# Objective
- Fix adding `#![allow(clippy::type_complexity)]` everywhere. like #9796
## Solution
- Use the new [lints] table that will land in 1.74
(https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#lints)
- inherit lint to the workspace, crates and examples.
```
[lints]
workspace = true
```
## Changelog
- Bump rust version to 1.74
- Enable lints table for the workspace
```toml
[workspace.lints.clippy]
type_complexity = "allow"
```
- Allow type complexity for all crates and examples
```toml
[lints]
workspace = true
```
---------
Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com>
# Objective
First of all, this PR took heavy inspiration from #7760 and #5715. It
intends to also fix#5569, but with a slightly different approach.
This also fixes#9335 by reexporting `DynEq`.
## Solution
The advantage of this API is that we can intern a value without
allocating for zero-sized-types and for enum variants that have no
fields. This PR does this automatically in the `SystemSet` and
`ScheduleLabel` derive macros for unit structs and fieldless enum
variants. So this should cover many internal and external use cases of
`SystemSet` and `ScheduleLabel`. In these optimal use cases, no memory
will be allocated.
- The interning returns a `Interned<dyn SystemSet>`, which is just a
wrapper around a `&'static dyn SystemSet`.
- `Hash` and `Eq` are implemented in terms of the pointer value of the
reference, similar to my first approach of anonymous system sets in
#7676.
- Therefore, `Interned<T>` does not implement `Borrow<T>`, only `Deref`.
- The debug output of `Interned<T>` is the same as the interned value.
Edit:
- `AppLabel` is now also interned and the old
`derive_label`/`define_label` macros were replaced with the new
interning implementation.
- Anonymous set ids are reused for different `Schedule`s, reducing the
amount of leaked memory.
### Pros
- `InternedSystemSet` and `InternedScheduleLabel` behave very similar to
the current `BoxedSystemSet` and `BoxedScheduleLabel`, but can be copied
without an allocation.
- Many use cases don't allocate at all.
- Very fast lookups and comparisons when using `InternedSystemSet` and
`InternedScheduleLabel`.
- The `intern` module might be usable in other areas.
- `Interned{ScheduleLabel, SystemSet, AppLabel}` does implement
`{ScheduleLabel, SystemSet, AppLabel}`, increasing ergonomics.
### Cons
- Implementors of `SystemSet` and `ScheduleLabel` still need to
implement `Hash` and `Eq` (and `Clone`) for it to work.
## Changelog
### Added
- Added `intern` module to `bevy_utils`.
- Added reexports of `DynEq` to `bevy_ecs` and `bevy_app`.
### Changed
- Replaced `BoxedSystemSet` and `BoxedScheduleLabel` with
`InternedSystemSet` and `InternedScheduleLabel`.
- Replaced `impl AsRef<dyn ScheduleLabel>` with `impl ScheduleLabel`.
- Replaced `AppLabelId` with `InternedAppLabel`.
- Changed `AppLabel` to use `Debug` for error messages.
- Changed `AppLabel` to use interning.
- Changed `define_label`/`derive_label` to use interning.
- Replaced `define_boxed_label`/`derive_boxed_label` with
`define_label`/`derive_label`.
- Changed anonymous set ids to be only unique inside a schedule, not
globally.
- Made interned label types implement their label trait.
### Removed
- Removed `define_boxed_label` and `derive_boxed_label`.
## Migration guide
- Replace `BoxedScheduleLabel` and `Box<dyn ScheduleLabel>` with
`InternedScheduleLabel` or `Interned<dyn ScheduleLabel>`.
- Replace `BoxedSystemSet` and `Box<dyn SystemSet>` with
`InternedSystemSet` or `Interned<dyn SystemSet>`.
- Replace `AppLabelId` with `InternedAppLabel` or `Interned<dyn
AppLabel>`.
- Types manually implementing `ScheduleLabel`, `AppLabel` or `SystemSet`
need to implement:
- `dyn_hash` directly instead of implementing `DynHash`
- `as_dyn_eq`
- Pass labels to `World::try_schedule_scope`, `World::schedule_scope`,
`World::try_run_schedule`. `World::run_schedule`, `Schedules::remove`,
`Schedules::remove_entry`, `Schedules::contains`, `Schedules::get` and
`Schedules::get_mut` by value instead of by reference.
---------
Co-authored-by: Joseph <21144246+JoJoJet@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Bevy code tends to make heavy use of the [newtype](
https://doc.rust-lang.org/rust-by-example/generics/new_types.html)
pattern, which is why we have a dedicated derive for
[`Deref`](https://doc.rust-lang.org/std/ops/trait.Deref.html) and
[`DerefMut`](https://doc.rust-lang.org/std/ops/trait.DerefMut.html).
This derive works for any struct with a single field:
```rust
#[derive(Component, Deref, DerefMut)]
struct MyNewtype(usize);
```
One reason for the single-field limitation is to prevent confusion and
footguns related that would arise from allowing multi-field structs:
<table align="center">
<tr>
<th colspan="2">
Similar structs, different derefs
</th>
</tr>
<tr>
<td>
```rust
#[derive(Deref, DerefMut)]
struct MyStruct {
foo: usize, // <- Derefs usize
bar: String,
}
```
</td>
<td>
```rust
#[derive(Deref, DerefMut)]
struct MyStruct {
bar: String, // <- Derefs String
foo: usize,
}
```
</td>
</tr>
<tr>
<th colspan="2">
Why `.1`?
</th>
</tr>
<tr>
<td colspan="2">
```rust
#[derive(Deref, DerefMut)]
struct MyStruct(Vec<usize>, Vec<f32>);
let mut foo = MyStruct(vec![123], vec![1.23]);
// Why can we skip the `.0` here?
foo.push(456);
// But not here?
foo.1.push(4.56);
```
</td>
</tr>
</table>
However, there are certainly cases where it's useful to allow for
structs with multiple fields. Such as for structs with one "real" field
and one `PhantomData` to allow for generics:
```rust
#[derive(Deref, DerefMut)]
struct MyStruct<T>(
// We want use this field for the `Deref`/`DerefMut` impls
String,
// But we need this field so that we can make this struct generic
PhantomData<T>
);
// ERROR: Deref can only be derived for structs with a single field
// ERROR: DerefMut can only be derived for structs with a single field
```
Additionally, the possible confusion and footguns are mainly an issue
for newer Rust/Bevy users. Those familiar with `Deref` and `DerefMut`
understand what adding the derive really means and can anticipate its
behavior.
## Solution
Allow users to opt into multi-field `Deref`/`DerefMut` derives using a
`#[deref]` attribute:
```rust
#[derive(Deref, DerefMut)]
struct MyStruct<T>(
// Use this field for the `Deref`/`DerefMut` impls
#[deref] String,
// We can freely include any other field without a compile error
PhantomData<T>
);
```
This prevents the footgun pointed out in the first issue described in
the previous section, but it still leaves the possible confusion
surrounding `.0`-vs-`.#`. However, the idea is that by making this
behavior explicit with an attribute, users will be more aware of it and
can adapt appropriately.
---
## Changelog
- Added `#[deref]` attribute to `Deref` and `DerefMut` derives
# Objective
The clippy lint `type_complexity` is known not to play well with bevy.
It frequently triggers when writing complex queries, and taking the
lint's advice of using a type alias almost always just obfuscates the
code with no benefit. Because of this, this lint is currently ignored in
CI, but unfortunately it still shows up when viewing bevy code in an
IDE.
As someone who's made a fair amount of pull requests to this repo, I
will say that this issue has been a consistent thorn in my side. Since
bevy code is filled with spurious, ignorable warnings, it can be very
difficult to spot the *real* warnings that must be fixed -- most of the
time I just ignore all warnings, only to later find out that one of them
was real after I'm done when CI runs.
## Solution
Suppress this lint in all bevy crates. This was previously attempted in
#7050, but the review process ended up making it more complicated than
it needs to be and landed on a subpar solution.
The discussion in https://github.com/rust-lang/rust-clippy/pull/10571
explores some better long-term solutions to this problem. Since there is
no timeline on when these solutions may land, we should resolve this
issue in the meantime by locally suppressing these lints.
### Unresolved issues
Currently, these lints are not suppressed in our examples, since that
would require suppressing the lint in every single source file. They are
still ignored in CI.
# Objective
Fixes#5362
## Solution
Add the attribute `#[label(ignore_fields)]` for `*Label` types.
```rust
#[derive(SystemLabel)]
pub enum MyLabel {
One,
// Previously this was not allowed since labels cannot contain data.
#[system_label(ignore_fields)]
Two(PhantomData<usize>),
}
```
## Notes
This label makes it possible for equality to behave differently depending on whether or not you are treating the type as a label. For example:
```rust
#[derive(SystemLabel, PartialEq, Eq)]
#[system_label(ignore_fields)]
pub struct Foo(usize);
```
If you compare it as a label, it will ignore the wrapped fields as the user requested. But if you compare it as a `Foo`, the derive will incorrectly compare the inner fields. I see a few solutions
1. Do nothing. This is technically intended behavior, but I think we should do our best to prevent footguns.
2. Generate impls of `PartialEq` and `Eq` along with the `#[derive(Label)]` macros. This is a breaking change as it requires all users to remove these derives from their types.
3. Only allow `PhantomData` to be used with `ignore_fields` -- seems needlessly prescriptive.
---
## Changelog
* Added the `ignore_fields` attribute to the derive macros for `*Label` types.
* Added an example showing off different forms of the derive macro.
<!--
## Migration Guide
> This section is optional. If there are no breaking changes, you can delete this section.
- If this PR is a breaking change (relative to the last release of Bevy), describe how a user might need to migrate their code to support these changes
- Simply adding new functionality is not a breaking change.
- Fixing behavior that was definitely a bug, rather than a questionable design choice is not a breaking change.
-->
# Objective
Reduce from scratch build time.
## Solution
Reduce the size of the critical path by removing dependencies between crates where not necessary. For `cargo check --no-default-features` this reduced build time from ~51s to ~45s. For some commits I am not completely sure if the tradeoff between build time reduction and convenience caused by the commit is acceptable. If not, I can drop them.
# Objective
A common pattern in Rust is the [newtype](https://doc.rust-lang.org/rust-by-example/generics/new_types.html). This is an especially useful pattern in Bevy as it allows us to give common/foreign types different semantics (such as allowing it to implement `Component` or `FromWorld`) or to simply treat them as a "new type" (clever). For example, it allows us to wrap a common `Vec<String>` and do things like:
```rust
#[derive(Component)]
struct Items(Vec<String>);
fn give_sword(query: Query<&mut Items>) {
query.single_mut().0.push(String::from("Flaming Poisoning Raging Sword of Doom"));
}
```
> We could then define another struct that wraps `Vec<String>` without anything clashing in the query.
However, one of the worst parts of this pattern is the ugly `.0` we have to write in order to access the type we actually care about. This is why people often implement `Deref` and `DerefMut` in order to get around this.
Since it's such a common pattern, especially for Bevy, it makes sense to add a derive macro to automatically add those implementations.
## Solution
Added a derive macro for `Deref` and another for `DerefMut` (both exported into the prelude). This works on all structs (including tuple structs) as long as they only contain a single field:
```rust
#[derive(Deref)]
struct Foo(String);
#[derive(Deref, DerefMut)]
struct Bar {
name: String,
}
```
This allows us to then remove that pesky `.0`:
```rust
#[derive(Component, Deref, DerefMut)]
struct Items(Vec<String>);
fn give_sword(query: Query<&mut Items>) {
query.single_mut().push(String::from("Flaming Poisoning Raging Sword of Doom"));
}
```
### Alternatives
There are other alternatives to this such as by using the [`derive_more`](https://crates.io/crates/derive_more) crate. However, it doesn't seem like we need an entire crate just yet since we only need `Deref` and `DerefMut` (for now).
### Considerations
One thing to consider is that the Rust std library recommends _not_ using `Deref` and `DerefMut` for things like this: "`Deref` should only be implemented for smart pointers to avoid confusion" ([reference](https://doc.rust-lang.org/std/ops/trait.Deref.html)). Personally, I believe it makes sense to use it in the way described above, but others may disagree.
### Additional Context
Discord: https://discord.com/channels/691052431525675048/692572690833473578/956648422163746827 (controversiality discussed [here](https://discord.com/channels/691052431525675048/692572690833473578/956711911481835630))
---
## Changelog
- Add `Deref` derive macro (exported to prelude)
- Add `DerefMut` derive macro (exported to prelude)
- Updated most newtypes in examples to use one or both derives
Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
What is says on the tin.
This has got more to do with making `clippy` slightly more *quiet* than it does with changing anything that might greatly impact readability or performance.
that said, deriving `Default` for a couple of structs is a nice easy win
This PR is part of the issue #3492.
# Objective
- Clean up dead code in `bevy_core`.
- Add and update the `bevy_core` documentation to achieve a 100% documentation coverage.
- Add the #![warn(missing_docs)] lint to keep the documentation coverage for the future.
# Solution
- Remove unused `Bytes`, `FromBytes`, `Labels`, and `EntityLabels` types and associated systems.
- Made several types private that really only have use as internal types, mostly pertaining to fixed timestep execution.
- Add and update the bevy_core documentation.
- Add the #![warn(missing_docs)] lint.
# Open Questions
Should more of the internal states of `FixedTimestep` be public? Seems mostly to be an implementation detail unless someone really needs that fixed timestep state.
These derives seem to be leftover vestiges of the old renderer.
At least removing them doesn't seem to harm anything.
edit: thanks `@forbjok` on discord for pointing this out.
Makes some tweaks to the SubApp labeling introduced in #2695:
* Ergonomics improvements
* Removes unnecessary allocation when retrieving subapp label
* Removes the newly added "app macros" crate in favor of bevy_derive
* renamed RenderSubApp to RenderApp
@zicklag (for reference)
## Objective
- Clean up remaining references to the trait `FromResources`, which was replaced in favor of `FromWorld` during the ECS rework.
## Solution
- Remove the derive macro for `FromResources`
- Change doc references of `FromResources` to `FromWorld`
(this is the first item in #2576)
There are cases where we want an enum variant name. Right now the only way to do that with rust's std is to derive Debug, but this will also print out the variant's fields. This creates the unfortunate situation where we need to manually write out each variant's string name (ex: in #1963), which is both boilerplate-ey and error-prone. Crates such as `strum` exist for this reason, but it includes a lot of code and complexity that we don't need.
This adds a dead-simple `EnumVariantMeta` derive that exposes `enum_variant_index` and `enum_variant_name` functions. This allows us to make cases like #1963 much cleaner (see the second commit). We might also be able to reuse this logic for `bevy_reflect` enum derives.