mirror of
https://github.com/bevyengine/bevy
synced 2024-12-27 05:23:07 +00:00
427 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
James Liu
|
21518de0de
|
refactor: Change Option<With<T>> query params to Has<T> (#9959)
# Objective `Has<T>` was added to bevy_ecs, but we're still using the `Option<With<T>>` pattern in multiple locations. ## Solution Replace them with `Has<T>`. |
||
James Liu
|
a1a81e5721
|
Parallelize extract_meshes (#9966)
# Objective `extract_meshes` can easily be one of the most expensive operations in the blocking extract schedule for 3D apps. It also has no fundamentally serialized parts and can easily be run across multiple threads. Let's speed it up by parallelizing it! ## Solution Use the `ThreadLocal<Cell<Vec<T>>>` approach utilized by #7348 in conjunction with `Query::par_iter` to build a set of thread-local queues, and collect them after going wide. ## Performance Using `cargo run --profile stress-test --features trace_tracy --example many_cubes`. Yellow is this PR. Red is main. `extract_meshes`: ![image](https://github.com/bevyengine/bevy/assets/3137680/9d45aa2e-3cfa-4fad-9c08-53498b51a73b) An average reduction from 1.2ms to 770us is seen, a 41.6% improvement. Note: this is still not including #9950's changes, so this may actually result in even faster speedups once that's merged in. |
||
Robert Swain
|
b6ead2be95
|
Use EntityHashMap<Entity, T> for render world entity storage for better performance (#9903)
# Objective - Improve rendering performance, particularly by avoiding the large system commands costs of using the ECS in the way that the render world does. ## Solution - Define `EntityHasher` that calculates a hash from the `Entity.to_bits()` by `i | (i.wrapping_mul(0x517cc1b727220a95) << 32)`. `0x517cc1b727220a95` is something like `u64::MAX / N` for N that gives a value close to π and that works well for hashing. Thanks for @SkiFire13 for the suggestion and to @nicopap for alternative suggestions and discussion. This approach comes from `rustc-hash` (a.k.a. `FxHasher`) with some tweaks for the case of hashing an `Entity`. `FxHasher` and `SeaHasher` were also tested but were significantly slower. - Define `EntityHashMap` type that uses the `EntityHashser` - Use `EntityHashMap<Entity, T>` for render world entity storage, including: - `RenderMaterialInstances` - contains the `AssetId<M>` of the material associated with the entity. Also for 2D. - `RenderMeshInstances` - contains mesh transforms, flags and properties about mesh entities. Also for 2D. - `SkinIndices` and `MorphIndices` - contains the skin and morph index for an entity, respectively - `ExtractedSprites` - `ExtractedUiNodes` ## Benchmarks All benchmarks have been conducted on an M1 Max connected to AC power. The tests are run for 1500 frames. The 1000th frame is captured for comparison to check for visual regressions. There were none. ### 2D Meshes `bevymark --benchmark --waves 160 --per-wave 1000 --mode mesh2d` #### `--ordered-z` This test spawns the 2D meshes with z incrementing back to front, which is the ideal arrangement allocation order as it matches the sorted render order which means lookups have a high cache hit rate. <img width="1112" alt="Screenshot 2023-09-27 at 07 50 45" src="https://github.com/bevyengine/bevy/assets/302146/e140bc98-7091-4a3b-8ae1-ab75d16d2ccb"> -39.1% median frame time. #### Random This test spawns the 2D meshes with random z. This not only makes the batching and transparent 2D pass lookups get a lot of cache misses, it also currently means that the meshes are almost certain to not be batchable. <img width="1108" alt="Screenshot 2023-09-27 at 07 51 28" src="https://github.com/bevyengine/bevy/assets/302146/29c2e813-645a-43ce-982a-55df4bf7d8c4"> -7.2% median frame time. ### 3D Meshes `many_cubes --benchmark` <img width="1112" alt="Screenshot 2023-09-27 at 07 51 57" src="https://github.com/bevyengine/bevy/assets/302146/1a729673-3254-4e2a-9072-55e27c69f0fc"> -7.7% median frame time. ### Sprites **NOTE: On `main` sprites are using `SparseSet<Entity, T>`!** `bevymark --benchmark --waves 160 --per-wave 1000 --mode sprite` #### `--ordered-z` This test spawns the sprites with z incrementing back to front, which is the ideal arrangement allocation order as it matches the sorted render order which means lookups have a high cache hit rate. <img width="1116" alt="Screenshot 2023-09-27 at 07 52 31" src="https://github.com/bevyengine/bevy/assets/302146/bc8eab90-e375-4d31-b5cd-f55f6f59ab67"> +13.0% median frame time. #### Random This test spawns the sprites with random z. This makes the batching and transparent 2D pass lookups get a lot of cache misses. <img width="1109" alt="Screenshot 2023-09-27 at 07 53 01" src="https://github.com/bevyengine/bevy/assets/302146/22073f5d-99a7-49b0-9584-d3ac3eac3033"> +0.6% median frame time. ### UI **NOTE: On `main` UI is using `SparseSet<Entity, T>`!** `many_buttons` <img width="1111" alt="Screenshot 2023-09-27 at 07 53 26" src="https://github.com/bevyengine/bevy/assets/302146/66afd56d-cbe4-49e7-8b64-2f28f6043d85"> +15.1% median frame time. ## Alternatives - Cart originally suggested trying out `SparseSet<Entity, T>` and indeed that is slightly faster under ideal conditions. However, `PassHashMap<Entity, T>` has better worst case performance when data is randomly distributed, rather than in sorted render order, and does not have the worst case memory usage that `SparseSet`'s dense `Vec<usize>` that maps from the `Entity` index to sparse index into `Vec<T>`. This dense `Vec` has to be as large as the largest Entity index used with the `SparseSet`. - I also tested `PassHashMap<u32, T>`, intending to use `Entity.index()` as the key, but this proved to sometimes be slower and mostly no different. - The only outstanding approach that has not been implemented and tested is to _not_ clear the render world of its entities each frame. That has its own problems, though they could perhaps be solved. - Performance-wise, if the entities and their component data were not cleared, then they would incur table moves on spawn, and should not thereafter, rather just their component data would be overwritten. Ideally we would have a neat way of either updating data in-place via `&mut T` queries, or inserting components if not present. This would likely be quite cumbersome to have to remember to do everywhere, but perhaps it only needs to be done in the more performance-sensitive systems. - The main problem to solve however is that we want to both maintain a mapping between main world entities and render world entities, be able to run the render app and world in parallel with the main app and world for pipelined rendering, and at the same time be able to spawn entities in the render world in such a way that those Entity ids do not collide with those spawned in the main world. This is potentially quite solvable, but could well be a lot of ECS work to do it in a way that makes sense. --- ## Changelog - Changed: Component data for entities to be drawn are no longer stored on entities in the render world. Instead, data is stored in a `EntityHashMap<Entity, T>` in various resources. This brings significant performance benefits due to the way the render app clears entities every frame. Resources of most interest are `RenderMeshInstances` and `RenderMaterialInstances`, and their 2D counterparts. ## Migration Guide Previously the render app extracted mesh entities and their component data from the main world and stored them as entities and components in the render world. Now they are extracted into essentially `EntityHashMap<Entity, T>` where `T` are structs containing an appropriate group of data. This means that while extract set systems will continue to run extract queries against the main world they will store their data in hash maps. Also, systems in later sets will either need to look up entities in the available resources such as `RenderMeshInstances`, or maintain their own `EntityHashMap<Entity, T>` for their own data. Before: ```rust fn queue_custom( material_meshes: Query<(Entity, &MeshTransforms, &Handle<Mesh>), With<InstanceMaterialData>>, ) { ... for (entity, mesh_transforms, mesh_handle) in &material_meshes { ... } } ``` After: ```rust fn queue_custom( render_mesh_instances: Res<RenderMeshInstances>, instance_entities: Query<Entity, With<InstanceMaterialData>>, ) { ... for entity in &instance_entities { let Some(mesh_instance) = render_mesh_instances.get(&entity) else { continue; }; // The mesh handle in `AssetId<Mesh>` form, and the `MeshTransforms` can now // be found in `mesh_instance` which is a `RenderMeshInstance` ... } } ``` --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> |
||
James Liu
|
12032cd296
|
Directly copy data into uniform buffers (#9865)
# Objective This is a minimally disruptive version of #8340. I attempted to update it, but failed due to the scope of the changes added in #8204. Fixes #8307. Partially addresses #4642. As seen in https://github.com/bevyengine/bevy/issues/8284, we're actually copying data twice in Prepare stage systems. Once into a CPU-side intermediate scratch buffer, and once again into a mapped buffer. This is inefficient and effectively doubles the time spent and memory allocated to run these systems. ## Solution Skip the scratch buffer entirely and use `wgpu::Queue::write_buffer_with` to directly write data into mapped buffers. Separately, this also directly uses `wgpu::Limits::min_uniform_buffer_offset_alignment` to set up the alignment when writing to the buffers. Partially addressing the issue raised in #4642. Storage buffers and the abstractions built on top of `DynamicUniformBuffer` will need to come in followup PRs. This may not have a noticeable performance difference in this PR, as the only first-party systems affected by this are view related, and likely are not going to be particularly heavy. --- ## Changelog Added: `DynamicUniformBuffer::get_writer`. Added: `DynamicUniformBufferWriter`. |
||
Nicola Papale
|
db1e3d36bc
|
Move skin code to a separate module (#9899)
# Objective mesh.rs is infamously large. We could split off unrelated code. ## Solution Morph targets are very similar to skinning and have their own module. We move skinned meshes to an independent module like morph targets and give the systems similar names. ### Open questions Should the skinning systems and structs stay public? --- ## Migration Guide Renamed skinning systems, resources and components: - extract_skinned_meshes -> extract_skins - prepare_skinned_meshes -> prepare_skins - SkinnedMeshUniform -> SkinUniform - SkinnedMeshJoints -> SkinIndex --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: vero <email@atlasdostal.com> |
||
Bruce Mitchener
|
ae95ba5278
|
Fix typos. (#9922)
# Objective - Have docs with fewer typos.1 ## Solution - Fix typos as they are found. |
||
Robert Swain
|
5c884c5a15
|
Automatic batching/instancing of draw commands (#9685)
# Objective - Implement the foundations of automatic batching/instancing of draw commands as the next step from #89 - NOTE: More performance improvements will come when more data is managed and bound in ways that do not require rebinding such as mesh, material, and texture data. ## Solution - The core idea for batching of draw commands is to check whether any of the information that has to be passed when encoding a draw command changes between two things that are being drawn according to the sorted render phase order. These should be things like the pipeline, bind groups and their dynamic offsets, index/vertex buffers, and so on. - The following assumptions have been made: - Only entities with prepared assets (pipelines, materials, meshes) are queued to phases - View bindings are constant across a phase for a given draw function as phases are per-view - `batch_and_prepare_render_phase` is the only system that performs this batching and has sole responsibility for preparing the per-object data. As such the mesh binding and dynamic offsets are assumed to only vary as a result of the `batch_and_prepare_render_phase` system, e.g. due to having to split data across separate uniform bindings within the same buffer due to the maximum uniform buffer binding size. - Implement `GpuArrayBuffer` for `Mesh2dUniform` to store Mesh2dUniform in arrays in GPU buffers rather than each one being at a dynamic offset in a uniform buffer. This is the same optimisation that was made for 3D not long ago. - Change batch size for a range in `PhaseItem`, adding API for getting or mutating the range. This is more flexible than a size as the length of the range can be used in place of the size, but the start and end can be otherwise whatever is needed. - Add an optional mesh bind group dynamic offset to `PhaseItem`. This avoids having to do a massive table move just to insert `GpuArrayBufferIndex` components. ## Benchmarks All tests have been run on an M1 Max on AC power. `bevymark` and `many_cubes` were modified to use 1920x1080 with a scale factor of 1. I run a script that runs a separate Tracy capture process, and then runs the bevy example with `--features bevy_ci_testing,trace_tracy` and `CI_TESTING_CONFIG=../benchmark.ron` with the contents of `../benchmark.ron`: ```rust ( exit_after: Some(1500) ) ``` ...in order to run each test for 1500 frames. The recent changes to `many_cubes` and `bevymark` added reproducible random number generation so that with the same settings, the same rng will occur. They also added benchmark modes that use a fixed delta time for animations. Combined this means that the same frames should be rendered both on main and on the branch. The graphs compare main (yellow) to this PR (red). ### 3D Mesh `many_cubes --benchmark` <img width="1411" alt="Screenshot 2023-09-03 at 23 42 10" src="https://github.com/bevyengine/bevy/assets/302146/2088716a-c918-486c-8129-090b26fd2bc4"> The mesh and material are the same for all instances. This is basically the best case for the initial batching implementation as it results in 1 draw for the ~11.7k visible meshes. It gives a ~30% reduction in median frame time. The 1000th frame is identical using the flip tool: ![flip many_cubes-main-mesh3d many_cubes-batching-mesh3d 67ppd ldr](https://github.com/bevyengine/bevy/assets/302146/2511f37a-6df8-481a-932f-706ca4de7643) ``` Mean: 0.000000 Weighted median: 0.000000 1st weighted quartile: 0.000000 3rd weighted quartile: 0.000000 Min: 0.000000 Max: 0.000000 Evaluation time: 0.4615 seconds ``` ### 3D Mesh `many_cubes --benchmark --material-texture-count 10` <img width="1404" alt="Screenshot 2023-09-03 at 23 45 18" src="https://github.com/bevyengine/bevy/assets/302146/5ee9c447-5bd2-45c6-9706-ac5ff8916daf"> This run uses 10 different materials by varying their textures. The materials are randomly selected, and there is no sorting by material bind group for opaque 3D so any batching is 'random'. The PR produces a ~5% reduction in median frame time. If we were to sort the opaque phase by the material bind group, then this should be a lot faster. This produces about 10.5k draws for the 11.7k visible entities. This makes sense as randomly selecting from 10 materials gives a chance that two adjacent entities randomly select the same material and can be batched. The 1000th frame is identical in flip: ![flip many_cubes-main-mesh3d-mtc10 many_cubes-batching-mesh3d-mtc10 67ppd ldr](https://github.com/bevyengine/bevy/assets/302146/2b3a8614-9466-4ed8-b50c-d4aa71615dbb) ``` Mean: 0.000000 Weighted median: 0.000000 1st weighted quartile: 0.000000 3rd weighted quartile: 0.000000 Min: 0.000000 Max: 0.000000 Evaluation time: 0.4537 seconds ``` ### 3D Mesh `many_cubes --benchmark --vary-per-instance` <img width="1394" alt="Screenshot 2023-09-03 at 23 48 44" src="https://github.com/bevyengine/bevy/assets/302146/f02a816b-a444-4c18-a96a-63b5436f3b7f"> This run varies the material data per instance by randomly-generating its colour. This is the worst case for batching and that it performs about the same as `main` is a good thing as it demonstrates that the batching has minimal overhead when dealing with ~11k visible mesh entities. The 1000th frame is identical according to flip: ![flip many_cubes-main-mesh3d-vpi many_cubes-batching-mesh3d-vpi 67ppd ldr](https://github.com/bevyengine/bevy/assets/302146/ac5f5c14-9bda-4d1a-8219-7577d4aac68c) ``` Mean: 0.000000 Weighted median: 0.000000 1st weighted quartile: 0.000000 3rd weighted quartile: 0.000000 Min: 0.000000 Max: 0.000000 Evaluation time: 0.4568 seconds ``` ### 2D Mesh `bevymark --benchmark --waves 160 --per-wave 1000 --mode mesh2d` <img width="1412" alt="Screenshot 2023-09-03 at 23 59 56" src="https://github.com/bevyengine/bevy/assets/302146/cb02ae07-237b-4646-ae9f-fda4dafcbad4"> This spawns 160 waves of 1000 quad meshes that are shaded with ColorMaterial. Each wave has a different material so 160 waves currently should result in 160 batches. This results in a 50% reduction in median frame time. Capturing a screenshot of the 1000th frame main vs PR gives: ![flip bevymark-main-mesh2d bevymark-batching-mesh2d 67ppd ldr](https://github.com/bevyengine/bevy/assets/302146/80102728-1217-4059-87af-14d05044df40) ``` Mean: 0.001222 Weighted median: 0.750432 1st weighted quartile: 0.453494 3rd weighted quartile: 0.969758 Min: 0.000000 Max: 0.990296 Evaluation time: 0.4255 seconds ``` So they seem to produce the same results. I also double-checked the number of draws. `main` does 160000 draws, and the PR does 160, as expected. ### 2D Mesh `bevymark --benchmark --waves 160 --per-wave 1000 --mode mesh2d --material-texture-count 10` <img width="1392" alt="Screenshot 2023-09-04 at 00 09 22" src="https://github.com/bevyengine/bevy/assets/302146/4358da2e-ce32-4134-82df-3ab74c40849c"> This generates 10 textures and generates materials for each of those and then selects one material per wave. The median frame time is reduced by 50%. Similar to the plain run above, this produces 160 draws on the PR and 160000 on `main` and the 1000th frame is identical (ignoring the fps counter text overlay). ![flip bevymark-main-mesh2d-mtc10 bevymark-batching-mesh2d-mtc10 67ppd ldr](https://github.com/bevyengine/bevy/assets/302146/ebed2822-dce7-426a-858b-b77dc45b986f) ``` Mean: 0.002877 Weighted median: 0.964980 1st weighted quartile: 0.668871 3rd weighted quartile: 0.982749 Min: 0.000000 Max: 0.992377 Evaluation time: 0.4301 seconds ``` ### 2D Mesh `bevymark --benchmark --waves 160 --per-wave 1000 --mode mesh2d --vary-per-instance` <img width="1396" alt="Screenshot 2023-09-04 at 00 13 53" src="https://github.com/bevyengine/bevy/assets/302146/b2198b18-3439-47ad-919a-cdabe190facb"> This creates unique materials per instance by randomly-generating the material's colour. This is the worst case for 2D batching. Somehow, this PR manages a 7% reduction in median frame time. Both main and this PR issue 160000 draws. The 1000th frame is the same: ![flip bevymark-main-mesh2d-vpi bevymark-batching-mesh2d-vpi 67ppd ldr](https://github.com/bevyengine/bevy/assets/302146/a2ec471c-f576-4a36-a23b-b24b22578b97) ``` Mean: 0.001214 Weighted median: 0.937499 1st weighted quartile: 0.635467 3rd weighted quartile: 0.979085 Min: 0.000000 Max: 0.988971 Evaluation time: 0.4462 seconds ``` ### 2D Sprite `bevymark --benchmark --waves 160 --per-wave 1000 --mode sprite` <img width="1396" alt="Screenshot 2023-09-04 at 12 21 12" src="https://github.com/bevyengine/bevy/assets/302146/8b31e915-d6be-4cac-abf5-c6a4da9c3d43"> This just spawns 160 waves of 1000 sprites. There should be and is no notable difference between main and the PR. ### 2D Sprite `bevymark --benchmark --waves 160 --per-wave 1000 --mode sprite --material-texture-count 10` <img width="1389" alt="Screenshot 2023-09-04 at 12 36 08" src="https://github.com/bevyengine/bevy/assets/302146/45fe8d6d-c901-4062-a349-3693dd044413"> This spawns the sprites selecting a texture at random per instance from the 10 generated textures. This has no significant change vs main and shouldn't. ### 2D Sprite `bevymark --benchmark --waves 160 --per-wave 1000 --mode sprite --vary-per-instance` <img width="1401" alt="Screenshot 2023-09-04 at 12 29 52" src="https://github.com/bevyengine/bevy/assets/302146/762c5c60-352e-471f-8dbe-bbf10e24ebd6"> This sets the sprite colour as being unique per instance. This can still all be drawn using one batch. There should be no difference but the PR produces median frame times that are 4% higher. Investigation showed no clear sources of cost, rather a mix of give and take that should not happen. It seems like noise in the results. ### Summary | Benchmark | % change in median frame time | | ------------- | ------------- | | many_cubes | 🟩 -30% | | many_cubes 10 materials | 🟩 -5% | | many_cubes unique materials | 🟩 ~0% | | bevymark mesh2d | 🟩 -50% | | bevymark mesh2d 10 materials | 🟩 -50% | | bevymark mesh2d unique materials | 🟩 -7% | | bevymark sprite | 🟥 2% | | bevymark sprite 10 materials | 🟥 0.6% | | bevymark sprite unique materials | 🟥 4.1% | --- ## Changelog - Added: 2D and 3D mesh entities that share the same mesh and material (same textures, same data) are now batched into the same draw command for better performance. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Nicola Papale <nico@nicopap.ch> |
||
Nicola Papale
|
47d87e49da
|
Refactor rendering systems to use let-else (#9870)
# Objective Some rendering system did heavy use of `if let`, and could be improved by using `let else`. ## Solution - Reduce rightward drift by using let-else over if-let - Extract value-to-key mappings to their own functions so that the system is less bloated, easier to understand - Use a `let` binding instead of untupling in closure argument to reduce indentation ## Note to reviewers Enable the "no white space diff" for easier viewing. In the "Files changed" view, click on the little cog right of the "Jump to" text, on the row where the "Review changes" button is. then enable the "Hide whitespace" checkbox and click reload. |
||
Joseph
|
87f7d013c0
|
Fix a typo in DirectionalLightBundle (#9861)
# Objective Fix a typo introduced by #9497. While drafting the PR, the type was originally called `VisibleInHierarchy` before I renamed it to `InheritedVisibility`, but this field got left behind due to a typo. |
||
Nicola Papale
|
7163aabf29
|
Use a single line for of large binding lists (#9849)
# Objective - When adding/removing bindings in large binding lists, git would generate very difficult-to-read diffs ## Solution - Move the `@group(X) @binding(Y)` into the same line as the binding type declaration |
||
Joseph
|
d5d355ae1f
|
Fix the clippy::explicit_iter_loop lint (#9834)
# Objective Replace instances of ```rust for x in collection.iter{_mut}() { ``` with ```rust for x in &{mut} collection { ``` This also changes CI to no longer suppress this lint. Note that since this lint only shows up when using clippy in pedantic mode, it was probably unnecessary to suppress this lint in the first place. |
||
Bruce Mitchener
|
5e91e5f3ce
|
Improve doc formatting. (#9840)
# Objective - Identifiers in docs should be marked up with backticks. ## Solution - Mark up more identifiers in the docs with backticks. |
||
François
|
ae6bc08a58
|
Fix wireframe for skinned/morphed meshes (#9734)
# Objective - Fixes #6662 - Wireframe crash for skinned meshes: ``` wgpu error: Validation Error Caused by: In Device::create_render_pipeline note: label = `opaque_mesh_pipeline` Error matching ShaderStages(VERTEX) shader requirements against the pipeline Location[4] Uint32x4 interpolated as Some(Flat) with sampling None is not provided by the previous stage outputs Input is not provided by the earlier stage in the pipeline ``` - Wireframe crash for morphed meshes: ``` wgpu error: Validation Error Caused by: In a RenderPass note: encoder = `<CommandBuffer-(0, 14, Metal)>` In a draw command, indexed:true indirect:false note: render pipeline = `opaque_mesh_pipeline` The pipeline layout, associated with the current render pipeline, contains a bind group layout at index 1 which is incompatible with the bind group layout associated with the bind group at 1 ``` ## Solution - Fix the locations for skinned meshes in the wireframe shader - Add the morph key to the wireframe specialisation key - Morph the vertex in the wireframe shader https://github.com/bevyengine/bevy/assets/8672791/ce0a9584-bd28-4d74-9c3f-256602e6fac5 |
||
Ame :]
|
1980ac88f1
|
Fix some warnings (#9724)
# Objective - Fix these warnings ```rust warning: unused doc comment --> /bevy/crates/bevy_pbr/src/light.rs:62:13 | 62 | /// Luminous power in lumens | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 63 | intensity: 800.0, // Roughly a 60W non-halogen incandescent bulb | ---------------- rustdoc does not generate documentation for expression fields | = help: use `//` for a plain comment = note: `#[warn(unused_doc_comments)]` on by default ``` ```rust warning: `&` without an explicit lifetime name cannot be used here --> /bevy/crates/bevy_asset/src/lib.rs:89:32 | 89 | const DEFAULT_FILE_SOURCE: &str = "assets"; | ^ | = warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release! = note: for more information, see issue #115010 <https://github.com/rust-lang/rust/issues/115010> = note: `#[warn(elided_lifetimes_in_associated_constant)]` on by default help: use the `'static` lifetime | 89 | const DEFAULT_FILE_SOURCE: &'static str = "assets"; | ``` |
||
Joseph
|
8eb6ccdd87
|
Remove useless single tuples and trailing commas (#9720)
# Objective Title |
||
Carter Anderson
|
5eb292dc10
|
Bevy Asset V2 (#8624)
# Bevy Asset V2 Proposal ## Why Does Bevy Need A New Asset System? Asset pipelines are a central part of the gamedev process. Bevy's current asset system is missing a number of features that make it non-viable for many classes of gamedev. After plenty of discussions and [a long community feedback period](https://github.com/bevyengine/bevy/discussions/3972), we've identified a number missing features: * **Asset Preprocessing**: it should be possible to "preprocess" / "compile" / "crunch" assets at "development time" rather than when the game starts up. This enables offloading expensive work from deployed apps, faster asset loading, less runtime memory usage, etc. * **Per-Asset Loader Settings**: Individual assets cannot define their own loaders that override the defaults. Additionally, they cannot provide per-asset settings to their loaders. This is a huge limitation, as many asset types don't provide all information necessary for Bevy _inside_ the asset. For example, a raw PNG image says nothing about how it should be sampled (ex: linear vs nearest). * **Asset `.meta` files**: assets should have configuration files stored adjacent to the asset in question, which allows the user to configure asset-type-specific settings. These settings should be accessible during the pre-processing phase. Modifying a `.meta` file should trigger a re-processing / re-load of the asset. It should be possible to configure asset loaders from the meta file. * **Processed Asset Hot Reloading**: Changes to processed assets (or their dependencies) should result in re-processing them and re-loading the results in live Bevy Apps. * **Asset Dependency Tracking**: The current bevy_asset has no good way to wait for asset dependencies to load. It punts this as an exercise for consumers of the loader apis, which is unreasonable and error prone. There should be easy, ergonomic ways to wait for assets to load and block some logic on an asset's entire dependency tree loading. * **Runtime Asset Loading**: it should be (optionally) possible to load arbitrary assets dynamically at runtime. This necessitates being able to deploy and run the asset server alongside Bevy Apps on _all platforms_. For example, we should be able to invoke the shader compiler at runtime, stream scenes from sources like the internet, etc. To keep deployed binaries (and startup times) small, the runtime asset server configuration should be configurable with different settings compared to the "pre processor asset server". * **Multiple Backends**: It should be possible to load assets from arbitrary sources (filesystems, the internet, remote asset serves, etc). * **Asset Packing**: It should be possible to deploy assets in compressed "packs", which makes it easier and more efficient to distribute assets with Bevy Apps. * **Asset Handoff**: It should be possible to hold a "live" asset handle, which correlates to runtime data, without actually holding the asset in memory. Ex: it must be possible to hold a reference to a GPU mesh generated from a "mesh asset" without keeping the mesh data in CPU memory * **Per-Platform Processed Assets**: Different platforms and app distributions have different capabilities and requirements. Some platforms need lower asset resolutions or different asset formats to operate within the hardware constraints of the platform. It should be possible to define per-platform asset processing profiles. And it should be possible to deploy only the assets required for a given platform. These features have architectural implications that are significant enough to require a full rewrite. The current Bevy Asset implementation got us this far, but it can take us no farther. This PR defines a brand new asset system that implements most of these features, while laying the foundations for the remaining features to be built. ## Bevy Asset V2 Here is a quick overview of the features introduced in this PR. * **Asset Preprocessing**: Preprocess assets at development time into more efficient (and configurable) representations * **Dependency Aware**: Dependencies required to process an asset are tracked. If an asset's processed dependency changes, it will be reprocessed * **Hot Reprocessing/Reloading**: detect changes to asset source files, reprocess them if they have changed, and then hot-reload them in Bevy Apps. * **Only Process Changes**: Assets are only re-processed when their source file (or meta file) has changed. This uses hashing and timestamps to avoid processing assets that haven't changed. * **Transactional and Reliable**: Uses write-ahead logging (a technique commonly used by databases) to recover from crashes / forced-exits. Whenever possible it avoids full-reprocessing / only uncompleted transactions will be reprocessed. When the processor is running in parallel with a Bevy App, processor asset writes block Bevy App asset reads. Reading metadata + asset bytes is guaranteed to be transactional / correctly paired. * **Portable / Run anywhere / Database-free**: The processor does not rely on an in-memory database (although it uses some database techniques for reliability). This is important because pretty much all in-memory databases have unsupported platforms or build complications. * **Configure Processor Defaults Per File Type**: You can say "use this processor for all files of this type". * **Custom Processors**: The `Processor` trait is flexible and unopinionated. It can be implemented by downstream plugins. * **LoadAndSave Processors**: Most asset processing scenarios can be expressed as "run AssetLoader A, save the results using AssetSaver X, and then load the result using AssetLoader B". For example, load this png image using `PngImageLoader`, which produces an `Image` asset and then save it using `CompressedImageSaver` (which also produces an `Image` asset, but in a compressed format), which takes an `Image` asset as input. This means if you have an `AssetLoader` for an asset, you are already half way there! It also means that you can share AssetSavers across multiple loaders. Because `CompressedImageSaver` accepts Bevy's generic Image asset as input, it means you can also use it with some future `JpegImageLoader`. * **Loader and Saver Settings**: Asset Loaders and Savers can now define their own settings types, which are passed in as input when an asset is loaded / saved. Each asset can define its own settings. * **Asset `.meta` files**: configure asset loaders, their settings, enable/disable processing, and configure processor settings * **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex: if an asset contains a `Handle<Image>`) are tracked by the asset server. An event is emitted when an asset and all of its dependencies have been loaded * **Unprocessed Asset Loading**: Assets do not require preprocessing. They can be loaded directly. A processed asset is just a "normal" asset with some extra metadata. Asset Loaders don't need to know or care about whether or not an asset was processed. * **Async Asset IO**: Asset readers/writers use async non-blocking interfaces. Note that because Rust doesn't yet support async traits, there is a bit of manual Boxing / Future boilerplate. This will hopefully be removed in the near future when Rust gets async traits. * **Pluggable Asset Readers and Writers**: Arbitrary asset source readers/writers are supported, both by the processor and the asset server. * **Better Asset Handles** * **Single Arc Tree**: Asset Handles now use a single arc tree that represents the lifetime of the asset. This makes their implementation simpler, more efficient, and allows us to cheaply attach metadata to handles. Ex: the AssetPath of a handle is now directly accessible on the handle itself! * **Const Typed Handles**: typed handles can be constructed in a const context. No more weird "const untyped converted to typed at runtime" patterns! * **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed `Handle<T>` is now much smaller in memory and `AssetId<T>` is even smaller. * **Weak Handle Usage Reduction**: In general Handles are now considered to be "strong". Bevy features that previously used "weak `Handle<T>`" have been ported to `AssetId<T>`, which makes it statically clear that the features do not hold strong handles (while retaining strong type information). Currently Handle::Weak still exists, but it is very possible that we can remove that entirely. * **Efficient / Dense Asset Ids**: Assets now have efficient dense runtime asset ids, which means we can avoid expensive hash lookups. Assets are stored in Vecs instead of HashMaps. There are now typed and untyped ids, which means we no longer need to store dynamic type information in the ID for typed handles. "AssetPathId" (which was a nightmare from a performance and correctness standpoint) has been entirely removed in favor of dense ids (which are retrieved for a path on load) * **Direct Asset Loading, with Dependency Tracking**: Assets that are defined at runtime can still have their dependencies tracked by the Asset Server (ex: if you create a material at runtime, you can still wait for its textures to load). This is accomplished via the (currently optional) "asset dependency visitor" trait. This system can also be used to define a set of assets to load, then wait for those assets to load. * **Async folder loading**: Folder loading also uses this system and immediately returns a handle to the LoadedFolder asset, which means folder loading no longer blocks on directory traversals. * **Improved Loader Interface**: Loaders now have a specific "top level asset type", which makes returning the top-level asset simpler and statically typed. * **Basic Image Settings and Processing**: Image assets can now be processed into the gpu-friendly Basic Universal format. The ImageLoader now has a setting to define what format the image should be loaded as. Note that this is just a minimal MVP ... plenty of additional work to do here. To demo this, enable the `basis-universal` feature and turn on asset processing. * **Simpler Audio Play / AudioSink API**: Asset handle providers are cloneable, which means the Audio resource can mint its own handles. This means you can now do `let sink_handle = audio.play(music)` instead of `let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that this might still be replaced by https://github.com/bevyengine/bevy/pull/8424. **Removed Handle Casting From Engine Features**: Ex: FontAtlases no longer use casting between handle types ## Using The New Asset System ### Normal Unprocessed Asset Loading By default the `AssetPlugin` does not use processing. It behaves pretty much the same way as the old system. If you are defining a custom asset, first derive `Asset`: ```rust #[derive(Asset)] struct Thing { value: String, } ``` Initialize the asset: ```rust app.init_asset:<Thing>() ``` Implement a new `AssetLoader` for it: ```rust #[derive(Default)] struct ThingLoader; #[derive(Serialize, Deserialize, Default)] pub struct ThingSettings { some_setting: bool, } impl AssetLoader for ThingLoader { type Asset = Thing; type Settings = ThingSettings; fn load<'a>( &'a self, reader: &'a mut Reader, settings: &'a ThingSettings, load_context: &'a mut LoadContext, ) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> { Box::pin(async move { let mut bytes = Vec::new(); reader.read_to_end(&mut bytes).await?; // convert bytes to value somehow Ok(Thing { value }) }) } fn extensions(&self) -> &[&str] { &["thing"] } } ``` Note that this interface will get much cleaner once Rust gets support for async traits. `Reader` is an async futures_io::AsyncRead. You can stream bytes as they come in or read them all into a `Vec<u8>`, depending on the context. You can use `let handle = load_context.load(path)` to kick off a dependency load, retrieve a handle, and register the dependency for the asset. Then just register the loader in your Bevy app: ```rust app.init_asset_loader::<ThingLoader>() ``` Now just add your `Thing` asset files into the `assets` folder and load them like this: ```rust fn system(asset_server: Res<AssetServer>) { let handle = Handle<Thing> = asset_server.load("cool.thing"); } ``` You can check load states directly via the asset server: ```rust if asset_server.load_state(&handle) == LoadState::Loaded { } ``` You can also listen for events: ```rust fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) { for event in events.iter() { if event.is_loaded_with_dependencies(&handle) { } } } ``` Note the new `AssetEvent::LoadedWithDependencies`, which only fires when the asset is loaded _and_ all dependencies (and their dependencies) have loaded. Unlike the old asset system, for a given asset path all `Handle<T>` values point to the same underlying Arc. This means Handles can cheaply hold more asset information, such as the AssetPath: ```rust // prints the AssetPath of the handle info!("{:?}", handle.path()) ``` ### Processed Assets Asset processing can be enabled via the `AssetPlugin`. When developing Bevy Apps with processed assets, do this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev())) ``` This runs the `AssetProcessor` in the background with hot-reloading. It reads assets from the `assets` folder, processes them, and writes them to the `.imported_assets` folder. Asset loads in the Bevy App will wait for a processed version of the asset to become available. If an asset in the `assets` folder changes, it will be reprocessed and hot-reloaded in the Bevy App. When deploying processed Bevy apps, do this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::processed())) ``` This does not run the `AssetProcessor` in the background. It behaves like `AssetPlugin::unprocessed()`, but reads assets from `.imported_assets`. When the `AssetProcessor` is running, it will populate sibling `.meta` files for assets in the `assets` folder. Meta files for assets that do not have a processor configured look like this: ```rust ( meta_format_version: "1.0", asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: FromExtension, ), ), ) ``` This is metadata for an image asset. For example, if you have `assets/my_sprite.png`, this could be the metadata stored at `assets/my_sprite.png.meta`. Meta files are totally optional. If no metadata exists, the default settings will be used. In short, this file says "load this asset with the ImageLoader and use the file extension to determine the image type". This type of meta file is supported in all AssetPlugin modes. If in `Unprocessed` mode, the asset (with the meta settings) will be loaded directly. If in `ProcessedDev` mode, the asset file will be copied directly to the `.imported_assets` folder. The meta will also be copied directly to the `.imported_assets` folder, but with one addition: ```rust ( meta_format_version: "1.0", processed_info: Some(( hash: 12415480888597742505, full_hash: 14344495437905856884, process_dependencies: [], )), asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: FromExtension, ), ), ) ``` `processed_info` contains `hash` (a direct hash of the asset and meta bytes), `full_hash` (a hash of `hash` and the hashes of all `process_dependencies`), and `process_dependencies` (the `path` and `full_hash` of every process_dependency). A "process dependency" is an asset dependency that is _directly_ used when processing the asset. Images do not have process dependencies, so this is empty. When the processor is enabled, you can use the `Process` metadata config: ```rust ( meta_format_version: "1.0", asset: Process( processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>", settings: ( loader_settings: ( format: FromExtension, ), saver_settings: ( generate_mipmaps: true, ), ), ), ) ``` This configures the asset to use the `LoadAndSave` processor, which runs an AssetLoader and feeds the result into an AssetSaver (which saves the given Asset and defines a loader to load it with). (for terseness LoadAndSave will likely get a shorter/friendlier type name when [Stable Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common processor type, but arbitrary processors are supported. `CompressedImageSaver` saves an `Image` in the Basis Universal format and configures the ImageLoader to load it as basis universal. The `AssetProcessor` will read this meta, run it through the LoadAndSave processor, and write the basis-universal version of the image to `.imported_assets`. The final metadata will look like this: ```rust ( meta_format_version: "1.0", processed_info: Some(( hash: 905599590923828066, full_hash: 9948823010183819117, process_dependencies: [], )), asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: Format(Basis), ), ), ) ``` To try basis-universal processing out in Bevy examples, (for example `sprite.rs`), change `add_plugins(DefaultPlugins)` to `add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run with the `basis-universal` feature enabled: `cargo run --features=basis-universal --example sprite`. To create a custom processor, there are two main paths: 1. Use the `LoadAndSave` processor with an existing `AssetLoader`. Implement the `AssetSaver` trait, register the processor using `asset_processor.register_processor::<LoadAndSave<ImageLoader, CompressedImageSaver>>(image_saver.into())`. 2. Implement the `Process` trait directly and register it using: `asset_processor.register_processor(thing_processor)`. You can configure default processors for file extensions like this: ```rust asset_processor.set_default_processor::<ThingProcessor>("thing") ``` There is one more metadata type to be aware of: ```rust ( meta_format_version: "1.0", asset: Ignore, ) ``` This will ignore the asset during processing / prevent it from being written to `.imported_assets`. The AssetProcessor stores a transaction log at `.imported_assets/log` and uses it to gracefully recover from unexpected stops. This means you can force-quit the processor (and Bevy Apps running the processor in parallel) at arbitrary times! `.imported_assets` is "local state". It should _not_ be checked into source control. It should also be considered "read only". In practice, you _can_ modify processed assets and processed metadata if you really need to test something. But those modifications will not be represented in the hashes of the assets, so the processed state will be "out of sync" with the source assets. The processor _will not_ fix this for you. Either revert the change after you have tested it, or delete the processed files so they can be re-populated. ## Open Questions There are a number of open questions to be discussed. We should decide if they need to be addressed in this PR and if so, how we will address them: ### Implied Dependencies vs Dependency Enumeration There are currently two ways to populate asset dependencies: * **Implied via AssetLoaders**: if an AssetLoader loads an asset (and retrieves a handle), a dependency is added to the list. * **Explicit via the optional Asset::visit_dependencies**: if `server.load_asset(my_asset)` is called, it will call `my_asset.visit_dependencies`, which will grab dependencies that have been manually defined for the asset via the Asset trait impl (which can be derived). This means that defining explicit dependencies is optional for "loaded assets". And the list of dependencies is always accurate because loaders can only produce Handles if they register dependencies. If an asset was loaded with an AssetLoader, it only uses the implied dependencies. If an asset was created at runtime and added with `asset_server.load_asset(MyAsset)`, it will use `Asset::visit_dependencies`. However this can create a behavior mismatch between loaded assets and equivalent "created at runtime" assets if `Assets::visit_dependencies` doesn't exactly match the dependencies produced by the AssetLoader. This behavior mismatch can be resolved by completely removing "implied loader dependencies" and requiring `Asset::visit_dependencies` to supply dependency data. But this creates two problems: * It makes defining loaded assets harder and more error prone: Devs must remember to manually annotate asset dependencies with `#[dependency]` when deriving `Asset`. For more complicated assets (such as scenes), the derive likely wouldn't be sufficient and a manual `visit_dependencies` impl would be required. * Removes the ability to immediately kick off dependency loads: When AssetLoaders retrieve a Handle, they also immediately kick off an asset load for the handle, which means it can start loading in parallel _before_ the asset finishes loading. For large assets, this could be significant. (although this could be mitigated for processed assets if we store dependencies in the processed meta file and load them ahead of time) ### Eager ProcessorDev Asset Loading I made a controversial call in the interest of fast startup times ("time to first pixel") for the "processor dev mode configuration". When initializing the AssetProcessor, current processed versions of unchanged assets are yielded immediately, even if their dependencies haven't been checked yet for reprocessing. This means that non-current-state-of-filesystem-but-previously-valid assets might be returned to the App first, then hot-reloaded if/when their dependencies change and the asset is reprocessed. Is this behavior desirable? There is largely one alternative: do not yield an asset from the processor to the app until all of its dependencies have been checked for changes. In some common cases (load dependency has not changed since last run) this will increase startup time. The main question is "by how much" and is that slower startup time worth it in the interest of only yielding assets that are true to the current state of the filesystem. Should this be configurable? I'm starting to think we should only yield an asset after its (historical) dependencies have been checked for changes + processed as necessary, but I'm curious what you all think. ### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs? In this implementation AssetPaths are the only canonical asset identifier (just like the previous Bevy Asset system and Godot). Moving assets will result in re-scans (and currently reprocessing, although reprocessing can easily be avoided with some changes). Asset renames/moves will break code and assets that rely on specific paths, unless those paths are fixed up. Do we want / need "stable asset uuids"? Introducing them is very possible: 1. Generate a UUID and include it in .meta files 2. Support UUID in AssetPath 3. Generate "asset indices" which are loaded on startup and map UUIDs to paths. 4 (maybe). Consider only supporting UUIDs for processed assets so we can generate quick-to-load indices instead of scanning meta files. The main "pro" is that assets referencing UUIDs don't need to be migrated when a path changes. The main "con" is that UUIDs cannot be "lazily resolved" like paths. They need a full view of all assets to answer the question "does this UUID exist". Which means UUIDs require the AssetProcessor to fully finish startup scans before saying an asset doesnt exist. And they essentially require asset pre-processing to use in apps, because scanning all asset metadata files at runtime to resolve a UUID is not viable for medium-to-large apps. It really requires a pre-generated UUID index, which must be loaded before querying for assets. I personally think this should be investigated in a separate PR. Paths aren't going anywhere ... _everyone_ uses filesystems (and filesystem-like apis) to manage their asset source files. I consider them permanent canonical asset information. Additionally, they behave well for both processed and unprocessed asset modes. Given that Bevy is supporting both, this feels like the right canonical ID to start with. UUIDS (and maybe even other indexed-identifier types) can be added later as necessary. ### Folder / File Naming Conventions All asset processing config currently lives in the `.imported_assets` folder. The processor transaction log is in `.imported_assets/log`. Processed assets are added to `.imported_assets/Default`, which will make migrating to processed asset profiles (ex: a `.imported_assets/Mobile` profile) a non-breaking change. It also allows us to create top-level files like `.imported_assets/log` without it being interpreted as an asset. Meta files currently have a `.meta` suffix. Do we like these names and conventions? ### Should the `AssetPlugin::processed_dev` configuration enable `watch_for_changes` automatically? Currently it does (which I think makes sense), but it does make it the only configuration that enables watch_for_changes by default. ### Discuss on_loaded High Level Interface: This PR includes a very rough "proof of concept" `on_loaded` system adapter that uses the `LoadedWithDependencies` event in combination with `asset_server.load_asset` dependency tracking to support this pattern ```rust fn main() { App::new() .init_asset::<MyAssets>() .add_systems(Update, on_loaded(create_array_texture)) .run(); } #[derive(Asset, Clone)] struct MyAssets { #[dependency] picture_of_my_cat: Handle<Image>, #[dependency] picture_of_my_other_cat: Handle<Image>, } impl FromWorld for ArrayTexture { fn from_world(world: &mut World) -> Self { picture_of_my_cat: server.load("meow.png"), picture_of_my_other_cat: server.load("meeeeeeeow.png"), } } fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) { commands.spawn(SpriteBundle { texture: my_assets.picture_of_my_cat.clone(), ..default() }); commands.spawn(SpriteBundle { texture: my_assets.picture_of_my_other_cat.clone(), ..default() }); } ``` The implementation is _very_ rough. And it is currently unsafe because `bevy_ecs` doesn't expose some internals to do this safely from inside `bevy_asset`. There are plenty of unanswered questions like: * "do we add a Loadable" derive? (effectively automate the FromWorld implementation above) * Should `MyAssets` even be an Asset? (largely implemented this way because it elegantly builds on `server.load_asset(MyAsset { .. })` dependency tracking). We should think hard about what our ideal API looks like (and if this is a pattern we want to support). Not necessarily something we need to solve in this PR. The current `on_loaded` impl should probably be removed from this PR before merging. ## Clarifying Questions ### What about Assets as Entities? This Bevy Asset V2 proposal implementation initially stored Assets as ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used `Entity` as the asset id and Asset values were just ECS components. There are plenty of compelling reasons to do this: 1. Easier to inline assets in Bevy Scenes (as they are "just" normal entities + components) 2. More flexible queries: use the power of the ECS to filter assets (ex: `Query<Mesh, With<Tree>>`). 3. Extensible. Users can add arbitrary component data to assets. 4. Things like "component visualization tools" work out of the box to visualize asset data. However Assets as Entities has a ton of caveats right now: * We need to be able to allocate entity ids without a direct World reference (aka rework id allocator in Entities ... i worked around this in my prototypes by just pre allocating big chunks of entities) * We want asset change events in addition to ECS change tracking ... how do we populate them when mutations can come from anywhere? Do we use Changed queries? This would require iterating over the change data for all assets every frame. Is this acceptable or should we implement a new "event based" component change detection option? * Reconciling manually created assets with asset-system managed assets has some nuance (ex: are they "loaded" / do they also have that component metadata?) * "how do we handle "static" / default entity handles" (ties in to the Entity Indices discussion: https://github.com/bevyengine/bevy/discussions/8319). This is necessary for things like "built in" assets and default handles in things like SpriteBundle. * Storing asset information as a component makes it easy to "invalidate" asset state by removing the component (or forcing modifications). Ideally we have ways to lock this down (some combination of Rust type privacy and ECS validation) In practice, how we store and identify assets is a reasonably superficial change (porting off of Assets as Entities and implementing dedicated storage + ids took less than a day). So once we sort out the remaining challenges the flip should be straightforward. Additionally, I do still have "Assets as Entities" in my commit history, so we can reuse that work. I personally think "assets as entities" is a good endgame, but it also doesn't provide _significant_ value at the moment and it certainly isn't ready yet with the current state of things. ### Why not Distill? [Distill](https://github.com/amethyst/distill) is a high quality fully featured asset system built in Rust. It is very natural to ask "why not just use Distill?". It is also worth calling out that for awhile, [we planned on adopting Distill / I signed off on it](https://github.com/bevyengine/bevy/issues/708). However I think Bevy has a number of constraints that make Distill adoption suboptimal: * **Architectural Simplicity:** * Distill's processor requires an in-memory database (lmdb) and RPC networked API (using Cap'n Proto). Each of these introduces API complexity that increases maintenance burden and "code grokability". Ignoring tests, documentation, and examples, Distill has 24,237 lines of Rust code (including generated code for RPC + database interactions). If you ignore generated code, it has 11,499 lines. * Bevy builds the AssetProcessor and AssetServer using pluggable AssetReader/AssetWriter Rust traits with simple io interfaces. They do not necessitate databases or RPC interfaces (although Readers/Writers could use them if that is desired). Bevy Asset V2 (at the time of writing this PR) is 5,384 lines of Rust code (ignoring tests, documentation, and examples). Grain of salt: Distill does have more features currently (ex: Asset Packing, GUIDS, remote-out-of-process asset processor). I do plan to implement these features in Bevy Asset V2 and I personally highly doubt they will meaningfully close the 6115 lines-of-code gap. * This complexity gap (which while illustrated by lines of code, is much bigger than just that) is noteworthy to me. Bevy should be hackable and there are pillars of Distill that are very hard to understand and extend. This is a matter of opinion (and Bevy Asset V2 also has complicated areas), but I think Bevy Asset V2 is much more approachable for the average developer. * Necessary disclaimer: counting lines of code is an extremely rough complexity metric. Read the code and form your own opinions. * **Optional Asset Processing:** Not all Bevy Apps (or Bevy App developers) need / want asset preprocessing. Processing increases the complexity of the development environment by introducing things like meta files, imported asset storage, running processors in the background, waiting for processing to finish, etc. Distill _requires_ preprocessing to work. With Bevy Asset V2 processing is fully opt-in. The AssetServer isn't directly aware of asset processors at all. AssetLoaders only care about converting bytes to runtime Assets ... they don't know or care if the bytes were pre-processed or not. Processing is "elegantly" (forgive my self-congratulatory phrasing) layered on top and builds on the existing Asset system primitives. * **Direct Filesystem Access to Processed Asset State:** Distill stores processed assets in a database. This makes debugging / inspecting the processed outputs harder (either requires special tooling to query the database or they need to be "deployed" to be inspected). Bevy Asset V2, on the other hand, stores processed assets in the filesystem (by default ... this is configurable). This makes interacting with the processed state more natural. Note that both Godot and Unity's new asset system store processed assets in the filesystem. * **Portability**: Because Distill's processor uses lmdb and RPC networking, it cannot be run on certain platforms (ex: lmdb is a non-rust dependency that cannot run on the web, some platforms don't support running network servers). Bevy should be able to process assets everywhere (ex: run the Bevy Editor on the web, compile + process shaders on mobile, etc). Distill does partially mitigate this problem by supporting "streaming" assets via the RPC protocol, but this is not a full solve from my perspective. And Bevy Asset V2 can (in theory) also stream assets (without requiring RPC, although this isn't implemented yet) Note that I _do_ still think Distill would be a solid asset system for Bevy. But I think the approach in this PR is a better solve for Bevy's specific "asset system requirements". ### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the point? "True async file io" has limited / spotty platform support. async-fs (and the rust async ecosystem generally ... ex Tokio) currently use async wrappers over std::fs that offload blocking requests to separate threads. This may feel unsatisfying, but it _does_ still provide value because it prevents our task pools from blocking on file system operations (which would prevent progress when there are many tasks to do, but all threads in a pool are currently blocking on file system ops). Additionally, using async APIs for our AssetReaders and AssetWriters also provides value because we can later add support for "true async file io" for platforms that support it. _And_ we can implement other "true async io" asset backends (such as networked asset io). ## Draft TODO - [x] Fill in missing filesystem event APIs: file removed event (which is expressed as dangling RenameFrom events in some cases), file/folder renamed event - [x] Assets without loaders are not moved to the processed folder. This breaks things like referenced `.bin` files for GLTFs. This should be configurable per-non-asset-type. - [x] Initial implementation of Reflect and FromReflect for Handle. The "deserialization" parity bar is low here as this only worked with static UUIDs in the old impl ... this is a non-trivial problem. Either we add a Handle::AssetPath variant that gets "upgraded" to a strong handle on scene load or we use a separate AssetRef type for Bevy scenes (which is converted to a runtime Handle on load). This deserves its own discussion in a different pr. - [x] Populate read_asset_bytes hash when run by the processor (a bit of a special case .. when run by the processor the processed meta will contain the hash so we don't need to compute it on the spot, but we don't want/need to read the meta when run by the main AssetServer) - [x] Delay hot reloading: currently filesystem events are handled immediately, which creates timing issues in some cases. For example hot reloading images can sometimes break because the image isn't finished writing. We should add a delay, likely similar to the [implementation in this PR](https://github.com/bevyengine/bevy/pull/8503). - [x] Port old platform-specific AssetIo implementations to the new AssetReader interface (currently missing Android and web) - [x] Resolve on_loaded unsafety (either by removing the API entirely or removing the unsafe) - [x] Runtime loader setting overrides - [x] Remove remaining unwraps that should be error-handled. There are number of TODOs here - [x] Pretty AssetPath Display impl - [x] Document more APIs - [x] Resolve spurious "reloading because it has changed" events (to repro run load_gltf with `processed_dev()`) - [x] load_dependency hot reloading currently only works for processed assets. If processing is disabled, load_dependency changes are not hot reloaded. - [x] Replace AssetInfo dependency load/fail counters with `loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from (potentially) breaking counters. Storing this will also enable "dependency reloaded" events (see [Next Steps](#next-steps)) - [x] Re-add filesystem watcher cargo feature gate (currently it is not optional) - [ ] Migration Guide - [ ] Changelog ## Followup TODO - [ ] Replace "eager unchanged processed asset loading" behavior with "don't returned unchanged processed asset until dependencies have been checked". - [ ] Add true `Ignore` AssetAction that does not copy the asset to the imported_assets folder. - [ ] Finish "live asset unloading" (ex: free up CPU asset memory after uploading an image to the GPU), rethink RenderAssets, and port renderer features. The `Assets` collection uses `Option<T>` for asset storage to support its removal. (1) the Option might not actually be necessary ... might be able to just remove from the collection entirely (2) need to finalize removal apis - [ ] Try replacing the "channel based" asset id recycling with something a bit more efficient (ex: we might be able to use raw atomic ints with some cleverness) - [ ] Consider adding UUIDs to processed assets (scoped just to helping identify moved assets ... not exposed to load queries ... see [Next Steps](#next-steps)) - [ ] Store "last modified" source asset and meta timestamps in processed meta files to enable skipping expensive hashing when the file wasn't changed - [ ] Fix "slow loop" handle drop fix - [ ] Migrate to TypeName - [x] Handle "loader preregistration". See #9429 ## Next Steps * **Configurable per-type defaults for AssetMeta**: It should be possible to add configuration like "all png image meta should default to using nearest sampling" (currently this hard-coded per-loader/processor Settings::default() impls). Also see the "Folder Meta" bullet point. * **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical asset ids" discussion in [Open Questions](#open-questions) and the relevant bullet point in [Draft TODO](#draft-todo). Even without canonical ids, folder renames could avoid reprocessing in some cases. * **Multiple Asset Sources**: Expand AssetPath to support "asset source names" and support multiple AssetReaders in the asset server (ex: `webserver://some_path/image.png` backed by an Http webserver AssetReader). The "default" asset reader would use normal `some_path/image.png` paths. Ideally this works in combination with multiple AssetWatchers for hot-reloading * **Stable Type Names**: this pr removes the TypeUuid requirement from assets in favor of `std::any::type_name`. This makes defining assets easier (no need to generate a new uuid / use weird proc macro syntax). It also makes reading meta files easier (because things have "friendly names"). We also use type names for components in scene files. If they are good enough for components, they are good enough for assets. And consistency across Bevy pillars is desirable. However, `std::any::type_name` is not guaranteed to be stable (although in practice it is). We've developed a [stable type path](https://github.com/bevyengine/bevy/pull/7184) to resolve this, which should be adopted when it is ready. * **Command Line Interface**: It should be possible to run the asset processor in a separate process from the command line. This will also require building a network-server-backed AssetReader to communicate between the app and the processor. We've been planning to build a "bevy cli" for awhile. This seems like a good excuse to build it. * **Asset Packing**: This is largely an additive feature, so it made sense to me to punt this until we've laid the foundations in this PR. * **Per-Platform Processed Assets**: It should be possible to generate assets for multiple platforms by supporting multiple "processor profiles" per asset (ex: compress with format X on PC and Y on iOS). I think there should probably be arbitrary "profiles" (which can be separate from actual platforms), which are then assigned to a given platform when generating the final asset distribution for that platform. Ex: maybe devs want a "Mobile" profile that is shared between iOS and Android. Or a "LowEnd" profile shared between web and mobile. * **Versioning and Migrations**: Assets, Loaders, Savers, and Processors need to have versions to determine if their schema is valid. If an asset / loader version is incompatible with the current version expected at runtime, the processor should be able to migrate them. I think we should try using Bevy Reflect for this, as it would allow us to load the old version as a dynamic Reflect type without actually having the old Rust type. It would also allow us to define "patches" to migrate between versions (Bevy Reflect devs are currently working on patching). The `.meta` file already has its own format version. Migrating that to new versions should also be possible. * **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write type) currently used by AssetPath can still result in String clones that aren't actually necessary (cloning an Owned Cow clones the contents). Bevy's asset system requires cloning AssetPaths in a number of places, which result in actual clones of the internal Strings. This is not efficient. AssetPath internals should be reworked to exhibit truer cow-like-behavior that reduces String clones to the absolute minimum. * **Consider processor-less processing**: In theory the AssetServer could run processors "inline" even if the background AssetProcessor is disabled. If we decide this is actually desirable, we could add this. But I don't think its a priority in the short or medium term. * **Pre-emptive dependency loading**: We could encode dependencies in processed meta files, which could then be used by the Asset Server to kick of dependency loads as early as possible (prior to starting the actual asset load). Is this desirable? How much time would this save in practice? * **Optimize Processor With UntypedAssetIds**: The processor exclusively uses AssetPath to identify assets currently. It might be possible to swap these out for UntypedAssetIds in some places, which are smaller / cheaper to hash and compare. * **One to Many Asset Processing**: An asset source file that produces many assets currently must be processed into a single "processed" asset source. If labeled assets can be written separately they can each have their own configured savers _and_ they could be loaded more granularly. Definitely worth exploring! * **Automatically Track "Runtime-only" Asset Dependencies**: Right now, tracking "created at runtime" asset dependencies requires adding them via `asset_server.load_asset(StandardMaterial::default())`. I think with some cleverness we could also do this for `materials.add(StandardMaterial::default())`, making tracking work "everywhere". There are challenges here relating to change detection / ensuring the server is made aware of dependency changes. This could be expensive in some cases. * **"Dependency Changed" events**: Some assets have runtime artifacts that need to be re-generated when one of their dependencies change (ex: regenerate a material's bind group when a Texture needs to change). We are generating the dependency graph so we can definitely produce these events. Buuuuut generating these events will have a cost / they could be high frequency for some assets, so we might want this to be opt-in for specific cases. * **Investigate Storing More Information In Handles**: Handles can now store arbitrary information, which makes it cheaper and easier to access. How much should we move into them? Canonical asset load states (via atomics)? (`handle.is_loaded()` would be very cool). Should we store the entire asset and remove the `Assets<T>` collection? (`Arc<RwLock<Option<Image>>>`?) * **Support processing and loading files without extensions**: This is a pretty arbitrary restriction and could be supported with very minimal changes. * **Folder Meta**: It would be nice if we could define per folder processor configuration defaults (likely in a `.meta` or `.folder_meta` file). Things like "default to linear filtering for all Images in this folder". * **Replace async_broadcast with event-listener?** This might be approximately drop-in for some uses and it feels more light weight * **Support Running the AssetProcessor on the Web**: Most of the hard work is done here, but there are some easy straggling TODOs (make the transaction log an interface instead of a direct file writer so we can write a web storage backend, implement an AssetReader/AssetWriter that reads/writes to something like LocalStorage). * **Consider identifying and preventing circular dependencies**: This is especially important for "processor dependencies", as processing will silently never finish in these cases. * **Built-in/Inlined Asset Hot Reloading**: This PR regresses "built-in/inlined" asset hot reloading (previously provided by the DebugAssetServer). I'm intentionally punting this because I think it can be cleanly implemented with "multiple asset sources" by registering a "debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset paths) in combination with an AssetWatcher for that asset source and support for "manually loading pats with asset bytes instead of AssetReaders". The old DebugAssetServer was quite nasty and I'd love to avoid that hackery going forward. * **Investigate ways to remove double-parsing meta files**: Parsing meta files currently involves parsing once with "minimal" versions of the meta file to extract the type name of the loader/processor config, then parsing again to parse the "full" meta. This is suboptimal. We should be able to define custom deserializers that (1) assume the loader/processor type name comes first (2) dynamically looks up the loader/processor registrations to deserialize settings in-line (similar to components in the bevy scene format). Another alternative: deserialize as dynamic Reflect objects and then convert. * **More runtime loading configuration**: Support using the Handle type as a hint to select an asset loader (instead of relying on AssetPath extensions) * **More high level Processor trait implementations**: For example, it might be worth adding support for arbitrary chains of "asset transforms" that modify an in-memory asset representation between loading and saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by a `flip_normals` transform, then save the mesh to an efficient compressed format). * **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO item](#draft-todo) for context) * **Explore High Level Load Interfaces**: See [this discussion](#discuss-on_loaded-high-level-interface) for one prototype. * **Asset Streaming**: It would be great if we could stream Assets (ex: stream a long video file piece by piece) * **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than they need to be because they have a Uuid enum variant. If we implement an "id exchanging" system that trades Uuids for "efficient runtime ids", we can cut down on the size of AssetIds, making them more efficient. This has some open design questions, such as how to spawn entities with "default" handle values (as these wouldn't have access to the exchange api in the current system). * **Asset Path Fixup Tooling**: Assets that inline asset paths inside them will break when an asset moves. The asset system provides the functionality to detect when paths break. We should build a framework that enables formats to define "path migrations". This is especially important for scene files. For editor-generated files, we should also consider using UUIDs (see other bullet point) to avoid the need to migrate in these cases. --------- Co-authored-by: BeastLe9enD <beastle9end@outlook.de> Co-authored-by: Mike <mike.hsu@gmail.com> Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com> |
||
Robert Swain
|
ce1ac05c63
|
Explicitly make instance_index vertex output @interpolate(flat) (#9675)
The WGSL spec says that all scalar or vector integer vertex stage outputs and fragment stage inputs must be marked as @interpolate(flat). I think wgpu fixed this up for us, but being explicit is more correct. |
||
Robert Swain
|
4fdea02087
|
Use instancing for sprites (#9597)
# Objective - Supercedes #8872 - Improve sprite rendering performance after the regression in #9236 ## Solution - Use an instance-rate vertex buffer to store per-instance data. - Store color, UV offset and scale, and a transform per instance. - Convert Sprite rect, custom_size, anchor, and flip_x/_y to an affine 3x4 matrix and store the transpose of that in the per-instance data. This is similar to how MeshUniform uses transpose affine matrices. - Use a special index buffer that has batches of 6 indices referencing 4 vertices. The lower 2 bits indicate the x and y of a quad such that the corners are: ``` 10 11 00 01 ``` UVs are implicit but get modified by UV offset and scale The remaining upper bits contain the instance index. ## Benchmarks I will compare versus `main` before #9236 because the results should be as good as or faster than that. Running `bevymark -- 10000 16` on an M1 Max with `main` at `e8b38925` in yellow, this PR in red: ![Screenshot 2023-08-27 at 18 44 10](https://github.com/bevyengine/bevy/assets/302146/bdc5c929-d547-44bb-b519-20dce676a316) Looking at the median frame times, that's a 37% reduction from before. --- ## Changelog - Changed: Improved sprite rendering performance by leveraging an instance-rate vertex buffer. --------- Co-authored-by: Giacomo Stevanato <giaco.stevanato@gmail.com> |
||
Joseph
|
02b520b4e8
|
Split ComputedVisibility into two components to allow for accurate change detection and speed up visibility propagation (#9497)
# Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> |
||
lelo
|
42e6dc8987
|
Refactor EventReader::iter to read (#9631)
# Objective - The current `EventReader::iter` has been determined to cause confusion among new Bevy users. It was suggested by @JoJoJet to rename the method to better clarify its usage. - Solves #9624 ## Solution - Rename `EventReader::iter` to `EventReader::read`. - Rename `EventReader::iter_with_id` to `EventReader::read_with_id`. - Rename `ManualEventReader::iter` to `ManualEventReader::read`. - Rename `ManualEventReader::iter_with_id` to `ManualEventReader::read_with_id`. --- ## Changelog - `EventReader::iter` has been renamed to `EventReader::read`. - `EventReader::iter_with_id` has been renamed to `EventReader::read_with_id`. - `ManualEventReader::iter` has been renamed to `ManualEventReader::read`. - `ManualEventReader::iter_with_id` has been renamed to `ManualEventReader::read_with_id`. - Deprecated `EventReader::iter` - Deprecated `EventReader::iter_with_id` - Deprecated `ManualEventReader::iter` - Deprecated `ManualEventReader::iter_with_id` ## Migration Guide - Existing usages of `EventReader::iter` and `EventReader::iter_with_id` will have to be changed to `EventReader::read` and `EventReader::read_with_id` respectively. - Existing usages of `ManualEventReader::iter` and `ManualEventReader::iter_with_id` will have to be changed to `ManualEventReader::read` and `ManualEventReader::read_with_id` respectively. |
||
François
|
b28f6334da
|
only take up to the max number of joints (#9351)
# Objective - Meshes with a higher number of joints than `MAX_JOINTS` are crashing - Fixes partly #9021 (doesn't crash anymore, but the mesh is not correctly displayed) ## Solution - Only take up to `MAX_JOINTS` joints when extending the buffer |
||
James O'Brien
|
4f1d9a6315
|
Reorder render sets, refactor bevy_sprite to take advantage (#9236)
This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> |
||
Rob Parrett
|
a788e31ad5
|
Fix CI for Rust 1.72 (#9562)
# Objective [Rust 1.72.0](https://blog.rust-lang.org/2023/08/24/Rust-1.72.0.html) is now stable. # Notes - `let-else` formatting has arrived! - I chose to allow `explicit_iter_loop` due to https://github.com/rust-lang/rust-clippy/issues/11074. We didn't hit any of the false positives that prevent compilation, but fixing this did produce a lot of the "symbol soup" mentioned, e.g. `for image in &mut *image_events {`. Happy to undo this if there's consensus the other way. --------- Co-authored-by: François <mockersf@gmail.com> |
||
François
|
bc50682360
|
fix wireframe after MeshUniform size reduction (#9505)
# Objective - Wireframe currently don't display since #9416 - There is an error ``` 2023-08-20T10:06:54.190347Z ERROR bevy_render::render_resource::pipeline_cache: failed to process shader: error: no definition in scope for identifier: 'vertex_no_morph' ┌─ crates/bevy_pbr/src/render/wireframe.wgsl:26:94 │ 26 │ let model = bevy_pbr::mesh_functions::get_model_matrix(vertex_no_morph.instance_index); │ ^^^^^^^^^^^^^^^ unknown identifier │ = no definition in scope for identifier: 'vertex_no_morph' ``` ## Solution - Use the correct identifier |
||
Robert Swain
|
0a11af9375
|
Reduce the size of MeshUniform to improve performance (#9416)
# Objective - Significantly reduce the size of MeshUniform by only including necessary data. ## Solution Local to world, model transforms are affine. This means they only need a 4x3 matrix to represent them. `MeshUniform` stores the current, and previous model transforms, and the inverse transpose of the current model transform, all as 4x4 matrices. Instead we can store the current, and previous model transforms as 4x3 matrices, and we only need the upper-left 3x3 part of the inverse transpose of the current model transform. This change allows us to reduce the serialized MeshUniform size from 208 bytes to 144 bytes, which is over a 30% saving in data to serialize, and VRAM bandwidth and space. ## Benchmarks On an M1 Max, running `many_cubes -- sphere`, main is in yellow, this PR is in red: <img width="1484" alt="Screenshot 2023-08-11 at 02 36 43" src="https://github.com/bevyengine/bevy/assets/302146/7d99c7b3-f2bb-4004-a8d0-4c00f755cb0d"> A reduction in frame time of ~14%. --- ## Changelog - Changed: Redefined `MeshUniform` to improve performance by using 4x3 affine transforms and reconstructing 4x4 matrices in the shader. Helper functions were added to `bevy_pbr::mesh_functions` to unpack the data. `affine_to_square` converts the packed 4x3 in 3x4 matrix data to a 4x4 matrix. `mat2x4_f32_to_mat3x3` converts the 3x3 in mat2x4 + f32 matrix data back into a 3x3. ## Migration Guide Shader code before: ``` var model = mesh[instance_index].model; ``` Shader code after: ``` #import bevy_pbr::mesh_functions affine_to_square var model = affine_to_square(mesh[instance_index].model); ``` |
||
Robert Swain
|
c1a5428f8e
|
Work around naga/wgpu WGSL instance_index -> GLSL gl_InstanceID bug on WebGL2 (#9383)
naga and wgpu should polyfill WGSL instance_index functionality where it is not available in GLSL. Until that is done, we can work around it in bevy using a push constant which is converted to a uniform by naga and wgpu. # Objective - Fixes #9375 ## Solution - Use a push constant to pass in the base instance to the shader on WebGL2 so that base instance + gl_InstanceID is used to correctly represent the instance index. ## TODO - [ ] Benchmark vs per-object dynamic offset MeshUniform as this will now push a uniform value per-draw as well as update the dynamic offset per-batch. - [x] Test on DX12 AMD/NVIDIA to check that this PR does not regress any problems that were observed there. (@Elabajaba @robtfm were testing that last time - help appreciated. <3 ) --- ## Changelog - Added: `bevy_render::instance_index` shader import which includes a workaround for the lack of a WGSL `instance_index` polyfill for WebGL2 in naga and wgpu for the time being. It uses a push_constant which gets converted to a plain uniform by naga and wgpu. ## Migration Guide Shader code before: ``` struct Vertex { @builtin(instance_index) instance_index: u32, ... } @vertex fn vertex(vertex_no_morph: Vertex) -> VertexOutput { ... var model = mesh[vertex_no_morph.instance_index].model; ``` After: ``` #import bevy_render::instance_index struct Vertex { @builtin(instance_index) instance_index: u32, ... } @vertex fn vertex(vertex_no_morph: Vertex) -> VertexOutput { ... var model = mesh[bevy_render::instance_index::get_instance_index(vertex_no_morph.instance_index)].model; ``` |
||
Robert Swain
|
3c6fad269b
|
Fix shader_material_glsl example after #9254 (#9311)
# Objective - Fix shader_material_glsl example ## Solution - Expose the `PER_OBJECT_BUFFER_BATCH_SIZE` shader def through the default `MeshPipeline` specialization. - Make use of it in the `custom_material.vert` shader to access the mesh binding. --- ## Changelog - Added: Exposed the `PER_OBJECT_BUFFER_BATCH_SIZE` shader def through the default `MeshPipeline` specialization to use in custom shaders not using bevy_pbr::mesh_bindings that still want to use the mesh binding in some way. |
||
Robert Swain
|
e6405bb7b4
|
Use GpuArrayBuffer for MeshUniform (#9254)
# Objective - Reduce the number of rebindings to enable batching of draw commands ## Solution - Use the new `GpuArrayBuffer` for `MeshUniform` data to store all `MeshUniform` data in arrays within fewer bindings - Sort opaque/alpha mask prepass, opaque/alpha mask main, and shadow phases also by the batch per-object data binding dynamic offset to improve performance on WebGL2. --- ## Changelog - Changed: Per-object `MeshUniform` data is now managed by `GpuArrayBuffer` as arrays in buffers that need to be indexed into. ## Migration Guide Accessing the `model` member of an individual mesh object's shader `Mesh` struct the old way where each `MeshUniform` was stored at its own dynamic offset: ```rust struct Vertex { @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh.model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` The new way where one needs to index into the array of `Mesh`es for the batch: ```rust struct Vertex { @builtin(instance_index) instance_index: u32, @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh[vertex.instance_index].model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` Note that using the instance_index is the default way to pass the per-object index into the shader, but if you wish to do custom rendering approaches you can pass it in however you like. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com> |
||
Sludge
|
9b92de9e35
|
Register AlphaMode type (#9222)
# Objective - `AlphaMode` derives `Reflect`, but wasn't registered with the app and type registry ## Solution - `app.register_type::<AlphaMode>()` |
||
Carter Anderson
|
7c3131a761
|
Bump Version after Release (#9106)
CI-capable version of #9086 --------- Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: François <mockersf@gmail.com> |
||
ClayenKitten
|
ffc572728f
|
Fix typos throughout the project (#9090)
# Objective
Fix typos throughout the project.
## Solution
[`typos`](https://github.com/crate-ci/typos) project was used for
scanning, but no automatic corrections were applied. I checked
everything by hand before fixing.
Most of the changes are documentation/comments corrections. Also, there
are few trivial changes to code (variable name, pub(crate) function name
and a few error/panic messages).
## Unsolved
`bevy_reflect_derive` has
[typo](
|
||
Carter Anderson
|
8ba9571eed
|
Release 0.11.0 (#9080)
I created this manually as Github didn't want to run CI for the workflow-generated PR. I'm guessing we didn't hit this in previous releases because we used bors. Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com> |
||
Edgar Geier
|
e03dd4d695
|
Run update_previous_view_projections in PreUpdate schedule (#9024)
# Objective - Fixes #8630. ## Solution Since a camera's view and projection matrices are modified during `PostUpdate` in `camera_system` and `propagate_transforms`, it is fine to move `update_previous_view_projections` from `Update` to `PreUpdate`. Doing so adds consistence with `update_mesh_previous_global_transforms` and allows systems in `Update` to use `PreviousViewProjection` correctly without explicit ordering. |
||
Nicola Papale
|
889a5fb130
|
Fix morph target prepass shader (#9013)
# Objective
Since
|
||
Elabajaba
|
94291cf569
|
Fix black spots appearing due to NANs when SSAO is enabled (#8926)
# Objective Fixes https://github.com/bevyengine/bevy/issues/8925 ## Solution ~~Clamp the bad values.~~ Normalize the prepass normals when we get them in the `prepass_normal()` function. ## More Info The issue is that NdotV is sometimes very slightly greater than 1 (maybe FP rounding issues?), which caused `F_Schlick()` to return NANs in `pow(1.0 - NdotV, 5.0)` (call stack looked like`pbr()` -> `directional_light()` -> `Fd_Burley()` -> `F_Schlick()`) |
||
Nicola Papale
|
982e33741d
|
Fix parallax mapping (#9003)
# Objective
Since
|
||
TotalKrill
|
d90c65d25f
|
Fix WebGL mode for Adreno GPUs (#8508)
# Objective - This fixes a crash when loading shaders, when running an Adreno GPU and using WebGL mode. - Fixes #8506 - Fixes #8047 ## Solution - The shader pbr_functions.wgsl, will fail in apply_fog function, trying to access values that are null on Adreno chipsets using WebGL, these devices are commonly found in android handheld devices. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> Co-authored-by: François <mockersf@gmail.com> |
||
Gino Valente
|
aeeb20ec4c
|
bevy_reflect: FromReflect Ergonomics Implementation (#6056)
# Objective **This implementation is based on https://github.com/bevyengine/rfcs/pull/59.** --- Resolves #4597 Full details and motivation can be found in the RFC, but here's a brief summary. `FromReflect` is a very powerful and important trait within the reflection API. It allows Dynamic types (e.g., `DynamicList`, etc.) to be formed into Real ones (e.g., `Vec<i32>`, etc.). This mainly comes into play concerning deserialization, where the reflection deserializers both return a `Box<dyn Reflect>` that almost always contain one of these Dynamic representations of a Real type. To convert this to our Real type, we need to use `FromReflect`. It also sneaks up in other ways. For example, it's a required bound for `T` in `Vec<T>` so that `Vec<T>` as a whole can be made `FromReflect`. It's also required by all fields of an enum as it's used as part of the `Reflect::apply` implementation. So in other words, much like `GetTypeRegistration` and `Typed`, it is very much a core reflection trait. The problem is that it is not currently treated like a core trait and is not automatically derived alongside `Reflect`. This makes using it a bit cumbersome and easy to forget. ## Solution Automatically derive `FromReflect` when deriving `Reflect`. Users can then choose to opt-out if needed using the `#[reflect(from_reflect = false)]` attribute. ```rust #[derive(Reflect)] struct Foo; #[derive(Reflect)] #[reflect(from_reflect = false)] struct Bar; fn test<T: FromReflect>(value: T) {} test(Foo); // <-- OK test(Bar); // <-- Panic! Bar does not implement trait `FromReflect` ``` #### `ReflectFromReflect` This PR also automatically adds the `ReflectFromReflect` (introduced in #6245) registration to the derived `GetTypeRegistration` impl— if the type hasn't opted out of `FromReflect` of course. <details> <summary><h4>Improved Deserialization</h4></summary> > **Warning** > This section includes changes that have since been descoped from this PR. They will likely be implemented again in a followup PR. I am mainly leaving these details in for archival purposes, as well as for reference when implementing this logic again. And since we can do all the above, we might as well improve deserialization. We can now choose to deserialize into a Dynamic type or automatically convert it using `FromReflect` under the hood. `[Un]TypedReflectDeserializer::new` will now perform the conversion and return the `Box`'d Real type. `[Un]TypedReflectDeserializer::new_dynamic` will work like what we have now and simply return the `Box`'d Dynamic type. ```rust // Returns the Real type let reflect_deserializer = UntypedReflectDeserializer::new(®istry); let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?; let output: SomeStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?; // Returns the Dynamic type let reflect_deserializer = UntypedReflectDeserializer::new_dynamic(®istry); let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?; let output: DynamicStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?; ``` </details> --- ## Changelog * `FromReflect` is now automatically derived within the `Reflect` derive macro * This includes auto-registering `ReflectFromReflect` in the derived `GetTypeRegistration` impl * ~~Renamed `TypedReflectDeserializer::new` and `UntypedReflectDeserializer::new` to `TypedReflectDeserializer::new_dynamic` and `UntypedReflectDeserializer::new_dynamic`, respectively~~ **Descoped** * ~~Changed `TypedReflectDeserializer::new` and `UntypedReflectDeserializer::new` to automatically convert the deserialized output using `FromReflect`~~ **Descoped** ## Migration Guide * `FromReflect` is now automatically derived within the `Reflect` derive macro. Items with both derives will need to remove the `FromReflect` one. ```rust // OLD #[derive(Reflect, FromReflect)] struct Foo; // NEW #[derive(Reflect)] struct Foo; ``` If using a manual implementation of `FromReflect` and the `Reflect` derive, users will need to opt-out of the automatic implementation. ```rust // OLD #[derive(Reflect)] struct Foo; impl FromReflect for Foo {/* ... */} // NEW #[derive(Reflect)] #[reflect(from_reflect = false)] struct Foo; impl FromReflect for Foo {/* ... */} ``` <details> <summary><h4>Removed Migrations</h4></summary> > **Warning** > This section includes changes that have since been descoped from this PR. They will likely be implemented again in a followup PR. I am mainly leaving these details in for archival purposes, as well as for reference when implementing this logic again. * The reflect deserializers now perform a `FromReflect` conversion internally. The expected output of `TypedReflectDeserializer::new` and `UntypedReflectDeserializer::new` is no longer a Dynamic (e.g., `DynamicList`), but its Real counterpart (e.g., `Vec<i32>`). ```rust let reflect_deserializer = UntypedReflectDeserializer::new_dynamic(®istry); let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?; // OLD let output: DynamicStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?; // NEW let output: SomeStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?; ``` Alternatively, if this behavior isn't desired, use the `TypedReflectDeserializer::new_dynamic` and `UntypedReflectDeserializer::new_dynamic` methods instead: ```rust // OLD let reflect_deserializer = UntypedReflectDeserializer::new(®istry); // NEW let reflect_deserializer = UntypedReflectDeserializer::new_dynamic(®istry); ``` </details> --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
robtfm
|
15445c990e
|
fix prepass normal_mapping (#8978)
# Objective #5703 caused the normal prepass to fail as the prepass uses `pbr_functions::apply_normal_mapping`, which uses `mesh_view_bindings::view` to determine mip bias, which conflicts with `prepass_bindings::view`. ## Solution pass the mip bias to the `apply_normal_mapping` function explicitly. |
||
robtfm
|
10f5c92068
|
improve shader import model (#5703)
# Objective operate on naga IR directly to improve handling of shader modules. - give codespan reporting into imported modules - allow glsl to be used from wgsl and vice-versa the ultimate objective is to make it possible to - provide user hooks for core shader functions (to modify light behaviour within the standard pbr pipeline, for example) - make automatic binding slot allocation possible but ... since this is already big, adds some value and (i think) is at feature parity with the existing code, i wanted to push this now. ## Solution i made a crate called naga_oil (https://github.com/robtfm/naga_oil - unpublished for now, could be part of bevy) which manages modules by - building each module independantly to naga IR - creating "header" files for each supported language, which are used to build dependent modules/shaders - make final shaders by combining the shader IR with the IR for imported modules then integrated this into bevy, replacing some of the existing shader processing stuff. also reworked examples to reflect this. ## Migration Guide shaders that don't use `#import` directives should work without changes. the most notable user-facing difference is that imported functions/variables/etc need to be qualified at point of use, and there's no "leakage" of visible stuff into your shader scope from the imports of your imports, so if you used things imported by your imports, you now need to import them directly and qualify them. the current strategy of including/'spreading' `mesh_vertex_output` directly into a struct doesn't work any more, so these need to be modified as per the examples (e.g. color_material.wgsl, or many others). mesh data is assumed to be in bindgroup 2 by default, if mesh data is bound into bindgroup 1 instead then the shader def `MESH_BINDGROUP_1` needs to be added to the pipeline shader_defs. |
||
JMS55
|
724e69bff4
|
Bias texture mipmaps (#7614)
# Objective - Closes #7323 - Reduce texture blurriness for TAA ## Solution - Add a `MipBias` component and view uniform. - Switch material `textureSample()` calls to `textureSampleBias()`. - Add a `-1.0` bias to TAA. --- ## Changelog - Added `MipBias` camera component, mostly for internal use. --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Nicola Papale
|
c6170d48f9
|
Add morph targets (#8158)
# Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Daniel Chia
|
0a881ab37f
|
Cascaded shadow maps: Fix prepass ortho depth clamping (#8877)
# Objective - Fixes #8645 ## Solution Cascaded shadow maps use a technique commonly called shadow pancaking to enhance shadow map resolution by restricting the orthographic projection used in creating the shadow maps to the frustum slice for the cascade. The implication of this restriction is that shadow casters can be closer than the near plane of the projection volume. Prior to this PR, we address clamp the depth of the prepass vertex output to ensure that these shadow casters do not get clipped, resulting in shadow loss. However, a flaw / bug of the prior approach is that the depth that gets written to the shadow map isn't quite correct - the depth was previously derived by interpolated the clamped clip position, resulting in depths that are further than they should be. This creates artifacts that are particularly noticeable when a very 'long' object intersects the near plane close to perpendicularly. The fix in this PR is to propagate the unclamped depth to the prepass fragment shader and use that depth value directly. A complementary solution would be to use [DEPTH_CLIP_CONTROL](https://docs.rs/wgpu/latest/wgpu/struct.Features.html#associatedconstant.DEPTH_CLIP_CONTROL) to request `unclipped_depth`. However due to the relatively low support of the feature on Vulkan (I believe it's ~38%), I went with this solution for now to get the broadest fix out first. --- ## Changelog - Fixed: Shadows from directional lights were sometimes incorrectly omitted when the shadow caster was partially out of view. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Edgar Geier
|
f18f28874a
|
Allow tuples and single plugins in add_plugins , deprecate add_plugin (#8097)
# Objective - Better consistency with `add_systems`. - Deprecating `add_plugin` in favor of a more powerful `add_plugins`. - Allow passing `Plugin` to `add_plugins`. - Allow passing tuples to `add_plugins`. ## Solution - `App::add_plugins` now takes an `impl Plugins` parameter. - `App::add_plugin` is deprecated. - `Plugins` is a new sealed trait that is only implemented for `Plugin`, `PluginGroup` and tuples over `Plugins`. - All examples, benchmarks and tests are changed to use `add_plugins`, using tuples where appropriate. --- ## Changelog ### Changed - `App::add_plugins` now accepts all types that implement `Plugins`, which is implemented for: - Types that implement `Plugin`. - Types that implement `PluginGroup`. - Tuples (up to 16 elements) over types that implement `Plugins`. - Deprecated `App::add_plugin` in favor of `App::add_plugins`. ## Migration Guide - Replace `app.add_plugin(plugin)` calls with `app.add_plugins(plugin)`. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
IceSentry
|
72b4aacf86
|
fix normal prepass (#8890)
# Objective - Fix broken normals when the NormalPrepass is enabled ## Solution - Don't use the normal prepass for the world_normal - Only loadthe normal prepass - when msaa is disabled - for opaque or alpha mask meshes and only for use it for N not world_normal |
||
Raffaele Ragni
|
7fc6db32ce
|
Add FromReflect where Reflect is used (#8776)
# Objective Discovered that PointLight did not implement FromReflect. Adding FromReflect where Reflect is used. I overreached and applied this rule everywhere there was a Reflect without a FromReflect, except from where the compiler wouldn't allow me. Based from question: https://github.com/bevyengine/bevy/discussions/8774 ## Solution - Adding FromReflect where Reflect was already derived ## Notes First PR I do in this ecosystem, so not sure if this is the usual approach, that is, to touch many files at once. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
JMS55
|
af9c945f40
|
Screen Space Ambient Occlusion (SSAO) MVP (#7402)
![image](https://github.com/bevyengine/bevy/assets/47158642/dbb62645-f639-4f2b-b84b-26fd915c186d)
# Objective
- Add Screen space ambient occlusion (SSAO). SSAO approximates
small-scale, local occlusion of _indirect_ diffuse light between
objects. SSAO does not apply to direct lighting, such as point or
directional lights.
- This darkens creases, e.g. on staircases, and gives nice contact
shadows where objects meet, giving entities a more "grounded" feel.
- Closes https://github.com/bevyengine/bevy/issues/3632.
## Solution
- Implement the GTAO algorithm.
-
https://www.activision.com/cdn/research/Practical_Real_Time_Strategies_for_Accurate_Indirect_Occlusion_NEW%20VERSION_COLOR.pdf
-
https://blog.selfshadow.com/publications/s2016-shading-course/activision/s2016_pbs_activision_occlusion.pdf
- Source code heavily based on [Intel's
XeGTAO](
|
||
lelo
|
278daab6ae
|
Rename Plane struct to HalfSpace (#8744)
# Objective - Rename the `render::primitives::Plane` struct as to not confuse it with `bevy_render::mesh::shape::Plane` - Fixes https://github.com/bevyengine/bevy/issues/8730 ## Solution - Refactor the `render::primitives::Plane` struct to `render::primitives::HalfSpace` - Modify documentation to reflect this change ## Changelog - Renamed `Plane` to `HalfSpace` to more accurately represent it's use - Renamed `planes` member in `Frustum` to `half_spaces` to reflect changes ## Migration Guide - `Plane` has been renamed to `HalfSpace` - `planes` member in `Frustum` has been renamed to `half_spaces` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com> |
||
Chris Sixsmith
|
a78c4d78d5
|
Make setup of Opaque3dPrepass and AlphaMask3dPrepass phase items consistent with others (#8408)
# Objective When browsing the bevy source code to try and learn about `bevy_core_pipeline`, I noticed that the `DrawFunctions` resources, `sort_phase_system`s and texture preparation for the `Opaque3d` and `AlphaMask3d` phase items are all set up in `bevy_core_pipeline`, while the `Opaque3dPrepass` and `AlphaMask3dPrepass` phase items are only *declared* in `bevy_core_pipeline`, and actually registered properly with the renderer in `bevy_pbr`. This means that, if I am trying to make crate that replaces `bevy_pbr`, I need to make sure I manually fix this unfinished setup the same way that `bevy_pbr` does. Worse, it means that if I try to use the `PrepassNode` `bevy_core_pipeline` adds *without* fixing this, the engine will simply crash because the `DrawFunctions<T>` resources cannot be accessed. The only advantage I can think of for bevy doing it this way is an ambiguous performance save due to the prepass render phases not being present unless you are using prepass materials with PBR. ## Solution I have moved the registration of `DrawFunctions<T>`, `sort_phase_system::<T>`, camera `RenderPhase` extraction, and texture preparation for prepass's phase items into `bevy_core_pipeline` alongside the equivalent code that sets up the `Opaque3d`, `AlphaMask3d` and `Transparent3d` phase items. Am open to tweaking this to improve the performance impact of prepass things being around if the app doesn't use them if needed. I've tested that the `shader_prepass` example still works with this change. |
||
Nicola Papale
|
83de94f9f9
|
Register a few missed reflect components (#8807)
# Objective - Some reflect components weren't properly registered. ## Solution - We register them - I also sorted the register lines in `Plugin::build` in `bevy_ui` ### Note How I did I find them: - I picked up the list of `Component`s from the `Component` trait page in rustdoc. - Then I tried to register all of them. Removing the registration when it doesn't implement `Reflect` to pass compilation. - Then I added `app.register_type_data::<T, Foo>()`, for all Reflect components. It panics if `T` is not registered. - I repeated the last line N times until bevy stopped panicking at startup --- ## Changelog - Register the following components: `PrimaryWindow` `Fxaa` `FogSettings` `NotShadowCaster` `NotShadowReceiver` `CalculatedClip` `RelativeCursorPosition` |