u-boot/arch/arm/mach-imx/mx6/clock.c

1501 lines
38 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
*/
#include <common.h>
#include <command.h>
#include <div64.h>
#include <log.h>
#include <asm/io.h>
#include <linux/errno.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/crm_regs.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
enum pll_clocks {
PLL_SYS, /* System PLL */
PLL_BUS, /* System Bus PLL*/
PLL_USBOTG, /* OTG USB PLL */
PLL_ENET, /* ENET PLL */
PLL_AUDIO, /* AUDIO PLL */
PLL_VIDEO, /* VIDEO PLL */
};
struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
#ifdef CONFIG_MXC_OCOTP
void enable_ocotp_clk(unsigned char enable)
{
u32 reg;
reg = __raw_readl(&imx_ccm->CCGR2);
if (enable)
reg |= MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
else
reg &= ~MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
__raw_writel(reg, &imx_ccm->CCGR2);
}
#endif
#ifdef CONFIG_NAND_MXS
void setup_gpmi_io_clk(u32 cfg)
{
/* Disable clocks per ERR007177 from MX6 errata */
clrbits_le32(&imx_ccm->CCGR4,
MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
#if defined(CONFIG_MX6SX)
clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
clrsetbits_le32(&imx_ccm->cs2cdr,
MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK,
cfg);
setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
#else
clrbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
clrsetbits_le32(&imx_ccm->cs2cdr,
MXC_CCM_CS2CDR_ENFC_CLK_PODF_MASK |
MXC_CCM_CS2CDR_ENFC_CLK_PRED_MASK |
MXC_CCM_CS2CDR_ENFC_CLK_SEL_MASK,
cfg);
setbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
#endif
setbits_le32(&imx_ccm->CCGR4,
MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
}
#endif
void enable_usboh3_clk(unsigned char enable)
{
u32 reg;
reg = __raw_readl(&imx_ccm->CCGR6);
if (enable)
reg |= MXC_CCM_CCGR6_USBOH3_MASK;
else
reg &= ~(MXC_CCM_CCGR6_USBOH3_MASK);
__raw_writel(reg, &imx_ccm->CCGR6);
}
#if defined(CONFIG_FEC_MXC) && !defined(CONFIG_MX6SX)
void enable_enet_clk(unsigned char enable)
{
u32 mask, *addr;
if (is_mx6ull()) {
mask = MXC_CCM_CCGR0_ENET_CLK_ENABLE_MASK;
addr = &imx_ccm->CCGR0;
} else if (is_mx6ul()) {
mask = MXC_CCM_CCGR3_ENET_MASK;
addr = &imx_ccm->CCGR3;
} else {
mask = MXC_CCM_CCGR1_ENET_MASK;
addr = &imx_ccm->CCGR1;
}
if (enable)
setbits_le32(addr, mask);
else
clrbits_le32(addr, mask);
}
#endif
#ifdef CONFIG_MXC_UART
void enable_uart_clk(unsigned char enable)
{
u32 mask;
if (is_mx6ul() || is_mx6ull())
mask = MXC_CCM_CCGR5_UART_MASK;
else
mask = MXC_CCM_CCGR5_UART_MASK | MXC_CCM_CCGR5_UART_SERIAL_MASK;
if (enable)
setbits_le32(&imx_ccm->CCGR5, mask);
else
clrbits_le32(&imx_ccm->CCGR5, mask);
}
#endif
#ifdef CONFIG_MMC
int enable_usdhc_clk(unsigned char enable, unsigned bus_num)
{
u32 mask;
if (bus_num > 3)
return -EINVAL;
mask = MXC_CCM_CCGR_CG_MASK << (bus_num * 2 + 2);
if (enable)
setbits_le32(&imx_ccm->CCGR6, mask);
else
clrbits_le32(&imx_ccm->CCGR6, mask);
return 0;
}
#endif
#ifdef CONFIG_SYS_I2C_MXC
/* i2c_num can be from 0 - 3 */
int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
{
u32 reg;
u32 mask;
u32 *addr;
if (i2c_num > 3)
return -EINVAL;
if (i2c_num < 3) {
mask = MXC_CCM_CCGR_CG_MASK
<< (MXC_CCM_CCGR2_I2C1_SERIAL_OFFSET
+ (i2c_num << 1));
reg = __raw_readl(&imx_ccm->CCGR2);
if (enable)
reg |= mask;
else
reg &= ~mask;
__raw_writel(reg, &imx_ccm->CCGR2);
} else {
if (is_mx6sll())
return -EINVAL;
if (is_mx6sx() || is_mx6ul() || is_mx6ull()) {
mask = MXC_CCM_CCGR6_I2C4_MASK;
addr = &imx_ccm->CCGR6;
} else {
mask = MXC_CCM_CCGR1_I2C4_SERIAL_MASK;
addr = &imx_ccm->CCGR1;
}
reg = __raw_readl(addr);
if (enable)
reg |= mask;
else
reg &= ~mask;
__raw_writel(reg, addr);
}
return 0;
}
#endif
/* spi_num can be from 0 - SPI_MAX_NUM */
int enable_spi_clk(unsigned char enable, unsigned spi_num)
{
u32 reg;
u32 mask;
if (spi_num > SPI_MAX_NUM)
return -EINVAL;
mask = MXC_CCM_CCGR_CG_MASK << (spi_num << 1);
reg = __raw_readl(&imx_ccm->CCGR1);
if (enable)
reg |= mask;
else
reg &= ~mask;
__raw_writel(reg, &imx_ccm->CCGR1);
return 0;
}
static u32 decode_pll(enum pll_clocks pll, u32 infreq)
{
u32 div, test_div, pll_num, pll_denom;
switch (pll) {
case PLL_SYS:
div = __raw_readl(&imx_ccm->analog_pll_sys);
div &= BM_ANADIG_PLL_SYS_DIV_SELECT;
return (infreq * div) >> 1;
case PLL_BUS:
div = __raw_readl(&imx_ccm->analog_pll_528);
div &= BM_ANADIG_PLL_528_DIV_SELECT;
return infreq * (20 + (div << 1));
case PLL_USBOTG:
div = __raw_readl(&imx_ccm->analog_usb1_pll_480_ctrl);
div &= BM_ANADIG_USB1_PLL_480_CTRL_DIV_SELECT;
return infreq * (20 + (div << 1));
case PLL_ENET:
div = __raw_readl(&imx_ccm->analog_pll_enet);
div &= BM_ANADIG_PLL_ENET_DIV_SELECT;
return 25000000 * (div + (div >> 1) + 1);
case PLL_AUDIO:
div = __raw_readl(&imx_ccm->analog_pll_audio);
if (!(div & BM_ANADIG_PLL_AUDIO_ENABLE))
return 0;
/* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */
if (div & BM_ANADIG_PLL_AUDIO_BYPASS)
return MXC_HCLK;
pll_num = __raw_readl(&imx_ccm->analog_pll_audio_num);
pll_denom = __raw_readl(&imx_ccm->analog_pll_audio_denom);
test_div = (div & BM_ANADIG_PLL_AUDIO_TEST_DIV_SELECT) >>
BP_ANADIG_PLL_AUDIO_TEST_DIV_SELECT;
div &= BM_ANADIG_PLL_AUDIO_DIV_SELECT;
if (test_div == 3) {
debug("Error test_div\n");
return 0;
}
test_div = 1 << (2 - test_div);
return infreq * (div + pll_num / pll_denom) / test_div;
case PLL_VIDEO:
div = __raw_readl(&imx_ccm->analog_pll_video);
if (!(div & BM_ANADIG_PLL_VIDEO_ENABLE))
return 0;
/* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */
if (div & BM_ANADIG_PLL_VIDEO_BYPASS)
return MXC_HCLK;
pll_num = __raw_readl(&imx_ccm->analog_pll_video_num);
pll_denom = __raw_readl(&imx_ccm->analog_pll_video_denom);
test_div = (div & BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT) >>
BP_ANADIG_PLL_VIDEO_POST_DIV_SELECT;
div &= BM_ANADIG_PLL_VIDEO_DIV_SELECT;
if (test_div == 3) {
debug("Error test_div\n");
return 0;
}
test_div = 1 << (2 - test_div);
return infreq * (div + pll_num / pll_denom) / test_div;
default:
return 0;
}
/* NOTREACHED */
}
static u32 mxc_get_pll_pfd(enum pll_clocks pll, int pfd_num)
{
u32 div;
u64 freq;
switch (pll) {
case PLL_BUS:
if (!is_mx6ul() && !is_mx6ull()) {
if (pfd_num == 3) {
/* No PFD3 on PLL2 */
return 0;
}
}
div = __raw_readl(&imx_ccm->analog_pfd_528);
freq = (u64)decode_pll(PLL_BUS, MXC_HCLK);
break;
case PLL_USBOTG:
div = __raw_readl(&imx_ccm->analog_pfd_480);
freq = (u64)decode_pll(PLL_USBOTG, MXC_HCLK);
break;
default:
/* No PFD on other PLL */
return 0;
}
return lldiv(freq * 18, (div & ANATOP_PFD_FRAC_MASK(pfd_num)) >>
ANATOP_PFD_FRAC_SHIFT(pfd_num));
}
static u32 get_mcu_main_clk(void)
{
u32 reg, freq;
reg = __raw_readl(&imx_ccm->cacrr);
reg &= MXC_CCM_CACRR_ARM_PODF_MASK;
reg >>= MXC_CCM_CACRR_ARM_PODF_OFFSET;
freq = decode_pll(PLL_SYS, MXC_HCLK);
return freq / (reg + 1);
}
u32 get_periph_clk(void)
{
u32 reg, div = 0, freq = 0;
reg = __raw_readl(&imx_ccm->cbcdr);
if (reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
div = (reg & MXC_CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >>
MXC_CCM_CBCDR_PERIPH_CLK2_PODF_OFFSET;
reg = __raw_readl(&imx_ccm->cbcmr);
reg &= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_MASK;
reg >>= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_OFFSET;
switch (reg) {
case 0:
freq = decode_pll(PLL_USBOTG, MXC_HCLK);
break;
case 1:
case 2:
freq = MXC_HCLK;
break;
default:
break;
}
} else {
reg = __raw_readl(&imx_ccm->cbcmr);
reg &= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK;
reg >>= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_OFFSET;
switch (reg) {
case 0:
freq = decode_pll(PLL_BUS, MXC_HCLK);
break;
case 1:
freq = mxc_get_pll_pfd(PLL_BUS, 2);
break;
case 2:
freq = mxc_get_pll_pfd(PLL_BUS, 0);
break;
case 3:
/* static / 2 divider */
freq = mxc_get_pll_pfd(PLL_BUS, 2) / 2;
break;
default:
break;
}
}
return freq / (div + 1);
}
static u32 get_ipg_clk(void)
{
u32 reg, ipg_podf;
reg = __raw_readl(&imx_ccm->cbcdr);
reg &= MXC_CCM_CBCDR_IPG_PODF_MASK;
ipg_podf = reg >> MXC_CCM_CBCDR_IPG_PODF_OFFSET;
return get_ahb_clk() / (ipg_podf + 1);
}
static u32 get_ipg_per_clk(void)
{
u32 reg, perclk_podf;
reg = __raw_readl(&imx_ccm->cscmr1);
if (is_mx6sll() || is_mx6sl() || is_mx6sx() ||
is_mx6dqp() || is_mx6ul() || is_mx6ull()) {
if (reg & MXC_CCM_CSCMR1_PER_CLK_SEL_MASK)
return MXC_HCLK; /* OSC 24Mhz */
}
perclk_podf = reg & MXC_CCM_CSCMR1_PERCLK_PODF_MASK;
return get_ipg_clk() / (perclk_podf + 1);
}
static u32 get_uart_clk(void)
{
u32 reg, uart_podf;
u32 freq = decode_pll(PLL_USBOTG, MXC_HCLK) / 6; /* static divider */
reg = __raw_readl(&imx_ccm->cscdr1);
if (is_mx6sl() || is_mx6sx() || is_mx6dqp() || is_mx6ul() ||
is_mx6sll() || is_mx6ull()) {
if (reg & MXC_CCM_CSCDR1_UART_CLK_SEL)
freq = MXC_HCLK;
}
reg &= MXC_CCM_CSCDR1_UART_CLK_PODF_MASK;
uart_podf = reg >> MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET;
return freq / (uart_podf + 1);
}
static u32 get_cspi_clk(void)
{
u32 reg, cspi_podf;
reg = __raw_readl(&imx_ccm->cscdr2);
cspi_podf = (reg & MXC_CCM_CSCDR2_ECSPI_CLK_PODF_MASK) >>
MXC_CCM_CSCDR2_ECSPI_CLK_PODF_OFFSET;
if (is_mx6dqp() || is_mx6sl() || is_mx6sx() || is_mx6ul() ||
is_mx6sll() || is_mx6ull()) {
if (reg & MXC_CCM_CSCDR2_ECSPI_CLK_SEL_MASK)
return MXC_HCLK / (cspi_podf + 1);
}
return decode_pll(PLL_USBOTG, MXC_HCLK) / (8 * (cspi_podf + 1));
}
static u32 get_axi_clk(void)
{
u32 root_freq, axi_podf;
u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
axi_podf = cbcdr & MXC_CCM_CBCDR_AXI_PODF_MASK;
axi_podf >>= MXC_CCM_CBCDR_AXI_PODF_OFFSET;
if (cbcdr & MXC_CCM_CBCDR_AXI_SEL) {
if (cbcdr & MXC_CCM_CBCDR_AXI_ALT_SEL)
root_freq = mxc_get_pll_pfd(PLL_USBOTG, 1);
else
root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
} else
root_freq = get_periph_clk();
return root_freq / (axi_podf + 1);
}
static u32 get_emi_slow_clk(void)
{
u32 emi_clk_sel, emi_slow_podf, cscmr1, root_freq = 0;
cscmr1 = __raw_readl(&imx_ccm->cscmr1);
emi_clk_sel = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_MASK;
emi_clk_sel >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_OFFSET;
emi_slow_podf = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_MASK;
emi_slow_podf >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_OFFSET;
switch (emi_clk_sel) {
case 0:
root_freq = get_axi_clk();
break;
case 1:
root_freq = decode_pll(PLL_USBOTG, MXC_HCLK);
break;
case 2:
root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
break;
case 3:
root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
break;
}
return root_freq / (emi_slow_podf + 1);
}
static u32 get_mmdc_ch0_clk(void)
{
u32 cbcmr = __raw_readl(&imx_ccm->cbcmr);
u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
u32 freq, podf, per2_clk2_podf, pmu_misc2_audio_div;
if (is_mx6sx() || is_mx6ul() || is_mx6ull() || is_mx6sl() ||
is_mx6sll()) {
podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH1_PODF_MASK) >>
MXC_CCM_CBCDR_MMDC_CH1_PODF_OFFSET;
if (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK_SEL) {
per2_clk2_podf = (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_MASK) >>
MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_OFFSET;
if (is_mx6sl()) {
if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
freq = MXC_HCLK;
else
freq = decode_pll(PLL_USBOTG, MXC_HCLK);
} else {
if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
freq = decode_pll(PLL_BUS, MXC_HCLK);
else
freq = decode_pll(PLL_USBOTG, MXC_HCLK);
}
} else {
per2_clk2_podf = 0;
switch ((cbcmr &
MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_MASK) >>
MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_OFFSET) {
case 0:
freq = decode_pll(PLL_BUS, MXC_HCLK);
break;
case 1:
freq = mxc_get_pll_pfd(PLL_BUS, 2);
break;
case 2:
freq = mxc_get_pll_pfd(PLL_BUS, 0);
break;
case 3:
if (is_mx6sl()) {
freq = mxc_get_pll_pfd(PLL_BUS, 2) >> 1;
break;
}
pmu_misc2_audio_div = PMU_MISC2_AUDIO_DIV(__raw_readl(&imx_ccm->pmu_misc2));
switch (pmu_misc2_audio_div) {
case 0:
case 2:
pmu_misc2_audio_div = 1;
break;
case 1:
pmu_misc2_audio_div = 2;
break;
case 3:
pmu_misc2_audio_div = 4;
break;
}
freq = decode_pll(PLL_AUDIO, MXC_HCLK) /
pmu_misc2_audio_div;
break;
}
}
return freq / (podf + 1) / (per2_clk2_podf + 1);
} else {
podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH0_PODF_MASK) >>
MXC_CCM_CBCDR_MMDC_CH0_PODF_OFFSET;
return get_periph_clk() / (podf + 1);
}
}
#if defined(CONFIG_VIDEO_MXS)
static int enable_pll_video(u32 pll_div, u32 pll_num, u32 pll_denom,
u32 post_div)
{
u32 reg = 0;
ulong start;
debug("pll5 div = %d, num = %d, denom = %d\n",
pll_div, pll_num, pll_denom);
/* Power up PLL5 video */
writel(BM_ANADIG_PLL_VIDEO_POWERDOWN |
BM_ANADIG_PLL_VIDEO_BYPASS |
BM_ANADIG_PLL_VIDEO_DIV_SELECT |
BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT,
&imx_ccm->analog_pll_video_clr);
/* Set div, num and denom */
switch (post_div) {
case 1:
writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x2),
&imx_ccm->analog_pll_video_set);
break;
case 2:
writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x1),
&imx_ccm->analog_pll_video_set);
break;
case 4:
writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x0),
&imx_ccm->analog_pll_video_set);
break;
default:
puts("Wrong test_div!\n");
return -EINVAL;
}
writel(BF_ANADIG_PLL_VIDEO_NUM_A(pll_num),
&imx_ccm->analog_pll_video_num);
writel(BF_ANADIG_PLL_VIDEO_DENOM_B(pll_denom),
&imx_ccm->analog_pll_video_denom);
/* Wait PLL5 lock */
start = get_timer(0); /* Get current timestamp */
do {
reg = readl(&imx_ccm->analog_pll_video);
if (reg & BM_ANADIG_PLL_VIDEO_LOCK) {
/* Enable PLL out */
writel(BM_ANADIG_PLL_VIDEO_ENABLE,
&imx_ccm->analog_pll_video_set);
return 0;
}
} while (get_timer(0) < (start + 10)); /* Wait 10ms */
puts("Lock PLL5 timeout\n");
return -ETIME;
}
/*
* 24M--> PLL_VIDEO -> LCDIFx_PRED -> LCDIFx_PODF -> LCD
*
* 'freq' using KHz as unit, see driver/video/mxsfb.c.
*/
void mxs_set_lcdclk(u32 base_addr, u32 freq)
{
u32 reg = 0;
u32 hck = MXC_HCLK / 1000;
/* DIV_SELECT ranges from 27 to 54 */
u32 min = hck * 27;
u32 max = hck * 54;
u32 temp, best = 0;
u32 i, j, max_pred = 8, max_postd = 8, pred = 1, postd = 1;
u32 pll_div, pll_num, pll_denom, post_div = 1;
debug("mxs_set_lcdclk, freq = %dKHz\n", freq);
if (!is_mx6sx() && !is_mx6ul() && !is_mx6ull() && !is_mx6sl() &&
!is_mx6sll()) {
debug("This chip not support lcd!\n");
return;
}
if (!is_mx6sl()) {
if (base_addr == LCDIF1_BASE_ADDR) {
reg = readl(&imx_ccm->cscdr2);
/* Can't change clocks when clock not from pre-mux */
if ((reg & MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK) != 0)
return;
}
}
if (is_mx6sx()) {
reg = readl(&imx_ccm->cscdr2);
/* Can't change clocks when clock not from pre-mux */
if ((reg & MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK) != 0)
return;
}
temp = freq * max_pred * max_postd;
if (temp < min) {
/*
* Register: PLL_VIDEO
* Bit Field: POST_DIV_SELECT
* 00 Divide by 4.
* 01 Divide by 2.
* 10 Divide by 1.
* 11 Reserved
* No need to check post_div(1)
*/
for (post_div = 2; post_div <= 4; post_div <<= 1) {
if ((temp * post_div) > min) {
freq *= post_div;
break;
}
}
if (post_div > 4) {
printf("Fail to set rate to %dkhz", freq);
return;
}
}
/* Choose the best pred and postd to match freq for lcd */
for (i = 1; i <= max_pred; i++) {
for (j = 1; j <= max_postd; j++) {
temp = freq * i * j;
if (temp > max || temp < min)
continue;
if (best == 0 || temp < best) {
best = temp;
pred = i;
postd = j;
}
}
}
if (best == 0) {
printf("Fail to set rate to %dKHz", freq);
return;
}
debug("best %d, pred = %d, postd = %d\n", best, pred, postd);
pll_div = best / hck;
pll_denom = 1000000;
pll_num = (best - hck * pll_div) * pll_denom / hck;
/*
* pll_num
* (24MHz * (pll_div + --------- ))
* pll_denom
*freq KHz = --------------------------------
* post_div * pred * postd * 1000
*/
if (base_addr == LCDIF1_BASE_ADDR) {
if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
return;
enable_lcdif_clock(base_addr, 0);
if (!is_mx6sl()) {
/* Select pre-lcd clock to PLL5 and set pre divider */
clrsetbits_le32(&imx_ccm->cscdr2,
MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_MASK |
MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_MASK,
(0x2 << MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_OFFSET) |
((pred - 1) <<
MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_OFFSET));
/* Set the post divider */
clrsetbits_le32(&imx_ccm->cbcmr,
MXC_CCM_CBCMR_LCDIF1_PODF_MASK,
((postd - 1) <<
MXC_CCM_CBCMR_LCDIF1_PODF_OFFSET));
} else {
/* Select pre-lcd clock to PLL5 and set pre divider */
clrsetbits_le32(&imx_ccm->cscdr2,
MXC_CCM_CSCDR2_LCDIF_PIX_CLK_SEL_MASK |
MXC_CCM_CSCDR2_LCDIF_PIX_PRE_DIV_MASK,
(0x2 << MXC_CCM_CSCDR2_LCDIF_PIX_CLK_SEL_OFFSET) |
((pred - 1) <<
MXC_CCM_CSCDR2_LCDIF_PIX_PRE_DIV_OFFSET));
/* Set the post divider */
clrsetbits_le32(&imx_ccm->cscmr1,
MXC_CCM_CSCMR1_LCDIF_PIX_PODF_MASK,
(((postd - 1)^0x6) <<
MXC_CCM_CSCMR1_LCDIF_PIX_PODF_OFFSET));
}
enable_lcdif_clock(base_addr, 1);
} else if (is_mx6sx()) {
/* Setting LCDIF2 for i.MX6SX */
if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
return;
enable_lcdif_clock(base_addr, 0);
/* Select pre-lcd clock to PLL5 and set pre divider */
clrsetbits_le32(&imx_ccm->cscdr2,
MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_MASK |
MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_MASK,
(0x2 << MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_OFFSET) |
((pred - 1) <<
MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_OFFSET));
/* Set the post divider */
clrsetbits_le32(&imx_ccm->cscmr1,
MXC_CCM_CSCMR1_LCDIF2_PODF_MASK,
((postd - 1) <<
MXC_CCM_CSCMR1_LCDIF2_PODF_OFFSET));
enable_lcdif_clock(base_addr, 1);
}
}
int enable_lcdif_clock(u32 base_addr, bool enable)
{
u32 reg = 0;
u32 lcdif_clk_sel_mask, lcdif_ccgr3_mask;
if (is_mx6sx()) {
if ((base_addr != LCDIF1_BASE_ADDR) &&
(base_addr != LCDIF2_BASE_ADDR)) {
puts("Wrong LCD interface!\n");
return -EINVAL;
}
/* Set to pre-mux clock at default */
lcdif_clk_sel_mask = (base_addr == LCDIF2_BASE_ADDR) ?
MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK :
MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
lcdif_ccgr3_mask = (base_addr == LCDIF2_BASE_ADDR) ?
(MXC_CCM_CCGR3_LCDIF2_PIX_MASK |
MXC_CCM_CCGR3_DISP_AXI_MASK) :
(MXC_CCM_CCGR3_LCDIF1_PIX_MASK |
MXC_CCM_CCGR3_DISP_AXI_MASK);
} else if (is_mx6ul() || is_mx6ull() || is_mx6sll()) {
if (base_addr != LCDIF1_BASE_ADDR) {
puts("Wrong LCD interface!\n");
return -EINVAL;
}
/* Set to pre-mux clock at default */
lcdif_clk_sel_mask = MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
lcdif_ccgr3_mask = MXC_CCM_CCGR3_LCDIF1_PIX_MASK;
} else if (is_mx6sl()) {
if (base_addr != LCDIF1_BASE_ADDR) {
puts("Wrong LCD interface!\n");
return -EINVAL;
}
reg = readl(&imx_ccm->CCGR3);
reg &= ~(MXC_CCM_CCGR3_LCDIF_AXI_MASK |
MXC_CCM_CCGR3_LCDIF_PIX_MASK);
writel(reg, &imx_ccm->CCGR3);
if (enable) {
reg = readl(&imx_ccm->cscdr3);
reg &= ~MXC_CCM_CSCDR3_LCDIF_AXI_CLK_SEL_MASK;
reg |= 1 << MXC_CCM_CSCDR3_LCDIF_AXI_CLK_SEL_OFFSET;
writel(reg, &imx_ccm->cscdr3);
reg = readl(&imx_ccm->CCGR3);
reg |= MXC_CCM_CCGR3_LCDIF_AXI_MASK |
MXC_CCM_CCGR3_LCDIF_PIX_MASK;
writel(reg, &imx_ccm->CCGR3);
}
return 0;
} else {
return 0;
}
/* Gate LCDIF clock first */
reg = readl(&imx_ccm->CCGR3);
reg &= ~lcdif_ccgr3_mask;
writel(reg, &imx_ccm->CCGR3);
reg = readl(&imx_ccm->CCGR2);
reg &= ~MXC_CCM_CCGR2_LCD_MASK;
writel(reg, &imx_ccm->CCGR2);
if (enable) {
/* Select pre-mux */
reg = readl(&imx_ccm->cscdr2);
reg &= ~lcdif_clk_sel_mask;
writel(reg, &imx_ccm->cscdr2);
/* Enable the LCDIF pix clock */
reg = readl(&imx_ccm->CCGR3);
reg |= lcdif_ccgr3_mask;
writel(reg, &imx_ccm->CCGR3);
reg = readl(&imx_ccm->CCGR2);
reg |= MXC_CCM_CCGR2_LCD_MASK;
writel(reg, &imx_ccm->CCGR2);
}
return 0;
}
#endif
#ifdef CONFIG_FSL_QSPI
/* qspi_num can be from 0 - 1 */
void enable_qspi_clk(int qspi_num)
{
u32 reg = 0;
/* Enable QuadSPI clock */
switch (qspi_num) {
case 0:
/* disable the clock gate */
clrbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
/* set 50M : (50 = 396 / 2 / 4) */
reg = readl(&imx_ccm->cscmr1);
reg &= ~(MXC_CCM_CSCMR1_QSPI1_PODF_MASK |
MXC_CCM_CSCMR1_QSPI1_CLK_SEL_MASK);
reg |= ((1 << MXC_CCM_CSCMR1_QSPI1_PODF_OFFSET) |
(2 << MXC_CCM_CSCMR1_QSPI1_CLK_SEL_OFFSET));
writel(reg, &imx_ccm->cscmr1);
/* enable the clock gate */
setbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
break;
case 1:
/*
* disable the clock gate
* QSPI2 and GPMI_BCH_INPUT_GPMI_IO share the same clock gate,
* disable both of them.
*/
clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
/* set 50M : (50 = 396 / 2 / 4) */
reg = readl(&imx_ccm->cs2cdr);
reg &= ~(MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK);
reg |= (MXC_CCM_CS2CDR_QSPI2_CLK_PRED(0x1) |
MXC_CCM_CS2CDR_QSPI2_CLK_SEL(0x3));
writel(reg, &imx_ccm->cs2cdr);
/*enable the clock gate*/
setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
break;
default:
break;
}
}
#endif
#ifdef CONFIG_FEC_MXC
int enable_fec_anatop_clock(int fec_id, enum enet_freq freq)
{
u32 reg = 0;
s32 timeout = 100000;
struct anatop_regs __iomem *anatop =
(struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
if (freq < ENET_25MHZ || freq > ENET_125MHZ)
return -EINVAL;
reg = readl(&anatop->pll_enet);
if (fec_id == 0) {
reg &= ~BM_ANADIG_PLL_ENET_DIV_SELECT;
reg |= BF_ANADIG_PLL_ENET_DIV_SELECT(freq);
} else if (fec_id == 1) {
/* Only i.MX6SX/UL support ENET2 */
if (!(is_mx6sx() || is_mx6ul() || is_mx6ull()))
return -EINVAL;
reg &= ~BM_ANADIG_PLL_ENET2_DIV_SELECT;
reg |= BF_ANADIG_PLL_ENET2_DIV_SELECT(freq);
} else {
return -EINVAL;
}
if ((reg & BM_ANADIG_PLL_ENET_POWERDOWN) ||
(!(reg & BM_ANADIG_PLL_ENET_LOCK))) {
reg &= ~BM_ANADIG_PLL_ENET_POWERDOWN;
writel(reg, &anatop->pll_enet);
while (timeout--) {
if (readl(&anatop->pll_enet) & BM_ANADIG_PLL_ENET_LOCK)
break;
}
if (timeout < 0)
return -ETIMEDOUT;
}
/* Enable FEC clock */
if (fec_id == 0)
reg |= BM_ANADIG_PLL_ENET_ENABLE;
else
reg |= BM_ANADIG_PLL_ENET2_ENABLE;
reg &= ~BM_ANADIG_PLL_ENET_BYPASS;
writel(reg, &anatop->pll_enet);
#ifdef CONFIG_MX6SX
/* Disable enet system clcok before switching clock parent */
reg = readl(&imx_ccm->CCGR3);
reg &= ~MXC_CCM_CCGR3_ENET_MASK;
writel(reg, &imx_ccm->CCGR3);
/*
* Set enet ahb clock to 200MHz
* pll2_pfd2_396m-> ENET_PODF-> ENET_AHB
*/
reg = readl(&imx_ccm->chsccdr);
reg &= ~(MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_MASK
| MXC_CCM_CHSCCDR_ENET_PODF_MASK
| MXC_CCM_CHSCCDR_ENET_CLK_SEL_MASK);
/* PLL2 PFD2 */
reg |= (4 << MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_OFFSET);
/* Div = 2*/
reg |= (1 << MXC_CCM_CHSCCDR_ENET_PODF_OFFSET);
reg |= (0 << MXC_CCM_CHSCCDR_ENET_CLK_SEL_OFFSET);
writel(reg, &imx_ccm->chsccdr);
/* Enable enet system clock */
reg = readl(&imx_ccm->CCGR3);
reg |= MXC_CCM_CCGR3_ENET_MASK;
writel(reg, &imx_ccm->CCGR3);
#endif
return 0;
}
#endif
static u32 get_usdhc_clk(u32 port)
{
u32 root_freq = 0, usdhc_podf = 0, clk_sel = 0;
u32 cscmr1 = __raw_readl(&imx_ccm->cscmr1);
u32 cscdr1 = __raw_readl(&imx_ccm->cscdr1);
if (is_mx6ul() || is_mx6ull()) {
if (port > 1)
return 0;
}
if (is_mx6sll()) {
if (port > 2)
return 0;
}
switch (port) {
case 0:
usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC1_PODF_MASK) >>
MXC_CCM_CSCDR1_USDHC1_PODF_OFFSET;
clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC1_CLK_SEL;
break;
case 1:
usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC2_PODF_MASK) >>
MXC_CCM_CSCDR1_USDHC2_PODF_OFFSET;
clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC2_CLK_SEL;
break;
case 2:
usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC3_PODF_MASK) >>
MXC_CCM_CSCDR1_USDHC3_PODF_OFFSET;
clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC3_CLK_SEL;
break;
case 3:
usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC4_PODF_MASK) >>
MXC_CCM_CSCDR1_USDHC4_PODF_OFFSET;
clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC4_CLK_SEL;
break;
default:
break;
}
if (clk_sel)
root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
else
root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
return root_freq / (usdhc_podf + 1);
}
u32 imx_get_uartclk(void)
{
return get_uart_clk();
}
u32 imx_get_fecclk(void)
{
return mxc_get_clock(MXC_IPG_CLK);
}
#if defined(CONFIG_SATA) || defined(CONFIG_PCIE_IMX)
static int enable_enet_pll(uint32_t en)
{
struct mxc_ccm_reg *const imx_ccm
= (struct mxc_ccm_reg *) CCM_BASE_ADDR;
s32 timeout = 100000;
u32 reg = 0;
/* Enable PLLs */
reg = readl(&imx_ccm->analog_pll_enet);
reg &= ~BM_ANADIG_PLL_SYS_POWERDOWN;
writel(reg, &imx_ccm->analog_pll_enet);
reg |= BM_ANADIG_PLL_SYS_ENABLE;
while (timeout--) {
if (readl(&imx_ccm->analog_pll_enet) & BM_ANADIG_PLL_SYS_LOCK)
break;
}
if (timeout <= 0)
return -EIO;
reg &= ~BM_ANADIG_PLL_SYS_BYPASS;
writel(reg, &imx_ccm->analog_pll_enet);
reg |= en;
writel(reg, &imx_ccm->analog_pll_enet);
return 0;
}
#endif
#ifdef CONFIG_SATA
static void ungate_sata_clock(void)
{
struct mxc_ccm_reg *const imx_ccm =
(struct mxc_ccm_reg *)CCM_BASE_ADDR;
/* Enable SATA clock. */
setbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
}
int enable_sata_clock(void)
{
ungate_sata_clock();
return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA);
}
void disable_sata_clock(void)
{
struct mxc_ccm_reg *const imx_ccm =
(struct mxc_ccm_reg *)CCM_BASE_ADDR;
clrbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
}
#endif
#ifdef CONFIG_PCIE_IMX
static void ungate_pcie_clock(void)
{
struct mxc_ccm_reg *const imx_ccm =
(struct mxc_ccm_reg *)CCM_BASE_ADDR;
/* Enable PCIe clock. */
setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_PCIE_MASK);
}
int enable_pcie_clock(void)
{
struct anatop_regs *anatop_regs =
(struct anatop_regs *)ANATOP_BASE_ADDR;
struct mxc_ccm_reg *ccm_regs = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
u32 lvds1_clk_sel;
/*
* Here be dragons!
*
* The register ANATOP_MISC1 is not documented in the Freescale
* MX6RM. The register that is mapped in the ANATOP space and
* marked as ANATOP_MISC1 is actually documented in the PMU section
* of the datasheet as PMU_MISC1.
*
* Switch LVDS clock source to SATA (0xb) on mx6q/dl or PCI (0xa) on
* mx6sx, disable clock INPUT and enable clock OUTPUT. This is important
* for PCI express link that is clocked from the i.MX6.
*/
#define ANADIG_ANA_MISC1_LVDSCLK1_IBEN (1 << 12)
#define ANADIG_ANA_MISC1_LVDSCLK1_OBEN (1 << 10)
#define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK 0x0000001F
#define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF 0xa
#define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF 0xb
if (is_mx6sx())
lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF;
else
lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF;
clrsetbits_le32(&anatop_regs->ana_misc1,
ANADIG_ANA_MISC1_LVDSCLK1_IBEN |
ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK,
ANADIG_ANA_MISC1_LVDSCLK1_OBEN | lvds1_clk_sel);
/* PCIe reference clock sourced from AXI. */
clrbits_le32(&ccm_regs->cbcmr, MXC_CCM_CBCMR_PCIE_AXI_CLK_SEL);
/* Party time! Ungate the clock to the PCIe. */
#ifdef CONFIG_SATA
ungate_sata_clock();
#endif
ungate_pcie_clock();
return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA |
BM_ANADIG_PLL_ENET_ENABLE_PCIE);
}
#endif
#ifdef CONFIG_IMX_HAB
void hab_caam_clock_enable(unsigned char enable)
{
u32 reg;
if (is_mx6ull() || is_mx6sll()) {
/* CG5, DCP clock */
reg = __raw_readl(&imx_ccm->CCGR0);
if (enable)
reg |= MXC_CCM_CCGR0_DCP_CLK_MASK;
else
reg &= ~MXC_CCM_CCGR0_DCP_CLK_MASK;
__raw_writel(reg, &imx_ccm->CCGR0);
} else {
/* CG4 ~ CG6, CAAM clocks */
reg = __raw_readl(&imx_ccm->CCGR0);
if (enable)
reg |= (MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
else
reg &= ~(MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
__raw_writel(reg, &imx_ccm->CCGR0);
}
/* EMI slow clk */
reg = __raw_readl(&imx_ccm->CCGR6);
if (enable)
reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK;
else
reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK;
__raw_writel(reg, &imx_ccm->CCGR6);
}
#endif
static void enable_pll3(void)
{
struct anatop_regs __iomem *anatop =
(struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
/* make sure pll3 is enabled */
if ((readl(&anatop->usb1_pll_480_ctrl) &
BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0) {
/* enable pll's power */
writel(BM_ANADIG_USB1_PLL_480_CTRL_POWER,
&anatop->usb1_pll_480_ctrl_set);
writel(0x80, &anatop->ana_misc2_clr);
/* wait for pll lock */
while ((readl(&anatop->usb1_pll_480_ctrl) &
BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0)
;
/* disable bypass */
writel(BM_ANADIG_USB1_PLL_480_CTRL_BYPASS,
&anatop->usb1_pll_480_ctrl_clr);
/* enable pll output */
writel(BM_ANADIG_USB1_PLL_480_CTRL_ENABLE,
&anatop->usb1_pll_480_ctrl_set);
}
}
void enable_thermal_clk(void)
{
enable_pll3();
}
#ifdef CONFIG_MTD_NOR_FLASH
void enable_eim_clk(unsigned char enable)
{
u32 reg;
reg = __raw_readl(&imx_ccm->CCGR6);
if (enable)
reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK;
else
reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK;
__raw_writel(reg, &imx_ccm->CCGR6);
}
#endif
unsigned int mxc_get_clock(enum mxc_clock clk)
{
switch (clk) {
case MXC_ARM_CLK:
return get_mcu_main_clk();
case MXC_PER_CLK:
return get_periph_clk();
case MXC_AHB_CLK:
return get_ahb_clk();
case MXC_IPG_CLK:
return get_ipg_clk();
case MXC_IPG_PERCLK:
case MXC_I2C_CLK:
return get_ipg_per_clk();
case MXC_UART_CLK:
return get_uart_clk();
case MXC_CSPI_CLK:
return get_cspi_clk();
case MXC_AXI_CLK:
return get_axi_clk();
case MXC_EMI_SLOW_CLK:
return get_emi_slow_clk();
case MXC_DDR_CLK:
return get_mmdc_ch0_clk();
case MXC_ESDHC_CLK:
return get_usdhc_clk(0);
case MXC_ESDHC2_CLK:
return get_usdhc_clk(1);
case MXC_ESDHC3_CLK:
return get_usdhc_clk(2);
case MXC_ESDHC4_CLK:
return get_usdhc_clk(3);
case MXC_SATA_CLK:
return get_ahb_clk();
default:
printf("Unsupported MXC CLK: %d\n", clk);
break;
}
return 0;
}
#ifndef CONFIG_MX6SX
void enable_ipu_clock(void)
{
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
setbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU1_IPU_MASK);
if (is_mx6dqp()) {
setbits_le32(&mxc_ccm->CCGR6, MXC_CCM_CCGR6_PRG_CLK0_MASK);
setbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU2_IPU_MASK);
}
}
void disable_ipu_clock(void)
{
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
clrbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU1_IPU_MASK);
if (is_mx6dqp()) {
clrbits_le32(&mxc_ccm->CCGR6, MXC_CCM_CCGR6_PRG_CLK0_MASK);
clrbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU2_IPU_MASK);
}
}
#endif
#ifndef CONFIG_SPL_BUILD
/*
* Dump some core clockes.
*/
int do_mx6_showclocks(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
u32 freq;
freq = decode_pll(PLL_SYS, MXC_HCLK);
printf("PLL_SYS %8d MHz\n", freq / 1000000);
freq = decode_pll(PLL_BUS, MXC_HCLK);
printf("PLL_BUS %8d MHz\n", freq / 1000000);
freq = decode_pll(PLL_USBOTG, MXC_HCLK);
printf("PLL_OTG %8d MHz\n", freq / 1000000);
freq = decode_pll(PLL_ENET, MXC_HCLK);
printf("PLL_NET %8d MHz\n", freq / 1000000);
printf("\n");
printf("ARM %8d kHz\n", mxc_get_clock(MXC_ARM_CLK) / 1000);
printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
printf("UART %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000);
#ifdef CONFIG_MXC_SPI
printf("CSPI %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
#endif
printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
printf("AXI %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000);
printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
printf("USDHC1 %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000);
printf("USDHC2 %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000);
printf("USDHC3 %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000);
printf("USDHC4 %8d kHz\n", mxc_get_clock(MXC_ESDHC4_CLK) / 1000);
printf("EMI SLOW %8d kHz\n", mxc_get_clock(MXC_EMI_SLOW_CLK) / 1000);
printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
return 0;
}
#if defined(CONFIG_MX6Q) || defined(CONFIG_MX6D) || defined(CONFIG_MX6DL) || \
defined(CONFIG_MX6S)
static void disable_ldb_di_clock_sources(void)
{
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
int reg;
/* Make sure PFDs are disabled at boot. */
reg = readl(&mxc_ccm->analog_pfd_528);
/* Cannot disable pll2_pfd2_396M, as it is the MMDC clock in iMX6DL */
if (is_mx6sdl())
reg |= 0x80008080;
else
reg |= 0x80808080;
writel(reg, &mxc_ccm->analog_pfd_528);
/* Disable PLL3 PFDs */
reg = readl(&mxc_ccm->analog_pfd_480);
reg |= 0x80808080;
writel(reg, &mxc_ccm->analog_pfd_480);
/* Disable PLL5 */
reg = readl(&mxc_ccm->analog_pll_video);
reg &= ~(1 << 13);
writel(reg, &mxc_ccm->analog_pll_video);
}
static void enable_ldb_di_clock_sources(void)
{
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
int reg;
reg = readl(&mxc_ccm->analog_pfd_528);
if (is_mx6sdl())
reg &= ~(0x80008080);
else
reg &= ~(0x80808080);
writel(reg, &mxc_ccm->analog_pfd_528);
reg = readl(&mxc_ccm->analog_pfd_480);
reg &= ~(0x80808080);
writel(reg, &mxc_ccm->analog_pfd_480);
}
/*
* Try call this function as early in the boot process as possible since the
* function temporarily disables PLL2 PFD's, PLL3 PFD's and PLL5.
*/
void select_ldb_di_clock_source(enum ldb_di_clock clk)
{
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
int reg;
/*
* Need to follow a strict procedure when changing the LDB
* clock, else we can introduce a glitch. Things to keep in
* mind:
* 1. The current and new parent clocks must be disabled.
* 2. The default clock for ldb_dio_clk is mmdc_ch1 which has
* no CG bit.
* 3. In the RTL implementation of the LDB_DI_CLK_SEL mux
* the top four options are in one mux and the PLL3 option along
* with another option is in the second mux. There is third mux
* used to decide between the first and second mux.
* The code below switches the parent to the bottom mux first
* and then manipulates the top mux. This ensures that no glitch
* will enter the divider.
*
* Need to disable MMDC_CH1 clock manually as there is no CG bit
* for this clock. The only way to disable this clock is to move
* it to pll3_sw_clk and then to disable pll3_sw_clk
* Make sure periph2_clk2_sel is set to pll3_sw_clk
*/
/* Disable all ldb_di clock parents */
disable_ldb_di_clock_sources();
/* Set MMDC_CH1 mask bit */
reg = readl(&mxc_ccm->ccdr);
reg |= MXC_CCM_CCDR_MMDC_CH1_HS_MASK;
writel(reg, &mxc_ccm->ccdr);
/* Set periph2_clk2_sel to be sourced from PLL3_sw_clk */
reg = readl(&mxc_ccm->cbcmr);
reg &= ~MXC_CCM_CBCMR_PERIPH2_CLK2_SEL;
writel(reg, &mxc_ccm->cbcmr);
/*
* Set the periph2_clk_sel to the top mux so that
* mmdc_ch1 is from pll3_sw_clk.
*/
reg = readl(&mxc_ccm->cbcdr);
reg |= MXC_CCM_CBCDR_PERIPH2_CLK_SEL;
writel(reg, &mxc_ccm->cbcdr);
/* Wait for the clock switch */
while (readl(&mxc_ccm->cdhipr))
;
/* Disable pll3_sw_clk by selecting bypass clock source */
reg = readl(&mxc_ccm->ccsr);
reg |= MXC_CCM_CCSR_PLL3_SW_CLK_SEL;
writel(reg, &mxc_ccm->ccsr);
/* Set the ldb_di0_clk and ldb_di1_clk to 111b */
reg = readl(&mxc_ccm->cs2cdr);
reg |= ((7 << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
| (7 << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
writel(reg, &mxc_ccm->cs2cdr);
/* Set the ldb_di0_clk and ldb_di1_clk to 100b */
reg = readl(&mxc_ccm->cs2cdr);
reg &= ~(MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK
| MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK);
reg |= ((4 << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
| (4 << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
writel(reg, &mxc_ccm->cs2cdr);
/* Set the ldb_di0_clk and ldb_di1_clk to desired source */
reg = readl(&mxc_ccm->cs2cdr);
reg &= ~(MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK
| MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK);
reg |= ((clk << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
| (clk << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
writel(reg, &mxc_ccm->cs2cdr);
/* Unbypass pll3_sw_clk */
reg = readl(&mxc_ccm->ccsr);
reg &= ~MXC_CCM_CCSR_PLL3_SW_CLK_SEL;
writel(reg, &mxc_ccm->ccsr);
/*
* Set the periph2_clk_sel back to the bottom mux so that
* mmdc_ch1 is from its original parent.
*/
reg = readl(&mxc_ccm->cbcdr);
reg &= ~MXC_CCM_CBCDR_PERIPH2_CLK_SEL;
writel(reg, &mxc_ccm->cbcdr);
/* Wait for the clock switch */
while (readl(&mxc_ccm->cdhipr))
;
/* Clear MMDC_CH1 mask bit */
reg = readl(&mxc_ccm->ccdr);
reg &= ~MXC_CCM_CCDR_MMDC_CH1_HS_MASK;
writel(reg, &mxc_ccm->ccdr);
enable_ldb_di_clock_sources();
}
#endif
/***************************************************/
U_BOOT_CMD(
clocks, CONFIG_SYS_MAXARGS, 1, do_mx6_showclocks,
"display clocks",
""
);
#endif