# Objective
Fix#12304. Remove unnecessary type registrations thanks to #4154.
## Solution
Conservatively remove type registrations. Keeping the top level
components, resources, and events, but dropping everything else that is
a type of a member of those types.
# Objective
Follow up to #11600 and #10588https://github.com/bevyengine/bevy/issues/11944 made clear that some
people want to use slicing with texture atlases
## Changelog
* Added support for `TextureAtlas` slicing and tiling.
`SpriteSheetBundle` and `AtlasImageBundle` can now use `ImageScaleMode`
* Added new `ui_texture_atlas_slice` example using a texture sheet
<img width="798" alt="Screenshot 2024-02-23 at 11 58 35"
src="https://github.com/bevyengine/bevy/assets/26703856/47a8b764-127c-4a06-893f-181703777501">
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
# Objective
- Fixes#12255
Still needs confirming what the consequences are from having camera
viewport nodes live on the root of the taffy tree.
## Solution
To fix calculating the layouts for UI nodes we need to cleanup the
children previously set whenever `TargetCamera` is updated. This also
maintains a list of taffy camera nodes and cleans them up when removed.
---
## Changelog
Fixed#12255
## Migration Guide
changes affect private structs/members so shouldn't need actions by
engine users.
# Objective
Fixes https://github.com/bevyengine/bevy/issues/11157.
## Solution
Stop using `BackgroundColor` as a color tint for `UiImage`. Add a
`UiImage::color` field for color tint instead. Allow a UI node to
simultaneously include a solid-color background and an image, with the
image rendered on top of the background (this is already how it works
for e.g. text).
![2024-02-29_1709239666_563x520](https://github.com/bevyengine/bevy/assets/12173779/ec50c9ef-4c7f-4ab8-a457-d086ce5b3425)
---
## Changelog
- The `BackgroundColor` component now renders a solid-color background
behind `UiImage` instead of tinting its color.
- Removed `BackgroundColor` from `ImageBundle`, `AtlasImageBundle`, and
`ButtonBundle`.
- Added `UiImage::color`.
- Expanded `RenderUiSystem` variants.
- Renamed `bevy_ui::extract_text_uinodes` to `extract_uinodes_text` for
consistency.
## Migration Guide
- `BackgroundColor` no longer tints the color of UI images. Use
`UiImage::color` for that instead.
- For solid color buttons, replace `ButtonBundle { background_color:
my_color.into(), ... }` with `ButtonBundle { image:
UiImage::default().with_color(my_color), ... }`, and update button
interaction systems to use `UiImage::color` instead of `BackgroundColor`
as well.
- `bevy_ui::RenderUiSystem::ExtractNode` has been split into
`ExtractBackgrounds`, `ExtractImages`, `ExtractBorders`, and
`ExtractText`.
- `bevy_ui::extract_uinodes` has been split into
`bevy_ui::extract_uinode_background_colors` and
`bevy_ui::extract_uinode_images`.
- `bevy_ui::extract_text_uinodes` has been renamed to
`extract_uinode_text`.
# Objective
After the `TextureAtlas` changes that landed in 0.13,
`SpriteSheetBundle` is equivalent to `TextureAtlas` + `SpriteBundle` and
`AtlasImageBundle` is equivalent to `TextureAtlas` + `ImageBundle`. As
such, the atlas bundles aren't particularly useful / necessary additions
to the API anymore.
In addition, atlas bundles are inconsistent with `ImageScaleMode` (also
introduced in 0.13) which doesn't have its own version of each image
bundle.
## Solution
Deprecate `SpriteSheetBundle` and `AtlasImageBundle` in favor of
including `TextureAtlas` as a separate component alongside
`SpriteBundle` and `ImageBundle`, respectively.
---
## Changelog
- Deprecated `SpriteSheetBundle` and `AtlasImageBundle`.
## Migration Guide
- `SpriteSheetBundle` has been deprecated. Use `TextureAtlas` alongside
a `SpriteBundle` instead.
- `AtlasImageBundle` has been deprecated. Use `TextureAtlas` alongside
an `ImageBundle` instead.
# Objective
Fixes https://github.com/bevyengine/bevy/issues/11628
## Migration Guide
`Command` and `CommandQueue` have migrated from `bevy_ecs::system` to
`bevy_ecs::world`, so `use bevy_ecs::world::{Command, CommandQueue};`
when necessary.
# Objective
Fixes#11298. Make the use of bevy_log vs bevy_utils::tracing more
consistent.
## Solution
Replace all uses of bevy_log's logging macros with the reexport from
bevy_utils. Remove bevy_log as a dependency where it's no longer needed
anymore.
Ideally we should just be using tracing directly, but given that all of
these crates are already using bevy_utils, this likely isn't that great
of a loss right now.
This is an implementation within `bevy_window::window` that fixes
#12229.
# Objective
Fixes#12229, allow users to retrieve the window's size and physical
size as Vectors without having to manually construct them using
`height()` and `width()` or `physical_height()` and `physical_width()`
## Solution
As suggested in #12229, created two public functions within `window`:
`size() -> Vec` and `physical_size() -> UVec` that return the needed
Vectors ready-to-go.
### Discussion
My first FOSS PRQ ever, so bear with me a bit. I'm new to this.
- I replaced instances of ```Vec2::new(window.width(),
window.height());``` or `UVec2::new(window.physical_width(),
window.physical_height());` within bevy examples be replaced with their
`size()`/`physical_size()` counterparts?
- Discussion within #12229 still holds: should these also be added to
WindowResolution?
# Objective
- As part of the migration process we need to a) see the end effect of
the migration on user ergonomics b) check for serious perf regressions
c) actually migrate the code
- To accomplish this, I'm going to attempt to migrate all of the
remaining user-facing usages of `LegacyColor` in one PR, being careful
to keep a clean commit history.
- Fixes#12056.
## Solution
I've chosen to use the polymorphic `Color` type as our standard
user-facing API.
- [x] Migrate `bevy_gizmos`.
- [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs
- [x] Migrate sprites
- [x] Migrate UI
- [x] Migrate `ColorMaterial`
- [x] Migrate `MaterialMesh2D`
- [x] Migrate fog
- [x] Migrate lights
- [x] Migrate StandardMaterial
- [x] Migrate wireframes
- [x] Migrate clear color
- [x] Migrate text
- [x] Migrate gltf loader
- [x] Register color types for reflection
- [x] Remove `LegacyColor`
- [x] Make sure CI passes
Incidental improvements to ease migration:
- added `Color::srgba_u8`, `Color::srgba_from_array` and friends
- added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the
`Alpha` trait
- add and immediately deprecate (lol) `Color::rgb` and friends in favor
of more explicit and consistent `Color::srgb`
- standardized on white and black for most example text colors
- added vector field traits to `LinearRgba`: ~~`Add`, `Sub`,
`AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications
and divisions do not scale alpha. `Add` and `Sub` have been cut from
this PR.
- added `LinearRgba` and `Srgba` `RED/GREEN/BLUE`
- added `LinearRgba_to_f32_array` and `LinearRgba::to_u32`
## Migration Guide
Bevy's color types have changed! Wherever you used a
`bevy::render::Color`, a `bevy::color::Color` is used instead.
These are quite similar! Both are enums storing a color in a specific
color space (or to be more precise, using a specific color model).
However, each of the different color models now has its own type.
TODO...
- `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`,
`Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`,
`Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`.
- `Color::set_a` and `Color::a` is now `Color::set_alpha` and
`Color::alpha`. These are part of the `Alpha` trait in `bevy_color`.
- `Color::is_fully_transparent` is now part of the `Alpha` trait in
`bevy_color`
- `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for
`g`, `b` `h`, `s` and `l` have been removed due to causing silent
relatively expensive conversions. Convert your `Color` into the desired
color space, perform your operations there, and then convert it back
into a polymorphic `Color` enum.
- `Color::hex` is now `Srgba::hex`. Call `.into` or construct a
`Color::Srgba` variant manually to convert it.
- `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`,
`ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now
store a `LinearRgba`, rather than a polymorphic `Color`
- `Color::rgb_linear` and `Color::rgba_linear` are now
`Color::linear_rgb` and `Color::linear_rgba`
- The various CSS color constants are no longer stored directly on
`Color`. Instead, they're defined in the `Srgba` color space, and
accessed via `bevy::color::palettes::css`. Call `.into()` on them to
convert them into a `Color` for quick debugging use, and consider using
the much prettier `tailwind` palette for prototyping.
- The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with
the standard naming.
- Vector field arithmetic operations on `Color` (add, subtract, multiply
and divide by a f32) have been removed. Instead, convert your colors
into `LinearRgba` space, and perform your operations explicitly there.
This is particularly relevant when working with emissive or HDR colors,
whose color channel values are routinely outside of the ordinary 0 to 1
range.
- `Color::as_linear_rgba_f32` has been removed. Call
`LinearRgba::to_f32_array` instead, converting if needed.
- `Color::as_linear_rgba_u32` has been removed. Call
`LinearRgba::to_u32` instead, converting if needed.
- Several other color conversion methods to transform LCH or HSL colors
into float arrays or `Vec` types have been removed. Please reimplement
these externally or open a PR to re-add them if you found them
particularly useful.
- Various methods on `Color` such as `rgb` or `hsl` to convert the color
into a specific color space have been removed. Convert into
`LinearRgba`, then to the color space of your choice.
- Various implicitly-converting color value methods on `Color` such as
`r`, `g`, `b` or `h` have been removed. Please convert it into the color
space of your choice, then check these properties.
- `Color` no longer implements `AsBindGroup`. Store a `LinearRgba`
internally instead to avoid conversion costs.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
fix#12182
- extract (or default) target camera for ui material nodes in the same
way as for other material nodes
- render ui material nodes only to their specified target
# Objective
The physical width and height (pixels) of an image is always integers,
but for `GpuImage` bevy currently stores them as `Vec2` (`f32`).
Switching to `UVec2` makes this more consistent with the [underlying
texture data](https://docs.rs/wgpu/latest/wgpu/struct.Extent3d.html).
I'm not sure if this is worth the change in the surface level API. If
not, feel free to close this PR.
## Solution
- Replace uses of `Vec2` with `UVec2` when referring to texture
dimensions.
- Use integer types for the texture atlas dimensions and sections.
[`Sprite::rect`](a81a2d1da3/crates/bevy_sprite/src/sprite.rs (L29))
remains unchanged, so manually specifying a sub-pixel region of an image
is still possible.
---
## Changelog
- `GpuImage` now stores its size as `UVec2` instead of `Vec2`.
- Texture atlases store their size and sections as `UVec2` and `URect`
respectively.
- `UiImageSize` stores its size as `UVec2`.
## Migration Guide
- Change floating point types (`Vec2`, `Rect`) to their respective
unsigned integer versions (`UVec2`, `URect`) when using `GpuImage`,
`TextureAtlasLayout`, `TextureAtlasBuilder`,
`DynamicAtlasTextureBuilder` or `FontAtlas`.
# Objective
- Add the new `-Zcheck-cfg` checks to catch more warnings
- Fixes#12091
## Solution
- Create a new `cfg-check` to the CI that runs `cargo check -Zcheck-cfg
--workspace` using cargo nightly (and fails if there are warnings)
- Fix all warnings generated by the new check
---
## Changelog
- Remove all redundant imports
- Fix cfg wasm32 targets
- Add 3 dead code exceptions (should StandardColor be unused?)
- Convert ios_simulator to a feature (I'm not sure if this is the right
way to do it, but the check complained before)
## Migration Guide
No breaking changes
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
The migration process for `bevy_color` (#12013) will be fairly involved:
there will be hundreds of affected files, and a large number of APIs.
## Solution
To allow us to proceed granularly, we're going to keep both
`bevy_color::Color` (new) and `bevy_render::Color` (old) around until
the migration is complete.
However, simply doing this directly is confusing! They're both called
`Color`, making it very hard to tell when a portion of the code has been
ported.
As discussed in #12056, by renaming the old `Color` type, we can make it
easier to gradually migrate over, one API at a time.
## Migration Guide
THIS MIGRATION GUIDE INTENTIONALLY LEFT BLANK.
This change should not be shipped to end users: delete this section in
the final migration guide!
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Fixes#12016.
Bump version after release
This PR has been auto-generated
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François <mockersf@gmail.com>
# Objective
#10644 introduced nice "statically typed" labels that replace the old
strings. I would like to propose some changes to the names introduced:
* `SubGraph2d` -> `Core2d` and `SubGraph3d` -> `Core3d`. The names of
these graphs have been / should continue to be the "core 2d" graph not
the "sub graph 2d" graph. The crate is called `bevy_core_pipeline`, the
modules are still `core_2d` and `core_3d`, etc.
* `Labels2d` and `Labels3d`, at the very least, should not be plural to
follow naming conventions. A Label enum is not a "collection of labels",
it is a _specific_ Label. However I think `Label2d` and `Label3d` is
significantly less clear than `Node2d` and `Node3d`, so I propose those
changes here. I've done the same for `LabelsPbr` -> `NodePbr` and
`LabelsUi` -> `NodeUi`
Additionally, #10644 accidentally made one of the Camera2dBundle
constructors use the 3D graph instead of the 2D graph. I've fixed that
here.
---
## Changelog
* Renamed `SubGraph2d` -> `Core2d`, `SubGraph3d` -> `Core3d`, `Labels2d`
-> `Node2d`, `Labels3d` -> `Node3d`, `LabelsUi` -> `NodeUi`, `LabelsPbr`
-> `NodePbr`
# Objective
- There are multiple instances of `let Some(x) = ... else { None };`
throughout the project.
- Because `Option<T>` implements
[`Try`](https://doc.rust-lang.org/stable/std/ops/trait.Try.html), it can
use the question mark `?` operator.
## Solution
- Use question mark operator instead of `let Some(x) = ... else { None
}`.
---
There was another PR that did a similar thing a few weeks ago, but I
couldn't find it.
# Objective
Reduce the size of `bevy_utils`
(https://github.com/bevyengine/bevy/issues/11478)
## Solution
Move `EntityHash` related types into `bevy_ecs`. This also allows us
access to `Entity`, which means we no longer need `EntityHashMap`'s
first generic argument.
---
## Changelog
- Moved `bevy::utils::{EntityHash, EntityHasher, EntityHashMap,
EntityHashSet}` into `bevy::ecs::entity::hash` .
- Removed `EntityHashMap`'s first generic argument. It is now hardcoded
to always be `Entity`.
## Migration Guide
- Uses of `bevy::utils::{EntityHash, EntityHasher, EntityHashMap,
EntityHashSet}` now have to be imported from `bevy::ecs::entity::hash`.
- Uses of `EntityHashMap` no longer have to specify the first generic
parameter. It is now hardcoded to always be `Entity`.
This fixes a `FIXME` in `extract_meshes` and results in a performance
improvement.
As a result of this change, meshes in the render world might not be
attached to entities anymore. Therefore, the `entity` parameter to
`RenderCommand::render()` is now wrapped in an `Option`. Most
applications that use the render app's ECS can simply unwrap the
`Option`.
Note that for now sprites, gizmos, and UI elements still use the render
world as usual.
## Migration guide
* For efficiency reasons, some meshes in the render world may not have
corresponding `Entity` IDs anymore. As a result, the `entity` parameter
to `RenderCommand::render()` is now wrapped in an `Option`. Custom
rendering code may need to be updated to handle the case in which no
`Entity` exists for an object that is to be rendered.
> Follow up to #11600 and #10588
@mockersf expressed some [valid
concerns](https://github.com/bevyengine/bevy/pull/11600#issuecomment-1932796498)
about the current system this PR attempts to fix:
The `ComputedTextureSlices` reacts to asset change in both `bevy_sprite`
and `bevy_ui`, meaning that if the `ImageScaleMode` is inserted by
default in the bundles, we will iterate through most 2d items every time
an asset is updated.
# Solution
- `ImageScaleMode` only has two variants: `Sliced` and `Tiled`. I
removed the `Stretched` default
- `ImageScaleMode` is no longer part of any bundle, but the relevant
bundles explain that this additional component can be inserted
This way, the *absence* of `ImageScaleMode` means the image will be
stretched, and its *presence* will include the entity to the various
slicing systems
Optional components in bundles would make this more straigthfoward
# Additional work
Should I add new bundles with the `ImageScaleMode` component ?
> Follow up to #10588
> Closes#11749 (Supersedes #11756)
Enable Texture slicing for the following UI nodes:
- `ImageBundle`
- `ButtonBundle`
<img width="739" alt="Screenshot 2024-01-29 at 13 57 43"
src="https://github.com/bevyengine/bevy/assets/26703856/37675681-74eb-4689-ab42-024310cf3134">
I also added a collection of `fantazy-ui-borders` from
[Kenney's](www.kenney.nl) assets, with the appropriate license (CC).
If it's a problem I can use the same textures as the `sprite_slice`
example
# Work done
Added the `ImageScaleMode` component to the targetted bundles, most of
the logic is directly reused from `bevy_sprite`.
The only additional internal component is the UI specific
`ComputedSlices`, which does the same thing as its spritee equivalent
but adapted to UI code.
Again the slicing is not compatible with `TextureAtlas`, it's something
I need to tackle more deeply in the future
# Fixes
* [x] I noticed that `TextureSlicer::compute_slices` could infinitely
loop if the border was larger that the image half extents, now an error
is triggered and the texture will fallback to being stretched
* [x] I noticed that when using small textures with very small *tiling*
options we could generate hundred of thousands of slices. Now I set a
minimum size of 1 pixel per slice, which is already ridiculously small,
and a warning will be sent at runtime when slice count goes above 1000
* [x] Sprite slicing with `flip_x` or `flip_y` would give incorrect
results, correct flipping is now supported to both sprites and ui image
nodes thanks to @odecay observation
# GPU Alternative
I create a separate branch attempting to implementing 9 slicing and
tiling directly through the `ui.wgsl` fragment shader. It works but
requires sending more data to the GPU:
- slice border
- tiling factors
And more importantly, the actual quad *scale* which is hard to put in
the shader with the current code, so that would be for a later iteration
# Objective
During my exploratory work on the remote editor, I found a couple of
types that were either not registered, or that were missing
`ReflectDefault`.
## Solution
- Added registration and `ReflectDefault` where applicable
- (Drive by fix) Moved `Option<f32>` registration to `bevy_core` instead
of `bevy_ui`, along with similar types.
---
## Changelog
- Fixed: Registered `FogSettings`, `FogFalloff`,
`ParallaxMappingMethod`, `OpaqueRendererMethod` structs for reflection
- Fixed: Registered `ReflectDefault` trait for `ColorGrading` and
`CascadeShadowConfig` structs
# Objective
Includes the UI node size as a parameter to the UiMaterial shader,
useful for SDF-based rendering, aspect ratio correction and other use
cases.
Fixes#11392
## Solution
Added the node size to the UiMaterial vertex shader params and also to
the data that is passed to the fragment shader.
## Migration Guide
This change should be backwards compatible, using the new field is
optional.
Note to reviewers: render pipelines are a bit outside my comfort zone,
so please make sure I haven't made any mistakes.
---------
Co-authored-by: Rob Parrett <robparrett@gmail.com>
# Objective
- Some places manually use a `bool` /`AtomicBool` to warn once.
## Solution
- Use the `warn_once` macro which internally creates an `AtomicBool`.
Downside: in some case the warning state would have been reset after
recreating the struct carrying the warn state, whereas now it will
always warn only once per program run (For example, if all
`MeshPipeline`s are dropped or the `World` is recreated for
`Local<bool>`/ a `bool` resource, which shouldn't happen over the course
of a standard `App` run).
---
## Changelog
### Removed
- `FontAtlasWarning` has been removed, but the corresponding warning is
still emitted.
# Objective
- (Partially) Fixes#9904
- Acts on #9910
## Solution
- Deprecated the relevant methods from `Query`, cascading changes as
required across Bevy.
---
## Changelog
- Deprecated `QueryState::get_component_unchecked_mut` method
- Deprecated `Query::get_component` method
- Deprecated `Query::get_component_mut` method
- Deprecated `Query::component` method
- Deprecated `Query::component_mut` method
- Deprecated `Query::get_component_unchecked_mut` method
## Migration Guide
### `QueryState::get_component_unchecked_mut`
Use `QueryState::get_unchecked_manual` and select for the exact
component based on the structure of the exact query as required.
### `Query::(get_)component(_unchecked)(_mut)`
Use `Query::get` and select for the exact component based on the
structure of the exact query as required.
- For mutable access (`_mut`), use `Query::get_mut`
- For unchecked access (`_unchecked`), use `Query::get_unchecked`
- For panic variants (non-`get_`), add `.unwrap()`
## Notes
- `QueryComponentError` can be removed once these deprecated methods are
also removed. Due to an interaction with `thiserror`'s derive macro, it
is not marked as deprecated.
# Objective
Currently the `missing_docs` lint is allowed-by-default and enabled at
crate level when their documentations is complete (see #3492).
This PR proposes to inverse this logic by making `missing_docs`
warn-by-default and mark crates with imcomplete docs allowed.
## Solution
Makes `missing_docs` warn at workspace level and allowed at crate level
when the docs is imcomplete.
# Objective
The whole `Cow<'static, str>` naming for nodes and subgraphs in
`RenderGraph` is a mess.
## Solution
Replaces hardcoded and potentially overlapping strings for nodes and
subgraphs inside `RenderGraph` with bevy's labelsystem.
---
## Changelog
* Two new labels: `RenderLabel` and `RenderSubGraph`.
* Replaced all uses for hardcoded strings with those labels
* Moved `Taa` label from its own mod to all the other `Labels3d`
* `add_render_graph_edges` now needs a tuple of labels
* Moved `ScreenSpaceAmbientOcclusion` label from its own mod with the
`ShadowPass` label to `LabelsPbr`
* Removed `NodeId`
* Renamed `Edges.id()` to `Edges.label()`
* Removed `NodeLabel`
* Changed examples according to the new label system
* Introduced new `RenderLabel`s: `Labels2d`, `Labels3d`, `LabelsPbr`,
`LabelsUi`
* Introduced new `RenderSubGraph`s: `SubGraph2d`, `SubGraph3d`,
`SubGraphUi`
* Removed `Reflect` and `Default` derive from `CameraRenderGraph`
component struct
* Improved some error messages
## Migration Guide
For Nodes and SubGraphs, instead of using hardcoded strings, you now
pass labels, which can be derived with structs and enums.
```rs
// old
#[derive(Default)]
struct MyRenderNode;
impl MyRenderNode {
pub const NAME: &'static str = "my_render_node"
}
render_app
.add_render_graph_node::<ViewNodeRunner<MyRenderNode>>(
core_3d::graph::NAME,
MyRenderNode::NAME,
)
.add_render_graph_edges(
core_3d::graph::NAME,
&[
core_3d::graph::node::TONEMAPPING,
MyRenderNode::NAME,
core_3d::graph::node::END_MAIN_PASS_POST_PROCESSING,
],
);
// new
use bevy::core_pipeline::core_3d::graph::{Labels3d, SubGraph3d};
#[derive(Debug, Hash, PartialEq, Eq, Clone, RenderLabel)]
pub struct MyRenderLabel;
#[derive(Default)]
struct MyRenderNode;
render_app
.add_render_graph_node::<ViewNodeRunner<MyRenderNode>>(
SubGraph3d,
MyRenderLabel,
)
.add_render_graph_edges(
SubGraph3d,
(
Labels3d::Tonemapping,
MyRenderLabel,
Labels3d::EndMainPassPostProcessing,
),
);
```
### SubGraphs
#### in `bevy_core_pipeline::core_2d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `NAME` | `SubGraph2d` |
#### in `bevy_core_pipeline::core_3d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `NAME` | `SubGraph3d` |
#### in `bevy_ui::render`
| old string-based path | new label |
|-----------------------|-----------|
| `draw_ui_graph::NAME` | `graph::SubGraphUi` |
### Nodes
#### in `bevy_core_pipeline::core_2d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `node::MSAA_WRITEBACK` | `Labels2d::MsaaWriteback` |
| `node::MAIN_PASS` | `Labels2d::MainPass` |
| `node::BLOOM` | `Labels2d::Bloom` |
| `node::TONEMAPPING` | `Labels2d::Tonemapping` |
| `node::FXAA` | `Labels2d::Fxaa` |
| `node::UPSCALING` | `Labels2d::Upscaling` |
| `node::CONTRAST_ADAPTIVE_SHARPENING` |
`Labels2d::ConstrastAdaptiveSharpening` |
| `node::END_MAIN_PASS_POST_PROCESSING` |
`Labels2d::EndMainPassPostProcessing` |
#### in `bevy_core_pipeline::core_3d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `node::MSAA_WRITEBACK` | `Labels3d::MsaaWriteback` |
| `node::PREPASS` | `Labels3d::Prepass` |
| `node::DEFERRED_PREPASS` | `Labels3d::DeferredPrepass` |
| `node::COPY_DEFERRED_LIGHTING_ID` | `Labels3d::CopyDeferredLightingId`
|
| `node::END_PREPASSES` | `Labels3d::EndPrepasses` |
| `node::START_MAIN_PASS` | `Labels3d::StartMainPass` |
| `node::MAIN_OPAQUE_PASS` | `Labels3d::MainOpaquePass` |
| `node::MAIN_TRANSMISSIVE_PASS` | `Labels3d::MainTransmissivePass` |
| `node::MAIN_TRANSPARENT_PASS` | `Labels3d::MainTransparentPass` |
| `node::END_MAIN_PASS` | `Labels3d::EndMainPass` |
| `node::BLOOM` | `Labels3d::Bloom` |
| `node::TONEMAPPING` | `Labels3d::Tonemapping` |
| `node::FXAA` | `Labels3d::Fxaa` |
| `node::UPSCALING` | `Labels3d::Upscaling` |
| `node::CONTRAST_ADAPTIVE_SHARPENING` |
`Labels3d::ContrastAdaptiveSharpening` |
| `node::END_MAIN_PASS_POST_PROCESSING` |
`Labels3d::EndMainPassPostProcessing` |
#### in `bevy_core_pipeline`
| old string-based path | new label |
|-----------------------|-----------|
| `taa::draw_3d_graph::node::TAA` | `Labels3d::Taa` |
#### in `bevy_pbr`
| old string-based path | new label |
|-----------------------|-----------|
| `draw_3d_graph::node::SHADOW_PASS` | `LabelsPbr::ShadowPass` |
| `ssao::draw_3d_graph::node::SCREEN_SPACE_AMBIENT_OCCLUSION` |
`LabelsPbr::ScreenSpaceAmbientOcclusion` |
| `deferred::DEFFERED_LIGHTING_PASS` | `LabelsPbr::DeferredLightingPass`
|
#### in `bevy_render`
| old string-based path | new label |
|-----------------------|-----------|
| `main_graph::node::CAMERA_DRIVER` | `graph::CameraDriverLabel` |
#### in `bevy_ui::render`
| old string-based path | new label |
|-----------------------|-----------|
| `draw_ui_graph::node::UI_PASS` | `graph::LabelsUi::UiPass` |
---
## Future work
* Make `NodeSlot`s also use types. Ideally, we have an enum with unit
variants where every variant resembles one slot. Then to make sure you
are using the right slot enum and make rust-analyzer play nicely with
it, we should make an associated type in the `Node` trait. With today's
system, we can introduce 3rd party slots to a node, and i wasnt sure if
this was used, so I didn't do this in this PR.
## Unresolved Questions
When looking at the `post_processing` example, we have a struct for the
label and a struct for the node, this seems like boilerplate and on
discord, @IceSentry (sowy for the ping)
[asked](https://discord.com/channels/691052431525675048/743663924229963868/1175197016947699742)
if a node could automatically introduce a label (or i completely
misunderstood that). The problem with that is, that nodes like
`EmptyNode` exist multiple times *inside the same* (sub)graph, so there
we need extern labels to distinguish between those. Hopefully we can
find a way to reduce boilerplate and still have everything unique. For
EmptyNode, we could maybe make a macro which implements an "empty node"
for a type, but for nodes which contain code and need to be present
multiple times, this could get nasty...
# Objective
- `bevy_ui` fails to compile without `bevy_text` being enabled.
- Fixes#11363.
## Solution
- Add `#[cfg(feature = "bevy_text")]` to all items that require it.
I think this change is honestly a bit ugly, but I can't see any other
way around it. I considered making `bevy_text` required, but we agreed
[on
Discord](https://discord.com/channels/691052431525675048/743663673393938453/1196868117486379148)
that there were some use cases for `bevy_ui` without `bevy_text`. If you
have any ideas that decreases the amount of `#[cfg(...)]`s and
`#[allow(...)]`s, that would be greatly appreciated.
This was tested by running the following commands:
```shell
$ cargo clippy -p bevy_ui
$ cargo clippy -p bevy_ui -F bevy_text
$ cargo run -p ci
```
---
## Changelog
- Fixed `bevy_ui` not compiling without `bevy_text`.
# Objective
- Resolves#11377
## Solution
- Add marker component `IsDefaultUiCamera` that will be choosen first as
the default camera.
If you want the IsDefaultUiCamera default camera to be in another
window, thats now possible.
- `IsDefaultUiCamera` is expected to be within a single Camera, if that
assertion fails, one PrimaryWindow Camera will be choosen.
---
## Changelog
### Added
- Added `IsDefaultUiCamera` marker component.
---------
Co-authored-by: Mateusz Wachowiak <mateusz_wachowiak@outlook.com>
# Objective
> Can anyone explain to me the reasoning of renaming all the types named
Query to Data. I'm talking about this PR
https://github.com/bevyengine/bevy/pull/10779 It doesn't make sense to
me that a bunch of types that are used to run queries aren't named Query
anymore. Like ViewQuery on the ViewNode is the type of the Query. I
don't really understand the point of the rename, it just seems like it
hides the fact that a query will run based on those types.
[@IceSentry](https://discord.com/channels/691052431525675048/692572690833473578/1184946251431694387)
## Solution
Revert several renames in #10779.
## Changelog
- `ViewNode::ViewData` is now `ViewNode::ViewQuery` again.
## Migration Guide
- This PR amends the migration guide in
https://github.com/bevyengine/bevy/pull/10779
---------
Co-authored-by: atlas dostal <rodol@rivalrebels.com>
# Objective
fix an occasional crash when moving ui root nodes between cameras.
occasionally, updating the TargetCamera of a ui element and then
removing the element causes a crash.
i believe that is because when we assign a child in taffy, the old
parent doesn't remove that child from it's children, so we have:
```
user: create root node N1, camera A
-> layout::set_camera_children(A) :
- create implicit node A1
- assign 1 as child -> taffy.children[A1] = [N1], taffy.parents[1] = A1
user: move root node N1 to camera B
-> layout::set_camera_children(B) :
- create implicit node B1
- assign 1 as child -> taffy.children[A1] = [N1], taffy.children[B1] = [N1], taffy.parents[1] = B1
-> layout::set_camera_children(A) :
- remove implicit node A1 (which still has N1 as a child) ->
-> taffy sets parent[N1] = None ***
-> taffy.children[B1] = [N1], taffy.parents[1] = None
user: remove N1
-> layout::remove_entities(N1)
- since parent[N1] is None, it's not removed from B1 -> taffy.children[B1] = [N1], taffy.parents[1] is removed
-> layout::set_camera_children(B)
- remove implicit node B1
- taffy crash accessing taffy.parents[N1]
```
## Solution
we can work around this by making sure to remove the child from the old
parent if one exists (this pr).
i think a better fix may be for taffy to check in `Taffy::remove` and
only set the child's parent to None if it is currently equal to the node
being removed but i'm not sure if there's an explicit assumption we're
violating here (@nicoburns).
# Objective
> Old MR: #5072
> ~~Associated UI MR: #5070~~
> Adresses #1618
Unify sprite management
## Solution
- Remove the `Handle<Image>` field in `TextureAtlas` which is the main
cause for all the boilerplate
- Remove the redundant `TextureAtlasSprite` component
- Renamed `TextureAtlas` asset to `TextureAtlasLayout`
([suggestion](https://github.com/bevyengine/bevy/pull/5103#discussion_r917281844))
- Add a `TextureAtlas` component, containing the atlas layout handle and
the section index
The difference between this solution and #5072 is that instead of the
`enum` approach is that we can more easily manipulate texture sheets
without any breaking changes for classic `SpriteBundle`s (@mockersf
[comment](https://github.com/bevyengine/bevy/pull/5072#issuecomment-1165836139))
Also, this approach is more *data oriented* extracting the
`Handle<Image>` and avoiding complex texture atlas manipulations to
retrieve the texture in both applicative and engine code.
With this method, the only difference between a `SpriteBundle` and a
`SpriteSheetBundle` is an **additional** component storing the atlas
handle and the index.
~~This solution can be applied to `bevy_ui` as well (see #5070).~~
EDIT: I also applied this solution to Bevy UI
## Changelog
- (**BREAKING**) Removed `TextureAtlasSprite`
- (**BREAKING**) Renamed `TextureAtlas` to `TextureAtlasLayout`
- (**BREAKING**) `SpriteSheetBundle`:
- Uses a `Sprite` instead of a `TextureAtlasSprite` component
- Has a `texture` field containing a `Handle<Image>` like the
`SpriteBundle`
- Has a new `TextureAtlas` component instead of a
`Handle<TextureAtlasLayout>`
- (**BREAKING**) `DynamicTextureAtlasBuilder::add_texture` takes an
additional `&Handle<Image>` parameter
- (**BREAKING**) `TextureAtlasLayout::from_grid` no longer takes a
`Handle<Image>` parameter
- (**BREAKING**) `TextureAtlasBuilder::finish` now returns a
`Result<(TextureAtlasLayout, Handle<Image>), _>`
- `bevy_text`:
- `GlyphAtlasInfo` stores the texture `Handle<Image>`
- `FontAtlas` stores the texture `Handle<Image>`
- `bevy_ui`:
- (**BREAKING**) Removed `UiAtlasImage` , the atlas bundle is now
identical to the `ImageBundle` with an additional `TextureAtlas`
## Migration Guide
* Sprites
```diff
fn my_system(
mut images: ResMut<Assets<Image>>,
- mut atlases: ResMut<Assets<TextureAtlas>>,
+ mut atlases: ResMut<Assets<TextureAtlasLayout>>,
asset_server: Res<AssetServer>
) {
let texture_handle: asset_server.load("my_texture.png");
- let layout = TextureAtlas::from_grid(texture_handle, Vec2::new(25.0, 25.0), 5, 5, None, None);
+ let layout = TextureAtlasLayout::from_grid(Vec2::new(25.0, 25.0), 5, 5, None, None);
let layout_handle = atlases.add(layout);
commands.spawn(SpriteSheetBundle {
- sprite: TextureAtlasSprite::new(0),
- texture_atlas: atlas_handle,
+ atlas: TextureAtlas {
+ layout: layout_handle,
+ index: 0
+ },
+ texture: texture_handle,
..Default::default()
});
}
```
* UI
```diff
fn my_system(
mut images: ResMut<Assets<Image>>,
- mut atlases: ResMut<Assets<TextureAtlas>>,
+ mut atlases: ResMut<Assets<TextureAtlasLayout>>,
asset_server: Res<AssetServer>
) {
let texture_handle: asset_server.load("my_texture.png");
- let layout = TextureAtlas::from_grid(texture_handle, Vec2::new(25.0, 25.0), 5, 5, None, None);
+ let layout = TextureAtlasLayout::from_grid(Vec2::new(25.0, 25.0), 5, 5, None, None);
let layout_handle = atlases.add(layout);
commands.spawn(AtlasImageBundle {
- texture_atlas_image: UiTextureAtlasImage {
- index: 0,
- flip_x: false,
- flip_y: false,
- },
- texture_atlas: atlas_handle,
+ atlas: TextureAtlas {
+ layout: layout_handle,
+ index: 0
+ },
+ image: UiImage {
+ texture: texture_handle,
+ flip_x: false,
+ flip_y: false,
+ },
..Default::default()
});
}
```
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
# Objective
Add support for presenting each UI tree on a specific window and
viewport, while making as few breaking changes as possible.
This PR is meant to resolve the following issues at once, since they're
all related.
- Fixes#5622
- Fixes#5570
- Fixes#5621
Adopted #5892 , but started over since the current codebase diverged
significantly from the original PR branch. Also, I made a decision to
propagate component to children instead of recursively iterating over
nodes in search for the root.
## Solution
Add a new optional component that can be inserted to UI root nodes and
propagate to children to specify which camera it should render onto.
This is then used to get the render target and the viewport for that UI
tree. Since this component is optional, the default behavior should be
to render onto the single camera (if only one exist) and warn of
ambiguity if multiple cameras exist. This reduces the complexity for
users with just one camera, while giving control in contexts where it
matters.
## Changelog
- Adds `TargetCamera(Entity)` component to specify which camera should a
node tree be rendered into. If only one camera exists, this component is
optional.
- Adds an example of rendering UI to a texture and using it as a
material in a 3D world.
- Fixes recalculation of physical viewport size when target scale factor
changes. This can happen when the window is moved between displays with
different DPI.
- Changes examples to demonstrate assigning UI to different viewports
and windows and make interactions in an offset viewport testable.
- Removes `UiCameraConfig`. UI visibility now can be controlled via
combination of explicit `TargetCamera` and `Visibility` on the root
nodes.
---------
Co-authored-by: davier <bricedavier@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
# Objective
- Fixes#11119
## Solution
- Creation of the serialize feature to ui
---
## Changelog
### Changed
- Changed all the structs that implement Serialize and Deserialize to
only implement when feature is on
## Migration Guide
- If you want to use serialize and deserialize with types from bevy_ui,
you need to use the feature serialize in your TOML
```toml
[dependencies.bevy]
features = ["serialize"]
```
# Objective
- No point in keeping Meshes/Images in RAM once they're going to be sent
to the GPU, and kept in VRAM. This saves a _significant_ amount of
memory (several GBs) on scenes like bistro.
- References
- https://github.com/bevyengine/bevy/pull/1782
- https://github.com/bevyengine/bevy/pull/8624
## Solution
- Augment RenderAsset with the capability to unload the underlying asset
after extracting to the render world.
- Mesh/Image now have a cpu_persistent_access field. If this field is
RenderAssetPersistencePolicy::Unload, the asset will be unloaded from
Assets<T>.
- A new AssetEvent is sent upon dropping the last strong handle for the
asset, which signals to the RenderAsset to remove the GPU version of the
asset.
---
## Changelog
- Added `AssetEvent::NoLongerUsed` and
`AssetEvent::is_no_longer_used()`. This event is sent when the last
strong handle of an asset is dropped.
- Rewrote the API for `RenderAsset` to allow for unloading the asset
data from the CPU.
- Added `RenderAssetPersistencePolicy`.
- Added `Mesh::cpu_persistent_access` for memory savings when the asset
is not needed except for on the GPU.
- Added `Image::cpu_persistent_access` for memory savings when the asset
is not needed except for on the GPU.
- Added `ImageLoaderSettings::cpu_persistent_access`.
- Added `ExrTextureLoaderSettings`.
- Added `HdrTextureLoaderSettings`.
## Migration Guide
- Asset loaders (GLTF, etc) now load meshes and textures without
`cpu_persistent_access`. These assets will be removed from
`Assets<Mesh>` and `Assets<Image>` once `RenderAssets<Mesh>` and
`RenderAssets<Image>` contain the GPU versions of these assets, in order
to reduce memory usage. If you require access to the asset data from the
CPU in future frames after the GLTF asset has been loaded, modify all
dependent `Mesh` and `Image` assets and set `cpu_persistent_access` to
`RenderAssetPersistencePolicy::Keep`.
- `Mesh` now requires a new `cpu_persistent_access` field. Set it to
`RenderAssetPersistencePolicy::Keep` to mimic the previous behavior.
- `Image` now requires a new `cpu_persistent_access` field. Set it to
`RenderAssetPersistencePolicy::Keep` to mimic the previous behavior.
- `MorphTargetImage::new()` now requires a new `cpu_persistent_access`
parameter. Set it to `RenderAssetPersistencePolicy::Keep` to mimic the
previous behavior.
- `DynamicTextureAtlasBuilder::add_texture()` now requires that the
`TextureAtlas` you pass has an `Image` with `cpu_persistent_access:
RenderAssetPersistencePolicy::Keep`. Ensure you construct the image
properly for the texture atlas.
- The `RenderAsset` trait has significantly changed, and requires
adapting your existing implementations.
- The trait now requires `Clone`.
- The `ExtractedAsset` associated type has been removed (the type itself
is now extracted).
- The signature of `prepare_asset()` is slightly different
- A new `persistence_policy()` method is now required (return
RenderAssetPersistencePolicy::Unload to match the previous behavior).
- Match on the new `NoLongerUsed` variant for exhaustive matches of
`AssetEvent`.
# Objective
- Custom render passes, or future passes in the engine (such as
https://github.com/bevyengine/bevy/pull/10164) need a better way to know
and indicate to the core passes whether the view color/depth/prepass
attachments have been cleared or not yet this frame, to know if they
should clear it themselves or load it.
## Solution
- For all render targets (depth textures, shadow textures, prepass
textures, main textures) use an atomic bool to track whether or not each
texture has been cleared this frame. Abstracted away in the new
ColorAttachment and DepthAttachment wrappers.
---
## Changelog
- Changed `ViewTarget::get_color_attachment()`, removed arguments.
- Changed `ViewTarget::get_unsampled_color_attachment()`, removed
arguments.
- Removed `Camera3d::clear_color`.
- Removed `Camera2d::clear_color`.
- Added `Camera::clear_color`.
- Added `ExtractedCamera::clear_color`.
- Added `ColorAttachment` and `DepthAttachment` wrappers.
- Moved `ClearColor` and `ClearColorConfig` from
`bevy::core_pipeline::clear_color` to `bevy::render::camera`.
- Core render passes now track when a texture is first bound as an
attachment in order to decide whether to clear or load it.
## Migration Guide
- Remove arguments to `ViewTarget::get_color_attachment()` and
`ViewTarget::get_unsampled_color_attachment()`.
- Configure clear color on `Camera` instead of on `Camera3d` and
`Camera2d`.
- Moved `ClearColor` and `ClearColorConfig` from
`bevy::core_pipeline::clear_color` to `bevy::render::camera`.
- `ViewDepthTexture` must now be created via the `new()` method
---------
Co-authored-by: vero <email@atlasdostal.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Fix ci hang, so we can merge pr's again.
## Solution
- switch ppa action to use mesa stable versions
https://launchpad.net/~kisak/+archive/ubuntu/turtle
- use commit from #11123
---------
Co-authored-by: Stepan Koltsov <stepan.koltsov@gmail.com>
Matches versioning & features from other Cargo.toml files in the
project.
# Objective
Resolves#10932
## Solution
Added smallvec to the bevy_utils cargo.toml and added a line to
re-export the crate. Target version and features set to match what's
used in the other bevy crates.
# Objective
Outlines are drawn for UI nodes with `Display::None` set and their
descendants. They should not be visible.
## Solution
Make all Nodes with `Display::None` inherit an empty clipping rect,
ensuring that the outlines are not visible.
Fixes#10940
---
## Changelog
* In `update_clipping_system` if a node has `Display::None` set, clip
the entire node and all its descendants by replacing the inherited clip
with a default rect (which is empty)
# Objective
- Finish the work done in #8942 .
## Solution
- Rebase the changes made in #8942 and fix the issues stopping it from
being merged earlier
---------
Co-authored-by: Thomas <1234328+thmsgntz@users.noreply.github.com>
# Objective
Keep up to date with wgpu.
## Solution
Update the wgpu version.
Currently blocked on naga_oil updating to naga 0.14 and releasing a new
version.
3d scenes (or maybe any scene with lighting?) currently don't render
anything due to
```
error: naga_oil bug, please file a report: composer failed to build a valid header: Type [2] '' is invalid
= Capability Capabilities(CUBE_ARRAY_TEXTURES) is required
```
I'm not sure what should be passed in for `wgpu::InstanceFlags`, or if we want to make the gles3minorversion configurable (might be useful for debugging?)
Currently blocked on https://github.com/bevyengine/naga_oil/pull/63, and https://github.com/gfx-rs/wgpu/issues/4569 to be fixed upstream in wgpu first.
## Known issues
Amd+windows+vulkan has issues with texture_binding_arrays (see the image [here](https://github.com/bevyengine/bevy/pull/10266#issuecomment-1819946278)), but that'll be fixed in the next wgpu/naga version, and you can just use dx12 as a workaround for now (Amd+linux mesa+vulkan texture_binding_arrays are fixed though).
---
## Changelog
Updated wgpu to 0.18, naga to 0.14.2, and naga_oil to 0.11.
- Windows desktop GL should now be less painful as it no longer requires Angle.
- You can now toggle shader validation and debug information for debug and release builds using `WgpuSettings.instance_flags` and [InstanceFlags](https://docs.rs/wgpu/0.18.0/wgpu/struct.InstanceFlags.html)
## Migration Guide
- `RenderPassDescriptor` `color_attachments` (as well as `RenderPassColorAttachment`, and `RenderPassDepthStencilAttachment`) now use `StoreOp::Store` or `StoreOp::Discard` instead of a `boolean` to declare whether or not they should be stored.
- `RenderPassDescriptor` now have `timestamp_writes` and `occlusion_query_set` fields. These can safely be set to `None`.
- `ComputePassDescriptor` now have a `timestamp_writes` field. This can be set to `None` for now.
- See the [wgpu changelog](https://github.com/gfx-rs/wgpu/blob/trunk/CHANGELOG.md#v0180-2023-10-25) for additional details
# Objective
A nodes outline should be clipped using its own clipping rect, not its
parents.
fixes#10921
## Solution
Clip outlines by the node's own clipping rect, not the parent's.
If you compare the `overflow` ui example in main with this PR, you'll
see that the outlines that appear when you hover above the images are
now clipped along with the images.
---
## Changelog
* Outlines are now clipped using the node's own clipping rect, not the
parent's.
# Objective
- Resolves#10853
## Solution
- ~~Changed the name of `Input` struct to `PressableInput`.~~
- Changed the name of `Input` struct to `ButtonInput`.
## Migration Guide
- Breaking Change: Users need to rename `Input` to `ButtonInput` in
their projects.
# Objective
The name `TextAlignment` is really deceptive and almost every new user
gets confused about the differences between aligning text with
`TextAlignment`, aligning text with `Style` and aligning text with
anchor (when using `Text2d`).
## Solution
* Rename `TextAlignment` to `JustifyText`. The associated helper methods
are also renamed.
* Improve the doc comments for text explaining explicitly how the
`JustifyText` component affects the arrangement of text.
* Add some extra cases to the `text_debug` example that demonstate the
differences between alignment using `JustifyText` and alignment using
`Style`.
<img width="757" alt="text_debug_2"
src="https://github.com/bevyengine/bevy/assets/27962798/9d53e647-93f9-4bc7-8a20-0d9f783304d2">
---
## Changelog
* `TextAlignment` has been renamed to `JustifyText`
* `TextBundle::with_text_alignment` has been renamed to
`TextBundle::with_text_justify`
* `Text::with_alignment` has been renamed to `Text::with_justify`
* The `text_alignment` field of `TextMeasureInfo` has been renamed to
`justification`
## Migration Guide
* `TextAlignment` has been renamed to `JustifyText`
* `TextBundle::with_text_alignment` has been renamed to
`TextBundle::with_text_justify`
* `Text::with_alignment` has been renamed to `Text::with_justify`
* The `text_alignment` field of `TextMeasureInfo` has been renamed to
`justification`
# Objective
- Shorten paths by removing unnecessary prefixes
## Solution
- Remove the prefixes from many paths which do not need them. Finding
the paths was done automatically using built-in refactoring tools in
Jetbrains RustRover.
# Objective
`GlobalsUniform` provides the current time to shaders, which is useful
for animations. `UiMaterial` is an abstraction that makes it easier to
write custom shaders for UI elements.
This PR makes it possible to use the `GlobalsUniform` in `UiMaterial`
shaders.
## Solution
The `GlobalsUniform` is bound to `@group(0) @binding(1)`. It is
accessible in shaders with:
```wgsl
#import bevy_render::globals::Globals
@group(0) @binding(1)
var<uniform> globals: Globals;
```
---
## Changelog
Added `GlobalsUniform` in `UiMaterial` shaders
## Discussion
Should I modify the existing ui_material example to showcase this?
# Objective
Related to #10612.
Enable the
[`clippy::manual_let_else`](https://rust-lang.github.io/rust-clippy/master/#manual_let_else)
lint as a warning. The `let else` form seems more idiomatic to me than a
`match`/`if else` that either match a pattern or diverge, and from the
clippy doc, the lint doesn't seem to have any possible false positive.
## Solution
Add the lint as warning in `Cargo.toml`, refactor places where the lint
triggers.
# Objective
- Follow up to #9694
## Solution
- Same api as #9694 but adapted for `BindGroupLayoutEntry`
- Use the same `ShaderStages` visibilty for all entries by default
- Add `BindingType` helper function that mirror the wgsl equivalent and
that make writing layouts much simpler.
Before:
```rust
let layout = render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
label: Some("post_process_bind_group_layout"),
entries: &[
BindGroupLayoutEntry {
binding: 0,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Texture {
sample_type: TextureSampleType::Float { filterable: true },
view_dimension: TextureViewDimension::D2,
multisampled: false,
},
count: None,
},
BindGroupLayoutEntry {
binding: 1,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Sampler(SamplerBindingType::Filtering),
count: None,
},
BindGroupLayoutEntry {
binding: 2,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Buffer {
ty: bevy::render::render_resource::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: Some(PostProcessSettings::min_size()),
},
count: None,
},
],
});
```
After:
```rust
let layout = render_device.create_bind_group_layout(
"post_process_bind_group_layout"),
&BindGroupLayoutEntries::sequential(
ShaderStages::FRAGMENT,
(
texture_2d_f32(),
sampler(SamplerBindingType::Filtering),
uniform_buffer(false, Some(PostProcessSettings::min_size())),
),
),
);
```
Here's a more extreme example in bevy_solari:
86dab7f5da
---
## Changelog
- Added `BindGroupLayoutEntries` and all `BindingType` helper functions.
## Migration Guide
`RenderDevice::create_bind_group_layout()` doesn't take a
`BindGroupLayoutDescriptor` anymore. You need to provide the parameters
separately
```rust
// 0.12
let layout = render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
label: Some("post_process_bind_group_layout"),
entries: &[
BindGroupLayoutEntry {
// ...
},
],
});
// 0.13
let layout = render_device.create_bind_group_layout(
"post_process_bind_group_layout",
&[
BindGroupLayoutEntry {
// ...
},
],
);
```
## TODO
- [x] implement a `Dynamic` variant
- [x] update the `RenderDevice::create_bind_group_layout()` api to match
the one from `RenderDevice::creat_bind_group()`
- [x] docs
# Objective
- Fixes#7680
- This is an updated for https://github.com/bevyengine/bevy/pull/8899
which had the same objective but fell a long way behind the latest
changes
## Solution
The traits `WorldQueryData : WorldQuery` and `WorldQueryFilter :
WorldQuery` have been added and some of the types and functions from
`WorldQuery` has been moved into them.
`ReadOnlyWorldQuery` has been replaced with `ReadOnlyWorldQueryData`.
`WorldQueryFilter` is safe (as long as `WorldQuery` is implemented
safely).
`WorldQueryData` is unsafe - safely implementing it requires that
`Self::ReadOnly` is a readonly version of `Self` (this used to be a
safety requirement of `WorldQuery`)
The type parameters `Q` and `F` of `Query` must now implement
`WorldQueryData` and `WorldQueryFilter` respectively.
This makes it impossible to accidentally use a filter in the data
position or vice versa which was something that could lead to bugs.
~~Compile failure tests have been added to check this.~~
It was previously sometimes useful to use `Option<With<T>>` in the data
position. Use `Has<T>` instead in these cases.
The `WorldQuery` derive macro has been split into separate derive macros
for `WorldQueryData` and `WorldQueryFilter`.
Previously it was possible to derive both `WorldQuery` for a struct that
had a mixture of data and filter items. This would not work correctly in
some cases but could be a useful pattern in others. *This is no longer
possible.*
---
## Notes
- The changes outside of `bevy_ecs` are all changing type parameters to
the new types, updating the macro use, or replacing `Option<With<T>>`
with `Has<T>`.
- All `WorldQueryData` types always returned `true` for `IS_ARCHETYPAL`
so I moved it to `WorldQueryFilter` and
replaced all calls to it with `true`. That should be the only logic
change outside of the macro generation code.
- `Changed<T>` and `Added<T>` were being generated by a macro that I
have expanded. Happy to revert that if desired.
- The two derive macros share some functions for implementing
`WorldQuery` but the tidiest way I could find to implement them was to
give them a ton of arguments and ask clippy to ignore that.
## Changelog
### Changed
- Split `WorldQuery` into `WorldQueryData` and `WorldQueryFilter` which
now have separate derive macros. It is not possible to derive both for
the same type.
- `Query` now requires that the first type argument implements
`WorldQueryData` and the second implements `WorldQueryFilter`
## Migration Guide
- Update derives
```rust
// old
#[derive(WorldQuery)]
#[world_query(mutable, derive(Debug))]
struct CustomQuery {
entity: Entity,
a: &'static mut ComponentA
}
#[derive(WorldQuery)]
struct QueryFilter {
_c: With<ComponentC>
}
// new
#[derive(WorldQueryData)]
#[world_query_data(mutable, derive(Debug))]
struct CustomQuery {
entity: Entity,
a: &'static mut ComponentA,
}
#[derive(WorldQueryFilter)]
struct QueryFilter {
_c: With<ComponentC>
}
```
- Replace `Option<With<T>>` with `Has<T>`
```rust
/// old
fn my_system(query: Query<(Entity, Option<With<ComponentA>>)>)
{
for (entity, has_a_option) in query.iter(){
let has_a:bool = has_a_option.is_some();
//todo!()
}
}
/// new
fn my_system(query: Query<(Entity, Has<ComponentA>)>)
{
for (entity, has_a) in query.iter(){
//todo!()
}
}
```
- Fix queries which had filters in the data position or vice versa.
```rust
// old
fn my_system(query: Query<(Entity, With<ComponentA>)>)
{
for (entity, _) in query.iter(){
//todo!()
}
}
// new
fn my_system(query: Query<Entity, With<ComponentA>>)
{
for entity in query.iter(){
//todo!()
}
}
// old
fn my_system(query: Query<AnyOf<(&ComponentA, With<ComponentB>)>>)
{
for (entity, _) in query.iter(){
//todo!()
}
}
// new
fn my_system(query: Query<Option<&ComponentA>, Or<(With<ComponentA>, With<ComponentB>)>>)
{
for entity in query.iter(){
//todo!()
}
}
```
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Resolves #10727.
`outline.width` was being assigned to `node.outline_offset` instead of
`outline.offset`.
## Solution
Changed `.width` to `.offset` in line 413.
# Objective
Problems:
* The clipped, non-visible regions of UI nodes are interactive.
* `RelativeCursorPostion` is set relative to the visible part of the
node. It should be relative to the whole node.
* The `RelativeCursorPostion::mouse_over` method returns `true` when the
mouse is over a clipped part of a node.
fixes#10470
## Solution
Intersect a node's bounding rect with its clipping rect before checking
if it contains the cursor.
Added the field `normalized_visible_node_rect` to
`RelativeCursorPosition`. This is set to the bounds of the unclipped
area of the node rect by `ui_focus_system` expressed in normalized
coordinates relative to the entire node.
Instead of checking if the normalized cursor position lies within a unit
square, it instead checks if it is contained by
`normalized_visible_node_rect`.
Added outlines to the `overflow` example that appear when the cursor is
over the visible part of the images, but not the clipped area.
---
## Changelog
* `ui_focus_system` intersects a node's bounding rect with its clipping
rect before checking if mouse over.
* Added the field `normalized_visible_node_rect` to
`RelativeCursorPosition`. This is set to the bounds of the unclipped
area of the node rect by `ui_focus_system` expressed in normalized
coordinates relative to the entire node.
* `RelativeCursorPostion` is calculated relative to the whole node's
position and size, not only the visible part.
* `RelativeCursorPosition::mouse_over` only returns true when the mouse
is over an unclipped region of the UI node.
* Removed the `Deref` and `DerefMut` derives from
`RelativeCursorPosition` as it is no longer a single field struct.
* Added some outlines to the `overflow` example that respond to
`Interaction` changes.
## Migration Guide
The clipped areas of UI nodes are no longer interactive.
`RelativeCursorPostion` is now calculated relative to the whole node's
position and size, not only the visible part. Its `mouse_over` method
only returns true when the cursor is over an unclipped part of the node.
`RelativeCursorPosition` no longer implements `Deref` and `DerefMut`.
# Objective
Enables warning on `clippy::undocumented_unsafe_blocks` across the
workspace rather than only in `bevy_ecs`, `bevy_transform` and
`bevy_utils`. This adds a little awkwardness in a few areas of code that
have trivial safety or explain safety for multiple unsafe blocks with
one comment however automatically prevents these comments from being
missed.
## Solution
This adds `undocumented_unsafe_blocks = "warn"` to the workspace
`Cargo.toml` and fixes / adds a few missed safety comments. I also added
`#[allow(clippy::undocumented_unsafe_blocks)]` where the safety is
explained somewhere above.
There are a couple of safety comments I added I'm not 100% sure about in
`bevy_animation` and `bevy_render/src/view` and I'm not sure about the
use of `#[allow(clippy::undocumented_unsafe_blocks)]` compared to adding
comments like `// SAFETY: See above`.
# Objective
- Standardize fmt for toml files
## Solution
- Add [taplo](https://taplo.tamasfe.dev/) to CI (check for fmt and diff
for toml files), for context taplo is used by the most popular extension
in VScode [Even Better
TOML](https://marketplace.visualstudio.com/items?itemName=tamasfe.even-better-toml
- Add contribution section to explain toml fmt with taplo.
Now to pass CI you need to run `taplo fmt --option indent_string=" "` or
if you use vscode have the `Even Better TOML` extension with 4 spaces
for indent
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Fix adding `#![allow(clippy::type_complexity)]` everywhere. like #9796
## Solution
- Use the new [lints] table that will land in 1.74
(https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#lints)
- inherit lint to the workspace, crates and examples.
```
[lints]
workspace = true
```
## Changelog
- Bump rust version to 1.74
- Enable lints table for the workspace
```toml
[workspace.lints.clippy]
type_complexity = "allow"
```
- Allow type complexity for all crates and examples
```toml
[lints]
workspace = true
```
---------
Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com>
# Objective
- Fix the panic on using Images in UiMaterials due to assets not being
loaded.
- Fixes#10513
## Solution
- add `let else` statement that `return`s or `continue`s instead of
unwrapping, causing a panic.
# Objective
The quality of Bevy's text rendering can vary wildly depending on the
font, font size, pixel alignment and scale factor.
But this situation can be improved dramatically with some small
adjustments.
## Solution
* Text node positions are rounded to the nearest physical pixel before
rendering.
* Each glyph texture has a 1-pixel wide transparent border added along
its edges.
This means font atlases will use more memory because of the extra pixel
of padding for each glyph but it's more than worth it I think (although
glyph size is increased by 2 pixels on both axes, the net increase is 1
pixel as the font texture atlas's padding has been removed).
## Results
Screenshots are from the 'ui' example with a scale factor of 1.5.
Things can get much uglier with the right font and worst scale
factor<sup>tm</sup>.
### before
<img width="300" alt="list-bad-text"
src="https://github.com/bevyengine/bevy/assets/27962798/482b384d-8743-4bae-9a65-468ff1b4c301">
### after
<img width="300" alt="good_list_text"
src="https://github.com/bevyengine/bevy/assets/27962798/34323b0a-f714-47ba-9728-a59804987bc8">
---
## Changelog
* Font texture atlases are no longer padded.
* Each glyph texture has a 1-pixel wide padding added along its edges.
* Text node positions are rounded to the nearest physical pixel before
rendering.
# Objective
Currently, if a large amount of inactive cameras are spawned, they will
immensely slow down performance.
This can be reproduced by adding
```rust
let default_image = images.add(default());
for _ in 0..10000 {
commands.spawn(Camera3dBundle {
camera: Camera {
is_active: false,
target: RenderTarget::Image(default_image.clone()),
..default()
},
..default()
});
}
```
to for example `3d_shapes`.
Using `tracy`, it's clear that preparing view bind groups for all
cameras is still happening.
Also, visibility checks on the extracted views from inactive cameras
also take place.
## Performance gains
The following `tracy` comparisons show the effect of skipping this
unneeded work.
Yellow is Bevy main, red is with the fix.
### Visibility checks
![bevy-visibility-check-savings](https://github.com/bevyengine/bevy/assets/52322338/154a20ce-bd70-487e-a85c-8b993950ea2b)
### Bind group preparation
![bevy-mesh2d-savings](https://github.com/bevyengine/bevy/assets/52322338/a48d8d9a-8c37-4c34-9698-b1b1bf01f070)
## Solution
- Check if the cameras are inactive in the appropriate places, and if so
skip them
## Changelog
### Changed
- Do not extract views from inactive cameras or check visiblity from
their extracted views
Signed-off-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
Co-authored-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
# Objective
- Entities with both a `BackgroundColor` and a
`Handle<CustomUiMaterial>` are extracted by both pipelines and results
in entities being overwritten in the render world
- Fixes#10431
## Solution
- Ignore entities with `BackgroundColor` when extracting ui material
entities, and document that limit
Preparing next release
This PR has been auto-generated
---------
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François <mockersf@gmail.com>
# Objective
Reimplement #8793 on top of the recent rendering changes.
## Solution
The batch creation logic is quite convoluted, but I tested it on enough
examples to convince myself that it works.
The initial value of `batch_image_handle` is changed from
`HandleId::Id(Uuid::nil(), u64::MAX)` to `DEFAULT_IMAGE_HANDLE.id()`,
which allowed me to make the if-block simpler I think.
The default image from `DEFAULT_IMAGE_HANDLE` is always inserted into
`UiImageBindGroups` even if it's not used. I tried to add a check so
that it would be only inserted when there is only one batch using the
default image but this crashed.
---
## Changelog
`prepare_uinodes`
* Changed the initial value of `batch_image_handle` to
`DEFAULT_IMAGE_HANDLE.id()`.
* The default image is added to the UI image bind groups before
assembling the batches.
* A new `UiBatch` isn't created when the next `ExtractedUiNode`s image
is set to `DEFAULT_IMAGE_HANDLE` (unless it is the first item in the UI
phase items list).
# Objective
- Revert #10296
## Solution
- Avoid implementing `Display` without a justification
- `Display` implementation is a guarantee without a direct use, takes
additional time to compile and require work to maintain
- `Debug`, `Reflect` or `Serialize` should cover all needs
# Objective
If we add the stack index to `Node` then we don't need to walk the
`UiStack` repeatedly during extraction.
## Solution
Add a field `stack_index` to `Node`.
Update it in `ui_stack_system`.
Iterate queries directly in the UI's extraction systems.
### Benchmarks
```
cargo run --profile stress-test --features trace_tracy --example many_buttons -- --no-text --no-borders
```
frames (yellow this PR, red main):
<img width="447" alt="frames-per-second"
src="https://github.com/bevyengine/bevy/assets/27962798/385c0ccf-c257-42a2-b736-117542d56eff">
`ui_stack_system`:
<img width="585" alt="ui-stack-system"
src="https://github.com/bevyengine/bevy/assets/27962798/2916cc44-2887-4c3b-a144-13250d84f7d5">
extract schedule:
<img width="469" alt="extract-schedule"
src="https://github.com/bevyengine/bevy/assets/27962798/858d4ab4-d99f-48e8-b153-1c92f51e0743">
---
## Changelog
* Added the field `stack_index` to `Node`.
* `ui_stack_system` updates `Node::stack_index` after a new `UiStack` is
generated.
* The UI's extraction functions iterate a query directly rather than
walking the `UiStack` and doing lookups.
# Objective
- We need to check multiple times if a color is fully transparent, e.g.
for performance optimizations.
- Make code more readable.
- Reduce code duplication, to simplify making changes if needed (e.g. if
we need to take floating point weirdness into account later on).
## Solution
- Introduce a new `Color::is_fully_transparent` helper function to
determine if the alpha of a color is 0.
- Use the helper function in our UI rendering code.
---
## Changelog
- Added `Color::is_fully_transparent` helper function.
---------
Co-authored-by: François <mockersf@gmail.com>
# Objective
- Address inconsistent term usage in the docs for the alignment
properties for UI nodes. Fixes#10218
- `JustifyContent::Stretch` is missing despite being supported by Taffy,
being as the default value for Grids, so it should be added to Bevy as
well
## Solution
- Consistently provide links to the mdn site for the css equivalent
- Match (mostly) the documentation given on the pub struct and the
underlying enums
- Use the term `items` consistently to refer each child in the container
- Add `JustifyContent::Stretch` and map it to Taffy
## Migration Guide
- The `JustifyContents` enum has been expanded to include
`JustifyContents::Stretch`.
# Objective
Align all error-like types to implement `Error`.
Fixes #10176
## Solution
- Derive `Error` on more types
- Refactor instances of manual implementations that could be derived
This adds thiserror as a dependency to bevy_transform, which might
increase compilation time -- but I don't know of any situation where you
might only use that but not any other crate that pulls in bevy_utils.
The `contributors` example has a `LoadContributorsError` type, but as
it's an example I have not updated it. Doing that would mean either
having a `use bevy_internal::utils::thiserror::Error;` in an example
file, or adding `thiserror` as a dev-dependency to the main `bevy`
crate.
---
## Changelog
- All `…Error` types now implement the `Error` trait
# Objective
Fixes#9395
Alternative to #9415 (See discussion here)
## Solution
Do clamping like
[`fit-content`](https://www.w3.org/TR/css-sizing-3/#column-sizing).
## Notes
I am not sure if this is a valid approach. It doesn't seem to cause any
obvious issues with our existing examples.
# Objective
A follow-up PR for https://github.com/bevyengine/bevy/pull/10221
## Changelog
Replaced usages of texture_descriptor.size with the helper methods of
`Image` through the entire engine codebase
# Objective
While reviewing #10187 I noticed some other mistakes in the UI node
docs.
## Solution
I did a quick proofreading pass and fixed a few things. And of course,
the typo from that other PR.
## Notes
I occasionally insert a period to make a section of doc self-consistent
but didn't go one way or the other on all periods in the file.
---------
Co-authored-by: Noah <noahshomette@gmail.com>
# Objective
Simplify bind group creation code. alternative to (and based on) #9476
## Solution
- Add a `BindGroupEntries` struct that can transparently be used where
`&[BindGroupEntry<'b>]` is required in BindGroupDescriptors.
Allows constructing the descriptor's entries as:
```rust
render_device.create_bind_group(
"my_bind_group",
&my_layout,
&BindGroupEntries::with_indexes((
(2, &my_sampler),
(3, my_uniform),
)),
);
```
instead of
```rust
render_device.create_bind_group(
"my_bind_group",
&my_layout,
&[
BindGroupEntry {
binding: 2,
resource: BindingResource::Sampler(&my_sampler),
},
BindGroupEntry {
binding: 3,
resource: my_uniform,
},
],
);
```
or
```rust
render_device.create_bind_group(
"my_bind_group",
&my_layout,
&BindGroupEntries::sequential((&my_sampler, my_uniform)),
);
```
instead of
```rust
render_device.create_bind_group(
"my_bind_group",
&my_layout,
&[
BindGroupEntry {
binding: 0,
resource: BindingResource::Sampler(&my_sampler),
},
BindGroupEntry {
binding: 1,
resource: my_uniform,
},
],
);
```
the structs has no user facing macros, is tuple-type-based so stack
allocated, and has no noticeable impact on compile time.
- Also adds a `DynamicBindGroupEntries` struct with a similar api that
uses a `Vec` under the hood and allows extending the entries.
- Modifies `RenderDevice::create_bind_group` to take separate arguments
`label`, `layout` and `entries` instead of a `BindGroupDescriptor`
struct. The struct can't be stored due to the internal references, and
with only 3 members arguably does not add enough context to justify
itself.
- Modify the codebase to use the new api and the `BindGroupEntries` /
`DynamicBindGroupEntries` structs where appropriate (whenever the
entries slice contains more than 1 member).
## Migration Guide
- Calls to `RenderDevice::create_bind_group({BindGroupDescriptor {
label, layout, entries })` must be amended to
`RenderDevice::create_bind_group(label, layout, entries)`.
- If `label`s have been specified as `"bind_group_name".into()`, they
need to change to just `"bind_group_name"`. `Some("bind_group_name")`
and `None` will still work, but `Some("bind_group_name")` can optionally
be simplified to just `"bind_group_name"`.
---------
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
# Objective
- bump naga_oil to 0.10
- update shader imports to use rusty syntax
## Migration Guide
naga_oil 0.10 reworks the import mechanism to support more syntax to
make it more rusty, and test for item use before importing to determine
which imports are modules and which are items, which allows:
- use rust-style imports
```
#import bevy_pbr::{
pbr_functions::{alpha_discard as discard, apply_pbr_lighting},
mesh_bindings,
}
```
- import partial paths:
```
#import part::of::path
...
path::remainder::function();
```
which will call to `part::of::path::remainder::function`
- use fully qualified paths without importing:
```
// #import bevy_pbr::pbr_functions
bevy_pbr::pbr_functions::pbr()
```
- use imported items without qualifying
```
#import bevy_pbr::pbr_functions::pbr
// for backwards compatibility the old style is still supported:
// #import bevy_pbr::pbr_functions pbr
...
pbr()
```
- allows most imported items to end with `_` and numbers (naga_oil#30).
still doesn't allow struct members to end with `_` or numbers but it's
progress.
- the vast majority of existing shader code will work without changes,
but will emit "deprecated" warnings for old-style imports. these can be
suppressed with the `allow-deprecated` feature.
- partly breaks overrides (as far as i'm aware nobody uses these yet) -
now overrides will only be applied if the overriding module is added as
an additional import in the arguments to `Composer::make_naga_module` or
`Composer::add_composable_module`. this is necessary to support
determining whether imports are modules or items.
# Objective
Fixes#10069
## Solution
Extracted UI nodes were previously stored in a `SparseSet` and had a
predictable iteration order. UI borders and outlines relied on this. Now
they are stored in a HashMap and that is no longer true.
This adds `entity.index()` to the sort key for `TransparentUi` so that
the iteration order is predictable and the "border entities" that get
spawned during extraction are guaranteed to get drawn after their
respective container nodes again.
I **think** that everything still works for overlapping ui nodes etc,
because the z value / primary sort is still controlled by the "ui
stack."
Text above is just my current understanding. A rendering expert should
check this out.
I will do some more testing when I can.
# Objective
- Add serde Deserialize and Serialize for structs that doesn't implement
it, even if they could benefit from it
## Solution
- Derive these traits for the structs Style, BackgroundColor,
BorderColor and Outline.
---
# Objective
Add support for drawing outlines outside the borders of UI nodes.
## Solution
Add a new `Outline` component with `width`, `offset` and `color` fields.
Added `outline_width` and `outline_offset` fields to `Node`. This is set
after layout recomputation by the `resolve_outlines_system`.
Properties of outlines:
* Unlike borders, outlines have to be the same width on each edge.
* Outlines do not occupy any space in the layout.
* The `Outline` component won't be added to any of the UI node bundles,
it needs to be inserted separately.
* Outlines are drawn outside the node's border, so they are clipped
using the clipping rect of their entity's parent UI node (if it exists).
* `Val::Percent` outline widths are resolved based on the width of the
outlined UI node.
* The offset of the `Outline` adds space between an outline and the edge
of its node.
I was leaning towards adding an `outline` field to `Style` but a
separate component seems more efficient for queries and change
detection. The `Outline` component isn't added to bundles for the same
reason.
---
## Examples
* This image is from the `borders` example from the Bevy UI examples but
modified to include outlines. The UI nodes are the dark red rectangles,
the bright red rectangles are borders and the white lines offset from
each node are the outlines. The yellow rectangles are separate nodes
contained with the dark red nodes:
<img width="406" alt="outlines"
src="https://github.com/bevyengine/bevy/assets/27962798/4e6f315a-019f-42a4-94ee-cca8e684d64a">
* This is from the same example but using a branch that implements
border-radius. Here the the outlines are in orange and there is no
offset applied. I broke the borders implementation somehow during the
merge, which is why some of the borders from the first screenshot are
missing 😅. The outlines work nicely though (as long as you
can forgive the lack of anti-aliasing):
![image](https://github.com/bevyengine/bevy/assets/27962798/d15560b6-6cd6-42e5-907b-56ccf2ad5e02)
---
## Notes
As I explained above, I don't think the `Outline` component should be
added to UI node bundles. We can have helper functions though, perhaps
something as simple as:
```rust
impl NodeBundle {
pub fn with_outline(self, outline: Outline) -> (Self, Outline) {
(self, outline)
}
}
```
I didn't include anything like this as I wanted to keep the PR's scope
as narrow as possible. Maybe `with_outline` should be in a trait that we
implement for each UI node bundle.
---
## Changelog
Added support for outlines to Bevy UI.
* The `Outline` component adds an outline to a UI node.
* The `outline_width` field added to `Node` holds the resolved width of
the outline, which is set by the `resolve_outlines_system` after layout
recomputation.
* Outlines are drawn by the system `extract_uinode_outlines`.
# Objective
`bevy_a11y` was impossible to integrate into some third-party projects
in part because it insisted on managing the accessibility tree on its
own.
## Solution
The changes in this PR were necessary to get `bevy_egui` working with
Bevy's AccessKit integration. They were tested on a fork of 0.11,
developed against `bevy_egui`, then ported to main and tested against
the `ui` example.
## Changelog
### Changed
* Add `bevy_a11y::ManageAccessibilityUpdates` to indicate whether the
ECS should manage accessibility tree updates.
* Add getter/setter to `bevy_a11y::AccessibilityRequested`.
* Add `bevy_a11y::AccessibilitySystem` `SystemSet` for ordering relative
to accessibility tree updates.
* Upgrade `accesskit` to v0.12.0.
### Fixed
* Correctly set initial accessibility focus to new windows on creation.
## Migration Guide
### Change direct accesses of `AccessibilityRequested` to use
`AccessibilityRequested.::get()`/`AccessibilityRequested::set()`
#### Before
```
use std::sync::atomic::Ordering;
// To access
accessibility_requested.load(Ordering::SeqCst)
// To update
accessibility_requested.store(true, Ordering::SeqCst);
```
#### After
```
// To access
accessibility_requested.get()
// To update
accessibility_requested.set(true);
```
---------
Co-authored-by: StaffEngineer <111751109+StaffEngineer@users.noreply.github.com>
# Objective
- There were a few typos in the project.
- This PR fixes these typos.
## Solution
- Fixing the typos.
Signed-off-by: SADIK KUZU <sadikkuzu@hotmail.com>
# Objective
Text bounds are computed by the layout algorithm using the text's
measurefunc so that text will only wrap after it's used the maximum
amount of available horizontal space.
When the layout size is returned the layout coordinates are rounded and
this sometimes results in the final size of the Node not matching the
size computed with the measurefunc. This means that the text may no
longer fit the horizontal available space and instead wrap onto a new
line. However, no glyphs will be generated for this new line because no
vertical space for the extra line was allocated.
fixes#9874
## Solution
Store both the rounded and unrounded node sizes in `Node`.
Rounding is used to eliminate pixel-wide gaps between nodes that should
be touching edge to edge, but this isn't necessary for text nodes as
they don't have solid edges.
## Changelog
* Added the `rounded_size: Vec2` field to `Node`.
* `text_system` uses the unrounded node size when computing a text
layout.
---------
Co-authored-by: Rob Parrett <robparrett@gmail.com>
# Objective
- Improve rendering performance, particularly by avoiding the large
system commands costs of using the ECS in the way that the render world
does.
## Solution
- Define `EntityHasher` that calculates a hash from the
`Entity.to_bits()` by `i | (i.wrapping_mul(0x517cc1b727220a95) << 32)`.
`0x517cc1b727220a95` is something like `u64::MAX / N` for N that gives a
value close to π and that works well for hashing. Thanks for @SkiFire13
for the suggestion and to @nicopap for alternative suggestions and
discussion. This approach comes from `rustc-hash` (a.k.a. `FxHasher`)
with some tweaks for the case of hashing an `Entity`. `FxHasher` and
`SeaHasher` were also tested but were significantly slower.
- Define `EntityHashMap` type that uses the `EntityHashser`
- Use `EntityHashMap<Entity, T>` for render world entity storage,
including:
- `RenderMaterialInstances` - contains the `AssetId<M>` of the material
associated with the entity. Also for 2D.
- `RenderMeshInstances` - contains mesh transforms, flags and properties
about mesh entities. Also for 2D.
- `SkinIndices` and `MorphIndices` - contains the skin and morph index
for an entity, respectively
- `ExtractedSprites`
- `ExtractedUiNodes`
## Benchmarks
All benchmarks have been conducted on an M1 Max connected to AC power.
The tests are run for 1500 frames. The 1000th frame is captured for
comparison to check for visual regressions. There were none.
### 2D Meshes
`bevymark --benchmark --waves 160 --per-wave 1000 --mode mesh2d`
#### `--ordered-z`
This test spawns the 2D meshes with z incrementing back to front, which
is the ideal arrangement allocation order as it matches the sorted
render order which means lookups have a high cache hit rate.
<img width="1112" alt="Screenshot 2023-09-27 at 07 50 45"
src="https://github.com/bevyengine/bevy/assets/302146/e140bc98-7091-4a3b-8ae1-ab75d16d2ccb">
-39.1% median frame time.
#### Random
This test spawns the 2D meshes with random z. This not only makes the
batching and transparent 2D pass lookups get a lot of cache misses, it
also currently means that the meshes are almost certain to not be
batchable.
<img width="1108" alt="Screenshot 2023-09-27 at 07 51 28"
src="https://github.com/bevyengine/bevy/assets/302146/29c2e813-645a-43ce-982a-55df4bf7d8c4">
-7.2% median frame time.
### 3D Meshes
`many_cubes --benchmark`
<img width="1112" alt="Screenshot 2023-09-27 at 07 51 57"
src="https://github.com/bevyengine/bevy/assets/302146/1a729673-3254-4e2a-9072-55e27c69f0fc">
-7.7% median frame time.
### Sprites
**NOTE: On `main` sprites are using `SparseSet<Entity, T>`!**
`bevymark --benchmark --waves 160 --per-wave 1000 --mode sprite`
#### `--ordered-z`
This test spawns the sprites with z incrementing back to front, which is
the ideal arrangement allocation order as it matches the sorted render
order which means lookups have a high cache hit rate.
<img width="1116" alt="Screenshot 2023-09-27 at 07 52 31"
src="https://github.com/bevyengine/bevy/assets/302146/bc8eab90-e375-4d31-b5cd-f55f6f59ab67">
+13.0% median frame time.
#### Random
This test spawns the sprites with random z. This makes the batching and
transparent 2D pass lookups get a lot of cache misses.
<img width="1109" alt="Screenshot 2023-09-27 at 07 53 01"
src="https://github.com/bevyengine/bevy/assets/302146/22073f5d-99a7-49b0-9584-d3ac3eac3033">
+0.6% median frame time.
### UI
**NOTE: On `main` UI is using `SparseSet<Entity, T>`!**
`many_buttons`
<img width="1111" alt="Screenshot 2023-09-27 at 07 53 26"
src="https://github.com/bevyengine/bevy/assets/302146/66afd56d-cbe4-49e7-8b64-2f28f6043d85">
+15.1% median frame time.
## Alternatives
- Cart originally suggested trying out `SparseSet<Entity, T>` and indeed
that is slightly faster under ideal conditions. However,
`PassHashMap<Entity, T>` has better worst case performance when data is
randomly distributed, rather than in sorted render order, and does not
have the worst case memory usage that `SparseSet`'s dense `Vec<usize>`
that maps from the `Entity` index to sparse index into `Vec<T>`. This
dense `Vec` has to be as large as the largest Entity index used with the
`SparseSet`.
- I also tested `PassHashMap<u32, T>`, intending to use `Entity.index()`
as the key, but this proved to sometimes be slower and mostly no
different.
- The only outstanding approach that has not been implemented and tested
is to _not_ clear the render world of its entities each frame. That has
its own problems, though they could perhaps be solved.
- Performance-wise, if the entities and their component data were not
cleared, then they would incur table moves on spawn, and should not
thereafter, rather just their component data would be overwritten.
Ideally we would have a neat way of either updating data in-place via
`&mut T` queries, or inserting components if not present. This would
likely be quite cumbersome to have to remember to do everywhere, but
perhaps it only needs to be done in the more performance-sensitive
systems.
- The main problem to solve however is that we want to both maintain a
mapping between main world entities and render world entities, be able
to run the render app and world in parallel with the main app and world
for pipelined rendering, and at the same time be able to spawn entities
in the render world in such a way that those Entity ids do not collide
with those spawned in the main world. This is potentially quite
solvable, but could well be a lot of ECS work to do it in a way that
makes sense.
---
## Changelog
- Changed: Component data for entities to be drawn are no longer stored
on entities in the render world. Instead, data is stored in a
`EntityHashMap<Entity, T>` in various resources. This brings significant
performance benefits due to the way the render app clears entities every
frame. Resources of most interest are `RenderMeshInstances` and
`RenderMaterialInstances`, and their 2D counterparts.
## Migration Guide
Previously the render app extracted mesh entities and their component
data from the main world and stored them as entities and components in
the render world. Now they are extracted into essentially
`EntityHashMap<Entity, T>` where `T` are structs containing an
appropriate group of data. This means that while extract set systems
will continue to run extract queries against the main world they will
store their data in hash maps. Also, systems in later sets will either
need to look up entities in the available resources such as
`RenderMeshInstances`, or maintain their own `EntityHashMap<Entity, T>`
for their own data.
Before:
```rust
fn queue_custom(
material_meshes: Query<(Entity, &MeshTransforms, &Handle<Mesh>), With<InstanceMaterialData>>,
) {
...
for (entity, mesh_transforms, mesh_handle) in &material_meshes {
...
}
}
```
After:
```rust
fn queue_custom(
render_mesh_instances: Res<RenderMeshInstances>,
instance_entities: Query<Entity, With<InstanceMaterialData>>,
) {
...
for entity in &instance_entities {
let Some(mesh_instance) = render_mesh_instances.get(&entity) else { continue; };
// The mesh handle in `AssetId<Mesh>` form, and the `MeshTransforms` can now
// be found in `mesh_instance` which is a `RenderMeshInstance`
...
}
}
```
---------
Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
# Objective
The scetion for guides about flexbox has a link to grid and the section
for grid has a link to a guide about flexbox.
## Solution
Swapped links for flexbox and grid.
---
# Objective
Some beginners spend time trying to manually set the position of a
`TextBundle`, without realizing that `Text2dBundle` exists.
## Solution
Mention `Text2dBundle` in the documentation of `TextBundle`.
---------
Co-authored-by: Rob Parrett <robparrett@gmail.com>
derive `Reflect` to `GlyphAtlasInfo`,`PositionedGlyph` and
`TextLayoutInfo`.
# Objective
- I need reflection gets all components of the `TextBundle` and
`clone_value` it
## Solution
- registry it