Commit graph

1236 commits

Author SHA1 Message Date
charlotte
0f03e1d46e
Fix docs for RenderLayers (#13604)
Doc fixup, closes #13598
2024-05-31 15:42:08 +00:00
Alix Bott
31955cc78b
Add ImageFormatSetting::Guess to image loader (#13575)
# Objective

- Allow using image assets that don't have an extensions and whose
format is unknown. This is useful for loading images from arbitrary HTTP
URLs.

## Solution

- This PR adds a new variant to `ImageFormatSetting` called `Guess`. The
loader will use `image::guess_format` to deduce the format based on the
content of the file.

## Testing

- I locally removed the extension of bevy_bird_dark, and ran a modified
version of the `sprite` example:
```rust
//! Displays a single [`Sprite`], created from an image.

use bevy::{
    prelude::*,
    render::texture::{ImageFormatSetting, ImageLoaderSettings},
};

fn main() {
    App::new()
        .add_plugins(DefaultPlugins)
        .add_systems(Startup, setup)
        .run();
}

fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
    commands.spawn(Camera2dBundle::default());
    commands.spawn(SpriteBundle {
        texture: asset_server
            .load_with_settings("branding/bevy_bird_dark", |s: &mut ImageLoaderSettings| {
                s.format = ImageFormatSetting::Guess
            }),
        ..default()
    });
}

```

## Changelog

### Added

`ImageFormatSetting::Guess` to automatically guess the format of an
image asset from its content.

Co-authored-by: François Mockers <mockersf@gmail.com>
2024-05-30 23:57:22 +00:00
François Mockers
e208fb70f5
disable gpu preprocessing on android with Adreno 6xx GPU (#13323)
# Objective

- Fixes #13038 

## Solution

- Disable gpu preprocessing when feature
`SAMPLED_TEXTURE_AND_STORAGE_BUFFER_ARRAY_NON_UNIFORM_INDEXING` is not
available

## Testing

- Tested on android device that used to crash
2024-05-30 14:33:27 +00:00
arcashka
cdc605cc48
add tonemapping LUT bindings for sprite and mesh2d pipelines (#13262)
Fixes #13118
If you use `Sprite` or `Mesh2d` and create `Camera` with
* hdr=false
* any tonemapper

You would get
```
wgpu error: Validation Error

Caused by:
    In Device::create_render_pipeline
      note: label = `sprite_pipeline`
    Error matching ShaderStages(FRAGMENT) shader requirements against the pipeline
    Shader global ResourceBinding { group: 0, binding: 19 } is not available in the pipeline layout
    Binding is missing from the pipeline layout
```
Because of missing tonemapping LUT bindings 

## Solution
Add missing bindings for tonemapping LUT's to `SpritePipeline` &
`Mesh2dPipeline`

## Testing
I checked that
* `tonemapping`
* `color_grading`
* `sprite_animations`
* `2d_shapes`
* `meshlet`
* `deferred_rendering`
examples are still working

2d cases I checked with this code:
```
use bevy::{
    color::palettes::css::PURPLE, core_pipeline::tonemapping::Tonemapping, prelude::*,
    sprite::MaterialMesh2dBundle,
};

fn main() {
    App::new()
        .add_plugins(DefaultPlugins)
        .add_systems(Startup, setup)
        .add_systems(Update, toggle_tonemapping_method)
        .run();
}

fn setup(
    mut commands: Commands,
    mut meshes: ResMut<Assets<Mesh>>,
    mut materials: ResMut<Assets<ColorMaterial>>,
    asset_server: Res<AssetServer>,
) {
    commands.spawn(Camera2dBundle {
        camera: Camera {
            hdr: false,
            ..default()
        },
        tonemapping: Tonemapping::BlenderFilmic,
        ..default()
    });
    commands.spawn(MaterialMesh2dBundle {
        mesh: meshes.add(Rectangle::default()).into(),
        transform: Transform::default().with_scale(Vec3::splat(128.)),
        material: materials.add(Color::from(PURPLE)),
        ..default()
    });

    commands.spawn(SpriteBundle {
        texture: asset_server.load("asd.png"),
        ..default()
    });
}

fn toggle_tonemapping_method(
    keys: Res<ButtonInput<KeyCode>>,
    mut tonemapping: Query<&mut Tonemapping>,
) {
    let mut method = tonemapping.single_mut();

    if keys.just_pressed(KeyCode::Digit1) {
        *method = Tonemapping::None;
    } else if keys.just_pressed(KeyCode::Digit2) {
        *method = Tonemapping::Reinhard;
    } else if keys.just_pressed(KeyCode::Digit3) {
        *method = Tonemapping::ReinhardLuminance;
    } else if keys.just_pressed(KeyCode::Digit4) {
        *method = Tonemapping::AcesFitted;
    } else if keys.just_pressed(KeyCode::Digit5) {
        *method = Tonemapping::AgX;
    } else if keys.just_pressed(KeyCode::Digit6) {
        *method = Tonemapping::SomewhatBoringDisplayTransform;
    } else if keys.just_pressed(KeyCode::Digit7) {
        *method = Tonemapping::TonyMcMapface;
    } else if keys.just_pressed(KeyCode::Digit8) {
        *method = Tonemapping::BlenderFilmic;
    }
}
```
---

## Changelog
Fix the bug which led to the crash when user uses any tonemapper without
hdr for rendering sprites and 2d meshes.
2024-05-28 12:09:26 +00:00
Salvador Carvalhinho
7d843e0c08
Implement Rhombus 2D primitive. (#13501)
# Objective

- Create a new 2D primitive, Rhombus, also knows as "Diamond Shape"
- Simplify the creation and handling of isometric projections
- Extend Bevy's arsenal of 2D primitives

## Testing

- New unit tests created in bevy_math/ primitives and bev_math/ bounding
- Tested translations, rotations, wireframe, bounding sphere, aabb and
creation parameters

---------

Co-authored-by: Luís Figueiredo <luispcfigueiredo@tecnico.ulisboa.pt>
2024-05-26 15:27:57 +00:00
Joona Aalto
383314ef62
Add meshing for ConicalFrustum (#11819)
# Objective

The `ConicalFrustum` primitive should support meshing.

## Solution

Implement meshing for the `ConicalFrustum` primitive. The implementation
is nearly identical to `Cylinder` meshing, but supports two radii.

The default conical frustum is equivalent to a cone with a height of 1
and a radius of 0.5, truncated at half-height.


![kuva](https://github.com/bevyengine/bevy/assets/57632562/b4cab136-ff55-4056-b818-1218e4f38845)
2024-05-25 21:56:09 +00:00
Periwink
d87505899f
Update render graph docs (#13495)
# Objective

I'm reading some of the rendering code for the first time; and using
this opportunity to flesh out some docs for the parts that I did not
understand.
rather than a questionable design choice is not a breaking change.

---------

Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
2024-05-24 21:57:08 +00:00
Ben Harper
ec01c2dc45
New circular primitives: Arc2d, CircularSector, CircularSegment (#13482)
# Objective

Adopted #11748

## Solution

I've rebased on main to fix the merge conflicts. ~~Not quite ready to
merge yet~~

* Clippy is happy and the tests are passing, but...
* ~~The new shapes in `examples/2d/2d_shapes.rs` don't look right at
all~~ Never mind, looks like radians and degrees just got mixed up at
some point?
* I have updated one doc comment based on a review in the original PR.

---------

Co-authored-by: Alexis "spectria" Horizon <spectria.limina@gmail.com>
Co-authored-by: Alexis "spectria" Horizon <118812919+spectria-limina@users.noreply.github.com>
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Ben Harper <ben@tukom.org>
2024-05-23 16:12:46 +00:00
Matty
c7f7d906ca
Tetrahedron mesh (#13463)
# Objective

Allow the `Tetrahedron` primitive to be used for mesh generation. This
is part of ongoing work to bring unify the capabilities of `bevy_math`
primitives.

## Solution

`Tetrahedron` implements `Meshable`. Essentially, each face is just
meshed as a `Triangle3d`, but first there is an inversion step when the
signed volume of the tetrahedron is negative to ensure that the faces
all actually point outward.

## Testing

I loaded up some examples and hackily exchanged existing meshes with the
new one to see that it works as expected.
2024-05-22 12:22:11 +00:00
Ida "Iyes
60afec2a00
Fix 2D looking blurry at odd window sizes (#13440)
# Objective

This is a long-standing bug that I have experienced since many versions
of Bevy ago, possibly forever. Today I finally wanted to report it, but
the fix was so easy that I just went and fixed it. :)

The problem is that 2D graphics looks blurry at odd-sized window
resolutions. This is with the **default** 2D camera configuration! The
issue will also manifest itself with any Orthographic Projection with
`ScalingMode::WindowSize` where the viewport origin is not at one of the
corners, such as the default where the origin point is at the center.

The issue happens because the Bevy orthographic projection origin point
is specified as a fraction to be multiplied by the size. For example,
the default (origin at center) is `(0.5, 0.5)`. When this value is
multiplied by the window size, it can result in fractional values for
the actual origin of the projection, thus placing the camera "between
pixels" and misaligning the entire pixel grid.

With the default value, this happens at odd-numbered window resolutions.
It is very easy to reproduce the issue by running any Bevy 2D app with a
resizable window, and slowly resizing the window pixel by pixel. As you
move the mouse to resize the window, you can see how the 2D graphics
inside the window alternate between "crisp, blurry, crisp, blurry, ...".
If you change the projection's origin to be at the corner (say, `(0.0,
0.0)`) and run the app again, the graphics always looks crisp,
regardless of window size.

Here are screenshots from **before** this PR, to illustrate the issue:

Even window size:

![Screenshot_20240520_165304](https://github.com/bevyengine/bevy/assets/40234599/52619281-cf5f-490e-b85e-22bc5f9af737)

Odd window size:

![Screenshot_20240520_165320](https://github.com/bevyengine/bevy/assets/40234599/27a3624c-f39e-4493-ade9-ca3533802083)


## Solution

The solution is easy: just round the computed origin values for the
projection.

To make it work reliably for the general case, I decided to:
- Only do it for `ScalingMode::WindowSize`, as it doesn't make sense for
other scaling modes.
- Round to the nearest multiple of the pixel scale, if it is not 1.0.
This ensures the "pixels" stay aligned even if scaled.

## Testing

I ran Bevy's examples as well as my own projects to ensure things look
correct. I set different values for the pixel scale to test the rounding
behavior and played around with resizing the window to verify that
everything is consistent.

---

## Changelog

Fixed:
- Orthographic projection now rounds the origin point if computed from
screen pixels, so that 2D graphics do not appear blurry at odd window
sizes.
2024-05-22 02:59:40 +00:00
Lynn
2857eb6b9d
Fix normals during mesh scaling (#13380)
# Objective

- Fixes scaling normals and tangents of meshes

## Solution

- When scaling a mesh by `Vec3::new(1., 1., -1.)`, the normals should be
flipped along the Z-axis. For example a normal of `Vec3::new(0., 0.,
1.)` should become `Vec3::new(0., 0., -1.)` after scaling. This is
achieved by multiplying the normal by the reciprocal of the scale,
cheking for infinity and normalizing. Before, the normal was multiplied
by a covector of the scale, which is incorrect for normals.
- Tangents need to be multiplied by the `scale`, not its reciprocal as
before

---------

Co-authored-by: vero <11307157+atlv24@users.noreply.github.com>
2024-05-21 18:28:03 +00:00
Patrick Walton
9da0b2a0ec
Make render phases render world resources instead of components. (#13277)
This commit makes us stop using the render world ECS for
`BinnedRenderPhase` and `SortedRenderPhase` and instead use resources
with `EntityHashMap`s inside. There are three reasons to do this:

1. We can use `clear()` to clear out the render phase collections
instead of recreating the components from scratch, allowing us to reuse
allocations.

2. This is a prerequisite for retained bins, because components can't be
retained from frame to frame in the render world, but resources can.

3. We want to move away from storing anything in components in the
render world ECS, and this is a step in that direction.

This patch results in a small performance benefit, due to point (1)
above.

## Changelog

### Changed

* The `BinnedRenderPhase` and `SortedRenderPhase` render world
components have been replaced with `ViewBinnedRenderPhases` and
`ViewSortedRenderPhases` resources.

## Migration Guide

* The `BinnedRenderPhase` and `SortedRenderPhase` render world
components have been replaced with `ViewBinnedRenderPhases` and
`ViewSortedRenderPhases` resources. Instead of querying for the
components, look the camera entity up in the
`ViewBinnedRenderPhases`/`ViewSortedRenderPhases` tables.
2024-05-21 18:23:04 +00:00
Lynn
450a9202d0
Common MeshBuilder trait (#13411)
# Objective

- All `ShapeMeshBuilder`s have some methods/implementations in common.
These are `fn build(&self) -> Mesh` and this implementation:
```rust
impl From<ShapeMeshBuilder> for Mesh { 
    fn from(builder: ShapeMeshBuilder) -> { 
        builder.build() 
    } 
}
``` 

- For the sake of consistency, these can be moved into a shared trait

## Solution

- Add `trait MeshBuilder` containing a `fn build(&self) -> Mesh` and
implementing `MeshBuilder for ShapeMeshBuilder`
- Implement `From<T: MeshBuilder> for Mesh`

## Migration Guide

- When calling `.build()` you need to import
`bevy_render::mesh::primitives::MeshBuilder`
2024-05-18 11:58:11 +00:00
charlotte
4c3b7679ec
#12502 Remove limit on RenderLayers. (#13317)
# Objective

Remove the limit of `RenderLayer` by using a growable mask using
`SmallVec`.

Changes adopted from @UkoeHB's initial PR here
https://github.com/bevyengine/bevy/pull/12502 that contained additional
changes related to propagating render layers.

Changes

## Solution

The main thing needed to unblock this is removing `RenderLayers` from
our shader code. This primarily affects `DirectionalLight`. We are now
computing a `skip` field on the CPU that is then used to skip the light
in the shader.

## Testing

Checked a variety of examples and did a quick benchmark on `many_cubes`.
There were some existing problems identified during the development of
the original pr (see:
https://discord.com/channels/691052431525675048/1220477928605749340/1221190112939872347).
This PR shouldn't change any existing behavior besides removing the
layer limit (sans the comment in migration about `all` layers no longer
being possible).

---

## Changelog

Removed the limit on `RenderLayers` by using a growable bitset that only
allocates when layers greater than 64 are used.

## Migration Guide

- `RenderLayers::all()` no longer exists. Entities expecting to be
visible on all layers, e.g. lights, should compute the active layers
that are in use.

---------

Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2024-05-16 16:15:47 +00:00
Adith Ramachandran
65e62ba5eb
Revert "Support calculating normals for indexed meshes" (#12716) and add support for calculating smooth normals (#13333)
# Objective

- Refactor the changes merged in #11654 to compute flat normals for
indexed meshes instead of smooth normals.
- Fixes #12716 

## Solution

- Partially revert the changes in #11654 to compute flat normals for
both indexed and unindexed meshes in `compute_flat_normals`
- Create a new method, `compute_smooth_normals`, that computes smooth
normals for indexed meshes
- Create a new method, `compute_normals`, that computes smooth normals
for indexed meshes and flat normals for unindexed meshes by default. Use
this new method instead of `compute_flat_normals`.

## Testing

- Run the example with and without the changes to ensure that the
results are identical.
2024-05-16 14:54:35 +00:00
Patrick Walton
df31b808c3
Implement fast depth of field as a postprocessing effect. (#13009)
This commit implements the [depth of field] effect, simulating the blur
of objects out of focus of the virtual lens. Either the [hexagonal
bokeh] effect or a faster Gaussian blur may be used. In both cases, the
implementation is a simple separable two-pass convolution. This is not
the most physically-accurate real-time bokeh technique that exists;
Unreal Engine has [a more accurate implementation] of "cinematic depth
of field" from 2018. However, it's simple, and most engines provide
something similar as a fast option, often called "mobile" depth of
field.

The general approach is outlined in [a blog post from 2017]. We take
advantage of the fact that both Gaussian blurs and hexagonal bokeh blurs
are *separable*. This means that their 2D kernels can be reduced to a
small number of 1D kernels applied one after another, asymptotically
reducing the amount of work that has to be done. Gaussian blurs can be
accomplished by blurring horizontally and then vertically, while
hexagonal bokeh blurs can be done with a vertical blur plus a diagonal
blur, plus two diagonal blurs. In both cases, only two passes are
needed. Bokeh requires the first pass to have a second render target and
requires two subpasses in the second pass, which decreases its
performance relative to the Gaussian blur.

The bokeh blur is generally more aesthetically pleasing than the
Gaussian blur, as it simulates the effect of a camera more accurately.
The shape of the bokeh circles are determined by the number of blades of
the aperture. In our case, we use a hexagon, which is usually considered
specific to lower-quality cameras. (This is a downside of the fast
hexagon approach compared to the higher-quality approaches.) The blur
amount is generally specified by the [f-number], which we use to compute
the focal length from the film size and FOV. By default, we simulate
standard cinematic cameras of f/1 and [Super 35]. The developer can
customize these values as desired.

A new example has been added to demonstrate depth of field. It allows
customization of the mode (Gaussian vs. bokeh), focal distance and
f-numbers. The test scene is inspired by a [blog post on depth of field
in Unity]; however, the effect is implemented in a completely different
way from that blog post, and all the assets (textures, etc.) are
original.

Bokeh depth of field:
![Screenshot 2024-04-17
152535](https://github.com/bevyengine/bevy/assets/157897/702f0008-1c8a-4cf3-b077-4110f8c46584)

Gaussian depth of field:
![Screenshot 2024-04-17
152542](https://github.com/bevyengine/bevy/assets/157897/f4ece47a-520e-4483-a92d-f4fa760795d3)

No depth of field:
![Screenshot 2024-04-17
152547](https://github.com/bevyengine/bevy/assets/157897/9444e6aa-fcae-446c-b66b-89469f1a1325)

[depth of field]: https://en.wikipedia.org/wiki/Depth_of_field

[hexagonal bokeh]:
https://colinbarrebrisebois.com/2017/04/18/hexagonal-bokeh-blur-revisited/

[a more accurate implementation]:
https://epicgames.ent.box.com/s/s86j70iamxvsuu6j35pilypficznec04

[a blog post from 2017]:
https://colinbarrebrisebois.com/2017/04/18/hexagonal-bokeh-blur-revisited/

[f-number]: https://en.wikipedia.org/wiki/F-number

[Super 35]: https://en.wikipedia.org/wiki/Super_35

[blog post on depth of field in Unity]:
https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/

## Changelog

### Added

* A depth of field postprocessing effect is now available, to simulate
objects being out of focus of the camera. To use it, add
`DepthOfFieldSettings` to an entity containing a `Camera3d` component.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Bram Buurlage <brambuurlage@gmail.com>
2024-05-13 18:23:56 +00:00
Joona Aalto
ac1f135e20
Add meshing for Cone (#11820)
# Objective

The `Cone` primitive should support meshing.

## Solution

Implement meshing for the `Cone` primitive. The default cone has a
height of 1 and a base radius of 0.5, and is centered at the origin.

An issue with cone meshes is that the tip does not really have a normal
that works, even with duplicated vertices. This PR uses only a single
vertex for the tip, with a normal of zero; this results in an "invalid"
normal that gets ignored by the fragment shader. This seems to be the
only approach we have for perfectly smooth cones. For discussion on the
topic, see #10298 and #5891.

Another thing to note is that the cone uses polar coordinates for the
UVs:

<img
src="https://github.com/bevyengine/bevy/assets/57632562/e101ded9-110a-4ac4-a98d-f1e4d740a24a"
alt="cone" width="400" />

This way, textures are applied as if looking at the cone from above:

<img
src="https://github.com/bevyengine/bevy/assets/57632562/8dea00f1-a283-4bc4-9676-91e8d4adb07a"
alt="texture" width="200" />

<img
src="https://github.com/bevyengine/bevy/assets/57632562/d9d1b5e6-a8ba-4690-b599-904dd85777a1"
alt="cone" width="200" />
2024-05-13 18:00:59 +00:00
charlotte
dc0fdd6ad9
Ensure clean exit (#13236)
# Objective

Fixes two issues related to #13208.

First, we ensure render resources for a window are always dropped first
to ensure that the `winit::Window` always drops on the main thread when
it is removed from `WinitWindows`. Previously, changes in #12978 caused
the window to drop in the render world, causing issues.

We accomplish this by delaying despawning the window by a frame by
inserting a marker component `ClosingWindow` that indicates the window
has been requested to close and is in the process of closing. The render
world now responds to the equivalent `WindowClosing` event rather than
`WindowCloseed` which now fires after the render resources are
guarunteed to be cleaned up.

Secondly, fixing the above caused (revealed?) that additional events
were being delivered to the the event loop handler after exit had
already been requested: in my testing `RedrawRequested` and
`LoopExiting`. This caused errors to be reported try to send an exit
event on the close channel. There are two options here:
- Guard the handler so no additional events are delivered once the app
is exiting. I ~considered this but worried it might be confusing or bug
prone if in the future someone wants to handle `LoopExiting` or some
other event to clean-up while exiting.~ We are now taking this approach.
- Only send an exit signal if we are not already exiting. ~It doesn't
appear to cause any problems to handle the extra events so this seems
safer.~
 
Fixing this also appears to have fixed #13231.

Fixes #10260.

## Testing

Tested on mac only.

---

## Changelog

### Added
- A `WindowClosing` event has been added that indicates the window will
be despawned on the next frame.

### Changed
- Windows now close a frame after their exit has been requested.

## Migration Guide
- Ensure custom exit logic does not rely on the app exiting the same
frame as a window is closed.
2024-05-12 15:56:01 +00:00
Patrick Walton
0dddfa07ab
Fix the WebGL 2 backend by giving the visibility_ranges array a fixed length. (#13210)
WebGL 2 doesn't support variable-length uniform buffer arrays. So we
arbitrarily set the length of the visibility ranges field to 64 on that
platform.

---------

Co-authored-by: IceSentry <c.giguere42@gmail.com>
2024-05-08 07:34:59 +00:00
andristarr
bb76a2c69c
multi_threaded feature rename (#12997)
# Objective

Fixes #12966

## Solution

Renaming multi_threaded feature to match snake case

## Migration Guide

Bevy feature multi-threaded should be refered to multi_threaded from now
on.
2024-05-06 20:49:32 +00:00
IceSentry
a22ecede49
Only create changed buffer if it already exists (#13242)
# Objective

- `DynamicUniformBuffer` tries to create a buffer as soon as the changed
flag is set to true. This doesn't work correctly when the buffer wasn't
already created. This currently creates a crash because it's trying to
create a buffer of size 0 if the flag is set but there's no buffer yet.

## Solution

- Don't create a changed buffer until there's data that needs to be
written to a buffer.

## Testing

- run `cargo run --example scene_viewer` and see that it doesn't crash
anymore

Fixes #13235
2024-05-05 22:16:11 +00:00
Kim Simmons
d1099ac7db
Doc custom CameraProjection requires use of plugin (#13140)
# Objective

Documentation should mention the two plugins required for your custom
`CameraProjection` to work.

## Solution

Documented!

---

I tried linking to `bevy_pbr::PbrProjectionPlugin` from
`bevy_render:📷:CameraProjection` but it wasn't in scope. Is there
a trick to it?
2024-05-05 15:14:00 +00:00
stinkytoe
ec418aa429
Re-export IntoDynamicImageError as public (#13223)
# Objective

in response to [13222](https://github.com/bevyengine/bevy/issues/13222)

## Solution

The Image trait was already re-exported in bevy_render/src/lib.rs, So I
added it inline there.

## Testing

Confirmed that it does compile. Simple change, shouldn't cause any
bugs/regressions.
2024-05-04 13:13:49 +00:00
arcashka
6027890a11
move wgsl color operations from bevy_pbr to bevy_render (#13209)
# Objective

`bevy_pbr/utils.wgsl` shader file contains mathematical constants and
color conversion functions. Both of those should be accessible without
enabling `bevy_pbr` feature. For example, tonemapping can be done in non
pbr scenario, and it uses color conversion functions.

Fixes #13207

## Solution

* Move mathematical constants (such as PI, E) from
`bevy_pbr/src/render/utils.wgsl` into `bevy_render/src/maths.wgsl`
* Move color conversion functions from `bevy_pbr/src/render/utils.wgsl`
into new file `bevy_render/src/color_operations.wgsl`

## Testing
Ran multiple examples, checked they are working:
* tonemapping
* color_grading
* 3d_scene
* animated_material
* deferred_rendering
* 3d_shapes
* fog
* irradiance_volumes
* meshlet
* parallax_mapping
* pbr
* reflection_probes
* shadow_biases
* 2d_gizmos
* light_gizmos
---

## Changelog
* Moved mathematical constants (such as PI, E) from
`bevy_pbr/src/render/utils.wgsl` into `bevy_render/src/maths.wgsl`
* Moved color conversion functions from `bevy_pbr/src/render/utils.wgsl`
into new file `bevy_render/src/color_operations.wgsl`

## Migration Guide
In user's shader code replace usage of mathematical constants from
`bevy_pbr::utils` to the usage of the same constants from
`bevy_render::maths`.
2024-05-04 10:30:23 +00:00
Bram Buurlage
d390420093
Implement Auto Exposure plugin (#12792)
# Objective

- Add auto exposure/eye adaptation to the bevy render pipeline.
- Support features that users might expect from other engines:
  - Metering masks
  - Compensation curves
  - Smooth exposure transitions 

This PR is based on an implementation I already built for a personal
project before https://github.com/bevyengine/bevy/pull/8809 was
submitted, so I wasn't able to adopt that PR in the proper way. I've
still drawn inspiration from it, so @fintelia should be credited as
well.

## Solution

An auto exposure compute shader builds a 64 bin histogram of the scene's
luminance, and then adjusts the exposure based on that histogram. Using
a histogram allows the system to ignore outliers like shadows and
specular highlights, and it allows to give more weight to certain areas
based on a mask.

---

## Changelog

- Added: AutoExposure plugin that allows to adjust a camera's exposure
based on it's scene's luminance.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-05-03 17:45:17 +00:00
Kristoffer Søholm
2089a28717
Add BufferVec, an higher-performance alternative to StorageBuffer, and make GpuArrayBuffer use it. (#13199)
This is an adoption of #12670 plus some documentation fixes. See that PR
for more details.

---

## Changelog

* Renamed `BufferVec` to `RawBufferVec` and added a new `BufferVec`
type.

## Migration Guide
`BufferVec` has been renamed to `RawBufferVec` and a new similar type
has taken the `BufferVec` name.

---------

Co-authored-by: Patrick Walton <pcwalton@mimiga.net>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
2024-05-03 11:39:21 +00:00
Patrick Walton
31835ff76d
Implement visibility ranges, also known as hierarchical levels of detail (HLODs). (#12916)
Implement visibility ranges, also known as hierarchical levels of detail
(HLODs).

This commit introduces a new component, `VisibilityRange`, which allows
developers to specify camera distances in which meshes are to be shown
and hidden. Hiding meshes happens early in the rendering pipeline, so
this feature can be used for level of detail optimization. Additionally,
this feature is properly evaluated per-view, so different views can show
different levels of detail.

This feature differs from proper mesh LODs, which can be implemented
later. Engines generally implement true mesh LODs later in the pipeline;
they're typically more efficient than HLODs with GPU-driven rendering.
However, mesh LODs are more limited than HLODs, because they require the
lower levels of detail to be meshes with the same vertex layout and
shader (and perhaps the same material) as the original mesh. Games often
want to use objects other than meshes to replace distant models, such as
*octahedral imposters* or *billboard imposters*.

The reason why the feature is called *hierarchical level of detail* is
that HLODs can replace multiple meshes with a single mesh when the
camera is far away. This can be useful for reducing drawcall count. Note
that `VisibilityRange` doesn't automatically propagate down to children;
it must be placed on every mesh.

Crossfading between different levels of detail is supported, using the
standard 4x4 ordered dithering pattern from [1]. The shader code to
compute the dithering patterns should be well-optimized. The dithering
code is only active when visibility ranges are in use for the mesh in
question, so that we don't lose early Z.

Cascaded shadow maps show the HLOD level of the view they're associated
with. Point light and spot light shadow maps, which have no CSMs,
display all HLOD levels that are visible in any view. To support this
efficiently and avoid doing visibility checks multiple times, we
precalculate all visible HLOD levels for each entity with a
`VisibilityRange` during the `check_visibility_range` system.

A new example, `visibility_range`, has been added to the tree, as well
as a new low-poly version of the flight helmet model to go with it. It
demonstrates use of the visibility range feature to provide levels of
detail.

[1]: https://en.wikipedia.org/wiki/Ordered_dithering#Threshold_map

[^1]: Unreal doesn't have a feature that exactly corresponds to
visibility ranges, but Unreal's HLOD system serves roughly the same
purpose.

## Changelog

### Added

* A new `VisibilityRange` component is available to conditionally enable
entity visibility at camera distances, with optional crossfade support.
This can be used to implement different levels of detail (LODs).

## Screenshots

High-poly model:
![Screenshot 2024-04-09
185541](https://github.com/bevyengine/bevy/assets/157897/7e8be017-7187-4471-8866-974e2d8f2623)

Low-poly model up close:
![Screenshot 2024-04-09
185546](https://github.com/bevyengine/bevy/assets/157897/429603fe-6bb7-4246-8b4e-b4888fd1d3a0)

Crossfading between the two:
![Screenshot 2024-04-09
185604](https://github.com/bevyengine/bevy/assets/157897/86d0d543-f8f3-49ec-8fe5-caa4d0784fd4)

---------

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-05-03 00:11:35 +00:00
mgi388
78bf48b874
Use BindGroupLayoutEntryBuilder in texture_binding_array example (#13169)
# Objective

- I've been using the `texture_binding_array` example as a base to use
multiple textures in meshes in my program
- I only realised once I was deep in render code that these helpers
existed to create layouts
- I wish I knew the existed earlier because the alternative (filling in
every struct field) is so much more verbose

## Solution

- Use `BindGroupLayoutEntries::with_indices` to teach users that the
helper exists
- Also fix typo which should be `texture_2d`.

## Alternatives considered

- Just leave it as is to teach users about every single struct field
- However, leaving as is leaves users writing roughly 29 lines versus
roughly 2 lines for 2 entries and I'd prefer the 2 line approach

## Testing

Ran the example locally and compared before and after.

Before: 

<img width="1280" alt="image"
src="https://github.com/bevyengine/bevy/assets/135186256/f5897210-2560-4110-b92b-85497be9023c">

After:

<img width="1279" alt="image"
src="https://github.com/bevyengine/bevy/assets/135186256/8d13a939-b1ce-4a49-a9da-0b1779c8cb6a">

Co-authored-by: mgi388 <>
2024-05-02 20:10:32 +00:00
Martín Maita
32cd0c5dc1
Update glam version requirement from 0.25 to 0.27 (#12757)
# Objective

- Update glam version requirement to latest version.

## Solution

- Updated `glam` version requirement from 0.25 to 0.27.
- Updated `encase` and `encase_derive_impl` version requirement from 0.7
to 0.8.
- Updated `hexasphere` version requirement from 10.0 to 12.0.
- Breaking changes from glam changelog:
- [0.26.0] Minimum Supported Rust Version bumped to 1.68.2 for impl
From<bool> for {f32,f64} support.
- [0.27.0] Changed implementation of vector fract method to match the
Rust implementation instead of the GLSL implementation, that is self -
self.trunc() instead of self - self.floor().

---

## Migration Guide

- When using `glam` exports, keep in mind that `vector` `fract()` method
now matches Rust implementation (that is `self - self.trunc()` instead
of `self - self.floor()`). If you want to use the GLSL implementation
you should now use `fract_gl()`.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-05-02 18:42:34 +00:00
Patrick Walton
961b24deaf
Implement filmic color grading. (#13121)
This commit expands Bevy's existing tonemapping feature to a complete
set of filmic color grading tools, matching those of engines like Unity,
Unreal, and Godot. The following features are supported:

* White point adjustment. This is inspired by Unity's implementation of
the feature, but simplified and optimized. *Temperature* and *tint*
control the adjustments to the *x* and *y* chromaticity values of [CIE
1931]. Following Unity, the adjustments are made relative to the [D65
standard illuminant] in the [LMS color space].

* Hue rotation. This simply converts the RGB value to [HSV], alters the
hue, and converts back.

* Color correction. This allows the *gamma*, *gain*, and *lift* values
to be adjusted according to the standard [ASC CDL combined function].

* Separate color correction for shadows, midtones, and highlights.
Blender's source code was used as a reference for the implementation of
this. The midtone ranges can be adjusted by the user. To avoid abrupt
color changes, a small crossfade is used between the different sections
of the image, again following Blender's formulas.

A new example, `color_grading`, has been added, offering a GUI to change
all the color grading settings. It uses the same test scene as the
existing `tonemapping` example, which has been factored out into a
shared glTF scene.

[CIE 1931]: https://en.wikipedia.org/wiki/CIE_1931_color_space

[D65 standard illuminant]:
https://en.wikipedia.org/wiki/Standard_illuminant#Illuminant_series_D

[LMS color space]: https://en.wikipedia.org/wiki/LMS_color_space

[HSV]: https://en.wikipedia.org/wiki/HSL_and_HSV

[ASC CDL combined function]:
https://en.wikipedia.org/wiki/ASC_CDL#Combined_Function

## Changelog

### Added

* Many new filmic color grading options have been added to the
`ColorGrading` component.

## Migration Guide

* `ColorGrading::gamma` and `ColorGrading::pre_saturation` are now set
separately for the `shadows`, `midtones`, and `highlights` sections. You
can migrate code with the `ColorGrading::all_sections` and
`ColorGrading::all_sections_mut` functions, which access and/or update
all sections at once.
* `ColorGrading::post_saturation` and `ColorGrading::exposure` are now
fields of `ColorGrading::global`.

## Screenshots

![Screenshot 2024-04-27
143144](https://github.com/bevyengine/bevy/assets/157897/c1de5894-917d-4101-b5c9-e644d141a941)

![Screenshot 2024-04-27
143216](https://github.com/bevyengine/bevy/assets/157897/da393c8a-d747-42f5-b47c-6465044c788d)
2024-05-02 12:18:59 +00:00
Patrick Walton
f1db525f14
Don't ignore unbatchable sorted items. (#13144)
In #12889, I mistakenly started dropping unbatchable sorted items on the
floor instead of giving them solitary batches. This caused the objects
in the `shader_instancing` demo to stop showing up. This patch fixes the
issue by giving those items their own batches as expected.

Fixes #13130.
2024-04-30 07:02:59 +00:00
miro
6c57a16b5e
Fix typo in bevy_render/src/batching/gpu_preprocessing.rs (#13141)
# Objective
   Fix typo in `bevy_render/src/batching/gpu_preprocessing.rs`
   https://github.com/bevyengine/bevy/issues/13135
2024-04-29 20:30:15 +00:00
Patrick Walton
16531fb3e3
Implement GPU frustum culling. (#12889)
This commit implements opt-in GPU frustum culling, built on top of the
infrastructure in https://github.com/bevyengine/bevy/pull/12773. To
enable it on a camera, add the `GpuCulling` component to it. To
additionally disable CPU frustum culling, add the `NoCpuCulling`
component. Note that adding `GpuCulling` without `NoCpuCulling`
*currently* does nothing useful. The reason why `GpuCulling` doesn't
automatically imply `NoCpuCulling` is that I intend to follow this patch
up with GPU two-phase occlusion culling, and CPU frustum culling plus
GPU occlusion culling seems like a very commonly-desired mode.

Adding the `GpuCulling` component to a view puts that view into
*indirect mode*. This mode makes all drawcalls indirect, relying on the
mesh preprocessing shader to allocate instances dynamically. In indirect
mode, the `PreprocessWorkItem` `output_index` points not to a
`MeshUniform` instance slot but instead to a set of `wgpu`
`IndirectParameters`, from which it allocates an instance slot
dynamically if frustum culling succeeds. Batch building has been updated
to allocate and track indirect parameter slots, and the AABBs are now
supplied to the GPU as `MeshCullingData`.

A small amount of code relating to the frustum culling has been borrowed
from meshlets and moved into `maths.wgsl`. Note that standard Bevy
frustum culling uses AABBs, while meshlets use bounding spheres; this
means that not as much code can be shared as one might think.

This patch doesn't provide any way to perform GPU culling on shadow
maps, to avoid making this patch bigger than it already is. That can be
a followup.

## Changelog

### Added

* Frustum culling can now optionally be done on the GPU. To enable it,
add the `GpuCulling` component to a camera.
* To disable CPU frustum culling, add `NoCpuCulling` to a camera. Note
that `GpuCulling` doesn't automatically imply `NoCpuCulling`.
2024-04-28 12:50:00 +00:00
Aevyrie
4b446c020e
Add error when extract resource build fails (#4964)
# Objective

- Provide feedback when an extraction plugin fails to add its system.

I had some troubleshooting pain when this happened to me, as the panic
only tells you a resource is missing. This PR adds an error when the
ExtractResource plugin is added before the render world exists, instead
of silently failing.


![image](https://user-images.githubusercontent.com/2632925/172491993-673d9351-215a-4f30-96f7-af239c44686a.png)
2024-04-28 05:20:59 +00:00
François Mockers
22d605c8df
asset throttling: don't be exhausted if there is no limit (#13112)
# Objective

- Since #12622 example `compute_shader_game_of_life` crashes
```
thread 'Compute Task Pool (2)' panicked at examples/shader/compute_shader_game_of_life.rs:137:65:
called `Option::unwrap()` on a `None` value
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
Encountered a panic in system `compute_shader_game_of_life::prepare_bind_group`!
thread '<unnamed>' panicked at examples/shader/compute_shader_game_of_life.rs:254:34:
Requested resource compute_shader_game_of_life::GameOfLifeImageBindGroups does not exist in the `World`.
                Did you forget to add it using `app.insert_resource` / `app.init_resource`?
                Resources are also implicitly added via `app.add_event`,
                and can be added by plugins.
Encountered a panic in system `bevy_render::renderer::render_system`!
```

## Solution

- `exhausted()` now checks that there is a limit
2024-04-27 09:00:10 +00:00
Doonv
de9dc9c204
Fix CameraProjection panic and improve CameraProjectionPlugin (#11808)
# Objective

Fix https://github.com/bevyengine/bevy/issues/11799 and improve
`CameraProjectionPlugin`

## Solution

`CameraProjectionPlugin` is now an all-in-one plugin for adding a custom
`CameraProjection`. I also added `PbrProjectionPlugin` which is like
`CameraProjectionPlugin` but for PBR.

P.S. I'd like to get this merged after
https://github.com/bevyengine/bevy/pull/11766.

---

## Changelog

- Changed `CameraProjectionPlugin` to be an all-in-one plugin for adding
a `CameraProjection`
- Removed `VisibilitySystems::{UpdateOrthographicFrusta,
UpdatePerspectiveFrusta, UpdateProjectionFrusta}`, now replaced with
`VisibilitySystems::UpdateFrusta`
- Added `PbrProjectionPlugin` for projection-specific PBR functionality.

## Migration Guide

`VisibilitySystems`'s `UpdateOrthographicFrusta`,
`UpdatePerspectiveFrusta`, and `UpdateProjectionFrusta` variants were
removed, they were replaced with `VisibilitySystems::UpdateFrusta`
2024-04-26 23:52:09 +00:00
robtfm
91a393a9e2
Throttle render assets (#12622)
# Objective

allow throttling of gpu uploads to prevent choppy framerate when many
textures/meshes are loaded in.

## Solution

- `RenderAsset`s can implement `byte_len()` which reports their size.
implemented this for `Mesh` and `Image`
- users can add a `RenderAssetBytesPerFrame` which specifies max bytes
to attempt to upload in a frame
- `render_assets::<A>` checks how many bytes have been written before
attempting to upload assets. the limit is a soft cap: assets will be
written until the total has exceeded the cap, to ensure some forward
progress every frame

notes:
- this is a stopgap until we have multiple wgpu queues for proper
streaming of data
- requires #12606

issues
- ~~fonts sometimes only partially upload. i have no clue why, needs to
be fixed~~ fixed now.
- choosing the #bytes is tricky as it should be hardware / framerate
dependent
- many features are not tested (env maps, light probes, etc) - they
won't break unless `RenderAssetBytesPerFrame` is explicitly used though

---------

Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-04-26 23:43:33 +00:00
Aevyrie
ade70b3925
Per-Object Motion Blur (#9924)
https://github.com/bevyengine/bevy/assets/2632925/e046205e-3317-47c3-9959-fc94c529f7e0

# Objective

- Adds per-object motion blur to the core 3d pipeline. This is a common
effect used in games and other simulations.
- Partially resolves #4710

## Solution

- This is a post-process effect that uses the depth and motion vector
buffers to estimate per-object motion blur. The implementation is
combined from knowledge from multiple papers and articles. The approach
itself, and the shader are quite simple. Most of the effort was in
wiring up the bevy rendering plumbing, and properly specializing for HDR
and MSAA.
- To work with MSAA, the MULTISAMPLED_SHADING wgpu capability is
required. I've extracted this code from #9000. This is because the
prepass buffers are multisampled, and require accessing with
`textureLoad` as opposed to the widely compatible `textureSample`.
- Added an example to demonstrate the effect of motion blur parameters.

## Future Improvements

- While this approach does have limitations, it's one of the most
commonly used, and is much better than camera motion blur, which does
not consider object velocity. For example, this implementation allows a
dolly to track an object, and that object will remain unblurred while
the background is blurred. The biggest issue with this implementation is
that blur is constrained to the boundaries of objects which results in
hard edges. There are solutions to this by either dilating the object or
the motion vector buffer, or by taking a different approach such as
https://casual-effects.com/research/McGuire2012Blur/index.html
- I'm using a noise PRNG function to jitter samples. This could be
replaced with a blue noise texture lookup or similar, however after
playing with the parameters, it gives quite nice results with 4 samples,
and is significantly better than the artifacts generated when not
jittering.

---

## Changelog

- Added: per-object motion blur. This can be enabled and configured by
adding the `MotionBlurBundle` to a camera entity.

---------

Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com>
2024-04-25 01:16:02 +00:00
re0312
0f27500e46
Improve par_iter and Parallel (#12904)
# Objective

- bevy usually use `Parallel::scope` to collect items from `par_iter`,
but `scope` will be called with every satifified items. it will cause a
lot of unnecessary lookup.

## Solution

- similar to Rayon ,we introduce `for_each_init` for `par_iter` which
only be invoked when spawn a task for a group of items.

---

## Changelog

- added  `for_each_init`

## Performance
`check_visibility `  in  `many_foxes ` 

![image](https://github.com/bevyengine/bevy/assets/45868716/030c41cf-0d2f-4a36-a071-35097d93e494)
 
~40% performance gain in `check_visibility`.

---------

Co-authored-by: James Liu <contact@jamessliu.com>
2024-04-23 12:05:34 +00:00
Brezak
de875fdc4c
Make AppExit more specific about exit reason. (#13022)
# Objective

Closes #13017.

## Solution

- Make `AppExit` a enum with a `Success` and `Error` variant.
- Make `App::run()` return a `AppExit` if it ever returns.
- Make app runners return a `AppExit` to signal if they encountered a
error.

---

## Changelog

### Added

- [`App::should_exit`](https://example.org/)
- [`AppExit`](https://docs.rs/bevy/latest/bevy/app/struct.AppExit.html)
to the `bevy` and `bevy_app` preludes,

### Changed

- [`AppExit`](https://docs.rs/bevy/latest/bevy/app/struct.AppExit.html)
is now a enum with 2 variants (`Success` and `Error`).
- The app's [runner
function](https://docs.rs/bevy/latest/bevy/app/struct.App.html#method.set_runner)
now has to return a `AppExit`.
-
[`App::run()`](https://docs.rs/bevy/latest/bevy/app/struct.App.html#method.run)
now also returns the `AppExit` produced by the runner function.


## Migration Guide

- Replace all usages of
[`AppExit`](https://docs.rs/bevy/latest/bevy/app/struct.AppExit.html)
with `AppExit::Success` or `AppExit::Failure`.
- Any custom app runners now need to return a `AppExit`. We suggest you
return a `AppExit::Error` if any `AppExit` raised was a Error. You can
use the new [`App::should_exit`](https://example.org/) method.
- If not exiting from `main` any other way. You should return the
`AppExit` from `App::run()` so the app correctly returns a error code if
anything fails e.g.
```rust
fn main() -> AppExit {
    App::new()
        //Your setup here...
        .run()
}
```

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-04-22 16:48:18 +00:00
François Mockers
c40b485095
use a u64 for MeshPipelineKey (#13015)
# Objective

- `MeshPipelineKey` use some bits for two things
- First commit in this PR adds an assertion that doesn't work currently
on main
- This leads to some mesh topology not working anymore, for example
`LineStrip`
- With examples `lines`, there should be two groups of lines, the blue
one doesn't display currently

## Solution

- Change the `MeshPipelineKey` to be backed by a `u64` instead, to have
enough bits
2024-04-21 20:01:45 +00:00
BD103
b3d3daad5a
Fix Clippy lints on WASM (#13030)
# Objective

- Fixes #13024.

## Solution

- Run `cargo clippy --target wasm32-unknown-unknown` until there are no
more errors.
  - I recommend reviewing one commit at a time :)

---

## Changelog

- Fixed Clippy lints for `wasm32-unknown-unknown` target.
- Updated `bevy_transform`'s `README.md`.
2024-04-20 09:15:42 +00:00
Kanabenki
1df41b79dd
Expose desired_maximum_frame_latency through window creation (#12954)
# Objective

- Closes #12930.

## Solution

- Add a corresponding optional field on `Window` and `ExtractedWindow`

---

## Changelog

### Added

- `wgpu`'s `desired_maximum_frame_latency` is exposed through window
creation. This can be used to override the default maximum number of
queued frames on the GPU (currently 2).

## Migration Guide

- The `desired_maximum_frame_latency` field must be added to instances
of `Window` and `ExtractedWindow` where all fields are explicitly
specified.
2024-04-19 23:09:30 +00:00
Brezak
f68bc01544
Run CheckVisibility after all the other visibility system sets have… (#12962)
# Objective

Make visibility system ordering explicit. Fixes #12953.

## Solution

Specify `CheckVisibility` happens after all other `VisibilitySystems`
sets have happened.

---------

Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2024-04-18 20:33:29 +00:00
andristarr
2b3e3341d6
separating finite and infinite 3d planes (#12426)
# Objective

Fixes #12388

## Solution

- Removing the plane3d and adding rect3d primitive mesh
2024-04-18 14:13:22 +00:00
Victor
11afe16079
Fix extensionless image loading panic (#13005)
Remake of #12938 targeting main
2024-04-17 15:13:33 +00:00
Brezak
368c5cef1a
Implement clone for most bundles. (#12993)
# Objective

Closes #12985.

## Solution

- Derive clone for most types with bundle in their name.
- Bundle types missing clone:
-
[`TextBundle`](https://docs.rs/bevy/latest/bevy/prelude/struct.TextBundle.html)
(Contains
[`ContentSize`](https://docs.rs/bevy/latest/bevy/ui/struct.ContentSize.html)
which can't be cloned because it itself contains a `Option<MeasureFunc>`
where
[`MeasureFunc`](https://docs.rs/taffy/0.3.18/taffy/node/enum.MeasureFunc.html)
isn't clone)
-
[`ImageBundle`](https://docs.rs/bevy/latest/bevy/prelude/struct.ImageBundle.html)
(Same as `TextBundle`)
-
[`AtlasImageBundle`](https://docs.rs/bevy/latest/bevy/prelude/struct.AtlasImageBundle.html)
(Will be deprecated in 0.14 there's no point)
2024-04-16 16:37:09 +00:00
BD103
7b8d502083
Fix beta lints (#12980)
# Objective

- Fixes #12976

## Solution

This one is a doozy.

- Run `cargo +beta clippy --workspace --all-targets --all-features` and
fix all issues
- This includes:
- Moving inner attributes to be outer attributes, when the item in
question has both inner and outer attributes
  - Use `ptr::from_ref` in more scenarios
- Extend the valid idents list used by `clippy:doc_markdown` with more
names
  - Use `Clone::clone_from` when possible
  - Remove redundant `ron` import
  - Add backticks to **so many** identifiers and items
    - I'm sorry whoever has to review this

---

## Changelog

- Added links to more identifiers in documentation.
2024-04-16 02:46:46 +00:00
Patrick Walton
1141e731ff
Implement alpha to coverage (A2C) support. (#12970)
[Alpha to coverage] (A2C) replaces alpha blending with a
hardware-specific multisample coverage mask when multisample
antialiasing is in use. It's a simple form of [order-independent
transparency] that relies on MSAA. ["Anti-aliased Alpha Test: The
Esoteric Alpha To Coverage"] is a good summary of the motivation for and
best practices relating to A2C.

This commit implements alpha to coverage support as a new variant for
`AlphaMode`. You can supply `AlphaMode::AlphaToCoverage` as the
`alpha_mode` field in `StandardMaterial` to use it. When in use, the
standard material shader automatically applies the texture filtering
method from ["Anti-aliased Alpha Test: The Esoteric Alpha To Coverage"].
Objects with alpha-to-coverage materials are binned in the opaque pass,
as they're fully order-independent.

The `transparency_3d` example has been updated to feature an object with
alpha to coverage. Happily, the example was already using MSAA.

This is part of #2223, as far as I can tell.

[Alpha to coverage]: https://en.wikipedia.org/wiki/Alpha_to_coverage

[order-independent transparency]:
https://en.wikipedia.org/wiki/Order-independent_transparency

["Anti-aliased Alpha Test: The Esoteric Alpha To Coverage"]:
https://bgolus.medium.com/anti-aliased-alpha-test-the-esoteric-alpha-to-coverage-8b177335ae4f

---

## Changelog

### Added

* The `AlphaMode` enum now supports `AlphaToCoverage`, to provide
limited order-independent transparency when multisample antialiasing is
in use.
2024-04-15 20:37:52 +00:00
Robert Swain
5f05e75a70
Fix 2D BatchedInstanceBuffer clear (#12922)
# Objective

- `cargo run --release --example bevymark -- --benchmark --waves 160
--per-wave 1000 --mode mesh2d` runs slower and slower over time due to
`no_gpu_preprocessing::write_batched_instance_buffer<bevy_sprite::mesh2d::mesh::Mesh2dPipeline>`
taking longer and longer because the `BatchedInstanceBuffer` is not
cleared

## Solution

- Split the `clear_batched_instance_buffers` system into CPU and GPU
versions
- Use the CPU version for 2D meshes
2024-04-15 05:00:43 +00:00
Hexorg
7a9a459a40
Fixed crash when transcoding one- or two-channel KTX2 textures (#12629)
# Objective

Fixes a crash when transcoding one- or two-channel KTX2 textures

## Solution

transcoded array has been pre-allocated up to levels.len using a macros.
Rgb8 transcoding already uses that and addresses transcoded array by an
index. R8UnormSrgb and Rg8UnormSrgb were pushing on top of the
transcoded vec, resulting in first levels.len() vectors to stay empty,
and second levels.len() levels actually being transcoded, which then
resulted in out of bounds read when copying levels to gpu
2024-04-14 14:40:10 +00:00
BD103
aa2ebbb43f
Fix some nightly Clippy lints (#12927)
# Objective

- I daily drive nightly Rust when developing Bevy, so I notice when new
warnings are raised by `cargo check` and Clippy.
- `cargo +nightly clippy` raises a few of these new warnings.

## Solution

- Fix most warnings from `cargo +nightly clippy`
- I skipped the docs-related warnings because some were covered by
#12692.
- Use `Clone::clone_from` in applicable scenarios, which can sometimes
avoid an extra allocation.
- Implement `Default` for structs that have a `pub const fn new() ->
Self` method.
- Fix an occurrence where generic constraints were defined in both `<C:
Trait>` and `where C: Trait`.
  - Removed generic constraints that were implied by the `Bundle` trait.

---

## Changelog

- `BatchingStrategy`, `NonGenericTypeCell`, and `GenericTypeCell` now
implement `Default`.
2024-04-13 02:05:38 +00:00
Patrick Walton
5caf085dac
Divide the single VisibleEntities list into separate lists for 2D meshes, 3D meshes, lights, and UI elements, for performance. (#12582)
This commit splits `VisibleEntities::entities` into four separate lists:
one for lights, one for 2D meshes, one for 3D meshes, and one for UI
elements. This allows `queue_material_meshes` and similar methods to
avoid examining entities that are obviously irrelevant. In particular,
this separation helps scenes with many skinned meshes, as the individual
bones are considered visible entities but have no rendered appearance.

Internally, `VisibleEntities::entities` is a `HashMap` from the `TypeId`
representing a `QueryFilter` to the appropriate `Entity` list. I had to
do this because `VisibleEntities` is located within an upstream crate
from the crates that provide lights (`bevy_pbr`) and 2D meshes
(`bevy_sprite`). As an added benefit, this setup allows apps to provide
their own types of renderable components, by simply adding a specialized
`check_visibility` to the schedule.

This provides a 16.23% end-to-end speedup on `many_foxes` with 10,000
foxes (24.06 ms/frame to 20.70 ms/frame).

## Migration guide

* `check_visibility` and `VisibleEntities` now store the four types of
renderable entities--2D meshes, 3D meshes, lights, and UI
elements--separately. If your custom rendering code examines
`VisibleEntities`, it will now need to specify which type of entity it's
interested in using the `WithMesh2d`, `WithMesh`, `WithLight`, and
`WithNode` types respectively. If your app introduces a new type of
renderable entity, you'll need to add an explicit call to
`check_visibility` to the schedule to accommodate your new component or
components.

## Analysis

`many_foxes`, 10,000 foxes: `main`:
![Screenshot 2024-03-31
114444](https://github.com/bevyengine/bevy/assets/157897/16ecb2ff-6e04-46c0-a4b0-b2fde2084bad)

`many_foxes`, 10,000 foxes, this branch:
![Screenshot 2024-03-31
114256](https://github.com/bevyengine/bevy/assets/157897/94dedae4-bd00-45b2-9aaf-dfc237004ddb)

`queue_material_meshes` (yellow = this branch, red = `main`):
![Screenshot 2024-03-31
114637](https://github.com/bevyengine/bevy/assets/157897/f90912bd-45bd-42c4-bd74-57d98a0f036e)

`queue_shadows` (yellow = this branch, red = `main`):
![Screenshot 2024-03-31
114607](https://github.com/bevyengine/bevy/assets/157897/6ce693e3-20c0-4234-8ec9-a6f191299e2d)
2024-04-11 20:33:20 +00:00
BD103
5c3ae32ab1
Enable clippy::ref_as_ptr (#12918)
# Objective

-
[`clippy::ref_as_ptr`](https://rust-lang.github.io/rust-clippy/master/index.html#/ref_as_ptr)
prevents you from directly casting references to pointers, requiring you
to use `std::ptr::from_ref` instead. This prevents you from accidentally
converting an immutable reference into a mutable pointer (`&x as *mut
T`).
- Follow up to #11818, now that our [`rust-version` is
1.77](11817f4ba4/Cargo.toml (L14)).

## Solution

- Enable lint and fix all warnings.
2024-04-10 20:16:48 +00:00
Patrick Walton
d59b1e71ef
Implement percentage-closer filtering (PCF) for point lights. (#12910)
I ported the two existing PCF techniques to the cubemap domain as best I
could. Generally, the technique is to create a 2D orthonormal basis
using Gram-Schmidt normalization, then apply the technique over that
basis. The results look fine, though the shadow bias often needs
adjusting.

For comparison, Unity uses a 4-tap pattern for PCF on point lights of
(1, 1, 1), (-1, -1, 1), (-1, 1, -1), (1, -1, -1). I tried this but
didn't like the look, so I went with the design above, which ports the
2D techniques to the 3D domain. There's surprisingly little material on
point light PCF.

I've gone through every example using point lights and verified that the
shadow maps look fine, adjusting biases as necessary.

Fixes #3628.

---

## Changelog

### Added
* Shadows from point lights now support percentage-closer filtering
(PCF), and as a result look less aliased.

### Changed
* `ShadowFilteringMethod::Castano13` and
`ShadowFilteringMethod::Jimenez14` have been renamed to
`ShadowFilteringMethod::Gaussian` and `ShadowFilteringMethod::Temporal`
respectively.

## Migration Guide

* `ShadowFilteringMethod::Castano13` and
`ShadowFilteringMethod::Jimenez14` have been renamed to
`ShadowFilteringMethod::Gaussian` and `ShadowFilteringMethod::Temporal`
respectively.
2024-04-10 20:16:08 +00:00
Patrick Walton
11817f4ba4
Generate MeshUniforms on the GPU via compute shader where available. (#12773)
Currently, `MeshUniform`s are rather large: 160 bytes. They're also
somewhat expensive to compute, because they involve taking the inverse
of a 3x4 matrix. Finally, if a mesh is present in multiple views, that
mesh will have a separate `MeshUniform` for each and every view, which
is wasteful.

This commit fixes these issues by introducing the concept of a *mesh
input uniform* and adding a *mesh uniform building* compute shader pass.
The `MeshInputUniform` is simply the minimum amount of data needed for
the GPU to compute the full `MeshUniform`. Most of this data is just the
transform and is therefore only 64 bytes. `MeshInputUniform`s are
computed during the *extraction* phase, much like skins are today, in
order to avoid needlessly copying transforms around on CPU. (In fact,
the render app has been changed to only store the translation of each
mesh; it no longer cares about any other part of the transform, which is
stored only on the GPU and the main world.) Before rendering, the
`build_mesh_uniforms` pass runs to expand the `MeshInputUniform`s to the
full `MeshUniform`.

The mesh uniform building pass does the following, all on GPU:

1. Copy the appropriate fields of the `MeshInputUniform` to the
`MeshUniform` slot. If a single mesh is present in multiple views, this
effectively duplicates it into each view.

2. Compute the inverse transpose of the model transform, used for
transforming normals.

3. If applicable, copy the mesh's transform from the previous frame for
TAA. To support this, we double-buffer the `MeshInputUniform`s over two
frames and swap the buffers each frame. The `MeshInputUniform`s for the
current frame contain the index of that mesh's `MeshInputUniform` for
the previous frame.

This commit produces wins in virtually every CPU part of the pipeline:
`extract_meshes`, `queue_material_meshes`,
`batch_and_prepare_render_phase`, and especially
`write_batched_instance_buffer` are all faster. Shrinking the amount of
CPU data that has to be shuffled around speeds up the entire rendering
process.

| Benchmark              | This branch | `main`  | Speedup |
|------------------------|-------------|---------|---------|
| `many_cubes -nfc`      |      17.259 |  24.529 |  42.12% |
| `many_cubes -nfc -vpi` |     302.116 | 312.123 |   3.31% |
| `many_foxes`           |       3.227 |   3.515 |   8.92% |

Because mesh uniform building requires compute shader, and WebGL 2 has
no compute shader, the existing CPU mesh uniform building code has been
left as-is. Many types now have both CPU mesh uniform building and GPU
mesh uniform building modes. Developers can opt into the old CPU mesh
uniform building by setting the `use_gpu_uniform_builder` option on
`PbrPlugin` to `false`.

Below are graphs of the CPU portions of `many-cubes
--no-frustum-culling`. Yellow is this branch, red is `main`.

`extract_meshes`:
![Screenshot 2024-04-02
124842](https://github.com/bevyengine/bevy/assets/157897/a6748ea4-dd05-47b6-9254-45d07d33cb10)
It's notable that we get a small win even though we're now writing to a
GPU buffer.

`queue_material_meshes`:
![Screenshot 2024-04-02
124911](https://github.com/bevyengine/bevy/assets/157897/ecb44d78-65dc-448d-ba85-2de91aa2ad94)
There's a bit of a regression here; not sure what's causing it. In any
case it's very outweighed by the other gains.

`batch_and_prepare_render_phase`:
![Screenshot 2024-04-02
125123](https://github.com/bevyengine/bevy/assets/157897/4e20fc86-f9dd-4e5c-8623-837e4258f435)
There's a huge win here, enough to make batching basically drop off the
profile.

`write_batched_instance_buffer`:
![Screenshot 2024-04-02
125237](https://github.com/bevyengine/bevy/assets/157897/401a5c32-9dc1-4991-996d-eb1cac6014b2)
There's a massive improvement here, as expected. Note that a lot of it
simply comes from the fact that `MeshInputUniform` is `Pod`. (This isn't
a maintainability problem in my view because `MeshInputUniform` is so
simple: just 16 tightly-packed words.)

## Changelog

### Added

* Per-mesh instance data is now generated on GPU with a compute shader
instead of CPU, resulting in rendering performance improvements on
platforms where compute shaders are supported.

## Migration guide

* Custom render phases now need multiple systems beyond just
`batch_and_prepare_render_phase`. Code that was previously creating
custom render phases should now add a `BinnedRenderPhasePlugin` or
`SortedRenderPhasePlugin` as appropriate instead of directly adding
`batch_and_prepare_render_phase`.
2024-04-10 05:33:32 +00:00
Robert Swain
ab7cbfa8fc
Consolidate Render(Ui)Materials(2d) into RenderAssets (#12827)
# Objective

- Replace `RenderMaterials` / `RenderMaterials2d` / `RenderUiMaterials`
with `RenderAssets` to enable implementing changes to one thing,
`RenderAssets`, that applies to all use cases rather than duplicating
changes everywhere for multiple things that should be one thing.
- Adopts #8149 

## Solution

- Make RenderAsset generic over the destination type rather than the
source type as in #8149
- Use `RenderAssets<PreparedMaterial<M>>` etc for render materials

---

## Changelog

- Changed:
- The `RenderAsset` trait is now implemented on the destination type.
Its `SourceAsset` associated type refers to the type of the source
asset.
- `RenderMaterials`, `RenderMaterials2d`, and `RenderUiMaterials` have
been replaced by `RenderAssets<PreparedMaterial<M>>` and similar.

## Migration Guide

- `RenderAsset` is now implemented for the destination type rather that
the source asset type. The source asset type is now the `RenderAsset`
trait's `SourceAsset` associated type.
2024-04-09 13:26:34 +00:00
Matty
956604e4c7
Meshing for Triangle3d primitive (#12686)
# Objective

- Ongoing work for #10572 
- Implement the `Meshable` trait for `Triangle3d`, allowing 3d triangle
primitives to produce meshes.

## Solution

The `Meshable` trait for `Triangle3d` directly produces a `Mesh`, much
like that of `Triangle2d`. The mesh consists only of a single triangle
(the triangle itself), and its vertex data consists of:
- Vertex positions, which are the triangle's vertices themselves (i.e.
the triangle provides its own coordinates in mesh space directly)
- Normals, which are all the normal of the triangle itself
- Indices, which are directly inferred from the vertex order (note that
this is slightly different than `Triangle2d` which, because of its lower
dimension, has an orientation which can be corrected for so that it
always faces "the right way")
- UV coordinates, which are produced as follows:
1. The first coordinate is coincident with the `ab` direction of the
triangle.
2. The second coordinate maps to be perpendicular to the first in mesh
space, so that the UV-mapping is skew-free.
3. The UV-coordinates map to the smallest rectangle possible containing
the triangle, given the preceding constraints.

Here is a visual demonstration; here, the `ab` direction of the triangle
is horizontal, left to right — the point `c` moves, expanding the
bounding rectangle of the triangle when it pushes past `a` or `b`:

<img width="1440" alt="Screenshot 2024-03-23 at 5 36 01 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/bef4d786-7b82-4207-abd4-ac4557d0f8b8">

<img width="1440" alt="Screenshot 2024-03-23 at 5 38 12 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/c0f72b8f-8e70-46fa-a750-2041ba6dfb78">

<img width="1440" alt="Screenshot 2024-03-23 at 5 37 15 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/db287e4f-2b0b-4fd4-8d71-88f4e7a03b7c">

The UV-mapping of `Triangle2d` has also been changed to use the same
logic.

---

## Changelog

- Implemented `Meshable` for `Triangle3d`.
- Changed UV-mapping of `Triangle2d` to match that of `Triangle3d`.

## Migration Guide

The UV-mapping of `Triangle2d` has changed with this PR; the main
difference is that the UVs are no longer dependent on the triangle's
absolute coordinates, but instead follow translations of the triangle
itself in its definition. If you depended on the old UV-coordinates for
`Triangle2d`, then you will have to update affected areas to use the new
ones which, briefly, can be described as follows:
- The first coordinate is parallel to the line between the first two
vertices of the triangle.
- The second coordinate is orthogonal to this, pointing in the direction
of the third point.

Generally speaking, this means that the first two points will have
coordinates `[_, 0.]`, while the third coordinate will be `[_, 1.]`,
with the exact values depending on the position of the third point
relative to the first two. For acute triangles, the first two vertices
always have UV-coordinates `[0., 0.]` and `[1., 0.]` respectively. For
obtuse triangles, the third point will have coordinate `[0., 1.]` or
`[1., 1.]`, with the coordinate of one of the two other points shifting
to maintain proportionality.

For example: 
- The default `Triangle2d` has UV-coordinates `[0., 0.]`, `[0., 1.]`,
[`0.5, 1.]`.
- The triangle with vertices `vec2(0., 0.)`, `vec2(1., 0.)`, `vec2(2.,
1.)` has UV-coordinates `[0., 0.]`, `[0.5, 0.]`, `[1., 1.]`.
- The triangle with vertices `vec2(0., 0.)`, `vec2(1., 0.)`, `vec2(-2.,
1.)` has UV-coordinates `[2./3., 0.]`, `[1., 0.]`, `[0., 1.]`.

## Discussion

### Design considerations

1. There are a number of ways to UV-map a triangle (at least two of
which are fairly natural); for instance, we could instead declare the
second axis to be essentially `bc` so that the vertices are always `[0.,
0.]`, `[0., 1.]`, and `[1., 0.]`. I chose this method instead because it
is skew-free, so that the sampling from textures has only bilinear
scaling. I think this is better for cases where a relatively "uniform"
texture is mapped to the triangle, but it's possible that we might want
to support the other thing in the future. Thankfully, we already have
the capability of easily expanding to do that with Builders if the need
arises. This could also allow us to provide things like barycentric
subdivision.
2. Presently, the mesh-creation code for `Triangle3d` is set up to never
fail, even in the case that the triangle is degenerate. I have mixed
feelings about this, but none of our other primitive meshes fail, so I
decided to take the same approach. Maybe this is something that could be
worth revisiting in the future across the board.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Jakub Marcowski <37378746+Chubercik@users.noreply.github.com>
2024-04-08 23:00:04 +00:00
Hexorg
b9a232966b
Fixed a bug where skybox ddsfile would crash from wgpu (#12894)
Fixed a bug where skybox ddsfile would crash from wgpu while trying to
read past the file buffer.
Added a unit-test to prevent regression.
Bumped ddsfile dependency version to 0.5.2

# Objective

Prevents a crash when loading dds skybox.

## Solution

ddsfile already automatically sets array layers to be 6 for skyboxes.
Removed bevy's extra *= 6 multiplication.

---

This is a copy of
[#12598](https://github.com/bevyengine/bevy/pull/12598) ... I made that
one off of main and wasn't able to make more pull requests without
making a new branch.

---------

Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-04-08 17:16:25 +00:00
Martín Maita
0c78bf3bb0
Moves intern and label modules into bevy_ecs (#12772)
# Objective

- Attempts to solve two items from
https://github.com/bevyengine/bevy/issues/11478.

## Solution

- Moved `intern` module from `bevy_utils` into `bevy_ecs` crate and
updated all relevant imports.
- Moved `label` module from `bevy_utils` into `bevy_ecs` crate and
updated all relevant imports.

---

## Migration Guide

- Replace `bevy_utils::define_label` imports with
`bevy_ecs::define_label` imports.
- Replace `bevy_utils:🏷️:DynEq` imports with
`bevy_ecs:🏷️:DynEq` imports.
- Replace `bevy_utils:🏷️:DynHash` imports with
`bevy_ecs:🏷️:DynHash` imports.
- Replace `bevy_utils::intern::Interned` imports with
`bevy_ecs::intern::Interned` imports.
- Replace `bevy_utils::intern::Internable` imports with
`bevy_ecs::intern::Internable` imports.
- Replace `bevy_utils::intern::Interner` imports with
`bevy_ecs::intern::Interner` imports.

---------

Co-authored-by: James Liu <contact@jamessliu.com>
2024-04-08 15:34:11 +00:00
robtfm
452821dd52
more robust gpu image use (#12606)
# Objective

make morph targets and tonemapping more tolerant of delayed image
loading.

neither of these actually fail currently unless using a bespoke loader
(and even then it would be rare), but i am working on adding throttling
for asset gpu uploads (as a stopgap until we can do proper asset
streaming) and they break with that.

## Solution

when a mesh with morph targets is uploaded to the gpu, the prepare
function uploads the morph target texture if it's available, otherwise
it uploads without morph targets. this is generally fine as long as
morph targets are typically loaded from bytes (in gltf loader), but may
fail for a custom loader if the asset server async-loads the target
texture and the texture is not available yet. the mesh fails to render
and doesn't update when the image is loaded
-> if morph targets are specified but not ready yet, retry mesh upload
next frame

tonemapping `unwrap`s on the lookup table image. this is never a problem
since the image is added via `include_bytes!`, but could be a problem in
future with asset gpu throttling/streaming.
-> if the lookup texture is not yet available, use a fallback
-> in the node, check if the fallback was used before caching the bind
group
2024-04-07 17:18:58 +00:00
Luís Figueiredo
ac91b19118
Fixes #12000: When viewport is set to camera and switched to SizedFul… (#12861)
# Objective

- When viewport is set to the same size as the window on creation, when
adjusting to SizedFullscreen, the window may be smaller than the
viewport for a moment, which caused the arguments to be invalid and
panic.
- Fixes #12000.

## Solution

- The fix consists of matching the size of the viewport to the lower
size of the window ( if the x value of the window is lower, I update
only the x value of the viewport, same for the y value). Also added a
test to show that it does not panic anymore.

---
2024-04-06 02:22:50 +00:00
Multirious
a27ce270d0
Fix broken link in mesh docs (#12872)
# Objective

Fixes #12813

## Solution

Update the link to
`https://github.com/bevyengine/bevy/tree/main/crates/bevy_render/src/mesh/primitives`
2024-04-05 18:22:52 +00:00
Remi Godin
c233d6e0d0
Added method to get waiting pipelines IDs from pipeline cache. (#12874)
# Objective
- Add a way to easily get currently waiting pipelines IDs.

## Solution
- Added a method to get waiting pipelines `CachedPipelineId`.

---------

Co-authored-by: James Liu <contact@jamessliu.com>
2024-04-05 03:46:15 +00:00
James Liu
a4ed1b88b8
Relax BufferVec's type constraints (#12866)
# Objective
Since BufferVec was first introduced, `bytemuck` has added additional
traits with fewer restrictions than `Pod`. Within BufferVec, we only
rely on the constraints of `bytemuck::cast_slice` to a `u8` slice, which
now only requires `T: NoUninit` which is a strict superset of `Pod`
types.

## Solution
Change out the `Pod` generic type constraint with `NoUninit`. Also
taking the opportunity to substitute `cast_slice` with
`must_cast_slice`, which avoids a runtime panic in place of a compile
time failure if `T` cannot be used.

---

## Changelog
Changed: `BufferVec` now supports working with types containing
`NoUninit` but not `Pod` members.
Changed: `BufferVec` will now fail to compile if used with a type that
cannot be safely read from. Most notably, this includes ZSTs, which
would previously always panic at runtime.
2024-04-05 02:11:41 +00:00
Carter Anderson
b27896f875
Disable RAY_QUERY and RAY_TRACING_ACCELERATION_STRUCTURE by default (#12862)
# Objective

See https://github.com/gfx-rs/wgpu/issues/5488 for context and
rationale.

## Solution

- Disables `wgpu::Features::RAY_QUERY` and
`wgpu::Features::RAY_TRACING_ACCELERATION_STRUCTURE` by default. They
must be explicitly opted into now.

---

## Changelog

- Disables `wgpu::Features::RAY_QUERY` and
`wgpu::Features::RAY_TRACING_ACCELERATION_STRUCTURE` by default. They
must be explicitly opted into now.

## Migration Guide

- If you need `wgpu::Features::RAY_QUERY` or
`wgpu::Features::RAY_TRACING_ACCELERATION_STRUCTURE`, enable them
explicitly using `WgpuSettings::features`
2024-04-04 19:20:19 +00:00
Patrick Walton
37522fd0ae
Micro-optimize queue_material_meshes, primarily to remove bit manipulation. (#12791)
This commit makes the following optimizations:

## `MeshPipelineKey`/`BaseMeshPipelineKey` split

`MeshPipelineKey` has been split into `BaseMeshPipelineKey`, which lives
in `bevy_render` and `MeshPipelineKey`, which lives in `bevy_pbr`.
Conceptually, `BaseMeshPipelineKey` is a superclass of
`MeshPipelineKey`. For `BaseMeshPipelineKey`, the bits start at the
highest (most significant) bit and grow downward toward the lowest bit;
for `MeshPipelineKey`, the bits start at the lowest bit and grow upward
toward the highest bit. This prevents them from colliding.

The goal of this is to avoid having to reassemble bits of the pipeline
key for every mesh every frame. Instead, we can just use a bitwise or
operation to combine the pieces that make up a `MeshPipelineKey`.

## `specialize_slow`

Previously, all of `specialize()` was marked as `#[inline]`. This
bloated `queue_material_meshes` unnecessarily, as a large chunk of it
ended up being a slow path that was rarely hit. This commit refactors
the function to move the slow path to `specialize_slow()`.

Together, these two changes shave about 5% off `queue_material_meshes`:

![Screenshot 2024-03-29
130002](https://github.com/bevyengine/bevy/assets/157897/a7e5a994-a807-4328-b314-9003429dcdd2)

## Migration Guide

- The `primitive_topology` field on `GpuMesh` is now an accessor method:
`GpuMesh::primitive_topology()`.
- For performance reasons, `MeshPipelineKey` has been split into
`BaseMeshPipelineKey`, which lives in `bevy_render`, and
`MeshPipelineKey`, which lives in `bevy_pbr`. These two should be
combined with bitwise-or to produce the final `MeshPipelineKey`.
2024-04-01 21:58:53 +00:00
Matty
c8aa3ac7d1
Meshing for Annulus primitive (#12734)
# Objective

Related to #10572 
Allow the `Annulus` primitive to be meshed.

## Solution

We introduce a `Meshable` structure, `AnnulusMeshBuilder`, which allows
the `Annulus` primitive to be meshed, leaving optional configuration of
the number of angular sudivisions to the user. Here is a picture of the
annulus's UV-mapping:
<img width="1440" alt="Screenshot 2024-03-26 at 10 39 48 AM"
src="https://github.com/bevyengine/bevy/assets/2975848/b170291d-cba7-441b-90ee-2ad6841eaedb">

Other features are essentially identical to the implementations for
`Circle`/`Ellipse`.

---

## Changelog

- Introduced `AnnulusMeshBuilder`
- Implemented `Meshable` for `Annulus` with `Output =
AnnulusMeshBuilder`
- Implemented `From<Annulus>` and `From<AnnulusMeshBuilder>` for `Mesh`
- Added `impl_reflect!` declaration for `Annulus` and `Triangle3d` in
`bevy_reflect`

---

## Discussion

### Design considerations

The only interesting wrinkle here is that the existing UV-mapping of
`Ellipse` (and hence of `Circle` and `RegularPolygon`) is non-radial
(it's skew-free, created by situating the mesh in a bounding rectangle),
so the UV-mapping of `Annulus` doesn't limit to that of `Circle` as its
inner radius tends to zero, for instance. I don't see this as a real
issue for `Annulus`, which should almost certainly have this kind of
UV-mapping, but I think we ought to at least consider allowing mesh
configuration for `Circle`/`Ellipse` that performs radial UV-mapping
instead. (In these cases in particular, it would be especially easy,
since we wouldn't need a different parameter set in the builder.)

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-04-01 21:55:49 +00:00
BD103
84363f2fab
Remove redundant imports (#12817)
# Objective

- There are several redundant imports in the tests and examples that are
not caught by CI because additional flags need to be passed.

## Solution

- Run `cargo check --workspace --tests` and `cargo check --workspace
--examples`, then fix all warnings.
- Add `test-check` to CI, which will be run in the check-compiles job.
This should catch future warnings for tests. Examples are already
checked, but I'm not yet sure why they weren't caught.

## Discussion

- Should the `--tests` and `--examples` flags be added to CI, so this is
caught in the future?
- If so, #12818 will need to be merged first. It was also a warning
raised by checking the examples, but I chose to split off into a
separate PR.

---------

Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-04-01 19:59:08 +00:00
Jake
abd94480ab
Normalize warning messages with Nvidia drivers (#12833)
# Objective
There are currently 2 different warning messages that are logged when
resizing on Linux with Nvidia drivers (introduced in
70c69cdd51).
Fixes #12830

## Solution
Generalize both to say:
```Couldn't get swap chain texture. This often happens with the NVIDIA drivers on Linux. It can be safely ignored.```
2024-04-01 19:56:56 +00:00
François Mockers
93fd02e8ea
remove DeterministicRenderingConfig (#12811)
# Objective

- Since #12453, `DeterministicRenderingConfig` doesn't do anything

## Solution

- Remove it

---

## Migration Guide

- Removed `DeterministicRenderingConfig`. There shouldn't be any z
fighting anymore in the rendering even without setting
`stable_sort_z_fighting`
2024-04-01 09:32:47 +00:00
Cameron
01649f13e2
Refactor App and SubApp internals for better separation (#9202)
# Objective

This is a necessary precursor to #9122 (this was split from that PR to
reduce the amount of code to review all at once).

Moving `!Send` resource ownership to `App` will make it unambiguously
`!Send`. `SubApp` must be `Send`, so it can't wrap `App`.

## Solution

Refactor `App` and `SubApp` to not have a recursive relationship. Since
`SubApp` no longer wraps `App`, once `!Send` resources are moved out of
`World` and into `App`, `SubApp` will become unambiguously `Send`.

There could be less code duplication between `App` and `SubApp`, but
that would break `App` method chaining.

## Changelog

- `SubApp` no longer wraps `App`.
- `App` fields are no longer publicly accessible.
- `App` can no longer be converted into a `SubApp`.
- Various methods now return references to a `SubApp` instead of an
`App`.
## Migration Guide

- To construct a sub-app, use `SubApp::new()`. `App` can no longer
convert into `SubApp`.
- If you implemented a trait for `App`, you may want to implement it for
`SubApp` as well.
- If you're accessing `app.world` directly, you now have to use
`app.world()` and `app.world_mut()`.
- `App::sub_app` now returns `&SubApp`.
- `App::sub_app_mut`  now returns `&mut SubApp`.
- `App::get_sub_app` now returns `Option<&SubApp>.`
- `App::get_sub_app_mut` now returns `Option<&mut SubApp>.`
2024-03-31 03:16:10 +00:00
Eero Lehtinen
70c69cdd51
Fix crash on Linux Nvidia 550 driver (#12542)
# Objective

Fix crashing on Linux with latest stable Nvidia 550 driver when
resizing. The crash happens at startup with some setups.

Fixes #12199

I think this would be nice to get into 0.13.1

## Solution

Ignore `wgpu::SurfaceError::Outdated` always on this platform+driver.

It looks like Nvidia considered the previous behaviour of not returning
this error a bug:
"Fixed a bug where vkAcquireNextImageKHR() was not returning
VK_ERROR_OUT_OF_DATE_KHR when it should with WSI X11 swapchains"
(https://www.nvidia.com/Download/driverResults.aspx/218826/en-us/)

What I gather from this is that the surface was outdated on previous
drivers too, but they just didn't report it as an error. So behaviour
shouldn't change.

In the issue conversation we experimented with calling `continue` when
this error happens, but I found that it results in some small issues
like bevy_egui scale not updating with the window sometimes. Just doing
nothing seems to work better.

## Changelog

- Fixed crashing on Linux with Nvidia 550 driver when resizing the
window

## Migration Guide

---------

Co-authored-by: James Liu <contact@jamessliu.com>
2024-03-30 23:10:54 +00:00
James Liu
24030d2a0c
Vectorize reset_view_visibility (#12797)
# Objective
Speed up CPU-side rendering.

## Solution
Use `QueryIter::for_each` and `Mut::bypass_change_detection` to minimize
the total amount of data being written and allow autovectorization to
speed up iteration.

## Performance
Tested against the default `many_cubes`, this results in greater than
15x speed up: 281us -> 18.4us.

![image](https://github.com/bevyengine/bevy/assets/3137680/18369285-843e-4eb6-9716-c99c6f5ea4e2)

As `ViewVisibility::HIDDEN` just wraps false, this is likely just
degenerating into `memset(0)`s on the tables.
2024-03-30 08:28:16 +00:00
Patrick Walton
4dadebd9c4
Improve performance by binning together opaque items instead of sorting them. (#12453)
Today, we sort all entities added to all phases, even the phases that
don't strictly need sorting, such as the opaque and shadow phases. This
results in a performance loss because our `PhaseItem`s are rather large
in memory, so sorting is slow. Additionally, determining the boundaries
of batches is an O(n) process.

This commit makes Bevy instead applicable place phase items into *bins*
keyed by *bin keys*, which have the invariant that everything in the
same bin is potentially batchable. This makes determining batch
boundaries O(1), because everything in the same bin can be batched.
Instead of sorting each entity, we now sort only the bin keys. This
drops the sorting time to near-zero on workloads with few bins like
`many_cubes --no-frustum-culling`. Memory usage is improved too, with
batch boundaries and dynamic indices now implicit instead of explicit.
The improved memory usage results in a significant win even on
unbatchable workloads like `many_cubes --no-frustum-culling
--vary-material-data-per-instance`, presumably due to cache effects.

Not all phases can be binned; some, such as transparent and transmissive
phases, must still be sorted. To handle this, this commit splits
`PhaseItem` into `BinnedPhaseItem` and `SortedPhaseItem`. Most of the
logic that today deals with `PhaseItem`s has been moved to
`SortedPhaseItem`. `BinnedPhaseItem` has the new logic.

Frame time results (in ms/frame) are as follows:

| Benchmark                | `binning` | `main`  | Speedup |
| ------------------------ | --------- | ------- | ------- |
| `many_cubes -nfc -vpi` | 232.179     | 312.123   | 34.43%  |
| `many_cubes -nfc`        | 25.874 | 30.117 | 16.40%  |
| `many_foxes`             | 3.276 | 3.515 | 7.30%   |

(`-nfc` is short for `--no-frustum-culling`; `-vpi` is short for
`--vary-per-instance`.)

---

## Changelog

### Changed

* Render phases have been split into binned and sorted phases. Binned
phases, such as the common opaque phase, achieve improved CPU
performance by avoiding the sorting step.

## Migration Guide

- `PhaseItem` has been split into `BinnedPhaseItem` and
`SortedPhaseItem`. If your code has custom `PhaseItem`s, you will need
to migrate them to one of these two types. `SortedPhaseItem` requires
the fewest code changes, but you may want to pick `BinnedPhaseItem` if
your phase doesn't require sorting, as that enables higher performance.

## Tracy graphs

`many-cubes --no-frustum-culling`, `main` branch:
<img width="1064" alt="Screenshot 2024-03-12 180037"
src="https://github.com/bevyengine/bevy/assets/157897/e1180ce8-8e89-46d2-85e3-f59f72109a55">

`many-cubes --no-frustum-culling`, this branch:
<img width="1064" alt="Screenshot 2024-03-12 180011"
src="https://github.com/bevyengine/bevy/assets/157897/0899f036-6075-44c5-a972-44d95895f46c">

You can see that `batch_and_prepare_binned_render_phase` is a much
smaller fraction of the time. Zooming in on that function, with yellow
being this branch and red being `main`, we see:

<img width="1064" alt="Screenshot 2024-03-12 175832"
src="https://github.com/bevyengine/bevy/assets/157897/0dfc8d3f-49f4-496e-8825-a66e64d356d0">

The binning happens in `queue_material_meshes`. Again with yellow being
this branch and red being `main`:
<img width="1064" alt="Screenshot 2024-03-12 175755"
src="https://github.com/bevyengine/bevy/assets/157897/b9b20dc1-11c8-400c-a6cc-1c2e09c1bb96">

We can see that there is a small regression in `queue_material_meshes`
performance, but it's not nearly enough to outweigh the large gains in
`batch_and_prepare_binned_render_phase`.

---------

Co-authored-by: James Liu <contact@jamessliu.com>
2024-03-30 02:55:02 +00:00
James Liu
e62a01f403
Make PersistentGpuBufferable a safe trait (#12744)
# Objective
Fixes #12727. All parts that `PersistentGpuBuffer` interact with should
be 100% safe both on the CPU and the GPU: `Queue::write_buffer_with`
zeroes out the slice being written to and when uploading to the GPU, and
all slice writes are bounds checked on the CPU side.

## Solution
Make `PersistentGpuBufferable` a safe trait. Enforce it's correct
implementation via assertions. Re-enable `forbid(unsafe_code)` on
`bevy_pbr`.
2024-03-29 13:14:34 +00:00
Martín Maita
1b7837c0b2
Update image requirement from 0.24 to 0.25 (#12458)
# Objective

- Closes https://github.com/bevyengine/bevy/pull/12415

## Solution

- Refactored code that was changed/deprecated in `image` 0.25.
- Please review this PR carefully since I'm just making the changes
without any context or deep knowledge of the module.

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: James Liu <contact@jamessliu.com>
2024-03-29 06:40:09 +00:00
James Liu
56bcbb0975
Forbid unsafe in most crates in the engine (#12684)
# Objective
Resolves #3824. `unsafe` code should be the exception, not the norm in
Rust. It's obviously needed for various use cases as it's interfacing
with platforms and essentially running the borrow checker at runtime in
the ECS, but the touted benefits of Bevy is that we are able to heavily
leverage Rust's safety, and we should be holding ourselves accountable
to that by minimizing our unsafe footprint.

## Solution
Deny `unsafe_code` workspace wide. Add explicit exceptions for the
following crates, and forbid it in almost all of the others.

* bevy_ecs - Obvious given how much unsafe is needed to achieve
performant results
* bevy_ptr - Works with raw pointers, even more low level than bevy_ecs.
 * bevy_render - due to needing to integrate with wgpu
 * bevy_window - due to needing to integrate with raw_window_handle
* bevy_utils - Several unsafe utilities used by bevy_ecs. Ideally moved
into bevy_ecs instead of made publicly usable.
 * bevy_reflect - Required for the unsafe type casting it's doing.
 * bevy_transform - for the parallel transform propagation
 * bevy_gizmos  - For the SystemParam impls it has.
* bevy_assets - To support reflection. Might not be required, not 100%
sure yet.
* bevy_mikktspace - due to being a conversion from a C library. Pending
safe rewrite.
* bevy_dynamic_plugin - Inherently unsafe due to the dynamic loading
nature.

Several uses of unsafe were rewritten, as they did not need to be using
them:

* bevy_text - a case of `Option::unchecked` could be rewritten as a
normal for loop and match instead of an iterator.
* bevy_color - the Pod/Zeroable implementations were replaceable with
bytemuck's derive macros.
2024-03-27 03:30:08 +00:00
James Liu
a0f492b2dd
Fix CI for wasm atomics (#12730)
# Objective
CI is currently broken because of `DiagnosticsRecorder` not being Send
and Sync as required by Resource.

## Solution
Wrap `DiagnosticsRecorder` internally with a `WgpuWrapper`.
2024-03-26 14:26:21 +00:00
Ian Kettlewell
b35974010b
Get Bevy building for WebAssembly with multithreading (#12205)
# Objective

This gets Bevy building on Wasm when the `atomics` flag is enabled. This
does not yet multithread Bevy itself, but it allows Bevy users to use a
crate like `wasm_thread` to spawn their own threads and manually
parallelize work. This is a first step towards resolving #4078 . Also
fixes #9304.

This provides a foothold so that Bevy contributors can begin to think
about multithreaded Wasm's constraints and Bevy can work towards changes
to get the engine itself multithreaded.

Some flags need to be set on the Rust compiler when compiling for Wasm
multithreading. Here's what my build script looks like, with the correct
flags set, to test out Bevy examples on web:

```bash
set -e
RUSTFLAGS='-C target-feature=+atomics,+bulk-memory,+mutable-globals' \
     cargo build --example breakout --target wasm32-unknown-unknown -Z build-std=std,panic_abort --release
 wasm-bindgen --out-name wasm_example \
   --out-dir examples/wasm/target \
   --target web target/wasm32-unknown-unknown/release/examples/breakout.wasm
 devserver --header Cross-Origin-Opener-Policy='same-origin' --header Cross-Origin-Embedder-Policy='require-corp' --path examples/wasm
```

A few notes:

1. `cpal` crashes immediately when the `atomics` flag is set. That is
patched in https://github.com/RustAudio/cpal/pull/837, but not yet in
the latest crates.io release.

That can be temporarily worked around by patching Cpal like so:
```toml
[patch.crates-io]
cpal = { git = "https://github.com/RustAudio/cpal" }
```

2. When testing out `wasm_thread` you need to enable the `es_modules`
feature.

## Solution

The largest obstacle to compiling Bevy with `atomics` on web is that
`wgpu` types are _not_ Send and Sync. Longer term Bevy will need an
approach to handle that, but in the near term Bevy is already configured
to be single-threaded on web.

Therefor it is enough to wrap `wgpu` types in a
`send_wrapper::SendWrapper` that _is_ Send / Sync, but panics if
accessed off the `wgpu` thread.

---

## Changelog

- `wgpu` types that are not `Send` are wrapped in
`send_wrapper::SendWrapper` on Wasm + 'atomics'
- CommandBuffers are not generated in parallel on Wasm + 'atomics'

## Questions
- Bevy should probably add CI checks to make sure this doesn't regress.
Should that go in this PR or a separate PR? **Edit:** Added checks to
build Wasm with atomics

---------

Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: daxpedda <daxpedda@gmail.com>
Co-authored-by: François <francois.mockers@vleue.com>
2024-03-25 19:10:18 +00:00
Tygyh
e9343b052f
Support calculating normals for indexed meshes (#11654)
# Objective

- Finish #3987

## Solution

- Rebase and fix typo.

Co-authored-by: Robert Bragg <robert@sixbynine.org>
2024-03-25 19:09:24 +00:00
JMS55
4f20faaa43
Meshlet rendering (initial feature) (#10164)
# Objective
- Implements a more efficient, GPU-driven
(https://github.com/bevyengine/bevy/issues/1342) rendering pipeline
based on meshlets.
- Meshes are split into small clusters of triangles called meshlets,
each of which acts as a mini index buffer into the larger mesh data.
Meshlets can be compressed, streamed, culled, and batched much more
efficiently than monolithic meshes.


![image](https://github.com/bevyengine/bevy/assets/47158642/cb2aaad0-7a9a-4e14-93b0-15d4e895b26a)

![image](https://github.com/bevyengine/bevy/assets/47158642/7534035b-1eb7-4278-9b99-5322e4401715)

# Misc
* Future work: https://github.com/bevyengine/bevy/issues/11518
* Nanite reference:
https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
Two pass occlusion culling explained very well:
https://medium.com/@mil_kru/two-pass-occlusion-culling-4100edcad501

---------

Co-authored-by: Ricky Taylor <rickytaylor26@gmail.com>
Co-authored-by: vero <email@atlasdostal.com>
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: atlas dostal <rodol@rivalrebels.com>
2024-03-25 19:08:27 +00:00
James Liu
f096ad4155
Set the logo and favicon for all of Bevy's published crates (#12696)
# Objective
Currently the built docs only shows the logo and favicon for the top
level `bevy` crate. This makes views like
https://docs.rs/bevy_ecs/latest/bevy_ecs/ look potentially unrelated to
the project at first glance.

## Solution
Reproduce the docs attributes for every crate that Bevy publishes.

Ideally this would be done with some workspace level Cargo.toml control,
but AFAICT, such support does not exist.
2024-03-25 18:52:50 +00:00
JMS55
93b4c6c9a2
Add iOS to synchronous_pipeline_compilation docs (#12694)
iOS uses Metal, so it has the same limitation as macOS, presumably.
2024-03-24 22:01:55 +00:00
Jacques Schutte
fdf2ea7cc5
reflect: remove manual Reflect impls which could be handled by macros (#12596)
# Objective

* Adopted #12025 to fix merge conflicts
* In some cases we used manual impls for certain types, though they are
(at least, now) unnecessary.

## Solution

* Use macros and reflecting-by-value to avoid this clutter.
* Though there were linker issues with Reflect and the CowArc in
AssetPath (see https://github.com/bevyengine/bevy/issues/9747), I
checked these are resolved by using #[reflect_value].

---------

Co-authored-by: soqb <cb.setho@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: James Liu <contact@jamessliu.com>
2024-03-23 01:45:00 +00:00
Vitaliy Sapronenko
67cc605e9f
Removed Into<AssedId<T>> for Handle<T> as mentioned in #12600 (#12655)
Fixes #12600 

## Solution

Removed Into<AssetId<T>> for Handle<T> as proposed in Issue
conversation, fixed dependent code

## Migration guide

If you use passing Handle by value as AssetId, you should pass reference
or call .id() method on it
Before (0.13):
`assets.insert(handle, value);`
After (0.14):
`assets.insert(&handle, value);`
or
`assets.insert(handle.id(), value);`
2024-03-22 20:26:12 +00:00
Pablo Reinhardt
40f82b867b
Reflect default in some types on bevy_render (#12580)
# Objective

- Many types in bevy_render doesn't reflect Default even if it could.

## Solution

- Reflect it.

---

---------

Co-authored-by: Pablo Reinhardt <pabloreinhardt@gmail.com>
2024-03-19 22:50:17 +00:00
Arthur Brussee
ac49dce4ca
Use async-fn in traits rather than BoxedFuture (#12550)
# Objective

Simplify implementing some asset traits without Box::pin(async move{})
shenanigans.
Fixes (in part) https://github.com/bevyengine/bevy/issues/11308

## Solution
Use async-fn in traits when possible in all traits. Traits with return
position impl trait are not object safe however, and as AssetReader and
AssetWriter are both used with dynamic dispatch, you need a Boxed
version of these futures anyway.

In the future, Rust is [adding
](https://blog.rust-lang.org/2023/12/21/async-fn-rpit-in-traits.html)proc
macros to generate these traits automatically, and at some point in the
future dyn traits should 'just work'. Until then.... this seemed liked
the right approach given more ErasedXXX already exist, but, no clue if
there's plans here! Especially since these are public now, it's a bit of
an unfortunate API, and means this is a breaking change.

In theory this saves some performance when these traits are used with
static dispatch, but, seems like most code paths go through dynamic
dispatch, which boxes anyway.

I also suspect a bunch of the lifetime annotations on these function
could be simplified now as the BoxedFuture was often the only thing
returned which needed a lifetime annotation, but I'm not touching that
for now as traits + lifetimes can be so tricky.

This is a revival of
[pull/11362](https://github.com/bevyengine/bevy/pull/11362) after a
spectacular merge f*ckup, with updates to the latest Bevy. Just to recap
some discussion:
- Overall this seems like a win for code quality, especially when
implementing these traits, but a loss for having to deal with ErasedXXX
variants.
- `ConditionalSend` was the preferred name for the trait that might be
Send, to deal with wasm platforms.
- When reviewing be sure to disable whitespace difference, as that's 95%
of the PR.


## Changelog
- AssetReader, AssetWriter, AssetLoader, AssetSaver and Process now use
async-fn in traits rather than boxed futures.

## Migration Guide
- Custom implementations of AssetReader, AssetWriter, AssetLoader,
AssetSaver and Process should switch to async fn rather than returning a
bevy_utils::BoxedFuture.
- Simultaniously, to use dynamic dispatch on these traits you should
instead use dyn ErasedXXX.
2024-03-18 17:56:57 +00:00
LeshaInc
737b719dda
Add pipeline statistics (#9135)
# Objective

It's useful to have access to render pipeline statistics, since they
provide more information than FPS alone. For example, the number of
drawn triangles can be used to debug culling and LODs. The number of
fragment shader invocations can provide a more stable alternative metric
than GPU elapsed time.

See also: Render node GPU timing overlay #8067, which doesn't provide
pipeline statistics, but adds a nice overlay.

## Solution

Add `RenderDiagnosticsPlugin`, which enables collecting pipeline
statistics and CPU & GPU timings.

---

## Changelog

- Add `RenderDiagnosticsPlugin`
- Add `RenderContext::diagnostic_recorder` method

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-03-17 20:29:35 +00:00
robtfm
1323de7cd7
stop retrying removed assets (#12505)
# Objective

assets that don't load before they get removed are retried forever,
causing buffer churn and slowdown.

## Solution

stop trying to prepare dead assets.
2024-03-16 04:49:16 +00:00
Emi
16fb995697
change doc for SphereKind::Ico to reflect that the triangles are equa… (#12482)
# Objective
Fixes #12480 
by removing the explicit mention of equally sized triangles from the doc
for icospheres

Co-authored-by: Emi <emanuel.boehm@gmail.com>
2024-03-15 03:32:52 +00:00
SpecificProtagonist
aea9b4a9e4
Simplified backtraces (#12305)
# Objective

Remove Bevy internals from backtraces

## Solution

Executors insert `__rust_begin_short_backtrace` into the callstack
before running a system.

<details>
<summary>Example current output</summary>

```
thread 'Compute Task Pool (3)' panicked at src/main.rs:7:33:
Foo
stack backtrace:
   0: rust_begin_unwind
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/std/src/panicking.rs:647:5
   1: core::panicking::panic_fmt
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/core/src/panicking.rs:72:14
   2: foo::main::{{closure}}
             at ./src/main.rs:7:33
   3: core::ops::function::impls::<impl core::ops::function::FnMut<A> for &mut F>::call_mut
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/core/src/ops/function.rs:294:13
   4: <Func as bevy_ecs::system::function_system::SystemParamFunction<fn() .> Out>>::run::call_inner
             at /home/vj/workspace/rust/bevy/crates/bevy_ecs/src/system/function_system.rs:661:21
   5: <Func as bevy_ecs::system::function_system::SystemParamFunction<fn() .> Out>>::run
             at /home/vj/workspace/rust/bevy/crates/bevy_ecs/src/system/function_system.rs:664:17
   6: <bevy_ecs::system::function_system::FunctionSystem<Marker,F> as bevy_ecs::system::system::System>::run_unsafe
             at /home/vj/workspace/rust/bevy/crates/bevy_ecs/src/system/function_system.rs:504:19
   7: bevy_ecs::schedule::executor::multi_threaded::ExecutorState::spawn_system_task::{{closure}}::{{closure}}
             at /home/vj/workspace/rust/bevy/crates/bevy_ecs/src/schedule/executor/multi_threaded.rs:621:26
   8: core::ops::function::FnOnce::call_once
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/core/src/ops/function.rs:250:5
   9: <core::panic::unwind_safe::AssertUnwindSafe<F> as core::ops::function::FnOnce<()>>::call_once
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/core/src/panic/unwind_safe.rs:272:9
  10: std::panicking::try::do_call
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/std/src/panicking.rs:554:40
  11: __rust_try
  12: std::panicking::try
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/std/src/panicking.rs:518:19
  13: std::panic::catch_unwind
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/std/src/panic.rs:142:14
  14: bevy_ecs::schedule::executor::multi_threaded::ExecutorState::spawn_system_task::{{closure}}
             at /home/vj/workspace/rust/bevy/crates/bevy_ecs/src/schedule/executor/multi_threaded.rs:614:23
  15: <core::panic::unwind_safe::AssertUnwindSafe<F> as core::future::future::Future>::poll
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/core/src/panic/unwind_safe.rs:297:9
  16: <futures_lite::future::CatchUnwind<F> as core::future::future::Future>::poll::{{closure}}
             at /home/vj/.cargo/registry/src/index.crates.io-6f17d22bba15001f/futures-lite-2.2.0/src/future.rs:588:42
  17: <core::panic::unwind_safe::AssertUnwindSafe<F> as core::ops::function::FnOnce<()>>::call_once
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/core/src/panic/unwind_safe.rs:272:9
  18: std::panicking::try::do_call
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/std/src/panicking.rs:554:40
  19: __rust_try
  20: std::panicking::try
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/std/src/panicking.rs:518:19
  21: std::panic::catch_unwind
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/std/src/panic.rs:142:14
  22: <futures_lite::future::CatchUnwind<F> as core::future::future::Future>::poll
             at /home/vj/.cargo/registry/src/index.crates.io-6f17d22bba15001f/futures-lite-2.2.0/src/future.rs:588:9
  23: async_executor::Executor::spawn::{{closure}}
             at /home/vj/.cargo/registry/src/index.crates.io-6f17d22bba15001f/async-executor-1.8.0/src/lib.rs:158:20
  24: async_task::raw::RawTask<F,T,S,M>::run::{{closure}}
             at /home/vj/.cargo/registry/src/index.crates.io-6f17d22bba15001f/async-task-4.7.0/src/raw.rs:550:21
  25: core::ops::function::FnOnce::call_once
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/core/src/ops/function.rs:250:5
  26: <core::panic::unwind_safe::AssertUnwindSafe<F> as core::ops::function::FnOnce<()>>::call_once
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/core/src/panic/unwind_safe.rs:272:9
  27: std::panicking::try::do_call
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/std/src/panicking.rs:554:40
  28: __rust_try
  29: std::panicking::try
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/std/src/panicking.rs:518:19
  30: std::panic::catch_unwind
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/std/src/panic.rs:142:14
  31: async_task::raw::RawTask<F,T,S,M>::run
             at /home/vj/.cargo/registry/src/index.crates.io-6f17d22bba15001f/async-task-4.7.0/src/raw.rs:549:23
  32: async_task::runnable::Runnable<M>::run
             at /home/vj/.cargo/registry/src/index.crates.io-6f17d22bba15001f/async-task-4.7.0/src/runnable.rs:781:18
  33: async_executor::Executor::run::{{closure}}::{{closure}}
             at /home/vj/.cargo/registry/src/index.crates.io-6f17d22bba15001f/async-executor-1.8.0/src/lib.rs:254:21
  34: <futures_lite::future::Or<F1,F2> as core::future::future::Future>::poll
             at /home/vj/.cargo/registry/src/index.crates.io-6f17d22bba15001f/futures-lite-2.2.0/src/future.rs:449:33
  35: async_executor::Executor::run::{{closure}}
             at /home/vj/.cargo/registry/src/index.crates.io-6f17d22bba15001f/async-executor-1.8.0/src/lib.rs:261:32
  36: futures_lite::future::block_on::{{closure}}
             at /home/vj/.cargo/registry/src/index.crates.io-6f17d22bba15001f/futures-lite-2.2.0/src/future.rs:99:19
  37: std:🧵:local::LocalKey<T>::try_with
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/std/src/thread/local.rs:286:16
  38: std:🧵:local::LocalKey<T>::with
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/std/src/thread/local.rs:262:9
  39: futures_lite::future::block_on
             at /home/vj/.cargo/registry/src/index.crates.io-6f17d22bba15001f/futures-lite-2.2.0/src/future.rs:78:5
  40: bevy_tasks::task_pool::TaskPool::new_internal::{{closure}}::{{closure}}::{{closure}}::{{closure}}
             at /home/vj/workspace/rust/bevy/crates/bevy_tasks/src/task_pool.rs:180:37
  41: std::panicking::try::do_call
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/std/src/panicking.rs:554:40
  42: __rust_try
  43: std::panicking::try
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/std/src/panicking.rs:518:19
  44: std::panic::catch_unwind
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/std/src/panic.rs:142:14
  45: bevy_tasks::task_pool::TaskPool::new_internal::{{closure}}::{{closure}}::{{closure}}
             at /home/vj/workspace/rust/bevy/crates/bevy_tasks/src/task_pool.rs:174:43
  46: std:🧵:local::LocalKey<T>::try_with
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/std/src/thread/local.rs:286:16
  47: std:🧵:local::LocalKey<T>::with
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/std/src/thread/local.rs:262:9
  48: bevy_tasks::task_pool::TaskPool::new_internal::{{closure}}::{{closure}}
             at /home/vj/workspace/rust/bevy/crates/bevy_tasks/src/task_pool.rs:167:25
note: Some details are omitted, run with `RUST_BACKTRACE=full` for a verbose backtrace.
Encountered a panic in system `foo::main::{{closure}}`!
Encountered a panic in system `bevy_app::main_schedule::Main::run_main`!
get on your knees and beg mommy for forgiveness you pervert~ 💖
```
</details>

<details>
<summary>Example output with this PR</summary>

```
Panic at src/main.rs:7:33:
Foo
stack backtrace:
   0: rust_begin_unwind
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/std/src/panicking.rs:647:5
   1: core::panicking::panic_fmt
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/core/src/panicking.rs:72:14
   2: foo::main::{{closure}}
             at ./src/main.rs:7:59
   3: core::ops::function::impls::<impl core::ops::function::FnMut<A> for &mut F>::call_mut
             at /rustc/8ace7ea1f7cbba7b4f031e66c54ca237a0d65de6/library/core/src/ops/function.rs:294:13
   4: <Func as bevy_ecs::system::function_system::SystemParamFunction<fn() .> Out>>::run::call_inner
             at /home/vj/workspace/rust/bevy/crates/bevy_ecs/src/system/function_system.rs:661:21
   5: <Func as bevy_ecs::system::function_system::SystemParamFunction<fn() .> Out>>::run
             at /home/vj/workspace/rust/bevy/crates/bevy_ecs/src/system/function_system.rs:664:17
   6: <bevy_ecs::system::function_system::FunctionSystem<Marker,F> as bevy_ecs::system::system::System>::run_unsafe
             at /home/vj/workspace/rust/bevy/crates/bevy_ecs/src/system/function_system.rs:504:19
note: Some details are omitted, run with `RUST_BACKTRACE=full` for a verbose backtrace.
Encountered a panic in system `foo::main::{{closure}}`!
Encountered a panic in system `bevy_app::main_schedule::Main::run_main`!
```
</details>

Full backtraces (`RUST_BACKTRACE=full`) are unchanged.

## Alternative solutions

Write a custom panic hook. This could potentially let use exclude a few
more callstack frames but requires a dependency on `backtrace` and is
incompatible with user-provided panic hooks.

---

## Changelog

- Backtraces now exclude many Bevy internals (unless
`RUST_BACKTRACE=full` is used)

---------

Co-authored-by: James Liu <contact@jamessliu.com>
2024-03-10 12:18:59 +00:00
Al M
52e3f2007b
Add "all-features = true" to docs.rs metadata for most crates (#12366)
# Objective

Fix missing `TextBundle` (and many others) which are present in the main
crate as default features but optional in the sub-crate. See:

- https://docs.rs/bevy/0.13.0/bevy/ui/node_bundles/index.html
- https://docs.rs/bevy_ui/0.13.0/bevy_ui/node_bundles/index.html

~~There are probably other instances in other crates that I could track
down, but maybe "all-features = true" should be used by default in all
sub-crates? Not sure.~~ (There were many.) I only noticed this because
rust-analyzer's "open docs" features takes me to the sub-crate, not the
main one.

## Solution

Add "all-features = true" to docs.rs metadata for crates that use
features.

## Changelog

### Changed

- Unified features documented on docs.rs between main crate and
sub-crates
2024-03-08 20:03:09 +00:00
François
71486393ed
move ci testing to dev_tools (#12371)
# Objective

- Fix #12356
- better isolation of ci testing tools in dev tools instead of being in
various crates

## Solution

- Move the parts doing the work of ci testing to the dev tools
2024-03-07 22:38:21 +00:00
James Liu
512b7463a3
Disentangle bevy_utils/bevy_core's reexported dependencies (#12313)
# Objective
Make bevy_utils less of a compilation bottleneck. Tackle #11478.

## Solution
* Move all of the directly reexported dependencies and move them to
where they're actually used.
* Remove the UUID utilities that have gone unused since `TypePath` took
over for `TypeUuid`.
* There was also a extraneous bytemuck dependency on `bevy_core` that
has not been used for a long time (since `encase` became the primary way
to prepare GPU buffers).
* Remove the `all_tuples` macro reexport from bevy_ecs since it's
accessible from `bevy_utils`.

---

## Changelog
Removed: Many of the reexports from bevy_utils (petgraph, uuid, nonmax,
smallvec, and thiserror).
Removed: bevy_core's reexports of bytemuck.

## Migration Guide
bevy_utils' reexports of petgraph, uuid, nonmax, smallvec, and thiserror
have been removed.

bevy_core' reexports of bytemuck's types has been removed. 

Add them as dependencies in your own crate instead.
2024-03-07 02:30:15 +00:00
Rob Parrett
a1974a4738
Fix ImageLoader not being initialized with webp or pnm features (#12355)
# Objective

Fixes #12353

When only `webp` was selected, `ImageLoader` would not be initialized.

That is, users using `default-features = false` would need to add `png`
or `bmp` or something in addition to `webp` in order to use `webp`.

This was also the case for `pnm`. 

## Solution

Add `webp` and `pnm` to the list of features that trigger the
initialization of `ImageLoader`.
2024-03-07 00:28:45 +00:00
Mateusz Wachowiak
6533170e94
Add bevy_dev_tools crate (#11341)
# Objective

- Resolves #11309

## Solution

- Add `bevy_dev_tools` crate as a default feature.
- Add `DevToolsPlugin` and add it to an app if the `bevy_dev_tools`
feature is enabled.

`bevy_dev_tools` is reserved by @alice-i-cecile, should we wait until it
gets transferred to cart before merging?

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
2024-03-06 20:33:05 +00:00
James Liu
9e5db9abc7
Clean up type registrations (#12314)
# Objective
Fix #12304. Remove unnecessary type registrations thanks to #4154.

## Solution
Conservatively remove type registrations. Keeping the top level
components, resources, and events, but dropping everything else that is
a type of a member of those types.
2024-03-06 16:05:53 +00:00
Gino Valente
ccb9d0500f
bevy_reflect: Recursive registration (#5781)
# Objective

Resolves #4154

Currently, registration must all be done manually:

```rust
#[derive(Reflect)]
struct Foo(Bar);

#[derive(Reflect)]
struct Bar(Baz);

#[derive(Reflect)]
struct Baz(usize);

fn main() {
  // ...
  app
    .register_type::<Foo>()
    .register_type::<Bar>()
    .register_type::<Baz>()
    // .register_type::<usize>() <- This one is handled by Bevy, thankfully
  // ...
}
```

This can grow really quickly and become very annoying to add, remove,
and update as types change. It would be great if we could help reduce
the number of types that a user must manually implement themselves.

## Solution

As suggested in #4154, this PR adds automatic recursive registration.
Essentially, when a type is registered, it may now also choose to
register additional types along with it using the new
`GetTypeRegistration::register_type_dependencies` trait method.

The `Reflect` derive macro now automatically does this for all fields in
structs, tuple structs, struct variants, and tuple variants. This is
also done for tuples, arrays, `Vec<T>`, `HashMap<K, V>`, and
`Option<T>`.

This allows us to simplify the code above like:

```rust
#[derive(Reflect)]
struct Foo(Bar);

#[derive(Reflect)]
struct Bar(Baz);

#[derive(Reflect)]
struct Baz(usize);

fn main() {
  // ...
  app.register_type::<Foo>()
  // ...
}
```

This automatic registration only occurs if the type has not yet been
registered. If it has been registered, we simply skip it and move to the
next one. This reduces the cost of registration and prevents overwriting
customized registrations.

## Considerations

While this does improve ergonomics on one front, it's important to look
at some of the arguments against adopting a PR like this.

#### Generic Bounds

~~Since we need to be able to register the fields individually, we need
those fields to implement `GetTypeRegistration`. This forces users to
then add this trait as a bound on their generic arguments. This
annoyance could be relieved with something like #5772.~~

This is no longer a major issue as the `Reflect` derive now adds the
`GetTypeRegistration` bound by default. This should technically be okay,
since we already add the `Reflect` bound.

However, this can also be considered a breaking change for manual
implementations that left out a `GetTypeRegistration` impl ~~or for
items that contain dynamic types (e.g. `DynamicStruct`) since those also
do not implement `GetTypeRegistration`~~.

#### Registration Assumptions

By automatically registering fields, users might inadvertently be
relying on certain types to be automatically registered. If `Foo`
auto-registers `Bar`, but `Foo` is later removed from the code, then
anywhere that previously used or relied on `Bar`'s registration would
now fail.

---

## Changelog

- Added recursive type registration to structs, tuple structs, struct
variants, tuple variants, tuples, arrays, `Vec<T>`, `HashMap<K, V>`, and
`Option<T>`
- Added a new trait in the hidden `bevy_reflect::__macro_exports` module
called `RegisterForReflection`
- Added `GetTypeRegistration` impl for
`bevy_render::render_asset::RenderAssetUsages`

## Migration Guide

All types that derive `Reflect` will now automatically add
`GetTypeRegistration` as a bound on all (unignored) fields. This means
that all reflected fields will need to also implement
`GetTypeRegistration`.

If all fields **derive** `Reflect` or are implemented in `bevy_reflect`,
this should not cause any issues. However, manual implementations of
`Reflect` that excluded a `GetTypeRegistration` impl for their type will
need to add one.

```rust
#[derive(Reflect)]
struct Foo<T: FromReflect> {
  data: MyCustomType<T>
}

// OLD
impl<T: FromReflect> Reflect for MyCustomType<T> {/* ... */}

// NEW
impl<T: FromReflect + GetTypeRegistration> Reflect for MyCustomType<T> {/* ... */}
impl<T: FromReflect + GetTypeRegistration> GetTypeRegistration for MyCustomType<T> {/* ... */}
```

---------

Co-authored-by: James Liu <contact@jamessliu.com>
Co-authored-by: radiish <cb.setho@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-03-04 19:04:10 +00:00
James Liu
5619bd09d1
Replace bevy_log's tracing reexport with bevy_utils' (#12254)
# Objective
Fixes #11298. Make the use of bevy_log vs bevy_utils::tracing more
consistent.

## Solution
Replace all uses of bevy_log's logging macros with the reexport from
bevy_utils. Remove bevy_log as a dependency where it's no longer needed
anymore.

Ideally we should just be using tracing directly, but given that all of
these crates are already using bevy_utils, this likely isn't that great
of a loss right now.
2024-03-02 18:38:04 +00:00