Commit graph

295 commits

Author SHA1 Message Date
Brian Reavis
6b40b6749e
RenderAssetPersistencePolicy → RenderAssetUsages (#11399)
# Objective

Right now, all assets in the main world get extracted and prepared in
the render world (if the asset's using the RenderAssetPlugin). This is
unfortunate for two cases:

1. **TextureAtlas** / **FontAtlas**: This one's huge. The individual
`Image` assets that make up the atlas are cloned and prepared
individually when there's no reason for them to be. The atlas textures
are built on the CPU in the main world. *There can be hundreds of images
that get prepared for rendering only not to be used.*
2. If one loads an Image and needs to transform it in a system before
rendering it, kind of like the [decompression
example](https://github.com/bevyengine/bevy/blob/main/examples/asset/asset_decompression.rs#L120),
there's a price paid for extracting & preparing the asset that's not
intended to be rendered yet.

------

* References #10520
* References #1782

## Solution

This changes the `RenderAssetPersistencePolicy` enum to bitflags. I felt
that the objective with the parameter is so similar in nature to wgpu's
[`TextureUsages`](https://docs.rs/wgpu/latest/wgpu/struct.TextureUsages.html)
and
[`BufferUsages`](https://docs.rs/wgpu/latest/wgpu/struct.BufferUsages.html),
that it may as well be just like that.

```rust
// This asset only needs to be in the main world. Don't extract and prepare it.
RenderAssetUsages::MAIN_WORLD

// Keep this asset in the main world and  
RenderAssetUsages::MAIN_WORLD | RenderAssetUsages::RENDER_WORLD

// This asset is only needed in the render world. Remove it from the asset server once extracted.
RenderAssetUsages::RENDER_WORLD
```

### Alternate Solution

I considered introducing a third field to `RenderAssetPersistencePolicy`
enum:
```rust
enum RenderAssetPersistencePolicy {
    /// Keep the asset in the main world after extracting to the render world.
    Keep,
    /// Remove the asset from the main world after extracting to the render world.
    Unload,
    /// This doesn't need to be in the render world at all.
    NoExtract, // <-----
}
```
Functional, but this seemed like shoehorning. Another option is renaming
the enum to something like:
```rust
enum RenderAssetExtractionPolicy {
    /// Extract the asset and keep it in the main world.
    Extract,
    /// Remove the asset from the main world after extracting to the render world.
    ExtractAndUnload,
    /// This doesn't need to be in the render world at all.
    NoExtract,
}
```
I think this last one could be a good option if the bitflags are too
clunky.

## Migration Guide

* `RenderAssetPersistencePolicy::Keep` → `RenderAssetUsage::MAIN_WORLD |
RenderAssetUsage::RENDER_WORLD` (or `RenderAssetUsage::default()`)
* `RenderAssetPersistencePolicy::Unload` →
`RenderAssetUsage::RENDER_WORLD`
* For types implementing the `RenderAsset` trait, change `fn
persistence_policy(&self) -> RenderAssetPersistencePolicy` to `fn
asset_usage(&self) -> RenderAssetUsages`.
* Change any references to `cpu_persistent_access`
(`RenderAssetPersistencePolicy`) to `asset_usage` (`RenderAssetUsage`).
This applies to `Image`, `Mesh`, and a few other types.
2024-01-30 13:22:10 +00:00
François
79a2e5eb63
simplify animated_material example (#11576)
# Objective

- example `animated_material` is more complex that needed to show how to
animate materials
- it makes CI crash because it uses too much memory

## Solution

- Simplify the example
2024-01-28 21:58:05 +00:00
Robert Walter
bcae8e9a8b
Implement Arc3D for Gizmos (#11540)
# Objective

- Implement an arc3d API for gizmos
- Solves #11536

## Solution

### `arc_3d`

- The current `arc3d` method on gizmos only takes an angle
- It draws an "standard arc" by default, this is an arc starting at
`Vec3::X`, in the XZ plane, in counter clockwise direction with a normal
that is facing up
- The "standard arc" can be customized with the usual gizmo builder
pattern. This way you'll be able to draw arbitrary arcs

### `short/long_arc_3d_between`

- Given `center`, `from`, `to` draws an arc between `from` and `to`

---

## Changelog

> This section is optional. If this was a trivial fix, or has no
externally-visible impact, you can delete this section.

- Added: `Gizmos::arc3d(&mut self, angle)` method
- Added: `Gizmos::long_arc_3d_between(&mut self, center, from, to)`
method
- Added: `Gizmos::short_arc_3d_between(&mut self, center, from, to)`
method

---

This PR factors out an orthogonal part of another PR as mentioned in
[this
comment](https://github.com/bevyengine/bevy/pull/11072#issuecomment-1883859573)
2024-01-28 02:13:17 +00:00
Rob Parrett
7da144bc3d
Refactor tonemapping example's image viewer update into two systems (#11519)
# Objective

Alternative to #11515.

Fixes change detection being triggered on the "image viewer image
material" every frame.

## Solution

- Split the megasystem into two separate systems: one to handle drop
events, and one to handle asset change events.
- Move the event reader iteration "outside." so that we're only doing
stuff when there are events.
- Flatten some of the more extreme nesting
- Other bits of cleanup, removing an unnecessary clone and unused
variable.

I think these systems can even run in parallel now, not that it
particularly matters.
2024-01-27 16:06:34 +00:00
vero
fb367dac72
Add Animated Material example (#11524)
# Objective

- Fixes #11516

## Solution

- Add Animated Material example (colors are hue-cycling smoothly
per-mesh)


![image](https://github.com/bevyengine/bevy/assets/11307157/c75b9e66-0019-41b8-85ec-647559c6ba01)

Note: this example reproduces the perf issue found in #10610 pretty
consistently, with and without the changes from that PR included. Frame
time is sometimes around 4.3ms, other times around 12-14ms. Its pretty
random per run. I think this clears #10610 for merge.
2024-01-26 13:34:46 +00:00
JMS55
a796d53a05
Meshlet prep (#11442)
# Objective

- Prep for https://github.com/bevyengine/bevy/pull/10164
- Make deferred_lighting_pass_id a ColorAttachment
- Correctly extract shadow view frusta so that the view uniforms get
populated
- Make some needed things public
- Misc formatting
2024-01-22 15:28:33 +00:00
Arthur Brussee
ffb6faafc2
Use Direction3d for gizmos.circle normal (#11422)
# Objective

Fix weird visuals when drawing a gizmo with a non-normed normal.

Fixes #11401

## Solution
Just normalize right before we draw. Could do it when constructing the
builder but that seems less consistent.

## Changelog
- gizmos.circle normal is now a Direction3d instead of a Vec3.

## Migration Guide
- Pass a Direction3d for gizmos.circle normal, eg.
`Direction3d::new(vec).unwrap_or(default)` or potentially
`Direction3d::new_unchecked(vec)` if you know your vec is definitely
normalized.
2024-01-21 18:03:26 +00:00
Joona Aalto
c6f45831e9
Add geometric primitives to bevy_math::prelude (#11432)
# Objective

Currently, the `primitives` module is inside of the prelude for
`bevy_math`, but the actual primitives are not. This requires either
importing the shapes everywhere that uses them, or adding the
`primitives::` prefix:

```rust
let rectangle = meshes.add(primitives::Rectangle::new(5.0, 2.5));
```

(Note: meshing isn't actually implemented yet, but it's in #11431)

The primitives are meant to be used for a variety of tasks across
several crates, like for meshing, bounding volumes, gizmos, colliders,
and so on, so I think having them in the prelude is justified. It would
make several common tasks a lot more ergonomic.

```rust
let rectangle = meshes.add(Rectangle::new(5.0, 2.5));
```

## Solution

Add `primitives::*` to `bevy_math::prelude`.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-01-20 20:15:38 +00:00
Patrick Walton
83d6600267
Implement minimal reflection probes (fixed macOS, iOS, and Android). (#11366)
This pull request re-submits #10057, which was backed out for breaking
macOS, iOS, and Android. I've tested this version on macOS and Android
and on the iOS simulator.

# Objective

This pull request implements *reflection probes*, which generalize
environment maps to allow for multiple environment maps in the same
scene, each of which has an axis-aligned bounding box. This is a
standard feature of physically-based renderers and was inspired by [the
corresponding feature in Blender's Eevee renderer].

## Solution

This is a minimal implementation of reflection probes that allows
artists to define cuboid bounding regions associated with environment
maps. For every view, on every frame, a system builds up a list of the
nearest 4 reflection probes that are within the view's frustum and
supplies that list to the shader. The PBR fragment shader searches
through the list, finds the first containing reflection probe, and uses
it for indirect lighting, falling back to the view's environment map if
none is found. Both forward and deferred renderers are fully supported.

A reflection probe is an entity with a pair of components, *LightProbe*
and *EnvironmentMapLight* (as well as the standard *SpatialBundle*, to
position it in the world). The *LightProbe* component (along with the
*Transform*) defines the bounding region, while the
*EnvironmentMapLight* component specifies the associated diffuse and
specular cubemaps.

A frequent question is "why two components instead of just one?" The
advantages of this setup are:

1. It's readily extensible to other types of light probes, in particular
*irradiance volumes* (also known as ambient cubes or voxel global
illumination), which use the same approach of bounding cuboids. With a
single component that applies to both reflection probes and irradiance
volumes, we can share the logic that implements falloff and blending
between multiple light probes between both of those features.

2. It reduces duplication between the existing *EnvironmentMapLight* and
these new reflection probes. Systems can treat environment maps attached
to cameras the same way they treat environment maps applied to
reflection probes if they wish.

Internally, we gather up all environment maps in the scene and place
them in a cubemap array. At present, this means that all environment
maps must have the same size, mipmap count, and texture format. A
warning is emitted if this restriction is violated. We could potentially
relax this in the future as part of the automatic mipmap generation
work, which could easily do texture format conversion as part of its
preprocessing.

An easy way to generate reflection probe cubemaps is to bake them in
Blender and use the `export-blender-gi` tool that's part of the
[`bevy-baked-gi`] project. This tool takes a `.blend` file containing
baked cubemaps as input and exports cubemap images, pre-filtered with an
embedded fork of the [glTF IBL Sampler], alongside a corresponding
`.scn.ron` file that the scene spawner can use to recreate the
reflection probes.

Note that this is intentionally a minimal implementation, to aid
reviewability. Known issues are:

* Reflection probes are basically unsupported on WebGL 2, because WebGL
2 has no cubemap arrays. (Strictly speaking, you can have precisely one
reflection probe in the scene if you have no other cubemaps anywhere,
but this isn't very useful.)

* Reflection probes have no falloff, so reflections will abruptly change
when objects move from one bounding region to another.

* As mentioned before, all cubemaps in the world of a given type
(diffuse or specular) must have the same size, format, and mipmap count.

Future work includes:

* Blending between multiple reflection probes.

* A falloff/fade-out region so that reflected objects disappear
gradually instead of vanishing all at once.

* Irradiance volumes for voxel-based global illumination. This should
reuse much of the reflection probe logic, as they're both GI techniques
based on cuboid bounding regions.

* Support for WebGL 2, by breaking batches when reflection probes are
used.

These issues notwithstanding, I think it's best to land this with
roughly the current set of functionality, because this patch is useful
as is and adding everything above would make the pull request
significantly larger and harder to review.

---

## Changelog

### Added

* A new *LightProbe* component is available that specifies a bounding
region that an *EnvironmentMapLight* applies to. The combination of a
*LightProbe* and an *EnvironmentMapLight* offers *reflection probe*
functionality similar to that available in other engines.

[the corresponding feature in Blender's Eevee renderer]:
https://docs.blender.org/manual/en/latest/render/eevee/light_probes/reflection_cubemaps.html

[`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi

[glTF IBL Sampler]: https://github.com/KhronosGroup/glTF-IBL-Sampler
2024-01-19 07:33:52 +00:00
François
a00c71ee5b
Cleanup deterministic example (#11416)
# Objective

- Example `deterministic` crashes on CI on Windows because it uses too
much memory

## Solution

- Reduce the number of planes displayed while still having the issue
- While there, add a small margin to the text so that it's prettier
2024-01-19 06:08:19 +00:00
jeliag
f6b40a6e43
Multiple Configurations for Gizmos (#10342)
# Objective

This PR aims to implement multiple configs for gizmos as discussed in
#9187.

## Solution

Configs for the new `GizmoConfigGroup`s are stored in a
`GizmoConfigStore` resource and can be accesses using a type based key
or iterated over. This type based key doubles as a standardized location
where plugin authors can put their own configuration not covered by the
standard `GizmoConfig` struct. For example the `AabbGizmoGroup` has a
default color and toggle to show all AABBs. New configs can be
registered using `app.init_gizmo_group::<T>()` during startup.

When requesting the `Gizmos<T>` system parameter the generic type
determines which config is used. The config structs are available
through the `Gizmos` system parameter allowing for easy access while
drawing your gizmos.

Internally, resources and systems used for rendering (up to an including
the extract system) are generic over the type based key and inserted on
registering a new config.

## Alternatives

The configs could be stored as components on entities with markers which
would make better use of the ECS. I also implemented this approach
([here](https://github.com/jeliag/bevy/tree/gizmo-multiconf-comp)) and
believe that the ergonomic benefits of a central config store outweigh
the decreased use of the ECS.

## Unsafe Code

Implementing system parameter by hand is unsafe but seems to be required
to access the config store once and not on every gizmo draw function
call. This is critical for performance. ~Is there a better way to do
this?~

## Future Work

New gizmos (such as #10038, and ideas from #9400) will require custom
configuration structs. Should there be a new custom config for every
gizmo type, or should we group them together in a common configuration?
(for example `EditorGizmoConfig`, or something more fine-grained)

## Changelog

- Added `GizmoConfigStore` resource and `GizmoConfigGroup` trait
- Added `init_gizmo_group` to `App`
- Added early returns to gizmo drawing increasing performance when
gizmos are disabled
- Changed `GizmoConfig` and aabb gizmos to use new `GizmoConfigStore`
- Changed `Gizmos` system parameter to use type based key to retrieve
config
- Changed resources and systems used for gizmo rendering to be generic
over type based key
- Changed examples (3d_gizmos, 2d_gizmos) to showcase new API

## Migration Guide

- `GizmoConfig` is no longer a resource and has to be accessed through
`GizmoConfigStore` resource. The default config group is
`DefaultGizmoGroup`, but consider using your own custom config group if
applicable.

---------

Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2024-01-18 15:52:50 +00:00
JMS55
fcd7c0fc3d
Exposure settings (adopted) (#11347)
Rebased and finished version of
https://github.com/bevyengine/bevy/pull/8407. Huge thanks to @GitGhillie
for adjusting all the examples, and the many other people who helped
write this PR (@superdump , @coreh , among others) :)

Fixes https://github.com/bevyengine/bevy/issues/8369

---

## Changelog
- Added a `brightness` control to `Skybox`.
- Added an `intensity` control to `EnvironmentMapLight`.
- Added `ExposureSettings` and `PhysicalCameraParameters` for
controlling exposure of 3D cameras.
- Removed the baked-in `DirectionalLight` exposure Bevy previously
hardcoded internally.

## Migration Guide
- If using a `Skybox` or `EnvironmentMapLight`, use the new `brightness`
and `intensity` controls to adjust their strength.
- All 3D scene will now have different apparent brightnesses due to Bevy
implementing proper exposure controls. You will have to adjust the
intensity of your lights and/or your camera exposure via the new
`ExposureSettings` component to compensate.

---------

Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: GitGhillie <jillisnoordhoek@gmail.com>
Co-authored-by: Marco Buono <thecoreh@gmail.com>
Co-authored-by: vero <email@atlasdostal.com>
Co-authored-by: atlas dostal <rodol@rivalrebels.com>
2024-01-16 14:53:21 +00:00
Roman Salnikov
eb9db21113
Camera-driven UI (#10559)
# Objective

Add support for presenting each UI tree on a specific window and
viewport, while making as few breaking changes as possible.

This PR is meant to resolve the following issues at once, since they're
all related.

- Fixes #5622 
- Fixes #5570 
- Fixes #5621 

Adopted #5892 , but started over since the current codebase diverged
significantly from the original PR branch. Also, I made a decision to
propagate component to children instead of recursively iterating over
nodes in search for the root.


## Solution

Add a new optional component that can be inserted to UI root nodes and
propagate to children to specify which camera it should render onto.
This is then used to get the render target and the viewport for that UI
tree. Since this component is optional, the default behavior should be
to render onto the single camera (if only one exist) and warn of
ambiguity if multiple cameras exist. This reduces the complexity for
users with just one camera, while giving control in contexts where it
matters.

## Changelog

- Adds `TargetCamera(Entity)` component to specify which camera should a
node tree be rendered into. If only one camera exists, this component is
optional.
- Adds an example of rendering UI to a texture and using it as a
material in a 3D world.
- Fixes recalculation of physical viewport size when target scale factor
changes. This can happen when the window is moved between displays with
different DPI.
- Changes examples to demonstrate assigning UI to different viewports
and windows and make interactions in an offset viewport testable.
- Removes `UiCameraConfig`. UI visibility now can be controlled via
combination of explicit `TargetCamera` and `Visibility` on the root
nodes.

---------

Co-authored-by: davier <bricedavier@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
2024-01-16 00:39:10 +00:00
MiniaczQ
ec5b9eeba7
Extract examples CameraController into a module (#11338)
# Objective

Unify flycam-style camera controller from the examples.

`parallax_mapping` controller was kept as is.

## Solution

Fixed some mouse movement & cursor grabbing related issues too.
2024-01-14 13:50:33 +00:00
François
3d996639a0
Revert "Implement minimal reflection probes. (#10057)" (#11307)
# Objective

- Fix working on macOS, iOS, Android on main 
- Fixes #11281 
- Fixes #11282 
- Fixes #11283 
- Fixes #11299

## Solution

- Revert #10057
2024-01-12 20:41:51 +00:00
A. Gadjev
ce5bae55f6
Fixed typo in generate_custom_mesh.rs example (#11293)
# Objective

- Fix a typo in the "Generate Custom Mesh" example

## Solution

- Fixed small typo
2024-01-11 11:29:31 +00:00
Stepan Koltsov
06bf928927
Option to enable deterministic rendering (#11248)
# Objective

Issue #10243: rendering multiple triangles in the same place results in
flickering.

## Solution

Considered these alternatives:
- `depth_bias` may not work, because of high number of entities, so
creating a material per entity is practically not possible
- rendering at slightly different positions does not work, because when
camera is far, float rounding causes the same issues (edit: assuming we
have to use the same `depth_bias`)
- considered implementing deterministic operation like
`query.par_iter().flat_map(...).collect()` to be used in
`check_visibility` system (which would solve the issue since query is
deterministic), and could not figure out how to make it as cheap as
current approach with thread-local collectors (#11249)

So adding an option to sort entities after `check_visibility` system
run.

Should not be too bad, because after visibility check, only a handful
entities remain.

This is probably not the only source of non-determinism in Bevy, but
this is one I could find so far. At least it fixes the repro example.

## Changelog

- `DeterministicRenderingConfig` option to enable deterministic
rendering

## Test

<img width="1392" alt="image"
src="https://github.com/bevyengine/bevy/assets/28969/c735bce1-3a71-44cd-8677-c19f6c0ee6bd">

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-01-09 00:46:01 +00:00
Rob Parrett
9c972f037e
Fix missed explicit conversions in examples (#11261)
# Objective

A few of these were missed in #10878

## Solution

Fix em
2024-01-09 00:44:24 +00:00
irate
ec14e946b8
Update glam, encase and hexasphere (#11082)
Update to `glam` 0.25, `encase` 0.7 and `hexasphere` to 10.0

## Changelog
Added the `FloatExt` trait to the `bevy_math` prelude which adds `lerp`,
`inverse_lerp` and `remap` methods to the `f32` and `f64` types.
2024-01-08 22:58:45 +00:00
Joona Aalto
a795de30b4
Use impl Into<A> for Assets::add (#10878)
# Motivation

When spawning entities into a scene, it is very common to create assets
like meshes and materials and to add them via asset handles. A common
setup might look like this:

```rust
fn setup(
    mut commands: Commands,
    mut meshes: ResMut<Assets<Mesh>>,
    mut materials: ResMut<Assets<StandardMaterial>>,
) {
    commands.spawn(PbrBundle {
        mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
        material: materials.add(StandardMaterial::from(Color::RED)),
        ..default()
    });
}
```

Let's take a closer look at the part that adds the assets using `add`.

```rust
mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
material: materials.add(StandardMaterial::from(Color::RED)),
```

Here, "mesh" and "material" are both repeated three times. It's very
explicit, but I find it to be a bit verbose. In addition to being more
code to read and write, the extra characters can sometimes also lead to
the code being formatted to span multiple lines even though the core
task, adding e.g. a primitive mesh, is extremely simple.

A way to address this is by using `.into()`:

```rust
mesh: meshes.add(shape::Cube { size: 1.0 }.into()),
material: materials.add(Color::RED.into()),
```

This is fine, but from the names and the type of `meshes`, we already
know what the type should be. It's very clear that `Cube` should be
turned into a `Mesh` because of the context it's used in. `.into()` is
just seven characters, but it's so common that it quickly adds up and
gets annoying.

It would be nice if you could skip all of the conversion and let Bevy
handle it for you:

```rust
mesh: meshes.add(shape::Cube { size: 1.0 }),
material: materials.add(Color::RED),
```

# Objective

Make adding assets more ergonomic by making `Assets::add` take an `impl
Into<A>` instead of `A`.

## Solution

`Assets::add` now takes an `impl Into<A>` instead of `A`, so e.g. this
works:

```rust
    commands.spawn(PbrBundle {
        mesh: meshes.add(shape::Cube { size: 1.0 }),
        material: materials.add(Color::RED),
        ..default()
    });
```

I also changed all examples to use this API, which increases consistency
as well because `Mesh::from` and `into` were being used arbitrarily even
in the same file. This also gets rid of some lines of code because
formatting is nicer.

---

## Changelog

- `Assets::add` now takes an `impl Into<A>` instead of `A`
- Examples don't use `T::from(K)` or `K.into()` when adding assets

## Migration Guide

Some `into` calls that worked previously might now be broken because of
the new trait bounds. You need to either remove `into` or perform the
conversion explicitly with `from`:

```rust
// Doesn't compile
let mesh_handle = meshes.add(shape::Cube { size: 1.0 }.into()),

// These compile
let mesh_handle = meshes.add(shape::Cube { size: 1.0 }),
let mesh_handle = meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
```

## Concerns

I believe the primary concerns might be:

1. Is this too implicit?
2. Does this increase codegen bloat?

Previously, the two APIs were using `into` or `from`, and now it's
"nothing" or `from`. You could argue that `into` is slightly more
explicit than "nothing" in cases like the earlier examples where a
`Color` gets converted to e.g. a `StandardMaterial`, but I personally
don't think `into` adds much value even in this case, and you could
still see the actual type from the asset type.

As for codegen bloat, I doubt it adds that much, but I'm not very
familiar with the details of codegen. I personally value the user-facing
code reduction and ergonomics improvements that these changes would
provide, but it might be worth checking the other effects in more
detail.

Another slight concern is migration pain; apps might have a ton of
`into` calls that would need to be removed, and it did take me a while
to do so for Bevy itself (maybe around 20-40 minutes). However, I think
the fact that there *are* so many `into` calls just highlights that the
API could be made nicer, and I'd gladly migrate my own projects for it.
2024-01-08 22:14:43 +00:00
Patrick Walton
54a943d232
Implement minimal reflection probes. (#10057)
# Objective

This pull request implements *reflection probes*, which generalize
environment maps to allow for multiple environment maps in the same
scene, each of which has an axis-aligned bounding box. This is a
standard feature of physically-based renderers and was inspired by [the
corresponding feature in Blender's Eevee renderer].

## Solution

This is a minimal implementation of reflection probes that allows
artists to define cuboid bounding regions associated with environment
maps. For every view, on every frame, a system builds up a list of the
nearest 4 reflection probes that are within the view's frustum and
supplies that list to the shader. The PBR fragment shader searches
through the list, finds the first containing reflection probe, and uses
it for indirect lighting, falling back to the view's environment map if
none is found. Both forward and deferred renderers are fully supported.

A reflection probe is an entity with a pair of components, *LightProbe*
and *EnvironmentMapLight* (as well as the standard *SpatialBundle*, to
position it in the world). The *LightProbe* component (along with the
*Transform*) defines the bounding region, while the
*EnvironmentMapLight* component specifies the associated diffuse and
specular cubemaps.

A frequent question is "why two components instead of just one?" The
advantages of this setup are:

1. It's readily extensible to other types of light probes, in particular
*irradiance volumes* (also known as ambient cubes or voxel global
illumination), which use the same approach of bounding cuboids. With a
single component that applies to both reflection probes and irradiance
volumes, we can share the logic that implements falloff and blending
between multiple light probes between both of those features.

2. It reduces duplication between the existing *EnvironmentMapLight* and
these new reflection probes. Systems can treat environment maps attached
to cameras the same way they treat environment maps applied to
reflection probes if they wish.

Internally, we gather up all environment maps in the scene and place
them in a cubemap array. At present, this means that all environment
maps must have the same size, mipmap count, and texture format. A
warning is emitted if this restriction is violated. We could potentially
relax this in the future as part of the automatic mipmap generation
work, which could easily do texture format conversion as part of its
preprocessing.

An easy way to generate reflection probe cubemaps is to bake them in
Blender and use the `export-blender-gi` tool that's part of the
[`bevy-baked-gi`] project. This tool takes a `.blend` file containing
baked cubemaps as input and exports cubemap images, pre-filtered with an
embedded fork of the [glTF IBL Sampler], alongside a corresponding
`.scn.ron` file that the scene spawner can use to recreate the
reflection probes.

Note that this is intentionally a minimal implementation, to aid
reviewability. Known issues are:

* Reflection probes are basically unsupported on WebGL 2, because WebGL
2 has no cubemap arrays. (Strictly speaking, you can have precisely one
reflection probe in the scene if you have no other cubemaps anywhere,
but this isn't very useful.)

* Reflection probes have no falloff, so reflections will abruptly change
when objects move from one bounding region to another.

* As mentioned before, all cubemaps in the world of a given type
(diffuse or specular) must have the same size, format, and mipmap count.

Future work includes:

* Blending between multiple reflection probes.

* A falloff/fade-out region so that reflected objects disappear
gradually instead of vanishing all at once.

* Irradiance volumes for voxel-based global illumination. This should
reuse much of the reflection probe logic, as they're both GI techniques
based on cuboid bounding regions.

* Support for WebGL 2, by breaking batches when reflection probes are
used.

These issues notwithstanding, I think it's best to land this with
roughly the current set of functionality, because this patch is useful
as is and adding everything above would make the pull request
significantly larger and harder to review.

---

## Changelog

### Added

* A new *LightProbe* component is available that specifies a bounding
region that an *EnvironmentMapLight* applies to. The combination of a
*LightProbe* and an *EnvironmentMapLight* offers *reflection probe*
functionality similar to that available in other engines.

[the corresponding feature in Blender's Eevee renderer]:
https://docs.blender.org/manual/en/latest/render/eevee/light_probes/reflection_cubemaps.html

[`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi

[glTF IBL Sampler]: https://github.com/KhronosGroup/glTF-IBL-Sampler
2024-01-08 22:09:17 +00:00
Torstein Grindvik
99c43fabdf
Usability methods for RenderTargets and image handles (#10736)
# Objective

In my code I use a lot of images as render targets.
I'd like some convenience methods for working with this type.

## Solution

- Allow `.into()` to construct a `RenderTarget`
- Add `.as_image()` 

---

## Changelog

### Added

- `RenderTarget` can be constructed via `.into()` on a `Handle<Image>`
- `RenderTarget` new method: `as_image`

---------

Signed-off-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
Co-authored-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
2024-01-04 17:01:04 +00:00
JMS55
44424391fe
Unload render assets from RAM (#10520)
# Objective
- No point in keeping Meshes/Images in RAM once they're going to be sent
to the GPU, and kept in VRAM. This saves a _significant_ amount of
memory (several GBs) on scenes like bistro.
- References
  - https://github.com/bevyengine/bevy/pull/1782
  - https://github.com/bevyengine/bevy/pull/8624 

## Solution
- Augment RenderAsset with the capability to unload the underlying asset
after extracting to the render world.
- Mesh/Image now have a cpu_persistent_access field. If this field is
RenderAssetPersistencePolicy::Unload, the asset will be unloaded from
Assets<T>.
- A new AssetEvent is sent upon dropping the last strong handle for the
asset, which signals to the RenderAsset to remove the GPU version of the
asset.

---

## Changelog
- Added `AssetEvent::NoLongerUsed` and
`AssetEvent::is_no_longer_used()`. This event is sent when the last
strong handle of an asset is dropped.
- Rewrote the API for `RenderAsset` to allow for unloading the asset
data from the CPU.
- Added `RenderAssetPersistencePolicy`.
- Added `Mesh::cpu_persistent_access` for memory savings when the asset
is not needed except for on the GPU.
- Added `Image::cpu_persistent_access` for memory savings when the asset
is not needed except for on the GPU.
- Added `ImageLoaderSettings::cpu_persistent_access`.
- Added `ExrTextureLoaderSettings`.
- Added `HdrTextureLoaderSettings`.

## Migration Guide
- Asset loaders (GLTF, etc) now load meshes and textures without
`cpu_persistent_access`. These assets will be removed from
`Assets<Mesh>` and `Assets<Image>` once `RenderAssets<Mesh>` and
`RenderAssets<Image>` contain the GPU versions of these assets, in order
to reduce memory usage. If you require access to the asset data from the
CPU in future frames after the GLTF asset has been loaded, modify all
dependent `Mesh` and `Image` assets and set `cpu_persistent_access` to
`RenderAssetPersistencePolicy::Keep`.
- `Mesh` now requires a new `cpu_persistent_access` field. Set it to
`RenderAssetPersistencePolicy::Keep` to mimic the previous behavior.
- `Image` now requires a new `cpu_persistent_access` field. Set it to
`RenderAssetPersistencePolicy::Keep` to mimic the previous behavior.
- `MorphTargetImage::new()` now requires a new `cpu_persistent_access`
parameter. Set it to `RenderAssetPersistencePolicy::Keep` to mimic the
previous behavior.
- `DynamicTextureAtlasBuilder::add_texture()` now requires that the
`TextureAtlas` you pass has an `Image` with `cpu_persistent_access:
RenderAssetPersistencePolicy::Keep`. Ensure you construct the image
properly for the texture atlas.
- The `RenderAsset` trait has significantly changed, and requires
adapting your existing implementations.
  - The trait now requires `Clone`.
- The `ExtractedAsset` associated type has been removed (the type itself
is now extracted).
  - The signature of `prepare_asset()` is slightly different
- A new `persistence_policy()` method is now required (return
RenderAssetPersistencePolicy::Unload to match the previous behavior).
- Match on the new `NoLongerUsed` variant for exhaustive matches of
`AssetEvent`.
2024-01-03 03:31:04 +00:00
Patrick Walton
dd14f3a477
Implement lightmaps. (#10231)
![Screenshot](https://i.imgur.com/A4KzWFq.png)

# Objective

Lightmaps, textures that store baked global illumination, have been a
mainstay of real-time graphics for decades. Bevy currently has no
support for them, so this pull request implements them.

## Solution

The new `Lightmap` component can be attached to any entity that contains
a `Handle<Mesh>` and a `StandardMaterial`. When present, it will be
applied in the PBR shader. Because multiple lightmaps are frequently
packed into atlases, each lightmap may have its own UV boundaries within
its texture. An `exposure` field is also provided, to control the
brightness of the lightmap.

Note that this PR doesn't provide any way to bake the lightmaps. That
can be done with [The Lightmapper] or another solution, such as Unity's
Bakery.

---

## Changelog

### Added
* A new component, `Lightmap`, is available, for baked global
illumination. If your mesh has a second UV channel (UV1), and you attach
this component to the entity with that mesh, Bevy will apply the texture
referenced in the lightmap.

[The Lightmapper]: https://github.com/Naxela/The_Lightmapper

---------

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-01-02 20:38:47 +00:00
Stepan Koltsov
0f71dcbf1a
Simplify examples/3d/orthographic (#11045)
Current example may mislead into thinking both parameters are mandatory
to make orthographic projection work.
2024-01-02 19:27:22 +00:00
JMS55
70b0eacc3b
Keep track of when a texture is first cleared (#10325)
# Objective
- Custom render passes, or future passes in the engine (such as
https://github.com/bevyengine/bevy/pull/10164) need a better way to know
and indicate to the core passes whether the view color/depth/prepass
attachments have been cleared or not yet this frame, to know if they
should clear it themselves or load it.

## Solution

- For all render targets (depth textures, shadow textures, prepass
textures, main textures) use an atomic bool to track whether or not each
texture has been cleared this frame. Abstracted away in the new
ColorAttachment and DepthAttachment wrappers.

---

## Changelog
- Changed `ViewTarget::get_color_attachment()`, removed arguments.
- Changed `ViewTarget::get_unsampled_color_attachment()`, removed
arguments.
- Removed `Camera3d::clear_color`.
- Removed `Camera2d::clear_color`.
- Added `Camera::clear_color`.
- Added `ExtractedCamera::clear_color`.
- Added `ColorAttachment` and `DepthAttachment` wrappers.
- Moved `ClearColor` and `ClearColorConfig` from
`bevy::core_pipeline::clear_color` to `bevy::render::camera`.
- Core render passes now track when a texture is first bound as an
attachment in order to decide whether to clear or load it.

## Migration Guide
- Remove arguments to `ViewTarget::get_color_attachment()` and
`ViewTarget::get_unsampled_color_attachment()`.
- Configure clear color on `Camera` instead of on `Camera3d` and
`Camera2d`.
- Moved `ClearColor` and `ClearColorConfig` from
`bevy::core_pipeline::clear_color` to `bevy::render::camera`.
- `ViewDepthTexture` must now be created via the `new()` method

---------

Co-authored-by: vero <email@atlasdostal.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2023-12-31 00:37:37 +00:00
Mike
786abbf3f5
Fix ci xvfb (#11143)
# Objective

Fix ci hang, so we can merge pr's again.

## Solution

- switch ppa action to use mesa stable versions
https://launchpad.net/~kisak/+archive/ubuntu/turtle
- use commit from #11123

---------

Co-authored-by: Stepan Koltsov <stepan.koltsov@gmail.com>
2023-12-30 09:07:31 +00:00
Thierry Berger
ced216f59a
Update winit dependency to 0.29 (#10702)
# Objective

- Update winit dependency to 0.29

## Changelog

### KeyCode changes

- Removed `ScanCode`, as it was [replaced by
KeyCode](https://github.com/rust-windowing/winit/blob/master/CHANGELOG.md#0292).
- `ReceivedCharacter.char` is now a `SmolStr`, [relevant
doc](https://docs.rs/winit/latest/winit/event/struct.KeyEvent.html#structfield.text).
- Changed most `KeyCode` values, and added more.

KeyCode has changed meaning. With this PR, it refers to physical
position on keyboard rather than the printed letter on keyboard keys.

In practice this means:
- On QWERTY keyboard layouts, nothing changes
- On any other keyboard layout, `KeyCode` no longer reflects the label
on key.
- This is "good". In bevy 0.12, when you used WASD for movement, users
with non-QWERTY keyboards couldn't play your game! This was especially
bad for non-latin keyboards. Now, WASD represents the physical keys. A
French player will press the ZQSD keys, which are near each other,
Kyrgyz players will use "Цфыв".
- This is "bad" as well. You can't know in advance what the label of the
key for input is. Your UI says "press WASD to move", even if in reality,
they should be pressing "ZQSD" or "Цфыв". You also no longer can use
`KeyCode` for text inputs. In any case, it was a pretty bad API for text
input. You should use `ReceivedCharacter` now instead.

### Other changes
- Use `web-time` rather than `instant` crate.
(https://github.com/rust-windowing/winit/pull/2836)
- winit did split `run_return` in `run_onDemand` and `pump_events`, I
did the same change in bevy_winit and used `pump_events`.
- Removed `return_from_run` from `WinitSettings` as `winit::run` now
returns on supported platforms.
- I left the example "return_after_run" as I think it's still useful.
- This winit change is done partly to allow to create a new window after
quitting all windows: https://github.com/emilk/egui/issues/1918 ; this
PR doesn't address.
- added `width` and `height` properties in the `canvas` from wasm
example
(https://github.com/bevyengine/bevy/pull/10702#discussion_r1420567168)

## Known regressions (important follow ups?)
- Provide an API for reacting when a specific key from current layout
was released.
- possible solutions: use winit::Key from winit::KeyEvent ; mapping
between KeyCode and Key ; or .
- We don't receive characters through alt+numpad (e.g. alt + 151 = "ù")
anymore ; reproduced on winit example "ime". maybe related to
https://github.com/rust-windowing/winit/issues/2945
- (windows) Window content doesn't refresh at all when resizing. By
reading https://github.com/rust-windowing/winit/issues/2900 ; I suspect
we should just fire a `window.request_redraw();` from `AboutToWait`, and
handle actual redrawing within `RedrawRequested`. I'm not sure how to
move all that code so I'd appreciate it to be a follow up.
- (windows) unreleased winit fix for using set_control_flow in
AboutToWait https://github.com/rust-windowing/winit/issues/3215 ; ⚠️ I'm
not sure what the implications are, but that feels bad 🤔

## Follow up 

I'd like to avoid bloating this PR, here are a few follow up tasks
worthy of a separate PR, or new issue to track them once this PR is
closed, as they would either complicate reviews, or at risk of being
controversial:
- remove CanvasParentResizePlugin
(https://github.com/bevyengine/bevy/pull/10702#discussion_r1417068856)
- avoid mentionning explicitly winit in docs from bevy_window ?
- NamedKey integration on bevy_input:
https://github.com/rust-windowing/winit/pull/3143 introduced a new
NamedKey variant. I implemented it only on the converters but we'd
benefit making the same changes to bevy_input.
- Add more info in KeyboardInput
https://github.com/bevyengine/bevy/pull/10702#pullrequestreview-1748336313
- https://github.com/bevyengine/bevy/pull/9905 added a workaround on a
bug allegedly fixed by winit 0.29. We should check if it's still
necessary.
- update to raw_window_handle 0.6
  - blocked by wgpu
- Rename `KeyCode` to `PhysicalKeyCode`
https://github.com/bevyengine/bevy/pull/10702#discussion_r1404595015
- remove `instant` dependency, [replaced
by](https://github.com/rust-windowing/winit/pull/2836) `web_time`), we'd
need to update to :
  - fastrand >= 2.0
- [`async-executor`](https://github.com/smol-rs/async-executor) >= 1.7
    - [`futures-lite`](https://github.com/smol-rs/futures-lite) >= 2.0
- Verify license, see
[discussion](https://github.com/bevyengine/bevy/pull/8745#discussion_r1402439800)
  - we might be missing a short notice or description of changes made
- Consider using https://github.com/rust-windowing/cursor-icon directly
rather than vendoring it in bevy.
- investigate [this
unwrap](https://github.com/bevyengine/bevy/pull/8745#discussion_r1387044986)
(`winit_window.canvas().unwrap();`)
- Use more good things about winit's update
- https://github.com/bevyengine/bevy/pull/10689#issuecomment-1823560428
## Migration Guide

This PR should have one.
2023-12-21 07:40:47 +00:00
robtfm
67d92e9b85
light renderlayers (#10742)
# Objective

add `RenderLayers` awareness to lights. lights default to
`RenderLayers::layer(0)`, and must intersect the camera entity's
`RenderLayers` in order to affect the camera's output.

note that lights already use renderlayers to filter meshes for shadow
casting. this adds filtering lights per view based on intersection of
camera layers and light layers.

fixes #3462 

## Solution

PointLights and SpotLights are assigned to individual views in
`assign_lights_to_clusters`, so we simply cull the lights which don't
match the view layers in that function.

DirectionalLights are global, so we 
- add the light layers to the `DirectionalLight` struct
- add the view layers to the `ViewUniform` struct
- check for intersection before processing the light in
`apply_pbr_lighting`

potential issue: when mesh/light layers are smaller than the view layers
weird results can occur. e.g:
camera = layers 1+2
light = layers 1
mesh = layers 2

the mesh does not cast shadows wrt the light as (1 & 2) == 0.
the light affects the view as (1+2 & 1) != 0. 
the view renders the mesh as (1+2 & 2) != 0.

so the mesh is rendered and lit, but does not cast a shadow. 

this could be fixed (so that the light would not affect the mesh in that
view) by adding the light layers to the point and spot light structs,
but i think the setup is pretty unusual, and space is at a premium in
those structs (adding 4 bytes more would reduce the webgl point+spot
light max count to 240 from 256).

I think typical usage is for cameras to have a single layer, and
meshes/lights to maybe have multiple layers to render to e.g. minimaps
as well as primary views.

if there is a good use case for the above setup and we should support
it, please let me know.

---

## Migration Guide

Lights no longer affect all `RenderLayers` by default, now like cameras
and meshes they default to `RenderLayers::layer(0)`. To recover the
previous behaviour and have all lights affect all views, add a
`RenderLayers::all()` component to the light entity.
2023-12-12 19:45:37 +00:00
Mateusz Wachowiak
1f97717a3d
Rename Input to ButtonInput (#10859)
# Objective

- Resolves #10853 

## Solution

- ~~Changed the name of `Input` struct to `PressableInput`.~~
- Changed the name of `Input` struct to `ButtonInput`.

## Migration Guide

- Breaking Change: Users need to rename `Input` to `ButtonInput` in
their projects.
2023-12-06 20:32:34 +00:00
Joona Aalto
d9aac887b5
Split Ray into Ray2d and Ray3d and simplify plane construction (#10856)
# Objective

A better alternative version of #10843.

Currently, Bevy has a single `Ray` struct for 3D. To allow better
interoperability with Bevy's primitive shapes (#10572) and some third
party crates (that handle e.g. spatial queries), it would be very useful
to have separate versions for 2D and 3D respectively.

## Solution

Separate `Ray` into `Ray2d` and `Ray3d`. These new structs also take
advantage of the new primitives by using `Direction2d`/`Direction3d` for
the direction:

```rust
pub struct Ray2d {
    pub origin: Vec2,
    pub direction: Direction2d,
}

pub struct Ray3d {
    pub origin: Vec3,
    pub direction: Direction3d,
}
```

and by using `Plane2d`/`Plane3d` in `intersect_plane`:

```rust
impl Ray2d {
    // ...
    pub fn intersect_plane(&self, plane_origin: Vec2, plane: Plane2d) -> Option<f32> {
        // ...
    }
}
```

---

## Changelog

### Added

- `Ray2d` and `Ray3d`
- `Ray2d::new` and `Ray3d::new` constructors
- `Plane2d::new` and `Plane3d::new` constructors

### Removed

- Removed `Ray` in favor of `Ray3d`

### Changed

- `direction` is now a `Direction2d`/`Direction3d` instead of a vector,
which provides guaranteed normalization
- `intersect_plane` now takes a `Plane2d`/`Plane3d` instead of just a
vector for the plane normal
- `Direction2d` and `Direction3d` now derive `Serialize` and
`Deserialize` to preserve ray (de)serialization

## Migration Guide

`Ray` has been renamed to `Ray3d`.

### Ray creation

Before:

```rust
Ray {
    origin: Vec3::ZERO,
    direction: Vec3::new(0.5, 0.6, 0.2).normalize(),
}
```

After:

```rust
// Option 1:
Ray3d {
    origin: Vec3::ZERO,
    direction: Direction3d::new(Vec3::new(0.5, 0.6, 0.2)).unwrap(),
}

// Option 2:
Ray3d::new(Vec3::ZERO, Vec3::new(0.5, 0.6, 0.2))
```

### Plane intersections

Before:

```rust
let result = ray.intersect_plane(Vec2::X, Vec2::Y);
```

After:

```rust
let result = ray.intersect_plane(Vec2::X, Plane2d::new(Vec2::Y));
```
2023-12-06 14:09:04 +00:00
akimakinai
f90248b052
Remove unnecessary ResMut in examples (#10879)
# Objective

- Examples containing `ResMut`s that are never mutated can be confusing
for readers.

## Solution

- Changes them to `Res`.
2023-12-05 15:42:32 +00:00
ickshonpe
166686e0f2
Rename TextAlignment to JustifyText. (#10854)
# Objective

The name `TextAlignment` is really deceptive and almost every new user
gets confused about the differences between aligning text with
`TextAlignment`, aligning text with `Style` and aligning text with
anchor (when using `Text2d`).

## Solution

* Rename `TextAlignment` to `JustifyText`. The associated helper methods
are also renamed.
* Improve the doc comments for text explaining explicitly how the
`JustifyText` component affects the arrangement of text.
* Add some extra cases to the `text_debug` example that demonstate the
differences between alignment using `JustifyText` and alignment using
`Style`.
<img width="757" alt="text_debug_2"
src="https://github.com/bevyengine/bevy/assets/27962798/9d53e647-93f9-4bc7-8a20-0d9f783304d2">

---

## Changelog
* `TextAlignment` has been renamed to `JustifyText`
* `TextBundle::with_text_alignment` has been renamed to
`TextBundle::with_text_justify`
* `Text::with_alignment` has been renamed to `Text::with_justify`
* The `text_alignment` field of `TextMeasureInfo` has been renamed to
`justification`

## Migration Guide
* `TextAlignment` has been renamed to `JustifyText`
* `TextBundle::with_text_alignment` has been renamed to
`TextBundle::with_text_justify`
* `Text::with_alignment` has been renamed to `Text::with_justify`
* The `text_alignment` field of `TextMeasureInfo` has been renamed to
`justification`
2023-12-05 03:00:41 +00:00
Torstein Grindvik
73bb310304
impl From<Color> for ClearColorConfig (#10734)
# Objective

I tried setting `ClearColorConfig` in my app via `Color::FOO.into()`
expecting it to work, but the impl was missing.

## Solution

- Add `impl From<Color> for ClearColorConfig`
- Change examples to use this impl

## Changelog

### Added

- `ClearColorConfig` can be constructed via `.into()` on a `Color`

---------

Signed-off-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
Co-authored-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
2023-11-26 20:48:03 +00:00
Ame
951c9bb1a2
Add [lints] table, fix adding #![allow(clippy::type_complexity)] everywhere (#10011)
# Objective

- Fix adding `#![allow(clippy::type_complexity)]` everywhere. like #9796

## Solution

- Use the new [lints] table that will land in 1.74
(https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#lints)
- inherit lint to the workspace, crates and examples.
```
[lints]
workspace = true
```

## Changelog

- Bump rust version to 1.74
- Enable lints table for the workspace
```toml
[workspace.lints.clippy]
type_complexity = "allow"
```
- Allow type complexity for all crates and examples
```toml
[lints]
workspace = true
```

---------

Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com>
2023-11-18 20:58:48 +00:00
Connor King
ab300d0ed9
Gizmo Arrows (#10550)
## Objective

- Add an arrow gizmo as suggested by #9400 

## Solution

(excuse my Protomen music)


https://github.com/bevyengine/bevy/assets/14184826/192adf24-079f-4a4b-a17b-091e892974ec

Wasn't horribly hard when i remembered i can change coordinate systems
whenever I want. Gave them four tips (as suggested by @alice-i-cecile in
discord) instead of trying to decide what direction the tips should
point.

Made the tip length default to 1/10 of the arrow's length, which looked
good enough to me. Hard-coded the angle from the body to the tips to 45
degrees.

## Still TODO

- [x] actual doc comments
- [x] doctests
- [x] `ArrowBuilder.with_tip_length()`

---

## Changelog

- Added `gizmos.arrow()` and `gizmos.arrow_2d()`
- Added arrows to `2d_gizmos` and `3d_gizmos` examples

## Migration Guide

N/A

---------

Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2023-11-15 14:19:15 +00:00
Aevyrie
1d8d78ef0e
Update color and naming for consistency (#10367)
The `ClearColor` PR was merged before I was quite finished. This fixes a
few errors, and addresses Cart's feedback about the pixel perfect
example by updating the sprite colors to match the existing bevy bird
branding colors.


![image](https://github.com/bevyengine/bevy/assets/2632925/33722c45-ed66-4d3a-af11-f4197611a13c)
2023-11-04 02:09:23 +00:00
Aevyrie
1918608b02
Update default ClearColor to better match Bevy's branding (#10339)
# Objective

- Changes the default clear color to match the code block color on
Bevy's website.

## Solution

- Changed the clear color, updated text in examples to ensure adequate
contrast. Inconsistent usage of white text color set to use the default
color instead, which is already white.
- Additionally, updated the `3d_scene` example to make it look a bit
better, and use bevy's branding colors.


![image](https://github.com/bevyengine/bevy/assets/2632925/540a22c0-826c-4c33-89aa-34905e3e313a)
2023-11-03 12:57:38 +00:00
Marco Buono
44928e0df4
StandardMaterial Light Transmission (#8015)
# Objective

<img width="1920" alt="Screenshot 2023-04-26 at 01 07 34"
src="https://user-images.githubusercontent.com/418473/234467578-0f34187b-5863-4ea1-88e9-7a6bb8ce8da3.png">

This PR adds both diffuse and specular light transmission capabilities
to the `StandardMaterial`, with support for screen space refractions.
This enables realistically representing a wide range of real-world
materials, such as:

  - Glass; (Including frosted glass)
  - Transparent and translucent plastics;
  - Various liquids and gels;
  - Gemstones;
  - Marble;
  - Wax;
  - Paper;
  - Leaves;
  - Porcelain.

Unlike existing support for transparency, light transmission does not
rely on fixed function alpha blending, and therefore works with both
`AlphaMode::Opaque` and `AlphaMode::Mask` materials.

## Solution

- Introduces a number of transmission related fields in the
`StandardMaterial`;
- For specular transmission:
- Adds logic to take a view main texture snapshot after the opaque
phase; (in order to perform screen space refractions)
- Introduces a new `Transmissive3d` phase to the renderer, to which all
meshes with `transmission > 0.0` materials are sent.
- Calculates a light exit point (of the approximate mesh volume) using
`ior` and `thickness` properties
- Samples the snapshot texture with an adaptive number of taps across a
`roughness`-controlled radius enabling “blurry” refractions
- For diffuse transmission:
- Approximates transmitted diffuse light by using a second, flipped +
displaced, diffuse-only Lambertian lobe for each light source.

## To Do

- [x] Figure out where `fresnel_mix()` is taking place, if at all, and
where `dielectric_specular` is being calculated, if at all, and update
them to use the `ior` value (Not a blocker, just a nice-to-have for more
correct BSDF)
- To the _best of my knowledge, this is now taking place, after
964340cdd. The fresnel mix is actually "split" into two parts in our
implementation, one `(1 - fresnel(...))` in the transmission, and
`fresnel()` in the light implementations. A surface with more
reflectance now will produce slightly dimmer transmission towards the
grazing angle, as more of the light gets reflected.
- [x] Add `transmission_texture`
- [x] Add `diffuse_transmission_texture`
- [x] Add `thickness_texture`
- [x] Add `attenuation_distance` and `attenuation_color`
- [x] Connect values to glTF loader
  - [x] `transmission` and `transmission_texture`
  - [x] `thickness` and `thickness_texture`
  - [x] `ior`
- [ ] `diffuse_transmission` and `diffuse_transmission_texture` (needs
upstream support in `gltf` crate, not a blocker)
- [x] Add support for multiple screen space refraction “steps”
- [x] Conditionally create no transmission snapshot texture at all if
`steps == 0`
- [x] Conditionally enable/disable screen space refraction transmission
snapshots
- [x] Read from depth pre-pass to prevent refracting pixels in front of
the light exit point
- [x] Use `interleaved_gradient_noise()` function for sampling blur in a
way that benefits from TAA
- [x] Drill down a TAA `#define`, tweak some aspects of the effect
conditionally based on it
- [x] Remove const array that's crashing under HLSL (unless a new `naga`
release with https://github.com/gfx-rs/naga/pull/2496 comes out before
we merge this)
- [ ] Look into alternatives to the `switch` hack for dynamically
indexing the const array (might not be needed, compilers seem to be
decent at expanding it)
- [ ] Add pipeline keys for gating transmission (do we really want/need
this?)
- [x] Tweak some material field/function names?

## A Note on Texture Packing

_This was originally added as a comment to the
`specular_transmission_texture`, `thickness_texture` and
`diffuse_transmission_texture` documentation, I removed it since it was
more confusing than helpful, and will likely be made redundant/will need
to be updated once we have a better infrastructure for preprocessing
assets_

Due to how channels are mapped, you can more efficiently use a single
shared texture image
for configuring the following:

- R - `specular_transmission_texture`
- G - `thickness_texture`
- B - _unused_
- A - `diffuse_transmission_texture`

The `KHR_materials_diffuse_transmission` glTF extension also defines a
`diffuseTransmissionColorTexture`,
that _we don't currently support_. One might choose to pack the
intensity and color textures together,
using RGB for the color and A for the intensity, in which case this
packing advice doesn't really apply.

---

## Changelog

- Added a new `Transmissive3d` render phase for rendering specular
transmissive materials with screen space refractions
- Added rendering support for transmitted environment map light on the
`StandardMaterial` as a fallback for screen space refractions
- Added `diffuse_transmission`, `specular_transmission`, `thickness`,
`ior`, `attenuation_distance` and `attenuation_color` to the
`StandardMaterial`
- Added `diffuse_transmission_texture`, `specular_transmission_texture`,
`thickness_texture` to the `StandardMaterial`, gated behind a new
`pbr_transmission_textures` cargo feature (off by default, for maximum
hardware compatibility)
- Added `Camera3d::screen_space_specular_transmission_steps` for
controlling the number of “layers of transparency” rendered for
transmissive objects
- Added a `TransmittedShadowReceiver` component for enabling shadows in
(diffusely) transmitted light. (disabled by default, as it requires
carefully setting up the `thickness` to avoid self-shadow artifacts)
- Added support for the `KHR_materials_transmission`,
`KHR_materials_ior` and `KHR_materials_volume` glTF extensions
- Renamed items related to temporal jitter for greater consistency

## Migration Guide

- `SsaoPipelineKey::temporal_noise` has been renamed to
`SsaoPipelineKey::temporal_jitter`
- The `TAA` shader def (controlled by the presence of the
`TemporalAntiAliasSettings` component in the camera) has been replaced
with the `TEMPORAL_JITTER` shader def (controlled by the presence of the
`TemporalJitter` component in the camera)
- `MeshPipelineKey::TAA` has been replaced by
`MeshPipelineKey::TEMPORAL_JITTER`
- The `TEMPORAL_NOISE` shader def has been consolidated with
`TEMPORAL_JITTER`
2023-10-31 20:59:02 +00:00
François
5d44d2a648
make deferred_rendering simpler to render for CI (#10150)
# Objective

- Example `deferred_rendering` sometimes fail to render in CI
- Make it easier to render

## Solution

- Reduce the complexity of the sphere used
2023-10-28 20:39:45 +00:00
Carter Anderson
134750d18e
Image Sampler Improvements (#10254)
# Objective

- Build on the changes in https://github.com/bevyengine/bevy/pull/9982
- Use `ImageSamplerDescriptor` as the "public image sampler descriptor"
interface in all places (for consistency)
- Make it possible to configure textures to use the "default" sampler
(as configured in the `DefaultImageSampler` resource)
- Fix a bug introduced in #9982 that prevents configured samplers from
being used in Basis, KTX2, and DDS textures

---

## Migration Guide

- When using the `Image` API, use `ImageSamplerDescriptor` instead of
`wgpu::SamplerDescriptor`
- If writing custom wgpu renderer features that work with `Image`, call
`&image_sampler.as_wgpu()` to convert to a wgpu descriptor.
2023-10-26 23:30:09 +00:00
Griffin
6c74c8a311
fix deferred example fog values (#10249)
# Objective

- Fixes https://github.com/bevyengine/bevy/issues/10248

## Solution

- Update fog color values matching the update to the values for
[atmospheric_fog.rs](https://github.com/bevyengine/bevy/pull/10226/files#diff-d43c34c9cf52e7ee72b56f8c4fc99ed86e9a1ec2f83642b839c4e75e1dd24f87)
in https://github.com/bevyengine/bevy/pull/10226

After this update:

![image](https://github.com/bevyengine/bevy/assets/33357138/5924f97d-e12b-496e-90fa-160d20b82a2e)
2023-10-24 21:44:59 +00:00
st0rmbtw
afe8b5f20d
Replace all usages of texture_descritor.size.* with the helper methods (#10227)
# Objective

A follow-up PR for https://github.com/bevyengine/bevy/pull/10221

## Changelog

Replaced usages of texture_descriptor.size with the helper methods of
`Image` through the entire engine codebase
2023-10-23 20:49:02 +00:00
Rafał Harabień
51c70bc98c
Fix fog color being inaccurate (#10226)
# Objective

Fog color was passed to shaders without conversion from sRGB to linear
color space. Because shaders expect colors in linear space this resulted
in wrong color being used. This is most noticeable in open scenes with
dark fog color and clear color set to the same color. In such case
background/clear color (which is properly processed) is going to be
darker than very far objects.

Example:

![image](https://github.com/bevyengine/bevy/assets/160391/89b70d97-b2d0-4bc5-80f4-c9e8b8801c4c)

[bevy-fog-color-bug.zip](https://github.com/bevyengine/bevy/files/13063718/bevy-fog-color-bug.zip)

## Solution

Add missing conversion of fog color to linear color space.

---

## Changelog

* Fixed conversion of fog color

## Migration Guide

- Colors in `FogSettings` struct (`color` and `directional_light_color`)
are now sent to the GPU in linear space. If you were using
`Color::rgb()`/`Color::rgba()` and would like to retain the previous
colors, you can quickly fix it by switching to
`Color::rgb_linear()`/`Color::rgba_linear()`.
2023-10-23 12:45:18 +00:00
st0rmbtw
8efcbf3e4f
Add convenient methods for Image (#10221)
# Objective
To get the width or height of an image you do:
```rust
self.texture_descriptor.size.{width, height}
```
that is quite verbose.
This PR adds some convenient methods for Image to reduce verbosity.

## Changelog
* Add a `width()` method for getting the width of an image.
* Add a `height()` method for getting the height of an image.
* Rename the `size()` method to `size_f32()`.
* Add a `size()` method for getting the size of an image as u32.
* Renamed the `aspect_2d()` method to `aspect_ratio()`.

## Migration Guide
Replace calls to the `Image::size()` method with `size_f32()`.
Replace calls to the `Image::aspect_2d()` method with `aspect_ratio()`.
2023-10-22 01:45:29 +00:00
Robert Swain
15c54b5542
shadow_biases: Support moving the light position and resetting biases (#10185)
# Objective

- Make it possible to move the light position around in the
`shadow_biases` example
- Also support resetting the depth/normal biases to the engine defaults,
or zero.

## Solution

- The light position is displayed in the text overlay.
- The light position can be adjusted with
left/right/up/down/pgup/pgdown.
- The depth/normal biases can be reset to defaults by pressing R, or to
zero by pressing Z.

---------

Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-10-19 14:41:39 +00:00
Robert Swain
219e2ac6e1
shadow_biases: Support different PCF methods (#10184)
# Objective

- Demonstrate the different shadow PCF methods in the `shadow_biases`
example

## Solution

- Cycle through the available methods when pressing the `F` key
- Display which filter method is being used
2023-10-19 13:08:18 +00:00
IceSentry
068e42a01f
Configurable colors for wireframe (#5303)
# Objective

- Make the wireframe colors configurable at the global level and the
single mesh level
- Based on https://github.com/bevyengine/bevy/pull/5314

This video shows what happens when playing with various settings from
the example


https://github.com/bevyengine/bevy/assets/8348954/1ee9aee0-fab7-4da8-bc5d-8d0562bb34e6

## Solution

- Add a `color` field to the `WireframeMaterial`
- Use a `WireframeColor` component to configure the color per entity
- Add a `default_color` field to `WireframeConfig` for global wireframes
or wireframes with no specified color.

## Notes

- Most of the docs and the general idea for `WireframeColor` came from
[UberLambda](https://github.com/UberLambda) in #3677 but the code ended
up completely different so I created a separate branch. ~~I'm not sure
how to correctly credit them on this PR.~~ (I re-created the commit but
I added them as co-author in the commit message)

~~Closes https://github.com/bevyengine/bevy/pull/3677~~
~~Closes https://github.com/bevyengine/bevy/pull/5301~~

~~https://github.com/bevyengine/bevy/pull/5314 should be merged before
this PR.~~
2023-10-13 00:06:24 +00:00
Griffin
a15d152635
Deferred Renderer (#9258)
# Objective

- Add a [Deferred
Renderer](https://en.wikipedia.org/wiki/Deferred_shading) to Bevy.
- This allows subsequent passes to access per pixel material information
before/during shading.
- Accessing this per pixel material information is needed for some
features, like GI. It also makes other features (ex. Decals) simpler to
implement and/or improves their capability. There are multiple
approaches to accomplishing this. The deferred shading approach works
well given the limitations of WebGPU and WebGL2.

Motivation: [I'm working on a GI solution for
Bevy](https://youtu.be/eH1AkL-mwhI)

# Solution
- The deferred renderer is implemented with a prepass and a deferred
lighting pass.
- The prepass renders opaque objects into the Gbuffer attachment
(`Rgba32Uint`). The PBR shader generates a `PbrInput` in mostly the same
way as the forward implementation and then [packs it into the
Gbuffer](ec1465559f/crates/bevy_pbr/src/render/pbr.wgsl (L168)).
- The deferred lighting pass unpacks the `PbrInput` and [feeds it into
the pbr()
function](ec1465559f/crates/bevy_pbr/src/deferred/deferred_lighting.wgsl (L65)),
then outputs the shaded color data.

- There is now a resource
[DefaultOpaqueRendererMethod](ec1465559f/crates/bevy_pbr/src/material.rs (L599))
that can be used to set the default render method for opaque materials.
If materials return `None` from
[opaque_render_method()](ec1465559f/crates/bevy_pbr/src/material.rs (L131))
the `DefaultOpaqueRendererMethod` will be used. Otherwise, custom
materials can also explicitly choose to only support Deferred or Forward
by returning the respective
[OpaqueRendererMethod](ec1465559f/crates/bevy_pbr/src/material.rs (L603))

- Deferred materials can be used seamlessly along with both opaque and
transparent forward rendered materials in the same scene. The [deferred
rendering
example](https://github.com/DGriffin91/bevy/blob/deferred/examples/3d/deferred_rendering.rs)
does this.

- The deferred renderer does not support MSAA. If any deferred materials
are used, MSAA must be disabled. Both TAA and FXAA are supported.

- Deferred rendering supports WebGL2/WebGPU. 

## Custom deferred materials
- Custom materials can support both deferred and forward at the same
time. The
[StandardMaterial](ec1465559f/crates/bevy_pbr/src/render/pbr.wgsl (L166))
does this. So does [this
example](https://github.com/DGriffin91/bevy_glowy_orb_tutorial/blob/deferred/assets/shaders/glowy.wgsl#L56).
- Custom deferred materials that require PBR lighting can create a
`PbrInput`, write it to the deferred GBuffer and let it be rendered by
the `PBRDeferredLightingPlugin`.
- Custom deferred materials that require custom lighting have two
options:
1. Use the base_color channel of the `PbrInput` combined with the
`STANDARD_MATERIAL_FLAGS_UNLIT_BIT` flag.
[Example.](https://github.com/DGriffin91/bevy_glowy_orb_tutorial/blob/deferred/assets/shaders/glowy.wgsl#L56)
(If the unlit bit is set, the base_color is stored as RGB9E5 for extra
precision)
2. A Custom Deferred Lighting pass can be created, either overriding the
default, or running in addition. The a depth buffer is used to limit
rendering to only the required fragments for each deferred lighting
pass. Materials can set their respective depth id via the
[deferred_lighting_pass_id](b79182d2a3/crates/bevy_pbr/src/prepass/prepass_io.wgsl (L95))
attachment. The custom deferred lighting pass plugin can then set [its
corresponding
depth](ec1465559f/crates/bevy_pbr/src/deferred/deferred_lighting.wgsl (L37)).
Then with the lighting pass using
[CompareFunction::Equal](ec1465559f/crates/bevy_pbr/src/deferred/mod.rs (L335)),
only the fragments with a depth that equal the corresponding depth
written in the material will be rendered.

Custom deferred lighting plugins can also be created to render the
StandardMaterial. The default deferred lighting plugin can be bypassed
with `DefaultPlugins.set(PBRDeferredLightingPlugin { bypass: true })`

---------

Co-authored-by: nickrart <nickolas.g.russell@gmail.com>
2023-10-12 22:10:38 +00:00
IceSentry
e05a9f9315
use Material for wireframes (#5314)
# Objective

- Use the `Material` abstraction for the Wireframes
- Right now this doesn't have many benefits other than simplifying some
of the rendering code
- We can reuse the default vertex shader and avoid rendering
inconsistencies
- The goal is to have a material with a color on each mesh so this
approach will make it easier to implement
- Originally done in https://github.com/bevyengine/bevy/pull/5303 but I
decided to split the Material part to it's own PR and then adding
per-entity colors and globally configurable colors will be a much
simpler diff.

## Solution

- Use the new `Material` abstraction for the Wireframes

## Notes

It's possible this isn't ideal since this adds a
`Handle<WireframeMaterial>` to all the meshes compared to the original
approach that didn't need anything. I didn't notice any performance
impact on my machine.

This might be a surprising usage of `Material` at first, because
intuitively you only have one material per mesh, but the way it's
implemented you can have as many different types of materials as you
want on a mesh.

## Migration Guide
`WireframePipeline` was removed. If you were using it directly, please
create an issue explaining your use case.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2023-10-10 18:53:22 +00:00