# Objective
Some of the conversion methods on the new rect types introduced in #7984
have misleading names.
## Solution
Rename all methods returning an `IRect` to `as_irect` and all methods
returning a `URect` to `as_urect`.
## Migration Guide
Replace uses of the old method names with the new method names.
# Objective
In my application, I'm manually wrapping the built-in Bevy loaders with
a wrapper loader that stores some metadata before calling into the inner
Bevy loader. This worked for the glTF loader in Bevy 0.10, but in Bevy
0.11 it became impossible to do this because the glTF loader became
unconstructible outside Bevy due to the new private fields within it.
It's now in fact impossible to get a reference to a GltfLoader at all
from outside Bevy, because the only way to construct a GltfLoader is to
add the GltfPlugin to an App, and the GltfPlugin only hands out
references to its GltfLoader to the asset server, which provides no
public access to the loaders it manages.
## Solution
This commit fixes the problem by adding a public `new` method to allow
manual construction of a glTF loader.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
In both Text2d and Bevy UI text because of incorrect text size and
alignment calculations if a block of text has empty leading lines then
those lines are ignored. Also, depending on the font size when leading
empty lines are ignored the same number of lines of text can go missing
from the bottom of the text block.
## Example (from murtaugh on discord)
```rust
use bevy::prelude::*;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.run();
}
fn setup(mut commands: Commands) {
commands.spawn(Camera2dBundle::default());
let text = "\nfirst line\nsecond line\nthird line\n";
commands.spawn(TextBundle {
text: Text::from_section(
text.to_string(),
TextStyle {
font_size: 60.0,
color: Color::YELLOW,
..Default::default()
},
),
style: Style {
position_type: PositionType::Absolute,
..Default::default()
},
background_color: BackgroundColor(Color::RED),
..Default::default()
});
}
```
![](https://cdn.discordapp.com/attachments/1128294384954257499/1128295142072254525/image.png)
## Solution
`TextPipeline::queue_text`,
`TextMeasureInfo::compute_size_from_section_texts` and
`GlyphBrush::process_glyphs` each have a nearly duplicate section of
code that calculates the minimum bounds around a list of text sections.
The first two functions don't apply any rounding, but `process_glyphs`
also floors all the values. It seems like this difference can cause
conflicts where the text gets incorrectly shaped.
Also when Bevy computes the text bounds it chooses the smallest possible
rect that fits all the glyphs, ignoring white space. The glyphs are then
realigned vertically so the first glyph is on the top line. Any empty
leading lines are missed.
This PR adds a function `compute_text_bounds` that replaces the
duplicate code, so the text bounds are rounded the same way by each
function. Also, since Bevy doesn't use `ab_glyph` to control vertical
alignment, the minimum y bound is just always set to 0 which ensures no
leading empty lines will be missed.
There is another problem in that trailing empty lines are also ignored,
but that's more difficult to deal with and much less important than the
other issues, so I'll leave it for another PR.
<img width="462" alt="fixed_text_align_bounds"
src="https://github.com/bevyengine/bevy/assets/27962798/85e32e2c-d68f-4677-8e87-38e27ade4487">
---
## Changelog
Added a new function `compute_text_bounds` to the `glyph_brush` module
that replaces the text size and bounds calculations in
`TextPipeline::queue_text`,
`TextMeasureInfo::compute_size_from_section_texts` and
`GlyphBrush::process_glyphs`. The text bounds are calculated identically
in each function and the minimum y bound is not derived from the glyphs
but is always set to 0.
# Objective
`ExtractedUiNodes` is cleared by the `extract_uinodes` function during
the extraction schedule. Because the Bevy UI renderer uses a painters
algorithm, this makes it impossible for users to create a custom
extraction function that adds items for a node to be drawn behind the
rectangle added by `extract_uniodes`.
## Solution
Drain `ExtractedUiNodes` in `prepare_ui_nodes` instead, after the
extraction schedule has finished.
CI-capable version of #9086
---------
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François <mockersf@gmail.com>
# Objective
`GlobalTransform` after insertion will be updated only on `Transform` or
hierarchy change.
Fixes#9075
## Solution
Update `GlobalTransform` after insertion too.
---
## Changelog
- `GlobalTransform` is now updated not only on `Transform` or hierarchy
change, but also on insertion.
# Objective
Fix typos throughout the project.
## Solution
[`typos`](https://github.com/crate-ci/typos) project was used for
scanning, but no automatic corrections were applied. I checked
everything by hand before fixing.
Most of the changes are documentation/comments corrections. Also, there
are few trivial changes to code (variable name, pub(crate) function name
and a few error/panic messages).
## Unsolved
`bevy_reflect_derive` has
[typo](1b51053f19/crates/bevy_reflect/bevy_reflect_derive/src/type_path.rs (L76))
in enum variant name that I didn't fix. Enum is `pub(crate)`, so there
shouldn't be any trouble if fixed. However, code is tightly coupled with
macro usage, so I decided to leave it for more experienced contributor
just in case.
I created this manually as Github didn't want to run CI for the
workflow-generated PR. I'm guessing we didn't hit this in previous
releases because we used bors.
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
# Objective
fixes#8911, #7712
## Solution
Rounding was added to Taffy which fixed issue #7712.
The implementation uses the f32 `round` method which rounds ties
(fractional part is a half) away from zero. Issue #8911 occurs when a
node's min and max bounds on either axis are "ties" and zero is between
them. Then the bounds are rounded away from each other, and the node
grows by a pixel. This alone shouldn't cause the node to expand
continuously, but I think there is some interaction with the way Taffy
recomputes a layout from its cached data that I didn't identify.
This PR fixes#8911 by first disabling Taffy's internal rounding and
using an alternative rounding function that rounds ties up.
Then, instead of rounding the values of the internal layout tree as
Taffy's built-in rounding does, we leave those values unmodified and
only the values stored in the components are rounded. This requires
walking the tree for the UI node geometry update rather than iterating
through a query.
Because the component values are regenerated each update, that should
mean that UI updates are idempotent (ish) now and make the growing node
behaviour seen in issue #8911 impossible.
I expected a performance regression, but it's an improvement on main:
```
cargo run --profile stress-test --features trace_tracy --example many_buttons
```
<img width="461" alt="ui-rounding-fix-compare"
src="https://github.com/bevyengine/bevy/assets/27962798/914bfd50-e18a-4642-b262-fafa69005432">
I guess it makes sense to do the rounding together with the node size
and position updates.
---
## Changelog
`bevy_ui::layout`:
* Taffy's built-in rounding is disabled and rounding is now performed by
`ui_layout_system`.
* Instead of rounding the values of the internal layout tree as Taffy's
built-in rounding does, we leave those values unmodified and only the
values stored in the components are rounded. This requires walking the
tree for the UI node geometry update rather than iterating through a
query. Because the component values are regenerated each update, that
should mean that UI updates are idempotent now and make the growing node
behaviour seen in issue #8911 impossible.
* Added two helper functions `round_ties_up` and
`round_layout_coordinates`.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
This pull request is mutually exclusive with #9066.
# Objective
Complete the initialization of the plugin in `ScheduleRunnerPlugin`.
## Solution
Wait for asynchronous tasks to complete, then `App::finish` and
`App::cleanup` in the runner function.
# Objective
Fixes#6689.
## Solution
Add `single-threaded` as an optional non-default feature to `bevy_ecs`
and `bevy_tasks` that:
- disable the `ParallelExecutor` as a default runner
- disables the multi-threaded `TaskPool`
- internally replace `QueryParIter::for_each` calls with
`Query::for_each`.
Removed the `Mutex` and `Arc` usage in the single-threaded task pool.
![image](https://user-images.githubusercontent.com/3137680/202833253-dd2d520f-75e6-4c7b-be2d-5ce1523cbd38.png)
## Future Work/TODO
Create type aliases for `Mutex`, `Arc` that change to single-threaaded
equivalents where possible.
---
## Changelog
Added: Optional default feature `multi-theaded` to that enables
multithreaded parallelism in the engine. Disabling it disables all
multithreading in exchange for higher single threaded performance. Does
nothing on WASM targets.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- accesskit_unix is not optional anymore
## Solution
- Enable `async-io` feature of `accesskit_winit` only when
`accesskit_unix` is enabled
# Objective
Improve the `bevy_audio` API to make it more user-friendly and
ECS-idiomatic. This PR is a first-pass at addressing some of the most
obvious (to me) problems. In the interest of keeping the scope small,
further improvements can be done in future PRs.
The current `bevy_audio` API is very clunky to work with, due to how it
(ab)uses bevy assets to represent audio sinks.
The user needs to write a lot of boilerplate (accessing
`Res<Assets<AudioSink>>`) and deal with a lot of cognitive overhead
(worry about strong vs. weak handles, etc.) in order to control audio
playback.
Audio playback is initiated via a centralized `Audio` resource, which
makes it difficult to keep track of many different sounds playing in a
typical game.
Further, everything carries a generic type parameter for the sound
source type, making it difficult to mix custom sound sources (such as
procedurally generated audio or unofficial formats) with regular audio
assets.
Let's fix these issues.
## Solution
Refactor `bevy_audio` to a more idiomatic ECS API. Remove the `Audio`
resource. Do everything via entities and components instead.
Audio playback data is now stored in components:
- `PlaybackSettings`, `SpatialSettings`, `Handle<AudioSource>` are now
components. The user inserts them to tell Bevy to play a sound and
configure the initial playback parameters.
- `AudioSink`, `SpatialAudioSink` are now components instead of special
magical "asset" types. They are inserted by Bevy when it actually begins
playing the sound, and can be queried for by the user in order to
control the sound during playback.
Bundles: `AudioBundle` and `SpatialAudioBundle` are available to make it
easy for users to play sounds. Spawn an entity with one of these bundles
(or insert them to a complex entity alongside other stuff) to play a
sound.
Each entity represents a sound to be played.
There is also a new "auto-despawn" feature (activated using
`PlaybackSettings`), which, if enabled, tells Bevy to despawn entities
when the sink playback finishes. This allows for "fire-and-forget" sound
playback. Users can simply
spawn entities whenever they want to play sounds and not have to worry
about leaking memory.
## Unsolved Questions
I think the current design is *fine*. I'd be happy for it to be merged.
It has some possibly-surprising usability pitfalls, but I think it is
still much better than the old `bevy_audio`. Here are some discussion
questions for things that we could further improve. I'm undecided on
these questions, which is why I didn't implement them. We should decide
which of these should be addressed in this PR, and what should be left
for future PRs. Or if they should be addressed at all.
### What happens when sounds start playing?
Currently, the audio sink components are inserted and the bundle
components are kept. Should Bevy remove the bundle components? Something
else?
The current design allows an entity to be reused for playing the same
sound with the same parameters repeatedly. This is a niche use case I'd
like to be supported, but if we have to give it up for a simpler design,
I'd be fine with that.
### What happens if users remove any of the components themselves?
As described above, currently, entities can be reused. Removing the
audio sink causes it to be "detached" (I kept the old `Drop` impl), so
the sound keeps playing. However, if the audio bundle components are not
removed, Bevy will detect this entity as a "queued" sound entity again
(has the bundle compoenents, without a sink component), just like before
playing the sound the first time, and start playing the sound again.
This behavior might be surprising? Should we do something different?
### Should mutations to `PlaybackSettings` be applied to the audio sink?
We currently do not do that. `PlaybackSettings` is just for the initial
settings when the sound starts playing. This is clearly documented.
Do we want to keep this behavior, or do we want to allow users to use
`PlaybackSettings` instead of `AudioSink`/`SpatialAudioSink` to control
sounds during playback too?
I think I prefer for them to be kept separate. It is not a bad mental
model once you understand it, and it is documented.
### Should `AudioSink` and `SpatialAudioSink` be unified into a single
component type?
They provide a similar API (via the `AudioSinkPlayback` trait) and it
might be annoying for users to have to deal with both of them. The
unification could be done using an enum that is matched on internally by
the methods. Spatial audio has extra features, so this might make it
harder to access. I think we shouldn't.
### Automatic synchronization of spatial sound properties from
Transforms?
Should Bevy automatically apply changes to Transforms to spatial audio
entities? How do we distinguish between listener and emitter? Which one
does the transform represent? Where should the other one come from?
Alternatively, leave this problem for now, and address it in a future
PR. Or do nothing, and let users deal with it, as shown in the
`spatial_audio_2d` and `spatial_audio_3d` examples.
---
## Changelog
Added:
- `AudioBundle`/`SpatialAudioBundle`, add them to entities to play
sounds.
Removed:
- The `Audio` resource.
- `AudioOutput` is no longer `pub`.
Changed:
- `AudioSink`, `SpatialAudioSink` are now components instead of assets.
## Migration Guide
// TODO: write a more detailed migration guide, after the "unsolved
questions" are answered and this PR is finalized.
Before:
```rust
/// Need to store handles somewhere
#[derive(Resource)]
struct MyMusic {
sink: Handle<AudioSink>,
}
fn play_music(
asset_server: Res<AssetServer>,
audio: Res<Audio>,
audio_sinks: Res<Assets<AudioSink>>,
mut commands: Commands,
) {
let weak_handle = audio.play_with_settings(
asset_server.load("music.ogg"),
PlaybackSettings::LOOP.with_volume(0.5),
);
// upgrade to strong handle and store it
commands.insert_resource(MyMusic {
sink: audio_sinks.get_handle(weak_handle),
});
}
fn toggle_pause_music(
audio_sinks: Res<Assets<AudioSink>>,
mymusic: Option<Res<MyMusic>>,
) {
if let Some(mymusic) = &mymusic {
if let Some(sink) = audio_sinks.get(&mymusic.sink) {
sink.toggle();
}
}
}
```
Now:
```rust
/// Marker component for our music entity
#[derive(Component)]
struct MyMusic;
fn play_music(
mut commands: Commands,
asset_server: Res<AssetServer>,
) {
commands.spawn((
AudioBundle::from_audio_source(asset_server.load("music.ogg"))
.with_settings(PlaybackSettings::LOOP.with_volume(0.5)),
MyMusic,
));
}
fn toggle_pause_music(
// `AudioSink` will be inserted by Bevy when the audio starts playing
query_music: Query<&AudioSink, With<MyMusic>>,
) {
if let Ok(sink) = query.get_single() {
sink.toggle();
}
}
```
# Objective
`accesskit` and `accesskit_winit` need to be upgraded.
## Solution
Upgrade `accesskit` and `accesskit_winit`.
---
## Changelog
### Changed
* Upgrade accesskit to v0.11.
* Upgrade accesskit_winit to v0.14.
# Objective
Currently, `DynamicScene`s extract all components listed in the given
(or the world's) type registry. This acts as a quasi-filter of sorts.
However, it can be troublesome to use effectively and lacks decent
control.
For example, say you need to serialize only the following component over
the network:
```rust
#[derive(Reflect, Component, Default)]
#[reflect(Component)]
struct NPC {
name: Option<String>
}
```
To do this, you'd need to:
1. Create a new `AppTypeRegistry`
2. Register `NPC`
3. Register `Option<String>`
If we skip Step 3, then the entire scene might fail to serialize as
`Option<String>` requires registration.
Not only is this annoying and easy to forget, but it can leave users
with an impossible task: serializing a third-party type that contains
private types.
Generally, the third-party crate will register their private types
within a plugin so the user doesn't need to do it themselves. However,
this means we are now unable to serialize _just_ that type— we're forced
to allow everything!
## Solution
Add the `SceneFilter` enum for filtering components to extract.
This filter can be used to optionally allow or deny entire sets of
components/resources. With the `DynamicSceneBuilder`, users have more
control over how their `DynamicScene`s are built.
To only serialize a subset of components, use the `allow` method:
```rust
let scene = builder
.allow::<ComponentA>()
.allow::<ComponentB>()
.extract_entity(entity)
.build();
```
To serialize everything _but_ a subset of components, use the `deny`
method:
```rust
let scene = builder
.deny::<ComponentA>()
.deny::<ComponentB>()
.extract_entity(entity)
.build();
```
Or create a custom filter:
```rust
let components = HashSet::from([type_id]);
let filter = SceneFilter::Allowlist(components);
// let filter = SceneFilter::Denylist(components);
let scene = builder
.with_filter(Some(filter))
.extract_entity(entity)
.build();
```
Similar operations exist for resources:
<details>
<summary>View Resource Methods</summary>
To only serialize a subset of resources, use the `allow_resource`
method:
```rust
let scene = builder
.allow_resource::<ResourceA>()
.extract_resources()
.build();
```
To serialize everything _but_ a subset of resources, use the
`deny_resource` method:
```rust
let scene = builder
.deny_resource::<ResourceA>()
.extract_resources()
.build();
```
Or create a custom filter:
```rust
let resources = HashSet::from([type_id]);
let filter = SceneFilter::Allowlist(resources);
// let filter = SceneFilter::Denylist(resources);
let scene = builder
.with_resource_filter(Some(filter))
.extract_resources()
.build();
```
</details>
### Open Questions
- [x] ~~`allow` and `deny` are mutually exclusive. Currently, they
overwrite each other. Should this instead be a panic?~~ Took @soqb's
suggestion and made it so that the opposing method simply removes that
type from the list.
- [x] ~~`DynamicSceneBuilder` extracts entity data as soon as
`extract_entity`/`extract_entities` is called. Should this behavior
instead be moved to the `build` method to prevent ordering mixups (e.g.
`.allow::<Foo>().extract_entity(entity)` vs
`.extract_entity(entity).allow::<Foo>()`)? The tradeoff would be
iterating over the given entities twice: once at extraction and again at
build.~~ Based on the feedback from @Testare it sounds like it might be
better to just keep the current functionality (if anything we can open a
separate PR that adds deferred methods for extraction, so the
choice/performance hit is up to the user).
- [ ] An alternative might be to remove the filter from
`DynamicSceneBuilder` and have it as a separate parameter to the
extraction methods (either in the existing ones or as added
`extract_entity_with_filter`-type methods). Is this preferable?
- [x] ~~Should we include constructors that include common types to
allow/deny? For example, a `SceneFilter::standard_allowlist` that
includes things like `Parent` and `Children`?~~ Consensus suggests we
should. I may split this out into a followup PR, though.
- [x] ~~Should we add the ability to remove types from the filter
regardless of whether an allowlist or denylist (e.g.
`filter.remove::<Foo>()`)?~~ See the first list item
- [x] ~~Should `SceneFilter` be an enum? Would it make more sense as a
struct that contains an `is_denylist` boolean?~~ With the added
`SceneFilter::None` state (replacing the need to wrap in an `Option` or
rely on an empty `Denylist`), it seems an enum is better suited now
- [x] ~~Bikeshed: Do we like the naming convention? Should we instead
use `include`/`exclude` terminology?~~ Sounds like we're sticking with
`allow`/`deny`!
- [x] ~~Does this feature need a new example? Do we simply include it in
the existing one (maybe even as a comment?)? Should this be done in a
followup PR instead?~~ Example will be added in a followup PR
### Followup Tasks
- [ ] Add a dedicated `SceneFilter` example
- [ ] Possibly add default types to the filter (e.g. deny things like
`ComputedVisibility`, allow `Parent`, etc)
---
## Changelog
- Added the `SceneFilter` enum for filtering components and resources
when building a `DynamicScene`
- Added methods:
- `DynamicSceneBuilder::with_filter`
- `DynamicSceneBuilder::allow`
- `DynamicSceneBuilder::deny`
- `DynamicSceneBuilder::allow_all`
- `DynamicSceneBuilder::deny_all`
- `DynamicSceneBuilder::with_resource_filter`
- `DynamicSceneBuilder::allow_resource`
- `DynamicSceneBuilder::deny_resource`
- `DynamicSceneBuilder::allow_all_resources`
- `DynamicSceneBuilder::deny_all_resources`
- Removed methods:
- `DynamicSceneBuilder::from_world_with_type_registry`
- `DynamicScene::from_scene` and `DynamicScene::from_world` no longer
require an `AppTypeRegistry` reference
## Migration Guide
- `DynamicScene::from_scene` and `DynamicScene::from_world` no longer
require an `AppTypeRegistry` reference:
```rust
// OLD
let registry = world.resource::<AppTypeRegistry>();
let dynamic_scene = DynamicScene::from_world(&world, registry);
// let dynamic_scene = DynamicScene::from_scene(&scene, registry);
// NEW
let dynamic_scene = DynamicScene::from_world(&world);
// let dynamic_scene = DynamicScene::from_scene(&scene);
```
- Removed `DynamicSceneBuilder::from_world_with_type_registry`. Now the
registry is automatically taken from the given world:
```rust
// OLD
let registry = world.resource::<AppTypeRegistry>();
let builder = DynamicSceneBuilder::from_world_with_type_registry(&world,
registry);
// NEW
let builder = DynamicSceneBuilder::from_world(&world);
```
# Objective
After the UI layout is computed when the coordinates are converted back
from physical coordinates to logical coordinates the `UiScale` is
ignored. This results in a confusing situation where we have two
different systems of logical coordinates.
Example:
```rust
use bevy::prelude::*;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(Update, update)
.run();
}
fn setup(mut commands: Commands, mut ui_scale: ResMut<UiScale>) {
ui_scale.scale = 4.;
commands.spawn(Camera2dBundle::default());
commands.spawn(NodeBundle {
style: Style {
align_items: AlignItems::Center,
justify_content: JustifyContent::Center,
width: Val::Percent(100.),
..Default::default()
},
..Default::default()
})
.with_children(|builder| {
builder.spawn(NodeBundle {
style: Style {
width: Val::Px(100.),
height: Val::Px(100.),
..Default::default()
},
background_color: Color::MAROON.into(),
..Default::default()
}).with_children(|builder| {
builder.spawn(TextBundle::from_section("", TextStyle::default());
});
});
}
fn update(
mut text_query: Query<(&mut Text, &Parent)>,
node_query: Query<Ref<Node>>,
) {
for (mut text, parent) in text_query.iter_mut() {
let node = node_query.get(parent.get()).unwrap();
if node.is_changed() {
text.sections[0].value = format!("size: {}", node.size());
}
}
}
```
result:
![Bevy App 30_05_2023
16_54_32](https://github.com/bevyengine/bevy/assets/27962798/a5ecbf31-0a12-4669-87df-b0c32f058732)
We asked for a 100x100 UI node but the Node's size is multiplied by the
value of `UiScale` to give a logical size of 400x400.
## Solution
Divide the output physical coordinates by `UiScale` in
`ui_layout_system` and multiply the logical viewport size by `UiScale`
when creating the projection matrix for the UI's `ExtractedView` in
`extract_default_ui_camera_view`.
---
## Changelog
* The UI layout's physical coordinates are divided by both the window
scale factor and `UiScale` when converting them back to logical
coordinates. The logical size of Ui nodes now matches the values given
to their size constraints.
* Multiply the logical viewport size by `UiScale` before creating the
projection matrix for the UI's `ExtractedView` in
`extract_default_ui_camera_view`.
* In `ui_focus_system` the cursor position returned from `Window` is
divided by `UiScale`.
* Added a scale factor parameter to `Node::physical_size` and
`Node::physical_rect`.
* The example `viewport_debug` now uses a `UiScale` of 2. to ensure that
viewport coordinates are working correctly with a non-unit `UiScale`.
## Migration Guide
Physical UI coordinates are now divided by both the `UiScale` and the
window's scale factor to compute the logical sizes and positions of UI
nodes.
This ensures that UI Node size and position values, held by the `Node`
and `GlobalTransform` components, conform to the same logical coordinate
system as the style constraints from which they are derived,
irrespective of the current `scale_factor` and `UiScale`.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Fixes#8630.
## Solution
Since a camera's view and projection matrices are modified during
`PostUpdate` in `camera_system` and `propagate_transforms`, it is fine
to move `update_previous_view_projections` from `Update` to `PreUpdate`.
Doing so adds consistence with `update_mesh_previous_global_transforms`
and allows systems in `Update` to use `PreviousViewProjection` correctly
without explicit ordering.
# Objective
I'm creating an iOS game and had to find a way to persist game state
when the application is terminated. This required listening to the
[`applicationWillTerminate()`
method](https://developer.apple.com/documentation/uikit/uiapplicationdelegate/1623111-applicationwillterminate),
but I cannot do so myself anymore since `winit` already set up a
delegate to listen for it, and there can be only one delegate.
So I had to move up the stack and try to respond to one of the events
from `winit` instead. It appears `winit` fires two events that could
serve my purpose: `WindowEvent::Destroyed` and `Event::LoopDestroyed`.
It seemed to me the former might be slightly more generally useful, and
I also found a past discussion that suggested it would be appropriate
for Bevy to have a `WindowDestroyed` event:
https://github.com/bevyengine/bevy/pull/5589#discussion_r942811021
## Solution
- I've added the `WindowDestroyed` event, which fires when `winit` fires
`WindowEvent::Destroyed`.
---
## Changelog
### Added
- Introduced a new `WindowDestroyed` event type. It is used to indicate
a window has been destroyed by the windowing system.
# Objective
bevy_render currently has a dependency on a random older version of
once_cell which is not used anywhere.
## Solution
Remove the dependency
## Changelog
N/A
## Migration Guide
N/A
# Objective
- Remove need to call `.get()` on two ticks to compare them for
equality.
## Solution
- Derive `Eq` and `PartialEq`.
---
## Changelog
> `Tick` now implements `Eq` and `PartialEq`
# Objective
- Fix#8984
### Solution
- Address compilation errors
I admit: I did sneak it an unrelated mini-refactor. of the
`measurment.rs` module. it seemed to me that directly importing `taffy`
types helped reduce a lot of boilerplate, so I did it.
# Objective
The bounding box colors are from bevy_gizmo are randomized between app
runs. This can get confusing for users.
## Solution
Use a fixed seed with `RandomState::with_seeds` rather than initializing
a `AHash`.
The random number was chose so that the first few colors are clearly
distinct.
According to the `RandomState::hash_one` documentation, it's also
faster.
![bevy_bounding_box_colors_2023-07-03](https://github.com/bevyengine/bevy/assets/26321040/676f0389-d00e-4edd-bd77-1fbf73a3d9fa)
---
## Changelog
* bevy_gizmo: Keep a consistent color for AABBs of identical entities
between runs
# Objective
Since 10f5c92, shadows were broken for models with morph target.
When #5703 was merged, the morph target code in `render/mesh.wgsl` was
correctly updated to use the new import syntax. However, similar code
exists in `prepass/prepass.wgsl`, but it was never update. (the reason
code is duplicated is that the `Vertex` struct is different for both
files).
## Solution
Update the code, so that shadows render correctly with morph targets.
# Objective
Fixes https://github.com/bevyengine/bevy/issues/8925
## Solution
~~Clamp the bad values.~~
Normalize the prepass normals when we get them in the `prepass_normal()`
function.
## More Info
The issue is that NdotV is sometimes very slightly greater than 1 (maybe
FP rounding issues?), which caused `F_Schlick()` to return NANs in
`pow(1.0 - NdotV, 5.0)` (call stack looked like`pbr()` ->
`directional_light()` -> `Fd_Burley()` -> `F_Schlick()`)
# Objective
Since 10f5c92, parallax mapping was broken.
When #5703 was merged, the change from `in.uv` to `uv` in the pbr shader
was reverted. So the shader would use the wrong coordinate to sample the
various textures.
## Solution
We revert to using the correct uv.
# Objective
Followup bugfix for #5703. Without this we get the following error when
CAS (Contrast Adaptive Sharpening) is enabled:
```
2023-06-29T01:31:23.829331Z ERROR bevy_render::render_resource::pipeline_cache: failed to process shader:
error: unknown type: 'FullscreenVertexOutput'
┌─ crates/bevy_core_pipeline/src/contrast_adaptive_sharpening/robust_contrast_adaptive_sharpening.wgsl:63:17
│
63 │ fn fragment(in: FullscreenVertexOutput) -> @location(0) vec4<f32> {
│ ^^^^^^^^^^^^^^^^^^^^^^ unknown type
│
= unknown type: 'FullscreenVertexOutput'
```
@robtfm I wouldn't expect this to fail. I was under the impression the
`#import bevy_core_pipeline::fullscreen_vertex_shader` would pull
"everything" from that file into this one?
# Objective
- This fixes a crash when loading shaders, when running an Adreno GPU
and using WebGL mode.
- Fixes#8506
- Fixes#8047
## Solution
- The shader pbr_functions.wgsl, will fail in apply_fog function, trying
to access values that are null on Adreno chipsets using WebGL, these
devices are commonly found in android handheld devices.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
# Objective
**This implementation is based on
https://github.com/bevyengine/rfcs/pull/59.**
---
Resolves#4597
Full details and motivation can be found in the RFC, but here's a brief
summary.
`FromReflect` is a very powerful and important trait within the
reflection API. It allows Dynamic types (e.g., `DynamicList`, etc.) to
be formed into Real ones (e.g., `Vec<i32>`, etc.).
This mainly comes into play concerning deserialization, where the
reflection deserializers both return a `Box<dyn Reflect>` that almost
always contain one of these Dynamic representations of a Real type. To
convert this to our Real type, we need to use `FromReflect`.
It also sneaks up in other ways. For example, it's a required bound for
`T` in `Vec<T>` so that `Vec<T>` as a whole can be made `FromReflect`.
It's also required by all fields of an enum as it's used as part of the
`Reflect::apply` implementation.
So in other words, much like `GetTypeRegistration` and `Typed`, it is
very much a core reflection trait.
The problem is that it is not currently treated like a core trait and is
not automatically derived alongside `Reflect`. This makes using it a bit
cumbersome and easy to forget.
## Solution
Automatically derive `FromReflect` when deriving `Reflect`.
Users can then choose to opt-out if needed using the
`#[reflect(from_reflect = false)]` attribute.
```rust
#[derive(Reflect)]
struct Foo;
#[derive(Reflect)]
#[reflect(from_reflect = false)]
struct Bar;
fn test<T: FromReflect>(value: T) {}
test(Foo); // <-- OK
test(Bar); // <-- Panic! Bar does not implement trait `FromReflect`
```
#### `ReflectFromReflect`
This PR also automatically adds the `ReflectFromReflect` (introduced in
#6245) registration to the derived `GetTypeRegistration` impl— if the
type hasn't opted out of `FromReflect` of course.
<details>
<summary><h4>Improved Deserialization</h4></summary>
> **Warning**
> This section includes changes that have since been descoped from this
PR. They will likely be implemented again in a followup PR. I am mainly
leaving these details in for archival purposes, as well as for reference
when implementing this logic again.
And since we can do all the above, we might as well improve
deserialization. We can now choose to deserialize into a Dynamic type or
automatically convert it using `FromReflect` under the hood.
`[Un]TypedReflectDeserializer::new` will now perform the conversion and
return the `Box`'d Real type.
`[Un]TypedReflectDeserializer::new_dynamic` will work like what we have
now and simply return the `Box`'d Dynamic type.
```rust
// Returns the Real type
let reflect_deserializer = UntypedReflectDeserializer::new(®istry);
let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?;
let output: SomeStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?;
// Returns the Dynamic type
let reflect_deserializer = UntypedReflectDeserializer::new_dynamic(®istry);
let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?;
let output: DynamicStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?;
```
</details>
---
## Changelog
* `FromReflect` is now automatically derived within the `Reflect` derive
macro
* This includes auto-registering `ReflectFromReflect` in the derived
`GetTypeRegistration` impl
* ~~Renamed `TypedReflectDeserializer::new` and
`UntypedReflectDeserializer::new` to
`TypedReflectDeserializer::new_dynamic` and
`UntypedReflectDeserializer::new_dynamic`, respectively~~ **Descoped**
* ~~Changed `TypedReflectDeserializer::new` and
`UntypedReflectDeserializer::new` to automatically convert the
deserialized output using `FromReflect`~~ **Descoped**
## Migration Guide
* `FromReflect` is now automatically derived within the `Reflect` derive
macro. Items with both derives will need to remove the `FromReflect`
one.
```rust
// OLD
#[derive(Reflect, FromReflect)]
struct Foo;
// NEW
#[derive(Reflect)]
struct Foo;
```
If using a manual implementation of `FromReflect` and the `Reflect`
derive, users will need to opt-out of the automatic implementation.
```rust
// OLD
#[derive(Reflect)]
struct Foo;
impl FromReflect for Foo {/* ... */}
// NEW
#[derive(Reflect)]
#[reflect(from_reflect = false)]
struct Foo;
impl FromReflect for Foo {/* ... */}
```
<details>
<summary><h4>Removed Migrations</h4></summary>
> **Warning**
> This section includes changes that have since been descoped from this
PR. They will likely be implemented again in a followup PR. I am mainly
leaving these details in for archival purposes, as well as for reference
when implementing this logic again.
* The reflect deserializers now perform a `FromReflect` conversion
internally. The expected output of `TypedReflectDeserializer::new` and
`UntypedReflectDeserializer::new` is no longer a Dynamic (e.g.,
`DynamicList`), but its Real counterpart (e.g., `Vec<i32>`).
```rust
let reflect_deserializer =
UntypedReflectDeserializer::new_dynamic(®istry);
let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?;
// OLD
let output: DynamicStruct = reflect_deserializer.deserialize(&mut
deserializer)?.take()?;
// NEW
let output: SomeStruct = reflect_deserializer.deserialize(&mut
deserializer)?.take()?;
```
Alternatively, if this behavior isn't desired, use the
`TypedReflectDeserializer::new_dynamic` and
`UntypedReflectDeserializer::new_dynamic` methods instead:
```rust
// OLD
let reflect_deserializer = UntypedReflectDeserializer::new(®istry);
// NEW
let reflect_deserializer =
UntypedReflectDeserializer::new_dynamic(®istry);
```
</details>
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Title. This is necessary in order to update
[`bevy-trait-query`](https://crates.io/crates/bevy-trait-query) to Bevy
0.11.
---
## Changelog
Added the unsafe function `UnsafeWorldCell::storages`, which provides
unchecked access to the internal data stores of a `World`.
Added `GizmoConfig::render_layers`, which will ensure Gizmos are only
rendered on cameras that can see those `RenderLayers`.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Relax unnecessary type restrictions on `App.runner` function.
## Solution
Changed the type of `App.runner` from `Fn(App)` to `FnOnce(App)`.
# Objective
#5703 caused the normal prepass to fail as the prepass uses
`pbr_functions::apply_normal_mapping`, which uses
`mesh_view_bindings::view` to determine mip bias, which conflicts with
`prepass_bindings::view`.
## Solution
pass the mip bias to the `apply_normal_mapping` function explicitly.
# Objective
Currently `App::edit_schedule` takes in `impl FnMut(&mut Schedule)`, but
it calls the function only once. It is probably the intention has been
to have it take `FnOnce` instead.
## Solution
- Relax the parameter to take `FnOnce` instead of `FnMut`
# Objective
- There was a deadlock discovered in the implementation of
`bevy_reflect::utility::GenericTypeCell`, when called on a recursive
type, e.g. `Vec<Vec<VariableCurve>>`
## Solution
- Drop the lock before calling the initialisation function, and then
pick it up again afterwards.
## Additional Context
- [Discussed on
Discord](https://discord.com/channels/691052431525675048/1002362493634629796/1122706835284185108)
# Objective
operate on naga IR directly to improve handling of shader modules.
- give codespan reporting into imported modules
- allow glsl to be used from wgsl and vice-versa
the ultimate objective is to make it possible to
- provide user hooks for core shader functions (to modify light
behaviour within the standard pbr pipeline, for example)
- make automatic binding slot allocation possible
but ... since this is already big, adds some value and (i think) is at
feature parity with the existing code, i wanted to push this now.
## Solution
i made a crate called naga_oil (https://github.com/robtfm/naga_oil -
unpublished for now, could be part of bevy) which manages modules by
- building each module independantly to naga IR
- creating "header" files for each supported language, which are used to
build dependent modules/shaders
- make final shaders by combining the shader IR with the IR for imported
modules
then integrated this into bevy, replacing some of the existing shader
processing stuff. also reworked examples to reflect this.
## Migration Guide
shaders that don't use `#import` directives should work without changes.
the most notable user-facing difference is that imported
functions/variables/etc need to be qualified at point of use, and
there's no "leakage" of visible stuff into your shader scope from the
imports of your imports, so if you used things imported by your imports,
you now need to import them directly and qualify them.
the current strategy of including/'spreading' `mesh_vertex_output`
directly into a struct doesn't work any more, so these need to be
modified as per the examples (e.g. color_material.wgsl, or many others).
mesh data is assumed to be in bindgroup 2 by default, if mesh data is
bound into bindgroup 1 instead then the shader def `MESH_BINDGROUP_1`
needs to be added to the pipeline shader_defs.
# Objective
Currently when `UntypedReflectDeserializerVisitor` deserializes a
`Box<dyn Reflect>` it only considers the first entry of the map,
silently ignoring any additional entries. For example the following RON
data:
```json
{
"f32": 1.23,
"u32": 1,
}
```
is successfully deserialized as a `f32`, completly ignoring the `"u32":
1` part.
## Solution
`UntypedReflectDeserializerVisitor` was changed to check if any other
key could be deserialized, and in that case returns an error.
---
## Changelog
`UntypedReflectDeserializer` now errors on malformed inputs instead of
silently disgarding additional data.
## Migration Guide
If you were deserializing `Box<dyn Reflect>` values with multiple
entries (i.e. entries other than `"type": { /* fields */ }`) you should
remove them or deserialization will fail.
# Objective
`World::entity`, `World::entity_mut` and `Commands::entity` should be
marked with `track_caller` to display where (in user code) the call with
the invalid `Entity` was made. `Commands::entity` already has the
attibute, but it does nothing due to the call to `unwrap_or_else`.
## Solution
- Apply the `track_caller` attribute to the `World::entity_mut` and
`World::entity`.
- Remove the call to `unwrap_or_else` which makes the `track_caller`
attribute useless (because `unwrap_or_else` is not `track_caller`
itself). The avoid eager evaluation of the panicking branch it is never
inlined.
---------
Co-authored-by: Giacomo Stevanato <giaco.stevanato@gmail.com>
# Objective
`color_from_entity` uses the poor man's hash to get a fixed random color
for an entity.
While the poor man's hash is succinct, it has a tendency to clump. As a
result, bevy_gizmos has a tendency to re-use very similar colors for
different entities.
This is bad, we would want non-similar colors that take the whole range
of possible hues. This way, each bevy_gizmos aabb gizmo is easy to
identify.
## Solution
AHash is a nice and fast hash that just so happen to be available to
use, so we use it.
# Objective
In Bevy 10.1 and before, the only way to enable text wrapping was to set
a local `Val::Px` width constraint on the text node itself.
`Val::Percent` constraints and constraints on the text node's ancestors
did nothing.
#7779 fixed those problems. But perversely displaying unwrapped text is
really difficult now, and requires users to nest each `TextBundle` in a
`NodeBundle` and apply `min_width` and `max_width` constraints. Some
constructions may even need more than one layer of nesting. I've seen
several people already who have really struggled with this when porting
their projects to main in advance of 0.11.
## Solution
Add a `NoWrap` variant to the `BreakLineOn` enum.
If `NoWrap` is set, ignore any constraints on the width for the text and
call `TextPipeline::queue_text` with a width bound of `f32::INFINITY`.
---
## Changelog
* Added a `NoWrap` variant to the `BreakLineOn` enum.
* If `NoWrap` is set, any constraints on the width for the text are
ignored and `TextPipeline::queue_text` is called with a width bound of
`f32::INFINITY`.
* Changed the `size` field of `FixedMeasure` to `pub`. This shouldn't
have been private, it was always intended to have `pub` visibility.
* Added a `with_no_wrap` method to `TextBundle`.
## Migration Guide
`bevy_text::text::BreakLineOn` has a new variant `NoWrap` that disables
text wrapping for the `Text`.
Text wrapping can also be disabled using the `with_no_wrap` method of
`TextBundle`.
# Objective
- Fix this error to be able to run UI examples in WebGPU
```
1 error(s) generated while compiling the shader:
:31:18 error: integral user-defined vertex outputs must have a flat interpolation attribute
@location(3) mode: u32,
^^^^
:36:1 note: while analyzing entry point 'vertex'
fn vertex(
^^
```
It was introduce in #8793
## Solution
- Add `@interpolate(flat)` to the `mode` field
# Objective
In Bevy main, the unconstrained size of an `ImageBundle` or
`AtlasImageBundle` UI node is based solely on the size of its texture
and doesn't change with window scale factor or `UiScale`.
## Solution
* The size field of each `ImageMeasure` should be multiplied by the
current combined scale factor.
* Each `ImageMeasure` should be updated when the combined scale factor
is changed.
## Example:
```rust
use bevy::prelude::*;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.insert_resource(UiScale { scale: 1.5 })
.add_systems(Startup, setup)
.run();
}
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
commands.spawn(Camera2dBundle::default());
commands.spawn(NodeBundle {
style: Style {
// The size of the "bevy_logo_dark.png" texture is 520x130 pixels
width: Val::Px(520.),
height: Val::Px(130.),
..Default::default()
},
background_color: Color::RED.into(),
..Default::default()
});
commands
.spawn(ImageBundle {
style: Style {
position_type: PositionType::Absolute,
..Default::default()
},
image: UiImage::new(asset_server.load("bevy_logo_dark.png")),
..Default::default()
});
}
```
The red node is given a size with the same dimensions as the texture. So
we would expect the texture to fill the node exactly.
* Result with Bevy main branch bb59509d44:
<img width="400" alt="image-size-broke"
src="https://github.com/bevyengine/bevy/assets/27962798/19fd927d-ecc5-49a7-be05-c121a8df163f">
* Result with this PR (and Bevy 0.10.1):
<img width="400" alt="image-size-fixed"
src="https://github.com/bevyengine/bevy/assets/27962798/40b47820-5f2d-408f-88ef-9e2beb9c92a0">
---
## Changelog
`bevy_ui::widget::image`
* Update all `ImageMeasure`s on changes to the window scale factor or
`UiScale`.
* Multiply `ImageMeasure::size` by the window scale factor and
`UiScale`.
## Migration Guide
# Objective
- Change despawn descendants to return self (#8883).
## Solution
- Change function signature `despawn_descendants` under trait
`DespawnRecursiveExt`.
- Add single extra test `spawn_children_after_despawn_descendants` (May
be unnecessary)
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Partially address #5504. Fix#4278. Provide "whole entity" access in
queries. This can be useful when you don't know at compile time what
you're accessing (i.e. reflection via `ReflectComponent`).
## Solution
Implement `WorldQuery` for `EntityRef`.
- This provides read-only access to the entire entity, and supports
anything that `EntityRef` can normally do.
- It matches all archetypes and tables and will densely iterate when
possible.
- It marks all of the ArchetypeComponentIds of a matched archetype as
read.
- Adding it to a query will cause it to panic if used in conjunction
with any other mutable access.
- Expanded the docs on Query to advertise this feature.
- Added tests to ensure the panics were working as intended.
- Added `EntityRef` to the ECS prelude.
To make this safe, `EntityRef::world` was removed as it gave potential
`UnsafeCell`-like access to other parts of the `World` including aliased
mutable access to the components it would otherwise read safely.
## Performance
Not great beyond the additional parallelization opportunity over
exclusive systems. The `EntityRef` is fetched from `Entities` like any
other call to `World::entity`, which can be very random access heavy.
This could be simplified if `ArchetypeRow` is available in
`WorldQuery::fetch`'s arguments, but that's likely not something we
should optimize for.
## Future work
An equivalent API where it gives mutable access to all components on a
entity can be done with a scoped version of `EntityMut` where it does
not provide `&mut World` access nor allow for structural changes to the
entity is feasible as well. This could be done as a safe alternative to
exclusive system when structural mutation isn't required or the target
set of entities is scoped.
---
## Changelog
Added: `Access::has_any_write`
Added: `EntityRef` now implements `WorldQuery`. Allows read-only access
to the entire entity, incompatible with any other mutable access, can be
mixed with `With`/`Without` filters for more targeted use.
Added: `EntityRef` to `bevy::ecs::prelude`.
Removed: `EntityRef::world`
## Migration Guide
TODO
---------
Co-authored-by: Carter Weinberg <weinbergcarter@gmail.com>
Co-authored-by: Jakob Hellermann <jakob.hellermann@protonmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Closes#7323
- Reduce texture blurriness for TAA
## Solution
- Add a `MipBias` component and view uniform.
- Switch material `textureSample()` calls to `textureSampleBias()`.
- Add a `-1.0` bias to TAA.
---
## Changelog
- Added `MipBias` camera component, mostly for internal use.
---------
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Add morph targets to `bevy_pbr` (closes#5756) & load them from glTF
- Supersedes #3722
- Fixes#6814
[Morph targets][1] (also known as shape interpolation, shape keys, or
blend shapes) allow animating individual vertices with fine grained
controls. This is typically used for facial expressions. By specifying
multiple poses as vertex offset, and providing a set of weight of each
pose, it is possible to define surprisingly realistic transitions
between poses. Blending between multiple poses also allow composition.
Morph targets are part of the [gltf standard][2] and are a feature of
Unity and Unreal, and babylone.js, it is only natural to implement them
in bevy.
## Solution
This implementation of morph targets uses a 3d texture where each pixel
is a component of an animated attribute. Each layer is a different
target. We use a 2d texture for each target, because the number of
attribute×components×animated vertices is expected to always exceed the
maximum pixel row size limit of webGL2. It copies fairly closely the way
skinning is implemented on the CPU side, while on the GPU side, the
shader morph target implementation is a relatively trivial detail.
We add an optional `morph_texture` to the `Mesh` struct. The
`morph_texture` is built through a method that accepts an iterator over
attribute buffers.
The `MorphWeights` component, user-accessible, controls the blend of
poses used by mesh instances (so that multiple copy of the same mesh may
have different weights), all the weights are uploaded to a uniform
buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256
poses.
More literature:
* Old babylone.js implementation (vertex attribute-based):
https://www.eternalcoding.com/dev-log-1-morph-targets/
* Babylone.js implementation (similar to ours):
https://www.youtube.com/watch?v=LBPRmGgU0PE
* GPU gems 3:
https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits
* Development discord thread
https://discord.com/channels/691052431525675048/1083325980615114772https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258
## Acknowledgements
* Thanks to `storytold` for sponsoring the feature
* Thanks to `superdump` and `james7132` for guidance and help figuring
out stuff
## Future work
- Handling of less and more attributes (eg: animated uv, animated
arbitrary attributes)
- Dynamic pose allocation (so that zero-weighted poses aren't uploaded
to GPU for example, enables much more total poses)
- Better animation API, see #8357
----
## Changelog
- Add morph targets to bevy meshes
- Support up to 64 poses per mesh of individually up to 116508 vertices,
animation currently strictly limited to the position, normal and tangent
attributes.
- Load a morph target using `Mesh::set_morph_targets`
- Add `VisitMorphTargets` and `VisitMorphAttributes` traits to
`bevy_render`, this allows defining morph targets (a fairly complex and
nested data structure) through iterators (ie: single copy instead of
passing around buffers), see documentation of those traits for details
- Add `MorphWeights` component exported by `bevy_render`
- `MorphWeights` control mesh's morph target weights, blending between
various poses defined as morph targets.
- `MorphWeights` are directly inherited by direct children (single level
of hierarchy) of an entity. This allows controlling several mesh
primitives through a unique entity _as per GLTF spec_.
- Add `MorphTargetNames` component, naming each indices of loaded morph
targets.
- Load morph targets weights and buffers in `bevy_gltf`
- handle morph targets animations in `bevy_animation` (previously, it
was a `warn!` log)
- Add the `MorphStressTest.gltf` asset for morph targets testing, taken
from the glTF samples repo, CC0.
- Add morph target manipulation to `scene_viewer`
- Separate the animation code in `scene_viewer` from the rest of the
code, reducing `#[cfg(feature)]` noise
- Add the `morph_targets.rs` example to show off how to manipulate morph
targets, loading `MorpStressTest.gltf`
## Migration Guide
- (very specialized, unlikely to be touched by 3rd parties)
- `MeshPipeline` now has a single `mesh_layouts` field rather than
separate `mesh_layout` and `skinned_mesh_layout` fields. You should
handle all possible mesh bind group layouts in your implementation
- You should also handle properly the new `MORPH_TARGETS` shader def and
mesh pipeline key. A new function is exposed to make this easier:
`setup_moprh_and_skinning_defs`
- The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are
now accessed through the `get` method.
[1]: https://en.wikipedia.org/wiki/Morph_target_animation
[2]:
https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets
---------
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Fix#8908.
## Solution
Assign the vertex buffers twice with a single item offset instead of
setting the array_stride lower than the vertex layout's size for
linestrips.
# Objective
Improve the documentation relating to windows, and update the parts that
have not been updated since version 0.8.
Version 0.9 introduced `Window` as a component, before that
`WindowDescriptor` (which would become `Window` later) was used to store
information about how a window will be created. Since version 0.9, from
my understanding, this information will also be synchronised with the
current state of the window, and can be used to modify this state.
However, some of the documentation has not been updated to reflect that,
here is an example:
https://docs.rs/bevy/0.8.0/bevy/window/enum.WindowMode.html /
https://docs.rs/bevy/latest/bevy/window/enum.WindowMode.html (notice
that the verb "Creates" is still there).
This PR aims at improving the documentation relating to windows.
## Solution
- Change "will" for "should" when relevant, "should" implies that the
information should in both direction (from the window state to the
`Window` component and vice-versa) and can be used to get and set, will
implies it is only used to set a state.
- Remove references to "creation" or be more clear about it.
- Reference back the `Window` component for most of its sub-structs.
- Clarify what needs to be clarified
- A lot of other minor changes, including fixing the link to W3schools
in `bevy_winit`
## Warning
Please note that my knowledge about how winit and bevy_winit work is
limited and some of the informations I added in the doc may be
inaccurate. A person who knows better how it works should review some of
my claims, in particular:
- How fullscreen works:
https://github.com/bevyengine/bevy/pull/8858#discussion_r1232413155
- How WindowResolution / sizes work:
https://github.com/bevyengine/bevy/pull/8858#discussion_r1233010719
- What happens when `WindowPosition` is set to `Centered` or
`Automatic`. From my understanding of the code, it should always be set
back to `At`, but is it really the case? For example [when creating the
window](https://github.com/bevyengine/bevy/blob/main/crates/bevy_winit/src/winit_windows.rs#L74),
or when [a `WindowEvent::Moved` is
triggered](https://github.com/bevyengine/bevy/blob/main/crates/bevy_winit/src/lib.rs#L602)
or when [Centered/Automatic by the code after the window is
created](https://github.com/bevyengine/bevy/blob/main/crates/bevy_winit/src/system.rs#L243),
am I missing some cases and do the codes I linked do that in all of
them?
- Are there any field in the `Window` component that can't be used to
modify the state of the window, only at creation?
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Jerome Humbert <djeedai@gmail.com>
# Objective
- Fix the AsBindGroup texture attribute visibility flag parsing
- This appears to have been caused by a syn crate update which then the
visibility code got updated
- Also I noticed that by default the vertex and fragment flags were on,
so visibility(compute) would actually make the texture visible to
vertex, fragment and compute shaders, I fixed this too
## Solution
- Update flag parsing to use MetaList.parse_nested_meta function, which
loads the flags into a Vec then loop through those flags
- Change initial visibility flags to use VisibilityFlags::default()
rather than VisibilityFlags::vertex_fragment()
# Objective
`prepare_uinodes` creates a new `UiBatch` whenever the texture changes,
when most often it's just queuing untextured quads. Instead of switching
textures, we can reduce the number of batches generated significantly by
adding a condition to the fragment shader so that it only multiplies by
the `textureSample` value when drawing a textured quad.
# Solution
Add a `mode` field to `UiVertex`.
In `prepare_uinodes` set `mode` to 0 if the quad is textured or 1 if
untextured.
Add a condition to the fragment shader that only multiplies by the
`color` value from `textureSample` if `mode` is set to 1.
---
## Changelog
* Added a `mode` field to `UiVertex`, and added an extra `u32` vertex
attribute to the shader and vertex buffer layout.
* In `prepare_uinodes` mode is set to 0 for the vertices of textured
quads, and 1 if untextured.
* Added a condition to the fragment shader in `ui.wgsl` that only
multiplies by the `color` value from `textureSample` if the mode is
equal to 0.
# Objective
- Fixes#8645
## Solution
Cascaded shadow maps use a technique commonly called shadow pancaking to
enhance shadow map resolution by restricting the orthographic projection
used in creating the shadow maps to the frustum slice for the cascade.
The implication of this restriction is that shadow casters can be closer
than the near plane of the projection volume.
Prior to this PR, we address clamp the depth of the prepass vertex
output to ensure that these shadow casters do not get clipped, resulting
in shadow loss. However, a flaw / bug of the prior approach is that the
depth that gets written to the shadow map isn't quite correct - the
depth was previously derived by interpolated the clamped clip position,
resulting in depths that are further than they should be. This creates
artifacts that are particularly noticeable when a very 'long' object
intersects the near plane close to perpendicularly.
The fix in this PR is to propagate the unclamped depth to the prepass
fragment shader and use that depth value directly.
A complementary solution would be to use
[DEPTH_CLIP_CONTROL](https://docs.rs/wgpu/latest/wgpu/struct.Features.html#associatedconstant.DEPTH_CLIP_CONTROL)
to request `unclipped_depth`. However due to the relatively low support
of the feature on Vulkan (I believe it's ~38%), I went with this
solution for now to get the broadest fix out first.
---
## Changelog
- Fixed: Shadows from directional lights were sometimes incorrectly
omitted when the shadow caster was partially out of view.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Better consistency with `add_systems`.
- Deprecating `add_plugin` in favor of a more powerful `add_plugins`.
- Allow passing `Plugin` to `add_plugins`.
- Allow passing tuples to `add_plugins`.
## Solution
- `App::add_plugins` now takes an `impl Plugins` parameter.
- `App::add_plugin` is deprecated.
- `Plugins` is a new sealed trait that is only implemented for `Plugin`,
`PluginGroup` and tuples over `Plugins`.
- All examples, benchmarks and tests are changed to use `add_plugins`,
using tuples where appropriate.
---
## Changelog
### Changed
- `App::add_plugins` now accepts all types that implement `Plugins`,
which is implemented for:
- Types that implement `Plugin`.
- Types that implement `PluginGroup`.
- Tuples (up to 16 elements) over types that implement `Plugins`.
- Deprecated `App::add_plugin` in favor of `App::add_plugins`.
## Migration Guide
- Replace `app.add_plugin(plugin)` calls with `app.add_plugins(plugin)`.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Fix broken normals when the NormalPrepass is enabled
## Solution
- Don't use the normal prepass for the world_normal
- Only loadthe normal prepass
- when msaa is disabled
- for opaque or alpha mask meshes and only for use it for N not
world_normal
# Objective
- Use `AppTypeRegistry` on API defined in `bevy_ecs`
(https://github.com/bevyengine/bevy/pull/8895#discussion_r1234748418)
A lot of the API on `Reflect` depends on a registry. When it comes to
the ECS. We should use `AppTypeRegistry` in the general case.
This is however impossible in `bevy_ecs`, since `AppTypeRegistry` is
defined in `bevy_app`.
## Solution
- Move `AppTypeRegistry` resource definition from `bevy_app` to
`bevy_ecs`
- Still add the resource in the `App` plugin, since bevy_ecs itself
doesn't know of plugins
Note that `bevy_ecs` is a dependency of `bevy_app`, so nothing
revolutionary happens.
## Alternative
- Define the API as a trait in `bevy_app` over `bevy_ecs`. (though this
prevents us from using bevy_ecs internals)
- Do not rely on `AppTypeRegistry` for the API in question, requring
users to extract themselves the resource and pass it to the API methods.
---
## Changelog
- Moved `AppTypeRegistry` resource definition from `bevy_app` to
`bevy_ecs`
## Migration Guide
- If you were **not** using a `prelude::*` to import `AppTypeRegistry`,
you should update your imports:
```diff
- use bevy::app::AppTypeRegistry;
+ use bevy::ecs::reflect::AppTypeRegistry
```
# Objective
The "bevy_text" feature attributes for the `PrimaryWindow`, `Window` and
`TextureAtlas` imports in `bevy_ui::render` are used by non-text systems
(`extract_uinode_borders` and `extract_atlas_uinodes`) and need to be
removed.
For those who wish to be able to `#[reflect]` stuff using the `Uuid`
type
I'm very unfamiliar with the codebase, so please tell me if I'm missing
something
# Objective
- Providing a "noob-friendly" example since not many people are
proficient in 3D modeling / rendering concepts.
## Solution
- Adding more information to the example, with an explanation.
~~~~
_Thanks to Nocta on discord for helping out when I didn't understand the
subject well._
---------
Co-authored-by: François <mockersf@gmail.com>
# Objective
- `bevy_log` writes logs to `stdout` (with ANSI formatting), which gets
in the way with program output and complicates parsing.
- Closes#8869
## Solution
- Change `bevy_log` to write to `stderr` instead of `stdout`
---
## Changelog
Changed:
- Logs write to `stderr` rather than `stdout` on desktop targets
## Migration Guide
- Capture logs from `stderr` instead of from `stdout`
- Use `2> output.log` on the command line to save `stderr` to a file
# Objective
Add a get_unclamped method to
[Axis](https://docs.rs/bevy/0.10.1/bevy/input/struct.Axis.html) to allow
it to be used in cases where being able to get a precise relative
movement is important. For example, camera zoom with the mouse wheel.
This would make it possible for libraries like leafwing input manager to
leverage `Axis` for mouse motion and mouse wheel axis mapping. I tried
to use it my PR here
https://github.com/Leafwing-Studios/leafwing-input-manager/pull/346 but
will likely have to revert that and read the mouse wheel events for now
which is what prompted this PR.
## Solution
Instead of clamping the axis value when it is set, it now stores the raw
value and clamps it in the `get` method. This allows a simple
get_unclamped method that just returns the raw value.
## Changelog
- Added a get_unclamped method to Axis that can return values outside of
-1.0 to 1.0
# Objective
Fixes#6920
## Solution
From the issue discussion:
> From looking at the `AsBindGroup` derive macro implementation, the
fallback image's `TextureView` is used when the binding's
`Option<Handle<Image>>` is `None`. Because this relies on already having
a view that matches the desired binding dimensions, I think the solution
will require creating a separate `GpuImage` for each possible
`TextureViewDimension`.
---
## Changelog
Users can now rely on `FallbackImage` to work with a texture binding of
any dimension.
# Objective
- Document android code that is currently causing clippy warnings due to
not being documented
## Solution
- Document the two previously undocumented items
# Objective
`WorldQuery::Fetch` is a type used to optimize the implementation of
queries. These types are hidden and not intended to be outside of the
engine, so there is no need to provide type aliases to make it easier to
refer to them. If a user absolutely needs to refer to one of these
types, they can always just refer to the associated type directly.
## Solution
Deprecate these type aliases.
---
## Changelog
- Deprecated the type aliases `QueryFetch` and `ROQueryFetch`.
## Migration Guide
The type aliases `bevy_ecs::query::QueryFetch` and `ROQueryFetch` have
been deprecated. If you need to refer to a `WorldQuery` struct's fetch
type, refer to the associated type defined on `WorldQuery` directly:
```rust
// Before:
type MyFetch<'w> = QueryFetch<'w, MyQuery>;
type MyFetchReadOnly<'w> = ROQueryFetch<'w, MyQuery>;
// After:
type MyFetch<'w> = <MyQuery as WorldQuery>::Fetch;
type MyFetchReadOnly<'w> = <<MyQuery as WorldQuery>::ReadOnly as WorldQuery>::Fetch;
```
# Objective
This adds support for using texture atlas sprites in UI. From
discussions today in the ui-dev discord it seems this is a much wanted
feature.
This was previously attempted in #5070 by @ManevilleF however that was
blocked #5103. This work can be easily modified to support #5103 changes
after that merges.
## Solution
I created a new UI bundle that reuses the existing texture atlas
infrastructure. I create a new atlas image component to prevent it from
being drawn by the existing non-UI systems and to remove unused
parameters.
In extract I added new system to calculate the required values for the
texture atlas image, this extracts into the same resource as the
existing UI Image and Text components.
This should have minimal performance impact because if texture atlas is
not present then the exact same code path is followed. Also there should
be no unintended behavior changes because without the new components the
existing systems write the extract same resulting data.
I also added an example showing the sprite working and a system to
advance the animation on space bar presses.
Naming is hard and I would accept any feedback on the bundle name!
---
## Changelog
> Added TextureAtlasImageBundle
---------
Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
# Objective
Discovered that PointLight did not implement FromReflect. Adding
FromReflect where Reflect is used. I overreached and applied this rule
everywhere there was a Reflect without a FromReflect, except from where
the compiler wouldn't allow me.
Based from question: https://github.com/bevyengine/bevy/discussions/8774
## Solution
- Adding FromReflect where Reflect was already derived
## Notes
First PR I do in this ecosystem, so not sure if this is the usual
approach, that is, to touch many files at once.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
`ParsedPath` does not need to be mut to access a field of a `Reflect`.
Be that access mutable or not. Yet `element_mut` requires a mutable
borrow on `self`.
## Solution
- Make `element_mut` take a `&self` over a `&mut self`.
#8887 fixes this, but this is a major limitation in the API and I'd
rather see it merged before 0.11.
---
## Changelog
- `ParsedPath::element_mut` and `ParsedPath::reflect_element_mut` now
accept a non-mutable `ParsedPath` (only the accessed `Reflect` needs to
be mutable)
# Objective
- Implementing reflection for Cow<'static, [T]>
- Hopefully fixes#7429
## Solution
- Implementing Reflect, Typed, GetTypeRegistration, and FromReflect for
Cow<'static, [T]>
---
## Notes
I have not used bevy_reflection much yet, so I may not fully understand
all the use cases. This is also my first attempt at contributing, so I
would appreciate any feedback or recommendations for changes. I tried to
add cases for using Cow<'static, str> and Cow<'static, [u8]> to some of
the bevy_reflect tests, but I can't guarantee those tests are
comprehensive enough.
---------
Co-authored-by: MinerSebas <66798382+MinerSebas@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Repetitively fetching ReflectResource and ReflectComponent from the
TypeRegistry is costly.
We want to access the underlying `fn`s. to do so, we expose the
`ReflectResourceFns` and `ReflectComponentFns` stored in ReflectResource
and ReflectComponent.
---
## Changelog
- Add the `fn_pointers` methods to `ReflectResource` and
`ReflectComponent` returning the underlying `ReflectResourceFns` and
`ReflectComponentFns`
# Objective
Make the UI code more concise.
## Solution
Add two utility methods to make manipulating `UiRect` from code more
concise:
- `UiRect::px()` create a new `UiRect` like the `new()` function, but
with values in logical pixels directly.
- `UiRect::percent()` is similar, with values as percentages.
This saves a lot of typing and makes UI code more compact while
retaining readability.
---
## Changelog
### Added
Added two new constructors `UiRect::px()` and `UiRect::percent()` to
create a new `UiRect` from values directly specified in logical pixels
and percentages, respectively. The argument order is the same as
`UiRect::new()`, but avoids having to repeat `Val::Px` and
`Val::Percent`, respectively.
# Objective
- Fixes#7811
## Solution
- I added `Has<T>` (and `HasFetch<T>` ) and implemented `WorldQuery`,
`ReadonlyWorldQuery`, and `ArchetypeFilter` it
- I also added documentation with an example and a unit test
I believe I've done everything right but this is my first contribution
and I'm not an ECS expert so someone who is should probably check my
implementation. I based it on what `Or<With<T>,>`, would do. The only
difference is that `Has` does not update component access - adding `Has`
to a query should never affect whether or not it is disjoint with
another query *I think*.
---
## Changelog
## Added
- Added `Has<T>` WorldQuery to find out whether or not an entity has a
particular component.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: JoJoJet <21144246+JoJoJet@users.noreply.github.com>
# Objective
We can currently set `camera.target` to either an `Image` or `Window`.
For OpenXR & WebXR we need to be able to render to a `TextureView`.
This partially addresses #115 as with the addition we can create
internal and external xr crates.
## Solution
A `TextureView` item is added to the `RenderTarget` enum. It holds an id
which is looked up by a `ManualTextureViews` resource, much like how
`Assets<Image>` works.
I believe this approach was first used by @kcking in their [xr
fork](eb39afd51b/crates/bevy_render/src/camera/camera.rs (L322)).
The only change is that a `u32` is used to index the textures as
`FromReflect` does not support `uuid` and I don't know how to implement
that.
---
## Changelog
### Added
Render: Added `RenderTarget::TextureView` as a `camera.target` option,
enabling rendering directly to a `TextureView`.
## Migration Guide
References to the `RenderTarget` enum will need to handle the additional
field, ie in `match` statements.
---
## Comments
- The [wgpu
work](c039a74884)
done by @expenses allows us to create framebuffer texture views from
`wgpu v0.15, bevy 0.10`.
- I got the WebXR techniques from the [xr
fork](https://github.com/dekuraan/xr-bevy) by @dekuraan.
- I have tested this with a wip [external webxr
crate](018e22bb06/crates/bevy_webxr/src/bevy_utils/xr_render.rs (L50))
on an Oculus Quest 2.
![Screenshot 2023-03-11
230651](https://user-images.githubusercontent.com/25616826/224483696-c176c06f-a806-4abe-a494-b2e096ac96b7.png)
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Co-authored-by: Paul Hansen <mail@paul.rs>
# Objective
- Cleanup the `reflect.rs` file in `bevy_ecs`, it's very large and can
get difficult to navigate
## Solution
- Split the file into 3 modules, re-export the types in the
`reflect/mod.rs` to keep a perfectly identical API.
- Add **internal** architecture doc explaining how `ReflectComponent`
works. Note that this doc is internal only, since `component.rs` is not
exposed publicly.
### Tips to reviewers
To review this change properly, you need to compare it to the previous
version of `reflect.rs`. The diff from this PR does not help at all!
What you will need to do is compare `reflect.rs` individually with each
newly created file.
Here is how I did it:
- Adding my fork as remote `git remote add nicopap
https://github.com/nicopap/bevy.git`
- Checkout out the branch `git checkout nicopap/split_ecs_reflect`
- Checkout the old `reflect.rs` by running `git checkout HEAD~1 --
crates/bevy_ecs/src/reflect.rs`
- Compare the old with the new with `git diff --no-index
crates/bevy_ecs/src/reflect.rs crates/bevy_ecs/src/reflect/component.rs`
You could also concatenate everything into a single file and compare
against it:
- `cat
crates/bevy_ecs/src/reflect/{component,resource,map_entities,mod}.rs >
new_reflect.rs`
- `git diff --no-index crates/bevy_ecs/src/reflect.rs new_reflect.rs`
# Objective
Fix https://github.com/bevyengine/bevy/issues/1018 (Textures on the
`Plane` shape appear flipped).
This bug have been around for a very long time apparently, I tested it
was still there (see test code bellow) and sure enough, this image:
![test](https://github.com/bevyengine/bevy/assets/134181069/4cda7cf8-57d9-4677-91f5-02240d1e79b1)
... is flipped vertically when used as a texture on a plane (in main,
0.10.1 and 0.9):
![image](https://github.com/bevyengine/bevy/assets/134181069/0db4f52a-51af-4041-9c45-7bfe1f08b0cc)
I'm pretty confused because this bug is so easy to fix, it has been
around for so long, it is easy to encounter, and PRs touching this code
still didn't fix it: https://github.com/bevyengine/bevy/pull/7546 To the
point where I'm wondering if it's actually intended. If it is, please
explain why and this PR can be changed to "mention that in the doc".
## Solution
Fix the UV mapping on the Plane shape
Here is how it looks after the PR
![image](https://github.com/bevyengine/bevy/assets/134181069/e07ce641-3de8-4da3-a4f3-95a6054c86d7)
## Test code
```rust
use bevy::{
prelude::*,
};
fn main () {
App::new()
.add_plugins(DefaultPlugins)
.add_startup_system(setup)
.run();
}
fn setup(
mut commands: Commands,
assets: ResMut<AssetServer>,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(0., 3., 0.).looking_at(Vec3::ZERO, Vec3::NEG_Z),
..default()
});
let mesh = meshes.add(Mesh::from(shape::Plane::default()));
let texture_image = assets.load("test.png");
let material = materials.add(StandardMaterial {
base_color_texture: Some(texture_image),
..default()
});
commands.spawn(PbrBundle {
mesh,
material,
..default()
});
}
```
## Changelog
Fix textures on `Plane` shapes being flipped vertically.
## Migration Guide
Flip the textures you use on `Plane` shapes.
# Objective
Resolves#7558.
Systems that are known to never modify the world implement the trait
`ReadOnlySystem`. This is a perfect place to add a safe API for running
a system with a shared reference to a World.
---
## Changelog
- Added the trait method `ReadOnlySystem::run_readonly`, which allows a
system to be run using `&World`.
# Objective
- The function `QueryParIter::for_each_unchecked` is a footgun: the only
ways to use it soundly can be done in safe code using `for_each` or
`for_each_mut`. See [this discussion on
discord](https://discord.com/channels/691052431525675048/749335865876021248/1118642977275924583).
## Solution
- Make `for_each_unchecked` private.
---
## Changelog
- Removed `QueryParIter::for_each_unchecked`. All use-cases of this
method were either unsound or doable in safe code using `for_each` or
`for_each_mut`.
## Migration Guide
The method `QueryParIter::for_each_unchecked` has been removed -- use
`for_each` or `for_each_mut` instead. If your use case can not be
achieved using either of these, then your code was likely unsound.
If you have a use-case for `for_each_unchecked` that you believe is
sound, please [open an
issue](https://github.com/bevyengine/bevy/issues/new/choose).
# Objective
`ComponentIdFor` is a type that gives you access to a component's
`ComponentId` in a system. It is currently awkward to use, since it must
be wrapped in a `Local<>` to be used.
## Solution
Make `ComponentIdFor` a proper SystemParam.
---
## Changelog
- Refactored the type `ComponentIdFor` in order to simplify how it is
used.
## Migration Guide
The type `ComponentIdFor<T>` now implements `SystemParam` instead of
`FromWorld` -- this means it should be used as the parameter for a
system directly instead of being used in a `Local`.
```rust
// Before:
fn my_system(
component_id: Local<ComponentIdFor<MyComponent>>,
) {
let component_id = **component_id;
}
// After:
fn my_system(
component_id: ComponentIdFor<MyComponent>,
) {
let component_id = component_id.get();
}
```
# Objective
Follow-up to #6404 and #8292.
Mutating the world through a shared reference is surprising, and it
makes the meaning of `&World` unclear: sometimes it gives read-only
access to the entire world, and sometimes it gives interior mutable
access to only part of it.
This is an up-to-date version of #6972.
## Solution
Use `UnsafeWorldCell` for all interior mutability. Now, `&World`
*always* gives you read-only access to the entire world.
---
## Changelog
TODO - do we still care about changelogs?
## Migration Guide
Mutating any world data using `&World` is now considered unsound -- the
type `UnsafeWorldCell` must be used to achieve interior mutability. The
following methods now accept `UnsafeWorldCell` instead of `&World`:
- `QueryState`: `get_unchecked`, `iter_unchecked`,
`iter_combinations_unchecked`, `for_each_unchecked`,
`get_single_unchecked`, `get_single_unchecked_manual`.
- `SystemState`: `get_unchecked_manual`
```rust
let mut world = World::new();
let mut query = world.query::<&mut T>();
// Before:
let t1 = query.get_unchecked(&world, entity_1);
let t2 = query.get_unchecked(&world, entity_2);
// After:
let world_cell = world.as_unsafe_world_cell();
let t1 = query.get_unchecked(world_cell, entity_1);
let t2 = query.get_unchecked(world_cell, entity_2);
```
The methods `QueryState::validate_world` and
`SystemState::matches_world` now take a `WorldId` instead of `&World`:
```rust
// Before:
query_state.validate_world(&world);
// After:
query_state.validate_world(world.id());
```
The methods `QueryState::update_archetypes` and
`SystemState::update_archetypes` now take `UnsafeWorldCell` instead of
`&World`:
```rust
// Before:
query_state.update_archetypes(&world);
// After:
query_state.update_archetypes(world.as_unsafe_world_cell_readonly());
```
# Objective
Implement borders for UI nodes.
Relevant discussion: #7785
Related: #5924, #3991
<img width="283" alt="borders"
src="https://user-images.githubusercontent.com/27962798/220968899-7661d5ec-6f5b-4b0f-af29-bf9af02259b5.PNG">
## Solution
Add an extraction function to draw the borders.
---
Can only do one colour rectangular borders due to the limitations of the
Bevy UI renderer.
Maybe it can be combined with #3991 eventually to add curved border
support.
## Changelog
* Added a component `BorderColor`.
* Added the `extract_uinode_borders` system to the UI Render App.
* Added the UI example `borders`
---------
Co-authored-by: Nico Burns <nico@nicoburns.com>
# Objective
The method `UnsafeWorldCell::read_change_tick` was renamed in #8588, but
I forgot to update a usage of this method in a doctest.
## Solution
Update the method call.