# Objective
The documentation of the bevy_render crate is still pretty incomplete.
This PR follows up on #6885 and improves the documentation of the `render_phase` module.
This module contains one of our most important rendering abstractions and the current documentation is pretty confusing. This PR tries to clarify what all of these pieces are for and how they work together to form bevy`s modular rendering logic.
## Solution
### Code Reformating
- I have moved the `rangefinder` into the `render_phase` module since it is only used there.
- I have moved the `PhaseItem` (and the `BatchedPhaseItem`) from `render_phase::draw` over to `render_phase::mod`. This does not change the public-facing API since they are reexported anyway, but this change makes the relation between `RenderPhase` and `PhaseItem` clear and easier to discover.
### Documentation
- revised all documentation in the `render_phase` module
- added a module-level explanation of how `RenderPhase`s, `RenderPass`es, `PhaseItem`s, `Draw` functions, and `RenderCommands` relate to each other and how they are used
---
## Changelog
- The `rangefinder` module has been moved into the `render_phase` module.
## Migration Guide
- The `rangefinder` module has been moved into the `render_phase` module.
```rust
//old
use bevy::render::rangefinder::*;
// new
use bevy::render::render_phase::rangefinder::*;
```
# Objective
- There is a warning when building in release:
```
warning: unused import: `bevy_ecs::system::Local`
--> crates/bevy_render/src/extract_resource.rs:5:5
|
5 | use bevy_ecs::system::Local;
| ^^^^^^^^^^^^^^^^^^^^^^^
|
= note: `#[warn(unused_imports)]` on by default
```
- It's used 59751d6e33/crates/bevy_render/src/extract_resource.rs (L47)
- Fix it
## Solution
- Gate the import
- repeat of #5320
As mentioned in https://github.com/bevyengine/bevy/pull/6530. It allows to not create a new constant and simply having it to show up in the documentation when someone is looking for "transparent" (case insensitive) in rustdoc search.
cc @alice-i-cecile
# Objective
- Fixes#7066
## Solution
- Split the ChangeDetection trait into ChangeDetection and ChangeDetectionMut
- Added Ref as equivalent to &T with change detection
---
## Changelog
- Support for Ref which allow inspecting change detection flags in an immutable way
## Migration Guide
- While bevy prelude includes both ChangeDetection and ChangeDetectionMut any code explicitly referencing ChangeDetection might need to be updated to ChangeDetectionMut or both. Specifically any reading logic requires ChangeDetection while writes requires ChangeDetectionMut.
use bevy_ecs::change_detection::DetectChanges -> use bevy_ecs::change_detection::{DetectChanges, DetectChangesMut}
- Previously Res had methods to access change detection `is_changed` and `is_added` those methods have been moved to the `DetectChanges` trait. If you are including bevy prelude you will have access to these types otherwise you will need to `use bevy_ecs::change_detection::DetectChanges` to continue using them.
# Objective
Fixes#3310. Fixes#6282. Fixes#6278. Fixes#3666.
## Solution
Split out `!Send` resources into `NonSendResources`. Add a `origin_thread_id` to all `!Send` Resources, check it on dropping `NonSendResourceData`, if there's a mismatch, panic. Moved all of the checks that `MainThreadValidator` would do into `NonSendResources` instead.
All `!Send` resources now individually track which thread they were inserted from. This is validated against for every access, mutation, and drop that could be done against the value.
A regression test using an altered version of the example from #3310 has been added.
This is a stopgap solution for the current status quo. A full solution may involve fully removing `!Send` resources/components from `World`, which will likely require a much more thorough design on how to handle the existing in-engine and ecosystem use cases.
This PR also introduces another breaking change:
```rust
use bevy_ecs::prelude::*;
#[derive(Resource)]
struct Resource(u32);
fn main() {
let mut world = World::new();
world.insert_resource(Resource(1));
world.insert_non_send_resource(Resource(2));
let res = world.get_resource_mut::<Resource>().unwrap();
assert_eq!(res.0, 2);
}
```
This code will run correctly on 0.9.1 but not with this PR, since NonSend resources and normal resources have become actual distinct concepts storage wise.
## Changelog
Changed: Fix soundness bug with `World: Send`. Dropping a `World` that contains a `!Send` resource on the wrong thread will now panic.
## Migration Guide
Normal resources and `NonSend` resources no longer share the same backing storage. If `R: Resource`, then `NonSend<R>` and `Res<R>` will return different instances from each other. If you are using both `Res<T>` and `NonSend<T>` (or their mutable variants), to fetch the same resources, it's strongly advised to use `Res<T>`.
# Objective
Speed up the render phase for rendering.
## Solution
- Follow up #6988 and make the internals of atomic IDs `NonZeroU32`. This niches the `Option`s of the IDs in draw state, which reduces the size and branching behavior when evaluating for equality.
- Require `&RenderDevice` to get the device's `Limits` when initializing a `TrackedRenderPass` to preallocate the bind groups and vertex buffer state in `DrawState`, this removes the branch on needing to resize those `Vec`s.
## Performance
This produces a similar speed up akin to that of #6885. This shows an approximate 6% speed up in `main_opaque_pass_3d` on `many_foxes` (408.79 us -> 388us). This should be orthogonal to the gains seen there.
![image](https://user-images.githubusercontent.com/3137680/209906239-e430f026-63c2-4b95-957e-a2045b810d79.png)
---
## Changelog
Added: `RenderContext::begin_tracked_render_pass`.
Changed: `TrackedRenderPass` now requires a `&RenderDevice` on construction.
Removed: `bevy_render::render_phase::DrawState`. It was not usable in any form outside of `bevy_render`.
## Migration Guide
TODO
# Objective
- This pulls out some of the changes to Plugin setup and sub apps from #6503 to make that PR easier to review.
- Separate the extract stage from running the sub app's schedule to allow for them to be run on separate threads in the future
- Fixes#6990
## Solution
- add a run method to `SubApp` that runs the schedule
- change the name of `sub_app_runner` to extract to make it clear that this function is only for extracting data between the main app and the sub app
- remove the extract stage from the sub app schedule so it can be run separately. This is done by adding a `setup` method to the `Plugin` trait that runs after all plugin build methods run. This is required to allow the extract stage to be removed from the schedule after all the plugins have added their systems to the stage. We will also need the setup method for pipelined rendering to setup the render thread. See e3267965e1/crates/bevy_render/src/pipelined_rendering.rs (L57-L98)
## Changelog
- Separate SubApp Extract stage from running the sub app schedule.
## Migration Guide
### SubApp `runner` has conceptually been changed to an `extract` function.
The `runner` no longer is in charge of running the sub app schedule. It's only concern is now moving data between the main world and the sub app. The `sub_app.app.schedule` is now run for you after the provided function is called.
```rust
// before
fn main() {
let sub_app = App::empty();
sub_app.add_stage(MyStage, SystemStage::parallel());
App::new().add_sub_app(MySubApp, sub_app, move |main_world, sub_app| {
extract(app_world, render_app);
render_app.app.schedule.run();
});
}
// after
fn main() {
let sub_app = App::empty();
sub_app.add_stage(MyStage, SystemStage::parallel());
App::new().add_sub_app(MySubApp, sub_app, move |main_world, sub_app| {
extract(app_world, render_app);
// schedule is automatically called for you after extract is run
});
}
```
# Objective
- Storage buffers are useful and not currently supported by the `AsBindGroup` derive which means you need to expand the macro if you need a storage buffer
## Solution
- Add a new `#[storage]` attribute to the derive `AsBindGroup` macro.
- Support and optional `read_only` parameter that defaults to false when not present.
- Support visibility parameters like the texture and sampler attributes.
---
## Changelog
- Add a new `#[storage(index)]` attribute to the derive `AsBindGroup` macro.
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
# Objective
- Avoid slower than necessary first frame after spawning many entities due to them not having `Aabb`s and so being marked visible
- Avoids unnecessarily large system and VRAM allocations as a consequence
## Solution
- I noticed when debugging the `many_cubes` stress test in Xcode that the `MeshUniform` binding was much larger than it needed to be. I realised that this was because initially, all mesh entities are marked as being visible because they don't have `Aabb`s because `calculate_bounds` is being run in `PostUpdate` and there are no system commands applications before executing the visibility check systems that need the `Aabb`s. The solution then is to run the `calculate_bounds` system just before the previous system commands are applied which is at the end of the `Update` stage.
Spiritual successor to #5205.
Actual successor to #6865.
# Objective
Currently, system params are defined using three traits: `SystemParam`, `ReadOnlySystemParam`, `SystemParamState`. The behavior for each param is specified by the `SystemParamState` trait, while `SystemParam` simply defers to the state.
Splitting the traits in this way makes it easier to implement within macros, but it increases the cognitive load. Worst of all, this approach requires each `MySystemParam` to have a public `MySystemParamState` type associated with it.
## Solution
* Merge the trait `SystemParamState` into `SystemParam`.
* Remove all trivial `SystemParam` state types.
* `OptionNonSendMutState<T>`: you will not be missed.
---
- [x] Fix/resolve the remaining test failure.
## Changelog
* Removed the trait `SystemParamState`, merging its functionality into `SystemParam`.
## Migration Guide
**Note**: this should replace the migration guide for #6865.
This is relative to Bevy 0.9, not main.
The traits `SystemParamState` and `SystemParamFetch` have been removed, and their functionality has been transferred to `SystemParam`.
```rust
// Before (0.9)
impl SystemParam for MyParam<'_, '_> {
type State = MyParamState;
}
unsafe impl SystemParamState for MyParamState {
fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self { ... }
}
unsafe impl<'w, 's> SystemParamFetch<'w, 's> for MyParamState {
type Item = MyParam<'w, 's>;
fn get_param(&mut self, ...) -> Self::Item;
}
unsafe impl ReadOnlySystemParamFetch for MyParamState { }
// After (0.10)
unsafe impl SystemParam for MyParam<'_, '_> {
type State = MyParamState;
type Item<'w, 's> = MyParam<'w, 's>;
fn init_state(world: &mut World, system_meta: &mut SystemMeta) -> Self::State { ... }
fn get_param<'w, 's>(state: &mut Self::State, ...) -> Self::Item<'w, 's>;
}
unsafe impl ReadOnlySystemParam for MyParam<'_, '_> { }
```
The trait `ReadOnlySystemParamFetch` has been replaced with `ReadOnlySystemParam`.
```rust
// Before
unsafe impl ReadOnlySystemParamFetch for MyParamState {}
// After
unsafe impl ReadOnlySystemParam for MyParam<'_, '_> {}
```
# Objective
- When using `Color::hex` for the first time, I was confused by the fact that I can't specify colors using #, which is much more familiar.
- In the code editor (if there is support) there is a preview of the color, which is very convenient.
![Снимок экрана от 2022-12-30 02-54-00](https://user-images.githubusercontent.com/69102503/209990973-f6fc3bc6-08f6-4e51-a9a9-1de8a675c82d.png)
## Solution
- Allow you to enter colors like `#ff33f2` and use the `.strip_prefix` method to delete the `#` character.
# Objective
Speed up the render phase of rendering. Simplify the trait structure for render commands.
## Solution
- Merge `EntityPhaseItem` into `PhaseItem` (`EntityPhaseItem::entity` -> `PhaseItem::entity`)
- Merge `EntityRenderCommand` into `RenderCommand`.
- Add two associated types to `RenderCommand`: `RenderCommand::ViewWorldQuery` and `RenderCommand::WorldQuery`.
- Use the new associated types to construct two `QueryStates`s for `RenderCommandState`.
- Hoist any `SQuery<T>` fetches in `EntityRenderCommand`s into the aformentioned two queries. Batch fetch them all at once.
## Performance
`main_opaque_pass_3d` is slightly faster on `many_foxes` (427.52us -> 401.15us)
![image](https://user-images.githubusercontent.com/3137680/206359804-9928b20a-7d92-41f8-bf7d-6e8c5cc802f0.png)
The shadow pass node is also slightly faster (344.52 -> 338.24us)
![image](https://user-images.githubusercontent.com/3137680/206359977-1212198d-f933-49a0-80f1-62ff88eb5727.png)
## Future Work
- Can we hoist the view level queries out of the core loop?
---
## Changelog
Added: `PhaseItem::entity`
Added: `RenderCommand::ViewWorldQuery` associated type.
Added: `RenderCommand::ItemorldQuery` associated type.
Added: `Draw<T>::prepare` optional trait function.
Removed: `EntityPhaseItem` trait
## Migration Guide
TODO
# Objective
- The recently merged PR #7013 does not allow multiple `RenderPhase`s to share the same `RenderPass`.
- Due to the introduced overhead we want to minimize the number of `RenderPass`es recorded during each frame.
## Solution
- Take a constructed `TrackedRenderPass` instead of a `RenderPassDiscriptor` as a parameter to the `RenderPhase::render` method.
---
## Changelog
To enable multiple `RenderPhases` to share the same `TrackedRenderPass`,
the `RenderPhase::render` signature has changed.
```rust
pub fn render<'w>(
&self,
render_pass: &mut TrackedRenderPass<'w>,
world: &'w World,
view: Entity)
```
Co-authored-by: Kurt Kühnert <51823519+kurtkuehnert@users.noreply.github.com>
# Objective
`TEXTURE_ADAPTER_SPECIFIC_FORMAT_FEATURES` was already included in `adapter.features()` on non-wasm target, and since it is the default value for `WgpuSettings.features`, the subsequent code will also combine into this feature:
b6066c30b6/crates/bevy_render/src/renderer/mod.rs (L155-L156)
# Objective
All `RenderPhases` follow the same render procedure.
The same code is duplicated multiple times across the codebase.
## Solution
I simply extracted this code into a method on the `RenderPhase`.
This avoids code duplication and makes setting up new `RenderPhases` easier.
---
## Changelog
### Changed
You can now set up the rendering code of a `RenderPhase` directly using the `RenderPhase::render` method, instead of implementing it manually in your render graph node.
# Objective
The documentation for camera priority is very confusing at the moment, it requires a bit of "double negative" kind of thinking.
# Solution
Flipping the wording on the documentation to reflect more common usecases like having an overlay camera and also renaming it to "order", since priority implies that it will override the other camera rather than have both run.
Consolidation of all the feedback about #6271 as well as the addition of an "unconditionally visible" mode.
# Objective
The current implementation of the `Visibility` struct simply wraps a boolean.. which seems like an odd pattern when rust has such nice enums that allow for more expression using pattern-matching.
Additionally as it stands Bevy only has two settings for visibility of an entity:
- "unconditionally hidden" `Visibility { is_visible: false }`,
- "inherit visibility from parent" `Visibility { is_visible: true }`
where a root level entity set to "inherit" is visible.
Note that given the behaviour, the current naming of the inner field is a little deceptive or unclear.
Using an enum for `Visibility` opens the door for adding an extra behaviour mode. This PR adds a new "unconditionally visible" mode, which causes an entity to be visible even if its Parent entity is hidden. There should not really be any performance cost to the addition of this new mode.
--
The recently added `toggle` method is removed in this PR, as its semantics could be confusing with 3 variants.
## Solution
Change the Visibility component into
```rust
enum Visibility {
Hidden, // unconditionally hidden
Visible, // unconditionally visible
Inherited, // inherit visibility from parent
}
```
---
## Changelog
### Changed
`Visibility` is now an enum
## Migration Guide
- evaluation of the `visibility.is_visible` field should now check for `visibility == Visibility::Inherited`.
- setting the `visibility.is_visible` field should now directly set the value: `*visibility = Visibility::Inherited`.
- usage of `Visibility::VISIBLE` or `Visibility::INVISIBLE` should now use `Visibility::Inherited` or `Visibility::Hidden` respectively.
- `ComputedVisibility::INVISIBLE` and `SpatialBundle::VISIBLE_IDENTITY` have been renamed to `ComputedVisibility::HIDDEN` and `SpatialBundle::INHERITED_IDENTITY` respectively.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- alternative to #2895
- as mentioned in #2535 the uuid based ids in the render module should be replaced with atomic-counted ones
## Solution
- instead of generating a random UUID for each render resource, this implementation increases an atomic counter
- this might be replaced by the ids of wgpu if they expose them directly in the future
- I have not benchmarked this solution yet, but this should be slightly faster in theory.
- Bevymark does not seem to be affected much by this change, which is to be expected.
- Nothing of our API has changed, other than that the IDs have lost their IMO rather insignificant documentation.
- Maybe the documentation could be added back into the macro, but this would complicate the code.
# Objective
The `WgpuSettings` resource is only used during plugin build. Move it into the `RenderPlugin` struct.
Changing these settings requires re-initializing the render context, which is currently not supported.
If it is supported in the future it should probably be more explicit than changing a field on a resource, maybe something similar to the `CreateWindow` event.
## Migration Guide
```rust
// Before (0.9)
App::new()
.insert_resource(WgpuSettings { .. })
.add_plugins(DefaultPlugins)
// After (0.10)
App::new()
.add_plugins(DefaultPlugins.set(RenderPlugin {
wgpu_settings: WgpuSettings { .. },
}))
```
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
Following #4402, extract systems run on the render world instead of the main world, and allow retained state operations on it's resources. We're currently extracting to `ExtractedJoints` and then copying it twice during Prepare. Once into `SkinnedMeshJoints` and again into the actual GPU buffer.
This makes #4902 obsolete.
## Solution
Cut out the middle copy and directly extract joints into `SkinnedMeshJoints` and remove `ExtractedJoints` entirely.
This also removes the per-frame allocation that is being made to send `ExtractedJoints` into the render world.
## Performance
On my local machine, this halves the time for `prepare_skinned _meshes` on `many_foxes` (195.75us -> 93.93us on average).
![image](https://user-images.githubusercontent.com/3137680/205427455-ab91a8a3-a6b0-4f0a-bd48-e54482c563b2.png)
---
## Changelog
Added: `BufferVec::truncate`
Added: `BufferVec::extend`
Changed: `SkinnedMeshJoints::build` now takes a `&mut BufferVec` instead of a `&mut Vec` as a parameter.
Removed: `ExtractedJoints`.
## Migration Guide
`ExtractedJoints` has been removed. Read the bound bones from `SkinnedMeshJoints` instead.
# Objective
`AsBindGroup` can't be used as a trait object because of the constraint `Sized` and because of the associated function.
This is a problem for [`bevy_atmosphere`](https://github.com/JonahPlusPlus/bevy_atmosphere) because it needs to use a trait that depends on `AsBindGroup` as a trait object, for switching out different shaders at runtime. The current solution it employs is reimplementing the trait and derive macro into that trait, instead of constraining to `AsBindGroup`.
## Solution
Remove the `Sized` constraint from `AsBindGroup` and add the constraint `where Self: Sized` to the associated function `bind_group_layout`. Also change `PreparedBindGroup<T: AsBindGroup>` to `PreparedBindGroup<T>` and use it as `PreparedBindGroup<Self::Data>` instead of `PreparedBindGroup<Self>`.
This weakens the constraints, but increases the flexibility of `AsBindGroup`.
I'm not entirely sure why the `Sized` constraint was there, because it worked fine without it (maybe @cart wasn't aware of use cases for `AsBindGroup` as a trait object or this was just leftover from legacy code?).
---
## Changelog
- `AsBindGroup` can be used as a trait object.
# Objective
[Rust 1.66](https://blog.rust-lang.org/inside-rust/2022/12/12/1.66.0-prerelease.html) is coming in a few days, and bevy doesn't build with it.
Fix that.
## Solution
Replace output from a trybuild test, and fix a few new instances of `needless_borrow` and `unnecessary_cast` that are now caught.
## Note
Due to the trybuild test, this can't be merged until 1.66 is released.
# Objective
The following code:
```rs
use bevy::prelude::Image;
use image::{ DynamicImage, GenericImage, Rgba };
fn main() {
let mut dynamic_image = DynamicImage::new_rgb32f(1, 1);
dynamic_image.put_pixel(0, 0, Rgba([1, 1, 1, 1]));
let image = Image::from_dynamic(dynamic_image, false); // Panic!
println!("{image:?}");
}
```
Can cause an assertion failed:
```
thread 'main' panicked at 'assertion failed: `(left == right)`
left: `16`,
right: `14`: Pixel data, size and format have to match', .../bevy_render-0.9.1/src/texture/image.rs:209:9
stack backtrace:
...
4: core::panicking::assert_failed<usize,usize>
at /rustc/897e37553bba8b42751c67658967889d11ecd120/library/core/src/panicking.rs:181
5: bevy_render::texture::image::Image::new
at .../bevy_render-0.9.1/src/texture/image.rs:209
6: bevy_render::texture::image::Image::from_dynamic
at .../bevy_render-0.9.1/src/texture/image_texture_conversion.rs:159
7: bevy_test::main
at ./src/main.rs:8
...
```
It seems to be cause by a copypasta in `crates/bevy_render/src/texture/image_texture_conversion.rs`. Let's fix it.
## Solution
```diff
// DynamicImage::ImageRgb32F(image) => {
- let a = u16::max_value();
+ let a = 1f32;
```
This will fix the conversion.
---
## Changelog
- Fixed the alpha channel of the `image::DynamicImage::ImageRgb32F` to `bevy_render::texture::Image` conversion in `bevy_render::texture::Image::from_dynamic()`.
# Objective
- https://github.com/bevyengine/bevy/pull/5364 Added a few features to the AsBindGroup derive, but if you don't know they exist they aren't documented anywhere.
## Solution
- Document the new arguments in the doc block for the derive.
# Objective
```rust
// makes clippy complain about 'taking a mutable reference to a `const` item'
let color = *Color::RED.set_a(0.5);
// Now you can do
let color = Color::RED.with_a(0.5);
```
## Changelog
Added `with_r`, `with_g`, `with_b`, and `with_a` to `Color`.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
* Implementing a custom `SystemParam` by hand requires implementing three traits -- four if it is read-only.
* The trait `SystemParamFetch<'w, 's>` is a workaround from before we had generic associated types, and is no longer necessary.
## Solution
* Combine the trait `SystemParamFetch` with `SystemParamState`.
* I decided to remove the `Fetch` name and keep the `State` name, since the former was consistently conflated with the latter.
* Replace the trait `ReadOnlySystemParamFetch` with `ReadOnlySystemParam`, which simplifies trait bounds in generic code.
---
## Changelog
- Removed the trait `SystemParamFetch`, moving its functionality to `SystemParamState`.
- Replaced the trait `ReadOnlySystemParamFetch` with `ReadOnlySystemParam`.
## Migration Guide
The trait `SystemParamFetch` has been removed, and its functionality has been transferred to `SystemParamState`.
```rust
// Before
impl SystemParamState for MyParamState {
fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self { ... }
}
impl<'w, 's> SystemParamFetch<'w, 's> for MyParamState {
type Item = MyParam<'w, 's>;
fn get_param(...) -> Self::Item;
}
// After
impl SystemParamState for MyParamState {
type Item<'w, 's> = MyParam<'w, 's>; // Generic associated types!
fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self { ... }
fn get_param<'w, 's>(...) -> Self::Item<'w, 's>;
}
```
The trait `ReadOnlySystemParamFetch` has been replaced with `ReadOnlySystemParam`.
```rust
// Before
unsafe impl ReadOnlySystemParamFetch for MyParamState {}
// After
unsafe impl<'w, 's> ReadOnlySystemParam for MyParam<'w, 's> {}
```
# Objective
- Get rid of giant match statement to get PixelInfo.
- This will allow for supporting any texture that is uncompressed, instead of people needing to PR in any textures that are supported in wgpu, but not bevy.
## Solution
- More conservative alternative to https://github.com/bevyengine/bevy/pull/6788, where we don't try to make some of the calculations correct for compressed types.
- Delete `PixelInfo` and get the pixel_size directly from wgpu. Data from wgpu is here: https://docs.rs/wgpu-types/0.14.0/src/wgpu_types/lib.rs.html#2359
- Panic if the texture is a compressed type. An integer byte size of a pixel is no longer a valid concept when talking about compressed textures.
- All internal usages use `pixel_size` and not `pixel_info` and are on uncompressed formats. Most of these usages are on either explicit texture formats or slightly indirectly through `TextureFormat::bevy_default()`. The other uses are in `TextureAtlas` and have other calculations that assumes the texture is uncompressed.
## Changelog
- remove `PixelInfo` and get `pixel_size` from wgpu
## Migration Guide
`PixelInfo` has been removed. `PixelInfo::components` is equivalent to `texture_format.describe().components`. `PixelInfo::type_size` can be gotten from `texture_format.describe().block_size/ texture_format.describe().components`. But note this can yield incorrect results for some texture types like Rg11b10Float.
# Objective
Adds a cylinder shape. Fixes#2282.
## Solution
- I added a custom cylinder shape, taken from [here](https://github.com/rparrett/typey_birb/blob/main/src/cylinder.rs) with permission from @rparrett.
- I also added the cylinder shape to the `3d_shapes` example scene.
---
## Changelog
- Added cylinder shape
Co-Authored-By: Rob Parrett <robparrett@gmail.com>
Co-Authored-By: davidhof <7483215+davidhof@users.noreply.github.com>
# Objective
- Fixes#6841
- In some case, the number of maximum storage buffers is `u32::MAX` which doesn't fit in a `i32`
## Solution
- Add an option to have a `u32` in a `ShaderDefVal`
# Objective
`prepare_asset` for Image has an alternate path for texture creation that is used when the image is not compressed and does not contain mipmaps. This additional code path is unnecessary as `render_device.create_texture_with_data()` will handle both cases correctly.
## Solution
Use `render_device.create_texture_with_data()` in all cases.
Tested successfully with the following examples:
- load_gltf
- render_to_texture
- texture
- 3d_shapes
- sprite
- sprite_sheet
- array_texture
- shader_material_screenspace_texture
- skybox (though this already would use the `create_texture_with_data()` branch anyway)
# Objective
The soundness of the ECS `World` partially relies on the correctness of the state of `Entities` stored within it. We're currently allowing users to (unsafely) mutate it, as well as readily construct it without using a `World`. While this is not strictly unsound so long as users (including `bevy_render`) safely use the APIs, it's a fairly easy path to unsoundness without much of a guard rail.
Addresses #3362 for `bevy_ecs::entity`. Incorporates the changes from #3985.
## Solution
Remove `Entities`'s `Default` implementation and force access to the type to only be through a properly constructed `World`.
Additional cleanup for other parts of `bevy_ecs::entity`:
- `Entity::index` and `Entity::generation` are no longer `pub(crate)`, opting to force the rest of bevy_ecs to use the public interface to access these values.
- `EntityMeta` is no longer `pub` and also not `pub(crate)` to attempt to cut down on updating `generation` without going through an `Entities` API. It's currently inaccessible except via the `pub(crate)` Vec on `Entities`, there was no way for an outside user to use it.
- Added `Entities::set`, an unsafe `pub(crate)` API for setting the location of an Entity (parallel to `Entities::get`) that replaces the internal case where we need to set the location of an entity when it's been spawned, moved, or despawned.
- `Entities::alloc_at_without_replacement` is only used in `World::get_or_spawn` within the first party crates, and I cannot find a public use of this API in any ecosystem crate that I've checked (via GitHub search).
- Attempted to document the few remaining undocumented public APIs in the module.
---
## Changelog
Removed: `Entities`'s `Default` implementation.
Removed: `EntityMeta`
Removed: `Entities::alloc_at_without_replacement` and `AllocAtWithoutReplacement`.
Co-authored-by: james7132 <contact@jamessliu.com>
Co-authored-by: James Liu <contact@jamessliu.com>
# Objective
- Since #5900 3d examples fail in wasm
```
ERROR crates/bevy_render/src/render_resource/pipeline_cache.rs:660 failed to process shader: Unknown shader def: 'AVAILABLE_STORAGE_BUFFER_BINDINGS'
```
## Solution
- Fix it by always adding the shaderdef `AVAILABLE_STORAGE_BUFFER_BINDINGS` with the actual value, instead of 3 when 3 or more were available
# Objective
- Support textures in `Rgb9e5Ufloat` format.
## Solution
- Add `TextureFormatPixelInfo` for `Rgb9e5Ufloat`.
Tested this with a `Rgb9e5Ufloat` encoded KTX2 texture.
# Objective
- Every usage of `DrawFunctionsInternals::get_id()` was followed by a `.unwrap()`. which just adds boilerplate.
## Solution
- Introduce a fallible version of `DrawFunctionsInternals::get_id()` and use it where possible.
- I also took the opportunity to improve the error message a little in the case where it fails.
---
## Changelog
- Added `DrawFunctionsInternals::id()`
# Objective
- Reduce confusion around uniform bindings in materials. I've seen multiple people on discord get confused by it because it uses a struct that is named the same in the rust code and the wgsl code, but doesn't contain the same data. Also, the only reason this works is mostly by chance because the memory happens to align correctly.
## Solution
- Remove the confusing parts of the doc
## Notes
It's not super clear in the diff why this causes confusion, but essentially, the rust code defines a `CustomMaterial` struct with a color and a texture, but in the wgsl code the struct with the same name only contains the color. People are confused by it because the struct in wgsl doesn't need to be there.
You _can_ have complex structs on each side and the macro will even combine it for you if you reuse a binding index, but as it is now, this example seems to confuse more than help people.
# Objective
Many types in `bevy_render` implemented `Reflect` but were not registered.
## Solution
Register all types in `bevy_render` that impl `Reflect`.
This also registers additional dependent types (i.e. field types).
> Note: Adding these dependent types would not be needed using something like #5781😉
---
## Changelog
- Register missing `bevy_render` types in the `TypeRegistry`:
- `camera::RenderTarget`
- `globals::GlobalsUniform`
- `texture::Image`
- `view::ComputedVisibility`
- `view::Visibility`
- `view::VisibleEntities`
- Register additional dependent types:
- `view::ComputedVisibilityFlags`
- `Vec<Entity>`
# Objective
- shaders defs can now have a `bool` or `int` value
- `#if SHADER_DEF <operator> 3`
- ok if `SHADER_DEF` is defined, has the correct type and pass the comparison
- `==`, `!=`, `>=`, `>`, `<`, `<=` supported
- `#SHADER_DEF` or `#{SHADER_DEF}`
- will be replaced by the value in the shader code
---
## Migration Guide
- replace `shader_defs.push(String::from("NAME"));` by `shader_defs.push("NAME".into());`
- if you used shader def `NO_STORAGE_BUFFERS_SUPPORT`, check how `AVAILABLE_STORAGE_BUFFER_BINDINGS` is now used in Bevy default shaders
# Objective
`add_node_edge` and `add_slot_edge` are fallible methods, but are always used with `.unwrap()`.
`input_node` is often unwrapped as well.
This points to having an infallible behaviour as default, with an alternative fallible variant if needed.
Improves readability and ergonomics.
## Solution
- Change `add_node_edge` and `add_slot_edge` to panic on error.
- Change `input_node` to panic on `None`.
- Add `try_add_node_edge` and `try_add_slot_edge` in case fallible methods are needed.
- Add `get_input_node` to still be able to get an `Option`.
---
## Changelog
### Added
- `try_add_node_edge`
- `try_add_slot_edge`
- `get_input_node`
### Changed
- `add_node_edge` is now infallible (panics on error)
- `add_slot_edge` is now infallible (panics on error)
- `input_node` now panics on `None`
## Migration Guide
Remove `.unwrap()` from `add_node_edge` and `add_slot_edge`.
For cases where the error was handled, use `try_add_node_edge` and `try_add_slot_edge` instead.
Remove `.unwrap()` from `input_node`.
For cases where the option was handled, use `get_input_node` instead.
Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com>
# Objective
Allow more use cases where the user may benefit from both `ExtractComponentPlugin` _and_ `UniformComponentPlugin`.
## Solution
Add an associated type to `ExtractComponent` in order to allow specifying the output component (or bundle).
Make `extract_component` return an `Option<_>` such that components can be extracted only when needed.
What problem does this solve?
`ExtractComponentPlugin` allows extracting components, but currently the output type is the same as the input.
This means that use cases such as having a settings struct which turns into a uniform is awkward.
For example we might have:
```rust
struct MyStruct {
enabled: bool,
val: f32
}
struct MyStructUniform {
val: f32
}
```
With the new approach, we can extract `MyStruct` only when it is enabled, and turn it into its related uniform.
This chains well with `UniformComponentPlugin`.
The user may then:
```rust
app.add_plugin(ExtractComponentPlugin::<MyStruct>::default());
app.add_plugin(UniformComponentPlugin::<MyStructUniform>::default());
```
This then saves the user a fair amount of boilerplate.
## Changelog
### Changed
- `ExtractComponent` can specify output type, and outputting is optional.
Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com>
# Objective
Latest Release, "bevy 0.9" move the FrameCount updater into RenderPlugin, it leads to user who only run app with Core/Minimal Plugin cannot get the right number of FrameCount, it always return 0.
As for use cases like a server app, we don't want to add render dependencies to the app.
More detail in #6656
## Solution
- Move the `update_frame_count` into CorePlugin
# Objective
This add a ctor to `Box` to aid the creation of non-centred boxes. The PR adopts @rezural's work on PR #3322, taking into account the feedback on that PR from @james7132.
## Solution
`Box::from_corners()` creates a `Box` from two opposing corners and automatically determines the min and max extents to ensure that the `Box` is well-formed.
Co-authored-by: rezural <rezural@protonmail.com>
# Objective
`ComputedVisibility` could afford to be smaller/faster. Optimizing the size and performance of operations on the component will positively benefit almost all extraction systems.
This was listed as one of the potential pieces of future work for #5310.
## Solution
Merge both internal booleans into a single `u8` bitflag field. Rely on bitmasks to evaluate local, hierarchical, and general visibility.
Pros:
- `ComputedVisibility::is_visible` should be a single bitmask test instead of two.
- `ComputedVisibility` is now only 1 byte. Should be able to fit 100% more per cache line when using dense iteration.
Cons:
- Harder to read.
- Setting individual values inside `ComputedVisiblity` require bitmask mutations.
This should be a non-breaking change. No public API was changed. The only publicly visible effect is that `ComputedVisibility` is now 1 byte instead of 2.
# Objective
`ScalingMode::Auto` for cameras only targets min_height and min_width, or as the docs say it `Use minimal possible viewport size while keeping the aspect ratio.`
But there is no ScalingMode that targets max_height and Max_width or `Use maximal possible viewport size while keeping the aspect ratio.`
## Solution
Added `ScalingMode::AutoMax` that does the exact opposite of `ScalingMode::Auto`
---
## Changelog
Renamed `ScalingMode::Auto` to `ScalingMode::AutoMin`.
## Migration Guide
just rename `ScalingMode::Auto` to `ScalingMode::AutoMin` if you are using it.
Co-authored-by: Lixou <82600264+DasLixou@users.noreply.github.com>
# Objective
- Fix#3606
- Fix#4579
- Fix#3380
## Solution
When running on a Linux machine with some AMD or Intel device, when calling
`surface.get_current_texture()`, ignore `wgpu::SurfaceError::Timeout` errors.
## Alternative
An alternative solution found in the `wgpu` examples is:
```rust
let frame = surface
.get_current_texture()
.or_else(|_| {
render_device.configure_surface(surface, &swap_chain_descriptor);
surface.get_current_texture()
})
.expect("Error reconfiguring surface");
window.swap_chain_texture = Some(TextureView::from(frame));
```
See: <94ce76391b/wgpu/examples/framework.rs (L362-L370)>
Veloren [handles the Timeout error the way this PR proposes to handle it](https://github.com/gfx-rs/wgpu/issues/1218#issuecomment-1092056971).
The reason I went with this PR's solution is that `configure_surface` seems to be quite an expensive operation, and it would run every frame with the wgpu framework solution, despite the fact it works perfectly fine without `configure_surface`.
I know this looks super hacky with the linux-specific line and the AMD check, but my understanding is that the `Timeout` occurrence is specific to a quirk of some AMD drivers on linux, and if otherwise met should be considered a bug.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Fixes#5393
## Solution
- Add padding to `GlobalsUniform` / `Globals` to make it 16-byte aligned.
Still not super clear on whether this is a `naga` thing or an `encase` thing or what. But now that we're offering `globals` up to users and #5393 is not just breaking an example, maybe we should do this sort of workaround?
# Objective
Some render plugins, like [bevy-hikari](https://github.com/cryscan/bevy-hikari) require to set `CameraRenderGraph`. In order to switch between render graphs I need to insert a new `CameraRenderGraph` component. It's not very ergonomic.
## Solution
Add `CameraRenderGraph::set` like in [Name](https://docs.rs/bevy/latest/bevy/core/struct.Name.html).
---
## Changelog
### Added
- `CameraRenderGraph::set`.
Allow passing `Vec`s of glam vector types as vertex attributes.
Alternative to #4548 and #2719
Also used some macros to cut down on all the repetition.
# Migration Guide
Implementations of `From<Vec<[u16; 4]>>` and `From<Vec<[u8; 4]>>` for `VertexAttributeValues` have been removed.
I you're passing either `Vec<[u16; 4]>` or `Vec<[u8; 4]>` into `Mesh::insert_attribute` it will now require wrapping it with right the `VertexAttributeValues` enum variant.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
Replace `WorldQueryGats` trait with actual gats
## Solution
Replace `WorldQueryGats` trait with actual gats
---
## Changelog
- Replaced `WorldQueryGats` trait with actual gats
## Migration Guide
- Replace usage of `WorldQueryGats` assoc types with the actual gats on `WorldQuery` trait
Respect mipmap_filter when create ImageDescriptor with linear()/nearest()
# Objective
Fixes#6348
## Migration Guide
This PR changes default `ImageSettings` and may lead to unexpected behaviour for existing projects with mipmapped textures. Users should provide custom `ImageSettings` resource with `mipmap_filter=FilterMode::Nearest` if they want to keep old behaviour.
Co-authored-by: Yakov Borevich <j.borevich@gmail.com>
This reverts commit 53d387f340.
# Objective
Reverts #6448. This didn't have the intended effect: we're now getting bevy::prelude shown in the docs again.
Co-authored-by: Alejandro Pascual <alejandro.pascual.pozo@gmail.com>
# Objective
- Right now re-exports are completely hidden in prelude docs.
- Fixes#6433
## Solution
- We could show the re-exports without inlining their documentation.
# Objective
Post processing effects cannot read and write to the same texture. Currently they must own their own intermediate texture and redundantly copy from that back to the main texture. This is very inefficient.
Additionally, working with ViewTarget is more complicated than it needs to be, especially when working with HDR textures.
## Solution
`ViewTarget` now stores two copies of the "main texture". It uses an atomic value to track which is currently the "main texture" (this interior mutability is necessary to accommodate read-only RenderGraph execution).
`ViewTarget` now has a `post_process_write` method, which will return a source and destination texture. Each call to this method will flip between the two copies of the "main texture".
```rust
let post_process = render_target.post_process_write();
let source_texture = post_process.source;
let destination_texture = post_process.destination;
```
The caller _must_ read from the source texture and write to the destination texture, as it is assumed that the destination texture will become the new "main texture".
For simplicity / understandability `ViewTarget` is now a flat type. "hdr-ness" is a property of the `TextureFormat`. The internals are fully private in the interest of providing simple / consistent apis. Developers can now easily access the main texture by calling `view_target.main_texture()`.
HDR ViewTargets no longer have an "ldr texture" with `TextureFormat::bevy_default`. They _only_ have their two "hdr" textures. This simplifies the mental model. All we have is the "currently active hdr texture" and the "other hdr texture", which we flip between for post processing effects.
The tonemapping node has been rephrased to use this "post processing pattern". The blit pass has been removed, and it now only runs a pass when HDR is enabled. Notably, both the input and output texture are assumed to be HDR. This means that tonemapping behaves just like any other "post processing effect". It could theoretically be moved anywhere in the "effect chain" and continue to work.
In general, I think these changes will make the lives of people making post processing effects much easier. And they better position us to start building higher level / more structured "post processing effect stacks".
---
## Changelog
- `ViewTarget` now stores two copies of the "main texture". Calling `ViewTarget::post_process_write` will flip between copies of the main texture.
# Objective
Bevy still has many instances of using single-tuples `(T,)` to create a bundle. Due to #2975, this is no longer necessary.
## Solution
Search for regex `\(.+\s*,\)`. This should have found every instance.
# Objective
- fix new clippy lints before they get stable and break CI
## Solution
- run `clippy --fix` to auto-fix machine-applicable lints
- silence `clippy::should_implement_trait` for `fn HandleId::default<T: Asset>`
## Changes
- always prefer `format!("{inline}")` over `format!("{}", not_inline)`
- prefer `Box::default` (or `Box::<T>::default` if necessary) over `Box::new(T::default())`
# Objective
![image](https://user-images.githubusercontent.com/22177966/189350194-639a0211-e984-4f73-ae62-0ede44891eb9.png)
^ enable this
Concretely, I need to
- list all handle ids for an asset type
- fetch the asset as `dyn Reflect`, given a `HandleUntyped`
- when encountering a `Handle<T>`, find out what asset type that handle refers to (`T`'s type id) and turn the handle into a `HandleUntyped`
## Solution
- add `ReflectAsset` type containing function pointers for working with assets
```rust
pub struct ReflectAsset {
type_uuid: Uuid,
assets_resource_type_id: TypeId, // TypeId of the `Assets<T>` resource
get: fn(&World, HandleUntyped) -> Option<&dyn Reflect>,
get_mut: fn(&mut World, HandleUntyped) -> Option<&mut dyn Reflect>,
get_unchecked_mut: unsafe fn(&World, HandleUntyped) -> Option<&mut dyn Reflect>,
add: fn(&mut World, &dyn Reflect) -> HandleUntyped,
set: fn(&mut World, HandleUntyped, &dyn Reflect) -> HandleUntyped,
len: fn(&World) -> usize,
ids: for<'w> fn(&'w World) -> Box<dyn Iterator<Item = HandleId> + 'w>,
remove: fn(&mut World, HandleUntyped) -> Option<Box<dyn Reflect>>,
}
```
- add `ReflectHandle` type relating the handle back to the asset type and providing a way to create a `HandleUntyped`
```rust
pub struct ReflectHandle {
type_uuid: Uuid,
asset_type_id: TypeId,
downcast_handle_untyped: fn(&dyn Any) -> Option<HandleUntyped>,
}
```
- add the corresponding `FromType` impls
- add a function `app.register_asset_reflect` which is supposed to be called after `.add_asset` and registers `ReflectAsset` and `ReflectHandle` in the type registry
---
## Changelog
- add `ReflectAsset` and `ReflectHandle` types, which allow code to use reflection to manipulate arbitrary assets without knowing their types at compile time
fixes https://github.com/bevyengine/bevy/issues/5944
Uses the second solution:
> 2. keep track of the old viewport in the computed_state, and if camera.viewport != camera.computed_state.old_viewport, then update the projection. This is more reliable, but needs to store two UVec2s more in the camera (probably not a big deal).
# Objective
Bevy's internal plugins have lots of execution-order ambiguities, which makes the ambiguity detection tool very noisy for our users.
## Solution
Silence every last ambiguity that can currently be resolved.
Each time an ambiguity is silenced, it is accompanied by a comment describing why it is correct. This description should be based on the public API of the respective systems. Thus, I have added documentation to some systems describing how they use some resources.
# Future work
Some ambiguities remain, due to issues out of scope for this PR.
* The ambiguity checker does not respect `Without<>` filters, leading to false positives.
* Ambiguities between `bevy_ui` and `bevy_animation` cannot be resolved, since neither crate knows that the other exists. We will need a general solution to this problem.
# Objective
Currently, Bevy only supports rendering to the current "surface texture format". This means that "render to texture" scenarios must use the exact format the primary window's surface uses, or Bevy will crash. This is even harder than it used to be now that we detect preferred surface formats at runtime instead of using hard coded BevyDefault values.
## Solution
1. Look up and store each window surface's texture format alongside other extracted window information
2. Specialize the upscaling pass on the current `RenderTarget`'s texture format, now that we can cheaply correlate render targets to their current texture format
3. Remove the old `SurfaceTextureFormat` and `AvailableTextureFormats`: these are now redundant with the information stored on each extracted window, and probably should not have been globals in the first place (as in theory each surface could have a different format).
This means you can now use any texture format you want when rendering to a texture! For example, changing the `render_to_texture` example to use `R16Float` now doesn't crash / properly only stores the red component:
![image](https://user-images.githubusercontent.com/2694663/198140125-c606dd0e-6fdf-4544-b93d-dbbd10dbadd2.png)
Attempt to make features like bloom https://github.com/bevyengine/bevy/pull/2876 easier to implement.
**This PR:**
- Moves the tonemapping from `pbr.wgsl` into a separate pass
- also add a separate upscaling pass after the tonemapping which writes to the swap chain (enables resolution-independant rendering and post-processing after tonemapping)
- adds a `hdr` bool to the camera which controls whether the pbr and sprite shaders render into a `Rgba16Float` texture
**Open questions:**
- ~should the 2d graph work the same as the 3d one?~ it is the same now
- ~The current solution is a bit inflexible because while you can add a post processing pass that writes to e.g. the `hdr_texture`, you can't write to a separate `user_postprocess_texture` while reading the `hdr_texture` and tell the tone mapping pass to read from the `user_postprocess_texture` instead. If the tonemapping and upscaling render graph nodes were to take in a `TextureView` instead of the view entity this would almost work, but the bind groups for their respective input textures are already created in the `Queue` render stage in the hardcoded order.~ solved by creating bind groups in render node
**New render graph:**
![render_graph](https://user-images.githubusercontent.com/22177966/147767249-57dd4229-cfab-4ec5-9bf3-dc76dccf8e8b.png)
<details>
<summary>Before</summary>
![render_graph_old](https://user-images.githubusercontent.com/22177966/147284579-c895fdbd-4028-41cf-914c-e1ffef60e44e.png)
</details>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Proactive changing of code to comply with warnings generated by beta of rustlang version of cargo clippy.
## Solution
- Code changed as recommended by `rustup update`, `rustup default beta`, `cargo run -p ci -- clippy`.
- Tested using `beta` and `stable`. No clippy warnings in either after changes made.
---
## Changelog
- Warnings fixed were: `clippy::explicit-auto-deref` (present in 11 files), `clippy::needless-borrow` (present in 2 files), and `clippy::only-used-in-recursion` (only 1 file).
# Objective
- Build on #6336 for more plugin configurations
## Solution
- `LogSettings`, `ImageSettings` and `DefaultTaskPoolOptions` are now plugins settings rather than resources
---
## Changelog
- `LogSettings` plugin settings have been move to `LogPlugin`, `ImageSettings` to `ImagePlugin` and `DefaultTaskPoolOptions` to `CorePlugin`
## Migration Guide
The `LogSettings` settings have been moved from a resource to `LogPlugin` configuration:
```rust
// Old (Bevy 0.8)
app
.insert_resource(LogSettings {
level: Level::DEBUG,
filter: "wgpu=error,bevy_render=info,bevy_ecs=trace".to_string(),
})
.add_plugins(DefaultPlugins)
// New (Bevy 0.9)
app.add_plugins(DefaultPlugins.set(LogPlugin {
level: Level::DEBUG,
filter: "wgpu=error,bevy_render=info,bevy_ecs=trace".to_string(),
}))
```
The `ImageSettings` settings have been moved from a resource to `ImagePlugin` configuration:
```rust
// Old (Bevy 0.8)
app
.insert_resource(ImageSettings::default_nearest())
.add_plugins(DefaultPlugins)
// New (Bevy 0.9)
app.add_plugins(DefaultPlugins.set(ImagePlugin::default_nearest()))
```
The `DefaultTaskPoolOptions` settings have been moved from a resource to `CorePlugin::task_pool_options`:
```rust
// Old (Bevy 0.8)
app
.insert_resource(DefaultTaskPoolOptions::with_num_threads(4))
.add_plugins(DefaultPlugins)
// New (Bevy 0.9)
app.add_plugins(DefaultPlugins.set(CorePlugin {
task_pool_options: TaskPoolOptions::with_num_threads(4),
}))
```
# Objective
- Improve #3953
## Solution
- The very specific circumstances under which the render world is reset meant that the flush_as_invalid function could be replaced with one that had a noop as its init method.
- This removes a double-writing issue leading to greatly increased performance.
Running the reproduction code in the linked issue, this change nearly doubles the framerate.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Avoids creating a `SurfaceConfiguration` for every window in every frame for the `prepare_windows` system
- As such also avoid calling `get_supported_formats` for every window in every frame
## Solution
- Construct `SurfaceConfiguration` lazyly in `prepare_windows`
---
This also changes the error message for failed initial surface configuration from "Failed to acquire next swapchain texture" to "Error configuring surface".
# Objective
- Make `Time` API more consistent.
- Support time accel/decel/pause.
## Solution
This is just the `Time` half of #3002. I was told that part isn't controversial.
- Give the "delta time" and "total elapsed time" methods `f32`, `f64`, and `Duration` variants with consistent naming.
- Implement accelerating / decelerating the passage of time.
- Implement stopping time.
---
## Changelog
- Changed `time_since_startup` to `elapsed` because `time.time_*` is just silly.
- Added `relative_speed` and `set_relative_speed` methods.
- Added `is_paused`, `pause`, `unpause` , and methods. (I'd prefer `resume`, but `unpause` matches `Timer` API.)
- Added `raw_*` variants of the "delta time" and "total elapsed time" methods.
- Added `first_update` method because there's a non-zero duration between startup and the first update.
## Migration Guide
- `time.time_since_startup()` -> `time.elapsed()`
- `time.seconds_since_startup()` -> `time.elapsed_seconds_f64()`
- `time.seconds_since_startup_wrapped_f32()` -> `time.elapsed_seconds_wrapped()`
If you aren't sure which to use, most systems should continue to use "scaled" time (e.g. `time.delta_seconds()`). The realtime "unscaled" time measurements (e.g. `time.raw_delta_seconds()`) are mostly for debugging and profiling.
# Objective
The `RenderLayers` type is never registered, making it unavailable for reflection.
## Solution
Register it in `CameraPlugin`, the same plugin that registers the related `Visibility*` types.
# Objective
- Update `wgpu` to 0.14.0, `naga` to `0.10.0`, `winit` to 0.27.4, `raw-window-handle` to 0.5.0, `ndk` to 0.7.
## Solution
---
## Changelog
### Changed
- Changed `RawWindowHandleWrapper` to `RawHandleWrapper` which wraps both `RawWindowHandle` and `RawDisplayHandle`, which satisfies the `impl HasRawWindowHandle and HasRawDisplayHandle` that `wgpu` 0.14.0 requires.
- Changed `bevy_window::WindowDescriptor`'s `cursor_locked` to `cursor_grab_mode`, change its type from `bool` to `bevy_window::CursorGrabMode`.
## Migration Guide
- Adjust usage of `bevy_window::WindowDescriptor`'s `cursor_locked` to `cursor_grab_mode`, and adjust its type from `bool` to `bevy_window::CursorGrabMode`.
# Objective
Make toggling the visibility of an entity slightly more convenient.
## Solution
Add a mutating `toggle` method to the `Visibility` component
```rust
fn my_system(mut query: Query<&mut Visibility, With<SomeMarker>>) {
let mut visibility = query.single_mut();
// before:
visibility.is_visible = !visibility.is_visible;
// after:
visibility.toggle();
}
```
## Changelog
### Added
- Added a mutating `toggle` method to the `Visibility` component
# Objective
- Trying to make it possible to do write tests that don't require a raw window handle.
- Fixes https://github.com/bevyengine/bevy/issues/6106.
## Solution
- Make the interface and type changes. Avoid accessing `None`.
---
## Changelog
- Converted `raw_window_handle` field in both `Window` and `ExtractedWindow` to `Option<RawWindowHandleWrapper>`.
- Revised accessor function `Window::raw_window_handle()` to return `Option<RawWindowHandleWrapper>`.
- Skip conditions in loops that would require a raw window handle (to create a `Surface`, for example).
## Migration Guide
`Window::raw_window_handle()` now returns `Option<RawWindowHandleWrapper>`.
Co-authored-by: targrub <62773321+targrub@users.noreply.github.com>
As suggested in #6104, it would be nice to link directly to `linux_dependencies.md` file in the panic message when running on Linux. And when not compiling for Linux, we fall back to the old message.
Signed-off-by: Lena Milizé <me@lvmn.org>
# Objective
Resolves#6104.
## Solution
Add link to `linux_dependencies.md` when compiling for Linux, and fall back to the old one when not.
…
# Objective
- Fixes Camera not being serializable due to missing registrations in core functionality.
- Fixes#6169
## Solution
- Updated Bevy_Render CameraPlugin with registrations for Option<Viewport> and then Bevy_Core CorePlugin with registrations for ReflectSerialize and ReflectDeserialize for type data Range<f32> respectively according to the solution in #6169
Co-authored-by: Noah <noahshomette@gmail.com>
# Objective
There is no Srgb support on some GPU and display protocols with `winit` (for example, Nvidia's GPUs with Wayland). Thus `TextureFormat::bevy_default()` which returns `Rgba8UnormSrgb` or `Bgra8UnormSrgb` will cause panics on such platforms. This patch will resolve this problem. Fix https://github.com/bevyengine/bevy/issues/3897.
## Solution
Make `initialize_renderer` expose `wgpu::Adapter` and `first_available_texture_format`, use the `first_available_texture_format` by default.
## Changelog
* Fixed https://github.com/bevyengine/bevy/issues/3897.
# Objective
- Reflecting `Default` is required for scripts to create `Reflect` types at runtime with no static type information.
- Reflecting `Default` on `Handle<T>` and `ComputedVisibility` should allow scripts from `bevy_mod_js_scripting` to actually spawn sprites from scratch, without needing any hand-holding from the host-game.
## Solution
- Derive `ReflectDefault` for `Handle<T>` and `ComputedVisiblity`.
---
## Changelog
> This section is optional. If this was a trivial fix, or has no externally-visible impact, you can delete this section.
- The `Default` trait is now reflected for `Handle<T>` and `ComputedVisibility`
# Objective
Add a method for getting a world space ray from a viewport position.
Opted to add a `Ray` type to `bevy_math` instead of returning a tuple of `Vec3`'s as this is clearer and easier to document
The docs on `viewport_to_world` are okay, but I'm not super happy with them.
## Changelog
* Add `Camera::viewport_to_world`
* Add `Camera::ndc_to_world`
* Add `Ray` to `bevy_math`
* Some doc tweaks
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
- Currently, errors aren't logged as soon as they are found, they are logged only on the next frame. This means your shader could have an unreported error that could have been reported on the first frame.
## Solution
- Log the error as soon as they are found, don't wait until next frame
## Notes
I discovered this issue because I was simply unwrapping the `Result` from `PipelinCache::get_render_pipeline()` which caused it to fail without any explanations. Admittedly, this was a bit of a user error, I shouldn't have unwrapped that, but it seems a bit strange to wait until the next time the pipeline is processed to log the error instead of just logging it as soon as possible since we already have all the info necessary.
# Objective
The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move.
This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns).
## Solution
This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity).
This means you can remove all cases of `exclusive_system()`:
```rust
// before
commands.add_system(some_system.exclusive_system());
// after
commands.add_system(some_system);
```
I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems:
```rust
fn some_exclusive_system(
world: &mut World,
transforms: &mut QueryState<&Transform>,
state: &mut SystemState<(Res<Time>, Query<&Player>)>,
) {
for transform in transforms.iter(world) {
println!("{transform:?}");
}
let (time, players) = state.get(world);
for player in players.iter() {
println!("{player:?}");
}
}
```
Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system.
I added some targeted SystemParam `static` constraints, which removed the need for this:
``` rust
fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {}
```
## Related
- #2923
- #3001
- #3946
## Changelog
- `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait.
- `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems
- `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam`
- Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api.
## Migration Guide
Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems:
```rust
// Old (0.8)
app.add_system(some_exclusive_system.exclusive_system());
// New (0.9)
app.add_system(some_exclusive_system);
```
Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis:
```rust
// Old (0.8)
app.add_system(some_system.exclusive_system().at_end());
// New (0.9)
app.add_system(some_system.at_end());
```
Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons:
```rust
// Old (0.8)
fn some_system(world: &mut World) {
let mut transforms = world.query::<&Transform>();
for transform in transforms.iter(world) {
}
}
// New (0.9)
fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) {
for transform in transforms.iter(world) {
}
}
```
# Objective
Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands).
## Solution
All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input:
```rust
// before:
commands
.spawn()
.insert((A, B, C));
world
.spawn()
.insert((A, B, C);
// after
commands.spawn((A, B, C));
world.spawn((A, B, C));
```
All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api.
By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`).
This improves spawn performance by over 10%:
![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png)
To take this measurement, I added a new `world_spawn` benchmark.
Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main.
**Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).**
---
## Changelog
- All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input
- All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api
- World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior.
## Migration Guide
```rust
// Old (0.8):
commands
.spawn()
.insert_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));
// Old (0.8):
commands.spawn_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));
// Old (0.8):
let entity = commands.spawn().id();
// New (0.9)
let entity = commands.spawn_empty().id();
// Old (0.8)
let entity = world.spawn().id();
// New (0.9)
let entity = world.spawn_empty();
```
# Objective
- Reconfigure surface after present mode changes. It seems that this is not done currently at runtime. It's pretty common for games to change such graphical settings at runtime.
- Fixes present mode issue in #5111
## Solution
- Exactly like resolution change gets tracked when extracting window, do the same for present mode.
Additionally, I added present mode (vsync) toggling to window settings example.
# Objective
Take advantage of the "impl Bundle for Component" changes in #2975 / add the follow up changes discussed there.
## Solution
- Change `insert` and `remove` to accept a Bundle instead of a Component (for both Commands and World)
- Deprecate `insert_bundle`, `remove_bundle`, and `remove_bundle_intersection`
- Add `remove_intersection`
---
## Changelog
- Change `insert` and `remove` now accept a Bundle instead of a Component (for both Commands and World)
- `insert_bundle` and `remove_bundle` are deprecated
## Migration Guide
Replace `insert_bundle` with `insert`:
```rust
// Old (0.8)
commands.spawn().insert_bundle(SomeBundle::default());
// New (0.9)
commands.spawn().insert(SomeBundle::default());
```
Replace `remove_bundle` with `remove`:
```rust
// Old (0.8)
commands.entity(some_entity).remove_bundle::<SomeBundle>();
// New (0.9)
commands.entity(some_entity).remove::<SomeBundle>();
```
Replace `remove_bundle_intersection` with `remove_intersection`:
```rust
// Old (0.8)
world.entity_mut(some_entity).remove_bundle_intersection::<SomeBundle>();
// New (0.9)
world.entity_mut(some_entity).remove_intersection::<SomeBundle>();
```
Consider consolidating as many operations as possible to improve ergonomics and cut down on archetype moves:
```rust
// Old (0.8)
commands.spawn()
.insert_bundle(SomeBundle::default())
.insert(SomeComponent);
// New (0.9) - Option 1
commands.spawn().insert((
SomeBundle::default(),
SomeComponent,
))
// New (0.9) - Option 2
commands.spawn_bundle((
SomeBundle::default(),
SomeComponent,
))
```
## Next Steps
Consider changing `spawn` to accept a bundle and deprecate `spawn_bundle`.
# Objective
Implement `IntoIterator` for `&Extract<P>` if the system parameter it wraps implements `IntoIterator`.
Enables the use of `IntoIterator` with an extracted query.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
A common pitfall since 0.8 is the requirement on `ComputedVisibility`
being present on all ancestors of an entity that itself has
`ComputedVisibility`, without which, the entity becomes invisible.
I myself hit the issue and got very confused, and saw a few people hit
it as well, so it makes sense to provide a hint of what to do when such
a situation is encountered.
- Fixes#5849
- Closes#5616
- Closes#2277
- Closes#5081
## Solution
We now check that all entities with both a `Parent` and a
`ComputedVisibility` component have parents that themselves have a
`ComputedVisibility` component.
Note that the warning is only printed once.
We also add a similar warning to `GlobalTransform`.
This only emits a warning. Because sometimes it could be an intended
behavior.
Alternatives:
- Do nothing and keep repeating to newcomers how to avoid recurring
pitfalls
- Make the transform and visibility propagation tolerant to missing
components (#5616)
- Probably archetype invariants, though the current draft would not
allow detecting that kind of errors
---
## Changelog
- Add a warning when encountering dubious component hierarchy structure
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>