, `previous_world_from_local`,
`local_from_world_transpose_a` and `local_from_world_transpose_b` (the
`Mesh` type in WGSL mirrors this, however `transform` and
`previous_transform` were named `model` and `previous_model`).
- `Mesh2dTransforms::transform` was renamed to `world_from_local`.
- `Mesh2dUniform`'s `transform`, `inverse_transpose_model_a` and
`inverse_transpose_model_b` were renamed to `world_from_local`,
`local_from_world_transpose_a` and `local_from_world_transpose_b` (the
`Mesh2d` type in WGSL mirrors this).
- In WGSL, in `bevy_pbr::mesh_functions`, `get_model_matrix` and
`get_previous_model_matrix` were renamed to `get_world_from_local` and
`get_previous_world_from_local`.
- In WGSL, `bevy_sprite::mesh2d_functions::get_model_matrix` was renamed
to `get_world_from_local`.
# Objective
- Followup to #13548
- It added a list of all possible labels to documentation. This seems
hard to keep up and doesn't stop people from making spelling mistake
## Solution
- Add an enum that can create all the labels possible, and encourage its
use rather than manually typed labels
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
# Objective
- The default font size is too small to be useful in examples or for
debug text.
- Fixes#13587
## Solution
- Updated the default font size value in `TextStyle` from 12px to 24px.
- Resorted to Text defaults in examples to use the default font size in
most of them.
## Testing
- WIP
---
## Migration Guide
- The default font size has been increased to 24px from 12px. Make sure
you set the font to the appropriate values in places you were using
`Default` text style.
## Objective
Use the "standard" text size / placement for the new text in these
examples.
Continuation of an effort started here:
https://github.com/bevyengine/bevy/pull/8478
This is definitely not comprehensive. I did the ones that were easy to
find and relatively straightforward updates. I meant to just do
`3d_shapes` and `2d_shapes`, but one thing lead to another.
## Solution
Use `font_size: 20.0`, the default (built-in) font, `Color::WHITE`
(default), and `Val::Px(12.)` from the edges of the screen.
There are a few little drive-by cleanups of defaults not being used,
etc.
## Testing
Ran the changed examples, verified that they still look reasonable.
# Objective
Fixes#13427.
## Solution
I changed the traits, and updated all usages.
## Testing
The `render_primitives` example still works perfectly.
---
## Changelog
- Made `gizmos.primitive_2d()` and `gizmos.primitive_3d()` take the
primitives by ref.
## Migration Guide
- Any usages of `gizmos.primitive_2d()` and/or `gizmos.primitive_3d()`
need to be updated to pass the primitive in by reference.
# Objective
- Create a new 2D primitive, Rhombus, also knows as "Diamond Shape"
- Simplify the creation and handling of isometric projections
- Extend Bevy's arsenal of 2D primitives
## Testing
- New unit tests created in bevy_math/ primitives and bev_math/ bounding
- Tested translations, rotations, wireframe, bounding sphere, aabb and
creation parameters
---------
Co-authored-by: Luís Figueiredo <luispcfigueiredo@tecnico.ulisboa.pt>
# Objective
Adopted #11748
## Solution
I've rebased on main to fix the merge conflicts. ~~Not quite ready to
merge yet~~
* Clippy is happy and the tests are passing, but...
* ~~The new shapes in `examples/2d/2d_shapes.rs` don't look right at
all~~ Never mind, looks like radians and degrees just got mixed up at
some point?
* I have updated one doc comment based on a review in the original PR.
---------
Co-authored-by: Alexis "spectria" Horizon <spectria.limina@gmail.com>
Co-authored-by: Alexis "spectria" Horizon <118812919+spectria-limina@users.noreply.github.com>
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Ben Harper <ben@tukom.org>
This commit makes us stop using the render world ECS for
`BinnedRenderPhase` and `SortedRenderPhase` and instead use resources
with `EntityHashMap`s inside. There are three reasons to do this:
1. We can use `clear()` to clear out the render phase collections
instead of recreating the components from scratch, allowing us to reuse
allocations.
2. This is a prerequisite for retained bins, because components can't be
retained from frame to frame in the render world, but resources can.
3. We want to move away from storing anything in components in the
render world ECS, and this is a step in that direction.
This patch results in a small performance benefit, due to point (1)
above.
## Changelog
### Changed
* The `BinnedRenderPhase` and `SortedRenderPhase` render world
components have been replaced with `ViewBinnedRenderPhases` and
`ViewSortedRenderPhases` resources.
## Migration Guide
* The `BinnedRenderPhase` and `SortedRenderPhase` render world
components have been replaced with `ViewBinnedRenderPhases` and
`ViewSortedRenderPhases` resources. Instead of querying for the
components, look the camera entity up in the
`ViewBinnedRenderPhases`/`ViewSortedRenderPhases` tables.
This commit implements opt-in GPU frustum culling, built on top of the
infrastructure in https://github.com/bevyengine/bevy/pull/12773. To
enable it on a camera, add the `GpuCulling` component to it. To
additionally disable CPU frustum culling, add the `NoCpuCulling`
component. Note that adding `GpuCulling` without `NoCpuCulling`
*currently* does nothing useful. The reason why `GpuCulling` doesn't
automatically imply `NoCpuCulling` is that I intend to follow this patch
up with GPU two-phase occlusion culling, and CPU frustum culling plus
GPU occlusion culling seems like a very commonly-desired mode.
Adding the `GpuCulling` component to a view puts that view into
*indirect mode*. This mode makes all drawcalls indirect, relying on the
mesh preprocessing shader to allocate instances dynamically. In indirect
mode, the `PreprocessWorkItem` `output_index` points not to a
`MeshUniform` instance slot but instead to a set of `wgpu`
`IndirectParameters`, from which it allocates an instance slot
dynamically if frustum culling succeeds. Batch building has been updated
to allocate and track indirect parameter slots, and the AABBs are now
supplied to the GPU as `MeshCullingData`.
A small amount of code relating to the frustum culling has been borrowed
from meshlets and moved into `maths.wgsl`. Note that standard Bevy
frustum culling uses AABBs, while meshlets use bounding spheres; this
means that not as much code can be shared as one might think.
This patch doesn't provide any way to perform GPU culling on shadow
maps, to avoid making this patch bigger than it already is. That can be
a followup.
## Changelog
### Added
* Frustum culling can now optionally be done on the GPU. To enable it,
add the `GpuCulling` component to a camera.
* To disable CPU frustum culling, add `NoCpuCulling` to a camera. Note
that `GpuCulling` doesn't automatically imply `NoCpuCulling`.
# Objective
Fixes#11476
## Solution
Give the pipeline its own "mesh2d instances hashmap."
Pretty sure this is a good fix, but I am not super familiar with this
code so a rendering expert should take a look.
> your fix in the pull request works brilliantly for me too.
> -- _Discord user who pointed out bug_
# Objective
- animating a sprite in response to an event is a [common beginner
problem](https://www.reddit.com/r/bevy/comments/13xx4v7/sprite_animation_in_bevy/)
## Solution
- provide a simple example to show how to animate a sprite in response
to an event
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
- Fix some doc warnings
- Add doc-scrape-examples to all examples
Moved from #12692
I run `cargo +nightly doc --workspace --all-features --no-deps
-Zunstable-options -Zrustdoc-scrape-examples`
<details>
```
warning: public documentation for `GzAssetLoaderError` links to private item `GzAssetLoader`
--> examples/asset/asset_decompression.rs:24:47
|
24 | /// Possible errors that can be produced by [`GzAssetLoader`]
| ^^^^^^^^^^^^^ this item is private
|
= note: this link will resolve properly if you pass `--document-private-items`
= note: `#[warn(rustdoc::private_intra_doc_links)]` on by default
warning: `bevy` (example "asset_decompression") generated 1 warning
warning: unresolved link to `shape::Quad`
--> examples/2d/mesh2d.rs:3:15
|
3 | //! [`Quad`]: shape::Quad
| ^^^^^^^^^^^ no item named `shape` in scope
|
= note: `#[warn(rustdoc::broken_intra_doc_links)]` on by default
warning: `bevy` (example "mesh2d") generated 1 warning
warning: unresolved link to `WorldQuery`
--> examples/ecs/custom_query_param.rs:1:49
|
1 | //! This example illustrates the usage of the [`WorldQuery`] derive macro, which allows
| ^^^^^^^^^^ no item named `WorldQuery` in scope
|
= help: to escape `[` and `]` characters, add '\' before them like `\[` or `\]`
= note: `#[warn(rustdoc::broken_intra_doc_links)]` on by default
warning: `bevy` (example "custom_query_param") generated 1 warning
warning: unresolved link to `shape::Quad`
--> examples/2d/mesh2d_vertex_color_texture.rs:4:15
|
4 | //! [`Quad`]: shape::Quad
| ^^^^^^^^^^^ no item named `shape` in scope
|
= note: `#[warn(rustdoc::broken_intra_doc_links)]` on by default
warning: `bevy` (example "mesh2d_vertex_color_texture") generated 1 warning
warning: public documentation for `TextPlugin` links to private item `CoolText`
--> examples/asset/processing/asset_processing.rs:48:9
|
48 | /// * [`CoolText`]: a custom RON text format that supports dependencies and embedded dependencies
| ^^^^^^^^ this item is private
|
= note: this link will resolve properly if you pass `--document-private-items`
= note: `#[warn(rustdoc::private_intra_doc_links)]` on by default
warning: public documentation for `TextPlugin` links to private item `Text`
--> examples/asset/processing/asset_processing.rs:49:9
|
49 | /// * [`Text`]: a "normal" plain text file
| ^^^^ this item is private
|
= note: this link will resolve properly if you pass `--document-private-items`
warning: public documentation for `TextPlugin` links to private item `CoolText`
--> examples/asset/processing/asset_processing.rs:51:57
|
51 | /// It also defines an asset processor that will load [`CoolText`], resolve embedded dependenc...
| ^^^^^^^^ this item is private
|
= note: this link will resolve properly if you pass `--document-private-items`
warning: `bevy` (example "asset_processing") generated 3 warnings
warning: public documentation for `CustomAssetLoaderError` links to private item `CustomAssetLoader`
--> examples/asset/custom_asset.rs:20:47
|
20 | /// Possible errors that can be produced by [`CustomAssetLoader`]
| ^^^^^^^^^^^^^^^^^ this item is private
|
= note: this link will resolve properly if you pass `--document-private-items`
= note: `#[warn(rustdoc::private_intra_doc_links)]` on by default
warning: public documentation for `BlobAssetLoaderError` links to private item `CustomAssetLoader`
--> examples/asset/custom_asset.rs:61:47
|
61 | /// Possible errors that can be produced by [`CustomAssetLoader`]
| ^^^^^^^^^^^^^^^^^ this item is private
|
= note: this link will resolve properly if you pass `--document-private-items`
```
```
warning: `bevy` (example "mesh2d") generated 1 warning
warning: public documentation for `log_layers_ecs` links to private item `update_subscriber`
--> examples/app/log_layers_ecs.rs:6:18
|
6 | //! Inside the [`update_subscriber`] function we will create a [`mpsc::Sender`] and a [`mpsc::R...
| ^^^^^^^^^^^^^^^^^ this item is private
|
= note: this link will resolve properly if you pass `--document-private-items`
= note: `#[warn(rustdoc::private_intra_doc_links)]` on by default
warning: unresolved link to `AdvancedLayer`
--> examples/app/log_layers_ecs.rs:7:72
|
7 | ... will go into the [`AdvancedLayer`] and the [`Receiver`](mpsc::Receiver) will
| ^^^^^^^^^^^^^ no item named `AdvancedLayer` in scope
|
= help: to escape `[` and `]` characters, add '\' before them like `\[` or `\]`
= note: `#[warn(rustdoc::broken_intra_doc_links)]` on by default
warning: unresolved link to `LogEvents`
--> examples/app/log_layers_ecs.rs:8:42
|
8 | //! go into a non-send resource called [`LogEvents`] (It has to be non-send because [`Receiver`...
| ^^^^^^^^^ no item named `LogEvents` in scope
|
= help: to escape `[` and `]` characters, add '\' before them like `\[` or `\]`
warning: public documentation for `log_layers_ecs` links to private item `transfer_log_events`
--> examples/app/log_layers_ecs.rs:9:30
|
9 | //! From there we will use [`transfer_log_events`] to transfer log events from [`LogEvents`] to...
| ^^^^^^^^^^^^^^^^^^^ this item is private
|
= note: this link will resolve properly if you pass `--document-private-items`
warning: unresolved link to `LogEvents`
--> examples/app/log_layers_ecs.rs:9:82
|
9 | ...nsfer log events from [`LogEvents`] to an ECS event called [`LogEvent`].
| ^^^^^^^^^ no item named `LogEvents` in scope
|
= help: to escape `[` and `]` characters, add '\' before them like `\[` or `\]`
warning: public documentation for `log_layers_ecs` links to private item `LogEvent`
--> examples/app/log_layers_ecs.rs:9:119
|
9 | ...nts`] to an ECS event called [`LogEvent`].
| ^^^^^^^^ this item is private
|
= note: this link will resolve properly if you pass `--document-private-items`
warning: public documentation for `log_layers_ecs` links to private item `LogEvent`
--> examples/app/log_layers_ecs.rs:11:49
|
11 | //! Finally, after all that we can access the [`LogEvent`] event from our systems and use it.
| ^^^^^^^^ this item is private
|
= note: this link will resolve properly if you pass `--document-private-items`
```
<details/>
This commit splits `VisibleEntities::entities` into four separate lists:
one for lights, one for 2D meshes, one for 3D meshes, and one for UI
elements. This allows `queue_material_meshes` and similar methods to
avoid examining entities that are obviously irrelevant. In particular,
this separation helps scenes with many skinned meshes, as the individual
bones are considered visible entities but have no rendered appearance.
Internally, `VisibleEntities::entities` is a `HashMap` from the `TypeId`
representing a `QueryFilter` to the appropriate `Entity` list. I had to
do this because `VisibleEntities` is located within an upstream crate
from the crates that provide lights (`bevy_pbr`) and 2D meshes
(`bevy_sprite`). As an added benefit, this setup allows apps to provide
their own types of renderable components, by simply adding a specialized
`check_visibility` to the schedule.
This provides a 16.23% end-to-end speedup on `many_foxes` with 10,000
foxes (24.06 ms/frame to 20.70 ms/frame).
## Migration guide
* `check_visibility` and `VisibleEntities` now store the four types of
renderable entities--2D meshes, 3D meshes, lights, and UI
elements--separately. If your custom rendering code examines
`VisibleEntities`, it will now need to specify which type of entity it's
interested in using the `WithMesh2d`, `WithMesh`, `WithLight`, and
`WithNode` types respectively. If your app introduces a new type of
renderable entity, you'll need to add an explicit call to
`check_visibility` to the schedule to accommodate your new component or
components.
## Analysis
`many_foxes`, 10,000 foxes: `main`:
![Screenshot 2024-03-31
114444](https://github.com/bevyengine/bevy/assets/157897/16ecb2ff-6e04-46c0-a4b0-b2fde2084bad)
`many_foxes`, 10,000 foxes, this branch:
![Screenshot 2024-03-31
114256](https://github.com/bevyengine/bevy/assets/157897/94dedae4-bd00-45b2-9aaf-dfc237004ddb)
`queue_material_meshes` (yellow = this branch, red = `main`):
![Screenshot 2024-03-31
114637](https://github.com/bevyengine/bevy/assets/157897/f90912bd-45bd-42c4-bd74-57d98a0f036e)
`queue_shadows` (yellow = this branch, red = `main`):
![Screenshot 2024-03-31
114607](https://github.com/bevyengine/bevy/assets/157897/6ce693e3-20c0-4234-8ec9-a6f191299e2d)
# Objective
- Replace `RenderMaterials` / `RenderMaterials2d` / `RenderUiMaterials`
with `RenderAssets` to enable implementing changes to one thing,
`RenderAssets`, that applies to all use cases rather than duplicating
changes everywhere for multiple things that should be one thing.
- Adopts #8149
## Solution
- Make RenderAsset generic over the destination type rather than the
source type as in #8149
- Use `RenderAssets<PreparedMaterial<M>>` etc for render materials
---
## Changelog
- Changed:
- The `RenderAsset` trait is now implemented on the destination type.
Its `SourceAsset` associated type refers to the type of the source
asset.
- `RenderMaterials`, `RenderMaterials2d`, and `RenderUiMaterials` have
been replaced by `RenderAssets<PreparedMaterial<M>>` and similar.
## Migration Guide
- `RenderAsset` is now implemented for the destination type rather that
the source asset type. The source asset type is now the `RenderAsset`
trait's `SourceAsset` associated type.
# Objective
- There is a little mistake in a line comment.
## Solution
- Fixed the comment to correctly describe what happens in the documented
calculation.
# Objective
- As @james7132 said [on
Discord](https://discord.com/channels/691052431525675048/692572690833473578/1224626740773523536),
the `close_on_esc` system is forcing `bevy_window` to depend on
`bevy_input`.
- `close_on_esc` is not likely to be used in production, so it arguably
does not have a place in `bevy_window`.
## Solution
- As suggested by @afonsolage, move `close_on_esc` into
`bevy_dev_tools`.
- Add an example to the documentation too.
- Remove `bevy_window`'s dependency on `bevy_input`.
- Add `bevy_reflect`'s `smol_str` feature to `bevy_window` because it
was implicitly depended upon with `bevy_input` before it was removed.
- Remove any usage of `close_on_esc` from the examples.
- `bevy_dev_tools` is not enabled by default. I personally find it
frustrating to run examples with additional features, so I opted to
remove it entirely.
- This is up for discussion if you have an alternate solution.
---
## Changelog
- Moved `bevy_window::close_on_esc` to `bevy_dev_tools::close_on_esc`.
- Removed usage of `bevy_dev_tools::close_on_esc` from all examples.
## Migration Guide
`bevy_window::close_on_esc` has been moved to
`bevy_dev_tools::close_on_esc`. You will first need to enable
`bevy_dev_tools` as a feature in your `Cargo.toml`:
```toml
[dependencies]
bevy = { version = "0.14", features = ["bevy_dev_tools"] }
```
Finally, modify any imports to use `bevy_dev_tools` instead:
```rust
// Old:
// use bevy:🪟:close_on_esc;
// New:
use bevy::dev_tools::close_on_esc;
App::new()
.add_systems(Update, close_on_esc)
// ...
.run();
```
This commit makes the following optimizations:
## `MeshPipelineKey`/`BaseMeshPipelineKey` split
`MeshPipelineKey` has been split into `BaseMeshPipelineKey`, which lives
in `bevy_render` and `MeshPipelineKey`, which lives in `bevy_pbr`.
Conceptually, `BaseMeshPipelineKey` is a superclass of
`MeshPipelineKey`. For `BaseMeshPipelineKey`, the bits start at the
highest (most significant) bit and grow downward toward the lowest bit;
for `MeshPipelineKey`, the bits start at the lowest bit and grow upward
toward the highest bit. This prevents them from colliding.
The goal of this is to avoid having to reassemble bits of the pipeline
key for every mesh every frame. Instead, we can just use a bitwise or
operation to combine the pieces that make up a `MeshPipelineKey`.
## `specialize_slow`
Previously, all of `specialize()` was marked as `#[inline]`. This
bloated `queue_material_meshes` unnecessarily, as a large chunk of it
ended up being a slow path that was rarely hit. This commit refactors
the function to move the slow path to `specialize_slow()`.
Together, these two changes shave about 5% off `queue_material_meshes`:
![Screenshot 2024-03-29
130002](https://github.com/bevyengine/bevy/assets/157897/a7e5a994-a807-4328-b314-9003429dcdd2)
## Migration Guide
- The `primitive_topology` field on `GpuMesh` is now an accessor method:
`GpuMesh::primitive_topology()`.
- For performance reasons, `MeshPipelineKey` has been split into
`BaseMeshPipelineKey`, which lives in `bevy_render`, and
`MeshPipelineKey`, which lives in `bevy_pbr`. These two should be
combined with bitwise-or to produce the final `MeshPipelineKey`.
# Objective
This is a necessary precursor to #9122 (this was split from that PR to
reduce the amount of code to review all at once).
Moving `!Send` resource ownership to `App` will make it unambiguously
`!Send`. `SubApp` must be `Send`, so it can't wrap `App`.
## Solution
Refactor `App` and `SubApp` to not have a recursive relationship. Since
`SubApp` no longer wraps `App`, once `!Send` resources are moved out of
`World` and into `App`, `SubApp` will become unambiguously `Send`.
There could be less code duplication between `App` and `SubApp`, but
that would break `App` method chaining.
## Changelog
- `SubApp` no longer wraps `App`.
- `App` fields are no longer publicly accessible.
- `App` can no longer be converted into a `SubApp`.
- Various methods now return references to a `SubApp` instead of an
`App`.
## Migration Guide
- To construct a sub-app, use `SubApp::new()`. `App` can no longer
convert into `SubApp`.
- If you implemented a trait for `App`, you may want to implement it for
`SubApp` as well.
- If you're accessing `app.world` directly, you now have to use
`app.world()` and `app.world_mut()`.
- `App::sub_app` now returns `&SubApp`.
- `App::sub_app_mut` now returns `&mut SubApp`.
- `App::get_sub_app` now returns `Option<&SubApp>.`
- `App::get_sub_app_mut` now returns `Option<&mut SubApp>.`
Today, we sort all entities added to all phases, even the phases that
don't strictly need sorting, such as the opaque and shadow phases. This
results in a performance loss because our `PhaseItem`s are rather large
in memory, so sorting is slow. Additionally, determining the boundaries
of batches is an O(n) process.
This commit makes Bevy instead applicable place phase items into *bins*
keyed by *bin keys*, which have the invariant that everything in the
same bin is potentially batchable. This makes determining batch
boundaries O(1), because everything in the same bin can be batched.
Instead of sorting each entity, we now sort only the bin keys. This
drops the sorting time to near-zero on workloads with few bins like
`many_cubes --no-frustum-culling`. Memory usage is improved too, with
batch boundaries and dynamic indices now implicit instead of explicit.
The improved memory usage results in a significant win even on
unbatchable workloads like `many_cubes --no-frustum-culling
--vary-material-data-per-instance`, presumably due to cache effects.
Not all phases can be binned; some, such as transparent and transmissive
phases, must still be sorted. To handle this, this commit splits
`PhaseItem` into `BinnedPhaseItem` and `SortedPhaseItem`. Most of the
logic that today deals with `PhaseItem`s has been moved to
`SortedPhaseItem`. `BinnedPhaseItem` has the new logic.
Frame time results (in ms/frame) are as follows:
| Benchmark | `binning` | `main` | Speedup |
| ------------------------ | --------- | ------- | ------- |
| `many_cubes -nfc -vpi` | 232.179 | 312.123 | 34.43% |
| `many_cubes -nfc` | 25.874 | 30.117 | 16.40% |
| `many_foxes` | 3.276 | 3.515 | 7.30% |
(`-nfc` is short for `--no-frustum-culling`; `-vpi` is short for
`--vary-per-instance`.)
---
## Changelog
### Changed
* Render phases have been split into binned and sorted phases. Binned
phases, such as the common opaque phase, achieve improved CPU
performance by avoiding the sorting step.
## Migration Guide
- `PhaseItem` has been split into `BinnedPhaseItem` and
`SortedPhaseItem`. If your code has custom `PhaseItem`s, you will need
to migrate them to one of these two types. `SortedPhaseItem` requires
the fewest code changes, but you may want to pick `BinnedPhaseItem` if
your phase doesn't require sorting, as that enables higher performance.
## Tracy graphs
`many-cubes --no-frustum-culling`, `main` branch:
<img width="1064" alt="Screenshot 2024-03-12 180037"
src="https://github.com/bevyengine/bevy/assets/157897/e1180ce8-8e89-46d2-85e3-f59f72109a55">
`many-cubes --no-frustum-culling`, this branch:
<img width="1064" alt="Screenshot 2024-03-12 180011"
src="https://github.com/bevyengine/bevy/assets/157897/0899f036-6075-44c5-a972-44d95895f46c">
You can see that `batch_and_prepare_binned_render_phase` is a much
smaller fraction of the time. Zooming in on that function, with yellow
being this branch and red being `main`, we see:
<img width="1064" alt="Screenshot 2024-03-12 175832"
src="https://github.com/bevyengine/bevy/assets/157897/0dfc8d3f-49f4-496e-8825-a66e64d356d0">
The binning happens in `queue_material_meshes`. Again with yellow being
this branch and red being `main`:
<img width="1064" alt="Screenshot 2024-03-12 175755"
src="https://github.com/bevyengine/bevy/assets/157897/b9b20dc1-11c8-400c-a6cc-1c2e09c1bb96">
We can see that there is a small regression in `queue_material_meshes`
performance, but it's not nearly enough to outweigh the large gains in
`batch_and_prepare_binned_render_phase`.
---------
Co-authored-by: James Liu <contact@jamessliu.com>
# Objective
Wireframes are currently supported for 3D meshes using the
`WireframePlugin` in `bevy_pbr`. This PR adds the same functionality for
2D meshes.
Closes#5881.
## Solution
Since there's no easy way to share material implementations between 2D,
3D, and UI, this is mostly a straight copy and rename from the original
plugin into `bevy_sprite`.
<img width="1392" alt="image"
src="https://github.com/bevyengine/bevy/assets/3961616/7aca156f-448a-4c7e-89b8-0a72c5919769">
---
## Changelog
- Added `Wireframe2dPlugin` and related types to support 2D wireframes.
- Added an example to demonstrate how to use 2D wireframes
---------
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
# Objective
- Example `mesh2d_manual` crashes in wasm/webgl2, as reported in
https://github.com/bevyengine/bevy-website/issues/1123#issuecomment-2019479670
```
wgpu error: Validation Error
Caused by:
In a RenderPass
note: encoder = `<CommandBuffer-(0, 1, Gl)>`
In a set_push_constant command
Provided push constant is for stage(s) ShaderStages(VERTEX), however the pipeline layout has no push constant range for the stage(s) ShaderStages(VERTEX)
```
## Solution
- Properly declare the push constant as in
4508077297/crates/bevy_sprite/src/mesh2d/mesh.rs (L514-L524)
# Objective
- Fixes#12712
## Solution
- Move the `float_ord.rs` file to `bevy_math`
- Change any `bevy_utils::FloatOrd` statements to `bevy_math::FloatOrd`
---
## Changelog
- Moved `FloatOrd` from `bevy_utils` to `bevy_math`
## Migration Guide
- References to `bevy_utils::FloatOrd` should be changed to
`bevy_math::FloatOrd`
Fixes#12600
## Solution
Removed Into<AssetId<T>> for Handle<T> as proposed in Issue
conversation, fixed dependent code
## Migration guide
If you use passing Handle by value as AssetId, you should pass reference
or call .id() method on it
Before (0.13):
`assets.insert(handle, value);`
After (0.14):
`assets.insert(&handle, value);`
or
`assets.insert(handle.id(), value);`
# Objective
- went through bounding_2d example with a fine-toothed comb and found
two small issues
## Solution
- pulled "draw a small filled-in circle" logic into a function
- removed impotent addition of aabb / circle origin (identically
`Vec2(0.0, 0.0)`)
# Objective
Fixes#12225
Prior to the `bevy_color` port, `GREEN` used to mean "full green." But
it is now a much darker color matching the css1 spec.
## Solution
Change usages of `basic::GREEN` or `css::GREEN` to `LIME` to restore the
examples to their former colors.
This also removes the duplicate definition of `GREEN` from `css`. (it
was already re-exported from `basic`)
## Note
A lot of these examples could use nicer colors. I'm not trying to do
that here.
"Dark Grey" will be tackled separately and has its own tracking issue.
# Objective
Addresses one of the side-notes in #12225.
Colors in the `basic` palette are inconsistent in a few ways:
- `CYAN` was named `AQUA` in the referenced spec. (an alias was added in
a later spec)
- Colors are defined with e.g. "half green" having a `g` value of `0.5`.
But any spec would have been based on 8-bit color, so `0x80 / 0xFF` or
`128 / 255` or ~`0.502`. This precision is likely meaningful when doing
color math/rounding.
## Solution
Regenerate the colors from
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=37563bedc8858033bd8b8380328c5230
# Objective
After the `TextureAtlas` changes that landed in 0.13,
`SpriteSheetBundle` is equivalent to `TextureAtlas` + `SpriteBundle` and
`AtlasImageBundle` is equivalent to `TextureAtlas` + `ImageBundle`. As
such, the atlas bundles aren't particularly useful / necessary additions
to the API anymore.
In addition, atlas bundles are inconsistent with `ImageScaleMode` (also
introduced in 0.13) which doesn't have its own version of each image
bundle.
## Solution
Deprecate `SpriteSheetBundle` and `AtlasImageBundle` in favor of
including `TextureAtlas` as a separate component alongside
`SpriteBundle` and `ImageBundle`, respectively.
---
## Changelog
- Deprecated `SpriteSheetBundle` and `AtlasImageBundle`.
## Migration Guide
- `SpriteSheetBundle` has been deprecated. Use `TextureAtlas` alongside
a `SpriteBundle` instead.
- `AtlasImageBundle` has been deprecated. Use `TextureAtlas` alongside
an `ImageBundle` instead.
Although we cached hashes of `MeshVertexBufferLayout`, we were paying
the cost of `PartialEq` on `InnerMeshVertexBufferLayout` for every
entity, every frame. This patch changes that logic to place
`MeshVertexBufferLayout`s in `Arc`s so that they can be compared and
hashed by pointer. This results in a 28% speedup in the
`queue_material_meshes` phase of `many_cubes`, with frustum culling
disabled.
Additionally, this patch contains two minor changes:
1. This commit flattens the specialized mesh pipeline cache to one level
of hash tables instead of two. This saves a hash lookup.
2. The example `many_cubes` has been given a `--no-frustum-culling`
flag, to aid in benchmarking.
See the Tracy profile:
<img width="1064" alt="Screenshot 2024-02-29 144406"
src="https://github.com/bevyengine/bevy/assets/157897/18632f1d-1fdd-4ac7-90ed-2d10306b2a1e">
## Migration guide
* Duplicate `MeshVertexBufferLayout`s are now combined into a single
object, `MeshVertexBufferLayoutRef`, which contains an
atomically-reference-counted pointer to the layout. Code that was using
`MeshVertexBufferLayout` may need to be updated to use
`MeshVertexBufferLayoutRef` instead.
# Objective
- As part of the migration process we need to a) see the end effect of
the migration on user ergonomics b) check for serious perf regressions
c) actually migrate the code
- To accomplish this, I'm going to attempt to migrate all of the
remaining user-facing usages of `LegacyColor` in one PR, being careful
to keep a clean commit history.
- Fixes#12056.
## Solution
I've chosen to use the polymorphic `Color` type as our standard
user-facing API.
- [x] Migrate `bevy_gizmos`.
- [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs
- [x] Migrate sprites
- [x] Migrate UI
- [x] Migrate `ColorMaterial`
- [x] Migrate `MaterialMesh2D`
- [x] Migrate fog
- [x] Migrate lights
- [x] Migrate StandardMaterial
- [x] Migrate wireframes
- [x] Migrate clear color
- [x] Migrate text
- [x] Migrate gltf loader
- [x] Register color types for reflection
- [x] Remove `LegacyColor`
- [x] Make sure CI passes
Incidental improvements to ease migration:
- added `Color::srgba_u8`, `Color::srgba_from_array` and friends
- added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the
`Alpha` trait
- add and immediately deprecate (lol) `Color::rgb` and friends in favor
of more explicit and consistent `Color::srgb`
- standardized on white and black for most example text colors
- added vector field traits to `LinearRgba`: ~~`Add`, `Sub`,
`AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications
and divisions do not scale alpha. `Add` and `Sub` have been cut from
this PR.
- added `LinearRgba` and `Srgba` `RED/GREEN/BLUE`
- added `LinearRgba_to_f32_array` and `LinearRgba::to_u32`
## Migration Guide
Bevy's color types have changed! Wherever you used a
`bevy::render::Color`, a `bevy::color::Color` is used instead.
These are quite similar! Both are enums storing a color in a specific
color space (or to be more precise, using a specific color model).
However, each of the different color models now has its own type.
TODO...
- `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`,
`Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`,
`Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`.
- `Color::set_a` and `Color::a` is now `Color::set_alpha` and
`Color::alpha`. These are part of the `Alpha` trait in `bevy_color`.
- `Color::is_fully_transparent` is now part of the `Alpha` trait in
`bevy_color`
- `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for
`g`, `b` `h`, `s` and `l` have been removed due to causing silent
relatively expensive conversions. Convert your `Color` into the desired
color space, perform your operations there, and then convert it back
into a polymorphic `Color` enum.
- `Color::hex` is now `Srgba::hex`. Call `.into` or construct a
`Color::Srgba` variant manually to convert it.
- `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`,
`ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now
store a `LinearRgba`, rather than a polymorphic `Color`
- `Color::rgb_linear` and `Color::rgba_linear` are now
`Color::linear_rgb` and `Color::linear_rgba`
- The various CSS color constants are no longer stored directly on
`Color`. Instead, they're defined in the `Srgba` color space, and
accessed via `bevy::color::palettes::css`. Call `.into()` on them to
convert them into a `Color` for quick debugging use, and consider using
the much prettier `tailwind` palette for prototyping.
- The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with
the standard naming.
- Vector field arithmetic operations on `Color` (add, subtract, multiply
and divide by a f32) have been removed. Instead, convert your colors
into `LinearRgba` space, and perform your operations explicitly there.
This is particularly relevant when working with emissive or HDR colors,
whose color channel values are routinely outside of the ordinary 0 to 1
range.
- `Color::as_linear_rgba_f32` has been removed. Call
`LinearRgba::to_f32_array` instead, converting if needed.
- `Color::as_linear_rgba_u32` has been removed. Call
`LinearRgba::to_u32` instead, converting if needed.
- Several other color conversion methods to transform LCH or HSL colors
into float arrays or `Vec` types have been removed. Please reimplement
these externally or open a PR to re-add them if you found them
particularly useful.
- Various methods on `Color` such as `rgb` or `hsl` to convert the color
into a specific color space have been removed. Convert into
`LinearRgba`, then to the color space of your choice.
- Various implicitly-converting color value methods on `Color` such as
`r`, `g`, `b` or `h` have been removed. Please convert it into the color
space of your choice, then check these properties.
- `Color` no longer implements `AsBindGroup`. Store a `LinearRgba`
internally instead to avoid conversion costs.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
Split up from #12017, rename Bevy's direction types.
Currently, Bevy has the `Direction2d`, `Direction3d`, and `Direction3dA`
types, which provide a type-level guarantee that their contained vectors
remain normalized. They can be very useful for a lot of APIs for safety,
explicitness, and in some cases performance, as they can sometimes avoid
unnecessary normalizations.
However, many consider them to be inconvenient to use, and opt for
standard vector types like `Vec3` because of this. One reason is that
the direction type names are a bit long and can be annoying to write (of
course you can use autocomplete, but just typing `Vec3` is still nicer),
and in some intances, the extra characters can make formatting worse.
The naming is also inconsistent with Glam's shorter type names, and
results in names like `Direction3dA`, which (in my opinion) are
difficult to read and even a bit ugly.
This PR proposes renaming the types to `Dir2`, `Dir3`, and `Dir3A`.
These names are nice and easy to write, consistent with Glam, and work
well for variants like the SIMD aligned `Dir3A`. As a bonus, it can also
result in nicer formatting in a lot of cases, which can be seen from the
diff of this PR.
Some examples of what it looks like: (copied from #12017)
```rust
// Before
let ray_cast = RayCast2d::new(Vec2::ZERO, Direction2d::X, 5.0);
// After
let ray_cast = RayCast2d::new(Vec2::ZERO, Dir2::X, 5.0);
```
```rust
// Before (an example using Bevy XPBD)
let hit = spatial_query.cast_ray(
Vec3::ZERO,
Direction3d::X,
f32::MAX,
true,
SpatialQueryFilter::default(),
);
// After
let hit = spatial_query.cast_ray(
Vec3::ZERO,
Dir3::X,
f32::MAX,
true,
SpatialQueryFilter::default(),
);
```
```rust
// Before
self.circle(
Vec3::new(0.0, -2.0, 0.0),
Direction3d::Y,
5.0,
Color::TURQUOISE,
);
// After (formatting is collapsed in this case)
self.circle(Vec3::new(0.0, -2.0, 0.0), Dir3::Y, 5.0, Color::TURQUOISE);
```
## Solution
Rename `Direction2d`, `Direction3d`, and `Direction3dA` to `Dir2`,
`Dir3`, and `Dir3A`.
---
## Migration Guide
The `Direction2d` and `Direction3d` types have been renamed to `Dir2`
and `Dir3`.
## Additional Context
This has been brought up on the Discord a few times, and we had a small
[poll](https://discord.com/channels/691052431525675048/1203087353850364004/1212465038711984158)
on this. `Dir2`/`Dir3`/`Dir3A` was quite unanimously chosen as the best
option, but of course it was a very small poll and inconclusive, so
other opinions are certainly welcome too.
---------
Co-authored-by: IceSentry <c.giguere42@gmail.com>
# Objective
The physical width and height (pixels) of an image is always integers,
but for `GpuImage` bevy currently stores them as `Vec2` (`f32`).
Switching to `UVec2` makes this more consistent with the [underlying
texture data](https://docs.rs/wgpu/latest/wgpu/struct.Extent3d.html).
I'm not sure if this is worth the change in the surface level API. If
not, feel free to close this PR.
## Solution
- Replace uses of `Vec2` with `UVec2` when referring to texture
dimensions.
- Use integer types for the texture atlas dimensions and sections.
[`Sprite::rect`](a81a2d1da3/crates/bevy_sprite/src/sprite.rs (L29))
remains unchanged, so manually specifying a sub-pixel region of an image
is still possible.
---
## Changelog
- `GpuImage` now stores its size as `UVec2` instead of `Vec2`.
- Texture atlases store their size and sections as `UVec2` and `URect`
respectively.
- `UiImageSize` stores its size as `UVec2`.
## Migration Guide
- Change floating point types (`Vec2`, `Rect`) to their respective
unsigned integer versions (`UVec2`, `URect`) when using `GpuImage`,
`TextureAtlasLayout`, `TextureAtlasBuilder`,
`DynamicAtlasTextureBuilder` or `FontAtlas`.
# Objective
The migration process for `bevy_color` (#12013) will be fairly involved:
there will be hundreds of affected files, and a large number of APIs.
## Solution
To allow us to proceed granularly, we're going to keep both
`bevy_color::Color` (new) and `bevy_render::Color` (old) around until
the migration is complete.
However, simply doing this directly is confusing! They're both called
`Color`, making it very hard to tell when a portion of the code has been
ported.
As discussed in #12056, by renaming the old `Color` type, we can make it
easier to gradually migrate over, one API at a time.
## Migration Guide
THIS MIGRATION GUIDE INTENTIONALLY LEFT BLANK.
This change should not be shipped to end users: delete this section in
the final migration guide!
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
# Objective
Move Gizmo examples into the separate directory
Fixes#11899
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
# Objective
- The `transform.translation` of a `TextBundle` in this example is
unnecessarily set to the same constant position over and over in each
`Update`. Newbies might be confused as to why this translation is being
performed over and over.
## Solution
- perform the translation only once, when the `Text2dBundle` is
instantiated
# Objective
We recently got some neat new 2d shapes and the shapes are no longer
centered on the screen.
The hardcoded positions and colors are a pain to deal with when a new
shape is added.
## Solution
Delete a bunch of code and position shapes evenly. Assign colors evenly
too.
## Before
<img width="1280" alt="Screenshot 2024-02-14 at 3 17 40 PM"
src="https://github.com/bevyengine/bevy/assets/200550/cc9fd9a8-4019-4907-a50e-621cb656c20a">
## After
<img width="1280" alt="Screenshot 2024-02-14 at 3 17 24 PM"
src="https://github.com/bevyengine/bevy/assets/200550/033a3f91-d3bc-4ec8-af59-42a221f8b8e7">
---------
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
I just implemented this to record a video for the new blog post, but I
figured it would also make a good dedicated example. This also allows us
to remove a lot of code from the 2d/3d gizmo examples since it
supersedes this portion of code.
Depends on: https://github.com/bevyengine/bevy/pull/11699
Make the renamings/changes regarding texture atlases a bit less
confusing by calling `TextureAtlasLayout` a layout, not a texture atlas.
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
> Follow up to #11600 and #10588
@mockersf expressed some [valid
concerns](https://github.com/bevyengine/bevy/pull/11600#issuecomment-1932796498)
about the current system this PR attempts to fix:
The `ComputedTextureSlices` reacts to asset change in both `bevy_sprite`
and `bevy_ui`, meaning that if the `ImageScaleMode` is inserted by
default in the bundles, we will iterate through most 2d items every time
an asset is updated.
# Solution
- `ImageScaleMode` only has two variants: `Sliced` and `Tiled`. I
removed the `Stretched` default
- `ImageScaleMode` is no longer part of any bundle, but the relevant
bundles explain that this additional component can be inserted
This way, the *absence* of `ImageScaleMode` means the image will be
stretched, and its *presence* will include the entity to the various
slicing systems
Optional components in bundles would make this more straigthfoward
# Additional work
Should I add new bundles with the `ImageScaleMode` component ?
# Objective
#11431 and #11688 implemented meshing support for Bevy's new geometric
primitives. The next step is to deprecate the shapes in
`bevy_render::mesh::shape` and to later remove them completely for 0.14.
## Solution
Deprecate the shapes and reduce code duplication by utilizing the
primitive meshing API for the old shapes where possible.
Note that some shapes have behavior that can't be exactly reproduced
with the new primitives yet:
- `Box` is more of an AABB with min/max extents
- `Plane` supports a subdivision count
- `Quad` has a `flipped` property
These types have not been changed to utilize the new primitives yet.
---
## Changelog
- Deprecated all shapes in `bevy_render::mesh::shape`
- Changed all examples to use new primitives for meshing
## Migration Guide
Bevy has previously used rendering-specific types like `UVSphere` and
`Quad` for primitive mesh shapes. These have now been deprecated to use
the geometric primitives newly introduced in version 0.13.
Some examples:
```rust
let before = meshes.add(shape::Box::new(5.0, 0.15, 5.0));
let after = meshes.add(Cuboid::new(5.0, 0.15, 5.0));
let before = meshes.add(shape::Quad::default());
let after = meshes.add(Rectangle::default());
let before = meshes.add(shape::Plane::from_size(5.0));
// The surface normal can now also be specified when using `new`
let after = meshes.add(Plane3d::default().mesh().size(5.0, 5.0));
let before = meshes.add(
Mesh::try_from(shape::Icosphere {
radius: 0.5,
subdivisions: 5,
})
.unwrap(),
);
let after = meshes.add(Sphere::new(0.5).mesh().ico(5).unwrap());
```
> Follow up to #10588
> Closes#11749 (Supersedes #11756)
Enable Texture slicing for the following UI nodes:
- `ImageBundle`
- `ButtonBundle`
<img width="739" alt="Screenshot 2024-01-29 at 13 57 43"
src="https://github.com/bevyengine/bevy/assets/26703856/37675681-74eb-4689-ab42-024310cf3134">
I also added a collection of `fantazy-ui-borders` from
[Kenney's](www.kenney.nl) assets, with the appropriate license (CC).
If it's a problem I can use the same textures as the `sprite_slice`
example
# Work done
Added the `ImageScaleMode` component to the targetted bundles, most of
the logic is directly reused from `bevy_sprite`.
The only additional internal component is the UI specific
`ComputedSlices`, which does the same thing as its spritee equivalent
but adapted to UI code.
Again the slicing is not compatible with `TextureAtlas`, it's something
I need to tackle more deeply in the future
# Fixes
* [x] I noticed that `TextureSlicer::compute_slices` could infinitely
loop if the border was larger that the image half extents, now an error
is triggered and the texture will fallback to being stretched
* [x] I noticed that when using small textures with very small *tiling*
options we could generate hundred of thousands of slices. Now I set a
minimum size of 1 pixel per slice, which is already ridiculously small,
and a warning will be sent at runtime when slice count goes above 1000
* [x] Sprite slicing with `flip_x` or `flip_y` would give incorrect
results, correct flipping is now supported to both sprites and ui image
nodes thanks to @odecay observation
# GPU Alternative
I create a separate branch attempting to implementing 9 slicing and
tiling directly through the `ui.wgsl` fragment shader. It works but
requires sending more data to the GPU:
- slice border
- tiling factors
And more importantly, the actual quad *scale* which is hard to put in
the shader with the current code, so that would be for a later iteration
# Objective
- Fixes#11740
## Solution
- Turned `Mesh::set_indices` into `Mesh::insert_indices` and added
related methods for completeness.
---
## Changelog
- Replaced `Mesh::set_indices(indices: Option<Indices>)` with
`Mesh::insert_indices(indices: Indices)`
- Replaced `Mesh::with_indices(indices: Option<Indices>)` with
`Mesh::with_inserted_indices(indices: Indices)` and
`Mesh::with_removed_indices()` mirroring the API for inserting /
removing attributes.
- Updated the examples and internal uses of the APIs described above.
## Migration Guide
- Use `Mesh::insert_indices` or `Mesh::with_inserted_indices` instead of
`Mesh::set_indices` / `Mesh::with_indices`.
- If you have passed `None` to `Mesh::set_indices` or
`Mesh::with_indices` you should use `Mesh::remove_indices` or
`Mesh::with_removed_indices` instead.
---------
Co-authored-by: François <mockersf@gmail.com>
# Objective
- Create an example for bounding volumes and intersection tests
## Solution
- Add an example with a few bounding volumes, created from primitives
- Allow the user to cycle trough the different intersection tests
The PR is in a reviewable state now in the sense that the basic
implementations are there. There are still some ToDos that I'm aware of:
- [x] docs for all the new structs and traits
- [x] implement `Default` and derive other useful traits for the new
structs
- [x] Take a look at the notes again (Do this after a first round of
reviews)
- [x] Take care of the repetition in the circle drawing functions
---
# Objective
- TLDR: This PR enables us to quickly draw all the newly added
primitives from `bevy_math` in immediate mode with gizmos
- Addresses #10571
## Solution
- This implements the first design idea I had that covered everything
that was mentioned in the Issue
https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197
---
## Caveats
- I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them
work with the current solution. We could impose less strict requirements
for the gizmoable objects and remove the impls afterwards if the
community doesn't like the current approach.
---
## Changelog
- implement capabilities to draw ellipses on the gizmo in general (this
was required to have some code which is able to draw the ellipse
primitive)
- refactored circle drawing code to use the more general ellipse drawing
code to keep code duplication low
- implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for
`Direction3d`
- implement trait to draw primitives with specialized details with
gizmos
- `GizmoPrimitive2d` for all the 2D primitives
- `GizmoPrimitive3d` for all the 3D primitives
- (question while writing this: Does it actually matter if we split this
in 2D and 3D? I guess it could be useful in the future if we do
something based on the main rendering mode even though atm it's kinda
useless)
---
---------
Co-authored-by: nothendev <borodinov.ilya@gmail.com>
# Objective
Right now, all assets in the main world get extracted and prepared in
the render world (if the asset's using the RenderAssetPlugin). This is
unfortunate for two cases:
1. **TextureAtlas** / **FontAtlas**: This one's huge. The individual
`Image` assets that make up the atlas are cloned and prepared
individually when there's no reason for them to be. The atlas textures
are built on the CPU in the main world. *There can be hundreds of images
that get prepared for rendering only not to be used.*
2. If one loads an Image and needs to transform it in a system before
rendering it, kind of like the [decompression
example](https://github.com/bevyengine/bevy/blob/main/examples/asset/asset_decompression.rs#L120),
there's a price paid for extracting & preparing the asset that's not
intended to be rendered yet.
------
* References #10520
* References #1782
## Solution
This changes the `RenderAssetPersistencePolicy` enum to bitflags. I felt
that the objective with the parameter is so similar in nature to wgpu's
[`TextureUsages`](https://docs.rs/wgpu/latest/wgpu/struct.TextureUsages.html)
and
[`BufferUsages`](https://docs.rs/wgpu/latest/wgpu/struct.BufferUsages.html),
that it may as well be just like that.
```rust
// This asset only needs to be in the main world. Don't extract and prepare it.
RenderAssetUsages::MAIN_WORLD
// Keep this asset in the main world and
RenderAssetUsages::MAIN_WORLD | RenderAssetUsages::RENDER_WORLD
// This asset is only needed in the render world. Remove it from the asset server once extracted.
RenderAssetUsages::RENDER_WORLD
```
### Alternate Solution
I considered introducing a third field to `RenderAssetPersistencePolicy`
enum:
```rust
enum RenderAssetPersistencePolicy {
/// Keep the asset in the main world after extracting to the render world.
Keep,
/// Remove the asset from the main world after extracting to the render world.
Unload,
/// This doesn't need to be in the render world at all.
NoExtract, // <-----
}
```
Functional, but this seemed like shoehorning. Another option is renaming
the enum to something like:
```rust
enum RenderAssetExtractionPolicy {
/// Extract the asset and keep it in the main world.
Extract,
/// Remove the asset from the main world after extracting to the render world.
ExtractAndUnload,
/// This doesn't need to be in the render world at all.
NoExtract,
}
```
I think this last one could be a good option if the bitflags are too
clunky.
## Migration Guide
* `RenderAssetPersistencePolicy::Keep` → `RenderAssetUsage::MAIN_WORLD |
RenderAssetUsage::RENDER_WORLD` (or `RenderAssetUsage::default()`)
* `RenderAssetPersistencePolicy::Unload` →
`RenderAssetUsage::RENDER_WORLD`
* For types implementing the `RenderAsset` trait, change `fn
persistence_policy(&self) -> RenderAssetPersistencePolicy` to `fn
asset_usage(&self) -> RenderAssetUsages`.
* Change any references to `cpu_persistent_access`
(`RenderAssetPersistencePolicy`) to `asset_usage` (`RenderAssetUsage`).
This applies to `Image`, `Mesh`, and a few other types.