# Objective
- Allow opting-out of the built-in frustum culling for cases where its behaviour would be incorrect
- Make use of the this in the shader_instancing example that uses a custom instancing method. The built-in frustum culling breaks the custom instancing in the shader_instancing example if the camera is moved to:
```rust
commands.spawn_bundle(PerspectiveCameraBundle {
transform: Transform::from_xyz(12.0, 0.0, 15.0)
.looking_at(Vec3::new(12.0, 0.0, 0.0), Vec3::Y),
..Default::default()
});
```
...such that the Aabb of the cube Mesh that is at the origin goes completely out of view. This incorrectly (for the purpose of the custom instancing) culls the `Mesh` and so culls all instances even though some may be visible.
## Solution
- Add a `NoFrustumCulling` marker component
- Do not compute and add an `Aabb` to `Mesh` entities without an `Aabb` if they have a `NoFrustumCulling` marker component
- Do not apply frustum culling to entities with the `NoFrustumCulling` marker component
# Objective
- When using `WgpuOptionsPriority::Functionality`, which is the default, wgpu::Features::MAPPABLE_PRIMARY_BUFFERS would be automatically enabled. This feature can and does have a significant negative impact on performance for discrete GPUs where resizable bar is not supported, which is a common case. As such, this feature should not be automatically enabled.
- Fixes the performance regression part of https://github.com/bevyengine/bevy/issues/3686 and at least some, if not all cases of https://github.com/bevyengine/bevy/issues/3687
## Solution
- When using `WgpuOptionsPriority::Functionality`, use the adapter-supported features, enable `TEXTURE_ADAPTER_SPECIFIC_FORMAT_FEATURES` and disable `MAPPABLE_PRIMARY_BUFFERS`
Fixed doc comment where render Node input/output methods refered to using `RenderContext` for interaction instead of `RenderGraphContext`
# Objective
The doc comments for `Node` refer to `RenderContext` for slots instead of `RenderGraphContext`, which is only confusing because `Node::run` is passed both `RenderContext` and `RenderGraphContext`
## Solution
Fixed the typo
Super tiny thing. Found this while reviewing #3479.
# Objective
- Simplify code
- Fix the link in the doc comment
## Solution
- Import a single item :)
Co-authored-by: Pascal Hertleif <pascal@technocreatives.com>
# Objective
CI should check for missing backticks in doc comments.
Fixes#3435
## Solution
`clippy` has a lint for this: `doc_markdown`. This enables that lint in the CI script.
Of course, enabling this lint in CI causes a bunch of lint errors, so I've gone through and fixed all of them. This was a huge edit that touched a ton of files, so I split the PR up by crate.
When all of the following are merged, the CI should pass and this can be merged.
+ [x] #3467
+ [x] #3468
+ [x] #3470
+ [x] #3469
+ [x] #3471
+ [x] #3472
+ [x] #3473
+ [x] #3474
+ [x] #3475
+ [x] #3476
+ [x] #3477
+ [x] #3478
+ [x] #3479
+ [x] #3480
+ [x] #3481
+ [x] #3482
+ [x] #3483
+ [x] #3484
+ [x] #3485
+ [x] #3486
#3457 adds the `doc_markdown` clippy lint, which checks doc comments to make sure code identifiers are escaped with backticks. This causes a lot of lint errors, so this is one of a number of PR's that will fix those lint errors one crate at a time.
This PR fixes lints in the `bevy_render` crate.
# Objective
In this PR I added the ability to opt-out graphical backends. Closes#3155.
## Solution
I turned backends into `Option` ~~and removed panicking sub app API to force users handle the error (was suggested by `@cart`)~~.
# Objective
The current 2d rendering is specialized to render sprites, we need a generic way to render 2d items, using meshes and materials like we have for 3d.
## Solution
I cloned a good part of `bevy_pbr` into `bevy_sprite/src/mesh2d`, removed lighting and pbr itself, adapted it to 2d rendering, added a `ColorMaterial`, and modified the sprite rendering to break batches around 2d meshes.
~~The PR is a bit crude; I tried to change as little as I could in both the parts copied from 3d and the current sprite rendering to make reviewing easier. In the future, I expect we could make the sprite rendering a normal 2d material, cleanly integrated with the rest.~~ _edit: see <https://github.com/bevyengine/bevy/pull/3460#issuecomment-1003605194>_
## Remaining work
- ~~don't require mesh normals~~ _out of scope_
- ~~add an example~~ _done_
- support 2d meshes & materials in the UI?
- bikeshed names (I didn't think hard about naming, please check if it's fine)
## Remaining questions
- ~~should we add a depth buffer to 2d now that there are 2d meshes?~~ _let's revisit that when we have an opaque render phase_
- ~~should we add MSAA support to the sprites, or remove it from the 2d meshes?~~ _I added MSAA to sprites since it's really needed for 2d meshes_
- ~~how to customize vertex attributes?~~ _#3120_
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Allow the user to specify the priority when configuring wgpu features/limits and by default use the maximum capabilities of the chosen adapter.
## Solution
- Add a `WgpuOptionsPriority` enum with `Compatibility`, `Functionality` and `WebGL2` options.
- Add a `priority: WgpuOptionsPriority` member to `WgpuOptions`.
- When initialising the renderer, if `WgpuOptions::priority == WgpuOptionsPriority::Functionality`, query the adapter for the available features and limits, use them when creating a device, and update `WgpuOptions` with those values. If `Compatibility` use the behaviour as before this PR. If `WebGL2` then use the WebGL2 downlevel limits as used when when building for wasm, for convenience of testing WebGL2 limits without having to build for wasm.
- Add an environment variable `WGPU_OPTIONS_PRIO` that takes `compatibility`, `functionality`, `webgl2`.
- Default to `WgpuOptionsPriority::Functionality`.
- Insert updated `WgpuOptions` into render app world as well. This is useful for applying the limits when rendering, such as limiting the directional light shadow map texture to 2048x2048 when using WebGL2 downlevel limits but not on wasm.
- Reduced `draw_state` logs from `debug` to `trace` and added `debug` level logs for the wgpu features and limits. Use `RUST_LOG=bevy_render=debug` to see the output.
# Objective
- Add support for loading lights from glTF 2.0 files
## Solution
- This adds support for the KHR_punctual_lights extension which supports point, directional, and spot lights, though we don't yet support spot lights.
- Inserting light bundles when creating scenes required registering some more light bundle component types.
This PR is part of the issue #3492.
# Objective
- Clean up dead code in `bevy_core`.
- Add and update the `bevy_core` documentation to achieve a 100% documentation coverage.
- Add the #![warn(missing_docs)] lint to keep the documentation coverage for the future.
# Solution
- Remove unused `Bytes`, `FromBytes`, `Labels`, and `EntityLabels` types and associated systems.
- Made several types private that really only have use as internal types, mostly pertaining to fixed timestep execution.
- Add and update the bevy_core documentation.
- Add the #![warn(missing_docs)] lint.
# Open Questions
Should more of the internal states of `FixedTimestep` be public? Seems mostly to be an implementation detail unless someone really needs that fixed timestep state.
# Objective
Docs updates.
## Solution
- Detail what `OrthographicCameraBundle::new_2d()` creates.
- Fix a few renamed parameters in comments of `TrackedRenderPass`.
- Add missing comments for viewport and debug markers.
Co-authored-by: Jerome Humbert <djeedai@gmail.com>
# Objective
- `Msaa` was disabled in webgl due to a bug in wgpu
- Bug has been fixed (https://github.com/gfx-rs/wgpu/pull/2307) and backported (https://github.com/gfx-rs/wgpu/pull/2327), and updates for [`wgpu-core`](https://crates.io/crates/wgpu-core/0.12.1) and [`wgpu-hal`](https://crates.io/crates/wgpu-hal/0.12.1) have been released
## Solution
- Remove custom config for `Msaa` in webgl
- I also changed two options that were using the arch instead of the `webgl` feature. it shouldn't change much for webgl, but could help if someone wants to target wasm but not webgl2
Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
Dynamic types (`DynamicStruct`, `DynamicTupleStruct`, `DynamicTuple`, `DynamicList` and `DynamicMap`) are used when deserializing scenes, but currently they can only be applied to existing concrete types. This leads to issues when trying to spawn non trivial deserialized scene.
For components, the issue is avoided by requiring that reflected components implement ~~`FromResources`~~ `FromWorld` (or `Default`). When spawning, a new concrete type is created that way, and the dynamic type is applied to it. Unfortunately, some components don't have any valid implementation of these traits.
In addition, any `Vec` or `HashMap` inside a component will panic when a dynamic type is pushed into it (for instance, `Text` panics when adding a text section).
To solve this issue, this PR adds the `FromReflect` trait that creates a concrete type from a dynamic type that represent it, derives the trait alongside the `Reflect` trait, drops the ~~`FromResources`~~ `FromWorld` requirement on reflected components, ~~and enables reflection for UI and Text bundles~~. It also adds the requirement that fields ignored with `#[reflect(ignore)]` implement `Default`, since we need to initialize them somehow.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- I want to port `bevy_egui` to Bevy main and only reuse re-exports from Bevy
## Solution
- Add exports for `BufferBinding` and `BufferDescriptor`
Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
# Objective
Fixes#3422
## Solution
Adds the existing `Visibility` component to UI bundles and checks for it in the extract phase of the render app.
The `ComputedVisibility` component was not added. I don't think the UI camera needs frustum culling, but having `RenderLayers` work may be desirable. However I think we would need to change `check_visibility()` to differentiate between 2d, 3d and UI entities.
# Objective
- Our crevice is still called "crevice", which we can't use for a release
- Users would need to use our "crevice" directly to be able to use the derive macro
## Solution
- Rename crevice to bevy_crevice, and crevice-derive to bevy-crevice-derive
- Re-export it from bevy_render, and use it from bevy_render everywhere
- Fix derive macro to work either from bevy_render, from bevy_crevice, or from bevy
## Remaining
- It is currently re-exported as `bevy::render::bevy_crevice`, is it the path we want?
- After a brief suggestion to Cart, I changed the version to follow Bevy version instead of crevice, do we want that?
- Crevice README.md need to be updated
- in the `Cargo.toml`, there are a few things to change. How do we want to change them? How do we keep attributions to original Crevice?
```
authors = ["Lucien Greathouse <me@lpghatguy.com>"]
documentation = "https://docs.rs/crevice"
homepage = "https://github.com/LPGhatguy/crevice"
repository = "https://github.com/LPGhatguy/crevice"
```
Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Instead of panicking when the `indices` field of a mesh is `None`, actually manage it.
This is just a question of keeping track of the vertex buffer size.
## Notes
* Relying on this change to improve performance on [bevy_debug_lines using the new renderer](https://github.com/Toqozz/bevy_debug_lines/pull/10)
* I'm still new to rendering, my only expertise with wgpu is the learn-wgpu tutorial, likely I'm overlooking something.
### Problem
- shader processing errors are not displayed
- during hot reloading when encountering a shader with errors, the whole app crashes
### Solution
- log `error!`s for shader processing errors
- when `cfg(debug_assertions)` is enabled (i.e. you're running in `debug` mode), parse shaders before passing them to wgpu. This lets us handle errors early.
# Objective
- 3d examples fail to run in webgl2 because of unsupported texture formats or texture too large
## Solution
- switch to supported formats if a feature is enabled. I choose a feature instead of a build target to not conflict with a potential webgpu support
Very inspired by 6813b2edc5, and need #3290 to work.
I named the feature `webgl2`, but it's only needed if one want to use PBR in webgl2. Examples using only 2D already work.
Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
# Objective
- I want to be able to use `#ifdef` and other processor directives in an imported shader
## Solution
- Process imported shader strings
Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
# Objective
Add missing methods to `TrackedRenderPass`
- `set_push_constants`
- `set_viewport`
- `insert_debug_marker`
- `push_debug_group`
- `pop_debug_group`
- `set_blend_constant`
https://docs.rs/wgpu/0.12.0/wgpu/struct.RenderPass.html
I need `set_push_constants` but started adding the others as I noticed they were also missing. The `draw indirect` family of methods are still missing as are the `timestamp query` methods.
# Objective
- Only bevy_render should depend directly on wgpu
- This helps to make sure bevy_render re-exports everything needed from wgpu
## Solution
- Remove bevy_pbr, bevy_sprite and bevy_ui dependency on wgpu
Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
# Objective
Fixes#3352Fixes#3208
## Solution
- Update wgpu to 0.12
- Update naga to 0.8
- Resolve compilation errors
- Remove [[block]] from WGSL shaders (because it is depracated and now wgpu cant parse it)
- Replace `elseif` with `else if` in pbr.wgsl
# Objective
- The multiple windows example which was viciously murdered in #3175.
- cart asked me to
## Solution
- Rework the example to work on pipelined-rendering, based on the work from #2898
# Objective
- There are a few warnings when building Bevy docs for dead links
- CI seems to not catch those warnings when it should
## Solution
- Enable doc CI on all Bevy workspace
- Fix warnings
- Also noticed plugin GilrsPlugin was not added anymore when feature was enabled
First commit to check that CI would actually fail with it: https://github.com/bevyengine/bevy/runs/4532652688?check_suite_focus=true
Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
# Objective And Solution
Add `set_scissor_rect` from wgpu-rs to the `TrackedRenderPass`. wgpu documentation can be found here:
https://docs.rs/wgpu/latest/wgpu/struct.RenderPass.html#method.set_scissor_rect
The reason for adding this is to cull fragments that are outside of the given rect. For my purposes this is extremely useful for UI.
This makes the [New Bevy Renderer](#2535) the default (and only) renderer. The new renderer isn't _quite_ ready for the final release yet, but I want as many people as possible to start testing it so we can identify bugs and address feedback prior to release.
The examples are all ported over and operational with a few exceptions:
* I removed a good portion of the examples in the `shader` folder. We still have some work to do in order to make these examples possible / ergonomic / worthwhile: #3120 and "high level shader material plugins" are the big ones. This is a temporary measure.
* Temporarily removed the multiple_windows example: doing this properly in the new renderer will require the upcoming "render targets" changes. Same goes for the render_to_texture example.
* Removed z_sort_debug: entity visibility sort info is no longer available in app logic. we could do this on the "render app" side, but i dont consider it a priority.
# Objective
- Checks for NaN in computed NDC space coordinates, fixing unexpected NaN in a fallible (`Option<T>`) function.
## Solution
- Adds a NaN check, in addition to the existing NDC bounds checks.
- This is a helper function, and should have no performance impact to the engine itself.
- This will help prevent hard-to-trace NaN propagation in user code, by returning `None` instead of `Some(NaN)`.
Depends on https://github.com/bevyengine/bevy/pull/3269 for CI error fix.
# Objective
Fixes recent pipeline errors:
```
error: use of deprecated associated function `std::array::IntoIter::<T, N>::new`: use `IntoIterator::into_iter` instead
--> crates/bevy_render/src/mesh/mesh.rs:467:54
|
467 | .flat_map(|normal| std::array::IntoIter::new([normal, normal, normal]))
| ^^^
|
= note: `-D deprecated` implied by `-D warnings`
Compiling bevy_render2 v0.5.0 (/home/runner/work/bevy/bevy/pipelined/bevy_render2)
error: use of deprecated associated function `std::array::IntoIter::<T, N>::new`: use `IntoIterator::into_iter` instead
--> pipelined/bevy_render2/src/mesh/mesh/mod.rs:287:54
|
287 | .flat_map(|normal| std::array::IntoIter::new([normal, normal, normal]))
| ^^^
|
= note: `-D deprecated` implied by `-D warnings`
error: could not compile `bevy_render` due to previous error
```
## Solution
- Replaced `IntoIter::new` with `IntoIterator::into_iter`
## Suggestions
For me it looks like two equivalent `Mesh` structs with the same methods. Should we refactor it? Or, they will be different in the near future?
Co-authored-by: CrazyRoka <rokarostuk@gmail.com>
# Objective
- New clippy lints with rust 1.57 are failing
## Solution
- Fixed clippy lints following suggestions
- I ignored clippy in old renderer because there was many and it will be removed soon
# Objective
- Update vendor crevice to have the latest update from crevice 0.8.0
- Using https://github.com/ElectronicRU/crevice/tree/arrays which has the changes to make arrays work
## Solution
- Also updated glam and hexasphere to only have one version of glam
- From the original PR, using crevice to write GLSL code containing arrays would probably not work but it's not something used by Bevy
Objective
During work on #3009 I've found that not all jobs use actions-rs, and therefore, an previous version of Rust is used for them. So while compilation and other stuff can pass, checking markup and Android build may fail with compilation errors.
Solution
This PR adds `action-rs` for any job running cargo, and updates the edition to 2021.
# Objective
The current TODO comment is out of date
## Solution
I switched up the comment
Co-authored-by: William Batista <45850508+billyb2@users.noreply.github.com>
# Objective
The update to wgpu 0.11 broke CI for android. This was due to a confusion between `bevy::render::ShaderStage` and `wgpu::ShaderStage`.
## Solution
Revert the incorrect change
Upgrades both the old and new renderer to wgpu 0.11 (and naga 0.7). This builds on @zicklag's work here #2556.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
This implements the most minimal variant of #1843 - a derive for marker trait. This is a prerequisite to more complicated features like statically defined storage type or opt-out component reflection.
In order to make component struct's purpose explicit and avoid misuse, it must be annotated with `#[derive(Component)]` (manual impl is discouraged for compatibility). Right now this is just a marker trait, but in the future it might be expanded. Making this change early allows us to make further changes later without breaking backward compatibility for derive macro users.
This already prevents a lot of issues, like using bundles in `insert` calls. Primitive types are no longer valid components as well. This can be easily worked around by adding newtype wrappers and deriving `Component` for them.
One funny example of prevented bad code (from our own tests) is when an newtype struct or enum variant is used. Previously, it was possible to write `insert(Newtype)` instead of `insert(Newtype(value))`. That code compiled, because function pointers (in this case newtype struct constructor) implement `Send + Sync + 'static`, so we allowed them to be used as components. This is no longer the case and such invalid code will trigger a compile error.
Co-authored-by: = <=>
Co-authored-by: TheRawMeatball <therawmeatball@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Updates the requirements on [hexasphere](https://github.com/OptimisticPeach/hexasphere) to permit the latest version.
<details>
<summary>Commits</summary>
<ul>
<li>See full diff in <a href="https://github.com/OptimisticPeach/hexasphere/commits">compare view</a></li>
</ul>
</details>
<br />
Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`.
[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)
---
<details>
<summary>Dependabot commands and options</summary>
<br />
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
- `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
</details>
This updates the `pipelined-rendering` branch to use the latest `bevy_ecs` from `main`. This accomplishes a couple of goals:
1. prepares for upcoming `custom-shaders` branch changes, which were what drove many of the recent bevy_ecs changes on `main`
2. prepares for the soon-to-happen merge of `pipelined-rendering` into `main`. By including bevy_ecs changes now, we make that merge simpler / easier to review.
I split this up into 3 commits:
1. **add upstream bevy_ecs**: please don't bother reviewing this content. it has already received thorough review on `main` and is a literal copy/paste of the relevant folders (the old folders were deleted so the directories are literally exactly the same as `main`).
2. **support manual buffer application in stages**: this is used to enable the Extract step. we've already reviewed this once on the `pipelined-rendering` branch, but its worth looking at one more time in the new context of (1).
3. **support manual archetype updates in QueryState**: same situation as (2).
# Objective
- Make it easy to use HexColorError with `thiserror`, i.e. converting it into other error types.
Makes this possible:
```rust
#[derive(Debug, thiserror::Error)]
pub enum LdtkError {
#[error("An error occured while deserializing")]
Json(#[from] serde_json::Error),
#[error("An error occured while parsing a color")]
HexColor(#[from] bevy::render::color::HexColorError),
}
```
## Solution
- Derive thiserror::Error the same way we do elsewhere (see query.rs for instance)
# Objective
Enable using exact World lifetimes during read-only access . This is motivated by the new renderer's need to allow read-only world-only queries to outlive the query itself (but still be constrained by the world lifetime).
For example:
115b170d1f/pipelined/bevy_pbr2/src/render/mod.rs (L774)
## Solution
Split out SystemParam state and world lifetimes and pipe those lifetimes up to read-only Query ops (and add into_inner for Res). According to every safety test I've run so far (except one), this is safe (see the temporary safety test commit). Note that changing the mutable variants to the new lifetimes would allow aliased mutable pointers (try doing that to see how it affects the temporary safety tests).
The new state lifetime on SystemParam does make `#[derive(SystemParam)]` more cumbersome (the current impl requires PhantomData if you don't use both lifetimes). We can make this better by detecting whether or not a lifetime is used in the derive and adjusting accordingly, but that should probably be done in its own pr.
## Why is this a draft?
The new lifetimes break QuerySet safety in one very specific case (see the query_set system in system_safety_test). We need to solve this before we can use the lifetimes given.
This is due to the fact that QuerySet is just a wrapper over Query, which now relies on world lifetimes instead of `&self` lifetimes to prevent aliasing (but in systems, each Query has its own implied lifetime, not a centralized world lifetime). I believe the fix is to rewrite QuerySet to have its own World lifetime (and own the internal reference). This will complicate the impl a bit, but I think it is doable. I'm curious if anyone else has better ideas.
Personally, I think these new lifetimes need to happen. We've gotta have a way to directly tie read-only World queries to the World lifetime. The new renderer is the first place this has come up, but I doubt it will be the last. Worst case scenario we can come up with a second `WorldLifetimeQuery<Q, F = ()>` parameter to enable these read-only scenarios, but I'd rather not add another type to the type zoo.
# Objective
- Provides more useful error messages when using unsupported shader features.
## Solution Fixes#869
- Provided a error message as follows (adding name, set and binding):
```
Unsupported shader bind type CombinedImageSampler (name noiseVol0, set 0, binding 9)
```
# Objective
- Remove all the `.system()` possible.
- Check for remaining missing cases.
## Solution
- Remove all `.system()`, fix compile errors
- 32 calls to `.system()` remains, mostly internals, the few others should be removed after #2446
This is extracted out of eb8f973646476b4a4926ba644a77e2b3a5772159 and includes some additional changes to remove all references to AppBuilder and fix examples that still used App::build() instead of App::new(). In addition I didn't extract the sub app feature as it isn't ready yet.
You can use `git diff --diff-filter=M eb8f973646476b4a4926ba644a77e2b3a5772159` to find all differences in this PR. The `--diff-filtered=M` filters all files added in the original commit but not in this commit away.
Co-Authored-By: Carter Anderson <mcanders1@gmail.com>
This relicenses Bevy under the dual MIT or Apache-2.0 license. For rationale, see #2373.
* Changes the LICENSE file to describe the dual license. Moved the MIT license to docs/LICENSE-MIT. Added the Apache-2.0 license to docs/LICENSE-APACHE. I opted for this approach over dumping both license files at the root (the more common approach) for a number of reasons:
* Github links to the "first" license file (LICENSE-APACHE) in its license links (you can see this in the wgpu and rust-analyzer repos). People clicking these links might erroneously think that the apache license is the only option. Rust and Amethyst both use COPYRIGHT or COPYING files to solve this problem, but this creates more file noise (if you do everything at the root) and the naming feels way less intuitive.
* People have a reflex to look for a LICENSE file. By providing a single license file at the root, we make it easy for them to understand our licensing approach.
* I like keeping the root clean and noise free
* There is precedent for putting the apache and mit license text in sub folders (amethyst)
* Removed the `Copyright (c) 2020 Carter Anderson` copyright notice from the MIT license. I don't care about this attribution, it might make license compliance more difficult in some cases, and it didn't properly attribute other contributors. We shoudn't replace it with something like "Copyright (c) 2021 Bevy Contributors" because "Bevy Contributors" is not a legal entity. Instead, we just won't include the copyright line (which has precedent ... Rust also uses this approach).
* Updates crates to use the new "MIT OR Apache-2.0" license value
* Removes the old legion-transform license file from bevy_transform. bevy_transform has been its own, fully custom implementation for a long time and that license no longer applies.
* Added a License section to the main readme
* Updated our Bevy Plugin licensing guidelines.
As a follow-up we should update the website to properly describe the new license.
Closes#2373
This was tested using cargo generate-lockfile -Zminimal-versions.
The following indirect dependencies also have minimal version
dependencies. For at least num, rustc-serialize and rand this is
necessary to compile on rustc versions that are not older than 1.0.
* num = "0.1.27"
* rustc-serialize = "0.3.20"
* termcolor = "1.0.4"
* libudev-sys = "0.1.1"
* rand = "0.3.14"
* ab_glyph = "0.2.7
Based on https://github.com/bevyengine/bevy/pull/2455
# Objective
Reduce compilation time
# Solution
Remove unused dependencies. While this PR doesn't remove any crates from `Cargo.lock`, it may unlock more build parallelism.
# Objective
Fixes how the layer bit is unset in the RenderLayers bit mask when calling the `without` method.
## Solution
Unsets the layer bit using `&=` and the inverse of the layer bit mask.
# Objective
- CI jobs are starting to fail due to `clippy::bool-assert-comparison` and `clippy::single_component_path_imports` being triggered.
## Solution
- Fix all uses where `asset_eq!(<condition>, <bool>)` could be replace by `assert!`
- Move the `#[allow()]` for `single_component_path_imports` to `#![allow()]` at the start of the files.
fixes#2169
Instead of having custom methods with reduced visibility, implement `From<image::DynamicImage> for Texture` and `TryFrom<Texture> for image::DynamicImage`
Since `visible_entities_system` already checks `Visiblie::is_visible` for each entity and requires it to be `true`, there's no reason to verify visibility in `PassNode::prepare` which consumes entities produced by the system.
When implementing `AssetLoader ` you need to specify which File extensions are supported by that loader.
Currently, Bevy always says it supports extensions that actually require activating a Feature beforehand.
This PR adds cf attributes, so Bevy only tries to load those Extensions whose Features were activated.
This prevents Bevy from Panicking and reports such a warning:
```
Jun 02 23:05:57.139 WARN bevy_asset::asset_server: no `AssetLoader` found for the following extension: ogg
```
This also fixes the Bug, that the `png Feature had to be activated even if you wanted to load a different image format.
Fixes#640
`ResMut`, `Mut` and `ReflectMut` all share very similar code for change detection.
This PR is a first pass at refactoring these implementation and removing a lot of the duplicated code.
Note, this introduces a new trait `ChangeDetectable`.
Please feel free to comment away and let me know what you think!
This gets rid of multiple unsafe blocks that we had to maintain ourselves, and instead depends on library that's commonly used and supported by the ecosystem. We also get support for glam types for free.
There is still some things to clear up with the `Bytes` trait, but that is a bit more substantial change and can be done separately. Also there are already separate efforts to use `crevice` crate, so I've just added that as a TODO.
There's what might be considered a proper bug in `PipelineCompiler::compile_pipeline()`, where it overwrites the `step_mode` for the passed in `VertexBufferLayout` with `InputStepMode::Vertex`. Due to this some ugly workarounds are needed to do any kind of instancing.
In the somewhat longer term, `PipelineCompiler::compile_pipeline()` should probably also handle a `Vec<VertexBufferLayout>`, but that would be a (slightly) larger PR, rather than a bugfix. And I'd love to have this fix in sooner than we can deal with a bigger PR.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Required by #1429,
- Adds the `Ushort4` vertex attribute for joint indices
- `Mesh::ATTRIBUTE_JOINT_WEIGHT` and `Mesh::ATTRIBUTE_JOINT_INDEX` to import vertex attributes related to skinning from GLTF
- impl `Default` for `Mesh` a empty triangle mesh is created (needed by reflect)
- impl `Reflect` for `Mesh` all attributes are ignored (needed by the animation system)
Changes to get Bevy to compile with wgpu master.
With this, on a Mac:
* 2d examples look fine
* ~~3d examples crash with an error specific to metal about a compilation error~~
* 3d examples work fine after enabling feature `wgpu/cross`
Feature `wgpu/cross` seems to be needed only on some platforms, not sure how to know which. It was introduced in https://github.com/gfx-rs/wgpu-rs/pull/826
Fixes#2037 (and then some)
Problem:
- `TypeUuid`, `RenderResource`, and `Bytes` derive macros did not properly handle generic structs.
Solution:
- Rework the derive macro implementations to handle the generics.
If a mesh without any vertex attributes is rendered (for example, one that only has indices), bevy will crash since the mesh still creates a vertex buffer even though it's empty. Later code assumes that there is vertex data, causing an index-out-of-bounds panic. This PR fixes the issue by adding a check that there is any vertex data before creating a vertex buffer.
I ran into this issue while rendering a tilemap without any vertex attributes (only indices).
Stack trace:
```
thread 'main' panicked at 'index out of bounds: the len is 0 but the index is 0', C:\Dev\Games\bevy\crates\bevy_render\src\render_graph\nodes\pass_node.rs:346:9
stack backtrace:
0: std::panicking::begin_panic_handler
at /rustc/bb491ed23937aef876622e4beb68ae95938b3bf9\/library\std\src\panicking.rs:493
1: core::panicking::panic_fmt
at /rustc/bb491ed23937aef876622e4beb68ae95938b3bf9\/library\core\src\panicking.rs:92
2: core::panicking::panic_bounds_check
at /rustc/bb491ed23937aef876622e4beb68ae95938b3bf9\/library\core\src\panicking.rs:69
3: core::slice::index::{{impl}}::index<core::option::Option<tuple<bevy_render::renderer::render_resource::buffer::BufferId, u64>>>
at C:\Users\tehpe\.rustup\toolchains\nightly-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\core\src\slice\index.rs:184
4: core::slice::index::{{impl}}::index<core::option::Option<tuple<bevy_render::renderer::render_resource::buffer::BufferId, u64>>,usize>
at C:\Users\tehpe\.rustup\toolchains\nightly-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\core\src\slice\index.rs:15
5: alloc::vec::{{impl}}::index<core::option::Option<tuple<bevy_render::renderer::render_resource::buffer::BufferId, u64>>,usize,alloc::alloc::Global>
at C:\Users\tehpe\.rustup\toolchains\nightly-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\alloc\src\vec\mod.rs:2386
6: bevy_render::render_graph::nodes::pass_node::DrawState::is_vertex_buffer_set
at C:\Dev\Games\bevy\crates\bevy_render\src\render_graph\nodes\pass_node.rs:346
7: bevy_render::render_graph::nodes::pass_node::{{impl}}::update::{{closure}}<bevy_render::render_graph::base::MainPass*>
at C:\Dev\Games\bevy\crates\bevy_render\src\render_graph\nodes\pass_node.rs:285
8: bevy_wgpu::renderer::wgpu_render_context::{{impl}}::begin_pass
at C:\Dev\Games\bevy\crates\bevy_wgpu\src\renderer\wgpu_render_context.rs:196
9: bevy_render::render_graph::nodes::pass_node::{{impl}}::update<bevy_render::render_graph::base::MainPass*>
at C:\Dev\Games\bevy\crates\bevy_render\src\render_graph\nodes\pass_node.rs:244
10: bevy_wgpu::renderer::wgpu_render_graph_executor::WgpuRenderGraphExecutor::execute
at C:\Dev\Games\bevy\crates\bevy_wgpu\src\renderer\wgpu_render_graph_executor.rs:75
11: bevy_wgpu::wgpu_renderer::{{impl}}::run_graph::{{closure}}
at C:\Dev\Games\bevy\crates\bevy_wgpu\src\wgpu_renderer.rs:115
12: bevy_ecs::world::World::resource_scope<bevy_render::render_graph::graph::RenderGraph,tuple<>,closure-0>
at C:\Dev\Games\bevy\crates\bevy_ecs\src\world\mod.rs:715
13: bevy_wgpu::wgpu_renderer::WgpuRenderer::run_graph
at C:\Dev\Games\bevy\crates\bevy_wgpu\src\wgpu_renderer.rs:104
14: bevy_wgpu::wgpu_renderer::WgpuRenderer::update
at C:\Dev\Games\bevy\crates\bevy_wgpu\src\wgpu_renderer.rs:121
15: bevy_wgpu::get_wgpu_render_system::{{closure}}
at C:\Dev\Games\bevy\crates\bevy_wgpu\src\lib.rs:112
16: alloc::boxed::{{impl}}::call_mut<tuple<mut bevy_ecs::world::World*>,FnMut<tuple<mut bevy_ecs::world::World*>>,alloc::alloc::Global>
at C:\Users\tehpe\.rustup\toolchains\nightly-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\alloc\src\boxed.rs:1553
17: bevy_ecs::system::exclusive_system::{{impl}}::run
at C:\Dev\Games\bevy\crates\bevy_ecs\src\system\exclusive_system.rs:41
18: bevy_ecs::schedule::stage::{{impl}}::run
at C:\Dev\Games\bevy\crates\bevy_ecs\src\schedule\stage.rs:812
19: bevy_ecs::schedule::Schedule::run_once
at C:\Dev\Games\bevy\crates\bevy_ecs\src\schedule\mod.rs:201
20: bevy_ecs::schedule::{{impl}}::run
at C:\Dev\Games\bevy\crates\bevy_ecs\src\schedule\mod.rs:219
21: bevy_app::app::App::update
at C:\Dev\Games\bevy\crates\bevy_app\src\app.rs:58
22: bevy_winit::winit_runner_with::{{closure}}
at C:\Dev\Games\bevy\crates\bevy_winit\src\lib.rs:485
23: winit::platform_impl::platform::event_loop::{{impl}}::run_return::{{closure}}<tuple<>,closure-1>
at C:\Users\tehpe\.cargo\registry\src\github.com-1ecc6299db9ec823\winit-0.24.0\src\platform_impl\windows\event_loop.rs:203
24: alloc::boxed::{{impl}}::call_mut<tuple<winit::event::Event<tuple<>>, mut winit::event_loop::ControlFlow*>,FnMut<tuple<winit::event::Event<tuple<>>, mut winit::event_loop::ControlFlow*>>,alloc::alloc::Global>
at C:\Users\tehpe\.rustup\toolchains\nightly-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\alloc\src\boxed.rs:1553
25: winit::platform_impl::platform::event_loop:🏃:{{impl}}::call_event_handler::{{closure}}<tuple<>>
at C:\Users\tehpe\.cargo\registry\src\github.com-1ecc6299db9ec823\winit-0.24.0\src\platform_impl\windows\event_loop\runner.rs:245
26: std::panic::{{impl}}::call_once<tuple<>,closure-0>
at C:\Users\tehpe\.rustup\toolchains\nightly-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\std\src\panic.rs:344
27: std::panicking::try::do_call<std::panic::AssertUnwindSafe<closure-0>,tuple<>>
at C:\Users\tehpe\.rustup\toolchains\nightly-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\std\src\panicking.rs:379
28: hashbrown::set::HashSet<mut winapi::shared::windef::HWND__*, std::collections:#️⃣:map::RandomState, alloc::alloc::Global>::iter<mut winapi::shared::windef::HWND__*,std::collections:#️⃣:map::RandomState,alloc::alloc::Global>
29: std::panicking::try<tuple<>,std::panic::AssertUnwindSafe<closure-0>>
at C:\Users\tehpe\.rustup\toolchains\nightly-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\std\src\panicking.rs:343
30: std::panic::catch_unwind<std::panic::AssertUnwindSafe<closure-0>,tuple<>>
at C:\Users\tehpe\.rustup\toolchains\nightly-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\std\src\panic.rs:431
31: winit::platform_impl::platform::event_loop:🏃:EventLoopRunner<tuple<>>::catch_unwind<tuple<>,tuple<>,closure-0>
at C:\Users\tehpe\.cargo\registry\src\github.com-1ecc6299db9ec823\winit-0.24.0\src\platform_impl\windows\event_loop\runner.rs:152
32: winit::platform_impl::platform::event_loop:🏃:EventLoopRunner<tuple<>>::call_event_handler<tuple<>>
at C:\Users\tehpe\.cargo\registry\src\github.com-1ecc6299db9ec823\winit-0.24.0\src\platform_impl\windows\event_loop\runner.rs:239
33: winit::platform_impl::platform::event_loop:🏃:EventLoopRunner<tuple<>>::move_state_to<tuple<>>
at C:\Users\tehpe\.cargo\registry\src\github.com-1ecc6299db9ec823\winit-0.24.0\src\platform_impl\windows\event_loop\runner.rs:341
34: winit::platform_impl::platform::event_loop:🏃:EventLoopRunner<tuple<>>::main_events_cleared<tuple<>>
at C:\Users\tehpe\.cargo\registry\src\github.com-1ecc6299db9ec823\winit-0.24.0\src\platform_impl\windows\event_loop\runner.rs:227
35: winit::platform_impl::platform::event_loop::flush_paint_messages<tuple<>>
at C:\Users\tehpe\.cargo\registry\src\github.com-1ecc6299db9ec823\winit-0.24.0\src\platform_impl\windows\event_loop.rs:676
36: winit::platform_impl::platform::event_loop::thread_event_target_callback::{{closure}}<tuple<>>
at C:\Users\tehpe\.cargo\registry\src\github.com-1ecc6299db9ec823\winit-0.24.0\src\platform_impl\windows\event_loop.rs:1967
37: std::panic::{{impl}}::call_once<isize,closure-0>
at C:\Users\tehpe\.rustup\toolchains\nightly-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\std\src\panic.rs:344
38: std::panicking::try::do_call<std::panic::AssertUnwindSafe<closure-0>,isize>
at C:\Users\tehpe\.rustup\toolchains\nightly-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\std\src\panicking.rs:379
39: hashbrown::set::HashSet<mut winapi::shared::windef::HWND__*, std::collections:#️⃣:map::RandomState, alloc::alloc::Global>::iter<mut winapi::shared::windef::HWND__*,std::collections:#️⃣:map::RandomState,alloc::alloc::Global>
40: std::panicking::try<isize,std::panic::AssertUnwindSafe<closure-0>>
at C:\Users\tehpe\.rustup\toolchains\nightly-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\std\src\panicking.rs:343
41: std::panic::catch_unwind<std::panic::AssertUnwindSafe<closure-0>,isize>
at C:\Users\tehpe\.rustup\toolchains\nightly-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\std\src\panic.rs:431
42: winit::platform_impl::platform::event_loop:🏃:EventLoopRunner<tuple<>>::catch_unwind<tuple<>,isize,closure-0>
at C:\Users\tehpe\.cargo\registry\src\github.com-1ecc6299db9ec823\winit-0.24.0\src\platform_impl\windows\event_loop\runner.rs:152
43: winit::platform_impl::platform::event_loop::thread_event_target_callback<tuple<>>
at C:\Users\tehpe\.cargo\registry\src\github.com-1ecc6299db9ec823\winit-0.24.0\src\platform_impl\windows\event_loop.rs:2151
44: DefSubclassProc
45: DefSubclassProc
46: CallWindowProcW
47: DispatchMessageW
48: SendMessageTimeoutW
49: KiUserCallbackDispatcher
50: NtUserDispatchMessage
51: DispatchMessageW
52: winit::platform_impl::platform::event_loop::EventLoop<tuple<>>::run_return<tuple<>,closure-1>
at C:\Users\tehpe\.cargo\registry\src\github.com-1ecc6299db9ec823\winit-0.24.0\src\platform_impl\windows\event_loop.rs:218
53: winit::platform_impl::platform::event_loop::EventLoop<tuple<>>::run<tuple<>,closure-1>
at C:\Users\tehpe\.cargo\registry\src\github.com-1ecc6299db9ec823\winit-0.24.0\src\platform_impl\windows\event_loop.rs:188
54: winit::event_loop::EventLoop<tuple<>>::run<tuple<>,closure-1>
at C:\Users\tehpe\.cargo\registry\src\github.com-1ecc6299db9ec823\winit-0.24.0\src\event_loop.rs:154
55: bevy_winit::run<closure-1>
at C:\Dev\Games\bevy\crates\bevy_winit\src\lib.rs:171
56: bevy_winit::winit_runner_with
at C:\Dev\Games\bevy\crates\bevy_winit\src\lib.rs:493
57: bevy_winit::winit_runner
at C:\Dev\Games\bevy\crates\bevy_winit\src\lib.rs:211
58: core::ops::function::Fn::call<fn(bevy_app::app::App),tuple<bevy_app::app::App>>
at C:\Users\tehpe\.rustup\toolchains\nightly-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\core\src\ops\function.rs:70
59: alloc::boxed::{{impl}}::call<tuple<bevy_app::app::App>,Fn<tuple<bevy_app::app::App>>,alloc::alloc::Global>
at C:\Users\tehpe\.rustup\toolchains\nightly-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\alloc\src\boxed.rs:1560
60: bevy_app::app::App::run
at C:\Dev\Games\bevy\crates\bevy_app\src\app.rs:68
61: bevy_app::app_builder::AppBuilder::run
at C:\Dev\Games\bevy\crates\bevy_app\src\app_builder.rs:54
62: game_main::main
at .\crates\game_main\src\main.rs:23
63: core::ops::function::FnOnce::call_once<fn(),tuple<>>
at C:\Users\tehpe\.rustup\toolchains\nightly-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\core\src\ops\function.rs:227
note: Some details are omitted, run with `RUST_BACKTRACE=full` for a verbose backtrace.
Apr 27 21:51:01.026 ERROR gpu_descriptor::allocator: `DescriptorAllocator` is dropped while some descriptor sets were not deallocated
error: process didn't exit successfully: `target/cargo\debug\game_main.exe` (exit code: 0xc000041d)
```
There are cases where we want an enum variant name. Right now the only way to do that with rust's std is to derive Debug, but this will also print out the variant's fields. This creates the unfortunate situation where we need to manually write out each variant's string name (ex: in #1963), which is both boilerplate-ey and error-prone. Crates such as `strum` exist for this reason, but it includes a lot of code and complexity that we don't need.
This adds a dead-simple `EnumVariantMeta` derive that exposes `enum_variant_index` and `enum_variant_name` functions. This allows us to make cases like #1963 much cleaner (see the second commit). We might also be able to reuse this logic for `bevy_reflect` enum derives.
In bevy_webgl2, the `RenderResourceContext` is created after startup as it needs to first wait for an event from js side:
f31e5d49de/src/lib.rs (L117)
remove `panic` introduced in #1965 and log as a `warn` instead
This implementations allows you
convert std::vec::Vec<T> to VertexAttributeValues::T and back.
# Examples
```rust
use std::convert::TryInto;
use bevy_render::mesh::VertexAttributeValues;
// creating vector of values
let before = vec![[0_u32; 4]; 10];
let values = VertexAttributeValues::from(before.clone());
let after: Vec<[u32; 4]> = values.try_into().unwrap();
assert_eq!(before, after);
```
Co-authored-by: aloucks <aloucks@cofront.net>
Co-authored-by: simens_green <34134129+simensgreen@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>