u-boot/arch/arm/mach-mvebu/cpu.c

688 lines
17 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2014-2016 Stefan Roese <sr@denx.de>
*/
#include <common.h>
#include <ahci.h>
#include <cpu_func.h>
#include <init.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/mbus.h>
#include <asm/io.h>
#include <asm/pl310.h>
#include <asm/arch/cpu.h>
#include <asm/arch/soc.h>
#include <asm/spl.h>
#include <sdhci.h>
#define DDR_BASE_CS_OFF(n) (0x0000 + ((n) << 3))
#define DDR_SIZE_CS_OFF(n) (0x0004 + ((n) << 3))
static const struct mbus_win windows[] = {
/* SPI */
{ MBUS_SPI_BASE, MBUS_SPI_SIZE,
CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_SPIFLASH },
/* BootROM */
{ MBUS_BOOTROM_BASE, MBUS_BOOTROM_SIZE,
CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_BOOTROM },
#ifdef CONFIG_ARMADA_MSYS
/* DFX */
{ MBUS_DFX_BASE, MBUS_DFX_SIZE, CPU_TARGET_DFX, 0 },
#endif
};
/* SPI0 CS0 Flash of size MBUS_SPI_SIZE is mapped to address MBUS_SPI_BASE */
#if CONFIG_ENV_SPI_BUS == 0 && CONFIG_ENV_SPI_CS == 0 && \
CONFIG_ENV_OFFSET + CONFIG_ENV_SIZE <= MBUS_SPI_SIZE
void *env_sf_get_env_addr(void)
{
return (void *)MBUS_SPI_BASE + CONFIG_ENV_OFFSET;
}
#endif
void lowlevel_init(void)
{
/*
* Dummy implementation, we only need LOWLEVEL_INIT
* on Armada to configure CP15 in start.S / cpu_init_cp15()
*/
}
void reset_cpu(void)
{
struct mvebu_system_registers *reg =
(struct mvebu_system_registers *)MVEBU_SYSTEM_REG_BASE;
writel(readl(&reg->rstoutn_mask) | 1, &reg->rstoutn_mask);
writel(readl(&reg->sys_soft_rst) | 1, &reg->sys_soft_rst);
while (1)
;
}
u32 get_boot_device(void)
{
u32 val;
u32 boot_device;
u32 boot_err_mode;
#ifdef CONFIG_ARMADA_38X
u32 boot_err_code;
#endif
/*
* First check, if UART boot-mode is active. This can only
* be done, via the bootrom error register. Here the
* MSB marks if the UART mode is active.
*/
val = readl(BOOTROM_ERR_REG);
boot_err_mode = (val & BOOTROM_ERR_MODE_MASK) >> BOOTROM_ERR_MODE_OFFS;
debug("BOOTROM_ERR_REG=0x%08x boot_err_mode=0x%x\n", val, boot_err_mode);
if (boot_err_mode == BOOTROM_ERR_MODE_UART)
return BOOT_DEVICE_UART;
#ifdef CONFIG_ARMADA_38X
/*
* If the bootrom error code contains any other than zeros it's an
* error condition and the bootROM has fallen back to UART boot
*/
boot_err_code = (val & BOOTROM_ERR_CODE_MASK) >> BOOTROM_ERR_CODE_OFFS;
debug("boot_err_code=0x%x\n", boot_err_code);
if (boot_err_code)
return BOOT_DEVICE_UART;
#endif
/*
* Now check the SAR register for the strapped boot-device
*/
val = readl(CFG_SAR_REG); /* SAR - Sample At Reset */
boot_device = (val & BOOT_DEV_SEL_MASK) >> BOOT_DEV_SEL_OFFS;
debug("SAR_REG=0x%08x boot_device=0x%x\n", val, boot_device);
#ifdef BOOT_FROM_NAND
if (BOOT_FROM_NAND(boot_device))
return BOOT_DEVICE_NAND;
#endif
#ifdef BOOT_FROM_MMC
if (BOOT_FROM_MMC(boot_device))
return BOOT_DEVICE_MMC1;
#endif
#ifdef BOOT_FROM_UART
if (BOOT_FROM_UART(boot_device))
return BOOT_DEVICE_UART;
#endif
#ifdef BOOT_FROM_SATA
if (BOOT_FROM_SATA(boot_device))
return BOOT_DEVICE_SATA;
#endif
#ifdef BOOT_FROM_SPI
if (BOOT_FROM_SPI(boot_device))
return BOOT_DEVICE_SPI;
#endif
return BOOT_DEVICE_BOOTROM;
}
#if defined(CONFIG_DISPLAY_CPUINFO)
#if defined(CONFIG_ARMADA_375)
/* SAR frequency values for Armada 375 */
static const struct sar_freq_modes sar_freq_tab[] = {
{ 0, 0x0, 266, 133, 266 },
{ 1, 0x0, 333, 167, 167 },
{ 2, 0x0, 333, 167, 222 },
{ 3, 0x0, 333, 167, 333 },
{ 4, 0x0, 400, 200, 200 },
{ 5, 0x0, 400, 200, 267 },
{ 6, 0x0, 400, 200, 400 },
{ 7, 0x0, 500, 250, 250 },
{ 8, 0x0, 500, 250, 334 },
{ 9, 0x0, 500, 250, 500 },
{ 10, 0x0, 533, 267, 267 },
{ 11, 0x0, 533, 267, 356 },
{ 12, 0x0, 533, 267, 533 },
{ 13, 0x0, 600, 300, 300 },
{ 14, 0x0, 600, 300, 400 },
{ 15, 0x0, 600, 300, 600 },
{ 16, 0x0, 666, 333, 333 },
{ 17, 0x0, 666, 333, 444 },
{ 18, 0x0, 666, 333, 666 },
{ 19, 0x0, 800, 400, 267 },
{ 20, 0x0, 800, 400, 400 },
{ 21, 0x0, 800, 400, 534 },
{ 22, 0x0, 900, 450, 300 },
{ 23, 0x0, 900, 450, 450 },
{ 24, 0x0, 900, 450, 600 },
{ 25, 0x0, 1000, 500, 500 },
{ 26, 0x0, 1000, 500, 667 },
{ 27, 0x0, 1000, 333, 500 },
{ 28, 0x0, 400, 400, 400 },
{ 29, 0x0, 1100, 550, 550 },
{ 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */
};
#elif defined(CONFIG_ARMADA_38X)
/* SAR frequency values for Armada 38x */
static const struct sar_freq_modes sar_freq_tab[] = {
{ 0x0, 0x0, 666, 333, 333 },
{ 0x2, 0x0, 800, 400, 400 },
{ 0x4, 0x0, 1066, 533, 533 },
{ 0x6, 0x0, 1200, 600, 600 },
{ 0x8, 0x0, 1332, 666, 666 },
{ 0xc, 0x0, 1600, 800, 800 },
{ 0x10, 0x0, 1866, 933, 933 },
{ 0x13, 0x0, 2000, 1000, 933 },
{ 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */
};
#elif defined(CONFIG_ARMADA_MSYS)
static const struct sar_freq_modes sar_freq_tab[] = {
{ 0x0, 0x0, 400, 400, 400 },
{ 0x2, 0x0, 667, 333, 667 },
{ 0x3, 0x0, 800, 400, 800 },
{ 0x5, 0x0, 800, 400, 800 },
{ 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */
};
#else
/* SAR frequency values for Armada XP */
static const struct sar_freq_modes sar_freq_tab[] = {
{ 0xa, 0x5, 800, 400, 400 },
{ 0x1, 0x5, 1066, 533, 533 },
{ 0x2, 0x5, 1200, 600, 600 },
{ 0x2, 0x9, 1200, 600, 400 },
{ 0x3, 0x5, 1333, 667, 667 },
{ 0x4, 0x5, 1500, 750, 750 },
{ 0x4, 0x9, 1500, 750, 500 },
{ 0xb, 0x9, 1600, 800, 533 },
{ 0xb, 0xa, 1600, 800, 640 },
{ 0xb, 0x5, 1600, 800, 800 },
{ 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */
};
#endif
void get_sar_freq(struct sar_freq_modes *sar_freq)
{
u32 val;
u32 freq;
int i;
#if defined(CONFIG_ARMADA_375) || defined(CONFIG_ARMADA_MSYS)
val = readl(CFG_SAR2_REG); /* SAR - Sample At Reset */
#else
val = readl(CFG_SAR_REG); /* SAR - Sample At Reset */
#endif
freq = (val & SAR_CPU_FREQ_MASK) >> SAR_CPU_FREQ_OFFS;
#if defined(SAR2_CPU_FREQ_MASK)
/*
* Shift CPU0 clock frequency select bit from SAR2 register
* into correct position
*/
freq |= ((readl(CFG_SAR2_REG) & SAR2_CPU_FREQ_MASK)
>> SAR2_CPU_FREQ_OFFS) << 3;
#endif
for (i = 0; sar_freq_tab[i].val != 0xff; i++) {
if (sar_freq_tab[i].val == freq) {
#if defined(CONFIG_ARMADA_375) || defined(CONFIG_ARMADA_38X) || defined(CONFIG_ARMADA_MSYS)
*sar_freq = sar_freq_tab[i];
return;
#else
int k;
u8 ffc;
ffc = (val & SAR_FFC_FREQ_MASK) >>
SAR_FFC_FREQ_OFFS;
for (k = i; sar_freq_tab[k].ffc != 0xff; k++) {
if (sar_freq_tab[k].ffc == ffc) {
*sar_freq = sar_freq_tab[k];
return;
}
}
i = k;
#endif
}
}
/* SAR value not found, return 0 for frequencies */
*sar_freq = sar_freq_tab[i - 1];
}
int print_cpuinfo(void)
{
u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff;
u8 revid = readl(MVEBU_REG_PCIE_REVID) & 0xff;
struct sar_freq_modes sar_freq;
puts("SoC: ");
switch (devid) {
case SOC_MV78230_ID:
puts("MV78230-");
break;
case SOC_MV78260_ID:
puts("MV78260-");
break;
case SOC_MV78460_ID:
puts("MV78460-");
break;
case SOC_88F6720_ID:
puts("MV88F6720-");
break;
case SOC_88F6810_ID:
puts("MV88F6810-");
break;
case SOC_88F6820_ID:
puts("MV88F6820-");
break;
case SOC_88F6828_ID:
puts("MV88F6828-");
break;
case SOC_98DX3236_ID:
puts("98DX3236-");
break;
case SOC_98DX3336_ID:
puts("98DX3336-");
break;
case SOC_98DX4251_ID:
puts("98DX4251-");
break;
default:
puts("Unknown-");
break;
}
switch (devid) {
case SOC_MV78230_ID:
case SOC_MV78260_ID:
case SOC_MV78460_ID:
switch (revid) {
case 1:
puts("A0");
break;
case 2:
puts("B0");
break;
default:
printf("?? (%x)", revid);
break;
}
break;
case SOC_88F6720_ID:
switch (revid) {
case MV_88F67XX_A0_ID:
puts("A0");
break;
default:
printf("?? (%x)", revid);
break;
}
break;
case SOC_88F6810_ID:
case SOC_88F6820_ID:
case SOC_88F6828_ID:
switch (revid) {
case MV_88F68XX_Z1_ID:
puts("Z1");
break;
case MV_88F68XX_A0_ID:
puts("A0");
break;
case MV_88F68XX_B0_ID:
puts("B0");
break;
default:
printf("?? (%x)", revid);
break;
}
break;
case SOC_98DX3236_ID:
case SOC_98DX3336_ID:
case SOC_98DX4251_ID:
switch (revid) {
case 3:
puts("A0");
break;
case 4:
puts("A1");
break;
default:
printf("?? (%x)", revid);
break;
}
break;
default:
printf("?? (%x)", revid);
break;
}
get_sar_freq(&sar_freq);
printf(" at %d MHz\n", sar_freq.p_clk);
return 0;
}
#endif /* CONFIG_DISPLAY_CPUINFO */
/*
* This function initialize Controller DRAM Fastpath windows.
* It takes the CS size information from the 0x1500 scratch registers
* and sets the correct windows sizes and base addresses accordingly.
*
* These values are set in the scratch registers by the Marvell
* DDR3 training code, which is executed by the SPL before the
* main payload (U-Boot) is executed.
*/
static void update_sdram_window_sizes(void)
{
u64 base = 0;
u32 size, temp;
int i;
for (i = 0; i < SDRAM_MAX_CS; i++) {
size = readl((MVEBU_SDRAM_SCRATCH + (i * 8))) & SDRAM_ADDR_MASK;
if (size != 0) {
size |= ~(SDRAM_ADDR_MASK);
/* Set Base Address */
temp = (base & 0xFF000000ll) | ((base >> 32) & 0xF);
writel(temp, MVEBU_SDRAM_BASE + DDR_BASE_CS_OFF(i));
/*
* Check if out of max window size and resize
* the window
*/
temp = (readl(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i)) &
~(SDRAM_ADDR_MASK)) | 1;
temp |= (size & SDRAM_ADDR_MASK);
writel(temp, MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i));
base += ((u64)size + 1);
} else {
/*
* Disable window if not used, otherwise this
* leads to overlapping enabled windows with
* pretty strange results
*/
clrbits_le32(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i), 1);
}
}
}
#ifdef CONFIG_ARCH_CPU_INIT
#define MV_USB_PHY_BASE (MVEBU_AXP_USB_BASE + 0x800)
#define MV_USB_PHY_PLL_REG(reg) (MV_USB_PHY_BASE | (((reg) & 0xF) << 2))
#define MV_USB_X3_BASE(addr) (MVEBU_AXP_USB_BASE | BIT(11) | \
(((addr) & 0xF) << 6))
#define MV_USB_X3_PHY_CHANNEL(dev, reg) (MV_USB_X3_BASE((dev) + 1) | \
(((reg) & 0xF) << 2))
static void setup_usb_phys(void)
{
int dev;
/*
* USB PLL init
*/
/* Setup PLL frequency */
/* USB REF frequency = 25 MHz */
clrsetbits_le32(MV_USB_PHY_PLL_REG(1), 0x3ff, 0x605);
/* Power up PLL and PHY channel */
setbits_le32(MV_USB_PHY_PLL_REG(2), BIT(9));
/* Assert VCOCAL_START */
setbits_le32(MV_USB_PHY_PLL_REG(1), BIT(21));
mdelay(1);
/*
* USB PHY init (change from defaults) specific for 40nm (78X30 78X60)
*/
for (dev = 0; dev < 3; dev++) {
setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 3), BIT(15));
/* Assert REG_RCAL_START in channel REG 1 */
setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
udelay(40);
clrbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
}
}
/*
* This function is not called from the SPL U-Boot version
*/
int arch_cpu_init(void)
{
/*
* We need to call mvebu_mbus_probe() before calling
* update_sdram_window_sizes() as it disables all previously
* configured mbus windows and then configures them as
* required for U-Boot. Calling update_sdram_window_sizes()
* without this configuration will not work, as the internal
* registers can't be accessed reliably because of potenial
* double mapping.
* After updating the SDRAM access windows we need to call
* mvebu_mbus_probe() again, as this now correctly configures
* the SDRAM areas that are later used by the MVEBU drivers
* (e.g. USB, NETA).
*/
/*
* First disable all windows
*/
mvebu_mbus_probe(NULL, 0);
if (IS_ENABLED(CONFIG_ARMADA_XP)) {
/*
* Now the SDRAM access windows can be reconfigured using
* the information in the SDRAM scratch pad registers
*/
update_sdram_window_sizes();
}
/*
* Finally the mbus windows can be configured with the
* updated SDRAM sizes
*/
mvebu_mbus_probe(windows, ARRAY_SIZE(windows));
if (IS_ENABLED(CONFIG_ARMADA_XP)) {
/* Enable GBE0, GBE1, LCD and NFC PUP */
clrsetbits_le32(ARMADA_XP_PUP_ENABLE, 0,
GE0_PUP_EN | GE1_PUP_EN | LCD_PUP_EN |
NAND_PUP_EN | SPI_PUP_EN);
/* Configure USB PLL and PHYs on AXP */
setup_usb_phys();
}
/* Enable NAND and NAND arbiter */
clrsetbits_le32(MVEBU_SOC_DEV_MUX_REG, 0, NAND_EN | NAND_ARBITER_EN);
/* Disable MBUS error propagation */
clrsetbits_le32(SOC_COHERENCY_FABRIC_CTRL_REG, MBUS_ERR_PROP_EN, 0);
return 0;
}
#endif /* CONFIG_ARCH_CPU_INIT */
u32 mvebu_get_nand_clock(void)
{
u32 reg;
if (IS_ENABLED(CONFIG_ARMADA_38X))
reg = MVEBU_DFX_DIV_CLK_CTRL(1);
else if (IS_ENABLED(CONFIG_ARMADA_MSYS))
reg = MVEBU_DFX_DIV_CLK_CTRL(8);
else
reg = MVEBU_CORE_DIV_CLK_CTRL(1);
return CONFIG_SYS_MVEBU_PLL_CLOCK /
((readl(reg) &
NAND_ECC_DIVCKL_RATIO_MASK) >> NAND_ECC_DIVCKL_RATIO_OFFS);
}
#if defined(CONFIG_MMC_SDHCI_MV) && !defined(CONFIG_DM_MMC)
int board_mmc_init(struct bd_info *bis)
{
mv_sdh_init(MVEBU_SDIO_BASE, 0, 0,
SDHCI_QUIRK_32BIT_DMA_ADDR | SDHCI_QUIRK_WAIT_SEND_CMD);
return 0;
}
#endif
#define AHCI_VENDOR_SPECIFIC_0_ADDR 0xa0
#define AHCI_VENDOR_SPECIFIC_0_DATA 0xa4
#define AHCI_WINDOW_CTRL(win) (0x60 + ((win) << 4))
#define AHCI_WINDOW_BASE(win) (0x64 + ((win) << 4))
#define AHCI_WINDOW_SIZE(win) (0x68 + ((win) << 4))
static void ahci_mvebu_mbus_config(void __iomem *base)
{
const struct mbus_dram_target_info *dram;
int i;
/* mbus is not initialized in SPL; keep the ROM settings */
if (IS_ENABLED(CONFIG_SPL_BUILD))
return;
dram = mvebu_mbus_dram_info();
for (i = 0; i < 4; i++) {
writel(0, base + AHCI_WINDOW_CTRL(i));
writel(0, base + AHCI_WINDOW_BASE(i));
writel(0, base + AHCI_WINDOW_SIZE(i));
}
for (i = 0; i < dram->num_cs; i++) {
const struct mbus_dram_window *cs = dram->cs + i;
writel((cs->mbus_attr << 8) |
(dram->mbus_dram_target_id << 4) | 1,
base + AHCI_WINDOW_CTRL(i));
writel(cs->base >> 16, base + AHCI_WINDOW_BASE(i));
writel(((cs->size - 1) & 0xffff0000),
base + AHCI_WINDOW_SIZE(i));
}
}
static void ahci_mvebu_regret_option(void __iomem *base)
{
/*
* Enable the regret bit to allow the SATA unit to regret a
* request that didn't receive an acknowlegde and avoid a
* deadlock
*/
writel(0x4, base + AHCI_VENDOR_SPECIFIC_0_ADDR);
writel(0x80, base + AHCI_VENDOR_SPECIFIC_0_DATA);
}
int board_ahci_enable(void)
{
ahci_mvebu_mbus_config((void __iomem *)MVEBU_SATA0_BASE);
ahci_mvebu_regret_option((void __iomem *)MVEBU_SATA0_BASE);
return 0;
}
#ifdef CONFIG_USB_XHCI_MVEBU
#define USB3_MAX_WINDOWS 4
#define USB3_WIN_CTRL(w) (0x0 + ((w) * 8))
#define USB3_WIN_BASE(w) (0x4 + ((w) * 8))
static void xhci_mvebu_mbus_config(void __iomem *base,
const struct mbus_dram_target_info *dram)
{
int i;
for (i = 0; i < USB3_MAX_WINDOWS; i++) {
writel(0, base + USB3_WIN_CTRL(i));
writel(0, base + USB3_WIN_BASE(i));
}
for (i = 0; i < dram->num_cs; i++) {
const struct mbus_dram_window *cs = dram->cs + i;
/* Write size, attributes and target id to control register */
writel(((cs->size - 1) & 0xffff0000) | (cs->mbus_attr << 8) |
(dram->mbus_dram_target_id << 4) | 1,
base + USB3_WIN_CTRL(i));
/* Write base address to base register */
writel((cs->base & 0xffff0000), base + USB3_WIN_BASE(i));
}
}
int board_xhci_enable(fdt_addr_t base)
{
const struct mbus_dram_target_info *dram;
printf("MVEBU XHCI INIT controller @ 0x%llx\n", (fdt64_t)base);
dram = mvebu_mbus_dram_info();
xhci_mvebu_mbus_config((void __iomem *)base, dram);
return 0;
}
#endif
void enable_caches(void)
{
/* Avoid problem with e.g. neta ethernet driver */
invalidate_dcache_all();
/*
* Armada 375 still has some problems with d-cache enabled in the
* ethernet driver (mvpp2). So lets keep the d-cache disabled
* until this is solved.
*/
if (!IS_ENABLED(CONFIG_ARMADA_375)) {
/* Enable D-cache. I-cache is already enabled in start.S */
dcache_enable();
}
}
void v7_outer_cache_enable(void)
{
arm: mvebu: Enable L2 cache also on Armada 38x For some unknown reason when L2 cache is disabled on Armada 385 then loadb, loadx and loady commands do not work with higher baudrates than 115200 (they just abort transfer) and lzmadec command with lzma image of size 0x7000000 (maybe even smaller, we tested this one) is doing decompression for more than 2 minutes. After enabling L2 cache decompression takes only 30s and loadb, loadx and loady are stable and working fine. git bisect identified problematic commit 3308933d2fe9 ("arm: mvebu: Avoid reading MVEBU_REG_PCIE_DEVID register too many times"). Before this commit above issues were not present. But investigation showed that above issue was possible to reproduce also by reverting that commit and forcing compiler to do inline optimization of mvebu_soc_family() function. Which seems that the root of this issue is in caches and position of instruction of segments. So currently it is unknown what is or was broken, but code movement, code inlining or other compiler optimization triggered it. Commit 3e5ce7ceeb94 ("arm: mvebu: Enable L2 cache on Armada XP") mentioned that enabling L2 cache on Armada XP improved performance and that Armada 38x has L2 disabled (which is default state) and if needed it has to be enabled in separate patch. As enabling L2 cache also improve performance on Armada 38x, enable it. Note that Aurora cache in no outer mode is available only on Armada XP, hence it is not touched for Armada 38x code. Fixes: 3308933d2fe9 ("arm: mvebu: Avoid reading MVEBU_REG_PCIE_DEVID register too many times") Reported-by: Marek Behún <kabel@kernel.org> Signed-off-by: Pali Rohár <pali@kernel.org> Signed-off-by: Marek Behún <kabel@kernel.org> Reviewed-by: Stefan Roese <sr@denx.de>
2022-09-08 14:06:53 +00:00
struct pl310_regs *const pl310 =
(struct pl310_regs *)CFG_SYS_PL310_BASE;
arm: mvebu: Enable L2 cache also on Armada 38x For some unknown reason when L2 cache is disabled on Armada 385 then loadb, loadx and loady commands do not work with higher baudrates than 115200 (they just abort transfer) and lzmadec command with lzma image of size 0x7000000 (maybe even smaller, we tested this one) is doing decompression for more than 2 minutes. After enabling L2 cache decompression takes only 30s and loadb, loadx and loady are stable and working fine. git bisect identified problematic commit 3308933d2fe9 ("arm: mvebu: Avoid reading MVEBU_REG_PCIE_DEVID register too many times"). Before this commit above issues were not present. But investigation showed that above issue was possible to reproduce also by reverting that commit and forcing compiler to do inline optimization of mvebu_soc_family() function. Which seems that the root of this issue is in caches and position of instruction of segments. So currently it is unknown what is or was broken, but code movement, code inlining or other compiler optimization triggered it. Commit 3e5ce7ceeb94 ("arm: mvebu: Enable L2 cache on Armada XP") mentioned that enabling L2 cache on Armada XP improved performance and that Armada 38x has L2 disabled (which is default state) and if needed it has to be enabled in separate patch. As enabling L2 cache also improve performance on Armada 38x, enable it. Note that Aurora cache in no outer mode is available only on Armada XP, hence it is not touched for Armada 38x code. Fixes: 3308933d2fe9 ("arm: mvebu: Avoid reading MVEBU_REG_PCIE_DEVID register too many times") Reported-by: Marek Behún <kabel@kernel.org> Signed-off-by: Pali Rohár <pali@kernel.org> Signed-off-by: Marek Behún <kabel@kernel.org> Reviewed-by: Stefan Roese <sr@denx.de>
2022-09-08 14:06:53 +00:00
/* The L2 cache is already disabled at this point */
/*
* For now L2 cache will be enabled only for Armada XP and Armada 38x.
* It can be enabled also for other SoCs after testing that it works fine.
*/
if (!IS_ENABLED(CONFIG_ARMADA_XP) && !IS_ENABLED(CONFIG_ARMADA_38X))
return;
if (IS_ENABLED(CONFIG_ARMADA_XP)) {
u32 u;
/*
* For Aurora cache in no outer mode, enable via the CP15
* coprocessor broadcasting of cache commands to L2.
*/
asm volatile("mrc p15, 1, %0, c15, c2, 0" : "=r" (u));
u |= BIT(8); /* Set the FW bit */
asm volatile("mcr p15, 1, %0, c15, c2, 0" : : "r" (u));
isb();
}
arm: mvebu: Enable L2 cache also on Armada 38x For some unknown reason when L2 cache is disabled on Armada 385 then loadb, loadx and loady commands do not work with higher baudrates than 115200 (they just abort transfer) and lzmadec command with lzma image of size 0x7000000 (maybe even smaller, we tested this one) is doing decompression for more than 2 minutes. After enabling L2 cache decompression takes only 30s and loadb, loadx and loady are stable and working fine. git bisect identified problematic commit 3308933d2fe9 ("arm: mvebu: Avoid reading MVEBU_REG_PCIE_DEVID register too many times"). Before this commit above issues were not present. But investigation showed that above issue was possible to reproduce also by reverting that commit and forcing compiler to do inline optimization of mvebu_soc_family() function. Which seems that the root of this issue is in caches and position of instruction of segments. So currently it is unknown what is or was broken, but code movement, code inlining or other compiler optimization triggered it. Commit 3e5ce7ceeb94 ("arm: mvebu: Enable L2 cache on Armada XP") mentioned that enabling L2 cache on Armada XP improved performance and that Armada 38x has L2 disabled (which is default state) and if needed it has to be enabled in separate patch. As enabling L2 cache also improve performance on Armada 38x, enable it. Note that Aurora cache in no outer mode is available only on Armada XP, hence it is not touched for Armada 38x code. Fixes: 3308933d2fe9 ("arm: mvebu: Avoid reading MVEBU_REG_PCIE_DEVID register too many times") Reported-by: Marek Behún <kabel@kernel.org> Signed-off-by: Pali Rohár <pali@kernel.org> Signed-off-by: Marek Behún <kabel@kernel.org> Reviewed-by: Stefan Roese <sr@denx.de>
2022-09-08 14:06:53 +00:00
/* Enable the L2 cache */
setbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
}
void v7_outer_cache_disable(void)
{
struct pl310_regs *const pl310 =
(struct pl310_regs *)CFG_SYS_PL310_BASE;
clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
}