# Objective
Fixes#3180, builds from https://github.com/bevyengine/bevy/pull/2898
## Solution
Support requesting a window to be closed and closing a window in `bevy_window`, and handle this in `bevy_winit`.
This is a stopgap until we move to windows as entites, which I'm sure I'll get around to eventually.
## Changelog
### Added
- `Window::close` to allow closing windows.
- `WindowClosed` to allow reacting to windows being closed.
### Changed
Replaced `bevy::system::exit_on_esc_system` with `bevy:🪟:close_on_esc`.
## Fixed
The app no longer exits when any window is closed. This difference is only observable when there are multiple windows.
## Migration Guide
`bevy::input::system::exit_on_esc_system` has been removed. Use `bevy:🪟:close_on_esc` instead.
`CloseWindow` has been removed. Use `Window::close` instead.
The `Close` variant has been added to `WindowCommand`. Handle this by closing the relevant window.
# Objective
Add support for vertex colors
## Solution
This change is modeled after how vertex tangents are handled, so the shader is conditionally compiled with vertex color support if the mesh has the corresponding attribute set.
Vertex colors are multiplied by the base color. I'm not sure if this is the best for all cases, but may be useful for modifying vertex colors without creating a new mesh.
I chose `VertexFormat::Float32x4`, but I'd prefer 16-bit floats if/when support is added.
## Changelog
### Added
- Vertex colors can be specified using the `Mesh::ATTRIBUTE_COLOR` mesh attribute.
# Objective
Bevy users often want to create circles and other simple shapes.
All the machinery is in place to accomplish this, and there are external crates that help. But when writing code for e.g. a new bevy example, it's not really possible to draw a circle without bringing in a new asset, writing a bunch of scary looking mesh code, or adding a dependency.
In particular, this PR was inspired by this interaction in another PR: https://github.com/bevyengine/bevy/pull/3721#issuecomment-1016774535
## Solution
This PR adds `shape::RegularPolygon` and `shape::Circle` (which is just a `RegularPolygon` that defaults to a large number of sides)
## Discussion
There's a lot of ongoing discussion about shapes in <https://github.com/bevyengine/rfcs/pull/12> and at least one other lingering shape PR (although it seems incomplete).
That RFC currently includes `RegularPolygon` and `Circle` shapes, so I don't think that having working mesh generation code in the engine for those shapes would add much burden to an author of an implementation.
But if we'd prefer not to add additional shapes until after that's sorted out, I'm happy to close this for now.
## Alternatives for users
For any users stumbling on this issue, here are some plugins that will help if you need more shapes.
https://github.com/Nilirad/bevy_prototype_lyonhttps://github.com/johanhelsing/bevy_smudhttps://github.com/Weasy666/bevy_svghttps://github.com/redpandamonium/bevy_more_shapeshttps://github.com/ForesightMiningSoftwareCorporation/bevy_polyline
# Objective
Reduce the catch-all grab-bag of functionality in bevy_core by moving FloatOrd to bevy_utils.
A step in addressing #2931 and splitting bevy_core into more specific locations.
## Solution
Move FloatOrd into bevy_utils. Fix the compile errors.
As a result, bevy_core_pipeline, bevy_pbr, bevy_sprite, bevy_text, and bevy_ui no longer depend on bevy_core (they were only using it for `FloatOrd` previously).
# Objective
- Related #4276.
- Part of the splitting process of #3503.
## Solution
- Move `Size` to `bevy_ui`.
## Reasons
- `Size` is only needed in `bevy_ui` (because it needs to use `Val` instead of `f32`), but it's also used as a worse `Vec2` replacement in other areas.
- `Vec2` is more powerful than `Size` so it should be used whenever possible.
- Discussion in #3503.
## Changelog
### Changed
- The `Size` type got moved from `bevy_math` to `bevy_ui`.
## Migration Guide
- The `Size` type got moved from `bevy::math` to `bevy::ui`. To migrate you just have to import `bevy::ui::Size` instead of `bevy::math::Math` or use the `bevy::prelude` instead.
Co-authored-by: KDecay <KDecayMusic@protonmail.com>
# Objective
- Several examples are useful for qualitative tests of Bevy's performance
- By contrast, these are less useful for learning material: they are often relatively complex and have large amounts of setup and are performance optimized.
## Solution
- Move bevymark, many_sprites and many_cubes into the new stress_tests example folder
- Move contributors into the games folder: unlike the remaining examples in the 2d folder, it is not focused on demonstrating a clear feature.
# Objective
- Since #4224, using labels which only refer to one system doesn't make sense.
## Solution
- Remove some of those.
## Future work
- We should remove the ability to use strings as system labels entirely. I haven't in this PR because there are tests which use this, and that's a lot of code to change.
- The only use cases for labels are either intra-crate, which use #4224, or inter-crate, which should either use #4224 or explicit types. Neither of those should use strings.
# Objective
Fixes#4344.
## Solution
Add a new component `Text2dBounds` to `Text2dBundle` that specifies the maximum width and height of text. Text will wrap according to this size.
# Objective
A common pattern in Rust is the [newtype](https://doc.rust-lang.org/rust-by-example/generics/new_types.html). This is an especially useful pattern in Bevy as it allows us to give common/foreign types different semantics (such as allowing it to implement `Component` or `FromWorld`) or to simply treat them as a "new type" (clever). For example, it allows us to wrap a common `Vec<String>` and do things like:
```rust
#[derive(Component)]
struct Items(Vec<String>);
fn give_sword(query: Query<&mut Items>) {
query.single_mut().0.push(String::from("Flaming Poisoning Raging Sword of Doom"));
}
```
> We could then define another struct that wraps `Vec<String>` without anything clashing in the query.
However, one of the worst parts of this pattern is the ugly `.0` we have to write in order to access the type we actually care about. This is why people often implement `Deref` and `DerefMut` in order to get around this.
Since it's such a common pattern, especially for Bevy, it makes sense to add a derive macro to automatically add those implementations.
## Solution
Added a derive macro for `Deref` and another for `DerefMut` (both exported into the prelude). This works on all structs (including tuple structs) as long as they only contain a single field:
```rust
#[derive(Deref)]
struct Foo(String);
#[derive(Deref, DerefMut)]
struct Bar {
name: String,
}
```
This allows us to then remove that pesky `.0`:
```rust
#[derive(Component, Deref, DerefMut)]
struct Items(Vec<String>);
fn give_sword(query: Query<&mut Items>) {
query.single_mut().push(String::from("Flaming Poisoning Raging Sword of Doom"));
}
```
### Alternatives
There are other alternatives to this such as by using the [`derive_more`](https://crates.io/crates/derive_more) crate. However, it doesn't seem like we need an entire crate just yet since we only need `Deref` and `DerefMut` (for now).
### Considerations
One thing to consider is that the Rust std library recommends _not_ using `Deref` and `DerefMut` for things like this: "`Deref` should only be implemented for smart pointers to avoid confusion" ([reference](https://doc.rust-lang.org/std/ops/trait.Deref.html)). Personally, I believe it makes sense to use it in the way described above, but others may disagree.
### Additional Context
Discord: https://discord.com/channels/691052431525675048/692572690833473578/956648422163746827 (controversiality discussed [here](https://discord.com/channels/691052431525675048/692572690833473578/956711911481835630))
---
## Changelog
- Add `Deref` derive macro (exported to prelude)
- Add `DerefMut` derive macro (exported to prelude)
- Updated most newtypes in examples to use one or both derives
Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
# Objective
- Fixes#3970
- To support Bevy's shader abstraction(shader defs, shader imports and hot shader reloading) for compute shaders, I have followed carts advice and change the `PipelinenCache` to accommodate both compute and render pipelines.
## Solution
- renamed `RenderPipelineCache` to `PipelineCache`
- Cached Pipelines are now represented by an enum (render, compute)
- split the `SpecializedPipelines` into `SpecializedRenderPipelines` and `SpecializedComputePipelines`
- updated the game of life example
## Open Questions
- should `SpecializedRenderPipelines` and `SpecializedComputePipelines` be merged and how would we do that?
- should the `get_render_pipeline` and `get_compute_pipeline` methods be merged?
- is pipeline specialization for different entry points a good pattern
Co-authored-by: Kurt Kühnert <51823519+Ku95@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Fixes#4036
## Solution
- Use `VertexBufferLayout::from_vertex_formats`
- Actually put a u32 into `ATTRIBUTE_COLOR` and convert it in the shader
I'm not 100% sure about the color stuff. It seems like `ATTRIBUTE_COLOR` has been `Uint32` this whole time, but this example previously worked with `[f32; 4]` somehow, perhaps because the vertex layout was manually specified.
Let me know if that can be improved, or feel free to close for an alternative fix.
# Objective
- Improve documentation.
- Provide helper functions for common uses of `Windows` relating to getting the primary `Window`.
- Reduce repeated `Window` code.
# Solution
- Adds infallible `primary()` and `primary_mut()` functions with standard error text. This replaces the commonly used `get_primary().unwrap()` seen throughout bevy which has inconsistent or nonexistent error messages.
- Adds `scale_factor(WindowId)` to replace repeated code blocks throughout.
# Considerations
- The added functions can panic if the primary window does not exist.
- It is very uncommon for the primary window to not exist, as seen by the regular use of `get_primary().unwrap()`. Most users will have a single window and will need to reference the primary window in their code multiple times.
- The panic provides a consistent error message to make this class of error easy to spot from the panic text.
- This follows the established standard of short names for infallible-but-unlikely-to-panic functions in bevy.
- Removes line noise for common usage of `Windows`.
Adds a `default()` shorthand for `Default::default()` ... because life is too short to constantly type `Default::default()`.
```rust
use bevy::prelude::*;
#[derive(Default)]
struct Foo {
bar: usize,
baz: usize,
}
// Normally you would do this:
let foo = Foo {
bar: 10,
..Default::default()
};
// But now you can do this:
let foo = Foo {
bar: 10,
..default()
};
```
The examples have been adapted to use `..default()`. I've left internal crates as-is for now because they don't pull in the bevy prelude, and the ergonomics of each case should be considered individually.
# Objective
- In the large majority of cases, users were calling `.unwrap()` immediately after `.get_resource`.
- Attempting to add more helpful error messages here resulted in endless manual boilerplate (see #3899 and the linked PRs).
## Solution
- Add an infallible variant named `.resource` and so on.
- Use these infallible variants over `.get_resource().unwrap()` across the code base.
## Notes
I did not provide equivalent methods on `WorldCell`, in favor of removing it entirely in #3939.
## Migration Guide
Infallible variants of `.get_resource` have been added that implicitly panic, rather than needing to be unwrapped.
Replace `world.get_resource::<Foo>().unwrap()` with `world.resource::<Foo>()`.
## Impact
- `.unwrap` search results before: 1084
- `.unwrap` search results after: 942
- internal `unwrap_or_else` calls added: 4
- trivial unwrap calls removed from tests and code: 146
- uses of the new `try_get_resource` API: 11
- percentage of the time the unwrapping API was used internally: 93%
This PR makes a number of changes to how meshes and vertex attributes are handled, which the goal of enabling easy and flexible custom vertex attributes:
* Reworks the `Mesh` type to use the newly added `VertexAttribute` internally
* `VertexAttribute` defines the name, a unique `VertexAttributeId`, and a `VertexFormat`
* `VertexAttributeId` is used to produce consistent sort orders for vertex buffer generation, replacing the more expensive and often surprising "name based sorting"
* Meshes can be used to generate a `MeshVertexBufferLayout`, which defines the layout of the gpu buffer produced by the mesh. `MeshVertexBufferLayouts` can then be used to generate actual `VertexBufferLayouts` according to the requirements of a specific pipeline. This decoupling of "mesh layout" vs "pipeline vertex buffer layout" is what enables custom attributes. We don't need to standardize _mesh layouts_ or contort meshes to meet the needs of a specific pipeline. As long as the mesh has what the pipeline needs, it will work transparently.
* Mesh-based pipelines now specialize on `&MeshVertexBufferLayout` via the new `SpecializedMeshPipeline` trait (which behaves like `SpecializedPipeline`, but adds `&MeshVertexBufferLayout`). The integrity of the pipeline cache is maintained because the `MeshVertexBufferLayout` is treated as part of the key (which is fully abstracted from implementers of the trait ... no need to add any additional info to the specialization key).
* Hashing `MeshVertexBufferLayout` is too expensive to do for every entity, every frame. To make this scalable, I added a generalized "pre-hashing" solution to `bevy_utils`: `Hashed<T>` keys and `PreHashMap<K, V>` (which uses `Hashed<T>` internally) . Why didn't I just do the quick and dirty in-place "pre-compute hash and use that u64 as a key in a hashmap" that we've done in the past? Because its wrong! Hashes by themselves aren't enough because two different values can produce the same hash. Re-hashing a hash is even worse! I decided to build a generalized solution because this pattern has come up in the past and we've chosen to do the wrong thing. Now we can do the right thing! This did unfortunately require pulling in `hashbrown` and using that in `bevy_utils`, because avoiding re-hashes requires the `raw_entry_mut` api, which isn't stabilized yet (and may never be ... `entry_ref` has favor now, but also isn't available yet). If std's HashMap ever provides the tools we need, we can move back to that. Note that adding `hashbrown` doesn't increase our dependency count because it was already in our tree. I will probably break these changes out into their own PR.
* Specializing on `MeshVertexBufferLayout` has one non-obvious behavior: it can produce identical pipelines for two different MeshVertexBufferLayouts. To optimize the number of active pipelines / reduce re-binds while drawing, I de-duplicate pipelines post-specialization using the final `VertexBufferLayout` as the key. For example, consider a pipeline that needs the layout `(position, normal)` and is specialized using two meshes: `(position, normal, uv)` and `(position, normal, other_vec2)`. If both of these meshes result in `(position, normal)` specializations, we can use the same pipeline! Now we do. Cool!
To briefly illustrate, this is what the relevant section of `MeshPipeline`'s specialization code looks like now:
```rust
impl SpecializedMeshPipeline for MeshPipeline {
type Key = MeshPipelineKey;
fn specialize(
&self,
key: Self::Key,
layout: &MeshVertexBufferLayout,
) -> RenderPipelineDescriptor {
let mut vertex_attributes = vec![
Mesh::ATTRIBUTE_POSITION.at_shader_location(0),
Mesh::ATTRIBUTE_NORMAL.at_shader_location(1),
Mesh::ATTRIBUTE_UV_0.at_shader_location(2),
];
let mut shader_defs = Vec::new();
if layout.contains(Mesh::ATTRIBUTE_TANGENT) {
shader_defs.push(String::from("VERTEX_TANGENTS"));
vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(3));
}
let vertex_buffer_layout = layout
.get_layout(&vertex_attributes)
.expect("Mesh is missing a vertex attribute");
```
Notice that this is _much_ simpler than it was before. And now any mesh with any layout can be used with this pipeline, provided it has vertex postions, normals, and uvs. We even got to remove `HAS_TANGENTS` from MeshPipelineKey and `has_tangents` from `GpuMesh`, because that information is redundant with `MeshVertexBufferLayout`.
This is still a draft because I still need to:
* Add more docs
* Experiment with adding error handling to mesh pipeline specialization (which would print errors at runtime when a mesh is missing a vertex attribute required by a pipeline). If it doesn't tank perf, we'll keep it.
* Consider breaking out the PreHash / hashbrown changes into a separate PR.
* Add an example illustrating this change
* Verify that the "mesh-specialized pipeline de-duplication code" works properly
Please dont yell at me for not doing these things yet :) Just trying to get this in peoples' hands asap.
Alternative to #3120Fixes#3030
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
What is says on the tin.
This has got more to do with making `clippy` slightly more *quiet* than it does with changing anything that might greatly impact readability or performance.
that said, deriving `Default` for a couple of structs is a nice easy win
## Objective
There is no bevy example that shows how to transform a sprite. At least as its singular purpose. This creates an example of how to use transform.translate to move a sprite up and down. The last pull request had issues that I couldn't fix so I created a new one
### Solution
I created move_sprite example.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Some new bevy users are unfamiliar with quaternions and have trouble working with rotations in 2D.
There has been an [issue](https://github.com/bitshifter/glam-rs/issues/226) raised with glam to add helpers to better support these users, however for now I feel could be better to provide examples of how to do this in Bevy as a starting point for new users.
## Solution
I've added a 2d_rotation example which demonstrates 3 different rotation examples to try help get people started:
- Rotating and translating a player ship based on keyboard input
- An enemy ship type that rotates to face the player ship immediately
- An enemy ship type that rotates to face the player at a fixed angular velocity
I also have a standalone version of this example here https://github.com/bitshifter/bevy-2d-rotation-example but I think it would be more discoverable if it's included with Bevy.
# Objective
The current 2d rendering is specialized to render sprites, we need a generic way to render 2d items, using meshes and materials like we have for 3d.
## Solution
I cloned a good part of `bevy_pbr` into `bevy_sprite/src/mesh2d`, removed lighting and pbr itself, adapted it to 2d rendering, added a `ColorMaterial`, and modified the sprite rendering to break batches around 2d meshes.
~~The PR is a bit crude; I tried to change as little as I could in both the parts copied from 3d and the current sprite rendering to make reviewing easier. In the future, I expect we could make the sprite rendering a normal 2d material, cleanly integrated with the rest.~~ _edit: see <https://github.com/bevyengine/bevy/pull/3460#issuecomment-1003605194>_
## Remaining work
- ~~don't require mesh normals~~ _out of scope_
- ~~add an example~~ _done_
- support 2d meshes & materials in the UI?
- bikeshed names (I didn't think hard about naming, please check if it's fine)
## Remaining questions
- ~~should we add a depth buffer to 2d now that there are 2d meshes?~~ _let's revisit that when we have an opaque render phase_
- ~~should we add MSAA support to the sprites, or remove it from the 2d meshes?~~ _I added MSAA to sprites since it's really needed for 2d meshes_
- ~~how to customize vertex attributes?~~ _#3120_
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
#3457 adds the `doc_markdown` clippy lint, which checks doc comments to make sure code identifiers are escaped with backticks. This causes a lot of lint errors, so this is one of a number of PR's that will fix those lint errors one crate at a time.
This PR fixes lints in the `examples` folder.
# Objective
Every time I come back to Bevy I face the same issue: how do I draw a rectangle again? How did that work? So I go to https://github.com/bevyengine/bevy/tree/main/examples in the hope of finding literally the simplest possible example that draws something on the screen without any dependency such as an image. I don't want to have to add some image first, I just quickly want to get something on the screen with `main.rs` alone so that I can continue building on from that point on. Such an example is particularly helpful for a quick start for smaller projects that don't even need any assets such as images (this is my case currently).
Currently every single example of https://github.com/bevyengine/bevy/tree/main/examples#2d-rendering (which is the first section after hello world that beginners will look for for very minimalistic and quick examples) depends on at least an asset or is too complex. This PR solves this.
It also serves as a great comparison for a beginner to realize what Bevy is really like and how different it is from what they may expect Bevy to be. For example for someone coming from [LÖVE](https://love2d.org/), they will have something like this in their head when they think of drawing a rectangle:
```lua
function love.draw()
love.graphics.setColor(0.25, 0.25, 0.75);
love.graphics.rectangle("fill", 0, 0, 50, 50);
end
```
This, of course, differs quite a lot from what you do in Bevy. I imagine there will be people that just want to see something as simple as this in comparison to have a better understanding for the amount of differences.
## Solution
Add a dead simple example drawing a blue 50x50 rectangle in the center with no more and no less than needed.
This makes the [New Bevy Renderer](#2535) the default (and only) renderer. The new renderer isn't _quite_ ready for the final release yet, but I want as many people as possible to start testing it so we can identify bugs and address feedback prior to release.
The examples are all ported over and operational with a few exceptions:
* I removed a good portion of the examples in the `shader` folder. We still have some work to do in order to make these examples possible / ergonomic / worthwhile: #3120 and "high level shader material plugins" are the big ones. This is a temporary measure.
* Temporarily removed the multiple_windows example: doing this properly in the new renderer will require the upcoming "render targets" changes. Same goes for the render_to_texture example.
* Removed z_sort_debug: entity visibility sort info is no longer available in app logic. we could do this on the "render app" side, but i dont consider it a priority.
# Objective
Port bevy_ui to pipelined-rendering (see #2535 )
## Solution
I did some changes during the port:
- [X] separate color from the texture asset (as suggested [here](https://discord.com/channels/691052431525675048/743663924229963868/874353914525413406))
- [X] ~give the vertex shader a per-instance buffer instead of per-vertex buffer~ (incompatible with batching)
Remaining features to implement to reach parity with the old renderer:
- [x] textures
- [X] TextBundle
I'd also like to add these features, but they need some design discussion:
- [x] batching
- [ ] separate opaque and transparent phases
- [ ] multiple windows
- [ ] texture atlases
- [ ] (maybe) clipping
# Objective
Fixes#3181
## Solution
Refactored `contributors.rs` example:
- Renamed unclear variables
- Split setup system into two separate systems
Co-authored-by: CrazyRoka <rokarostuk@gmail.com>
This implements the most minimal variant of #1843 - a derive for marker trait. This is a prerequisite to more complicated features like statically defined storage type or opt-out component reflection.
In order to make component struct's purpose explicit and avoid misuse, it must be annotated with `#[derive(Component)]` (manual impl is discouraged for compatibility). Right now this is just a marker trait, but in the future it might be expanded. Making this change early allows us to make further changes later without breaking backward compatibility for derive macro users.
This already prevents a lot of issues, like using bundles in `insert` calls. Primitive types are no longer valid components as well. This can be easily worked around by adding newtype wrappers and deriving `Component` for them.
One funny example of prevented bad code (from our own tests) is when an newtype struct or enum variant is used. Previously, it was possible to write `insert(Newtype)` instead of `insert(Newtype(value))`. That code compiled, because function pointers (in this case newtype struct constructor) implement `Send + Sync + 'static`, so we allowed them to be used as components. This is no longer the case and such invalid code will trigger a compile error.
Co-authored-by: = <=>
Co-authored-by: TheRawMeatball <therawmeatball@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
This updates the `pipelined-rendering` branch to use the latest `bevy_ecs` from `main`. This accomplishes a couple of goals:
1. prepares for upcoming `custom-shaders` branch changes, which were what drove many of the recent bevy_ecs changes on `main`
2. prepares for the soon-to-happen merge of `pipelined-rendering` into `main`. By including bevy_ecs changes now, we make that merge simpler / easier to review.
I split this up into 3 commits:
1. **add upstream bevy_ecs**: please don't bother reviewing this content. it has already received thorough review on `main` and is a literal copy/paste of the relevant folders (the old folders were deleted so the directories are literally exactly the same as `main`).
2. **support manual buffer application in stages**: this is used to enable the Extract step. we've already reviewed this once on the `pipelined-rendering` branch, but its worth looking at one more time in the new context of (1).
3. **support manual archetype updates in QueryState**: same situation as (2).
# Objective
The vast majority of `.single()` usage I've seen is immediately followed by a `.unwrap()`. Since it seems most people use it without handling the error, I think making it easier to just get what you want fast while also having a more verbose alternative when you want to handle the error could help.
## Solution
Instead of having a lot of `.unwrap()` everywhere, this PR introduces a `try_single()` variant that behaves like the current `.single()` and make the new `.single()` panic on error.
# Objective
My attempt at fixing #2075 .
This is my very first contribution to this repo. Also, I'm very new to both Rust and bevy, so any feedback is *deeply* appreciated.
## Solution
- Changed `move_camera_system` so it only targets the camera entity. My approach here differs from the one used in the [cheatbook](https://bevy-cheatbook.github.io/cookbook/cursor2world.html?highlight=maincamera#2d-games) (in which a marker component is used to track the camera), so please, let me know which of them is more idiomatic.
- `move_camera_system` does not require both `Position` and `Transform` anymore (I used `rotate` for rotating the `Transform` in place, but couldn't find an equivalent `translate` method).
- Changed `tick_system` so it only targets the timer entity.
- Sprites are now spawned via a single `spawn_batch` instead of multiple `spawn`s.
# Objective
- Prevent the need to specify a sprite size when using the pipelined sprite renderer
## Solution
- Re-introduce the sprite auto resize system from the old renderer
# Objective
Restore the functionality of sprite atlases in the new renderer.
### **Note:** This PR relies on #2555
## Solution
Mostly just a copy paste of the existing sprite atlas implementation, however I unified the rendering between sprites and atlases.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Remove all the `.system()` possible.
- Check for remaining missing cases.
## Solution
- Remove all `.system()`, fix compile errors
- 32 calls to `.system()` remains, mostly internals, the few others should be removed after #2446
This is extracted out of eb8f973646476b4a4926ba644a77e2b3a5772159 and includes some additional changes to remove all references to AppBuilder and fix examples that still used App::build() instead of App::new(). In addition I didn't extract the sub app feature as it isn't ready yet.
You can use `git diff --diff-filter=M eb8f973646476b4a4926ba644a77e2b3a5772159` to find all differences in this PR. The `--diff-filtered=M` filters all files added in the original commit but not in this commit away.
Co-Authored-By: Carter Anderson <mcanders1@gmail.com>
This can be your 6 months post-christmas present.
# Objective
- Make `.system` optional
- yeet
- It's ugly
- Alternative title: `.system` is dead; long live `.system`
- **yeet**
## Solution
- Use a higher ranked lifetime, and some trait magic.
N.B. This PR does not actually remove any `.system`s, except in a couple of examples. Once this is merged we can do that piecemeal across crates, and decide on syntax for labels.
Fixes#1895
Changed most `println` to `info` in examples, some to `warn` when it was useful to differentiate from other more noisy logs.
Added doc on `LogPlugin`, how to configure it, and why (and how) you may need to disable it
I was looking into "lower level" rendering and I saw no example on how to do that. Yet, I think it's something relevant to show, so I set up a simple example on how to do that. I hope it's welcome.
I'm not confident about the code and a review is definitely nice to have, especially because there are a few things that are not great.
Specifically, I think it would be nice to see how to render with a completely custom set of attributes (position and color, in this case), but I couldn't manage to get it working without normals and uv.
It makes sense if bevy Meshes need these two attributes, but I'm not sure about it.
Co-authored-by: Alessandro Re <ale@ale-re.net>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
In the current impl, next clears out the entire stack and replaces it with a new state. This PR moves this functionality into a replace method, and changes the behavior of next to only change the top state.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
This adds a new project for showing off Frustum Culling.
(Master runs this at sub 1 FPS while with the frustum culling it runs at 144 FPS on my system)
Short clip of the project running:
https://streamable.com/vvzh2u
I'm opening this prematurely; consider this an RFC that predates RFCs and therefore not super-RFC-like.
This PR does two "big" things: decouple run criteria from system sets, reimagine system sets as weapons of mass system description.
### What it lets us do:
* Reuse run criteria within a stage.
* Pipe output of one run criteria as input to another.
* Assign labels, dependencies, run criteria, and ambiguity sets to many systems at the same time.
### Things already done:
* Decoupled run criteria from system sets.
* Mass system description superpowers to `SystemSet`.
* Implemented `RunCriteriaDescriptor`.
* Removed `VirtualSystemSet`.
* Centralized all run criteria of `SystemStage`.
* Extended system descriptors with per-system run criteria.
* `.before()` and `.after()` for run criteria.
* Explicit order between state driver and related run criteria. Fixes#1672.
* Opt-in run criteria deduplication; default behavior is to panic.
* Labels (not exposed) for state run criteria; state run criteria are deduplicated.
### API issues that need discussion:
* [`FixedTimestep::step(1.0).label("my label")`](eaccf857cd/crates/bevy_ecs/src/schedule/run_criteria.rs (L120-L122)) and [`FixedTimestep::step(1.0).with_label("my label")`](eaccf857cd/crates/bevy_core/src/time/fixed_timestep.rs (L86-L89)) are both valid but do very different things.
---
I will try to maintain this post up-to-date as things change. Do check the diffs in "edited" thingy from time to time.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Resolves#1253#1562
This makes the Commands apis consistent with World apis. This moves to a "type state" pattern (like World) where the "current entity" is stored in an `EntityCommands` builder.
In general this tends to cuts down on indentation and line count. It comes at the cost of needing to type `commands` more and adding more semicolons to terminate expressions.
I also added `spawn_bundle` to Commands because this is a common enough operation that I think its worth providing a shorthand.
`Color` can now be from different color spaces or representation:
- sRGB
- linear RGB
- HSL
This fixes#1193 by allowing the creation of const colors of all types, and writing it to the linear RGB color space for rendering.
I went with an enum after trying with two different types (`Color` and `LinearColor`) to be able to use the different variants in all place where a `Color` is expected.
I also added the HLS representation because:
- I like it
- it's useful for some case, see example `contributors`: I can just change the saturation and lightness while keeping the hue of the color
- I think adding another variant not using `red`, `green`, `blue` makes it clearer there are differences
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
An alternative to StateStages that uses SystemSets. Also includes pop and push operations since this was originally developed for my personal project which needed them.