Commit graph

115 commits

Author SHA1 Message Date
Carter Anderson
f83de49b7a
Rename Core Render Graph Labels (#11882)
# Objective

#10644 introduced nice "statically typed" labels that replace the old
strings. I would like to propose some changes to the names introduced:

* `SubGraph2d` -> `Core2d` and `SubGraph3d` -> `Core3d`. The names of
these graphs have been / should continue to be the "core 2d" graph not
the "sub graph 2d" graph. The crate is called `bevy_core_pipeline`, the
modules are still `core_2d` and `core_3d`, etc.
* `Labels2d` and `Labels3d`, at the very least, should not be plural to
follow naming conventions. A Label enum is not a "collection of labels",
it is a _specific_ Label. However I think `Label2d` and `Label3d` is
significantly less clear than `Node2d` and `Node3d`, so I propose those
changes here. I've done the same for `LabelsPbr` -> `NodePbr` and
`LabelsUi` -> `NodeUi`

Additionally, #10644 accidentally made one of the Camera2dBundle
constructors use the 3D graph instead of the 2D graph. I've fixed that
here.
 
---

## Changelog

* Renamed `SubGraph2d` -> `Core2d`, `SubGraph3d` -> `Core3d`, `Labels2d`
-> `Node2d`, `Labels3d` -> `Node3d`, `LabelsUi` -> `NodeUi`, `LabelsPbr`
-> `NodePbr`
2024-02-15 23:15:16 +00:00
Doonv
dc9b486650
Change light defaults & fix light examples (#11581)
# Objective

Fix https://github.com/bevyengine/bevy/issues/11577.

## Solution

Fix the examples, add a few constants to make setting light values
easier, and change the default lighting settings to be more realistic.
(Now designed for an overcast day instead of an indoor environment)

---

I did not include any example-related changes in here.

## Changelogs (not including breaking changes)

### bevy_pbr

- Added `light_consts` module (included in prelude), which contains
common lux and lumen values for lights.
- Added `AmbientLight::NONE` constant, which is an ambient light with a
brightness of 0.
- Added non-EV100 variants for `ExposureSettings`'s EV100 constants,
which allow easier construction of an `ExposureSettings` from a EV100
constant.

## Breaking changes

### bevy_pbr

The several default lighting values were changed:

- `PointLight`'s default `intensity` is now `2000.0`
- `SpotLight`'s default `intensity` is now `2000.0`
- `DirectionalLight`'s default `illuminance` is now
`light_consts::lux::OVERCAST_DAY` (`1000.`)
- `AmbientLight`'s default `brightness` is now `20.0`
2024-02-14 20:43:10 +00:00
Marco Buono
e169b2b217
Missing registrations (#11736)
# Objective

During my exploratory work on the remote editor, I found a couple of
types that were either not registered, or that were missing
`ReflectDefault`.

## Solution

- Added registration and `ReflectDefault` where applicable
- (Drive by fix) Moved `Option<f32>` registration to `bevy_core` instead
of `bevy_ui`, along with similar types.

---

## Changelog

- Fixed: Registered `FogSettings`, `FogFalloff`,
`ParallaxMappingMethod`, `OpaqueRendererMethod` structs for reflection
- Fixed: Registered `ReflectDefault` trait for `ColorGrading` and
`CascadeShadowConfig` structs
2024-02-06 16:33:17 +00:00
Tristan Guichaoua
694c06f3d0
Inverse missing_docs logic (#11676)
# Objective

Currently the `missing_docs` lint is allowed-by-default and enabled at
crate level when their documentations is complete (see #3492).
This PR proposes to inverse this logic by making `missing_docs`
warn-by-default and mark crates with imcomplete docs allowed.

## Solution

Makes `missing_docs` warn at workspace level and allowed at crate level
when the docs is imcomplete.
2024-02-03 21:40:55 +00:00
Lixou
16d28ccb91
RenderGraph Labelization (#10644)
# Objective

The whole `Cow<'static, str>` naming for nodes and subgraphs in
`RenderGraph` is a mess.

## Solution

Replaces hardcoded and potentially overlapping strings for nodes and
subgraphs inside `RenderGraph` with bevy's labelsystem.

---

## Changelog

* Two new labels: `RenderLabel` and `RenderSubGraph`.
* Replaced all uses for hardcoded strings with those labels
* Moved `Taa` label from its own mod to all the other `Labels3d`
* `add_render_graph_edges` now needs a tuple of labels
* Moved `ScreenSpaceAmbientOcclusion` label from its own mod with the
`ShadowPass` label to `LabelsPbr`
* Removed  `NodeId`
* Renamed `Edges.id()` to `Edges.label()`
* Removed `NodeLabel`
* Changed examples according to the new label system
* Introduced new `RenderLabel`s: `Labels2d`, `Labels3d`, `LabelsPbr`,
`LabelsUi`
* Introduced new `RenderSubGraph`s: `SubGraph2d`, `SubGraph3d`,
`SubGraphUi`
* Removed `Reflect` and `Default` derive from `CameraRenderGraph`
component struct
* Improved some error messages

## Migration Guide

For Nodes and SubGraphs, instead of using hardcoded strings, you now
pass labels, which can be derived with structs and enums.

```rs
// old
#[derive(Default)]
struct MyRenderNode;
impl MyRenderNode {
    pub const NAME: &'static str = "my_render_node"
}

render_app
    .add_render_graph_node::<ViewNodeRunner<MyRenderNode>>(
        core_3d::graph::NAME,
        MyRenderNode::NAME,
    )
    .add_render_graph_edges(
        core_3d::graph::NAME,
        &[
            core_3d::graph::node::TONEMAPPING,
            MyRenderNode::NAME,
            core_3d::graph::node::END_MAIN_PASS_POST_PROCESSING,
        ],
    );

// new
use bevy::core_pipeline::core_3d::graph::{Labels3d, SubGraph3d};

#[derive(Debug, Hash, PartialEq, Eq, Clone, RenderLabel)]
pub struct MyRenderLabel;

#[derive(Default)]
struct MyRenderNode;

render_app
    .add_render_graph_node::<ViewNodeRunner<MyRenderNode>>(
        SubGraph3d,
        MyRenderLabel,
    )
    .add_render_graph_edges(
        SubGraph3d,
        (
            Labels3d::Tonemapping,
            MyRenderLabel,
            Labels3d::EndMainPassPostProcessing,
        ),
    );
```

### SubGraphs

#### in `bevy_core_pipeline::core_2d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `NAME` | `SubGraph2d` |

#### in `bevy_core_pipeline::core_3d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `NAME` | `SubGraph3d` |

#### in `bevy_ui::render`
| old string-based path | new label |
|-----------------------|-----------|
| `draw_ui_graph::NAME` | `graph::SubGraphUi` |

### Nodes

#### in `bevy_core_pipeline::core_2d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `node::MSAA_WRITEBACK` | `Labels2d::MsaaWriteback` | 
| `node::MAIN_PASS` | `Labels2d::MainPass` | 
| `node::BLOOM` | `Labels2d::Bloom` | 
| `node::TONEMAPPING` | `Labels2d::Tonemapping` | 
| `node::FXAA` | `Labels2d::Fxaa` | 
| `node::UPSCALING` | `Labels2d::Upscaling` | 
| `node::CONTRAST_ADAPTIVE_SHARPENING` |
`Labels2d::ConstrastAdaptiveSharpening` |
| `node::END_MAIN_PASS_POST_PROCESSING` |
`Labels2d::EndMainPassPostProcessing` |

#### in `bevy_core_pipeline::core_3d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `node::MSAA_WRITEBACK` | `Labels3d::MsaaWriteback` | 
| `node::PREPASS` | `Labels3d::Prepass` | 
| `node::DEFERRED_PREPASS` | `Labels3d::DeferredPrepass` | 
| `node::COPY_DEFERRED_LIGHTING_ID` | `Labels3d::CopyDeferredLightingId`
|
| `node::END_PREPASSES` | `Labels3d::EndPrepasses` | 
| `node::START_MAIN_PASS` | `Labels3d::StartMainPass` | 
| `node::MAIN_OPAQUE_PASS` | `Labels3d::MainOpaquePass` | 
| `node::MAIN_TRANSMISSIVE_PASS` | `Labels3d::MainTransmissivePass` | 
| `node::MAIN_TRANSPARENT_PASS` | `Labels3d::MainTransparentPass` | 
| `node::END_MAIN_PASS` | `Labels3d::EndMainPass` | 
| `node::BLOOM` | `Labels3d::Bloom` | 
| `node::TONEMAPPING` | `Labels3d::Tonemapping` | 
| `node::FXAA` | `Labels3d::Fxaa` | 
| `node::UPSCALING` | `Labels3d::Upscaling` | 
| `node::CONTRAST_ADAPTIVE_SHARPENING` |
`Labels3d::ContrastAdaptiveSharpening` |
| `node::END_MAIN_PASS_POST_PROCESSING` |
`Labels3d::EndMainPassPostProcessing` |

#### in `bevy_core_pipeline`
| old string-based path | new label |
|-----------------------|-----------|
| `taa::draw_3d_graph::node::TAA` | `Labels3d::Taa` |

#### in `bevy_pbr`
| old string-based path | new label |
|-----------------------|-----------|
| `draw_3d_graph::node::SHADOW_PASS` | `LabelsPbr::ShadowPass` |
| `ssao::draw_3d_graph::node::SCREEN_SPACE_AMBIENT_OCCLUSION` |
`LabelsPbr::ScreenSpaceAmbientOcclusion` |
| `deferred::DEFFERED_LIGHTING_PASS` | `LabelsPbr::DeferredLightingPass`
|

#### in `bevy_render`
| old string-based path | new label |
|-----------------------|-----------|
| `main_graph::node::CAMERA_DRIVER` | `graph::CameraDriverLabel` |

#### in `bevy_ui::render`
| old string-based path | new label |
|-----------------------|-----------|
| `draw_ui_graph::node::UI_PASS` | `graph::LabelsUi::UiPass` |

---

## Future work

* Make `NodeSlot`s also use types. Ideally, we have an enum with unit
variants where every variant resembles one slot. Then to make sure you
are using the right slot enum and make rust-analyzer play nicely with
it, we should make an associated type in the `Node` trait. With today's
system, we can introduce 3rd party slots to a node, and i wasnt sure if
this was used, so I didn't do this in this PR.

## Unresolved Questions

When looking at the `post_processing` example, we have a struct for the
label and a struct for the node, this seems like boilerplate and on
discord, @IceSentry (sowy for the ping)
[asked](https://discord.com/channels/691052431525675048/743663924229963868/1175197016947699742)
if a node could automatically introduce a label (or i completely
misunderstood that). The problem with that is, that nodes like
`EmptyNode` exist multiple times *inside the same* (sub)graph, so there
we need extern labels to distinguish between those. Hopefully we can
find a way to reduce boilerplate and still have everything unique. For
EmptyNode, we could maybe make a macro which implements an "empty node"
for a type, but for nodes which contain code and need to be present
multiple times, this could get nasty...
2024-01-31 14:51:19 +00:00
Patrick Walton
83d6600267
Implement minimal reflection probes (fixed macOS, iOS, and Android). (#11366)
This pull request re-submits #10057, which was backed out for breaking
macOS, iOS, and Android. I've tested this version on macOS and Android
and on the iOS simulator.

# Objective

This pull request implements *reflection probes*, which generalize
environment maps to allow for multiple environment maps in the same
scene, each of which has an axis-aligned bounding box. This is a
standard feature of physically-based renderers and was inspired by [the
corresponding feature in Blender's Eevee renderer].

## Solution

This is a minimal implementation of reflection probes that allows
artists to define cuboid bounding regions associated with environment
maps. For every view, on every frame, a system builds up a list of the
nearest 4 reflection probes that are within the view's frustum and
supplies that list to the shader. The PBR fragment shader searches
through the list, finds the first containing reflection probe, and uses
it for indirect lighting, falling back to the view's environment map if
none is found. Both forward and deferred renderers are fully supported.

A reflection probe is an entity with a pair of components, *LightProbe*
and *EnvironmentMapLight* (as well as the standard *SpatialBundle*, to
position it in the world). The *LightProbe* component (along with the
*Transform*) defines the bounding region, while the
*EnvironmentMapLight* component specifies the associated diffuse and
specular cubemaps.

A frequent question is "why two components instead of just one?" The
advantages of this setup are:

1. It's readily extensible to other types of light probes, in particular
*irradiance volumes* (also known as ambient cubes or voxel global
illumination), which use the same approach of bounding cuboids. With a
single component that applies to both reflection probes and irradiance
volumes, we can share the logic that implements falloff and blending
between multiple light probes between both of those features.

2. It reduces duplication between the existing *EnvironmentMapLight* and
these new reflection probes. Systems can treat environment maps attached
to cameras the same way they treat environment maps applied to
reflection probes if they wish.

Internally, we gather up all environment maps in the scene and place
them in a cubemap array. At present, this means that all environment
maps must have the same size, mipmap count, and texture format. A
warning is emitted if this restriction is violated. We could potentially
relax this in the future as part of the automatic mipmap generation
work, which could easily do texture format conversion as part of its
preprocessing.

An easy way to generate reflection probe cubemaps is to bake them in
Blender and use the `export-blender-gi` tool that's part of the
[`bevy-baked-gi`] project. This tool takes a `.blend` file containing
baked cubemaps as input and exports cubemap images, pre-filtered with an
embedded fork of the [glTF IBL Sampler], alongside a corresponding
`.scn.ron` file that the scene spawner can use to recreate the
reflection probes.

Note that this is intentionally a minimal implementation, to aid
reviewability. Known issues are:

* Reflection probes are basically unsupported on WebGL 2, because WebGL
2 has no cubemap arrays. (Strictly speaking, you can have precisely one
reflection probe in the scene if you have no other cubemaps anywhere,
but this isn't very useful.)

* Reflection probes have no falloff, so reflections will abruptly change
when objects move from one bounding region to another.

* As mentioned before, all cubemaps in the world of a given type
(diffuse or specular) must have the same size, format, and mipmap count.

Future work includes:

* Blending between multiple reflection probes.

* A falloff/fade-out region so that reflected objects disappear
gradually instead of vanishing all at once.

* Irradiance volumes for voxel-based global illumination. This should
reuse much of the reflection probe logic, as they're both GI techniques
based on cuboid bounding regions.

* Support for WebGL 2, by breaking batches when reflection probes are
used.

These issues notwithstanding, I think it's best to land this with
roughly the current set of functionality, because this patch is useful
as is and adding everything above would make the pull request
significantly larger and harder to review.

---

## Changelog

### Added

* A new *LightProbe* component is available that specifies a bounding
region that an *EnvironmentMapLight* applies to. The combination of a
*LightProbe* and an *EnvironmentMapLight* offers *reflection probe*
functionality similar to that available in other engines.

[the corresponding feature in Blender's Eevee renderer]:
https://docs.blender.org/manual/en/latest/render/eevee/light_probes/reflection_cubemaps.html

[`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi

[glTF IBL Sampler]: https://github.com/KhronosGroup/glTF-IBL-Sampler
2024-01-19 07:33:52 +00:00
François
3d996639a0
Revert "Implement minimal reflection probes. (#10057)" (#11307)
# Objective

- Fix working on macOS, iOS, Android on main 
- Fixes #11281 
- Fixes #11282 
- Fixes #11283 
- Fixes #11299

## Solution

- Revert #10057
2024-01-12 20:41:51 +00:00
Jakob Hellermann
a657478675
resolve all internal ambiguities (#10411)
- ignore all ambiguities that are not a problem
- remove `.before(Assets::<Image>::track_assets),` that points into a
different schedule (-> should this be caught?)
- add some explicit orderings:
- run `poll_receivers` and `update_accessibility_nodes` after
`window_closed` in `bevy_winit::accessibility`
  - run `bevy_ui::accessibility::calc_bounds` after `CameraUpdateSystem`
- run ` bevy_text::update_text2d_layout` and `bevy_ui::text_system`
after `font_atlas_set::remove_dropped_font_atlas_sets`
- add `app.ignore_ambiguity(a, b)` function for cases where you want to
ignore an ambiguity between two independent plugins `A` and `B`
- add `IgnoreAmbiguitiesPlugin` in `DefaultPlugins` that allows
cross-crate ambiguities like `bevy_animation`/`bevy_ui`
- Fixes https://github.com/bevyengine/bevy/issues/9511

## Before
**Render**
![render_schedule_Render
dot](https://github.com/bevyengine/bevy/assets/22177966/1c677968-7873-40cc-848c-91fca4c8e383)

**PostUpdate**
![schedule_PostUpdate
dot](https://github.com/bevyengine/bevy/assets/22177966/8fc61304-08d4-4533-8110-c04113a7367a)

## After
**Render**
![render_schedule_Render
dot](https://github.com/bevyengine/bevy/assets/22177966/462f3b28-cef7-4833-8619-1f5175983485)
**PostUpdate**
![schedule_PostUpdate
dot](https://github.com/bevyengine/bevy/assets/22177966/8cfb3d83-7842-4a84-9082-46177e1a6c70)

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
2024-01-09 19:08:15 +00:00
Patrick Walton
54a943d232
Implement minimal reflection probes. (#10057)
# Objective

This pull request implements *reflection probes*, which generalize
environment maps to allow for multiple environment maps in the same
scene, each of which has an axis-aligned bounding box. This is a
standard feature of physically-based renderers and was inspired by [the
corresponding feature in Blender's Eevee renderer].

## Solution

This is a minimal implementation of reflection probes that allows
artists to define cuboid bounding regions associated with environment
maps. For every view, on every frame, a system builds up a list of the
nearest 4 reflection probes that are within the view's frustum and
supplies that list to the shader. The PBR fragment shader searches
through the list, finds the first containing reflection probe, and uses
it for indirect lighting, falling back to the view's environment map if
none is found. Both forward and deferred renderers are fully supported.

A reflection probe is an entity with a pair of components, *LightProbe*
and *EnvironmentMapLight* (as well as the standard *SpatialBundle*, to
position it in the world). The *LightProbe* component (along with the
*Transform*) defines the bounding region, while the
*EnvironmentMapLight* component specifies the associated diffuse and
specular cubemaps.

A frequent question is "why two components instead of just one?" The
advantages of this setup are:

1. It's readily extensible to other types of light probes, in particular
*irradiance volumes* (also known as ambient cubes or voxel global
illumination), which use the same approach of bounding cuboids. With a
single component that applies to both reflection probes and irradiance
volumes, we can share the logic that implements falloff and blending
between multiple light probes between both of those features.

2. It reduces duplication between the existing *EnvironmentMapLight* and
these new reflection probes. Systems can treat environment maps attached
to cameras the same way they treat environment maps applied to
reflection probes if they wish.

Internally, we gather up all environment maps in the scene and place
them in a cubemap array. At present, this means that all environment
maps must have the same size, mipmap count, and texture format. A
warning is emitted if this restriction is violated. We could potentially
relax this in the future as part of the automatic mipmap generation
work, which could easily do texture format conversion as part of its
preprocessing.

An easy way to generate reflection probe cubemaps is to bake them in
Blender and use the `export-blender-gi` tool that's part of the
[`bevy-baked-gi`] project. This tool takes a `.blend` file containing
baked cubemaps as input and exports cubemap images, pre-filtered with an
embedded fork of the [glTF IBL Sampler], alongside a corresponding
`.scn.ron` file that the scene spawner can use to recreate the
reflection probes.

Note that this is intentionally a minimal implementation, to aid
reviewability. Known issues are:

* Reflection probes are basically unsupported on WebGL 2, because WebGL
2 has no cubemap arrays. (Strictly speaking, you can have precisely one
reflection probe in the scene if you have no other cubemaps anywhere,
but this isn't very useful.)

* Reflection probes have no falloff, so reflections will abruptly change
when objects move from one bounding region to another.

* As mentioned before, all cubemaps in the world of a given type
(diffuse or specular) must have the same size, format, and mipmap count.

Future work includes:

* Blending between multiple reflection probes.

* A falloff/fade-out region so that reflected objects disappear
gradually instead of vanishing all at once.

* Irradiance volumes for voxel-based global illumination. This should
reuse much of the reflection probe logic, as they're both GI techniques
based on cuboid bounding regions.

* Support for WebGL 2, by breaking batches when reflection probes are
used.

These issues notwithstanding, I think it's best to land this with
roughly the current set of functionality, because this patch is useful
as is and adding everything above would make the pull request
significantly larger and harder to review.

---

## Changelog

### Added

* A new *LightProbe* component is available that specifies a bounding
region that an *EnvironmentMapLight* applies to. The combination of a
*LightProbe* and an *EnvironmentMapLight* offers *reflection probe*
functionality similar to that available in other engines.

[the corresponding feature in Blender's Eevee renderer]:
https://docs.blender.org/manual/en/latest/render/eevee/light_probes/reflection_cubemaps.html

[`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi

[glTF IBL Sampler]: https://github.com/KhronosGroup/glTF-IBL-Sampler
2024-01-08 22:09:17 +00:00
Patrick Walton
dd14f3a477
Implement lightmaps. (#10231)
![Screenshot](https://i.imgur.com/A4KzWFq.png)

# Objective

Lightmaps, textures that store baked global illumination, have been a
mainstay of real-time graphics for decades. Bevy currently has no
support for them, so this pull request implements them.

## Solution

The new `Lightmap` component can be attached to any entity that contains
a `Handle<Mesh>` and a `StandardMaterial`. When present, it will be
applied in the PBR shader. Because multiple lightmaps are frequently
packed into atlases, each lightmap may have its own UV boundaries within
its texture. An `exposure` field is also provided, to control the
brightness of the lightmap.

Note that this PR doesn't provide any way to bake the lightmaps. That
can be done with [The Lightmapper] or another solution, such as Unity's
Bakery.

---

## Changelog

### Added
* A new component, `Lightmap`, is available, for baked global
illumination. If your mesh has a second UV channel (UV1), and you attach
this component to the entity with that mesh, Bevy will apply the texture
referenced in the lightmap.

[The Lightmapper]: https://github.com/Naxela/The_Lightmapper

---------

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-01-02 20:38:47 +00:00
Mike
6b84ba97a3
Auto insert sync points (#9822)
# Objective

- Users are often confused when their command effects are not visible in
the next system. This PR auto inserts sync points if there are deferred
buffers on a system and there are dependents on that system (systems
with after relationships).
- Manual sync points can lead to users adding more than needed and it's
hard for the user to have a global understanding of their system graph
to know which sync points can be merged. However we can easily calculate
which sync points can be merged automatically.

## Solution

1. Add new edge types to allow opting out of new behavior
2. Insert an sync point for each edge whose initial node has deferred
system params.
3. Reuse nodes if they're at the number of sync points away.

* add opt outs for specific edges with `after_ignore_deferred`,
`before_ignore_deferred` and `chain_ignore_deferred`. The
`auto_insert_apply_deferred` boolean on `ScheduleBuildSettings` can be
set to false to opt out for the whole schedule.

## Perf
This has a small negative effect on schedule build times.
```text
group                                           auto-sync                              main-for-auto-sync
-----                                           -----------                            ------------------
build_schedule/1000_schedule                    1.06       2.8±0.15s        ? ?/sec    1.00       2.7±0.06s        ? ?/sec
build_schedule/1000_schedule_noconstraints      1.01     26.2±0.88ms        ? ?/sec    1.00     25.8±0.36ms        ? ?/sec
build_schedule/100_schedule                     1.02     13.1±0.33ms        ? ?/sec    1.00     12.9±0.28ms        ? ?/sec
build_schedule/100_schedule_noconstraints       1.08   505.3±29.30µs        ? ?/sec    1.00   469.4±12.48µs        ? ?/sec
build_schedule/500_schedule                     1.00    485.5±6.29ms        ? ?/sec    1.00    485.5±9.80ms        ? ?/sec
build_schedule/500_schedule_noconstraints       1.00      6.8±0.10ms        ? ?/sec    1.02      6.9±0.16ms        ? ?/sec
```
---

## Changelog

- Auto insert sync points and added `after_ignore_deferred`,
`before_ignore_deferred`, `chain_no_deferred` and
`auto_insert_apply_deferred` APIs to opt out of this behavior

## Migration Guide

- `apply_deferred` points are added automatically when there is ordering
relationship with a system that has deferred parameters like `Commands`.
If you want to opt out of this you can switch from `after`, `before`,
and `chain` to the corresponding `ignore_deferred` API,
`after_ignore_deferred`, `before_ignore_deferred` or
`chain_ignore_deferred` for your system/set ordering.
- You can also set `ScheduleBuildSettings::auto_insert_sync_points` to
`false` if you want to do it for the whole schedule. Note that in this
mode you can still add `apply_deferred` points manually.
- For most manual insertions of `apply_deferred` you should remove them
as they cannot be merged with the automatically inserted points and
might reduce parallelizability of the system graph.

## TODO
- [x] remove any apply_deferred used in the engine
- [x] ~~decide if we should deprecate manually using apply_deferred.~~
We'll still allow inserting manual sync points for now for whatever edge
cases users might have.
- [x] Update migration guide
- [x] rerun schedule build benchmarks

---------

Co-authored-by: Joseph <21144246+JoJoJet@users.noreply.github.com>
2023-12-14 16:34:01 +00:00
tygyh
fd308571c4
Remove unnecessary path prefixes (#10749)
# Objective

- Shorten paths by removing unnecessary prefixes

## Solution

- Remove the prefixes from many paths which do not need them. Finding
the paths was done automatically using built-in refactoring tools in
Jetbrains RustRover.
2023-11-28 23:43:40 +00:00
Kanabenki
0e9f6e92ea
Add clippy::manual_let_else at warn level to lints (#10684)
# Objective

Related to #10612.

Enable the
[`clippy::manual_let_else`](https://rust-lang.github.io/rust-clippy/master/#manual_let_else)
lint as a warning. The `let else` form seems more idiomatic to me than a
`match`/`if else` that either match a pattern or diverge, and from the
clippy doc, the lint doesn't seem to have any possible false positive.

## Solution

Add the lint as warning in `Cargo.toml`, refactor places where the lint
triggers.
2023-11-28 04:15:27 +00:00
Ame
951c9bb1a2
Add [lints] table, fix adding #![allow(clippy::type_complexity)] everywhere (#10011)
# Objective

- Fix adding `#![allow(clippy::type_complexity)]` everywhere. like #9796

## Solution

- Use the new [lints] table that will land in 1.74
(https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#lints)
- inherit lint to the workspace, crates and examples.
```
[lints]
workspace = true
```

## Changelog

- Bump rust version to 1.74
- Enable lints table for the workspace
```toml
[workspace.lints.clippy]
type_complexity = "allow"
```
- Allow type complexity for all crates and examples
```toml
[lints]
workspace = true
```

---------

Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com>
2023-11-18 20:58:48 +00:00
Sélène Amanita
c376954b87
Make DirectionalLight Cascades computation generic over CameraProjection (#9226)
# Objective

Fixes https://github.com/bevyengine/bevy/issues/9077 (see this issue for
motivations)

## Solution

Implement 1 and 2 of the "How to fix it" section of
https://github.com/bevyengine/bevy/issues/9077

`update_directional_light_cascades` is split into
`clear_directional_light_cascades` and a generic
`build_directional_light_cascades`, to clear once and potentially insert
many times.

---

## Changelog

`DirectionalLight`'s computation is now generic over `CameraProjection`
and can work with custom camera projections.

## Migration Guide

If you have a component `MyCustomProjection` that implements
`CameraProjection`:
- You need to implement a new required associated method,
`get_frustum_corners`, returning an array of the corners of a subset of
the frustum with given `z_near` and `z_far`, in local camera space.
- You can now add the
`build_directional_light_cascades::<MyCustomProjection>` system in
`SimulationLightSystems::UpdateDirectionalLightCascades` after
`clear_directional_light_cascades` for your projection to work with
directional lights.

---------

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-11-03 06:07:59 +00:00
Marco Buono
44928e0df4
StandardMaterial Light Transmission (#8015)
# Objective

<img width="1920" alt="Screenshot 2023-04-26 at 01 07 34"
src="https://user-images.githubusercontent.com/418473/234467578-0f34187b-5863-4ea1-88e9-7a6bb8ce8da3.png">

This PR adds both diffuse and specular light transmission capabilities
to the `StandardMaterial`, with support for screen space refractions.
This enables realistically representing a wide range of real-world
materials, such as:

  - Glass; (Including frosted glass)
  - Transparent and translucent plastics;
  - Various liquids and gels;
  - Gemstones;
  - Marble;
  - Wax;
  - Paper;
  - Leaves;
  - Porcelain.

Unlike existing support for transparency, light transmission does not
rely on fixed function alpha blending, and therefore works with both
`AlphaMode::Opaque` and `AlphaMode::Mask` materials.

## Solution

- Introduces a number of transmission related fields in the
`StandardMaterial`;
- For specular transmission:
- Adds logic to take a view main texture snapshot after the opaque
phase; (in order to perform screen space refractions)
- Introduces a new `Transmissive3d` phase to the renderer, to which all
meshes with `transmission > 0.0` materials are sent.
- Calculates a light exit point (of the approximate mesh volume) using
`ior` and `thickness` properties
- Samples the snapshot texture with an adaptive number of taps across a
`roughness`-controlled radius enabling “blurry” refractions
- For diffuse transmission:
- Approximates transmitted diffuse light by using a second, flipped +
displaced, diffuse-only Lambertian lobe for each light source.

## To Do

- [x] Figure out where `fresnel_mix()` is taking place, if at all, and
where `dielectric_specular` is being calculated, if at all, and update
them to use the `ior` value (Not a blocker, just a nice-to-have for more
correct BSDF)
- To the _best of my knowledge, this is now taking place, after
964340cdd. The fresnel mix is actually "split" into two parts in our
implementation, one `(1 - fresnel(...))` in the transmission, and
`fresnel()` in the light implementations. A surface with more
reflectance now will produce slightly dimmer transmission towards the
grazing angle, as more of the light gets reflected.
- [x] Add `transmission_texture`
- [x] Add `diffuse_transmission_texture`
- [x] Add `thickness_texture`
- [x] Add `attenuation_distance` and `attenuation_color`
- [x] Connect values to glTF loader
  - [x] `transmission` and `transmission_texture`
  - [x] `thickness` and `thickness_texture`
  - [x] `ior`
- [ ] `diffuse_transmission` and `diffuse_transmission_texture` (needs
upstream support in `gltf` crate, not a blocker)
- [x] Add support for multiple screen space refraction “steps”
- [x] Conditionally create no transmission snapshot texture at all if
`steps == 0`
- [x] Conditionally enable/disable screen space refraction transmission
snapshots
- [x] Read from depth pre-pass to prevent refracting pixels in front of
the light exit point
- [x] Use `interleaved_gradient_noise()` function for sampling blur in a
way that benefits from TAA
- [x] Drill down a TAA `#define`, tweak some aspects of the effect
conditionally based on it
- [x] Remove const array that's crashing under HLSL (unless a new `naga`
release with https://github.com/gfx-rs/naga/pull/2496 comes out before
we merge this)
- [ ] Look into alternatives to the `switch` hack for dynamically
indexing the const array (might not be needed, compilers seem to be
decent at expanding it)
- [ ] Add pipeline keys for gating transmission (do we really want/need
this?)
- [x] Tweak some material field/function names?

## A Note on Texture Packing

_This was originally added as a comment to the
`specular_transmission_texture`, `thickness_texture` and
`diffuse_transmission_texture` documentation, I removed it since it was
more confusing than helpful, and will likely be made redundant/will need
to be updated once we have a better infrastructure for preprocessing
assets_

Due to how channels are mapped, you can more efficiently use a single
shared texture image
for configuring the following:

- R - `specular_transmission_texture`
- G - `thickness_texture`
- B - _unused_
- A - `diffuse_transmission_texture`

The `KHR_materials_diffuse_transmission` glTF extension also defines a
`diffuseTransmissionColorTexture`,
that _we don't currently support_. One might choose to pack the
intensity and color textures together,
using RGB for the color and A for the intensity, in which case this
packing advice doesn't really apply.

---

## Changelog

- Added a new `Transmissive3d` render phase for rendering specular
transmissive materials with screen space refractions
- Added rendering support for transmitted environment map light on the
`StandardMaterial` as a fallback for screen space refractions
- Added `diffuse_transmission`, `specular_transmission`, `thickness`,
`ior`, `attenuation_distance` and `attenuation_color` to the
`StandardMaterial`
- Added `diffuse_transmission_texture`, `specular_transmission_texture`,
`thickness_texture` to the `StandardMaterial`, gated behind a new
`pbr_transmission_textures` cargo feature (off by default, for maximum
hardware compatibility)
- Added `Camera3d::screen_space_specular_transmission_steps` for
controlling the number of “layers of transparency” rendered for
transmissive objects
- Added a `TransmittedShadowReceiver` component for enabling shadows in
(diffusely) transmitted light. (disabled by default, as it requires
carefully setting up the `thickness` to avoid self-shadow artifacts)
- Added support for the `KHR_materials_transmission`,
`KHR_materials_ior` and `KHR_materials_volume` glTF extensions
- Renamed items related to temporal jitter for greater consistency

## Migration Guide

- `SsaoPipelineKey::temporal_noise` has been renamed to
`SsaoPipelineKey::temporal_jitter`
- The `TAA` shader def (controlled by the presence of the
`TemporalAntiAliasSettings` component in the camera) has been replaced
with the `TEMPORAL_JITTER` shader def (controlled by the presence of the
`TemporalJitter` component in the camera)
- `MeshPipelineKey::TAA` has been replaced by
`MeshPipelineKey::TEMPORAL_JITTER`
- The `TEMPORAL_NOISE` shader def has been consolidated with
`TEMPORAL_JITTER`
2023-10-31 20:59:02 +00:00
Griffin
1bd7e5a8e6
View Transformations (#9726)
# Objective

- Add functions for common view transformations.

---------

Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-10-24 21:26:19 +00:00
robtfm
c99351f7c2
allow extensions to StandardMaterial (#7820)
# Objective

allow extending `Material`s (including the built in `StandardMaterial`)
with custom vertex/fragment shaders and additional data, to easily get
pbr lighting with custom modifications, or otherwise extend a base
material.

# Solution

- added `ExtendedMaterial<B: Material, E: MaterialExtension>` which
contains a base material and a user-defined extension.
- added example `extended_material` showing how to use it
- modified AsBindGroup to have "unprepared" functions that return raw
resources / layout entries so that the extended material can combine
them

note: doesn't currently work with array resources, as i can't figure out
how to make the OwnedBindingResource::get_binding() work, as wgpu
requires a `&'a[&'a TextureView]` and i have a `Vec<TextureView>`.

# Migration Guide

manual implementations of `AsBindGroup` will need to be adjusted, the
changes are pretty straightforward and can be seen in the diff for e.g.
the `texture_binding_array` example.

---------

Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-10-17 21:28:08 +00:00
Griffin
a15d152635
Deferred Renderer (#9258)
# Objective

- Add a [Deferred
Renderer](https://en.wikipedia.org/wiki/Deferred_shading) to Bevy.
- This allows subsequent passes to access per pixel material information
before/during shading.
- Accessing this per pixel material information is needed for some
features, like GI. It also makes other features (ex. Decals) simpler to
implement and/or improves their capability. There are multiple
approaches to accomplishing this. The deferred shading approach works
well given the limitations of WebGPU and WebGL2.

Motivation: [I'm working on a GI solution for
Bevy](https://youtu.be/eH1AkL-mwhI)

# Solution
- The deferred renderer is implemented with a prepass and a deferred
lighting pass.
- The prepass renders opaque objects into the Gbuffer attachment
(`Rgba32Uint`). The PBR shader generates a `PbrInput` in mostly the same
way as the forward implementation and then [packs it into the
Gbuffer](ec1465559f/crates/bevy_pbr/src/render/pbr.wgsl (L168)).
- The deferred lighting pass unpacks the `PbrInput` and [feeds it into
the pbr()
function](ec1465559f/crates/bevy_pbr/src/deferred/deferred_lighting.wgsl (L65)),
then outputs the shaded color data.

- There is now a resource
[DefaultOpaqueRendererMethod](ec1465559f/crates/bevy_pbr/src/material.rs (L599))
that can be used to set the default render method for opaque materials.
If materials return `None` from
[opaque_render_method()](ec1465559f/crates/bevy_pbr/src/material.rs (L131))
the `DefaultOpaqueRendererMethod` will be used. Otherwise, custom
materials can also explicitly choose to only support Deferred or Forward
by returning the respective
[OpaqueRendererMethod](ec1465559f/crates/bevy_pbr/src/material.rs (L603))

- Deferred materials can be used seamlessly along with both opaque and
transparent forward rendered materials in the same scene. The [deferred
rendering
example](https://github.com/DGriffin91/bevy/blob/deferred/examples/3d/deferred_rendering.rs)
does this.

- The deferred renderer does not support MSAA. If any deferred materials
are used, MSAA must be disabled. Both TAA and FXAA are supported.

- Deferred rendering supports WebGL2/WebGPU. 

## Custom deferred materials
- Custom materials can support both deferred and forward at the same
time. The
[StandardMaterial](ec1465559f/crates/bevy_pbr/src/render/pbr.wgsl (L166))
does this. So does [this
example](https://github.com/DGriffin91/bevy_glowy_orb_tutorial/blob/deferred/assets/shaders/glowy.wgsl#L56).
- Custom deferred materials that require PBR lighting can create a
`PbrInput`, write it to the deferred GBuffer and let it be rendered by
the `PBRDeferredLightingPlugin`.
- Custom deferred materials that require custom lighting have two
options:
1. Use the base_color channel of the `PbrInput` combined with the
`STANDARD_MATERIAL_FLAGS_UNLIT_BIT` flag.
[Example.](https://github.com/DGriffin91/bevy_glowy_orb_tutorial/blob/deferred/assets/shaders/glowy.wgsl#L56)
(If the unlit bit is set, the base_color is stored as RGB9E5 for extra
precision)
2. A Custom Deferred Lighting pass can be created, either overriding the
default, or running in addition. The a depth buffer is used to limit
rendering to only the required fragments for each deferred lighting
pass. Materials can set their respective depth id via the
[deferred_lighting_pass_id](b79182d2a3/crates/bevy_pbr/src/prepass/prepass_io.wgsl (L95))
attachment. The custom deferred lighting pass plugin can then set [its
corresponding
depth](ec1465559f/crates/bevy_pbr/src/deferred/deferred_lighting.wgsl (L37)).
Then with the lighting pass using
[CompareFunction::Equal](ec1465559f/crates/bevy_pbr/src/deferred/mod.rs (L335)),
only the fragments with a depth that equal the corresponding depth
written in the material will be rendered.

Custom deferred lighting plugins can also be created to render the
StandardMaterial. The default deferred lighting plugin can be bypassed
with `DefaultPlugins.set(PBRDeferredLightingPlugin { bypass: true })`

---------

Co-authored-by: nickrart <nickolas.g.russell@gmail.com>
2023-10-12 22:10:38 +00:00
JMS55
1f95a484ed
PCF For DirectionalLight/SpotLight Shadows (#8006)
# Objective

- Improve antialiasing for non-point light shadow edges.
- Very partially addresses
https://github.com/bevyengine/bevy/issues/3628.

## Solution

- Implements "The Witness"'s shadow map sampling technique.
  - Ported from @superdump's old branch, all credit to them :)
- Implements "Call of Duty: Advanced Warfare"'s stochastic shadow map
sampling technique when the velocity prepass is enabled, for use with
TAA.
- Uses interleaved gradient noise to generate a random angle, and then
averages 8 samples in a spiral pattern, rotated by the random angle.
- I also tried spatiotemporal blue noise, but it was far too noisy to be
filtered by TAA alone. In the future, we should try spatiotemporal blue
noise + a specialized shadow denoiser such as
https://gpuopen.com/fidelityfx-denoiser/#shadow. This approach would
also be useful for hybrid rasterized applications with raytraced
shadows.
- The COD presentation has an interesting temporal dithering of the
noise for use with temporal supersampling that we should revisit when we
get DLSS/FSR/other TSR.

---

## Changelog

* Added `ShadowFilteringMethod`. Improved directional light and
spotlight shadow edges to be less aliased.

## Migration Guide

* Shadows cast by directional lights or spotlights now have smoother
edges. To revert to the old behavior, add
`ShadowFilteringMethod::Hardware2x2` to your cameras.

---------

Co-authored-by: IceSentry <c.giguere42@gmail.com>
Co-authored-by: Daniel Chia <danstryder@gmail.com>
Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
Co-authored-by: Brandon Dyer <brandondyer64@gmail.com>
Co-authored-by: Edgar Geier <geieredgar@gmail.com>
Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
2023-10-07 17:13:29 +00:00
Carter Anderson
5eb292dc10
Bevy Asset V2 (#8624)
# Bevy Asset V2 Proposal

## Why Does Bevy Need A New Asset System?

Asset pipelines are a central part of the gamedev process. Bevy's
current asset system is missing a number of features that make it
non-viable for many classes of gamedev. After plenty of discussions and
[a long community feedback
period](https://github.com/bevyengine/bevy/discussions/3972), we've
identified a number missing features:

* **Asset Preprocessing**: it should be possible to "preprocess" /
"compile" / "crunch" assets at "development time" rather than when the
game starts up. This enables offloading expensive work from deployed
apps, faster asset loading, less runtime memory usage, etc.
* **Per-Asset Loader Settings**: Individual assets cannot define their
own loaders that override the defaults. Additionally, they cannot
provide per-asset settings to their loaders. This is a huge limitation,
as many asset types don't provide all information necessary for Bevy
_inside_ the asset. For example, a raw PNG image says nothing about how
it should be sampled (ex: linear vs nearest).
* **Asset `.meta` files**: assets should have configuration files stored
adjacent to the asset in question, which allows the user to configure
asset-type-specific settings. These settings should be accessible during
the pre-processing phase. Modifying a `.meta` file should trigger a
re-processing / re-load of the asset. It should be possible to configure
asset loaders from the meta file.
* **Processed Asset Hot Reloading**: Changes to processed assets (or
their dependencies) should result in re-processing them and re-loading
the results in live Bevy Apps.
* **Asset Dependency Tracking**: The current bevy_asset has no good way
to wait for asset dependencies to load. It punts this as an exercise for
consumers of the loader apis, which is unreasonable and error prone.
There should be easy, ergonomic ways to wait for assets to load and
block some logic on an asset's entire dependency tree loading.
* **Runtime Asset Loading**: it should be (optionally) possible to load
arbitrary assets dynamically at runtime. This necessitates being able to
deploy and run the asset server alongside Bevy Apps on _all platforms_.
For example, we should be able to invoke the shader compiler at runtime,
stream scenes from sources like the internet, etc. To keep deployed
binaries (and startup times) small, the runtime asset server
configuration should be configurable with different settings compared to
the "pre processor asset server".
* **Multiple Backends**: It should be possible to load assets from
arbitrary sources (filesystems, the internet, remote asset serves, etc).
* **Asset Packing**: It should be possible to deploy assets in
compressed "packs", which makes it easier and more efficient to
distribute assets with Bevy Apps.
* **Asset Handoff**: It should be possible to hold a "live" asset
handle, which correlates to runtime data, without actually holding the
asset in memory. Ex: it must be possible to hold a reference to a GPU
mesh generated from a "mesh asset" without keeping the mesh data in CPU
memory
* **Per-Platform Processed Assets**: Different platforms and app
distributions have different capabilities and requirements. Some
platforms need lower asset resolutions or different asset formats to
operate within the hardware constraints of the platform. It should be
possible to define per-platform asset processing profiles. And it should
be possible to deploy only the assets required for a given platform.

These features have architectural implications that are significant
enough to require a full rewrite. The current Bevy Asset implementation
got us this far, but it can take us no farther. This PR defines a brand
new asset system that implements most of these features, while laying
the foundations for the remaining features to be built.

## Bevy Asset V2

Here is a quick overview of the features introduced in this PR.
* **Asset Preprocessing**: Preprocess assets at development time into
more efficient (and configurable) representations
* **Dependency Aware**: Dependencies required to process an asset are
tracked. If an asset's processed dependency changes, it will be
reprocessed
* **Hot Reprocessing/Reloading**: detect changes to asset source files,
reprocess them if they have changed, and then hot-reload them in Bevy
Apps.
* **Only Process Changes**: Assets are only re-processed when their
source file (or meta file) has changed. This uses hashing and timestamps
to avoid processing assets that haven't changed.
* **Transactional and Reliable**: Uses write-ahead logging (a technique
commonly used by databases) to recover from crashes / forced-exits.
Whenever possible it avoids full-reprocessing / only uncompleted
transactions will be reprocessed. When the processor is running in
parallel with a Bevy App, processor asset writes block Bevy App asset
reads. Reading metadata + asset bytes is guaranteed to be transactional
/ correctly paired.
* **Portable / Run anywhere / Database-free**: The processor does not
rely on an in-memory database (although it uses some database techniques
for reliability). This is important because pretty much all in-memory
databases have unsupported platforms or build complications.
* **Configure Processor Defaults Per File Type**: You can say "use this
processor for all files of this type".
* **Custom Processors**: The `Processor` trait is flexible and
unopinionated. It can be implemented by downstream plugins.
* **LoadAndSave Processors**: Most asset processing scenarios can be
expressed as "run AssetLoader A, save the results using AssetSaver X,
and then load the result using AssetLoader B". For example, load this
png image using `PngImageLoader`, which produces an `Image` asset and
then save it using `CompressedImageSaver` (which also produces an
`Image` asset, but in a compressed format), which takes an `Image` asset
as input. This means if you have an `AssetLoader` for an asset, you are
already half way there! It also means that you can share AssetSavers
across multiple loaders. Because `CompressedImageSaver` accepts Bevy's
generic Image asset as input, it means you can also use it with some
future `JpegImageLoader`.
* **Loader and Saver Settings**: Asset Loaders and Savers can now define
their own settings types, which are passed in as input when an asset is
loaded / saved. Each asset can define its own settings.
* **Asset `.meta` files**: configure asset loaders, their settings,
enable/disable processing, and configure processor settings
* **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex:
if an asset contains a `Handle<Image>`) are tracked by the asset server.
An event is emitted when an asset and all of its dependencies have been
loaded
* **Unprocessed Asset Loading**: Assets do not require preprocessing.
They can be loaded directly. A processed asset is just a "normal" asset
with some extra metadata. Asset Loaders don't need to know or care about
whether or not an asset was processed.
* **Async Asset IO**: Asset readers/writers use async non-blocking
interfaces. Note that because Rust doesn't yet support async traits,
there is a bit of manual Boxing / Future boilerplate. This will
hopefully be removed in the near future when Rust gets async traits.
* **Pluggable Asset Readers and Writers**: Arbitrary asset source
readers/writers are supported, both by the processor and the asset
server.
* **Better Asset Handles**
* **Single Arc Tree**: Asset Handles now use a single arc tree that
represents the lifetime of the asset. This makes their implementation
simpler, more efficient, and allows us to cheaply attach metadata to
handles. Ex: the AssetPath of a handle is now directly accessible on the
handle itself!
* **Const Typed Handles**: typed handles can be constructed in a const
context. No more weird "const untyped converted to typed at runtime"
patterns!
* **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed
`Handle<T>` is now much smaller in memory and `AssetId<T>` is even
smaller.
* **Weak Handle Usage Reduction**: In general Handles are now considered
to be "strong". Bevy features that previously used "weak `Handle<T>`"
have been ported to `AssetId<T>`, which makes it statically clear that
the features do not hold strong handles (while retaining strong type
information). Currently Handle::Weak still exists, but it is very
possible that we can remove that entirely.
* **Efficient / Dense Asset Ids**: Assets now have efficient dense
runtime asset ids, which means we can avoid expensive hash lookups.
Assets are stored in Vecs instead of HashMaps. There are now typed and
untyped ids, which means we no longer need to store dynamic type
information in the ID for typed handles. "AssetPathId" (which was a
nightmare from a performance and correctness standpoint) has been
entirely removed in favor of dense ids (which are retrieved for a path
on load)
* **Direct Asset Loading, with Dependency Tracking**: Assets that are
defined at runtime can still have their dependencies tracked by the
Asset Server (ex: if you create a material at runtime, you can still
wait for its textures to load). This is accomplished via the (currently
optional) "asset dependency visitor" trait. This system can also be used
to define a set of assets to load, then wait for those assets to load.
* **Async folder loading**: Folder loading also uses this system and
immediately returns a handle to the LoadedFolder asset, which means
folder loading no longer blocks on directory traversals.
* **Improved Loader Interface**: Loaders now have a specific "top level
asset type", which makes returning the top-level asset simpler and
statically typed.
* **Basic Image Settings and Processing**: Image assets can now be
processed into the gpu-friendly Basic Universal format. The ImageLoader
now has a setting to define what format the image should be loaded as.
Note that this is just a minimal MVP ... plenty of additional work to do
here. To demo this, enable the `basis-universal` feature and turn on
asset processing.
* **Simpler Audio Play / AudioSink API**: Asset handle providers are
cloneable, which means the Audio resource can mint its own handles. This
means you can now do `let sink_handle = audio.play(music)` instead of
`let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that
this might still be replaced by
https://github.com/bevyengine/bevy/pull/8424.
**Removed Handle Casting From Engine Features**: Ex: FontAtlases no
longer use casting between handle types

## Using The New Asset System

### Normal Unprocessed Asset Loading

By default the `AssetPlugin` does not use processing. It behaves pretty
much the same way as the old system.

If you are defining a custom asset, first derive `Asset`:

```rust
#[derive(Asset)]
struct Thing {
    value: String,
}
```

Initialize the asset:
```rust
app.init_asset:<Thing>()
```

Implement a new `AssetLoader` for it:

```rust
#[derive(Default)]
struct ThingLoader;

#[derive(Serialize, Deserialize, Default)]
pub struct ThingSettings {
    some_setting: bool,
}

impl AssetLoader for ThingLoader {
    type Asset = Thing;
    type Settings = ThingSettings;

    fn load<'a>(
        &'a self,
        reader: &'a mut Reader,
        settings: &'a ThingSettings,
        load_context: &'a mut LoadContext,
    ) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> {
        Box::pin(async move {
            let mut bytes = Vec::new();
            reader.read_to_end(&mut bytes).await?;
            // convert bytes to value somehow
            Ok(Thing {
                value 
            })
        })
    }

    fn extensions(&self) -> &[&str] {
        &["thing"]
    }
}
```

Note that this interface will get much cleaner once Rust gets support
for async traits. `Reader` is an async futures_io::AsyncRead. You can
stream bytes as they come in or read them all into a `Vec<u8>`,
depending on the context. You can use `let handle =
load_context.load(path)` to kick off a dependency load, retrieve a
handle, and register the dependency for the asset.

Then just register the loader in your Bevy app:

```rust
app.init_asset_loader::<ThingLoader>()
```

Now just add your `Thing` asset files into the `assets` folder and load
them like this:

```rust
fn system(asset_server: Res<AssetServer>) {
    let handle = Handle<Thing> = asset_server.load("cool.thing");
}
```

You can check load states directly via the asset server:

```rust
if asset_server.load_state(&handle) == LoadState::Loaded { }
```

You can also listen for events:

```rust
fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) {
    for event in events.iter() {
        if event.is_loaded_with_dependencies(&handle) {
        }
    }
}
```

Note the new `AssetEvent::LoadedWithDependencies`, which only fires when
the asset is loaded _and_ all dependencies (and their dependencies) have
loaded.

Unlike the old asset system, for a given asset path all `Handle<T>`
values point to the same underlying Arc. This means Handles can cheaply
hold more asset information, such as the AssetPath:

```rust
// prints the AssetPath of the handle
info!("{:?}", handle.path())
```

### Processed Assets

Asset processing can be enabled via the `AssetPlugin`. When developing
Bevy Apps with processed assets, do this:

```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))
```

This runs the `AssetProcessor` in the background with hot-reloading. It
reads assets from the `assets` folder, processes them, and writes them
to the `.imported_assets` folder. Asset loads in the Bevy App will wait
for a processed version of the asset to become available. If an asset in
the `assets` folder changes, it will be reprocessed and hot-reloaded in
the Bevy App.

When deploying processed Bevy apps, do this:

```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed()))
```

This does not run the `AssetProcessor` in the background. It behaves
like `AssetPlugin::unprocessed()`, but reads assets from
`.imported_assets`.

When the `AssetProcessor` is running, it will populate sibling `.meta`
files for assets in the `assets` folder. Meta files for assets that do
not have a processor configured look like this:

```rust
(
    meta_format_version: "1.0",
    asset: Load(
        loader: "bevy_render::texture::image_loader::ImageLoader",
        settings: (
            format: FromExtension,
        ),
    ),
)
```

This is metadata for an image asset. For example, if you have
`assets/my_sprite.png`, this could be the metadata stored at
`assets/my_sprite.png.meta`. Meta files are totally optional. If no
metadata exists, the default settings will be used.

In short, this file says "load this asset with the ImageLoader and use
the file extension to determine the image type". This type of meta file
is supported in all AssetPlugin modes. If in `Unprocessed` mode, the
asset (with the meta settings) will be loaded directly. If in
`ProcessedDev` mode, the asset file will be copied directly to the
`.imported_assets` folder. The meta will also be copied directly to the
`.imported_assets` folder, but with one addition:

```rust
(
    meta_format_version: "1.0",
    processed_info: Some((
        hash: 12415480888597742505,
        full_hash: 14344495437905856884,
        process_dependencies: [],
    )),
    asset: Load(
        loader: "bevy_render::texture::image_loader::ImageLoader",
        settings: (
            format: FromExtension,
        ),
    ),
)
```

`processed_info` contains `hash` (a direct hash of the asset and meta
bytes), `full_hash` (a hash of `hash` and the hashes of all
`process_dependencies`), and `process_dependencies` (the `path` and
`full_hash` of every process_dependency). A "process dependency" is an
asset dependency that is _directly_ used when processing the asset.
Images do not have process dependencies, so this is empty.

When the processor is enabled, you can use the `Process` metadata
config:

```rust
(
    meta_format_version: "1.0",
    asset: Process(
        processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>",
        settings: (
            loader_settings: (
                format: FromExtension,
            ),
            saver_settings: (
                generate_mipmaps: true,
            ),
        ),
    ),
)
```

This configures the asset to use the `LoadAndSave` processor, which runs
an AssetLoader and feeds the result into an AssetSaver (which saves the
given Asset and defines a loader to load it with). (for terseness
LoadAndSave will likely get a shorter/friendlier type name when [Stable
Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common
processor type, but arbitrary processors are supported.

`CompressedImageSaver` saves an `Image` in the Basis Universal format
and configures the ImageLoader to load it as basis universal. The
`AssetProcessor` will read this meta, run it through the LoadAndSave
processor, and write the basis-universal version of the image to
`.imported_assets`. The final metadata will look like this:

```rust
(
    meta_format_version: "1.0",
    processed_info: Some((
        hash: 905599590923828066,
        full_hash: 9948823010183819117,
        process_dependencies: [],
    )),
    asset: Load(
        loader: "bevy_render::texture::image_loader::ImageLoader",
        settings: (
            format: Format(Basis),
        ),
    ),
)
```

To try basis-universal processing out in Bevy examples, (for example
`sprite.rs`), change `add_plugins(DefaultPlugins)` to
`add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run
with the `basis-universal` feature enabled: `cargo run
--features=basis-universal --example sprite`.

To create a custom processor, there are two main paths:
1. Use the `LoadAndSave` processor with an existing `AssetLoader`.
Implement the `AssetSaver` trait, register the processor using
`asset_processor.register_processor::<LoadAndSave<ImageLoader,
CompressedImageSaver>>(image_saver.into())`.
2. Implement the `Process` trait directly and register it using:
`asset_processor.register_processor(thing_processor)`.

You can configure default processors for file extensions like this:

```rust
asset_processor.set_default_processor::<ThingProcessor>("thing")
```

There is one more metadata type to be aware of:

```rust
(
    meta_format_version: "1.0",
    asset: Ignore,
)
```

This will ignore the asset during processing / prevent it from being
written to `.imported_assets`.

The AssetProcessor stores a transaction log at `.imported_assets/log`
and uses it to gracefully recover from unexpected stops. This means you
can force-quit the processor (and Bevy Apps running the processor in
parallel) at arbitrary times!

`.imported_assets` is "local state". It should _not_ be checked into
source control. It should also be considered "read only". In practice,
you _can_ modify processed assets and processed metadata if you really
need to test something. But those modifications will not be represented
in the hashes of the assets, so the processed state will be "out of
sync" with the source assets. The processor _will not_ fix this for you.
Either revert the change after you have tested it, or delete the
processed files so they can be re-populated.

## Open Questions

There are a number of open questions to be discussed. We should decide
if they need to be addressed in this PR and if so, how we will address
them:

### Implied Dependencies vs Dependency Enumeration

There are currently two ways to populate asset dependencies:
* **Implied via AssetLoaders**: if an AssetLoader loads an asset (and
retrieves a handle), a dependency is added to the list.
* **Explicit via the optional Asset::visit_dependencies**: if
`server.load_asset(my_asset)` is called, it will call
`my_asset.visit_dependencies`, which will grab dependencies that have
been manually defined for the asset via the Asset trait impl (which can
be derived).

This means that defining explicit dependencies is optional for "loaded
assets". And the list of dependencies is always accurate because loaders
can only produce Handles if they register dependencies. If an asset was
loaded with an AssetLoader, it only uses the implied dependencies. If an
asset was created at runtime and added with
`asset_server.load_asset(MyAsset)`, it will use
`Asset::visit_dependencies`.

However this can create a behavior mismatch between loaded assets and
equivalent "created at runtime" assets if `Assets::visit_dependencies`
doesn't exactly match the dependencies produced by the AssetLoader. This
behavior mismatch can be resolved by completely removing "implied loader
dependencies" and requiring `Asset::visit_dependencies` to supply
dependency data. But this creates two problems:
* It makes defining loaded assets harder and more error prone: Devs must
remember to manually annotate asset dependencies with `#[dependency]`
when deriving `Asset`. For more complicated assets (such as scenes), the
derive likely wouldn't be sufficient and a manual `visit_dependencies`
impl would be required.
* Removes the ability to immediately kick off dependency loads: When
AssetLoaders retrieve a Handle, they also immediately kick off an asset
load for the handle, which means it can start loading in parallel
_before_ the asset finishes loading. For large assets, this could be
significant. (although this could be mitigated for processed assets if
we store dependencies in the processed meta file and load them ahead of
time)

### Eager ProcessorDev Asset Loading

I made a controversial call in the interest of fast startup times ("time
to first pixel") for the "processor dev mode configuration". When
initializing the AssetProcessor, current processed versions of unchanged
assets are yielded immediately, even if their dependencies haven't been
checked yet for reprocessing. This means that
non-current-state-of-filesystem-but-previously-valid assets might be
returned to the App first, then hot-reloaded if/when their dependencies
change and the asset is reprocessed.

Is this behavior desirable? There is largely one alternative: do not
yield an asset from the processor to the app until all of its
dependencies have been checked for changes. In some common cases (load
dependency has not changed since last run) this will increase startup
time. The main question is "by how much" and is that slower startup time
worth it in the interest of only yielding assets that are true to the
current state of the filesystem. Should this be configurable? I'm
starting to think we should only yield an asset after its (historical)
dependencies have been checked for changes + processed as necessary, but
I'm curious what you all think.

### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs?

In this implementation AssetPaths are the only canonical asset
identifier (just like the previous Bevy Asset system and Godot). Moving
assets will result in re-scans (and currently reprocessing, although
reprocessing can easily be avoided with some changes). Asset
renames/moves will break code and assets that rely on specific paths,
unless those paths are fixed up.

Do we want / need "stable asset uuids"? Introducing them is very
possible:
1. Generate a UUID and include it in .meta files
2. Support UUID in AssetPath
3. Generate "asset indices" which are loaded on startup and map UUIDs to
paths.
4 (maybe). Consider only supporting UUIDs for processed assets so we can
generate quick-to-load indices instead of scanning meta files.

The main "pro" is that assets referencing UUIDs don't need to be
migrated when a path changes. The main "con" is that UUIDs cannot be
"lazily resolved" like paths. They need a full view of all assets to
answer the question "does this UUID exist". Which means UUIDs require
the AssetProcessor to fully finish startup scans before saying an asset
doesnt exist. And they essentially require asset pre-processing to use
in apps, because scanning all asset metadata files at runtime to resolve
a UUID is not viable for medium-to-large apps. It really requires a
pre-generated UUID index, which must be loaded before querying for
assets.

I personally think this should be investigated in a separate PR. Paths
aren't going anywhere ... _everyone_ uses filesystems (and
filesystem-like apis) to manage their asset source files. I consider
them permanent canonical asset information. Additionally, they behave
well for both processed and unprocessed asset modes. Given that Bevy is
supporting both, this feels like the right canonical ID to start with.
UUIDS (and maybe even other indexed-identifier types) can be added later
as necessary.

### Folder / File Naming Conventions

All asset processing config currently lives in the `.imported_assets`
folder. The processor transaction log is in `.imported_assets/log`.
Processed assets are added to `.imported_assets/Default`, which will
make migrating to processed asset profiles (ex: a
`.imported_assets/Mobile` profile) a non-breaking change. It also allows
us to create top-level files like `.imported_assets/log` without it
being interpreted as an asset. Meta files currently have a `.meta`
suffix. Do we like these names and conventions?

### Should the `AssetPlugin::processed_dev` configuration enable
`watch_for_changes` automatically?

Currently it does (which I think makes sense), but it does make it the
only configuration that enables watch_for_changes by default.

### Discuss on_loaded High Level Interface:

This PR includes a very rough "proof of concept" `on_loaded` system
adapter that uses the `LoadedWithDependencies` event in combination with
`asset_server.load_asset` dependency tracking to support this pattern

```rust
fn main() {
    App::new()
        .init_asset::<MyAssets>()
        .add_systems(Update, on_loaded(create_array_texture))
        .run();
}

#[derive(Asset, Clone)]
struct MyAssets {
    #[dependency]
    picture_of_my_cat: Handle<Image>,
    #[dependency]
    picture_of_my_other_cat: Handle<Image>,
}

impl FromWorld for ArrayTexture {
    fn from_world(world: &mut World) -> Self {
        picture_of_my_cat: server.load("meow.png"),
        picture_of_my_other_cat: server.load("meeeeeeeow.png"),
    }
}

fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) {
    commands.spawn(SpriteBundle {
        texture: my_assets.picture_of_my_cat.clone(),  
        ..default()
    });
    
    commands.spawn(SpriteBundle {
        texture: my_assets.picture_of_my_other_cat.clone(),  
        ..default()
    });
}

```

The implementation is _very_ rough. And it is currently unsafe because
`bevy_ecs` doesn't expose some internals to do this safely from inside
`bevy_asset`. There are plenty of unanswered questions like:
* "do we add a Loadable" derive? (effectively automate the FromWorld
implementation above)
* Should `MyAssets` even be an Asset? (largely implemented this way
because it elegantly builds on `server.load_asset(MyAsset { .. })`
dependency tracking).

We should think hard about what our ideal API looks like (and if this is
a pattern we want to support). Not necessarily something we need to
solve in this PR. The current `on_loaded` impl should probably be
removed from this PR before merging.

## Clarifying Questions

### What about Assets as Entities?

This Bevy Asset V2 proposal implementation initially stored Assets as
ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used
`Entity` as the asset id and Asset values were just ECS components.
There are plenty of compelling reasons to do this:
1. Easier to inline assets in Bevy Scenes (as they are "just" normal
entities + components)
2. More flexible queries: use the power of the ECS to filter assets (ex:
`Query<Mesh, With<Tree>>`).
3. Extensible. Users can add arbitrary component data to assets.
4. Things like "component visualization tools" work out of the box to
visualize asset data.

However Assets as Entities has a ton of caveats right now:
* We need to be able to allocate entity ids without a direct World
reference (aka rework id allocator in Entities ... i worked around this
in my prototypes by just pre allocating big chunks of entities)
* We want asset change events in addition to ECS change tracking ... how
do we populate them when mutations can come from anywhere? Do we use
Changed queries? This would require iterating over the change data for
all assets every frame. Is this acceptable or should we implement a new
"event based" component change detection option?
* Reconciling manually created assets with asset-system managed assets
has some nuance (ex: are they "loaded" / do they also have that
component metadata?)
* "how do we handle "static" / default entity handles" (ties in to the
Entity Indices discussion:
https://github.com/bevyengine/bevy/discussions/8319). This is necessary
for things like "built in" assets and default handles in things like
SpriteBundle.
* Storing asset information as a component makes it easy to "invalidate"
asset state by removing the component (or forcing modifications).
Ideally we have ways to lock this down (some combination of Rust type
privacy and ECS validation)

In practice, how we store and identify assets is a reasonably
superficial change (porting off of Assets as Entities and implementing
dedicated storage + ids took less than a day). So once we sort out the
remaining challenges the flip should be straightforward. Additionally, I
do still have "Assets as Entities" in my commit history, so we can reuse
that work. I personally think "assets as entities" is a good endgame,
but it also doesn't provide _significant_ value at the moment and it
certainly isn't ready yet with the current state of things.

### Why not Distill?

[Distill](https://github.com/amethyst/distill) is a high quality fully
featured asset system built in Rust. It is very natural to ask "why not
just use Distill?".

It is also worth calling out that for awhile, [we planned on adopting
Distill / I signed off on
it](https://github.com/bevyengine/bevy/issues/708).

However I think Bevy has a number of constraints that make Distill
adoption suboptimal:
* **Architectural Simplicity:**
* Distill's processor requires an in-memory database (lmdb) and RPC
networked API (using Cap'n Proto). Each of these introduces API
complexity that increases maintenance burden and "code grokability".
Ignoring tests, documentation, and examples, Distill has 24,237 lines of
Rust code (including generated code for RPC + database interactions). If
you ignore generated code, it has 11,499 lines.
* Bevy builds the AssetProcessor and AssetServer using pluggable
AssetReader/AssetWriter Rust traits with simple io interfaces. They do
not necessitate databases or RPC interfaces (although Readers/Writers
could use them if that is desired). Bevy Asset V2 (at the time of
writing this PR) is 5,384 lines of Rust code (ignoring tests,
documentation, and examples). Grain of salt: Distill does have more
features currently (ex: Asset Packing, GUIDS, remote-out-of-process
asset processor). I do plan to implement these features in Bevy Asset V2
and I personally highly doubt they will meaningfully close the 6115
lines-of-code gap.
* This complexity gap (which while illustrated by lines of code, is much
bigger than just that) is noteworthy to me. Bevy should be hackable and
there are pillars of Distill that are very hard to understand and
extend. This is a matter of opinion (and Bevy Asset V2 also has
complicated areas), but I think Bevy Asset V2 is much more approachable
for the average developer.
* Necessary disclaimer: counting lines of code is an extremely rough
complexity metric. Read the code and form your own opinions.
* **Optional Asset Processing:** Not all Bevy Apps (or Bevy App
developers) need / want asset preprocessing. Processing increases the
complexity of the development environment by introducing things like
meta files, imported asset storage, running processors in the
background, waiting for processing to finish, etc. Distill _requires_
preprocessing to work. With Bevy Asset V2 processing is fully opt-in.
The AssetServer isn't directly aware of asset processors at all.
AssetLoaders only care about converting bytes to runtime Assets ... they
don't know or care if the bytes were pre-processed or not. Processing is
"elegantly" (forgive my self-congratulatory phrasing) layered on top and
builds on the existing Asset system primitives.
* **Direct Filesystem Access to Processed Asset State:** Distill stores
processed assets in a database. This makes debugging / inspecting the
processed outputs harder (either requires special tooling to query the
database or they need to be "deployed" to be inspected). Bevy Asset V2,
on the other hand, stores processed assets in the filesystem (by default
... this is configurable). This makes interacting with the processed
state more natural. Note that both Godot and Unity's new asset system
store processed assets in the filesystem.
* **Portability**: Because Distill's processor uses lmdb and RPC
networking, it cannot be run on certain platforms (ex: lmdb is a
non-rust dependency that cannot run on the web, some platforms don't
support running network servers). Bevy should be able to process assets
everywhere (ex: run the Bevy Editor on the web, compile + process
shaders on mobile, etc). Distill does partially mitigate this problem by
supporting "streaming" assets via the RPC protocol, but this is not a
full solve from my perspective. And Bevy Asset V2 can (in theory) also
stream assets (without requiring RPC, although this isn't implemented
yet)

Note that I _do_ still think Distill would be a solid asset system for
Bevy. But I think the approach in this PR is a better solve for Bevy's
specific "asset system requirements".

### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the
point?

"True async file io" has limited / spotty platform support. async-fs
(and the rust async ecosystem generally ... ex Tokio) currently use
async wrappers over std::fs that offload blocking requests to separate
threads. This may feel unsatisfying, but it _does_ still provide value
because it prevents our task pools from blocking on file system
operations (which would prevent progress when there are many tasks to
do, but all threads in a pool are currently blocking on file system
ops).

Additionally, using async APIs for our AssetReaders and AssetWriters
also provides value because we can later add support for "true async
file io" for platforms that support it. _And_ we can implement other
"true async io" asset backends (such as networked asset io).

## Draft TODO

- [x] Fill in missing filesystem event APIs: file removed event (which
is expressed as dangling RenameFrom events in some cases), file/folder
renamed event
- [x] Assets without loaders are not moved to the processed folder. This
breaks things like referenced `.bin` files for GLTFs. This should be
configurable per-non-asset-type.
- [x] Initial implementation of Reflect and FromReflect for Handle. The
"deserialization" parity bar is low here as this only worked with static
UUIDs in the old impl ... this is a non-trivial problem. Either we add a
Handle::AssetPath variant that gets "upgraded" to a strong handle on
scene load or we use a separate AssetRef type for Bevy scenes (which is
converted to a runtime Handle on load). This deserves its own discussion
in a different pr.
- [x] Populate read_asset_bytes hash when run by the processor (a bit of
a special case .. when run by the processor the processed meta will
contain the hash so we don't need to compute it on the spot, but we
don't want/need to read the meta when run by the main AssetServer)
- [x] Delay hot reloading: currently filesystem events are handled
immediately, which creates timing issues in some cases. For example hot
reloading images can sometimes break because the image isn't finished
writing. We should add a delay, likely similar to the [implementation in
this PR](https://github.com/bevyengine/bevy/pull/8503).
- [x] Port old platform-specific AssetIo implementations to the new
AssetReader interface (currently missing Android and web)
- [x] Resolve on_loaded unsafety (either by removing the API entirely or
removing the unsafe)
- [x]  Runtime loader setting overrides
- [x] Remove remaining unwraps that should be error-handled. There are
number of TODOs here
- [x] Pretty AssetPath Display impl
- [x] Document more APIs
- [x] Resolve spurious "reloading because it has changed" events (to
repro run load_gltf with `processed_dev()`)
- [x] load_dependency hot reloading currently only works for processed
assets. If processing is disabled, load_dependency changes are not hot
reloaded.
- [x] Replace AssetInfo dependency load/fail counters with
`loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from
(potentially) breaking counters. Storing this will also enable
"dependency reloaded" events (see [Next Steps](#next-steps))
- [x] Re-add filesystem watcher cargo feature gate (currently it is not
optional)
- [ ] Migration Guide
- [ ] Changelog

## Followup TODO

- [ ] Replace "eager unchanged processed asset loading" behavior with
"don't returned unchanged processed asset until dependencies have been
checked".
- [ ] Add true `Ignore` AssetAction that does not copy the asset to the
imported_assets folder.
- [ ] Finish "live asset unloading" (ex: free up CPU asset memory after
uploading an image to the GPU), rethink RenderAssets, and port renderer
features. The `Assets` collection uses `Option<T>` for asset storage to
support its removal. (1) the Option might not actually be necessary ...
might be able to just remove from the collection entirely (2) need to
finalize removal apis
- [ ] Try replacing the "channel based" asset id recycling with
something a bit more efficient (ex: we might be able to use raw atomic
ints with some cleverness)
- [ ] Consider adding UUIDs to processed assets (scoped just to helping
identify moved assets ... not exposed to load queries ... see [Next
Steps](#next-steps))
- [ ] Store "last modified" source asset and meta timestamps in
processed meta files to enable skipping expensive hashing when the file
wasn't changed
- [ ] Fix "slow loop" handle drop fix 
- [ ] Migrate to TypeName
- [x] Handle "loader preregistration". See #9429

## Next Steps

* **Configurable per-type defaults for AssetMeta**: It should be
possible to add configuration like "all png image meta should default to
using nearest sampling" (currently this hard-coded per-loader/processor
Settings::default() impls). Also see the "Folder Meta" bullet point.
* **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical
asset ids" discussion in [Open Questions](#open-questions) and the
relevant bullet point in [Draft TODO](#draft-todo). Even without
canonical ids, folder renames could avoid reprocessing in some cases.
* **Multiple Asset Sources**: Expand AssetPath to support "asset source
names" and support multiple AssetReaders in the asset server (ex:
`webserver://some_path/image.png` backed by an Http webserver
AssetReader). The "default" asset reader would use normal
`some_path/image.png` paths. Ideally this works in combination with
multiple AssetWatchers for hot-reloading
* **Stable Type Names**: this pr removes the TypeUuid requirement from
assets in favor of `std::any::type_name`. This makes defining assets
easier (no need to generate a new uuid / use weird proc macro syntax).
It also makes reading meta files easier (because things have "friendly
names"). We also use type names for components in scene files. If they
are good enough for components, they are good enough for assets. And
consistency across Bevy pillars is desirable. However,
`std::any::type_name` is not guaranteed to be stable (although in
practice it is). We've developed a [stable type
path](https://github.com/bevyengine/bevy/pull/7184) to resolve this,
which should be adopted when it is ready.
* **Command Line Interface**: It should be possible to run the asset
processor in a separate process from the command line. This will also
require building a network-server-backed AssetReader to communicate
between the app and the processor. We've been planning to build a "bevy
cli" for awhile. This seems like a good excuse to build it.
* **Asset Packing**: This is largely an additive feature, so it made
sense to me to punt this until we've laid the foundations in this PR.
* **Per-Platform Processed Assets**: It should be possible to generate
assets for multiple platforms by supporting multiple "processor
profiles" per asset (ex: compress with format X on PC and Y on iOS). I
think there should probably be arbitrary "profiles" (which can be
separate from actual platforms), which are then assigned to a given
platform when generating the final asset distribution for that platform.
Ex: maybe devs want a "Mobile" profile that is shared between iOS and
Android. Or a "LowEnd" profile shared between web and mobile.
* **Versioning and Migrations**: Assets, Loaders, Savers, and Processors
need to have versions to determine if their schema is valid. If an asset
/ loader version is incompatible with the current version expected at
runtime, the processor should be able to migrate them. I think we should
try using Bevy Reflect for this, as it would allow us to load the old
version as a dynamic Reflect type without actually having the old Rust
type. It would also allow us to define "patches" to migrate between
versions (Bevy Reflect devs are currently working on patching). The
`.meta` file already has its own format version. Migrating that to new
versions should also be possible.
* **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write
type) currently used by AssetPath can still result in String clones that
aren't actually necessary (cloning an Owned Cow clones the contents).
Bevy's asset system requires cloning AssetPaths in a number of places,
which result in actual clones of the internal Strings. This is not
efficient. AssetPath internals should be reworked to exhibit truer
cow-like-behavior that reduces String clones to the absolute minimum.
* **Consider processor-less processing**: In theory the AssetServer
could run processors "inline" even if the background AssetProcessor is
disabled. If we decide this is actually desirable, we could add this.
But I don't think its a priority in the short or medium term.
* **Pre-emptive dependency loading**: We could encode dependencies in
processed meta files, which could then be used by the Asset Server to
kick of dependency loads as early as possible (prior to starting the
actual asset load). Is this desirable? How much time would this save in
practice?
* **Optimize Processor With UntypedAssetIds**: The processor exclusively
uses AssetPath to identify assets currently. It might be possible to
swap these out for UntypedAssetIds in some places, which are smaller /
cheaper to hash and compare.
* **One to Many Asset Processing**: An asset source file that produces
many assets currently must be processed into a single "processed" asset
source. If labeled assets can be written separately they can each have
their own configured savers _and_ they could be loaded more granularly.
Definitely worth exploring!
* **Automatically Track "Runtime-only" Asset Dependencies**: Right now,
tracking "created at runtime" asset dependencies requires adding them
via `asset_server.load_asset(StandardMaterial::default())`. I think with
some cleverness we could also do this for
`materials.add(StandardMaterial::default())`, making tracking work
"everywhere". There are challenges here relating to change detection /
ensuring the server is made aware of dependency changes. This could be
expensive in some cases.
* **"Dependency Changed" events**: Some assets have runtime artifacts
that need to be re-generated when one of their dependencies change (ex:
regenerate a material's bind group when a Texture needs to change). We
are generating the dependency graph so we can definitely produce these
events. Buuuuut generating these events will have a cost / they could be
high frequency for some assets, so we might want this to be opt-in for
specific cases.
* **Investigate Storing More Information In Handles**: Handles can now
store arbitrary information, which makes it cheaper and easier to
access. How much should we move into them? Canonical asset load states
(via atomics)? (`handle.is_loaded()` would be very cool). Should we
store the entire asset and remove the `Assets<T>` collection?
(`Arc<RwLock<Option<Image>>>`?)
* **Support processing and loading files without extensions**: This is a
pretty arbitrary restriction and could be supported with very minimal
changes.
* **Folder Meta**: It would be nice if we could define per folder
processor configuration defaults (likely in a `.meta` or `.folder_meta`
file). Things like "default to linear filtering for all Images in this
folder".
* **Replace async_broadcast with event-listener?** This might be
approximately drop-in for some uses and it feels more light weight
* **Support Running the AssetProcessor on the Web**: Most of the hard
work is done here, but there are some easy straggling TODOs (make the
transaction log an interface instead of a direct file writer so we can
write a web storage backend, implement an AssetReader/AssetWriter that
reads/writes to something like LocalStorage).
* **Consider identifying and preventing circular dependencies**: This is
especially important for "processor dependencies", as processing will
silently never finish in these cases.
* **Built-in/Inlined Asset Hot Reloading**: This PR regresses
"built-in/inlined" asset hot reloading (previously provided by the
DebugAssetServer). I'm intentionally punting this because I think it can
be cleanly implemented with "multiple asset sources" by registering a
"debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset
paths) in combination with an AssetWatcher for that asset source and
support for "manually loading pats with asset bytes instead of
AssetReaders". The old DebugAssetServer was quite nasty and I'd love to
avoid that hackery going forward.
* **Investigate ways to remove double-parsing meta files**: Parsing meta
files currently involves parsing once with "minimal" versions of the
meta file to extract the type name of the loader/processor config, then
parsing again to parse the "full" meta. This is suboptimal. We should be
able to define custom deserializers that (1) assume the loader/processor
type name comes first (2) dynamically looks up the loader/processor
registrations to deserialize settings in-line (similar to components in
the bevy scene format). Another alternative: deserialize as dynamic
Reflect objects and then convert.
* **More runtime loading configuration**: Support using the Handle type
as a hint to select an asset loader (instead of relying on AssetPath
extensions)
* **More high level Processor trait implementations**: For example, it
might be worth adding support for arbitrary chains of "asset transforms"
that modify an in-memory asset representation between loading and
saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by
a `flip_normals` transform, then save the mesh to an efficient
compressed format).
* **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO
item](#draft-todo) for context)
* **Explore High Level Load Interfaces**: See [this
discussion](#discuss-on_loaded-high-level-interface) for one prototype.
* **Asset Streaming**: It would be great if we could stream Assets (ex:
stream a long video file piece by piece)
* **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than
they need to be because they have a Uuid enum variant. If we implement
an "id exchanging" system that trades Uuids for "efficient runtime ids",
we can cut down on the size of AssetIds, making them more efficient.
This has some open design questions, such as how to spawn entities with
"default" handle values (as these wouldn't have access to the exchange
api in the current system).
* **Asset Path Fixup Tooling**: Assets that inline asset paths inside
them will break when an asset moves. The asset system provides the
functionality to detect when paths break. We should build a framework
that enables formats to define "path migrations". This is especially
important for scene files. For editor-generated files, we should also
consider using UUIDs (see other bullet point) to avoid the need to
migrate in these cases.

---------

Co-authored-by: BeastLe9enD <beastle9end@outlook.de>
Co-authored-by: Mike <mike.hsu@gmail.com>
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2023-09-07 02:07:27 +00:00
Joseph
02b520b4e8
Split ComputedVisibility into two components to allow for accurate change detection and speed up visibility propagation (#9497)
# Objective

Fix #8267.
Fixes half of #7840.

The `ComputedVisibility` component contains two flags: hierarchy
visibility, and view visibility (whether its visible to any cameras).
Due to the modular and open-ended way that view visibility is computed,
it triggers change detection every single frame, even when the value
does not change. Since hierarchy visibility is stored in the same
component as view visibility, this means that change detection for
inherited visibility is completely broken.

At the company I work for, this has become a real issue. We are using
change detection to only re-render scenes when necessary. The broken
state of change detection for computed visibility means that we have to
to rely on the non-inherited `Visibility` component for now. This is
workable in the early stages of our project, but since we will
inevitably want to use the hierarchy, we will have to either:

1. Roll our own solution for computed visibility.
2. Fix the issue for everyone.

## Solution

Split the `ComputedVisibility` component into two: `InheritedVisibilty`
and `ViewVisibility`.
This allows change detection to behave properly for
`InheritedVisibility`.
View visiblity is still erratic, although it is less useful to be able
to detect changes
for this flavor of visibility.

Overall, this actually simplifies the API. Since the visibility system
consists of
self-explaining components, it is much easier to document the behavior
and usage.
This approach is more modular and "ECS-like" -- one could
strip out the `ViewVisibility` component entirely if it's not needed,
and rely only on inherited visibility.

---

## Changelog

- `ComputedVisibility` has been removed in favor of:
`InheritedVisibility` and `ViewVisiblity`.

## Migration Guide

The `ComputedVisibilty` component has been split into
`InheritedVisiblity` and
`ViewVisibility`. Replace any usages of
`ComputedVisibility::is_visible_in_hierarchy`
with `InheritedVisibility::get`, and replace
`ComputedVisibility::is_visible_in_view`
 with `ViewVisibility::get`.
 
 ```rust
 // Before:
 commands.spawn(VisibilityBundle {
     visibility: Visibility::Inherited,
     computed_visibility: ComputedVisibility::default(),
 });
 
 // After:
 commands.spawn(VisibilityBundle {
     visibility: Visibility::Inherited,
     inherited_visibility: InheritedVisibility::default(),
     view_visibility: ViewVisibility::default(),
 });
 ```
 
 ```rust
 // Before:
 fn my_system(q: Query<&ComputedVisibilty>) {
     for vis in &q {
         if vis.is_visible_in_hierarchy() {
     
 // After:
 fn my_system(q: Query<&InheritedVisibility>) {
     for inherited_visibility in &q {
         if inherited_visibility.get() {
 ```
 
 ```rust
 // Before:
 fn my_system(q: Query<&ComputedVisibilty>) {
     for vis in &q {
         if vis.is_visible_in_view() {
     
 // After:
 fn my_system(q: Query<&ViewVisibility>) {
     for view_visibility in &q {
         if view_visibility.get() {
 ```
 
 ```rust
 // Before:
 fn my_system(mut q: Query<&mut ComputedVisibilty>) {
     for vis in &mut q {
         vis.set_visible_in_view();
     
 // After:
 fn my_system(mut q: Query<&mut ViewVisibility>) {
     for view_visibility in &mut q {
         view_visibility.set();
 ```

---------

Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
James O'Brien
4f1d9a6315
Reorder render sets, refactor bevy_sprite to take advantage (#9236)
This is a continuation of this PR: #8062 

# Objective

- Reorder render schedule sets to allow data preparation when phase item
order is known to support improved batching
- Part of the batching/instancing etc plan from here:
https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074
- The original idea came from @inodentry and proved to be a good one.
Thanks!
- Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new
ordering

## Solution
- Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` 
- Add a `PrepareAssets` set that runs in parallel with other systems and
sets in the render schedule.
  - Put prepare_assets systems in the `PrepareAssets` set
- If explicit dependencies are needed on Mesh or Material RenderAssets
then depend on the appropriate system.
- Add `ManageViews` and `ManageViewsFlush` sets between
`ExtractCommands` and Queue
- Move `queue_mesh*_bind_group` to the Prepare stage
  - Rename them to `prepare_`
- Put systems that prepare resources (buffers, textures, etc.) into a
`PrepareResources` set inside `Prepare`
- Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set
after `PrepareResources`
- Move `prepare_lights` to the `ManageViews` set
  - `prepare_lights` creates views and this must happen before `Queue`
  - This system needs refactoring to stop handling all responsibilities
- Gather lights, sort, and create shadow map views. Store sorted light
entities in a resource

- Remove `BatchedPhaseItem`
- Replace `batch_range` with `batch_size` representing how many items to
skip after rendering the item or to skip the item entirely if
`batch_size` is 0.
- `queue_sprites` has been split into `queue_sprites` for queueing phase
items and `prepare_sprites` for batching after the `PhaseSort`
  - `PhaseItem`s are still inserted in `queue_sprites`
- After sorting adjacent compatible sprite phase items are accumulated
into `SpriteBatch` components on the first entity of each batch,
containing a range of vertex indices. The associated `PhaseItem`'s
`batch_size` is updated appropriately.
- `SpriteBatch` items are then drawn skipping over the other items in
the batch based on the value in `batch_size`
- A very similar refactor was performed on `bevy_ui`
---

## Changelog

Changed:
- Reordered and reworked render app schedule sets. The main change is
that data is extracted, queued, sorted, and then prepared when the order
of data is known.
- Refactor `bevy_sprite` and `bevy_ui` to take advantage of the
reordering.

## Migration Guide
- Assets such as materials and meshes should now be created in
`PrepareAssets` e.g. `prepare_assets<Mesh>`
- Queueing entities to `RenderPhase`s continues to be done in `Queue`
e.g. `queue_sprites`
- Preparing resources (textures, buffers, etc.) should now be done in
`PrepareResources`, e.g. `prepare_prepass_textures`,
`prepare_mesh_uniforms`
- Prepare bind groups should now be done in `PrepareBindGroups` e.g.
`prepare_mesh_bind_group`
- Any batching or instancing can now be done in `Prepare` where the
order of the phase items is known e.g. `prepare_sprites`

 
## Next Steps
- Introduce some generic mechanism to ensure items that can be batched
are grouped in the phase item order, currently you could easily have
`[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching.
 - Investigate improved orderings for building the MeshUniform buffer
 - Implementing batching across the rest of bevy

---------

Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
Sludge
9b92de9e35
Register AlphaMode type (#9222)
# Objective

- `AlphaMode` derives `Reflect`, but wasn't registered with the app and
type registry

## Solution

- `app.register_type::<AlphaMode>()`
2023-07-20 21:26:03 +00:00
Edgar Geier
f18f28874a
Allow tuples and single plugins in add_plugins, deprecate add_plugin (#8097)
# Objective

- Better consistency with `add_systems`.
- Deprecating `add_plugin` in favor of a more powerful `add_plugins`.
- Allow passing `Plugin` to `add_plugins`.
- Allow passing tuples to `add_plugins`.

## Solution

- `App::add_plugins` now takes an `impl Plugins` parameter.
- `App::add_plugin` is deprecated.
- `Plugins` is a new sealed trait that is only implemented for `Plugin`,
`PluginGroup` and tuples over `Plugins`.
- All examples, benchmarks and tests are changed to use `add_plugins`,
using tuples where appropriate.

---

## Changelog

### Changed

- `App::add_plugins` now accepts all types that implement `Plugins`,
which is implemented for:
  - Types that implement `Plugin`.
  - Types that implement `PluginGroup`.
  - Tuples (up to 16 elements) over types that implement `Plugins`.
- Deprecated `App::add_plugin` in favor of `App::add_plugins`.

## Migration Guide

- Replace `app.add_plugin(plugin)` calls with `app.add_plugins(plugin)`.

---------

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-21 20:51:03 +00:00
JMS55
af9c945f40
Screen Space Ambient Occlusion (SSAO) MVP (#7402)
![image](https://github.com/bevyengine/bevy/assets/47158642/dbb62645-f639-4f2b-b84b-26fd915c186d)

# Objective

- Add Screen space ambient occlusion (SSAO). SSAO approximates
small-scale, local occlusion of _indirect_ diffuse light between
objects. SSAO does not apply to direct lighting, such as point or
directional lights.
- This darkens creases, e.g. on staircases, and gives nice contact
shadows where objects meet, giving entities a more "grounded" feel.
- Closes https://github.com/bevyengine/bevy/issues/3632.

## Solution

- Implement the GTAO algorithm.
-
https://www.activision.com/cdn/research/Practical_Real_Time_Strategies_for_Accurate_Indirect_Occlusion_NEW%20VERSION_COLOR.pdf
-
https://blog.selfshadow.com/publications/s2016-shading-course/activision/s2016_pbs_activision_occlusion.pdf
- Source code heavily based on [Intel's
XeGTAO](0d177ce06b/Source/Rendering/Shaders/XeGTAO.hlsli).
- Add an SSAO bevy example.

## Algorithm Overview
* Run a depth and normal prepass
* Create downscaled mips of the depth texture (preprocess_depths pass)
* GTAO pass - for each pixel, take several random samples from the
depth+normal buffers, reconstruct world position, raytrace in screen
space to estimate occlusion. Rather then doing completely random samples
on a hemisphere, you choose random _slices_ of the hemisphere, and then
can analytically compute the full occlusion of that slice. Also compute
edges based on depth differences here.
* Spatial denoise pass - bilateral blur, using edge detection to not
blur over edges. This is the final SSAO result.
* Main pass - if SSAO exists, sample the SSAO texture, and set occlusion
to be the minimum of ssao/material occlusion. This then feeds into the
rest of the PBR shader as normal.

---

## Future Improvements
- Maybe remove the low quality preset for now (too noisy)
- WebGPU fallback (see below)
- Faster depth->world position (see reverted code)
- Bent normals 
- Try interleaved gradient noise or spatiotemporal blue noise
- Replace the spatial denoiser with a combined spatial+temporal denoiser
- Render at half resolution and use a bilateral upsample
- Better multibounce approximation
(https://drive.google.com/file/d/1SyagcEVplIm2KkRD3WQYSO9O0Iyi1hfy/view)

## Far-Future Performance Improvements
- F16 math (missing naga-wgsl support
https://github.com/gfx-rs/naga/issues/1884)
- Faster coordinate space conversion for normals
- Faster depth mipchain creation
(https://github.com/GPUOpen-Effects/FidelityFX-SPD) (wgpu/naga does not
currently support subgroup ops)
- Deinterleaved SSAO for better cache efficiency
(https://developer.nvidia.com/sites/default/files/akamai/gameworks/samples/DeinterleavedTexturing.pdf)

## Other Interesting Papers
- Visibility bitmask
(https://link.springer.com/article/10.1007/s00371-022-02703-y,
https://cdrinmatane.github.io/posts/cgspotlight-slides/)
- Screen space diffuse lighting
(https://github.com/Patapom/GodComplex/blob/master/Tests/TestHBIL/2018%20Mayaux%20-%20Horizon-Based%20Indirect%20Lighting%20(HBIL).pdf)

## Platform Support
* SSAO currently does not work on DirectX12 due to issues with wgpu and
naga:
  * https://github.com/gfx-rs/wgpu/pull/3798
  * https://github.com/gfx-rs/naga/pull/2353
* SSAO currently does not work on WebGPU because r16float is not a valid
storage texture format
https://gpuweb.github.io/gpuweb/wgsl/#storage-texel-formats. We can fix
this with a fallback to r32float.

---

## Changelog

- Added ScreenSpaceAmbientOcclusionSettings,
ScreenSpaceAmbientOcclusionQualityLevel, and
ScreenSpaceAmbientOcclusionBundle

---------

Co-authored-by: IceSentry <c.giguere42@gmail.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
Co-authored-by: Daniel Chia <danstryder@gmail.com>
Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
Co-authored-by: Brandon Dyer <brandondyer64@gmail.com>
Co-authored-by: Edgar Geier <geieredgar@gmail.com>
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-18 21:05:55 +00:00
Nicola Papale
83de94f9f9
Register a few missed reflect components (#8807)
# Objective

-  Some reflect components weren't properly registered.

## Solution

- We register them
- I also sorted the register lines in `Plugin::build` in `bevy_ui`

### Note

How I did I find them:

- I picked up the list of `Component`s from the `Component` trait page
in rustdoc.
- Then I tried to register all of them. Removing the registration when
it doesn't implement `Reflect` to pass compilation.
- Then I added `app.register_type_data::<T, Foo>()`, for all Reflect
components. It panics if `T` is not registered.
- I repeated the last line N times until bevy stopped panicking at
startup

---

## Changelog

- Register the following components: `PrimaryWindow` `Fxaa`
`FogSettings` `NotShadowCaster` `NotShadowReceiver` `CalculatedClip`
`RelativeCursorPosition`
2023-06-10 23:19:39 +00:00
Alice Cecile
cbd4abf0fc
Rename apply_system_buffers to apply_deferred (#8726)
# Objective

- `apply_system_buffers` is an unhelpful name: it introduces a new
internal-only concept
- this is particularly rough for beginners as reasoning about how
commands work is a critical stumbling block

## Solution

- rename `apply_system_buffers` to the more descriptive `apply_deferred`
- rename related fields, arguments and methods in the internals fo
bevy_ecs for consistency
- update the docs


## Changelog

`apply_system_buffers` has been renamed to `apply_deferred`, to more
clearly communicate its intent and relation to `Deferred` system
parameters like `Commands`.

## Migration Guide

- `apply_system_buffers` has been renamed to `apply_deferred`
- the `apply_system_buffers` method on the `System` trait has been
renamed to `apply_deferred`
- the `is_apply_system_buffers` function has been replaced by
`is_apply_deferred`
- `Executor::set_apply_final_buffers` is now
`Executor::set_apply_final_deferred`
- `Schedule::apply_system_buffers` is now `Schedule::apply_deferred`

---------

Co-authored-by: JoJoJet <21144246+JoJoJet@users.noreply.github.com>
2023-06-02 14:04:13 +00:00
François
71842c5ac9
Webgpu support (#8336)
# Objective

- Support WebGPU
- alternative to #5027 that doesn't need any async / await
- fixes #8315 
- Surprise fix #7318

## Solution

### For async renderer initialisation 

- Update the plugin lifecycle:
  - app builds the plugin
    - calls `plugin.build`
    - registers the plugin
  - app starts the event loop
- event loop waits for `ready` of all registered plugins in the same
order
    - returns `true` by default
- then call all `finish` then all `cleanup` in the same order as
registered
  - then execute the schedule

In the case of the renderer, to avoid anything async:
- building the renderer plugin creates a detached task that will send
back the initialised renderer through a mutex in a resource
- `ready` will wait for the renderer to be present in the resource
- `finish` will take that renderer and place it in the expected
resources by other plugins
- other plugins (that expect the renderer to be available) `finish` are
called and they are able to set up their pipelines
- `cleanup` is called, only custom one is still for pipeline rendering

### For WebGPU support

- update the `build-wasm-example` script to support passing `--api
webgpu` that will build the example with WebGPU support
- feature for webgl2 was always enabled when building for wasm. it's now
in the default feature list and enabled on all platforms, so check for
this feature must also check that the target_arch is `wasm32`

---

## Migration Guide

- `Plugin::setup` has been renamed `Plugin::cleanup`
- `Plugin::finish` has been added, and plugins adding pipelines should
do it in this function instead of `Plugin::build`
```rust
// Before
impl Plugin for MyPlugin {
    fn build(&self, app: &mut App) {
        app.insert_resource::<MyResource>
            .add_systems(Update, my_system);

        let render_app = match app.get_sub_app_mut(RenderApp) {
            Ok(render_app) => render_app,
            Err(_) => return,
        };

        render_app
            .init_resource::<RenderResourceNeedingDevice>()
            .init_resource::<OtherRenderResource>();
    }
}

// After
impl Plugin for MyPlugin {
    fn build(&self, app: &mut App) {
        app.insert_resource::<MyResource>
            .add_systems(Update, my_system);
    
        let render_app = match app.get_sub_app_mut(RenderApp) {
            Ok(render_app) => render_app,
            Err(_) => return,
        };
    
        render_app
            .init_resource::<OtherRenderResource>();
    }

    fn finish(&self, app: &mut App) {
        let render_app = match app.get_sub_app_mut(RenderApp) {
            Ok(render_app) => render_app,
            Err(_) => return,
        };
    
        render_app
            .init_resource::<RenderResourceNeedingDevice>();
    }
}
```
2023-05-04 22:07:57 +00:00
Nicola Papale
8df014fbaf
Add parallax mapping to bevy PBR (#5928)
# Objective

Add a [parallax mapping] shader to bevy. Please note that
this is a 3d technique, NOT a 2d sidescroller feature.

## Solution

- Add related fields to `StandardMaterial`
- update the pbr shader
- Add an example taking advantage of parallax mapping

A pre-existing implementation exists at:
https://github.com/nicopap/bevy_mod_paramap/

The implementation is derived from:

https://web.archive.org/web/20150419215321/http://sunandblackcat.com/tipFullView.php?l=eng&topicid=28

Further discussion on literature is found in the `bevy_mod_paramap`
README.

### Limitations

- The mesh silhouette isn't affected by the depth map.
- The depth of the pixel does not reflect its visual position, resulting
  in artifacts for depth-dependent features such as fog or SSAO
- GLTF does not define a height map texture, so somehow the user will
  always need to work around this limitation, though [an extension is in
  the works][gltf]

### Future work

- It's possible to update the depth in the depth buffer to follow the
  parallaxed texture. This would enable interop with depth-based
  visual effects, it also allows `discard`ing pixels of materials when
  computed depth is higher than the one in depth buffer
- Cheap lower quality single-sample method using [offset limiting]
- Add distance fading, to disable parallaxing (relatively expensive)
  on distant objects
- GLTF extension to allow defining height maps. Or a workaround
  implemented through a blender plugin to the GLTF exporter that
  uses the `extras` field to add height map.
- [Quadratic surface vertex attributes][oliveira_3] to enable parallax
  mapping on bending surfaces and allow clean silhouetting.
- noise based sampling, to limit the pancake artifacts.
- Cone mapping ([GPU gems], [Simcity (2013)][simcity]). Requires
  preprocessing, increase depth map size, reduces sample count greatly.
- [Quadtree parallax mapping][qpm] (also requires preprocessing)
- Self-shadowing of parallax-mapped surfaces by modifying the shadow map
- Generate depth map from normal map [link to slides], [blender
question]


https://user-images.githubusercontent.com/26321040/223563792-dffcc6ab-70e8-4ff9-90d1-b36c338695ad.mp4

[blender question]:
https://blender.stackexchange.com/questions/89278/how-to-get-a-smooth-curvature-map-from-a-normal-map
[link to slides]:
https://developer.download.nvidia.com/assets/gamedev/docs/nmap2displacement.pdf
[oliveira_3]:
https://www.inf.ufrgs.br/~oliveira/pubs_files/Oliveira_Policarpo_RP-351_Jan_2005.pdf
[GPU gems]:
https://developer.nvidia.com/gpugems/gpugems3/part-iii-rendering/chapter-18-relaxed-cone-stepping-relief-mapping
[simcity]:
https://community.simtropolis.com/omnibus/other-games/building-and-rendering-simcity-2013-r247/
[offset limiting]:
https://raw.githubusercontent.com/marcusstenbeck/tncg14-parallax-mapping/master/documents/Parallax%20Mapping%20with%20Offset%20Limiting%20-%20A%20Per-Pixel%20Approximation%20of%20Uneven%20Surfaces.pdf
[gltf]: https://github.com/KhronosGroup/glTF/pull/2196
[qpm]:
https://www.gamedevs.org/uploads/quadtree-displacement-mapping-with-height-blending.pdf

---

## Changelog

- Add a `depth_map` field to the `StandardMaterial`, it is a grayscale
  image where white represents bottom and black the top. If `depth_map`
  is set, bevy's pbr shader will use it to do [parallax mapping] to
  give an increased feel of depth to the material. This is similar to a
  displacement map, but with infinite precision at fairly low cost.
- The fields `parallax_mapping_method`, `parallax_depth_scale` and
  `max_parallax_layer_count` allow finer grained control over the
  behavior of the parallax shader.
- Add the `parallax_mapping` example to show off the effect.

[parallax mapping]: https://en.wikipedia.org/wiki/Parallax_mapping

---------

Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-04-15 10:25:14 +00:00
JoJoJet
3ead10a3e0
Suppress the clippy::type_complexity lint (#8313)
# Objective

The clippy lint `type_complexity` is known not to play well with bevy.
It frequently triggers when writing complex queries, and taking the
lint's advice of using a type alias almost always just obfuscates the
code with no benefit. Because of this, this lint is currently ignored in
CI, but unfortunately it still shows up when viewing bevy code in an
IDE.

As someone who's made a fair amount of pull requests to this repo, I
will say that this issue has been a consistent thorn in my side. Since
bevy code is filled with spurious, ignorable warnings, it can be very
difficult to spot the *real* warnings that must be fixed -- most of the
time I just ignore all warnings, only to later find out that one of them
was real after I'm done when CI runs.

## Solution

Suppress this lint in all bevy crates. This was previously attempted in
#7050, but the review process ended up making it more complicated than
it needs to be and landed on a subpar solution.

The discussion in https://github.com/rust-lang/rust-clippy/pull/10571
explores some better long-term solutions to this problem. Since there is
no timeline on when these solutions may land, we should resolve this
issue in the meantime by locally suppressing these lints.

### Unresolved issues

Currently, these lints are not suppressed in our examples, since that
would require suppressing the lint in every single source file. They are
still ignored in CI.
2023-04-06 21:27:36 +00:00
James O'Brien
ae31361949
Split opaque and transparent phases (#8090)
# Objective

Fixes #8089. 

## Solution

Splits the MainPass3dNode into 2 nodes, one for the opaque + alpha
passes and one for the transparent pass.

---

## Changelog
- Split MainPass3dNode into MainOpaquePass3dNode and
MainTransparentPass3dNode
- Combine opaque and alpha phases in MainOpaquePass3dNode into one pass
- Create `START_MAIN_PASS` and `END_MAIN_PASS` empty nodes as labels
- Main pass becomes `START_MAIN_PASS -> MAIN_OPAQUE_PASS ->
MAIN_TRANSPARENT_PASS -> END_MAIN_PASS`

## Migration Guide

Nodes that previously added edges involving `MAIN_PASS` should now add
edges to or from `START_MAIN_PASS` or `END_MAIN_PASS` respectively.
2023-03-28 06:35:16 +00:00
IceSentry
2c21d423fd
Make render graph slots optional for most cases (#8109)
# Objective

- Currently, the render graph slots are only used to pass the
view_entity around. This introduces significant boilerplate for very
little value. Instead of using slots for this, make the view_entity part
of the `RenderGraphContext`. This also means we won't need to have
`IN_VIEW` on every node and and we'll be able to use the default impl of
`Node::input()`.

## Solution

- Add `view_entity: Option<Entity>` to the `RenderGraphContext`
- Update all nodes to use this instead of entity slot input

---

## Changelog

- Add optional `view_entity` to `RenderGraphContext`

## Migration Guide

You can now get the view_entity directly from the `RenderGraphContext`. 

When implementing the Node:

```rust
// 0.10
struct FooNode;
impl FooNode {
    const IN_VIEW: &'static str = "view";
}
impl Node for FooNode {
    fn input(&self) -> Vec<SlotInfo> {
        vec![SlotInfo::new(Self::IN_VIEW, SlotType::Entity)]
    }
    fn run(
        &self,
        graph: &mut RenderGraphContext,
        // ... 
    ) -> Result<(), NodeRunError> {
        let view_entity = graph.get_input_entity(Self::IN_VIEW)?;
        // ...
        Ok(())
    }
}

// 0.11
struct FooNode;
impl Node for FooNode {
    fn run(
        &self,
        graph: &mut RenderGraphContext,
        // ... 
    ) -> Result<(), NodeRunError> {
        let view_entity = graph.view_entity();
        // ...
        Ok(())
    }
}
```

When adding the node to the graph, you don't need to specify a slot_edge
for the view_entity.

```rust
// 0.10
let mut graph = RenderGraph::default();
graph.add_node(FooNode::NAME, node);
let input_node_id = draw_2d_graph.set_input(vec![SlotInfo::new(
    graph::input::VIEW_ENTITY,
    SlotType::Entity,
)]);
graph.add_slot_edge(
    input_node_id,
    graph::input::VIEW_ENTITY,
    FooNode::NAME,
    FooNode::IN_VIEW,
);
// add_node_edge ...

// 0.11
let mut graph = RenderGraph::default();
graph.add_node(FooNode::NAME, node);
// add_node_edge ...
```

## Notes

This PR paired with #8007 will help reduce a lot of annoying boilerplate
with the render nodes. Depending on which one gets merged first. It will
require a bit of clean up work to make both compatible.

I tagged this as a breaking change, because using the old system to get
the view_entity will break things because it's not a node input slot
anymore.

## Notes for reviewers

A lot of the diffs are just removing the slots in every nodes and graph
creation. The important part is mostly in the
graph_runner/CameraDriverNode.
2023-03-21 20:11:13 +00:00
Carter Anderson
aefe1f0739
Schedule-First: the new and improved add_systems (#8079)
Co-authored-by: Mike <mike.hsu@gmail.com>
2023-03-18 01:45:34 +00:00
BlondeBurrito
602f3baf3f
fix: register Cascade in the TypeRegistry (#8088) 2023-03-15 00:11:55 +00:00
JoJoJet
fd1af7c8b8
Replace multiple calls to add_system with add_systems (#8001) 2023-03-10 18:15:22 +00:00
Edgar Geier
e54103fd69 Use prepass shaders for shadows (#7784)
# Objective

- Fixes #4372.

## Solution

- Use the prepass shaders for the shadow passes.
- Move `DEPTH_CLAMP_ORTHO` from `ShadowPipelineKey` to `MeshPipelineKey` and the associated clamp operation from `depth.wgsl` to `prepass.wgsl`.
- Remove `depth.wgsl` .
- Replace `ShadowPipeline` with `ShadowSamplers`.

Instead of running the custom `ShadowPipeline` we run the `PrepassPipeline` with the `DEPTH_PREPASS` flag and additionally the `DEPTH_CLAMP_ORTHO` flag for directional lights as well as the `ALPHA_MASK` flag for materials that use `AlphaMode::Mask(_)`.
2023-03-02 08:21:21 +00:00
JoJoJet
b8263b55fb Support system.in_schedule() and system.on_startup() (#7790)
# Objective

Support the following syntax for adding systems:

```rust
App::new()
    .add_system(setup.on_startup())
    .add_systems((
        show_menu.in_schedule(OnEnter(GameState::Paused)),
        menu_ssytem.in_set(OnUpdate(GameState::Paused)),
        hide_menu.in_schedule(OnExit(GameState::Paused)),
    ))
```

## Solution

Add the traits `IntoSystemAppConfig{s}`, which provide the extension methods necessary for configuring which schedule a system belongs to. These extension methods return `IntoSystemAppConfig{s}`, which `App::add_system{s}` uses to choose which schedule to add systems to.

---

## Changelog

+ Added the extension methods `in_schedule(label)` and  `on_startup()` for configuring the schedule a system belongs to.

## Future Work

* Replace all uses of `add_startup_system` in the engine.
* Deprecate this method
2023-02-24 18:33:55 +00:00
Mike
cd447fb4e6 Cleanup render schedule (#7589)
# Objective

- Fixes https://github.com/bevyengine/bevy/issues/7531

## Solution

- Add systems to prepare set
- Also remove a unnecessary apply_systems_buffers from ExtractCommands set.
2023-02-10 03:32:54 +00:00
JMS55
dd4299bcf9 EnvironmentMapLight, BRDF Improvements (#7051)
(Before)
![image](https://user-images.githubusercontent.com/47158642/213946111-15ec758f-1f1d-443c-b196-1fdcd4ae49da.png)
(After)
![image](https://user-images.githubusercontent.com/47158642/217051179-67381e73-dd44-461b-a2c7-87b0440ef8de.png)
![image](https://user-images.githubusercontent.com/47158642/212492404-524e4ad3-7837-4ed4-8b20-2abc276aa8e8.png)

# Objective
- Improve lighting; especially reflections.
- Closes https://github.com/bevyengine/bevy/issues/4581.

## Solution
- Implement environment maps, providing better ambient light.
- Add microfacet multibounce approximation for specular highlights from Filament.
- Occlusion is no longer incorrectly applied to direct lighting. It now only applies to diffuse indirect light. Unsure if it's also supposed to apply to specular indirect light - the glTF specification just says "indirect light". In the case of ambient occlusion, for instance, that's usually only calculated as diffuse though. For now, I'm choosing to apply this just to indirect diffuse light, and not specular.
- Modified the PBR example to use an environment map, and have labels.
- Added `FallbackImageCubemap`.

## Implementation
- IBL technique references can be found in environment_map.wgsl.
- It's more accurate to use a LUT for the scale/bias. Filament has a good reference on generating this LUT. For now, I just used an analytic approximation.
 - For now, environment maps must first be prefiltered outside of bevy using a 3rd party tool. See the `EnvironmentMap` documentation.
- Eventually, we should have our own prefiltering code, so that we can have dynamically changing environment maps, as well as let users drop in an HDR image and use asset preprocessing to create the needed textures using only bevy. 

---

## Changelog
- Added an `EnvironmentMapLight` camera component that adds additional ambient light to a scene.
- StandardMaterials will now appear brighter and more saturated at high roughness, due to internal material changes. This is more physically correct.
- Fixed StandardMaterial occlusion being incorrectly applied to direct lighting.
- Added `FallbackImageCubemap`.

Co-authored-by: IceSentry <c.giguere42@gmail.com>
Co-authored-by: James Liu <contact@jamessliu.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
2023-02-09 16:46:32 +00:00
ira
f69f1329e0 Fix Window feedback loop between the OS and Bevy (#7517)
# Objective

Fix #7377
Fix #7513

## Solution

Record the changes made to the Bevy `Window` from `winit` as 'canon' to avoid Bevy sending those changes back to `winit` again, causing a feedback loop.

## Changelog

* Removed `ModifiesWindows` system label.
  Neither `despawn_window` nor `changed_window` actually modify the `Window` component so all the `.after(ModifiesWindows)` shouldn't be necessary.
* Moved `changed_window` and `despawn_window` systems to `CoreStage::Last` to avoid systems making changes to the `Window` between `changed_window` and the end of the frame as they would be ignored.

## Migration Guide
The `ModifiesWindows` system label was removed.


Co-authored-by: devil-ira <justthecooldude@gmail.com>
2023-02-07 14:18:13 +00:00
robtfm
ea2ecd4f75 add ambient lighting hook (#5428)
# Objective

add a hook for ambient occlusion to the pbr shader

## Solution

add a hook for ambient occlusion to the pbr shader


Co-authored-by: atlas dostal <rodol@rivalrebels.com>
2023-02-07 00:41:18 +00:00
Jakob Hellermann
2e20d04f32 use better set inheritance in render systems (#7524)
# Objective
Some render systems that have system set used as a label so that they can be referenced from somewhere else.
The 1:1 translation from `add_system_to_stage(Prepare, prepare_lights.label(PrepareLights))` is `add_system(prepare_lights.in_set(Prepare).in_set(PrepareLights)`, but configuring the `PrepareLights` set to be in `Prepare` would match the intention better (there are no systems in `PrepareLights` outside of `Prepare`) and it is easier for visualization tools to deal with.

# Solution

- replace
```rust
prepare_lights in PrepareLights
prepare_lights in Prepare
```
with
```rs
prepare_lights in PrepareLights
PrepareLights in Prepare
```

**Before**
![before](https://user-images.githubusercontent.com/22177966/216961792-a0f5eba7-f161-4994-b5a4-33e98763a3b0.svg)

**After**
![after](https://user-images.githubusercontent.com/22177966/216961790-857d0062-7943-49ef-8927-e602dfbab714.svg)
2023-02-06 21:57:59 +00:00
Carter Anderson
dcc03724a5 Base Sets (#7466)
# Objective

NOTE: This depends on #7267 and should not be merged until #7267 is merged. If you are reviewing this before that is merged, I highly recommend viewing the Base Sets commit instead of trying to find my changes amongst those from #7267.

"Default sets" as described by the [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) have some [unfortunate consequences](https://github.com/bevyengine/bevy/discussions/7365).

## Solution

This adds "base sets" as a variant of `SystemSet`:

A set is a "base set" if `SystemSet::is_base` returns `true`. Typically this will be opted-in to using the `SystemSet` derive:

```rust
#[derive(SystemSet, Clone, Hash, Debug, PartialEq, Eq)]
#[system_set(base)]
enum MyBaseSet {
  A,
  B,
}
``` 

**Base sets are exclusive**: a system can belong to at most one "base set". Adding a system to more than one will result in an error. When possible we fail immediately during system-config-time with a nice file + line number. For the more nested graph-ey cases, this will fail at the final schedule build. 

**Base sets cannot belong to other sets**: this is where the word "base" comes from

Systems and Sets can only be added to base sets using `in_base_set`. Calling `in_set` with a base set will fail. As will calling `in_base_set` with a normal set.

```rust
app.add_system(foo.in_base_set(MyBaseSet::A))
       // X must be a normal set ... base sets cannot be added to base sets
       .configure_set(X.in_base_set(MyBaseSet::A))
```

Base sets can still be configured like normal sets:

```rust
app.add_system(MyBaseSet::B.after(MyBaseSet::Ap))
``` 

The primary use case for base sets is enabling a "default base set":

```rust
schedule.set_default_base_set(CoreSet::Update)
  // this will belong to CoreSet::Update by default
  .add_system(foo)
  // this will override the default base set with PostUpdate
  .add_system(bar.in_base_set(CoreSet::PostUpdate))
```

This allows us to build apis that work by default in the standard Bevy style. This is a rough analog to the "default stage" model, but it use the new "stageless sets" model instead, with all of the ordering flexibility (including exclusive systems) that it provides.

---

## Changelog

- Added "base sets" and ported CoreSet to use them.

## Migration Guide

TODO
2023-02-06 03:10:08 +00:00
Alice Cecile
206c7ce219 Migrate engine to Schedule v3 (#7267)
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR.

# Objective

- Followup #6587.
- Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45

## Solution

- [x]  Remove old scheduling module
- [x] Migrate new methods to no longer use extension methods
- [x] Fix compiler errors
- [x] Fix benchmarks
- [x] Fix examples
- [x] Fix docs
- [x] Fix tests

## Changelog

### Added

- a large number of methods on `App` to work with schedules ergonomically
- the `CoreSchedule` enum
- `App::add_extract_system` via the `RenderingAppExtension` trait extension method
- the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms`

### Removed

- stages, and all code that mentions stages
- states have been dramatically simplified, and no longer use a stack
- `RunCriteriaLabel`
- `AsSystemLabel` trait
- `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition)
- systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world
- `RunCriteriaLabel`
- `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear.

### Changed

- `System::default_labels` is now `System::default_system_sets`.
- `App::add_default_labels` is now `App::add_default_sets`
- `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet`
- `App::add_system_set` was renamed to `App::add_systems`
- The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum
-  `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)`
- `SystemLabel` trait was replaced by `SystemSet`
- `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>`
- The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq`
- Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria.
- Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. 
- `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`.
- `bevy_pbr::add_clusters` is no longer an exclusive system
- the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling`
- `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread.

## Migration Guide

- Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)`
- Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed.
- The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage`  enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved.
  - Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior.
  - Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you.
  - For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with 
  - `add_system(my_system.in_set(CoreSet::PostUpdate)`
- When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages
- Run criteria have been renamed to run conditions. These can now be combined with each other and with states.
- Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow.
- For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label.
- Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default.
- Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually.
- Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior.
- the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity
- `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl.
- Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings.
- `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds.
- `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool.
- States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set`

## TODO

- [x] remove dead methods on App and World
- [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule`
- [x] avoid adding the default system set at inappropriate times
- [x] remove any accidental cycles in the default plugins schedule
- [x] migrate benchmarks
- [x] expose explicit labels for the built-in command flush points
- [x] migrate engine code
- [x] remove all mentions of stages from the docs
- [x] verify docs for States
- [x] fix uses of exclusive systems that use .end / .at_start / .before_commands
- [x] migrate RenderStage and AssetStage
- [x] migrate examples
- [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub)
- [x] ensure that on_enter schedules are run at least once before the main app
- [x] re-enable opt-in to execution order ambiguities
- [x] revert change to `update_bounds` to ensure it runs in `PostUpdate`
- [x] test all examples
  - [x] unbreak directional lights
  - [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples)
  - [x] game menu example shows loading screen and menu simultaneously
  - [x] display settings menu is a blank screen
  - [x] `without_winit` example panics
- [x] ensure all tests pass
  - [x] SubApp doc test fails
  - [x] runs_spawn_local tasks fails
  - [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120)

## Points of Difficulty and Controversy

**Reviewers, please give feedback on these and look closely**

1.  Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup.
2. The outer schedule controls which schedule is run when `App::update` is called.
3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes.
4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset.
5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order
6. Implemetnation strategy for fixed timesteps
7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks.
8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements.

## Future Work (ideally before 0.10)

- Rename schedule_v3 module to schedule or scheduling
- Add a derive macro to states, and likely a `EnumIter` trait of some form
- Figure out what exactly to do with the "systems added should basically work by default" problem
- Improve ergonomics for working with fixed timesteps and states
- Polish FixedTime API to match Time
- Rebase and merge #7415
- Resolve all internal ambiguities (blocked on better tools, especially #7442)
- Add "base sets" to replace the removed default sets.
2023-02-06 02:04:50 +00:00
Alice Cecile
5d514fb24f Reduce internal system order ambiguities, and add an example explaining them (#7383)
# Objective

- Bevy should not have any "internal" execution order ambiguities. These clutter the output of user-facing error reporting, and can result in nasty, nondetermistic, very difficult to solve bugs.
- Verifying this currently involves repeated non-trivial manual work. 

## Solution

- [x] add an example to quickly check this
- ~~[ ] ensure that this example panics if there are any unresolved ambiguities~~
- ~~[ ] run the example in CI 😈~~

There's one tricky ambiguity left, between UI and animation. I don't have the tools to fix this without system set configuration, so the remaining work is going to be left to #7267 or another PR after that.

```
2023-01-27T18:38:42.989405Z  INFO bevy_ecs::schedule::ambiguity_detection: Execution order ambiguities detected, you might want to add an explicit dependency relation between some of these systems:
 * Parallel systems:
 -- "bevy_animation::animation_player" and "bevy_ui::flex::flex_node_system"
    conflicts: ["bevy_transform::components::transform::Transform"]
  ```

## Changelog

Resolved internal execution order ambiguities for:
1. Transform propagation (ignored, we need smarter filter checking).
2. Gamepad processing (fixed).
3. bevy_winit's window handling (fixed).
4. Cascaded shadow maps and perspectives (fixed).

Also fixed a desynchronized state bug that could occur when the `Window` component is removed and then added to the same entity in a single frame.
2023-01-31 01:47:00 +00:00
Marco Buono
1a96d820fd Add Distance and Atmospheric Fog support (#6412)
<img width="1392" alt="image" src="https://user-images.githubusercontent.com/418473/203873533-44c029af-13b7-4740-8ea3-af96bd5867c9.png">
<img width="1392" alt="image" src="https://user-images.githubusercontent.com/418473/203873549-36be7a23-b341-42a2-8a9f-ceea8ac7a2b8.png">


# Objective

- Add support for the “classic” distance fog effect, as well as a more advanced atmospheric fog effect.

## Solution

This PR:

- Introduces a new `FogSettings` component that controls distance fog per-camera. 
- Adds support for three widely used “traditional” fog falloff modes: `Linear`, `Exponential` and `ExponentialSquared`, as well as a more advanced `Atmospheric` fog;
- Adds support for directional light influence over fog color;
- Extracts fog via `ExtractComponent`, then uses a prepare system that sets up a new dynamic uniform struct (`Fog`), similar to other mesh view types;
- Renders fog in PBR material shader, as a final adjustment to the `output_color`, after PBR is computed (but before tone mapping);
- Adds a new `StandardMaterial` flag to enable fog; (`fog_enabled`)
- Adds convenience methods for easier artistic control when creating non-linear fog types;
- Adds documentation around fog.

---

## Changelog

### Added

- Added support for distance-based fog effects for PBR materials, controllable per-camera via the new `FogSettings` component;
- Added `FogFalloff` enum for selecting between three widely used “traditional” fog falloff modes: `Linear`, `Exponential` and `ExponentialSquared`, as well as a more advanced `Atmospheric` fog;
2023-01-29 15:28:56 +00:00
Daniel Chia
c3a46822e1 Cascaded shadow maps. (#7064)
Co-authored-by: Robert Swain <robert.swain@gmail.com>

# Objective

Implements cascaded shadow maps for directional lights, which produces better quality shadows without needing excessively large shadow maps.

Fixes #3629

Before
![image](https://user-images.githubusercontent.com/1222141/210061203-bbd965a4-8d11-4cec-9a88-67fc59d0819f.png)

After
![image](https://user-images.githubusercontent.com/1222141/210061334-2ff15334-e6d7-4a31-9314-f34a7805cac6.png)


## Solution

Rather than rendering a single shadow map for directional light, the view frustum is divided into a series of cascades, each of which gets its own shadow map. The correct cascade is then sampled for shadow determination.

---

## Changelog

Directional lights now use cascaded shadow maps for improved shadow quality.


## Migration Guide

You no longer have to manually specify a `shadow_projection` for a directional light, and these settings should be removed. If customization of how cascaded shadow maps work is desired, modify the `CascadeShadowConfig` component instead.
2023-01-25 12:35:39 +00:00
IceSentry
b3224e135b Add depth and normal prepass (#6284)
# Objective

- Add a configurable prepass
- A depth prepass is useful for various shader effects and to reduce overdraw. It can be expansive depending on the scene so it's important to be able to disable it if you don't need any effects that uses it or don't suffer from excessive overdraw.
- The goal is to eventually use it for things like TAA, Ambient Occlusion, SSR and various other techniques that can benefit from having a prepass.

## Solution

The prepass node is inserted before the main pass. It runs for each `Camera3d` with a prepass component (`DepthPrepass`, `NormalPrepass`). The presence of one of those components is used to determine which textures are generated in the prepass. When any prepass is enabled, the depth buffer generated will be used by the main pass to reduce overdraw.

The prepass runs for each `Material` created with the `MaterialPlugin::prepass_enabled` option set to `true`. You can overload the shader used by the prepass by using `Material::prepass_vertex_shader()` and/or `Material::prepass_fragment_shader()`. It will also use the `Material::specialize()` for more advanced use cases. It is enabled by default on all materials.

The prepass works on opaque materials and materials using an alpha mask. Transparent materials are ignored.

The `StandardMaterial` overloads the prepass fragment shader to support alpha mask and normal maps.

---

## Changelog

- Add a new `PrepassNode` that runs before the main pass
- Add a `PrepassPlugin` to extract/prepare/queue the necessary data
- Add a `DepthPrepass` and `NormalPrepass` component to control which textures will be created by the prepass and available in later passes.
- Add a new `prepass_enabled` flag to the `MaterialPlugin` that will control if a material uses the prepass or not.
- Add a new `prepass_enabled` flag to the `PbrPlugin` to control if the StandardMaterial uses the prepass. Currently defaults to false.
- Add `Material::prepass_vertex_shader()` and `Material::prepass_fragment_shader()` to control the prepass from the `Material`

## Notes

In bevy's sample 3d scene, the performance is actually worse when enabling the prepass, but on more complex scenes the performance is generally better. I would like more testing on this, but @DGriffin91 has reported a very noticeable improvements in some scenes.

The prepass is also used by @JMS55 for TAA and GTAO

discord thread: <https://discord.com/channels/691052431525675048/1011624228627419187>

This PR was built on top of the work of multiple people

Co-Authored-By: @superdump 
Co-Authored-By: @robtfm 
Co-Authored-By: @JMS55 

Co-authored-by: Charles <IceSentry@users.noreply.github.com>
Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
2023-01-19 22:11:13 +00:00
Robert Swain
16748b8387 bevy_render: Run calculate_bounds in the end-of-update exclusive systems (#7127)
# Objective

- Avoid slower than necessary first frame after spawning many entities due to them not having `Aabb`s and so being marked visible
  - Avoids unnecessarily large system and VRAM allocations as a consequence

## Solution

- I noticed when debugging the `many_cubes` stress test in Xcode that the `MeshUniform` binding was much larger than it needed to be. I realised that this was because initially, all mesh entities are marked as being visible because they don't have `Aabb`s because `calculate_bounds` is being run in `PostUpdate` and there are no system commands applications before executing the visibility check systems that need the `Aabb`s. The solution then is to run the `calculate_bounds` system just before the previous system commands are applied which is at the end of the `Update` stage.
2023-01-09 13:41:59 +00:00