# Objective
Relaxes the trait bound for `World::resource_scope` to allow non-send resources. Fixes#6037.
## Solution
No big changes in code had to be made. Added a check so that the non-send resources won't be accessed from a different thread.
---
## Changelog
- `World::resource_scope` accepts non-send resources now
- `World::resource_scope` verifies non-send access if the resource is non-send
- Two new tests are added, one for valid use of `World::resource_scope` with a non-send resource, and one for invalid use (calling it from a different thread, resulting in panic)
Co-authored-by: Dawid Piotrowski <41804418+Pietrek14@users.noreply.github.com>
# Objective
As explained by #5960, `Commands::get_or_spawn` may return a dangling `EntityCommands` that references a non-existing entities. As explained in [this comment], it may be undesirable to make the method return an `Option`.
- Addresses #5960
- Alternative to #5961
## Solution
This PR adds a doc comment to the method to inform the user that the returned `EntityCommands` is not guaranteed to be valid. It also adds panic doc comments on appropriate `EntityCommands` methods.
[this comment]: https://github.com/bevyengine/bevy/pull/5961#issuecomment-1259870849
# Objective
- Alpha mask was previously ignored when using an unlit material.
- Fixes https://github.com/bevyengine/bevy/issues/4479
## Solution
- Extract the alpha discard to a separate function and use it when unlit is true
## Notes
I tried calling `alpha_discard()` before the `if` in pbr.wgsl, but I had errors related to having a `discard` at the beginning before doing the texture sampling. I'm not sure if there's a way to fix that instead of having the function being called in 2 places.
# Objective
- Currently, errors aren't logged as soon as they are found, they are logged only on the next frame. This means your shader could have an unreported error that could have been reported on the first frame.
## Solution
- Log the error as soon as they are found, don't wait until next frame
## Notes
I discovered this issue because I was simply unwrapping the `Result` from `PipelinCache::get_render_pipeline()` which caused it to fail without any explanations. Admittedly, this was a bit of a user error, I shouldn't have unwrapped that, but it seems a bit strange to wait until the next time the pipeline is processed to log the error instead of just logging it as soon as possible since we already have all the info necessary.
# Objective
- Add ability to create nested spawns. This is needed for stageless. The current executor spawns tasks for each system early and runs the system by communicating through a channel. In stageless we want to spawn the task late, so that archetypes can be updated right before the task is run. The executor is run on a separate task, so this enables the scope to be passed to the spawned executor.
- Fixes#4301
## Solution
- Instantiate a single threaded executor on the scope and use that instead of the LocalExecutor. This allows the scope to be Send, but still able to spawn tasks onto the main thread the scope is run on. This works because while systems can access nonsend data. The systems themselves are Send. Because of this change we lose the ability to spawn nonsend tasks on the scope, but I don't think this is being used anywhere. Users would still be able to use spawn_local on TaskPools.
- Steals the lifetime tricks the `std:🧵:scope` uses to allow nested spawns, but disallow scope to be passed to tasks or threads not associated with the scope.
- Change the storage for the tasks to a `ConcurrentQueue`. This is to allow a &Scope to be passed for spawning instead of a &mut Scope. `ConcurrentQueue` was chosen because it was already in our dependency tree because `async_executor` depends on it.
- removed the optimizations for 0 and 1 spawned tasks. It did improve those cases, but made the cases of more than 1 task slower.
---
## Changelog
Add ability to nest spawns
```rust
fn main() {
let pool = TaskPool::new();
pool.scope(|scope| {
scope.spawn(async move {
// calling scope.spawn from an spawn task was not possible before
scope.spawn(async move {
// do something
});
});
})
}
```
## Migration Guide
If you were using explicit lifetimes and Passing Scope you'll need to specify two lifetimes now.
```rust
fn scoped_function<'scope>(scope: &mut Scope<'scope, ()>) {}
// should become
fn scoped_function<'scope>(scope: &Scope<'_, 'scope, ()>) {}
```
`scope.spawn_local` changed to `scope.spawn_on_scope` this should cover cases where you needed to run tasks on the local thread, but does not cover spawning Nonsend Futures.
## TODO
* [x] think real hard about all the lifetimes
* [x] add doc about what 'env and 'scope mean.
* [x] manually check that the single threaded task pool still works
* [x] Get updated perf numbers
* [x] check and make sure all the transmutes are necessary
* [x] move commented out test into a compile fail test
* [x] look through the tests for scope on std and see if I should add any more tests
Co-authored-by: Michael Hsu <myhsu@benjaminelectric.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Make `Res` cloneable
## Solution
Add an associated fn `clone(self: &Self) -. Self` instead of `Copy + Clone` trait impls to avoid `res.clone()` failing to clone out the underlying `T`
# Objective
Often one wants to create a `UiRect` with a value only specifying a single field. These ways are already available, but not the most ergonomic:
```rust
UiRect::new(Val::Undefined, Val::Undefined, Val::Percent(25.0), Val::Undefined)
```
```rust
UiRect {
top: Val::Percent(25.0),
..default()
}
```
## Solution
Introduce 6 new constructors:
- `horizontal`
- `vertical`
- `left`
- `right`
- `top`
- `bottom`
So the above code can be written instead as:
```rust
UiRect::top(Val::Percent(25.0))
```
This solution is similar to the style fields `margin-left`, `padding-top`, etc. that you would see in CSS, from which bevy's UI has other inspiration. Therefore, it should still feel intuitive to users coming from CSS.
---
## Changelog
### Added
- Additional constructors for `UiRect` to specify values for specific fields
# Objective
Currently, arrays cannot indexed using the reflection path API.
This change makes them behave like lists so `x.get_path("list[0]")` will behave the same way, whether x.list is a "List" (e.g. a Vec) or an array.
## Solution
When syntax is encounterd `[ <idx> ]` we check if the referenced type is either a `ReflectRef::List` or `ReflectRef::Array` (or `ReflectMut` for the mutable case). Since both provide the identical API for accessing entries, we do the same for both, although it requires code duplication as far as I can tell.
This was born from working on #5764, but since this seems to be an easier fix (and I am not sure if I can actually solve #5812) I figured it might be worth to split this out.
# Objective
Simple docs/comments only PR that just fixes some outdated file references left over from the render rewrite.
## Solution
- Change the references to point to the correct files
# Objective
The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move.
This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns).
## Solution
This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity).
This means you can remove all cases of `exclusive_system()`:
```rust
// before
commands.add_system(some_system.exclusive_system());
// after
commands.add_system(some_system);
```
I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems:
```rust
fn some_exclusive_system(
world: &mut World,
transforms: &mut QueryState<&Transform>,
state: &mut SystemState<(Res<Time>, Query<&Player>)>,
) {
for transform in transforms.iter(world) {
println!("{transform:?}");
}
let (time, players) = state.get(world);
for player in players.iter() {
println!("{player:?}");
}
}
```
Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system.
I added some targeted SystemParam `static` constraints, which removed the need for this:
``` rust
fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {}
```
## Related
- #2923
- #3001
- #3946
## Changelog
- `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait.
- `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems
- `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam`
- Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api.
## Migration Guide
Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems:
```rust
// Old (0.8)
app.add_system(some_exclusive_system.exclusive_system());
// New (0.9)
app.add_system(some_exclusive_system);
```
Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis:
```rust
// Old (0.8)
app.add_system(some_system.exclusive_system().at_end());
// New (0.9)
app.add_system(some_system.at_end());
```
Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons:
```rust
// Old (0.8)
fn some_system(world: &mut World) {
let mut transforms = world.query::<&Transform>();
for transform in transforms.iter(world) {
}
}
// New (0.9)
fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) {
for transform in transforms.iter(world) {
}
}
```
# Objective
I was working with the TextBundle component bundle because I wanted to change the position of the text that the bundle was holding. I used the transform field on the TextBundle at first because that is normally what controls the position of sprites in Bevy and that's what I was used to working with.
But the actual way to change the position of text inside of a TextBundle is to use the Style's position field, not the TextBundle's transform field.
Anecdotally, it was mentioned on the discord that other users have had this issue too.
## Solution
I added a small doc comment to the TextBundle's transform telling users not to use it to set the position of text. And since this issue applies to the other UI bundles, I added comments there as well!
# Objective
Fixes#6078. The `UiColor` component is unhelpfully named: it is unclear, ambiguous with border color and
## Solution
Rename the `UiColor` component (and associated fields) to `BackgroundColor` / `background_colorl`.
## Migration Guide
`UiColor` has been renamed to `BackgroundColor`. This change affects `NodeBundle`, `ButtonBundle` and `ImageBundle`. In addition, the corresponding field on `ExtractedUiNode` has been renamed to `background_color` for consistency.
This is an adoption of #3775
This merges `TextureAtlas` `from_grid_with_padding` into `from_grid` , adding optional padding and optional offset.
Since the orignal PR, the offset had already been added to from_grid_with_padding through #4836
## Changelog
- Added `padding` and `offset` arguments to `TextureAtlas::from_grid`
- Removed `TextureAtlas::from_grid_with_padding`
## Migration Guide
`TextureAtlas::from_grid_with_padding` was merged into `from_grid` which takes two additional parameters for padding and an offset.
```
// 0.8
TextureAtlas::from_grid(texture_handle, Vec2::new(24.0, 24.0), 7, 1);
// 0.9
TextureAtlas::from_grid(texture_handle, Vec2::new(24.0, 24.0), 7, 1, None, None)
// 0.8
TextureAtlas::from_grid_with_padding(texture_handle, Vec2::new(24.0, 24.0), 7, 1, Vec2::new(4.0, 4.0));
// 0.9
TextureAtlas::from_grid(texture_handle, Vec2::new(24.0, 24.0), 7, 1, Some(Vec2::new(4.0, 4.0)), None)
```
Co-authored-by: olefish <88390729+oledfish@users.noreply.github.com>
# Objective
- Sometimes, like when using shaders, you can only use a time value in `f32`. Unfortunately this suffers from floating precision issues pretty quickly. The standard approach to this problem is to wrap the time after a given period
- This is necessary for https://github.com/bevyengine/bevy/pull/5409
## Solution
- Add a `seconds_since_last_wrapping_period` method on `Time` that returns a `f32` that is the `seconds_since_startup` modulo the `max_wrapping_period`
---
## Changelog
Added `seconds_since_last_wrapping_period` to `Time`
## Additional info
I'm very opened to hearing better names. I don't really like the current naming, I just went with something descriptive.
Co-authored-by: Charles <IceSentry@users.noreply.github.com>
# Objective
Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands).
## Solution
All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input:
```rust
// before:
commands
.spawn()
.insert((A, B, C));
world
.spawn()
.insert((A, B, C);
// after
commands.spawn((A, B, C));
world.spawn((A, B, C));
```
All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api.
By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`).
This improves spawn performance by over 10%:
![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png)
To take this measurement, I added a new `world_spawn` benchmark.
Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main.
**Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).**
---
## Changelog
- All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input
- All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api
- World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior.
## Migration Guide
```rust
// Old (0.8):
commands
.spawn()
.insert_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));
// Old (0.8):
commands.spawn_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));
// Old (0.8):
let entity = commands.spawn().id();
// New (0.9)
let entity = commands.spawn_empty().id();
// Old (0.8)
let entity = world.spawn().id();
// New (0.9)
let entity = world.spawn_empty();
```
# Objective
- Add unit tests for ambiguity detection reporting.
- Incremental implementation of #4299.
## Solution
- Refactor ambiguity detection internals to make it testable. As a bonus, this should make it easier to extend in the future.
## Notes
* This code was copy-pasted from #4299 and modified. Credit goes to @alice-i-cecile and @afonsolage, though I'm not sure who wrote what at this point.
## Objective
Fixes https://github.com/bevyengine/bevy/issues/6063
## Solution
- Use `then_some(x)` instead of `then( || x)`.
- Updated error logs from `bevy_ecs_compile_fail_tests`.
## Migration Guide
From Rust 1.63 to 1.64, a new Clippy error was added; now one should use `then_some(x)` instead of `then( || x)`.
# Objective
Both components already derives `Reflect` and it would be nice to have `FromReflect` in order to ser/de between those types without relaying on `downcast`, since it can fail between different platforms, like WebAssembly.
## Solution
Derive `FromReflect` for `Transform` and `GlobalTransform`.
I thought if I should also derive `FromReflect` for `GlobalTransform`, since it's a computed component, but there may be some use cases where a `GlobalTransform` is needed to be sent over the wire, so I decided to do it.
# Objective
- Reconfigure surface after present mode changes. It seems that this is not done currently at runtime. It's pretty common for games to change such graphical settings at runtime.
- Fixes present mode issue in #5111
## Solution
- Exactly like resolution change gets tracked when extracting window, do the same for present mode.
Additionally, I added present mode (vsync) toggling to window settings example.
# Objective
Take advantage of the "impl Bundle for Component" changes in #2975 / add the follow up changes discussed there.
## Solution
- Change `insert` and `remove` to accept a Bundle instead of a Component (for both Commands and World)
- Deprecate `insert_bundle`, `remove_bundle`, and `remove_bundle_intersection`
- Add `remove_intersection`
---
## Changelog
- Change `insert` and `remove` now accept a Bundle instead of a Component (for both Commands and World)
- `insert_bundle` and `remove_bundle` are deprecated
## Migration Guide
Replace `insert_bundle` with `insert`:
```rust
// Old (0.8)
commands.spawn().insert_bundle(SomeBundle::default());
// New (0.9)
commands.spawn().insert(SomeBundle::default());
```
Replace `remove_bundle` with `remove`:
```rust
// Old (0.8)
commands.entity(some_entity).remove_bundle::<SomeBundle>();
// New (0.9)
commands.entity(some_entity).remove::<SomeBundle>();
```
Replace `remove_bundle_intersection` with `remove_intersection`:
```rust
// Old (0.8)
world.entity_mut(some_entity).remove_bundle_intersection::<SomeBundle>();
// New (0.9)
world.entity_mut(some_entity).remove_intersection::<SomeBundle>();
```
Consider consolidating as many operations as possible to improve ergonomics and cut down on archetype moves:
```rust
// Old (0.8)
commands.spawn()
.insert_bundle(SomeBundle::default())
.insert(SomeComponent);
// New (0.9) - Option 1
commands.spawn().insert((
SomeBundle::default(),
SomeComponent,
))
// New (0.9) - Option 2
commands.spawn_bundle((
SomeBundle::default(),
SomeComponent,
))
```
## Next Steps
Consider changing `spawn` to accept a bundle and deprecate `spawn_bundle`.
# Objective
The doc comments for `Command` methods are a bit inconsistent on the format, they sometimes go out of scope, and most importantly they are wrong, in the sense that they claim to perform the action described by the command, while in reality, they just push a command to perform the action.
- Follow-up of #5938.
- Related to #5913.
## Solution
- Where applicable, only stated that a `Command` is pushed.
- Added a “See also” section for similar methods.
- Added a missing “Panics” section for `Commands::entity`.
- Removed a wrong comment about `Commands::get_or_spawn` returning `None` (It does not return an option).
- Removed polluting descriptions of other items.
- Misc formatting changes.
## Future possibilities
Since the `Command` implementors (`Spawn`, `InsertBundle`, `InitResource`, ...) are public, I thought that it might be appropriate to describe the action of the command there instead of the method, and to add a `method → command struct` link to fill the gap.
If that seems too far-fetched, we may opt to make them private, if possible, or `#[doc(hidden)]`.
# Objective
Working on issue #1934 , with linking examples to the documentation. PR for transform examples.
## Solution
Added to the documentation in bevy_transform transform.rs and global_transform.rs utilizing links from examples.
[X] 3d_rotations.rs linked to rotate in Transform
[X] global_vs_local_translation.rs linked to top of Transform and GlobalTransform documentation
[X] scale.rs linked to scale Struct in Transform
[X] transform.rs linked to top of Transform documentation
[X] translation.rs linked to from_translation in Transform
Co-authored-by: bwhitt7 <103079612+bwhitt7@users.noreply.github.com>
@BoxyUwU this is your fault.
Also cart didn't arrive in time to tell us not to do this.
# Objective
- Fix#2974
## Solution
- The first commit just does the actual change
- Follow up commits do steps to prove that this method works to unify as required, but this does not remove `insert_bundle`.
## Changelog
### Changed
Nested bundles now collapse automatically, and every `Component` now implements `Bundle`.
This means that you can combine bundles and components arbitrarily, for example:
```rust
// before:
.insert(A).insert_bundle(MyBBundle{..})
// after:
.insert_bundle((A, MyBBundle {..}))
```
Note that there will be a follow up PR that removes the current `insert` impl and renames `insert_bundle` to `insert`.
### Removed
The `bundle` attribute in `derive(Bundle)`.
## Migration guide
In `derive(Bundle)`, the `bundle` attribute has been removed. Nested bundles are not collapsed automatically. You should remove `#[bundle]` attributes.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
> Note: This is rebased off #4561 and can be viewed as a competitor to that PR. See `Comparison with #4561` section for details.
# Objective
The current serialization format used by `bevy_reflect` is both verbose and error-prone. Taking the following structs[^1] for example:
```rust
// -- src/inventory.rs
#[derive(Reflect)]
struct Inventory {
id: String,
max_storage: usize,
items: Vec<Item>
}
#[derive(Reflect)]
struct Item {
name: String
}
```
Given an inventory of a single item, this would serialize to something like:
```rust
// -- assets/inventory.ron
{
"type": "my_game::inventory::Inventory",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "inv001",
},
"max_storage": {
"type": "usize",
"value": 10
},
"items": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "my_game::inventory::Item",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Pickaxe"
},
},
},
],
},
},
}
```
Aside from being really long and difficult to read, it also has a few "gotchas" that users need to be aware of if they want to edit the file manually. A major one is the requirement that you use the proper keys for a given type. For structs, you need `"struct"`. For lists, `"list"`. For tuple structs, `"tuple_struct"`. And so on.
It also ***requires*** that the `"type"` entry come before the actual data. Despite being a map— which in programming is almost always orderless by default— the entries need to be in a particular order. Failure to follow the ordering convention results in a failure to deserialize the data.
This makes it very prone to errors and annoyances.
## Solution
Using #4042, we can remove a lot of the boilerplate and metadata needed by this older system. Since we now have static access to type information, we can simplify our serialized data to look like:
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
name: "Pickaxe"
),
],
),
}
```
This is much more digestible and a lot less error-prone (no more key requirements and no more extra type names).
Additionally, it is a lot more familiar to users as it follows conventional serde mechanics. For example, the struct is represented with `(...)` when serialized to RON.
#### Custom Serialization
Additionally, this PR adds the opt-in ability to specify a custom serde implementation to be used rather than the one created via reflection. For example[^1]:
```rust
// -- src/inventory.rs
#[derive(Reflect, Serialize)]
#[reflect(Serialize)]
struct Item {
#[serde(alias = "id")]
name: String
}
```
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
id: "Pickaxe"
),
],
),
},
```
By allowing users to define their own serialization methods, we do two things:
1. We give more control over how data is serialized/deserialized to the end user
2. We avoid having to re-define serde's attributes and forcing users to apply both (e.g. we don't need a `#[reflect(alias)]` attribute).
### Improved Formats
One of the improvements this PR provides is the ability to represent data in ways that are more conventional and/or familiar to users. Many users are familiar with RON so here are some of the ways we can now represent data in RON:
###### Structs
```js
{
"my_crate::Foo": (
bar: 123
)
}
// OR
{
"my_crate::Foo": Foo(
bar: 123
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Foo",
"struct": {
"bar": {
"type": "usize",
"value": 123
}
}
}
```
</details>
###### Tuples
```js
{
"(f32, f32)": (1.0, 2.0)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "(f32, f32)",
"tuple": [
{
"type": "f32",
"value": 1.0
},
{
"type": "f32",
"value": 2.0
}
]
}
```
</details>
###### Tuple Structs
```js
{
"my_crate::Bar": ("Hello World!")
}
// OR
{
"my_crate::Bar": Bar("Hello World!")
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Bar",
"tuple_struct": [
{
"type": "alloc::string::String",
"value": "Hello World!"
}
]
}
```
</details>
###### Arrays
It may be a bit surprising to some, but arrays now also use the tuple format. This is because they essentially _are_ tuples (a sequence of values with a fixed size), but only allow for homogenous types. Additionally, this is how RON handles them and is probably a result of the 32-capacity limit imposed on them (both by [serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-%5BT%3B%2032%5D) and by [bevy_reflect](https://docs.rs/bevy/latest/bevy/reflect/trait.GetTypeRegistration.html#impl-GetTypeRegistration-for-%5BT%3B%2032%5D)).
```js
{
"[i32; 3]": (1, 2, 3)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "[i32; 3]",
"array": [
{
"type": "i32",
"value": 1
},
{
"type": "i32",
"value": 2
},
{
"type": "i32",
"value": 3
}
]
}
```
</details>
###### Enums
To make things simple, I'll just put a struct variant here, but the style applies to all variant types:
```js
{
"my_crate::ItemType": Consumable(
name: "Healing potion"
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::ItemType",
"enum": {
"variant": "Consumable",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Healing potion"
}
}
}
}
```
</details>
### Comparison with #4561
This PR is a rebased version of #4561. The reason for the split between the two is because this PR creates a _very_ different scene format. You may notice that the PR descriptions for either PR are pretty similar. This was done to better convey the changes depending on which (if any) gets merged first. If #4561 makes it in first, I will update this PR description accordingly.
---
## Changelog
* Re-worked serialization/deserialization for reflected types
* Added `TypedReflectDeserializer` for deserializing data with known `TypeInfo`
* Renamed `ReflectDeserializer` to `UntypedReflectDeserializer`
* ~~Replaced usages of `deserialize_any` with `deserialize_map` for non-self-describing formats~~ Reverted this change since there are still some issues that need to be sorted out (in a separate PR). By reverting this, crates like `bincode` can throw an error when attempting to deserialize non-self-describing formats (`bincode` results in `DeserializeAnyNotSupported`)
* Structs, tuples, tuple structs, arrays, and enums are now all de/serialized using conventional serde methods
## Migration Guide
* This PR reduces the verbosity of the scene format. Scenes will need to be updated accordingly:
```js
// Old format
{
"type": "my_game::item::Item",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "bevycraft:stone",
},
"tags": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "alloc::string::String",
"value": "material"
},
],
},
}
// New format
{
"my_game::item::Item": (
id: "bevycraft:stone",
tags: ["material"]
)
}
```
[^1]: Some derives omitted for brevity.
# Objective
Add traits to events in `bevy_input` and `bevy_windows`: `Copy`, `Serialize`/`Deserialize`, `PartialEq`, and `Eq`, as requested in https://github.com/bevyengine/bevy/issues/6022, https://github.com/bevyengine/bevy/issues/6023, https://github.com/bevyengine/bevy/issues/6024.
## Solution
Added the traits to events in `bevy_input` and `bevy_windows`. Added dependency of `serde` in `Cargo.toml` of `bevy_input`.
## Migration Guide
If one has been `.clone()`'ing `bevy_input` events, Clippy will now complain about that. Just remove `.clone()` to solve.
## Other Notes
Some events in `bevy_input` had `f32` fields, so `Eq` trait was not derived for them.
Some events in `bevy_windows` had `String` fields, so `Copy` trait was not derived for them.
Co-authored-by: targrub <62773321+targrub@users.noreply.github.com>
# Objective
Implement `IntoIterator` for `&Extract<P>` if the system parameter it wraps implements `IntoIterator`.
Enables the use of `IntoIterator` with an extracted query.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
`AssetServer::watch_for_changes()` is racy and redundant with `AssetServerSettings`.
Closes#5964.
## Changelog
* Remove `AssetServer::watch_for_changes()`
* Add `AssetServerSettings` to the prelude.
* Minor cleanup.
## Migration Guide
`AssetServer::watch_for_changes()` was removed.
Instead, use the `AssetServerSettings` resource.
```rust
app // AssetServerSettings must be inserted before adding the AssetPlugin or DefaultPlugins.
.insert_resource(AssetServerSettings {
watch_for_changes: true,
..default()
})
```
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
When trying derive `Debug` for type that has `DynamicEnum` it wasn't possible, since neither of `DynamicEnum`, `DynamicTuple`, `DynamicVariant` or `DynamicArray` implements `Debug`.
## Solution
Implement Debug for those types, using `derive` macro
---
## Changelog
- `DynamicEnum`, `DynamicTuple`, `DynamicVariant` and `DynamicArray` now implements `Debug`
# Objective
Fixes#5636
Summary: The FontAtlasSet caches generated font textures per font size. Since font size can be any arbitrary floating point number it is possible for the user to generate thousands of font texture inadvertently by changing the font size over time. This results in a memory leak as these generated font textures fill the available memory.
## Solution
We limit the number of possible font sizes that we will cache and throw an error if the user attempts to generate more. This error encourages the user to use alternative, less performance intensive methods to accomplish the same goal. If the user requires more font sizes and the alternative solutions wont work there is now a TextSettings Resource that the user can set to configure this limit.
---
## Changelog
The number of cached font sizes per font is now limited with a default limit of 100 font sizes per font. This limit is configurable via the new TextSettings struct.
# Objective
A common pitfall since 0.8 is the requirement on `ComputedVisibility`
being present on all ancestors of an entity that itself has
`ComputedVisibility`, without which, the entity becomes invisible.
I myself hit the issue and got very confused, and saw a few people hit
it as well, so it makes sense to provide a hint of what to do when such
a situation is encountered.
- Fixes#5849
- Closes#5616
- Closes#2277
- Closes#5081
## Solution
We now check that all entities with both a `Parent` and a
`ComputedVisibility` component have parents that themselves have a
`ComputedVisibility` component.
Note that the warning is only printed once.
We also add a similar warning to `GlobalTransform`.
This only emits a warning. Because sometimes it could be an intended
behavior.
Alternatives:
- Do nothing and keep repeating to newcomers how to avoid recurring
pitfalls
- Make the transform and visibility propagation tolerant to missing
components (#5616)
- Probably archetype invariants, though the current draft would not
allow detecting that kind of errors
---
## Changelog
- Add a warning when encountering dubious component hierarchy structure
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
# Objective
- To address problems outlined in https://github.com/bevyengine/bevy/issues/5245
## Solution
- Introduce `reflect(skip_serializing)` on top of `reflect(ignore)` which disables automatic serialisation to scenes, but does not disable reflection of the field.
---
## Changelog
- Adds:
- `bevy_reflect::serde::type_data` module
- `SerializationData` structure for describing which fields are to be/not to be ignored, automatically registers as type_data for struct-based types
- the `skip_serialization` flag for `#[reflect(...)]`
- Removes:
- ability to ignore Enum variants in serialization, since that didn't work anyway
## Migration Guide
- Change `#[reflect(ignore)]` to `#[reflect(skip_serializing)]` where disabling reflection is not the intended effect.
- Remove ignore/skip attributes from enum variants as these won't do anything anymore
# Objective
As of Rust 1.59, `std:🧵:available_parallelism` has been stabilized. As of Rust 1.61, the API matches `num_cpus::get` by properly handling Linux's cgroups and other sandboxing mechanisms.
As bevy does not have an established MSRV, we can replace `num_cpus` in `bevy_tasks` and reduce our dependency tree by one dep.
## Solution
Replace `num_cpus` with `std:🧵:available_parallelism`. Wrap it to have a fallback in the case it errors out and have it operate in the same manner as `num_cpus` did.
This however removes `physical_core_count` from the API, though we are currently not using it in any way in first-party crates.
---
## Changelog
Changed: `bevy_tasks::logical_core_count` -> `bevy_tasks::available_parallelism`.
Removed: `bevy_tasks::physical_core_count`.
## Migration Guide
`bevy_tasks::logical_core_count` and `bevy_tasks::physical_core_count` have been removed. `logical_core_count` has been replaced with `bevy_tasks::available_parallelism`, which works identically. If `bevy_tasks::physical_core_count` is required, the `num_cpus` crate can be used directly, as these two were just aliases for `num_cpus` APIs.
# Objective
Fixes Issue #6005.
## Solution
Replaced WorldQuery with ReadOnlyWorldQuery on F generic in Query filters and QueryState to restrict its trait bound.
## Migration Guide
Query filter (`F`) generics are now bound by `ReadOnlyWorldQuery`, rather than `WorldQuery`. If for some reason you were requesting `Query<&A, &mut B>`, please use `Query<&A, With<B>>` instead.
Very small change that improves the usability of `Sprite`.
Before this PR, the only way to render a portion of an `Image` was to create a `TextureAtlas` and use `TextureAtlasSprite`/`SpriteSheetBundle`. This can be very annoying for one-off use cases, like if you just want to remove a border from an image, or something. Using `Sprite`/`SpriteBundle` always meant that the entire full image would be rendered.
This PR adds an optional `rect` field to `Sprite`, allowing a sub-rectangle of the image to be rendered. This is similar to how texture atlases work, but does not require creating a texture atlas asset, making it much more convenient and efficient for quick one-off use cases.
Given how trivial this change is, it really felt like missing functionality in Bevy's sprites API. ;)
## Changelog
Added:
- `rect` field on `Sprite`: allows rendering a portion of the sprite's image; more convenient for one-off use cases, than creating a texture atlas.
# Objective
fixes#5946
## Solution
adjust cluster index calculation for viewport origin.
from reading point 2 of the rasterization algorithm description in https://gpuweb.github.io/gpuweb/#rasterization, it looks like framebuffer space (and so @bulitin(position)) is not meant to be adjusted for viewport origin, so we need to subtract that to get the right cluster index.
- add viewport origin to rust `ExtractedView` and wgsl `View` structs
- subtract from frag coord for cluster index calculation
# Objective
Currently some TextureFormats are not supported by the Image type.
The `TextureFormat::Rg16Unorm` format is useful for storing minmax heightmaps.
Similar to #5249 I now additionally require image to support the dual channel variant.
## Solution
Added `TextureFormat::Rg16Unorm` support to Image.
Additionally this PR derives `Resource` for `SpecializedComputePipelines`, because for some reason this was missing.
All other special pipelines do derive `Resource` already.
Co-authored-by: Kurt Kühnert <51823519+Ku95@users.noreply.github.com>
# Objective
Fixes#5963
## Solution
Add remaining fn in Timer class, this function only minus total duration with elapsed time.
Co-authored-by: Sergi-Ferrez <61662926+Sergi-Ferrez@users.noreply.github.com>
# Objective
While coding in bevy I needed to get the elapsed time of a stopwatch as f64.
I found it quite odd there are functions on Timer to get time as f64 but not on the Stopwatch.
## Solution
- added a function that returns the `Stopwatch` elapsed time as `f64`
---
## Changelog
### Added
- Added a function to get `Stopwatch` elapsed time as `f64`
### Fixed
- The Stopwatch elapsed function had a wrong docs link
# Objective
While using the ParallelExecutor, systems do not actually start until `prepare_systems` completes. In stages where there are large numbers of "empty" systems with very little work to do, this delay adds significant overhead, which can add up over many stages.
## Solution
Immediately and synchronously signal the start of systems that can run without dependencies inside `prepare_systems` instead of waiting for the first executor iteration after `prepare_systems` completes. Any system that is dependent on them still cannot run until after `prepare_systems` completes, but there are a large number of unconstrained systems in the base engine where this is a general benefit in almost every case.
## Performance
This change was tested against `many_foxes` in the default configuration. As this change is sensitive to the overhead around scheduling systems, the spans for measuring system timing, system overhead, and system commands were all commented out for these measurements.
The median stage timings between `main` and this PR are as follows:
|stage|main|this PR|
|:--|:--|:--|
|First|75.54 us|61.61 us|
|LoadAssets|51.05 us|42.32 us|
|PreUpdate|54.6 us|55.56 us|
|Update|61.89 us|51.5 us|
|PostUpdate|7.27 ms|6.71 ms|
|AssetEvents|47.82 us|35.95 us|
|Last|39.19 us|37.71 us|
|reserve_and_flush|57.83 us|48.2 us|
|Extract|1.41 ms|1.28 ms|
|Prepare|554.49 us|502.53 us|
|Queue|216.29 us|207.51 us|
|Sort|67.03 us|60.99 us|
|Render|1.73 ms|1.58 ms|
|Cleanup|33.55 us|30.76 us|
|Clear Entities|18.56 us|17.05 us|
|**full frame**|**11.9 ms**|**10.91 ms**|
For the first few stages, the benefit is small but cumulative over each. For PostUpdate in particular, this allows `parent_update` to run while prepare_systems is running, which is required for the animation and transform propagation systems, which dominate the time spent in the stage, but also frontloads the contention as the other "empty" systems are also running while `parent_update` is running. For Render, where there is just a single large exclusive system, the benefit comes from not waiting on a spuriously scheduled task on the task pool to kick off the system: it's immediately scheduled to run.
# Objective
EntityMut::world takes &mut self instead of &self I don't see any reason for this.
EntityRef is overly restrictive with fn world and could return &'w World
---
## Changelog
- EntityRef now implements Copy and Clone
- EntityRef::world is now fn(&self) -> &'w World instead of fn(&mut self) -> &World
- EntityMut::world is now fn(&self) -> &World instead of fn(&mut self) -> &World
# Objective
Currently, `Local` has a `Sync` bound. Theoretically this is unnecessary as a local can only ever be accessed from its own system, ensuring exclusive access on one thread. This PR removes this restriction.
## Solution
- By removing the `Resource` bound from `Local` and adding the new `SyncCell` threading primative, `Local` can have the `Sync` bound removed.
## Changelog
### Added
- Added `SyncCell` to `bevy_utils`
### Changed
- Removed `Resource` bound from `Local`
- `Local` is now wrapped in a `SyncCell`
## Migration Guide
- Any code relying on `Local<T>` having `T: Resource` may have to be changed, but this is unlikely.
Co-authored-by: PROMETHIA-27 <42193387+PROMETHIA-27@users.noreply.github.com>
While looking into `collide()`, I wrote some tests to confirm the behavior I read in the code. This PR adds those tests and improves the documentation.
Co-authored-by: robem <669201+robem@users.noreply.github.com>
# Objective
- Make people stop believing that commands are applied immediately (hopefully).
- Close#5913.
- Alternative to #5930.
## Solution
I added the clause “to perform impactful changes to the `World`” to the first line to subliminally help the reader accept the fact that some operations cannot be performed immediately without messing up everything.
Then I explicitely said that applying a command requires exclusive `World` access, and finally I proceeded to show when these commands are automatically applied.
I also added a brief paragraph about how commands can be applied manually, if they want.
---
### Further possibilities
If you agree, we can also change the text of the method documentation (in a separate PR) to stress about enqueueing an action instead of just performing it. For example, in `Commands::spawn`:
> Creates a new `Entity`
would be changed to something like:
> Issues a `Command` to spawn a new `Entity`
This may even have a greater effect, since when typing in an IDE, the docs of the method pop up and the programmer can read them on the fly.
# Objective
Without this we can inappropriately merge batches together without properly accounting for non-batch items between them, and the merged batch will then be sorted incorrectly later.
This change seems to reliably fix the issue I was seeing in #5919.
## Solution
Ensure the `batch_phase_system` runs after the `sort_phase_system`, so that batching can only look at actually adjacent phase items.
# Objective
I wanted to run the code
```rust
let reflect_resource: ReflectResource = ...;
let value: Mut<dyn Reflect> = reflect_resource.reflect(world);
value.deref();
// ^ ERROR: deref method doesn't exist because `dyn Reflect` doesnt satisfy `: Sized`.
```
## Solution
Relax `Sized` bounds in all the methods and trait implementations for `Mut` and friends.
# Objective
This code is very disjoint, and the `stage.rs` file that it's in is already very long.
All I've done is move the code and clean up the compiler errors that result.
Followup to #5916, split out from #4299.
# Objective
Ambiguity sets are used to ignore system order ambiguities between groups of systems. However, they are not very useful: they are clunky, poorly integrated, and generally hampered by the difficulty using (or discovering) the ambiguity detector.
As a first step to the work in #4299, we're removing them.
## Migration Guide
Ambiguity sets have been removed.
# Objective
- Our existing change detection API is not flexible enough for advanced users: particularly those attempting to do rollback networking.
- This is an important use case, and with adequate warnings we can make mucking about with change ticks scary enough that users generally won't do it.
- Fixes#5633.
- Closes#2363.
## Changelog
- added `ChangeDetection::set_last_changed` to manually mutate the `last_change_ticks` field"
- the `ChangeDetection` trait now requires an `Inner` associated type, which contains the value being wrapped.
- added `ChangeDetection::bypass_change_detection`, which hands out a raw `&mut Inner`
## Migration Guide
Add the `Inner` associated type and new methods to any type that you've implemented `DetectChanges` for.
# Objective
- I'm currently working on being able to call methods on reflect types (https://github.com/jakobhellermann/bevy_reflect_fns)
- for that, I'd like to add methods to the `Input<KeyCode>` resource (which I'm doing by registering type data)
- implementing `Reflect` is currently a requirement for having type data in the `TypeRegistry`
## Solution
- derive `Reflect` for `KeyCode` and `Input`
- uses `#[reflect_value]` for `Input`, since it's fields aren't supposed to be observable
- using reflect_value would need `Clone` bounds on `T`, but since all the methods (`.pressed` etc) already require `T: Copy`, I unified everything to requiring `Copy`
- add `Send + Sync + 'static` bounds, also required by reflect derive
## Unrelated improvements
I can extract into a separate PR if needed.
- the `Reflect` derive would previously ignore `#[reflect_value]` and only accept `#[reflect_value()]` which was a bit confusing
- the generated code used `val.clone()` on a reference, which is fine if `val` impls `Clone`, but otherwise also compiles with a worse error message. Change to `std::clone::Clone::clone(val)` instead which gives a neat `T does not implement Clone` error
Make API users aware that the type aliases `QueryItem` and `QueryFetch` can be used instead of the more bloated alternative with `WorldQueryGats`.
Fixes#5842
# Objective
Make `TextLayoutInfo` more accessible as a component, rather than internal to `TextPipeline`. I am working on a plugin that manipulates these and there is no (mutable) access to them right now.
## Solution
This changes `TextPipeline::queue_text` to return `TextLayoutInfo`'s rather than storing them in a map internally. `text2d_system` and `text_system` now take the returned `TextLayoutInfo` and store it as a component of the entity. I considered adding an accessor to `TextPipeline` (e.g. `get_glyphs_mut`) but this seems like it might be a little faster, and also has the added benefit of cleaning itself up when entities are removed. Right now nothing is ever removed from the glyphs map.
## Changelog
Removed `DefaultTextPipeline`. `TextPipeline` no longer has a generic key type. `TextPipeline::queue_text` returns `TextLayoutInfo` directly.
## Migration Guide
This might break a third-party crate? I could restore the orginal TextPipeline API as a wrapper around what's in this PR.
# Objective
Fixes#5882
## Solution
Per https://github.com/rust-windowing/winit/issues/1705, the root cause is "UIWindow should be created inside UIApplicationMain". Currently, there are two places to create UIWindow, one is Plugin's build function, which is not inside UIApplicationMain. Just comment it out, and it works.
# Objective
Support monitor selection for all window modes.
Fixes#5875.
## Changelog
* Moved `MonitorSelection` out of `WindowPosition::Centered`, into `WindowDescriptor`.
* `WindowPosition::At` is now relative to the monitor instead of being in 'desktop space'.
* Renamed `MonitorSelection::Number` to `MonitorSelection::Index` for clarity.
* Added `WindowMode` to the prelude.
* `Window::set_position` is now relative to a monitor and takes a `MonitorSelection` as argument.
## Migration Guide
`MonitorSelection` was moved out of `WindowPosition::Centered`, into `WindowDescriptor`.
`MonitorSelection::Number` was renamed to `MonitorSelection::Index`.
```rust
// Before
.insert_resource(WindowDescriptor {
position: WindowPosition::Centered(MonitorSelection::Number(1)),
..default()
})
// After
.insert_resource(WindowDescriptor {
monitor: MonitorSelection::Index(1),
position: WindowPosition::Centered,
..default()
})
```
`Window::set_position` now takes a `MonitorSelection` as argument.
```rust
window.set_position(MonitorSelection::Current, position);
```
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
Clean up taffy nodes when the associated UI node gets removed. The current UI code will keep the taffy nodes around forever.
## Solution
Use `RemovedComponents<Node>` to iterate over nodes that are no longer valid UI nodes or that have been despawned, and remove them from taffy and the internal hash map.
## Implementation Notes
Do note that using `despawn()` instead of `despawn_recursive()` on a UI node that has children will result in a [warnings spam](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/flex/mod.rs#L120) since the children will not be part of a proper UI hierarchy anymore.
---
## Changelog
- Fixed memory leak when nodes are removed in bevy_ui
# Objective
- The `Gamepad` type is a tiny value-containing type that implements `Copy`.
- By convention, references to `Copy` types should be avoided, as they can introduce overhead and muddle the semantics of what's going on.
- This allows us to reduce boilerplate reference manipulation and lifetimes in user facing code.
## Solution
- Make assorted methods on `Gamepads` take / return a raw `Gamepad`, rather than `&Gamepad`.
## Migration Guide
- `Gamepads::iter` now returns an iterator of `Gamepad`. rather than an iterator of `&Gamepad`.
- `Gamepads::contains` now accepts a `Gamepad`, rather than a `&Gamepad`.
## Solution
Exposes the image <-> "texture" as methods on `Image`.
## Extra
I'm wondering if `image_texture_conversion.rs` should be renamed to `image_conversion.rs`. That or the file be deleted altogether in favour of putting the code alongside the rest of the `Image` impl. Its kind-of weird to refer to the `Image` as a texture.
Also `Image::convert` is a public method so I didn't want to edit its signature, but it might be nice to have the function consume the image instead of just passing a reference to it because it would eliminate a clone.
## Changelog
> Rename `image_to_texture` to `Image::from_dynamic`
> Rename `texture_to_image` to `Image::try_into_dynamic`
> `Image::try_into_dynamic` now returns a `Result` (this is to make it easier for users who didn't read that only a few conversions are supported to figure it out.)
# Objective
Document most of the public items of the `bevy_render::camera` module and its
sub-modules.
## Solution
Add docs to most public items. Follow-up from #3447.
# Objective
- Increase consistency across documentation of `Query` methods.
- Fixes#5506
## Solution
- See #4989. This PR is derived from it. It just includes changes to the `Query` methods' docs.
# Objective
Document `PipelineCache` and a few other related types.
## Solution
Add documenting comments to `PipelineCache` and a few other related
types in the same file.
# Objective
https://github.com/bevyengine/bevy/pull/503 added these.
I don't know what problem it solved, the PR doesn't say and the code didn't make it obvious to me.
## Solution
AFAIK removing unsafe `Send`/`Sync` impls can't introduce unsoundness.
Yeet.
## Migration Guide
Why tho.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
The documentation on `Reflect` doesn't account for the recently added reflection traits: [`Array`](https://github.com/bevyengine/bevy/pull/4701) and [`Enum`](https://github.com/bevyengine/bevy/pull/4761).
## Solution
Updated the documentation for `Reflect` to account for the `Array` and `Enum`.
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
- Update notify dependency to 5.0.0 stable
- Fix breaking changes
- Closes#5861
## Solution
- RecommendedWatcher now takes a Config argument. Giving it the default Config should be the same behavior as before (check every 30 seconds)
# Objective
- Update ron to 0.8.0
- Fix breaking changes
- Closes#5862
## Solution
- Removed now non-existing method call (behavior is now the same without it)
# Objective
- Update `Query` docs with better terminology
- add some performance remarks (Fixes#4742)
## Solution
- See #4989. This PR is derived from it. It just includes changes to the `Query` struct docs.
# Objective
Promote the `Rect` utility of `sprite::Rect`, which defines a rectangle
by its minimum and maximum corners, to the `bevy_math` crate to make it
available as a general math type to all crates without the need to
depend on the `bevy_sprite` crate.
Fixes#5575
## Solution
Move `sprite::Rect` into `bevy_math` and fix all uses.
Implement `Reflect` for `Rect` directly into the `bevy_reflect` crate by
having `bevy_reflect` depend on `bevy_math`. This looks like a new
dependency, but the `bevy_reflect` was "cheating" for other math types
by directly depending on `glam` to reflect other math types, thereby
giving the illusion that there was no dependency on `bevy_math`. In
practice conceptually Bevy's math types are reflected into the
`bevy_reflect` crate to avoid a dependency of that crate to a "lower
level" utility crate like `bevy_math` (which in turn would make
`bevy_reflect` be a dependency of most other crates, and increase the
risk of circular dependencies). So this change simply formalizes that
dependency in `Cargo.toml`.
The `Rect` struct is also augmented in this change with a collection of
utility methods to improve its usability. A few uses cases are updated
to use those new methods, resulting is more clear and concise syntax.
---
## Changelog
### Changed
- Moved the `sprite::Rect` type into `bevy_math`.
### Added
- Added several utility methods to the `math::Rect` type.
## Migration Guide
The `bevy::sprite::Rect` type moved to the math utility crate as
`bevy::math::Rect`. You should change your imports from `use
bevy::sprite::Rect` to `use bevy::math::Rect`.
# Objective
- In WASM, creating a pipeline can easily take 2 seconds, freezing the game while doing so
- Preloading pipelines can be done during a "loading" state, but it is not trivial to know which pipeline to preload, or when it's done
## Solution
- Add a log with shaders being loaded and their shader defs
- add a function on `PipelineCache` to return the number of ready pipelines
# Objective
- Easier to work with model assets
- Models are often one mesh, many textures. This can be hard to use in Bevy as it's not possible to clone the scene to have one scene for each material. It's still possible to instantiate the texture-less scene, then modify the texture material once spawned but that means happening during play and is quite more painful
## Solution
- Expose the code to clone a scene. This code already existed but was only possible to use to spawn the scene
# Objective
Extend the scope of Gamepad to accommodate devices that have more inputs than a typical controller.
## Solution
Add additional enum variants to both _GamepadButtonType_ and _GamepadAxisType_ that supports up to 255 more non-standard buttons/axis respectively.
## Personal motivation
I have been writing an alternative to the GILRS crate, and with this simple change to the source code, It will be a trivial thing to direct new devices through the bevy systems, even when they do not always behave exactly like your typical controller.
# Objective
- Fixes#5850
## Solution
- As described in the issue, added a `get_entity` method on `Commands` that returns an `Option<EntityCommands>`
## Changelog
- Added the new method with a simple doc test
- I have re-used `get_entity` in `entity`, similarly to how `get_single` is used in `single` while additionally preserving the error message
- Add `#[inline]` to both functions
Entities that have commands queued to despawn system will still return commands when `get_entity` is called but that is representative of the fact that the entity is still around until those commands are flushed.
A potential `contains_entity` could also be added in this PR if desired, that would effectively be replacing Entities.contains but may be more discoverable if this is a common use case.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
I'm build a UI system for bevy. In this UI system there is a concept of a system per UI entity. I had an issue where change detection wasn't working how I would expect and it's because when a function system is ran the `last_change_tick` is updated with the latest tick(from world). In my particular case I want to "wait" to update the `last_change_tick` until after my system runs for each entity.
## Solution
Initially I thought bypassing the change detection all together would be a good fix, but on talking to some users in discord a simpler fix is to just expose `last_change_tick` to the end users. This is achieved by adding the following to the `System` trait:
```rust
/// Allows users to get the system's last change tick.
fn get_last_change_tick(&self) -> u32;
/// Allows users to set the system's last change tick.
fn set_last_change_tick(&mut self, last_change_tick: u32);
```
This causes a bit of weirdness with two implementors of `System`. `FixedTimestep` and `ChainSystem` both implement system and thus it's required that some sort of implementation be given for the new functions. I solved this by outputting a warning and not doing anything for these systems.
I think it's important to understand why I can't add the new functions only to the function system and not to the `System` trait. In my code I store the systems generically as `Box<dyn System<...>>`. I do this because I have differing parameters that are being passed in depending on the UI widget's system. As far as I can tell there isn't a way to take a system trait and cast it into a specific type without knowing what those parameters are.
In my own code this ends up looking something like:
```rust
// Runs per entity.
let old_tick = widget_system.get_last_change_tick();
should_update_children = widget_system.run((widget_tree.clone(), entity.0), world);
widget_system.set_last_change_tick(old_tick);
// later on after all the entities have been processed:
for system in context.systems.values_mut() {
system.set_last_change_tick(world.read_change_tick());
}
```
## Changelog
- Added `get_last_change_tick` and `set_last_change_tick` to `System`'s.
# Objective
Since `identity` is a const fn that takes no arguments it seems logical to make it an associated constant.
This is also more in line with types from glam (eg. `Quat::IDENTITY`).
## Migration Guide
The method `identity()` on `Transform`, `GlobalTransform` and `TransformBundle` has been deprecated.
Use the associated constant `IDENTITY` instead.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
- `for_each` methods inconsistently used an actual generic param or `impl Trait` change it to use `impl Trait` always, change them to be consistent
- some methods returned `'w 's` or `'_ '_`, change them to return `'_ 's`
## Solution
- Do what i just said
---
## Changelog
- `iter_unsafe` and `get_unchecked` no longer return borrows tied to `'w`
## Migration Guide
transmute the returned borrow from `iter_unsafe` and `get_unchecked` if this broke you (although preferably find a way to write your code that doesnt need to do this...)
# Objective
Sometimes it's useful to be able to retrieve all the fields of a container type so that they may be processed separately. With reflection, however, we typically only have access to references.
The only alternative is to "clone" the value using `Reflect::clone_value`. This, however, returns a Dynamic type in most cases. The solution there would be to use `FromReflect` instead, but this also has a problem in that it means we need to add `FromReflect` as an additional bound.
## Solution
Add a `drain` method to all container traits. This returns a `Vec<Box<dyn Reflect>>` (except for `Map` which returns `Vec<(Box<dyn Reflect>, Box<dyn Reflect>)>`).
This allows us to do things a lot simpler. For example, if we finished processing a struct and just need a particular value:
```rust
// === OLD === //
/// May or may not return a Dynamic*** value (even if `container` wasn't a `DynamicStruct`)
fn get_output(container: Box<dyn Struct>, output_index: usize) -> Box<dyn Reflect> {
container.field_at(output_index).unwrap().clone_value()
}
// === NEW === //
/// Returns _exactly_ whatever was in the given struct
fn get_output(container: Box<dyn Struct>, output_index: usize) -> Box<dyn Reflect> {
container.drain().remove(output_index).unwrap()
}
```
### Discussion
* Is `drain` the best method name? It makes sense that it "drains" all the fields and that it consumes the container in the process, but I'm open to alternatives.
---
## Changelog
* Added a `drain` method to the following traits:
* `Struct`
* `TupleStruct`
* `Tuple`
* `Array`
* `List`
* `Map`
* `Enum`
# Objective
- The reflection `List` trait does not have a `pop` function.
- Popping elements off a list is a common use case and is almost always supported by `List`-like types.
## Solution
- Add the `pop()` method to the `List` trait and add the appropriate implementations of this function.
## Migration Guide
- Any custom type that implements the `List` trait will now need to implement the `pop` method.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Fixes#5763
## Solution
Implemented as reflect value like the current `Range`. Is there a benefit to changing everything to a reflect struct?
# Objective
remove `insert_resource_with_id` because `insert_resource_by_id` exists and does almost exactly the same thing
blocked on #5587 because otherwise we will leak a resource when it's inserted
## Solution
remove the function and also add a safety invariant of to `insert_resource_by_id` that the id be valid for the world.
I didn't see any discussion in #4447 about this safety invariant being left off in favor of a panic so I'm curious if there was one or if it just seemed nicer to have less safety invariants for callers to uphold 😅
---
## Changelog
- safety invariant added to `insert_resource_by_id` requiring the id to be valid for world
## Migration Guide
- audit any calls to `insert_resource_by_id` making sure that the id is valid for the world
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Fixes#5581
## Solution
`Window::scale_factor` already has logic for selecting the overridden or actual scale factor, so use it.
I tested this with the displays I have access to, but more testing would be nice. This seems like a pretty straightforward bug/fix though.
## Changelog
### Fixed
Fixed window centering on high-dpi displays.
# Objective
Fixes#5687
## Solution
Update the methods on the `Entity` struct to be `const`, so we can
define compile-time constants and more generally use them in a const
context.
---
## Changelog
### Added
- Most `Entity` methods are now `const fn`.
# Objective
It's not obvious that the `AssetServerSettings` resource must be added before the `AssetPlugin`.
## Solution
Add a doc comment to this effect.
# Objective
- Reduce debugging burden when using events by telling user when they missed an event.
## Solution
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Fixes#5817.
- Removes std::vec::Vec ambiguities in derive_bundle macro
## Solution
Prepend :: to standard library full Vec qualified type name (::std::vec::Vec)
# Objective
- Document `QueryCombinationIter`
## Solution
- Describe the item, add usage and examples
- Copy notes about the number of query items generated from the corresponding query methods (they will be removed in #5742 ([motivation]))
## Additional notes
- Derived from #4989
[motivation]: https://github.com/bevyengine/bevy/pull/4989#issuecomment-1208421496
# Objective
Right now, users have to implement basic system adapters such as `Option` <-> `Result` conversions by themselves. This is slightly annoying and discourages the use of system chaining.
## Solution
Add the module `system_adapter` to the prelude, which contains a collection of common adapters. This is very ergonomic in practice.
## Examples
Convenient early returning.
```rust
use bevy::prelude::*;
App::new()
// If the system fails, just try again next frame.
.add_system(pet_dog.chain(system_adapter::ignore))
.run();
#[derive(Component)]
struct Dog;
fn pet_dog(dogs: Query<(&Name, Option<&Parent>), With<Dog>>) -> Option<()> {
let (dog, dad) = dogs.iter().next()?;
println!("You pet {dog}. He/she/they are a good boy/girl/pupper.");
let (dad, _) = dogs.get(dad?.get()).ok()?;
println!("Their dad's name is {dad}");
Some(())
}
```
Converting the output of a system
```rust
use bevy::prelude::*;
App::new()
.add_system(
find_name
.chain(system_adapter::new(String::from))
.chain(spawn_with_name),
)
.run();
fn find_name() -> &'static str { /* ... */ }
fn spawn_with_name(In(name): In<String>, mut commands: Commands) {
commands.spawn().insert(Name::new(name));
}
```
---
## Changelog
* Added the module `bevy_ecs::prelude::system_adapter`, which contains a collection of common system chaining adapters.
* `new` - Converts a regular fn to a system adapter.
* `unwrap` - Similar to `Result::unwrap`
* `ignore` - Discards the output of the previous system.
# Objective
- Allow users to change the scaling of the UI
- Adopted from #2808
## Solution
- This is an accessibility feature for fixed-size UI elements, allowing the developer to expose a range of UI scales for the player to set a scale that works for their needs.
> - The user can modify the UiScale struct to change the scaling at runtime. This multiplies the Px values by the scale given, while not touching any others.
> - The example showcases how this even allows for fluid transitions
> Here's how the example looks like:
https://user-images.githubusercontent.com/1631166/132979069-044161a9-8e85-45ab-9e93-fcf8e3852c2b.mp4
---
## Changelog
- Added a `UiScale` which can be used to scale all of UI
Co-authored-by: Andreas Weibye <13300393+Weibye@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Help users who are using `load_folder` in wasm builds to find a slightly shorter path to figuring out why their stuff is broken.
## Solution
Adds a warning to `read_directory` in the `WasmAssetIo`.
This is extremely similar to the warning already emitted a few lines below for `watch_for_changes`.
# Objective
Some of the reflection impls for container types had unnecessary `Clone` bounds on their generic arguments. These come from before `FromReflect` when types were instead bound by `Reflect + Clone`. With `FromReflect` this is no longer necessary.
## Solution
Removed all leftover `Clone` bounds from types that use `FromReflect` instead.
## Note
I skipped `Result<T, E>`, `HashSet<T>`, and `Range<T>` since those do not use `FromReflect`. This should probably be handled in a separate PR since it would be a breaking change.
---
## Changelog
- Remove unnecessary `Clone` bounds on reflected containers
# Objective
#5658 made it so that `FromReflect` was used as the bound for `T` in `Option<T>`. However, it did not use this change effectively for the implementation of `Reflect::apply` (it was still using `take`, which would fail for Dynamic types).
Additionally, the changes were not consistent with other methods within the file, such as the ones for `Vec<T>` and `HashMap<K, V>`.
## Solution
Update `Option<T>` to fallback on `FromReflect` if `take` fails, instead of wholly relying on one or the other.
I also chose to update the error messages, as they weren't all too descriptive before.
---
## Changelog
- Use `FromReflect::from_reflect` as a fallback in the `Reflect::apply` implementation for `Option<T>`
# Objective
`SmallVec<T>` was missing a `GetTypeRegistration` impl.
## Solution
Added a `GetTypeRegistration` impl.
---
## Changelog
* Added a `GetTypeRegistration` impl for `SmallVec<T>`
Type registrations were only present for some of the `bevy_math` types, and missing for others. This is a very strange inconsistency, given that they all impl `Reflect` and `FromReflect`. In practice, this means these types cannot be used in scenes.
In particular, this is especially problematic, because `Affine3A` is one of the missing types, and it is now used in `GlobalTransform`. Trying to create a bevy scene that contains `GlobalTransform`s results in an error due to the missing type registration.
# Objective
- While generating https://github.com/jakobhellermann/bevy_reflect_ts_type_export/blob/main/generated/types.ts, I noticed that some types that implement `Reflect` did not register themselves
- `Viewport` isn't reflect but can be (there's a TODO)
## Solution
- register all reflected types
- derive `Reflect` for `Viewport`
## Changelog
- more types are not registered in the type registry
- remove `Serialize`, `Deserialize` impls from `Viewport`
I also decided to remove the `Serialize, Deserialize` from the `Viewport`, since they were (AFAIK) only used for reflection, which now is done without serde. So this is technically a breaking change for people who relied on that impl directly.
Personally I don't think that every bevy type should implement `Serialize, Deserialize`, as that would lead to a ton of code generation that mostly isn't necessary because we can do the same with `Reflect`, but if this is deemed controversial I can remove it from this PR.
## Migration Guide
- `KeyCode` now implements `Reflect` not as `reflect_value`, but with proper struct reflection. The `Serialize` and `Deserialize` impls were removed, now that they are no longer required for scene serialization.
# Objective
Fix a nasty system ordering bug between `update_frusta` and `camera_system` that lead to incorrect frustum s, leading to excessive culling and extremely hard-to-debug visual glitches
## Solution
- add explicit system ordering
# Objective
Very small convenience constructors added to `Size`.
Does not change current examples too much but I'm working on a rather complex UI use-case where this cuts down on some extra typing :)
# Objective
- Fixes#4451
## Solution
- Conditionally compile entity ID cursor as `AtomicI32` when compiling on a platform that does not support 64-bit atomics.
- This effectively raises the MSRV to 1.60 as it uses a `#[cfg]` that was only just stabilized there. (should this be noted in changelog?)
---
## Changelog
- Added `bevy_ecs` support for platforms without 64-bit atomic ints
## Migration Guide
N/A
# Objective
- Morten Mikkelsen clarified that the world normal and tangent must be normalized in the vertex stage and the interpolated values must not be normalized in the fragment stage. This is in order to match the mikktspace approach exactly.
- Fixes#5514 by ensuring the tangent basis matrix (TBN) is orthonormal
## Solution
- Normalize the world normal in the vertex stage and not the fragment stage
- Normalize the world tangent xyz in the vertex stage
- Take into account the sign of the determinant of the local to world matrix when calculating the bitangent
---
## Changelog
- Fixed - scaling a model that uses normal mapping now has correct lighting again
# Objective
- Fixes#5365
- The `assert!()` when the resource from `World::resource_scope` is inserted into the world is not descriptive.
## Solution
- Add more context to the assert inside of `World::resource_scope` when the `FnOnce` param inserts the resource.
# Objective
`FromReflect` is a commonly used component to the Reflect API. It's required as a bound for reflecting things like `Vec<T>` and `HashMap<K, V>` and is generally useful (if not necessary) to derive on most structs or enums.
Currently, however, it is not exported in `bevy_reflect`'s prelude. This means a module that uses `bevy_reflect` might have the following two lines:
```rust
use bevy_reflect::prelude::*;
use bevy_reflect::FromReflect;
```
Additionally, users of the full engine might need to put:
```rust
use bevy::prelude::*;
use bevy::reflect::FromReflect;
```
## Solution
Add `FromReflect` to the prelude of `bevy_reflect`.
---
## Changelog
- Added `FromReflect` to the prelude of `bevy_reflect`
# Objective
- Similar to `SystemChangeTick`, probably somewhat useful for debugging messages.
---
## Changelog
- Added `SystemName` which copies the `SystemMeta::name` field so it can be accessed within a system.
Probably a copy-paste error, but `Add<Color>` and `AddAssign<Color>` should use `rhs.as_hlsa_f32()` instead of `rhs.as_linear_rgba_f32()` when the LHS is a `Color::Hsla`. Fixes#5543.
Co-authored-by: Verte <105466627+vertesians@users.noreply.github.com>
# Objective
The reflection impls on `Option<T>` have the bound `T: Reflect + Clone`. This means that using `FromReflect` requires `Clone` even though we can normally get away with just `FromReflect`.
## Solution
Update the bounds on `Option<T>` to match that of `Vec<T>`, where `T: FromReflect`.
This helps remove a `Clone` implementation that may be undesired but added for the sole purpose of getting the code to compile.
---
## Changelog
* Reflection on `Option<T>` now has `T` bound by `FromReflect` rather than `Reflect + Clone`
* Added a `FromReflect` impl for `Instant`
## Migration Guide
If using `Option<T>` with Bevy's reflection API, `T` now needs to implement `FromReflect` rather than just `Clone`. This can be achieved easily by simply deriving `FromReflect`:
```rust
// OLD
#[derive(Reflect, Clone)]
struct Foo;
let reflected: Box<dyn Reflect> = Box::new(Some(Foo));
// NEW
#[derive(Reflect, FromReflect)]
struct Foo;
let reflected: Box<dyn Reflect> = Box::new(Some(Foo));
```
> Note: You can still derive `Clone`, but it's not required in order to compile.
# Objective
Rust 1.63 resolved [an issue](https://github.com/rust-lang/rust/issues/83701) that prevents you from combining explicit generic arguments with `impl Trait` arguments.
Now, we no longer need to use dynamic dispatch to work around this.
## Migration Guide
The methods `Schedule::get_stage` and `get_stage_mut` now accept `impl StageLabel` instead of `&dyn StageLabel`.
### Before
```rust
let stage = schedule.get_stage_mut::<SystemStage>(&MyLabel)?;
```
### After
```rust
let stage = schedule.get_stage_mut::<SystemStage>(MyLabel)?;
```
# Objective
This PR changes it possible to use vertex colors without a texture using the bevy_sprite ColorMaterial.
Fixes#5679
## Solution
- Made multiplication of the output color independent of the COLOR_MATERIAL_FLAGS_TEXTURE_BIT bit
- Extended mesh2d_vertex_color_texture example to show off both vertex colors and tinting
Not sure if extending the existing example was the right call but it seems to be reasonable to me.
I couldn't find any tests for the shaders and I think adding shader testing would be beyond the scope of this PR. So no tests in this PR. 😬
Co-authored-by: Jonas Wagner <jonas@29a.ch>
# Objective
While poking around the hierarchy code, I wondered why some asserts in tests were duplicated.
Some git blame later, I found out that commit ( 8eb0440f1e ) added already existing asserts while removing others.
## Solution
Remove the duplicated asserts.
# Objective
When an invalid attribute is inserted and the LogPlugin is not enabled the full error is not printed which means makes it hard to diagnose.
## Solution
- Always print the full message in the panic.
## Notes
I originally had a separate error log because I wanted to make it clearer for users, but this is probably causing more issues than necessary.
# Objective
Remove unused `enum DepthCalculation` and its usages. This was used to compute visible entities in the [old renderer](db665b96c0/crates/bevy_render/src/camera/visible_entities.rs), but is now unused.
## Solution
`sed 's/DepthCalculation//g'`
---
## Changelog
### Changed
Removed `bevy_render:📷:DepthCalculation`.
## Migration Guide
Remove references to `bevy_render:📷:DepthCalculation`, such as `use bevy_render:📷:DepthCalculation`. Remove `depth_calculation` fields from Projections.
# Objective
Make CI pass on bevy main.
Update to rust-1.63, updated clippy to 1.63 which introduced the following enhancements:
- [undocumented_unsafe_blocks](https://rust-lang.github.io/rust-clippy/master/index.html#undocumented_unsafe_blocks): Now also lints on unsafe trait implementations
This caught two incorrectly written ( but existing) safety comments for unsafe traits.
## Solution
Fix the comment to use `SAFETY:`
# Objective
While trying out the lint `unsafe_op_in_unsafe_fn` I noticed that `insert_resource_by_id` didn't drop the old value if it already existed, and reimplemented `Column::replace` manually for no apparent reason.
## Solution
- use `Column::replace` and add a test expecting the correct drop count
---
## Changelog
- `World::insert_resource_by_id` will now correctly drop the old resource value, if one already existed
# Objective
- The `Display` impl for `ReflectPathError` is pretty unspecific (e.g. `the current struct doesn't have a field with the given name`
- it has info for better messages available
## Solution
- make the display impl more descriptive by including values from the type
# Objective
- `ReflectMut` served no purpose that wasn't met by `Mut<dyn Reflect>` which is easier to understand since you have to deal with fewer types
- there is another `ReflectMut` type that could be confused with this one
## Solution/Changelog
- relax `T: ?Sized` bound in `Mut<T>`
- replace all instances of `ReflectMut` with `Mut<dyn Reflect>`
# Objective
Provide a safe API to access an `EntityMut`'s `World`.
## Solution
* Add `EntityMut::into_world_mut` for safe access to the entity's world.
---
## Changelog
* Add `EntityMut::into_world_mut` for safe access to the entity's world.
# Objective
`ShaderData` is marked as public, but is an internal type only used by one other
internal type, so it should be made private.
## Solution
`ShaderData` is only used in `ShaderCache`, and the latter is private,
so there is no need to make the former public. This change removes the
`pub` keyword from `ShaderData`, hidding it as the implementation detail
it is.
Split from #5600
# Objective
- I often have UI nodes that are completely transparent and just for organisation
- Don't render them
- I doesn't bring a lot of improvements, but it doesn't add a lot of complexity either
*This PR description is an edited copy of #5007, written by @alice-i-cecile.*
# Objective
Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds.
While ergonomic, this results in several drawbacks:
* it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource
* it is challenging to discover if a type is intended to be used as a resource
* we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component).
* dependencies can use the same Rust type as a resource in invisibly conflicting ways
* raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values
* we cannot capture a definitive list of possible resources to display to users in an editor
## Notes to reviewers
* Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits.
*ira: My commits are not as well organized :')*
* I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does.
* I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981.
## Changelog
`Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro.
## Migration Guide
Add `#[derive(Resource)]` to all types you are using as a resource.
If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics.
`ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing.
Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead.
Co-authored-by: Alice <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- I wanted to have controls independent from keyboard layout and found that bevy doesn't have a proper implementation for that
## Solution
- I created a `ScanCode` enum with two hundreds scan codes and updated `keyboard_input_system` to include and update `ResMut<Input<ScanCode>>`
- closes both https://github.com/bevyengine/bevy/issues/2052 and https://github.com/bevyengine/bevy/issues/862
Co-authored-by: Bleb1k <91003089+Bleb1k@users.noreply.github.com>
#4197 intended to remove all `pub` constructors of `Children` and `Parent` and it seems like this one was missed.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
- Fixes#5544
- Part of the splitting process of #3692.
## Solution
- Document everything in the `gamepad.rs` file.
- Add a doc example for mocking gamepad input.
---
## Changelog
- Added and updated the documentation inside of the `gamepad.rs` file.
# Objective
- Similar to #5512 , the `View` struct definition in the shaders in `bevy_sprite` and `bevy_ui` were out of sync with the rust-side `ViewUniform`. Only `view_proj` was being used and is the first member and as those shaders are not customisable it makes little difference in practice, unlike for `Mesh2d`.
## Solution
- Sync shader `View` struct definition in `bevy_sprite` and `bevy_ui` with the correct definition that matches `ViewUniform`
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Change frametimediagnostic from seconds to milliseconds because this will always be less than one seconds and is the common diagnostic display unit for game engines.
## Solution
- multiplied the existing value by 1000
---
## Changelog
Frametimes are now reported in milliseconds
Co-authored-by: Syama Mishra <38512086+SyamaMishra@users.noreply.github.com>
Co-authored-by: McSpidey <mcspidey@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
In Bevy 0.8, the default filter mode was changed to linear (#4465). I believe this is a sensible default, but it's also very common to want to use point filtering (e.g. for pixel art games).
## Solution
I am proposing including `bevy_render::texture::ImageSettings` in the Bevy prelude so it is more ergonomic to change the filtering in such cases.
---
## Changelog
### Added
- Added `bevy_render::texture::ImageSettings` to prelude.
# Objective
Add reflect/from reflect impls for NonZero integer types. I'm guessing these haven't been added yet because no one has needed them as of yet.
# Objective
Simplify the worldquery trait hierarchy as much as possible by putting it all in one trait. If/when gats are stabilised this can be trivially migrated over to use them, although that's not why I made this PR, those reasons are:
- Moves all of the conceptually related unsafe code for a worldquery next to eachother
- Removes now unnecessary traits simplifying the "type system magic" in bevy_ecs
---
## Changelog
All methods/functions/types/consts on `FetchState` and `Fetch` traits have been moved to the `WorldQuery` trait and the other traits removed. `WorldQueryGats` now only contains an `Item` and `Fetch` assoc type.
## Migration Guide
Implementors should move items in impls to the `WorldQuery/Gats` traits and remove any `Fetch`/`FetchState` impls
Any use sites of items in the `Fetch`/`FetchState` traits should be updated to use the `WorldQuery` trait items instead
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Fixes#5384 and maybe other issues around window closing/app not exiting
## Solution
There are three systems involved in exiting when closing a window:
- `close_when_requested` asking Winit to close the window in stage `Update`
- `exit_on_all_closed` exiting when no window remains opened in stage `Update`
- `change_window` removing windows that are closed in stage `PostUpdate`
This ordering meant that when closing a window, we had to run one more frame to actually exit. As there was no window, panics could occur in systems assuming there was a window. In case of Bevy app using a low power options, that means waiting for the timeout before actually exiting the app (60 seconds by default)
This PR changes the ordering so that `exit_on_all_closed` happens after `change_window` in the same frame, so there isn't an extra frame without window
> In draft until #4761 is merged. See the relevant commits [here](a85fe94a18).
---
# Objective
Update enums across Bevy to use the new enum reflection and get rid of `#[reflect_value(...)]` usages.
## Solution
Find and replace all[^1] instances of `#[reflect_value(...)]` on enum types.
---
## Changelog
- Updated all[^1] reflected enums to implement `Enum` (i.e. they are no longer `ReflectRef::Value`)
## Migration Guide
Bevy-defined enums have been updated to implement `Enum` and are not considered value types (`ReflectRef::Value`) anymore. This means that their serialized representations will need to be updated. For example, given the Bevy enum:
```rust
pub enum ScalingMode {
None,
WindowSize,
Auto { min_width: f32, min_height: f32 },
FixedVertical(f32),
FixedHorizontal(f32),
}
```
You will need to update the serialized versions accordingly.
```js
// OLD FORMAT
{
"type": "bevy_render:📷:projection::ScalingMode",
"value": FixedHorizontal(720),
},
// NEW FORMAT
{
"type": "bevy_render:📷:projection::ScalingMode",
"enum": {
"variant": "FixedHorizontal",
"tuple": [
{
"type": "f32",
"value": 720,
},
],
},
},
```
This may also have other smaller implications (such as `Debug` representation), but serialization is probably the most prominent.
[^1]: All enums except `HandleId` as neither `Uuid` nor `AssetPathId` implement the reflection traits
# Objective
> This is a revival of #1347. Credit for the original PR should go to @Davier.
Currently, enums are treated as `ReflectRef::Value` types by `bevy_reflect`. Obviously, there needs to be better a better representation for enums using the reflection API.
## Solution
Based on prior work from @Davier, an `Enum` trait has been added as well as the ability to automatically implement it via the `Reflect` derive macro. This allows enums to be expressed dynamically:
```rust
#[derive(Reflect)]
enum Foo {
A,
B(usize),
C { value: f32 },
}
let mut foo = Foo::B(123);
assert_eq!("B", foo.variant_name());
assert_eq!(1, foo.field_len());
let new_value = DynamicEnum::from(Foo::C { value: 1.23 });
foo.apply(&new_value);
assert_eq!(Foo::C{value: 1.23}, foo);
```
### Features
#### Derive Macro
Use the `#[derive(Reflect)]` macro to automatically implement the `Enum` trait for enum definitions. Optionally, you can use `#[reflect(ignore)]` with both variants and variant fields, just like you can with structs. These ignored items will not be considered as part of the reflection and cannot be accessed via reflection.
```rust
#[derive(Reflect)]
enum TestEnum {
A,
// Uncomment to ignore all of `B`
// #[reflect(ignore)]
B(usize),
C {
// Uncomment to ignore only field `foo` of `C`
// #[reflect(ignore)]
foo: f32,
bar: bool,
},
}
```
#### Dynamic Enums
Enums may be created/represented dynamically via the `DynamicEnum` struct. The main purpose of this struct is to allow enums to be deserialized into a partial state and to allow dynamic patching. In order to ensure conversion from a `DynamicEnum` to a concrete enum type goes smoothly, be sure to add `FromReflect` to your derive macro.
```rust
let mut value = TestEnum::A;
// Create from a concrete instance
let dyn_enum = DynamicEnum::from(TestEnum::B(123));
value.apply(&dyn_enum);
assert_eq!(TestEnum::B(123), value);
// Create a purely dynamic instance
let dyn_enum = DynamicEnum::new("TestEnum", "A", ());
value.apply(&dyn_enum);
assert_eq!(TestEnum::A, value);
```
#### Variants
An enum value is always represented as one of its variants— never the enum in its entirety.
```rust
let value = TestEnum::A;
assert_eq!("A", value.variant_name());
// Since we are using the `A` variant, we cannot also be the `B` variant
assert_ne!("B", value.variant_name());
```
All variant types are representable within the `Enum` trait: unit, struct, and tuple.
You can get the current type like:
```rust
match value.variant_type() {
VariantType::Unit => println!("A unit variant!"),
VariantType::Struct => println!("A struct variant!"),
VariantType::Tuple => println!("A tuple variant!"),
}
```
> Notice that they don't contain any values representing the fields. These are purely tags.
If a variant has them, you can access the fields as well:
```rust
let mut value = TestEnum::C {
foo: 1.23,
bar: false
};
// Read/write specific fields
*value.field_mut("bar").unwrap() = true;
// Iterate over the entire collection of fields
for field in value.iter_fields() {
println!("{} = {:?}", field.name(), field.value());
}
```
#### Variant Swapping
It might seem odd to group all variant types under a single trait (why allow `iter_fields` on a unit variant?), but the reason this was done ~~is to easily allow *variant swapping*.~~ As I was recently drafting up the **Design Decisions** section, I discovered that other solutions could have been made to work with variant swapping. So while there are reasons to keep the all-in-one approach, variant swapping is _not_ one of them.
```rust
let mut value: Box<dyn Enum> = Box::new(TestEnum::A);
value.set(Box::new(TestEnum::B(123))).unwrap();
```
#### Serialization
Enums can be serialized and deserialized via reflection without needing to implement `Serialize` or `Deserialize` themselves (which can save thousands of lines of generated code). Below are the ways an enum can be serialized.
> Note, like the rest of reflection-based serialization, the order of the keys in these representations is important!
##### Unit
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "A"
}
}
```
##### Tuple
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "B",
"tuple": [
{
"type": "usize",
"value": 123
}
]
}
}
```
<details>
<summary>Effects on Option</summary>
This ends up making `Option` look a little ugly:
```json
{
"type": "core::option::Option<usize>",
"enum": {
"variant": "Some",
"tuple": [
{
"type": "usize",
"value": 123
}
]
}
}
```
</details>
##### Struct
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "C",
"struct": {
"foo": {
"type": "f32",
"value": 1.23
},
"bar": {
"type": "bool",
"value": false
}
}
}
}
```
## Design Decisions
<details>
<summary><strong>View Section</strong></summary>
This section is here to provide some context for why certain decisions were made for this PR, alternatives that could have been used instead, and what could be improved upon in the future.
### Variant Representation
One of the biggest decisions was to decide on how to represent variants. The current design uses a "all-in-one" design where unit, tuple, and struct variants are all simultaneously represented by the `Enum` trait. This is not the only way it could have been done, though.
#### Alternatives
##### 1. Variant Traits
One way of representing variants would be to define traits for each variant, implementing them whenever an enum featured at least one instance of them. This would allow us to define variants like:
```rust
pub trait Enum: Reflect {
fn variant(&self) -> Variant;
}
pub enum Variant<'a> {
Unit,
Tuple(&'a dyn TupleVariant),
Struct(&'a dyn StructVariant),
}
pub trait TupleVariant {
fn field_len(&self) -> usize;
// ...
}
```
And then do things like:
```rust
fn get_tuple_len(foo: &dyn Enum) -> usize {
match foo.variant() {
Variant::Tuple(tuple) => tuple.field_len(),
_ => panic!("not a tuple variant!")
}
}
```
The reason this PR does not go with this approach is because of the fact that variants are not separate types. In other words, we cannot implement traits on specific variants— these cover the *entire* enum. This means we offer an easy footgun:
```rust
let foo: Option<i32> = None;
let my_enum = Box::new(foo) as Box<dyn TupleVariant>;
```
Here, `my_enum` contains `foo`, which is a unit variant. However, since we need to implement `TupleVariant` for `Option` as a whole, it's possible to perform such a cast. This is obviously wrong, but could easily go unnoticed. So unfortunately, this makes it not a good candidate for representing variants.
##### 2. Variant Structs
To get around the issue of traits necessarily needing to apply to both the enum and its variants, we could instead use structs that are created on a per-variant basis. This was also considered but was ultimately [[removed](71d27ab3c6) due to concerns about allocations.
Each variant struct would probably look something like:
```rust
pub trait Enum: Reflect {
fn variant_mut(&self) -> VariantMut;
}
pub enum VariantMut<'a> {
Unit,
Tuple(TupleVariantMut),
Struct(StructVariantMut),
}
struct StructVariantMut<'a> {
fields: Vec<&'a mut dyn Reflect>,
field_indices: HashMap<Cow<'static, str>, usize>
}
```
This allows us to isolate struct variants into their own defined struct and define methods specifically for their use. It also prevents users from casting to it since it's not a trait. However, this is not an optimal solution. Both `field_indices` and `fields` will require an allocation (remember, a `Box<[T]>` still requires a `Vec<T>` in order to be constructed). This *might* be a problem if called frequently enough.
##### 3. Generated Structs
The original design, implemented by @Davier, instead generates structs specific for each variant. So if we had a variant path like `Foo::Bar`, we'd generate a struct named `FooBarWrapper`. This would be newtyped around the original enum and forward tuple or struct methods to the enum with the chosen variant.
Because it involved using the `Tuple` and `Struct` traits (which are also both bound on `Reflect`), this meant a bit more code had to be generated. For a single struct variant with one field, the generated code amounted to ~110LoC. However, each new field added to that variant only added ~6 more LoC.
In order to work properly, the enum had to be transmuted to the generated struct:
```rust
fn variant(&self) -> crate::EnumVariant<'_> {
match self {
Foo::Bar {value: i32} => {
let wrapper_ref = unsafe {
std::mem::transmute::<&Self, &FooBarWrapper>(self)
};
crate::EnumVariant::Struct(wrapper_ref as &dyn crate::Struct)
}
}
}
```
This works because `FooBarWrapper` is defined as `repr(transparent)`.
Out of all the alternatives, this would probably be the one most likely to be used again in the future. The reasons for why this PR did not continue to use it was because:
* To reduce generated code (which would hopefully speed up compile times)
* To avoid cluttering the code with generated structs not visible to the user
* To keep bevy_reflect simple and extensible (these generated structs act as proxies and might not play well with current or future systems)
* To avoid additional unsafe blocks
* My own misunderstanding of @Davier's code
That last point is obviously on me. I misjudged the code to be too unsafe and unable to handle variant swapping (which it probably could) when I was rebasing it. Looking over it again when writing up this whole section, I see that it was actually a pretty clever way of handling variant representation.
#### Benefits of All-in-One
As stated before, the current implementation uses an all-in-one approach. All variants are capable of containing fields as far as `Enum` is concerned. This provides a few benefits that the alternatives do not (reduced indirection, safer code, etc.).
The biggest benefit, though, is direct field access. Rather than forcing users to have to go through pattern matching, we grant direct access to the fields contained by the current variant. The reason we can do this is because all of the pattern matching happens internally. Getting the field at index `2` will automatically return `Some(...)` for the current variant if it has a field at that index or `None` if it doesn't (or can't).
This could be useful for scenarios where the variant has already been verified or just set/swapped (or even where the type of variant doesn't matter):
```rust
let dyn_enum: &mut dyn Enum = &mut Foo::Bar {value: 123};
// We know it's the `Bar` variant
let field = dyn_enum.field("value").unwrap();
```
Reflection is not a type-safe abstraction— almost every return value is wrapped in `Option<...>`. There are plenty of places to check and recheck that a value is what Reflect says it is. Forcing users to have to go through `match` each time they want to access a field might just be an extra step among dozens of other verification processes.
Some might disagree, but ultimately, my view is that the benefit here is an improvement to the ergonomics and usability of reflected enums.
</details>
---
## Changelog
### Added
* Added `Enum` trait
* Added `Enum` impl to `Reflect` derive macro
* Added `DynamicEnum` struct
* Added `DynamicVariant`
* Added `EnumInfo`
* Added `VariantInfo`
* Added `StructVariantInfo`
* Added `TupleVariantInfo`
* Added `UnitVariantInfo`
* Added serializtion/deserialization support for enums
* Added `EnumSerializer`
* Added `VariantType`
* Added `VariantFieldIter`
* Added `VariantField`
* Added `enum_partial_eq(...)`
* Added `enum_hash(...)`
### Changed
* `Option<T>` now implements `Enum`
* `bevy_window` now depends on `bevy_reflect`
* Implemented `Reflect` and `FromReflect` for `WindowId`
* Derive `FromReflect` on `PerspectiveProjection`
* Derive `FromReflect` on `OrthographicProjection`
* Derive `FromReflect` on `WindowOrigin`
* Derive `FromReflect` on `ScalingMode`
* Derive `FromReflect` on `DepthCalculation`
## Migration Guide
* Enums no longer need to be treated as values and usages of `#[reflect_value(...)]` can be removed or replaced by `#[reflect(...)]`
* Enums (including `Option<T>`) now take a different format when serializing. The format is described above, but this may cause issues for existing scenes that make use of enums.
---
Also shout out to @nicopap for helping clean up some of the code here! It's a big feature so help like this is really appreciated!
Co-authored-by: Gino Valente <gino.valente.code@gmail.com>
# Objective
Currently, actually using a `Local` on a system requires that it be `T: FromWorld`, but that requirement is only expressed on the `SystemParam` machinery, which leads to the confusing error message for when the user attempts to add an invalid system. By adding these bounds to `Local` directly, it improves clarity on usage and semantics.
## Solution
- Add `T: FromWorld` bound to `Local`'s definition
## Migration Guide
- It might be possible for references to `Local`s without `T: FromWorld` to exist, but these should be exceedingly rare and probably dead code. In the event that one of these is encountered, the easiest solutions are to delete the code or wrap the inner `T` in an `Option` to allow it to be default constructed to `None`.
# Objective
- Migrate changes from #3503.
## Solution
- Change `Size<T>` and `UiRect<T>` to `Size` and `UiRect` using `Val`.
- Implement `Sub`, `SubAssign`, `Mul`, `MulAssign`, `Div` and `DivAssign` for `Val`.
- Update tests for `Size`.
---
## Changelog
### Changed
- The generic `T` of `Size` and `UiRect` got removed and instead they both now always use `Val`.
## Migration Guide
- The generic `T` of `Size` and `UiRect` got removed and instead they both now always use `Val`. If you used a `Size<f32>` consider replacing it with a `Vec2` which is way more powerful.
Co-authored-by: KDecay <KDecayMusic@protonmail.com>
# Objective
View mesh2d_view_types.wgsl was missing a couple of fields present in bevy::render::ViewUniform, causing rendering issues for shaders using later fields.
## Solution
Solved by adding the fields in question
# Objective
- Fix / support KTX2 array / cubemap / cubemap array textures
- Fixes#4495 . Supersedes #4514 .
## Solution
- Add `Option<TextureViewDescriptor>` to `Image` to enable configuration of the `TextureViewDimension` of a texture.
- This allows users to set `D2Array`, `D3`, `Cube`, `CubeArray` or whatever they need
- Automatically configure this when loading KTX2
- Transcode all layers and faces instead of just one
- Use the UASTC block size of 128 bits, and the number of blocks in x/y for a given mip level in order to determine the offset of the layer and face within the KTX2 mip level data
- `wgpu` wants data ordered as layer 0 mip 0..n, layer 1 mip 0..n, etc. See https://docs.rs/wgpu/latest/wgpu/util/trait.DeviceExt.html#tymethod.create_texture_with_data
- Reorder the data KTX2 mip X layer Y face Z to `wgpu` layer Y face Z mip X order
- Add a `skybox` example to demonstrate / test loading cubemaps from PNG and KTX2, including ASTC 4x4, BC7, and ETC2 compression for support everywhere. Note that you need to enable the `ktx2,zstd` features to be able to load the compressed textures.
---
## Changelog
- Fixed: KTX2 array / cubemap / cubemap array textures
- Fixes: Validation failure for compressed textures stored in KTX2 where the width/height are not a multiple of the block dimensions.
- Added: `Image` now has an `Option<TextureViewDescriptor>` field to enable configuration of the texture view. This is useful for configuring the `TextureViewDimension` when it is not just a plain 2D texture and the loader could/did not identify what it should be.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Replace `many_for_each_mut` with `iter_many_mut` using the same tricks to avoid aliased mutability that `iter_combinations_mut` uses.
<sub>I tried rebasing the draft PR I made for this before and it died. F</sub>
## Why
`many_for_each_mut` is worse for a few reasons:
1. The closure prevents the use of `continue`, `break`, and `return` behaves like a limited `continue`.
2. rustfmt will crumple it and double the indentation when the line gets too long.
```rust
query.many_for_each_mut(
&entity_list,
|(mut transform, velocity, mut component_c)| {
// Double trouble.
},
);
```
3. It is more surprising to have `many_for_each_mut` as a mutable counterpart to `iter_many` than `iter_many_mut`.
4. It required a separate unsafe fn; more unsafe code to maintain.
5. The `iter_many_mut` API matches the existing `iter_combinations_mut` API.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
Sadly, #4944 introduces a serious exponential despawn behavior, which cannot be included in 0.8. [Handling AABBs properly is a controversial topic](https://github.com/bevyengine/bevy/pull/5423#issuecomment-1199995825) and one that deserves more time than the day we have left before release.
## Solution
This reverts commit c2b332f98a.
# Objective
- Expose the wgpu debug label on storage buffer types.
## Solution
🐄
- Add an optional cow static string and pass that to the label field of create_buffer_with_data
- This pattern is already used by Bevy for debug tags on bind group and layout descriptors.
---
Example Usage:
A buffer is given a label using the label function. Alternatively a buffer may be labeled when it is created if the default() convention is not used.
![ray_buf](https://user-images.githubusercontent.com/106117615/179366494-f037bd8c-4d65-4b37-8135-01ac0c5c8ee0.png)
Here is the buffer appearing with the correct name in RenderDoc. Previously the buffer would have an anonymous name such as "Buffer223":
![buffer_named](https://user-images.githubusercontent.com/106117615/179366552-faeb6c27-5373-4e4e-a0e2-c04446f95a4b.png)
Co-authored-by: rebelroad-reinhart <reinhart@rebelroad.gg>
# Objective
- Improve performance when rendering text
## Solution
- While playing with example `many_buttons`, I noticed a lot of time was spent converting colours
- Investigating, the biggest culprit seems to be text colour. Each glyph in a text is an individual UI node for rendering, with a copy of the colour. Making the conversion to RGBA linear only once per text section reduces the number of conversion done once rendering.
- This improves FPS for example `many_buttons` from ~33 to ~42
- I did the same change for text 2d
# Objective
I found this small ux hiccup when writing the 0.8 blog post:
```rust
image.sampler = ImageSampler::Descriptor(ImageSampler::nearest_descriptor());
```
Not good!
## Solution
```rust
image.sampler = ImageSampler::nearest();
```
(there are Good Reasons to keep around the nearest_descriptor() constructor and I think it belongs on this type)
# Objective
`ReadOnlyWorldQuery` should have required `Self::ReadOnly = Self` so that calling `.iter()` on a readonly query is equivelent to calling `iter_mut()`.
## Solution
add `ReadOnly = Self` to the definition of `ReadOnlyWorldQuery`
---
## Changelog
ReadOnlyWorldQuery's `ReadOnly` assoc type is now always equal to `Self`
## Migration Guide
Make `Self::ReadOnly = Self` hold
# Objective
fix an error in shadow map indexing that occurs when point lights without shadows are used in conjunction with spotlights with shadows
## Solution
calculate point_light_count correctly
# Objective
Enable treating components and resources equally, which can
simplify the implementation of some systems where only the change
detection feature is relevant and not the kind of object (resource or
component).
## Solution
Implement `From<ResMut<T>>` and `From<NonSendMut<T>>` for
`Mut`. Since the 3 structs are similar, and only differ by their system
param role, the conversion is trivial.
---
## Changelog
Added - `From<ResMut>` and `From<NonSendMut>` for `Mut<T>`.
# Objective
- Even though it's marked as optional, it is no longer possible to not depend on `bevy_render` as it's a dependency of `bevy_scene`
## Solution
- Make `bevy_scene` optional
- For the minimalist among us, also make `bevy_asset` optional
# Objective
- Fix some typos
## Solution
For the first time in my life, I made a pull request to OSS.
Am I right?
Co-authored-by: eiei114 <60887155+eiei114@users.noreply.github.com>
# Objective
- `#![warn(missing_docs)]` was added to bevy_asset in #3536
- A method was not documented when targeting wasm
## Solution
- Add documentation for it
# Objective
Some generic types like `Option<T>`, `Vec<T>` and `HashMap<K, V>` implement `Reflect` when where their generic types `T`/`K`/`V` implement `Serialize + for<'de> Deserialize<'de>`.
This is so that in their `GetTypeRegistration` impl they can insert the `ReflectSerialize` and `ReflectDeserialize` type data structs.
This has the annoying side effect that if your struct contains a `Option<NonSerdeStruct>` you won't be able to derive reflect (https://github.com/bevyengine/bevy/issues/4054).
## Solution
- remove the `Serialize + Deserialize` bounds on wrapper types
- this means that `ReflectSerialize` and `ReflectDeserialize` will no longer be inserted even for `.register::<Option<DoesImplSerde>>()`
- add `register_type_data<T, D>` shorthand for `registry.get_mut(T).insert(D::from_type<T>())`
- require users to register their specific generic types **and the serde types** separately like
```rust
.register_type::<Option<String>>()
.register_type_data::<Option<String>, ReflectSerialize>()
.register_type_data::<Option<String>, ReflectDeserialize>()
```
I believe this is the best we can do for extensibility and convenience without specialization.
## Changelog
- `.register_type` for generic types like `Option<T>`, `Vec<T>`, `HashMap<K, V>` will no longer insert `ReflectSerialize` and `ReflectDeserialize` type data. Instead you need to register it separately for concrete generic types like so:
```rust
.register_type::<Option<String>>()
.register_type_data::<Option<String>, ReflectSerialize>()
.register_type_data::<Option<String>, ReflectDeserialize>()
```
TODO: more docs and tweaks to the scene example to demonstrate registering generic types.
# Objective
- wgpu 0.13 has validation to ensure that the width and height specified for a texture are both multiples of the respective block width and block height. This means validation fails for compressed textures with say a 4x4 block size, but non-modulo-4 image width/height.
## Solution
- Using `Extent3d`'s `physical_size()` method in the `dds` loader. It takes a `TextureFormat` argument and ensures the resolution is correct.
---
## Changelog
- Fixes: Validation failure for compressed textures stored in `dds` where the width/height are not a multiple of the block dimensions.
# Objective
the bevy pbr shader doesn't handle at all normal maps
if a mesh doesn't have backed tangents. This is a pitfall
(that I fell into) and needs to be documented.
# Solution
Document the behavior. (Also document a few other
`StandardMaterial` fields)
## Changelog
* Add documentation to `emissive`, `normal_map_texture` and `occlusion_texture` fields of `StandardMaterial`.
# Objective
I've found there is a duplicated line, probably left after some copy paste.
## Solution
- removed it
---
Co-authored-by: adsick <vadimgangsta73@gmail.com>
# Objective
UI nodes can be hidden by setting their `Visibility` property. Since #5310 was merged, this is now ergonomic to use, as visibility is now inherited.
However, UI nodes still receive (and store) interactions when hidden, resulting in surprising hidden state (and an inability to otherwise disable UI nodes.
## Solution
Fixes#5360.
I've updated the `ui_focus_system` to accomplish this in a minimally intrusive way, and updated the docs to match.
**NOTE:** I have not added automated tests to verify this behavior, as we do not currently have a good testing paradigm for `bevy_ui`. I'm not thrilled with that by any means, but I'm not sure fixing it is within scope.
## Paths not taken
### Separate `Disabled` component
This is a much larger and more controversial change, and not well-scoped to UI.
Furthermore, it is extremely rare that you want hidden UI elements to function: the most common cases are for things like changing tabs, collapsing elements or so on.
Splitting this behavior would be more complex, and substantially violate user expectations.
### A separate limbo world
Mentioned in the linked issue. Super cool, but all of the problems of the `Disabled` component solution with a whole new RFC-worth of complexity.
### Using change detection to reduce the amount of redundant work
Adds a lot of complexity for questionable performance gains. Likely involves a complete refactor of the entire system.
We simply don't have the tests or benchmarks here to justify this.
## Changelog
- UI nodes are now always in an `Interaction::None` state while they are hidden (via the `ComputedVisibility` component).
# Objective
- Fixes#5293
- UI nodes with a rotation that made the top left corner lower than the top right corner (z rotations greater than π/4) were culled
## Solution
- Do not cull nodes with a rotation, but don't do proper culling in this case
As a reminder, changing rotation and scale of UI nodes is not recommended as it won't impact layout. This is a quick fix but doesn't handle properly rotations and scale in clipping/culling. This would need a lot more work as mentioned here: c2b332f98a/crates/bevy_ui/src/render/mod.rs (L404-L405)
# Objective
I noticed while working on #5366 that the documentation for label types wasn't working correctly. Having experimented with this for a few weeks, I believe that generating docs in macros is more effort than it's worth.
## Solution
Add more boilerplate, copy-paste and edit the docs across types. This also lets us add custom doctests for specific types. Also, we don't need `concat_idents` as a dependency anymore.
# Objective
- Migrate changes from #3503.
## Solution
- Document `Size` and `UiRect`.
- I also removed the type alias from the `size_ops` test since it's unnecessary.
## Follow Up
After this change is merged I'd follow up with removing the generics from `Size` and `UiRect` since `Val` should be extensible enough. This was also discussed and decided on in #3503. let me know if this is not needed or wanted anymore!
# Objective
I want to use the `deno_runtime` crate in my game, but it has a conflict with the version of the `notify` crate that Bevy depends on.
## Solution
Updates the version of the `notify` crate the Bevy depends on.
If users try to implement a custom asset loader, they must manually import anyhow::error as it's used by the asset loader trait but not exported.
2b93ab5812/examples/asset/custom_asset.rs (L25)Fixes#3138
Co-authored-by: sark <sarkahn@hotmail.com>
# Objective
Creating UI elements is very boilerplate-y with lots of indentation.
This PR aims to reduce boilerplate around creating text elements.
## Changelog
* Renamed `Text::with_section` to `from_section`.
It no longer takes a `TextAlignment` as argument, as the vast majority of cases left it `Default::default()`.
* Added `Text::from_sections` which creates a `Text` from a list of `TextSections`.
Reduces line-count and reduces indentation by one level.
* Added `Text::with_alignment`.
A builder style method for setting the `TextAlignment` of a `Text`.
* Added `TextSection::new`.
Does not reduce line count, but reduces character count and made it easier to read. No more `.to_string()` calls!
* Added `TextSection::from_style` which creates an empty `TextSection` with a style.
No more empty strings! Reduces indentation.
* Added `TextAlignment::CENTER` and friends.
* Added methods to `TextBundle`. `from_section`, `from_sections`, `with_text_alignment` and `with_style`.
## Note for reviewers.
Because of the nature of these changes I recommend setting diff view to 'split'.
~~Look for the book icon~~ cog in the top-left of the Files changed tab.
Have fun reviewing ❤️
<sup> >:D </sup>
## Migration Guide
`Text::with_section` was renamed to `from_section` and no longer takes a `TextAlignment` as argument.
Use `with_alignment` to set the alignment instead.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
- Fix some small errors in the documentation of the `OwningPtr` struct.
## Solution
- Change comments with 4 slashes `////` to doc comments with 3 slashes `///`.
- Fix typos.
# Objective
Update the `calculate_bounds` system to update `Aabb`s
for entities who've either:
- gotten a new mesh
- had their mesh mutated
Fixes https://github.com/bevyengine/bevy/issues/4294.
## Solution
There are two commits here to address the two issues above:
### Commit 1
**This Commit**
Updates the `calculate_bounds` system to operate not only on entities
without `Aabb`s but also on entities whose `Handle<Mesh>` has changed.
**Why?**
So if an entity gets a new mesh, its associated `Aabb` is properly
recalculated.
**Questions**
- This type is getting pretty gnarly - should I extract some types?
- This system is public - should I add some quick docs while I'm here?
### Commit 2
**This Commit**
Updates `calculate_bounds` to update `Aabb`s of entities whose meshes
have been directly mutated.
**Why?**
So if an entity's mesh gets updated, its associated `Aabb` is properly
recalculated.
**Questions**
- I think we should be using `ahash`. Do we want to do that with a
direct `hashbrown` dependency or an `ahash` dependency that we
configure the `HashMap` with?
- There is an edge case of duplicates with `Vec<Entity>` in the
`HashMap`. If an entity gets its mesh handle changed and changed back
again it'll be added to the list twice. Do we want to use a `HashSet`
to avoid that? Or do a check in the list first (assuming iterating
over the `Vec` is faster and this edge case is rare)?
- There is an edge case where, if an entity gets a new mesh handle and
then its old mesh is updated, we'll update the entity's `Aabb` to the
new geometry of the _old_ mesh. Do we want to remove items from the
`Local<HashMap>` when handles change? Does the `Changed` event give us
the old mesh handle? If not we might need to have a
`HashMap<Entity, Handle<Mesh>>` or something so we can unlink entities
from mesh handles when the handle changes.
- I did the `zip()` with the two `HashMap` gets assuming those would
be faster than calculating the Aabb of the mesh (otherwise we could do
`meshes.get(mesh_handle).and_then(Mesh::compute_aabb).zip(entity_mesh_map...)`
or something). Is that assumption way off?
## Testing
I originally tried testing this with `bevy_mod_raycast` as mentioned in the
original issue but it seemed to work (maybe they are currently manually
updating the Aabbs?). I then tried doing it in 2D but it looks like
`Handle<Mesh>` is just for 3D. So I took [this example](https://github.com/bevyengine/bevy/blob/main/examples/3d/pbr.rs)
and added some systems to mutate/assign meshes:
<details>
<summary>Test Script</summary>
```rust
use bevy::prelude::*;
use bevy::render:📷:ScalingMode;
use bevy::render::primitives::Aabb;
/// Make sure we only mutate one mesh once.
#[derive(Eq, PartialEq, Clone, Debug, Default)]
struct MutateMeshState(bool);
/// Let's have a few global meshes that we can cycle between.
/// This way we can be assigned a new mesh, mutate the old one, and then get the old one assigned.
#[derive(Eq, PartialEq, Clone, Debug, Default)]
struct Meshes(Vec<Handle<Mesh>>);
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.init_resource::<MutateMeshState>()
.init_resource::<Meshes>()
.add_startup_system(setup)
.add_system(assign_new_mesh)
.add_system(show_aabbs.after(assign_new_mesh))
.add_system(mutate_meshes.after(show_aabbs))
.run();
}
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut global_meshes: ResMut<Meshes>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
let m1 = meshes.add(Mesh::from(shape::Icosphere::default()));
let m2 = meshes.add(Mesh::from(shape::Icosphere {
radius: 0.90,
..Default::default()
}));
let m3 = meshes.add(Mesh::from(shape::Icosphere {
radius: 0.80,
..Default::default()
}));
global_meshes.0.push(m1.clone());
global_meshes.0.push(m2);
global_meshes.0.push(m3);
// add entities to the world
// sphere
commands.spawn_bundle(PbrBundle {
mesh: m1,
material: materials.add(StandardMaterial {
base_color: Color::hex("ffd891").unwrap(),
..default()
}),
..default()
});
// new 3d camera
commands.spawn_bundle(Camera3dBundle {
projection: OrthographicProjection {
scale: 3.0,
scaling_mode: ScalingMode::FixedVertical(1.0),
..default()
}
.into(),
..default()
});
// old 3d camera
// commands.spawn_bundle(OrthographicCameraBundle {
// transform: Transform::from_xyz(0.0, 0.0, 8.0).looking_at(Vec3::default(), Vec3::Y),
// orthographic_projection: OrthographicProjection {
// scale: 0.01,
// ..default()
// },
// ..OrthographicCameraBundle::new_3d()
// });
}
fn show_aabbs(query: Query<(Entity, &Handle<Mesh>, &Aabb)>) {
for thing in query.iter() {
println!("{thing:?}");
}
}
/// For testing the second part - mutating a mesh.
///
/// Without the fix we should see this mutate an old mesh and it affects the new mesh that the
/// entity currently has.
/// With the fix, the mutation doesn't affect anything until the entity is reassigned the old mesh.
fn mutate_meshes(
mut meshes: ResMut<Assets<Mesh>>,
time: Res<Time>,
global_meshes: Res<Meshes>,
mut mutate_mesh_state: ResMut<MutateMeshState>,
) {
let mutated = mutate_mesh_state.0;
if time.seconds_since_startup() > 4.5 && !mutated {
println!("Mutating {:?}", global_meshes.0[0]);
let m = meshes.get_mut(&global_meshes.0[0]).unwrap();
let mut p = m.attribute(Mesh::ATTRIBUTE_POSITION).unwrap().clone();
use bevy::render::mesh::VertexAttributeValues;
match &mut p {
VertexAttributeValues::Float32x3(v) => {
v[0] = [10.0, 10.0, 10.0];
}
_ => unreachable!(),
}
m.insert_attribute(Mesh::ATTRIBUTE_POSITION, p);
mutate_mesh_state.0 = true;
}
}
/// For testing the first part - assigning a new handle.
fn assign_new_mesh(
mut query: Query<&mut Handle<Mesh>, With<Aabb>>,
time: Res<Time>,
global_meshes: Res<Meshes>,
) {
let s = time.seconds_since_startup() as usize;
let idx = s % global_meshes.0.len();
for mut handle in query.iter_mut() {
*handle = global_meshes.0[idx].clone_weak();
}
}
```
</details>
## Changelog
### Fixed
Entity `Aabb`s not updating when meshes are mutated or re-assigned.
# Objective
- Allows conversion of mutable queries to immutable queries.
- Fixes#4606
## Solution
- Add `to_readonly` method on `Query`, which uses `QueryState::as_readonly`
- `AsRef` is not feasible because creation of new queries is needed.
---
## Changelog
### Added
- Allows conversion of mutable queries to immutable queries using `Query::to_readonly`.
# Objective
https://github.com/bevyengine/bevy/pull/4447 adds functions that can fetch resources/components as `*const ()` ptr by providing the `ComponentId`. This alone is not enough for them to be usable safely with reflection, because there is no general way to go from the raw pointer to a `&dyn Reflect` which is the pointer + a pointer to the VTable of the `Reflect` impl.
By adding a `ReflectFromPtr` type that is included in the type type registration when deriving `Reflect`, safe functions can be implemented in scripting languages that don't assume a type layout and can access the component data via reflection:
```rust
#[derive(Reflect)]
struct StringResource {
value: String
}
```
```lua
local res_id = world:resource_id_by_name("example::StringResource")
local res = world:resource(res_id)
print(res.value)
```
## Solution
1. add a `ReflectFromPtr` type with a `FromType<T: Reflect>` implementation and the following methods:
- ` pub unsafe fn as_reflect_ptr<'a>(&self, val: Ptr<'a>) -> &'a dyn Reflect`
- ` pub unsafe fn as_reflect_ptr_mut<'a>(&self, val: PtrMut<'a>) -> &'a mud dyn Reflect`
Safety requirements of the methods are that you need to check that the `ReflectFromPtr` was constructed for the correct type.
2. add that type to the `TypeRegistration` in the `GetTypeRegistration` impl generated by `#[derive(Reflect)]`.
This is different to other reflected traits because it doesn't need `#[reflect(ReflectReflectFromPtr)]` which IMO should be there by default.
Co-authored-by: Jakob Hellermann <hellermann@sipgate.de>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
after #5355, three methods were added on world:
* `send_event`
* `send_event_batch`
* `send_default_event`
rename `send_default_event` to `send_event_default` for better discoverability
# Objective
- Provide better compile-time errors and diagnostics.
- Add more options to allow more textures types and sampler types.
- Update array_texture example to use upgraded AsBindGroup derive macro.
## Solution
Split out the parsing of the inner struct/field attributes (the inside part of a `#[foo(...)]` attribute) for better clarity
Parse the binding index for all inner attributes, as it is part of all attributes (`#[foo(0, ...)`), then allow each attribute implementer to parse the rest of the attribute metadata as needed. This should make it very trivial to extend/change if needed in the future.
Replaced invocations of `panic!` with the `syn::Error` type, providing fine-grained errors that retains span information. This provides much nicer compile-time errors, and even better IDE errors.
![image](https://user-images.githubusercontent.com/7478134/179452241-6d85d440-4b67-44da-80a7-9d47e8c88b8a.png)
Updated the array_texture example to demonstrate the new changes.
## New AsBindGroup attribute options
### `#[texture(u32, ...)]`
Where `...` is an optional list of arguments.
| Arguments | Values | Default |
|-------------- |---------------------------------------------------------------- | ----------- |
| dimension = "..." | `"1d"`, `"2d"`, `"2d_array"`, `"3d"`, `"cube"`, `"cube_array"` | `"2d"` |
| sample_type = "..." | `"float"`, `"depth"`, `"s_int"` or `"u_int"` | `"float"` |
| filterable = ... | `true`, `false` | `true` |
| multisampled = ... | `true`, `false` | `false` |
| visibility(...) | `all`, `none`, or a list-combination of `vertex`, `fragment`, `compute` | `vertex`, `fragment` |
Example: `#[texture(0, dimension = "2d_array", visibility(vertex, fragment))]`
### `#[sampler(u32, ...)]`
Where `...` is an optional list of arguments.
| Arguments | Values | Default |
|----------- |--------------------------------------------------- | ----------- |
| sampler_type = "..." | `"filtering"`, `"non_filtering"`, `"comparison"`. | `"filtering"` |
| visibility(...) | `all`, `none`, or a list-combination of `vertex`, `fragment`, `compute` | `vertex`, `fragment` |
Example: `#[sampler(0, sampler_type = "filtering", visibility(vertex, fragment)]`
## Changelog
- Added more options to `#[texture(...)]` and `#[sampler(...)]` attributes, supporting more kinds of materials. See above for details.
- Upgraded IDE and compile-time error messages.
- Updated array_texture example using the new options.
# Objective
- With access to `World`, it's not obvious how to send an event.
- This is especially useful if you are writing a `Command` that needs to send an `Event`.
- `Events` are a first-class construct in bevy, even though they are just `Resources` under the hood. Their methods should be discoverable.
## Solution
- Provide a simple helpers to send events through `Res<Events<T>>`.
---
## Changelog
> `send_event`, `send_default_event`, and `send_event_batch` methods added to `World`.
# Objective
Fixes#5362
## Solution
Add the attribute `#[label(ignore_fields)]` for `*Label` types.
```rust
#[derive(SystemLabel)]
pub enum MyLabel {
One,
// Previously this was not allowed since labels cannot contain data.
#[system_label(ignore_fields)]
Two(PhantomData<usize>),
}
```
## Notes
This label makes it possible for equality to behave differently depending on whether or not you are treating the type as a label. For example:
```rust
#[derive(SystemLabel, PartialEq, Eq)]
#[system_label(ignore_fields)]
pub struct Foo(usize);
```
If you compare it as a label, it will ignore the wrapped fields as the user requested. But if you compare it as a `Foo`, the derive will incorrectly compare the inner fields. I see a few solutions
1. Do nothing. This is technically intended behavior, but I think we should do our best to prevent footguns.
2. Generate impls of `PartialEq` and `Eq` along with the `#[derive(Label)]` macros. This is a breaking change as it requires all users to remove these derives from their types.
3. Only allow `PhantomData` to be used with `ignore_fields` -- seems needlessly prescriptive.
---
## Changelog
* Added the `ignore_fields` attribute to the derive macros for `*Label` types.
* Added an example showing off different forms of the derive macro.
<!--
## Migration Guide
> This section is optional. If there are no breaking changes, you can delete this section.
- If this PR is a breaking change (relative to the last release of Bevy), describe how a user might need to migrate their code to support these changes
- Simply adding new functionality is not a breaking change.
- Fixing behavior that was definitely a bug, rather than a questionable design choice is not a breaking change.
-->
# Objective
remove `QF` generics from a bunch of types and methods on query related items. this has a few benefits:
- simplifies type signatures `fn iter(&self) -> QueryIter<'_, 's, Q::ReadOnly, F::ReadOnly>` is (imo) conceptually simpler than `fn iter(&self) -> QueryIter<'_, 's, Q, ROQueryFetch<'_, Q>, F>`
- `Fetch` is mostly an implementation detail but previously we had to expose it on every `iter` `get` etc method
- Allows us to potentially in the future simplify the `WorldQuery` trait hierarchy by removing the `Fetch` trait
## Solution
remove the `QF` generic and add a way to (unsafely) turn `&QueryState<Q1, F1>` into `&QueryState<Q2, F2>`
---
## Changelog/Migration Guide
The `QF` generic was removed from various `Query` iterator types and some methods, you should update your code to use the type of the corresponding worldquery of the fetch type that was being used, or call `as_readonly`/`as_nop` to convert a querystate to the appropriate type. For example:
`.get_single_unchecked_manual::<ROQueryFetch<Q>>(..)` -> `.as_readonly().get_single_unchecked_manual(..)`
`my_field: QueryIter<'w, 's, Q, ROQueryFetch<'w, Q>, F>` -> `my_field: QueryIter<'w, 's, Q::ReadOnly, F::ReadOnly>`
# Objective
- Help user when they need to add both a `TransformBundle` and a `VisibilityBundle`
## Solution
- Add a `SpatialBundle` adding all components
# Objective
[This unwrap()](de484c1e41/crates/bevy_pbr/src/pbr_material.rs (L195)) in pbr_material.rs will be hit if a StandardMaterial normal_map image has not finished loading, resulting in an error message that is hard to debug.
## Solution
~~This PR improves the error message including a potential indication of why the unwrap() could have panic'd by using expect() instead of unwrap().~~
This PR removes the panic by only proceeding if the image is found.
---
## Changelog
Don't panic when StandardMaterial normal_map images have not finished loading.
# Objective
- Fixes #5338
- Allow the usage of `use bevy::ui::Size` (see migration guide in #4285)
## Solution
- Remove the `use crate::Size` import so that the `pub use geometry::*` import also publicly uses the `Size` struct.
# Objective
- 0.8 is coming soon, and our mikktspace implementation is unsound - see https://github.com/gltf-rs/mikktspace/issues/26
- Best not to ship that
## Solution
- Fix the unsoundness in a minimal way
- Obviously there might be others, but it seems unlikely we have any way to know about those
# Objective
- Add capability to use `Affine3A`s for some `GlobalTransform`s. This allows affine transformations that are not possible using a single `Transform` such as shear and non-uniform scaling along an arbitrary axis.
- Related to #1755 and #2026
## Solution
- `GlobalTransform` becomes an enum wrapping either a `Transform` or an `Affine3A`.
- The API of `GlobalTransform` is minimized to avoid inefficiency, and to make it clear that operations should be performed using the underlying data types.
- using `GlobalTransform::Affine3A` disables transform propagation, because the main use is for cases that `Transform`s cannot support.
---
## Changelog
- `GlobalTransform`s can optionally support any affine transformation using an `Affine3A`.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Port changes made to Material in #5053 to Material2d as well.
This is more or less an exact copy of the implementation in bevy_pbr; I
simply pretended the API existed, then copied stuff over until it
started building and the shapes example was working again.
# Objective
The changes in #5053 makes it possible to add custom materials with a lot less boiler plate. However, the implementation isn't shared with Material 2d as it's a kind of fork of the bevy_pbr version. It should be possible to use AsBindGroup on the 2d version as well.
## Solution
This makes the same kind of changes in Material2d in bevy_sprite.
This makes the following work:
```rust
//! Draws a circular purple bevy in the middle of the screen using a custom shader
use bevy::{
prelude::*,
reflect::TypeUuid,
render::render_resource::{AsBindGroup, ShaderRef},
sprite::{Material2d, Material2dPlugin, MaterialMesh2dBundle},
};
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_plugin(Material2dPlugin::<CustomMaterial>::default())
.add_startup_system(setup)
.run();
}
/// set up a simple 2D scene
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<CustomMaterial>>,
asset_server: Res<AssetServer>,
) {
commands.spawn_bundle(MaterialMesh2dBundle {
mesh: meshes.add(shape::Circle::new(50.).into()).into(),
material: materials.add(CustomMaterial {
color: Color::PURPLE,
color_texture: Some(asset_server.load("branding/icon.png")),
}),
transform: Transform::from_translation(Vec3::new(-100., 0., 0.)),
..default()
});
commands.spawn_bundle(Camera2dBundle::default());
}
/// The Material2d trait is very configurable, but comes with sensible defaults for all methods.
/// You only need to implement functions for features that need non-default behavior. See the Material api docs for details!
impl Material2d for CustomMaterial {
fn fragment_shader() -> ShaderRef {
"shaders/custom_material.wgsl".into()
}
}
// This is the struct that will be passed to your shader
#[derive(AsBindGroup, TypeUuid, Debug, Clone)]
#[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"]
pub struct CustomMaterial {
#[uniform(0)]
color: Color,
#[texture(1)]
#[sampler(2)]
color_texture: Option<Handle<Image>>,
}
```
# Objective
Fixes#4907. Fixes#838. Fixes#5089.
Supersedes #5146. Supersedes #2087. Supersedes #865. Supersedes #5114
Visibility is currently entirely local. Set a parent entity to be invisible, and the children are still visible. This makes it hard for users to hide entire hierarchies of entities.
Additionally, the semantics of `Visibility` vs `ComputedVisibility` are inconsistent across entity types. 3D meshes use `ComputedVisibility` as the "definitive" visibility component, with `Visibility` being just one data source. Sprites just use `Visibility`, which means they can't feed off of `ComputedVisibility` data, such as culling information, RenderLayers, and (added in this pr) visibility inheritance information.
## Solution
Splits `ComputedVisibilty::is_visible` into `ComputedVisibilty::is_visible_in_view` and `ComputedVisibilty::is_visible_in_hierarchy`. For each visible entity, `is_visible_in_hierarchy` is computed by propagating visibility down the hierarchy. The `ComputedVisibility::is_visible()` function combines these two booleans for the canonical "is this entity visible" function.
Additionally, all entities that have `Visibility` now also have `ComputedVisibility`. Sprites, Lights, and UI entities now use `ComputedVisibility` when appropriate.
This means that in addition to visibility inheritance, everything using Visibility now also supports RenderLayers. Notably, Sprites (and other 2d objects) now support `RenderLayers` and work properly across multiple views.
Also note that this does increase the amount of work done per sprite. Bevymark with 100,000 sprites on `main` runs in `0.017612` seconds and this runs in `0.01902`. That is certainly a gap, but I believe the api consistency and extra functionality this buys us is worth it. See [this thread](https://github.com/bevyengine/bevy/pull/5146#issuecomment-1182783452) for more info. Note that #5146 in combination with #5114 _are_ a viable alternative to this PR and _would_ perform better, but that comes at the cost of api inconsistencies and doing visibility calculations in the "wrong" place. The current visibility system does have potential for performance improvements. I would prefer to evolve that one system as a whole rather than doing custom hacks / different behaviors for each feature slice.
Here is a "split screen" example where the left camera uses RenderLayers to filter out the blue sprite.
![image](https://user-images.githubusercontent.com/2694663/178814868-2e9a2173-bf8c-4c79-8815-633899d492c3.png)
Note that this builds directly on #5146 and that @james7132 deserves the credit for the baseline visibility inheritance work. This pr moves the inherited visibility field into `ComputedVisibility`, then does the additional work of porting everything to `ComputedVisibility`. See my [comments here](https://github.com/bevyengine/bevy/pull/5146#issuecomment-1182783452) for rationale.
## Follow up work
* Now that lights use ComputedVisibility, VisibleEntities now includes "visible lights" in the entity list. Functionally not a problem as we use queries to filter the list down in the desired context. But we should consider splitting this out into a separate`VisibleLights` collection for both clarity and performance reasons. And _maybe_ even consider scoping `VisibleEntities` down to `VisibleMeshes`?.
* Investigate alternative sprite rendering impls (in combination with visibility system tweaks) that avoid re-generating a per-view fixedbitset of visible entities every frame, then checking each ExtractedEntity. This is where most of the performance overhead lives. Ex: we could generate ExtractedEntities per-view using the VisibleEntities list, avoiding the need for the bitset.
* Should ComputedVisibility use bitflags under the hood? This would cut down on the size of the component, potentially speed up the `is_visible()` function, and allow us to cheaply expand ComputedVisibility with more data (ex: split out local visibility and parent visibility, add more culling classes, etc).
---
## Changelog
* ComputedVisibility now takes hierarchy visibility into account.
* 2D, UI and Light entities now use the ComputedVisibility component.
## Migration Guide
If you were previously reading `Visibility::is_visible` as the "actual visibility" for sprites or lights, use `ComputedVisibilty::is_visible()` instead:
```rust
// before (0.7)
fn system(query: Query<&Visibility>) {
for visibility in query.iter() {
if visibility.is_visible {
log!("found visible entity");
}
}
}
// after (0.8)
fn system(query: Query<&ComputedVisibility>) {
for visibility in query.iter() {
if visibility.is_visible() {
log!("found visible entity");
}
}
}
```
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Export and register a missing type from `glam`.
Reflect impls were already present, but not registered.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
- There is a warning when building in release:
```
warning: unused import: `Local`
--> crates/bevy_render/src/extract_resource.rs:4:34
|
4 | use bevy_ecs::system::{Commands, Local, Res, ResMut, Resource};
| ^^^^^
|
= note: `#[warn(unused_imports)]` on by default
```
- It's used 814f8d1635/crates/bevy_render/src/extract_resource.rs (L45)
- Fix it
## Solution
- Gate the import
# Objective
- Closes#4954
- Reduce the complexity of the `{System, App, *}Label` APIs.
## Solution
For the sake of brevity I will only refer to `SystemLabel`, but everything applies to all of the other label types as well.
- Add `SystemLabelId`, a lightweight, `copy` struct.
- Convert custom types into `SystemLabelId` using the trait `SystemLabel`.
## Changelog
- String literals implement `SystemLabel` for now, but this should be changed with #4409 .
## Migration Guide
- Any previous use of `Box<dyn SystemLabel>` should be replaced with `SystemLabelId`.
- `AsSystemLabel` trait has been modified.
- No more output generics.
- Method `as_system_label` now returns `SystemLabelId`, removing an unnecessary level of indirection.
- If you *need* a label that is determined at runtime, you can use `Box::leak`. Not recommended.
## Questions for later
* Should we generate a `Debug` impl along with `#[derive(*Label)]`?
* Should we rename `as_str()`?
* Should we remove the extra derives (such as `Hash`) from builtin `*Label` types?
* Should we automatically derive types like `Clone, Copy, PartialEq, Eq`?
* More-ergonomic comparisons between `Label` and `LabelId`.
* Move `Dyn{Eq, Hash,Clone}` somewhere else.
* Some API to make interning dynamic labels easier.
* Optimize string representation
* Empty string for unit structs -- no debug info but faster comparisons
* Don't show enum types -- same tradeoffs as asbove.
This replaces `rand` with `fastrand` as the source of randomness for `HandleId::new()` in `bevy_asset`. This was the only crate with a dependency on `rand`, and now the dependency exists only as a dev-dependency.
`fastrand` was already in the dependency tree, thanks to `futures-lite`, `async-executor`, and `tempfile` to name a few.
## Changelog
Removed `rand` from dependencies in `bevy_asset` in favor of existing in-tree `fast-rand`
Add compile time check for if a system is an exclusive system. Resolves#4788
Co-authored-by: Daniel Liu <mr.picklepinosaur@gmail.com>
Co-authored-by: Daniel Liu <danieliu3120@gmail.com>
Following https://github.com/bevyengine/bevy/pull/5124 I decided to add the `ExactSizeIterator` impl for `QueryCombinationIter`.
Also:
- Clean up the tests for `size_hint` and `len` for both the normal `QueryIter` and `QueryCombinationIter`.
- Add tests to `QueryCombinationIter` when it shouldn't be `ExactSizeIterator`
---
## Changelog
- Added `ExactSizeIterator` implementation for `QueryCombinatonIter`
# Objective
- `.iter_combinations_*()` cannot be used on custom derived `WorldQuery`, so this fixes that
- Fixes#5284
## Solution
- `#[derive(Clone)]` on the `Fetch` of the proc macro derive.
- `#[derive(Clone)]` for `AnyOf` to satisfy tests.
Someone noted that the `rotate_around` method did not give the results they expected: [discord thread](https://discord.com/channels/691052431525675048/996497295325544479)
I tested `rotate_around` and their workaround and it seems like it was indeed incorrect.
Here is a scene with some cubes at different angles all being rotated around the center on the Y axis.
https://user-images.githubusercontent.com/29694403/178598432-407d7e80-1caf-4b17-b69b-66d9156c81e1.mp4
Interestingly, the middle cube rotates as you might expect. This threw me for a bit of a loop before I added the other cubes to the test haha.
Here is the same scene with the order multiplication of the quaternions flipped in `rotate_around`.
https://user-images.githubusercontent.com/29694403/178598446-a98026f3-524c-448b-8437-4d0d3175c6ca.mp4
That looks better :)
## Changelog
* Fixed `rotate_around` rotating the wrong way around
* Added `translate_around`. - Split out the translation code from `rotate_around`.
* Simplified/optimized `rotate_local_*` methods. - Yep, That works somehow.
<sup>Quaternions sure are wacky. Do not ask me how this works exactly, haha.</sup>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Generally a good idea.
I ran into this because I wanted to store `Gamepads` in a wrapper struct in https://github.com/Leafwing-Studios/leafwing-input-manager/pull/168.
This PR allows the `Debug` derive used there to continue working. I could workaround this with a custom impl, but a PR upstream seemed like the right fix.
# Objective
Improve documentation, information users of the limitations in bevy's idiomatic patterns, and suggesting alternatives for when those limitations are encountered.
## Solution
* Add documentation to `Commands` informing the user of the option of writing one-shot commands with closures.
* Add documentation to `EventWriter` regarding the limitations of event types, and suggesting alternatives using commands.
# Objective
Fixes#5304
## Solution
Instead of using a simple utility function for loading, which uses a default allocation limit of 512MB, we use a Reader object which can be configured ad hoc.
## Changelog
> This section is optional. If this was a trivial fix, or has no externally-visible impact, you can delete this section.
- Allows loading of textures larger than 512MB
# Objective
- Wireframes are currently not rendering on main because they aren't being extracted correctly
## Solution
- Extract the wireframes correctly
# Objective
When someone searches in rustdoc for `world_to_screen`, they now will
find `world_to_viewport`. The method was renamed in 0.8, it would be
nice to allow users to find the new name more easily.
---
# Objective
This PR aims to document the `bevy_asset` crate to complete coverage, while also trying to improve some bits of UX.
### Progress
- [x] Root items
- [x] `handle` module
- [x] `info` module
- [x] `path` module
- [x] `loader` module
- [x] `io` and `filesystem_watcher` module
- [x] `assets` module
- [x] `asset_server` module
- [x] `diagnostic` module
- [x] `debug_asset_server` module
- [x] Crate level documentation
- [x] Add `#![warn(missing_docs)]` lint
Coverage: 100%
## Migration Guide
- Rename `FileAssetIo::get_root_path` uses to `FileAssetIo::get_base_path`
`FileAssetIo::root_path()` is a getter for the `root_path` field, while `FileAssetIo::get_root_path` returned the parent directory of the asset root path, which was the executable's directory unless `CARGO_MANIFEST_DIR` was set. This change solves the ambiguity between the two methods.
# Objective
- Added a bunch of backticks to things that should have them, like equations, abstract variable names,
- Changed all small x, y, and z to capitals X, Y, Z.
This might be more annoying than helpful; Feel free to refuse this PR.
# Objective
- The time update is currently done in the wrong part of the schedule. For a single frame the current order of things is update input, update time (First stage), other stages, render stage (frame presentation). So when we update the time it includes the input processing of the current frame and the frame presentation of the previous frame. This is a problem when vsync is on. When input processing takes a longer amount of time for a frame, the vsync wait time gets shorter. So when these are not paired correctly we can potentially have a long input processing time added to the normal vsync wait time in the previous frame. This leads to inaccurate frame time reporting and more variance of the time than actually exists. For more details of why this is an issue see the linked issue below.
- Helps with https://github.com/bevyengine/bevy/issues/4669
- Supercedes https://github.com/bevyengine/bevy/pull/4728 and https://github.com/bevyengine/bevy/pull/4735. This PR should be less controversial than those because it doesn't add to the API surface.
## Solution
- The most accurate frame time would come from hardware. We currently don't have access to that for multiple reasons, so the next best thing we can do is measure the frame time as close to frame presentation as possible. This PR gets the Instant::now() for the time immediately after frame presentation in the render system and then sends that time to the app world through a channel.
- implements suggestion from @aevyrie from here https://github.com/bevyengine/bevy/pull/4728#discussion_r872010606
## Statistics
![image](https://user-images.githubusercontent.com/2180432/168410265-f249f66e-ea9d-45d1-b3d8-7207a7bc536c.png)
---
## Changelog
- Make frame time reporting more accurate.
## Migration Guide
`time.delta()` now reports zero for 2 frames on startup instead of 1 frame.
Remove unnecessary calls to `iter()`/`iter_mut()`.
Mainly updates the use of queries in our code, docs, and examples.
```rust
// From
for _ in list.iter() {
for _ in list.iter_mut() {
// To
for _ in &list {
for _ in &mut list {
```
We already enable the pedantic lint [clippy::explicit_iter_loop](https://rust-lang.github.io/rust-clippy/stable/) inside of Bevy. However, this only warns for a few known types from the standard library.
## Note for reviewers
As you can see the additions and deletions are exactly equal.
Maybe give it a quick skim to check I didn't sneak in a crypto miner, but you don't have to torture yourself by reading every line.
I already experienced enough pain making this PR :)
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Resolves#5004. As suggested in the original issue, change tuple types to their corresponding vector type.
## migration guide
Changed the following fields
- `WindowCommand::SetWindowMode.resolution` from `(u32, u32)` to `UVec2`
- `WindowCommand::SetResolution.logical_resolution` from `(f32, f32)` to `Vec2`
Co-authored-by: Daniel Liu <mr.picklepinosaur@gmail.com>
# Objective
- Validate the format of the values with the expected attribute format.
- Currently, if you pass the wrong format, it will crash somewhere unrelated with a very cryptic error message, so it's really hard to debug for beginners.
## Solution
- Compare the format and panic when unexpected format is passed
## Note
- I used a separate `error!()` for a human friendly message because the panic message is very noisy and hard to parse for beginners. I don't mind changing this to only a panic if people prefer that.
- This could potentially be something that runs only in debug mode, but I don't think inserting attributes is done often enough for this to be an issue.
Co-authored-by: Charles <IceSentry@users.noreply.github.com>
Small optimization. `.collect()` from arrays generates very nice code without reallocations: https://rust.godbolt.org/z/6E6c595bq
Co-authored-by: Kornel <kornel@geekhood.net>
# Objective
Currently some TextureFormats are not supported by the Image type.
The `TextureFormat::R16Unorm` format is useful for storing heightmaps.
This small change would unblock releasing my terrain plugin on bevy 0.8.
## Solution
Added `TextureFormat::R16Unorm` support to Image.
This is an alternative (short term solution) to the large texture format issue https://github.com/bevyengine/bevy/pull/4124.
# Objective
- Slight documentation tweak to make it more clear that `FloatOrd` also implements `Hash` and `Eq`, not just `Ord`.
- I know that it does show that Hash is implemented in the docs, but I had missed it after reading the description and assuming it didn't do it, so hopefully this helps other people who might miss it like I did. :)
## Solution
- Just mention in the Hash and Eq implementation in the docstring.
# Objective
- Currently bevy_ui only checks for primary window cursor position to determine `Interaction` behavior.
- Added checks for focused window where cursor position is available.
- Fixes#5224.
## Solution
- Added checks for focused windows in `Interaction` focus system.
## Follow Up
- All windows with camera will be rendering the UI elements right now.
- We will need some way to tell which camera to render which UI.
---
Co-authored-by: fadhliazhari <44402264+fadhliazhari@users.noreply.github.com>
# Objective
- Enable the `axis_dpad_to_button` gilrs filter to map hats to dpad buttons on supported remotes.
- Fixes https://github.com/Leafwing-Studios/leafwing-input-manager/issues/149
- Might have fixed the confusion related to https://github.com/bevyengine/bevy/issues/3229
## Solution
- Enables the `axis_dpad_to_button` filter in `gilrs` which will use it's remote mapping information to see if there are hats mapped to dpads for that remote model. I don't really understand the logic it uses exactly, but it is usually enabled by default in gilrs and I believe it probably leads to more intuitive mapping compared to the current situation of dpad buttons being mapped to an axis.
- Removes the `GamepadAxisType::DPadX` and `GamepadAxisType::DPadY` enum variants to avoid user confusion. Those variants should never be emitted anyway, for all supported remotes.
---
## Changelog
### Changed
- Removed `GamepadAxisType::DPadX` and `GamepadAxisType::DPadY` in favor of using `GamepadButtonType::DPad[Up/Down/Left/Right]` instead.
## Migration Guide
If your game reads gamepad events or queries the axis state of `GamePadAxisType::DPadX` or `GamePadAxisType::DPadY`, then you must migrate your code to check whether or not the `GamepadButtonType::DPadUp`, `GamepadButtonType::DPadDown`, etc. buttons were pressed instead.
# Objective
`ReflectResource` and `ReflectComponent` will panic on `apply` method if there is no such component. It's not very ergonomic. And not very good for performance since I need to check if such component exists first.
## Solution
* Add `ReflectComponent::apply_or_insert` and `ReflectResource::apply_or_insert` functions.
* Rename `ReflectComponent::add` into `ReflectComponent::insert` for consistency.
---
## Changelog
### Added
* `ReflectResource::apply_or_insert` and `ReflectComponent::apply_on_insert`.
### Changed
* Rename `ReflectComponent::add` into `ReflectComponent::insert` for consistency.
* Use `ReflectComponent::apply_on_insert` in `DynamicScene` instead of manual checking.
## Migration Guide
* Rename `ReflectComponent::add` into `ReflectComponent::insert`.
# Objective
- Extracting resources currently always uses commands, which requires *at least* one additional move of the extracted value, as well as dynamic dispatch.
- Addresses https://github.com/bevyengine/bevy/pull/4402#discussion_r911634931
## Solution
- Write the resource into a `ResMut<R>` directly.
- Fall-back to commands if the resource hasn't been added yet.
## Objective
Implement absolute minimum viable product for the changes proposed in bevyengine/rfcs#53.
## Solution
- Remove public mutative access to `Parent` (Children is already publicly read-only). This includes public construction methods like `Copy`, `Clone`, and `Default`.
- Remove `PreviousParent`
- Remove `parent_update_system`
- Update all hierarchy related commands to immediately update both `Parent` and `Children` references.
## Remaining TODOs
- [ ] Update documentation for both `Parent` and `Children`. Discourage using `EntityCommands::remove`
- [x] Add `HierarchyEvent` to notify listeners of hierarchy updates. This is meant to replace listening on `PreviousParent`
## Followup
- These changes should be best moved to the hooks mentioned in #3742.
- Backing storage for both might be best moved to indexes mentioned in the same relations.
# Objective
- Currently, the `Extract` `RenderStage` is executed on the main world, with the render world available as a resource.
- However, when needing access to resources in the render world (e.g. to mutate them), the only way to do so was to get exclusive access to the whole `RenderWorld` resource.
- This meant that effectively only one extract which wrote to resources could run at a time.
- We didn't previously make `Extract`ing writing to the world a non-happy path, even though we want to discourage that.
## Solution
- Move the extract stage to run on the render world.
- Add the main world as a `MainWorld` resource.
- Add an `Extract` `SystemParam` as a convenience to access a (read only) `SystemParam` in the main world during `Extract`.
## Future work
It should be possible to avoid needing to use `get_or_spawn` for the render commands, since now the `Commands`' `Entities` matches up with the world being executed on.
We need to determine how this interacts with https://github.com/bevyengine/bevy/pull/3519
It's theoretically possible to remove the need for the `value` method on `Extract`. However, that requires slightly changing the `SystemParam` interface, which would make it more complicated. That would probably mess up the `SystemState` api too.
## Todo
I still need to add doc comments to `Extract`.
---
## Changelog
### Changed
- The `Extract` `RenderStage` now runs on the render world (instead of the main world as before).
You must use the `Extract` `SystemParam` to access the main world during the extract phase.
Resources on the render world can now be accessed using `ResMut` during extract.
### Removed
- `Commands::spawn_and_forget`. Use `Commands::get_or_spawn(e).insert_bundle(bundle)` instead
## Migration Guide
The `Extract` `RenderStage` now runs on the render world (instead of the main world as before).
You must use the `Extract` `SystemParam` to access the main world during the extract phase. `Extract` takes a single type parameter, which is any system parameter (such as `Res`, `Query` etc.). It will extract this from the main world, and returns the result of this extraction when `value` is called on it.
For example, if previously your extract system looked like:
```rust
fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) {
for cloud in clouds.iter() {
commands.get_or_spawn(cloud).insert(Cloud);
}
}
```
the new version would be:
```rust
fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) {
for cloud in clouds.value().iter() {
commands.get_or_spawn(cloud).insert(Cloud);
}
}
```
The diff is:
```diff
--- a/src/clouds.rs
+++ b/src/clouds.rs
@@ -1,5 +1,5 @@
-fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) {
- for cloud in clouds.iter() {
+fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) {
+ for cloud in clouds.value().iter() {
commands.get_or_spawn(cloud).insert(Cloud);
}
}
```
You can now also access resources from the render world using the normal system parameters during `Extract`:
```rust
fn extract_assets(mut render_assets: ResMut<MyAssets>, source_assets: Extract<Res<MyAssets>>) {
*render_assets = source_assets.clone();
}
```
Please note that all existing extract systems need to be updated to match this new style; even if they currently compile they will not run as expected. A warning will be emitted on a best-effort basis if this is not met.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Support removing attributes from meshes. For an example use case, meshes created using the bevy::predule::shape types or loaded from external files may have attributes that are not needed for the materials they will be rendered with.
This was extracted from PR #5222.
## Solution
Implement Mesh::remove_attribute().
# Objective
Bevy requires meshes to include UV coordinates, even if the material does not use any textures, and will fail with an error `ERROR bevy_pbr::material: Mesh is missing requested attribute: Vertex_Uv (MeshVertexAttributeId(2), pipeline type: Some("bevy_pbr::material::MaterialPipeline<bevy_pbr::pbr_material::StandardMaterial>"))` otherwise. The objective of this PR is to permit this.
## Solution
This PR follows the design of #4528, which added support for per-vertex colours. It adds a shader define called VERTEX_UVS which indicates the presence of UV coordinates to the shader.
# Objective
add spotlight support
## Solution / Changelog
- add spotlight angles (inner, outer) to ``PointLight`` struct. emitted light is linearly attenuated from 100% to 0% as angle tends from inner to outer. Direction is taken from the existing transform rotation.
- add spotlight direction (vec3) and angles (f32,f32) to ``GpuPointLight`` struct (60 bytes -> 80 bytes) in ``pbr/render/lights.rs`` and ``mesh_view_bind_group.wgsl``
- reduce no-buffer-support max point light count to 204 due to above
- use spotlight data to attenuate light in ``pbr.wgsl``
- do additional cluster culling on spotlights to minimise cost in ``assign_lights_to_clusters``
- changed one of the lights in the lighting demo to a spotlight
- also added a ``spotlight`` demo - probably not justified but so reviewers can see it more easily
## notes
increasing the size of the GpuPointLight struct on my machine reduces the FPS of ``many_lights -- sphere`` from ~150fps to 140fps.
i thought this was a reasonable tradeoff, and felt better than handling spotlights separately which is possible but would mean introducing a new bind group, refactoring light-assignment code and adding new spotlight-specific code in pbr.wgsl. the FPS impact for smaller numbers of lights should be very small.
the cluster culling strategy reintroduces the cluster aabb code which was recently removed... sorry. the aabb is used to get a cluster bounding sphere, which can then be tested fairly efficiently using the strategy described at the end of https://bartwronski.com/2017/04/13/cull-that-cone/. this works well with roughly cubic clusters (where the cluster z size is close to the same as x/y size), less well for other cases like single Z slice / tiled forward rendering. In the worst case we will end up just keeping the culling of the equivalent point light.
Co-authored-by: François <mockersf@gmail.com>
# Objective
`EntityMap` lacks documentation, don't have `len()` / `is_empty` and `insert` doesn't work as in the regular HashMap`.
## Solution
* Add `len()` method.
* Return previously mapped entity from `insert()` as in the regular `HashMap`.
* Add documentation.
---
## Changelog
* Add `EntityMap::len()`.
* Return previously mapped entity from `EntityMap::insert()` as in the regular `HashMap`.
* Add documentation for `EntityMap` methods.
# Objective
It is currently hard to configure the `WindowPlugin`, as it is added as part of the `DefaultPlugins`. Ideally this should not be difficult.
## Solution
Remove the configuration from the plugin itself and put it as a `Resource`, similar to how it is done for almost all other plugins.
## Migration Guide
If you are currently configuring the behavior of the `WindowPlugin`, by constructing it manually, then you will need to instead create add the `WindowSettings` as a resource.
# Objective
In bevy 0.7, `CameraUi` was a component specifically added to cameras
that display the UI. Since camera-driven rendering was merged, it
actually does the opposite! This will make it difficult for current
users to adapt to 0.8.
## Solution
To avoid unnecessary confusion, we rename `CameraUi` into
`UiCameraConfig`.
---
## Changelog
- Rename `CameraUi` to `UiCameraConfig`
# Objective
Remove suffixes from reflect component and resource methods to closer match bevy norms.
## Solution
removed suffixes and also fixed a spelling error
---
# Objective
- Help users fix issue when their app panic when executing a command on a despawned entity
## Solution
- Add an error code and a page describing how to debug the issue