mirror of
https://github.com/bevyengine/bevy
synced 2025-01-06 18:28:59 +00:00
223 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Martín Maita
|
f9da5eecf2
|
Rename Rect inset() method to inflate() (#13452)
# Objective - Fixes #13092. ## Solution - Renamed the `inset()` method in `Rect`, `IRect` and `URect` to `inflate()`. - Added `EMPTY` constants to all `Rect` variants, represented by corners with the maximum numerical values for each kind. --- ## Migration Guide - Replace `Rect::inset()`, `IRect::inset()` and `URect::inset()` calls with `inflate()`. |
||
Patrick Walton
|
9da0b2a0ec
|
Make render phases render world resources instead of components. (#13277)
This commit makes us stop using the render world ECS for `BinnedRenderPhase` and `SortedRenderPhase` and instead use resources with `EntityHashMap`s inside. There are three reasons to do this: 1. We can use `clear()` to clear out the render phase collections instead of recreating the components from scratch, allowing us to reuse allocations. 2. This is a prerequisite for retained bins, because components can't be retained from frame to frame in the render world, but resources can. 3. We want to move away from storing anything in components in the render world ECS, and this is a step in that direction. This patch results in a small performance benefit, due to point (1) above. ## Changelog ### Changed * The `BinnedRenderPhase` and `SortedRenderPhase` render world components have been replaced with `ViewBinnedRenderPhases` and `ViewSortedRenderPhases` resources. ## Migration Guide * The `BinnedRenderPhase` and `SortedRenderPhase` render world components have been replaced with `ViewBinnedRenderPhases` and `ViewSortedRenderPhases` resources. Instead of querying for the components, look the camera entity up in the `ViewBinnedRenderPhases`/`ViewSortedRenderPhases` tables. |
||
IceSentry
|
64e1a7835a
|
Clean up 2d render phases (#12982)
# Objective Currently, the 2d pipeline only has a transparent pass that is used for everything. I want to have separate passes for opaque/alpha mask/transparent meshes just like in 3d. This PR does the basic work to start adding new phases to the 2d pipeline and get the current setup a bit closer to 3d. ## Solution - Use `ViewNode` for `MainTransparentPass2dNode` - Added `Node2d::StartMainPass`, `Node2d::EndMainPass` - Rename everything to clarify that the main pass is currently the transparent pass --- ## Changelog - Added `Node2d::StartMainPass`, `Node2d::EndMainPass` ## Migration Guide If you were using `Node2d::MainPass` to order your own custom render node. You now need to order it relative to `Node2d::StartMainPass` or `Node2d::EndMainPass`. |
||
Kristoffer Søholm
|
2089a28717
|
Add BufferVec, an higher-performance alternative to StorageBuffer, and make GpuArrayBuffer use it. (#13199)
This is an adoption of #12670 plus some documentation fixes. See that PR for more details. --- ## Changelog * Renamed `BufferVec` to `RawBufferVec` and added a new `BufferVec` type. ## Migration Guide `BufferVec` has been renamed to `RawBufferVec` and a new similar type has taken the `BufferVec` name. --------- Co-authored-by: Patrick Walton <pcwalton@mimiga.net> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: IceSentry <IceSentry@users.noreply.github.com> |
||
Patrick Walton
|
16531fb3e3
|
Implement GPU frustum culling. (#12889)
This commit implements opt-in GPU frustum culling, built on top of the infrastructure in https://github.com/bevyengine/bevy/pull/12773. To enable it on a camera, add the `GpuCulling` component to it. To additionally disable CPU frustum culling, add the `NoCpuCulling` component. Note that adding `GpuCulling` without `NoCpuCulling` *currently* does nothing useful. The reason why `GpuCulling` doesn't automatically imply `NoCpuCulling` is that I intend to follow this patch up with GPU two-phase occlusion culling, and CPU frustum culling plus GPU occlusion culling seems like a very commonly-desired mode. Adding the `GpuCulling` component to a view puts that view into *indirect mode*. This mode makes all drawcalls indirect, relying on the mesh preprocessing shader to allocate instances dynamically. In indirect mode, the `PreprocessWorkItem` `output_index` points not to a `MeshUniform` instance slot but instead to a set of `wgpu` `IndirectParameters`, from which it allocates an instance slot dynamically if frustum culling succeeds. Batch building has been updated to allocate and track indirect parameter slots, and the AABBs are now supplied to the GPU as `MeshCullingData`. A small amount of code relating to the frustum culling has been borrowed from meshlets and moved into `maths.wgsl`. Note that standard Bevy frustum culling uses AABBs, while meshlets use bounding spheres; this means that not as much code can be shared as one might think. This patch doesn't provide any way to perform GPU culling on shadow maps, to avoid making this patch bigger than it already is. That can be a followup. ## Changelog ### Added * Frustum culling can now optionally be done on the GPU. To enable it, add the `GpuCulling` component to a camera. * To disable CPU frustum culling, add `NoCpuCulling` to a camera. Note that `GpuCulling` doesn't automatically imply `NoCpuCulling`. |
||
François Mockers
|
75f1c5df7d
|
UI: pass the untransformed node size to the shader (#12839)
# Objective - #12500 broke rotating ui nodes, see examples `pbr` (missing "metallic" label) or `overflow_debug` (bottom right box is empty) ## Solution - Pass the untransformed node size to the shader |
||
Robert Swain
|
ab7cbfa8fc
|
Consolidate Render(Ui)Materials(2d) into RenderAssets (#12827)
# Objective - Replace `RenderMaterials` / `RenderMaterials2d` / `RenderUiMaterials` with `RenderAssets` to enable implementing changes to one thing, `RenderAssets`, that applies to all use cases rather than duplicating changes everywhere for multiple things that should be one thing. - Adopts #8149 ## Solution - Make RenderAsset generic over the destination type rather than the source type as in #8149 - Use `RenderAssets<PreparedMaterial<M>>` etc for render materials --- ## Changelog - Changed: - The `RenderAsset` trait is now implemented on the destination type. Its `SourceAsset` associated type refers to the type of the source asset. - `RenderMaterials`, `RenderMaterials2d`, and `RenderUiMaterials` have been replaced by `RenderAssets<PreparedMaterial<M>>` and similar. ## Migration Guide - `RenderAsset` is now implemented for the destination type rather that the source asset type. The source asset type is now the `RenderAsset` trait's `SourceAsset` associated type. |
||
Cameron
|
01649f13e2
|
Refactor App and SubApp internals for better separation (#9202)
# Objective This is a necessary precursor to #9122 (this was split from that PR to reduce the amount of code to review all at once). Moving `!Send` resource ownership to `App` will make it unambiguously `!Send`. `SubApp` must be `Send`, so it can't wrap `App`. ## Solution Refactor `App` and `SubApp` to not have a recursive relationship. Since `SubApp` no longer wraps `App`, once `!Send` resources are moved out of `World` and into `App`, `SubApp` will become unambiguously `Send`. There could be less code duplication between `App` and `SubApp`, but that would break `App` method chaining. ## Changelog - `SubApp` no longer wraps `App`. - `App` fields are no longer publicly accessible. - `App` can no longer be converted into a `SubApp`. - Various methods now return references to a `SubApp` instead of an `App`. ## Migration Guide - To construct a sub-app, use `SubApp::new()`. `App` can no longer convert into `SubApp`. - If you implemented a trait for `App`, you may want to implement it for `SubApp` as well. - If you're accessing `app.world` directly, you now have to use `app.world()` and `app.world_mut()`. - `App::sub_app` now returns `&SubApp`. - `App::sub_app_mut` now returns `&mut SubApp`. - `App::get_sub_app` now returns `Option<&SubApp>.` - `App::get_sub_app_mut` now returns `Option<&mut SubApp>.` |
||
Patrick Walton
|
4dadebd9c4
|
Improve performance by binning together opaque items instead of sorting them. (#12453)
Today, we sort all entities added to all phases, even the phases that don't strictly need sorting, such as the opaque and shadow phases. This results in a performance loss because our `PhaseItem`s are rather large in memory, so sorting is slow. Additionally, determining the boundaries of batches is an O(n) process. This commit makes Bevy instead applicable place phase items into *bins* keyed by *bin keys*, which have the invariant that everything in the same bin is potentially batchable. This makes determining batch boundaries O(1), because everything in the same bin can be batched. Instead of sorting each entity, we now sort only the bin keys. This drops the sorting time to near-zero on workloads with few bins like `many_cubes --no-frustum-culling`. Memory usage is improved too, with batch boundaries and dynamic indices now implicit instead of explicit. The improved memory usage results in a significant win even on unbatchable workloads like `many_cubes --no-frustum-culling --vary-material-data-per-instance`, presumably due to cache effects. Not all phases can be binned; some, such as transparent and transmissive phases, must still be sorted. To handle this, this commit splits `PhaseItem` into `BinnedPhaseItem` and `SortedPhaseItem`. Most of the logic that today deals with `PhaseItem`s has been moved to `SortedPhaseItem`. `BinnedPhaseItem` has the new logic. Frame time results (in ms/frame) are as follows: | Benchmark | `binning` | `main` | Speedup | | ------------------------ | --------- | ------- | ------- | | `many_cubes -nfc -vpi` | 232.179 | 312.123 | 34.43% | | `many_cubes -nfc` | 25.874 | 30.117 | 16.40% | | `many_foxes` | 3.276 | 3.515 | 7.30% | (`-nfc` is short for `--no-frustum-culling`; `-vpi` is short for `--vary-per-instance`.) --- ## Changelog ### Changed * Render phases have been split into binned and sorted phases. Binned phases, such as the common opaque phase, achieve improved CPU performance by avoiding the sorting step. ## Migration Guide - `PhaseItem` has been split into `BinnedPhaseItem` and `SortedPhaseItem`. If your code has custom `PhaseItem`s, you will need to migrate them to one of these two types. `SortedPhaseItem` requires the fewest code changes, but you may want to pick `BinnedPhaseItem` if your phase doesn't require sorting, as that enables higher performance. ## Tracy graphs `many-cubes --no-frustum-culling`, `main` branch: <img width="1064" alt="Screenshot 2024-03-12 180037" src="https://github.com/bevyengine/bevy/assets/157897/e1180ce8-8e89-46d2-85e3-f59f72109a55"> `many-cubes --no-frustum-culling`, this branch: <img width="1064" alt="Screenshot 2024-03-12 180011" src="https://github.com/bevyengine/bevy/assets/157897/0899f036-6075-44c5-a972-44d95895f46c"> You can see that `batch_and_prepare_binned_render_phase` is a much smaller fraction of the time. Zooming in on that function, with yellow being this branch and red being `main`, we see: <img width="1064" alt="Screenshot 2024-03-12 175832" src="https://github.com/bevyengine/bevy/assets/157897/0dfc8d3f-49f4-496e-8825-a66e64d356d0"> The binning happens in `queue_material_meshes`. Again with yellow being this branch and red being `main`: <img width="1064" alt="Screenshot 2024-03-12 175755" src="https://github.com/bevyengine/bevy/assets/157897/b9b20dc1-11c8-400c-a6cc-1c2e09c1bb96"> We can see that there is a small regression in `queue_material_meshes` performance, but it's not nearly enough to outweigh the large gains in `batch_and_prepare_binned_render_phase`. --------- Co-authored-by: James Liu <contact@jamessliu.com> |
||
Jacques Schutte
|
4508077297
|
Move FloatOrd into bevy_math (#12732)
# Objective - Fixes #12712 ## Solution - Move the `float_ord.rs` file to `bevy_math` - Change any `bevy_utils::FloatOrd` statements to `bevy_math::FloatOrd` --- ## Changelog - Moved `FloatOrd` from `bevy_utils` to `bevy_math` ## Migration Guide - References to `bevy_utils::FloatOrd` should be changed to `bevy_math::FloatOrd` |
||
François Mockers
|
7b842e373e
|
UI: rounded border should use camera instead of windows (#12601)
# Objective - #12500 use the primary window resolution to do all its calculation. This means bad support for multiple windows or multiple ui camera ## Solution - Use camera driven UI (https://github.com/bevyengine/bevy/pull/10559) |
||
François Mockers
|
779e4c4901
|
UI: allow border radius to be optional for images and background (#12592)
# Objective - #12500 broke images and background colors in UI. Try examples `overflow`, `ui_scaling` or `ui_texture_atlas` ## Solution - Makes the component `BorderRadius` optional in the query, as it's not always present. Use `[0.; 4]` as border radius in the extracted node when none was found |
||
Antony
|
e7a31d000e
|
Add border radius to UI nodes (adopted) (#12500)
# Objective Implements border radius for UI nodes. Adopted from #8973, but excludes shadows. ## Solution - Add a component `BorderRadius` which contains a radius value for each corner of the UI node. - Use a fragment shader to generate the rounded corners using a signed distance function. <img width="50%" src="https://github.com/bevyengine/bevy/assets/26204416/16b2ba95-e274-4ce7-adb2-34cc41a776a5"></img> ## Changelog - `BorderRadius`: New component that holds the border radius values. - `NodeBundle` & `ButtonBundle`: Added a `border_radius: BorderRadius` field. - `extract_uinode_borders`: Stripped down, most of the work is done in the shader now. Borders are no longer assembled from multiple rects, instead the shader uses a signed distance function to draw the border. - `UiVertex`: Added size, border and radius fields. - `UiPipeline`: Added three vertex attributes to the vertex buffer layout, to accept the UI node's size, border thickness and border radius. - Examples: Added rounded corners to the UI element in the `button` example, and a `rounded_borders` example. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com> |
||
Rob Parrett
|
55b786c2b7
|
Fix blurry text (#12429)
# Objective Fixes #12064 ## Solution Prior to #11326, the "global physical" translation of text was rounded. After #11326, only the "offset" is being rounded. This moves things around so that the "global translation" is converted to physical pixels, rounded, and then converted back to logical pixels, which is what I believe was happening before / what the comments above describe. ## Discussion This seems to work and fix an obvious mistake in some code, but I don't fully grok the ui / text pipelines / math here. ## Before / After and test example <details> <summary>Expand Code</summary> ```rust use std::f32::consts::FRAC_PI_2; use bevy::prelude::*; use bevy_internal:🪟:WindowResolution; const FONT_SIZE: f32 = 25.0; const PADDING: f32 = 5.0; fn main() { App::new() .add_plugins( DefaultPlugins.set(WindowPlugin { primary_window: Some(Window { resolution: WindowResolution::default().with_scale_factor_override(1.0), ..default() }), ..default() }), //.set(ImagePlugin::default_nearest()), ) .add_systems(Startup, setup) .run(); } fn setup(mut commands: Commands, asset_server: Res<AssetServer>) { commands.spawn(Camera2dBundle::default()); let font = asset_server.load("fonts/FiraSans-Bold.ttf"); for x in [20.5, 140.0] { for i in 1..10 { text( &mut commands, font.clone(), x, (FONT_SIZE + PADDING) * i as f32, i, Quat::default(), 1.0, ); } } for x in [450.5, 700.0] { for i in 1..10 { text( &mut commands, font.clone(), x, ((FONT_SIZE * 2.0) + PADDING) * i as f32, i, Quat::default(), 2.0, ); } } for y in [400.0, 600.0] { for i in 1..10 { text( &mut commands, font.clone(), (FONT_SIZE + PADDING) * i as f32, y, i, Quat::from_rotation_z(FRAC_PI_2), 1.0, ); } } } fn text( commands: &mut Commands, font: Handle<Font>, x: f32, y: f32, i: usize, rot: Quat, scale: f32, ) { let text = (65..(65 + i)).map(|a| a as u8 as char).collect::<String>(); commands.spawn(TextBundle { style: Style { position_type: PositionType::Absolute, left: Val::Px(x), top: Val::Px(y), ..default() }, text: Text::from_section( text, TextStyle { font, font_size: FONT_SIZE, ..default() }, ), transform: Transform::from_rotation(rot).with_scale(Vec2::splat(scale).extend(1.)), ..default() }); } ``` </details> Open both images in new tabs and swap back and forth. Pay attention to the "A" and "ABCD" lines. <details> <summary>Before</summary> <img width="640" alt="main3" src="https://github.com/bevyengine/bevy/assets/200550/248d7a55-d06d-433f-80da-1914803c3551"> </details> <details> <summary>After</summary> <img width="640" alt="pr3" src="https://github.com/bevyengine/bevy/assets/200550/26a9d292-07ae-4af3-b035-e187b2529ace"> </details> --------- Co-authored-by: François Mockers <mockersf@gmail.com> |
||
Ben Frankel
|
e8ae0d6c49
|
Decouple BackgroundColor from UiImage (#11165)
# Objective Fixes https://github.com/bevyengine/bevy/issues/11157. ## Solution Stop using `BackgroundColor` as a color tint for `UiImage`. Add a `UiImage::color` field for color tint instead. Allow a UI node to simultaneously include a solid-color background and an image, with the image rendered on top of the background (this is already how it works for e.g. text). ![2024-02-29_1709239666_563x520](https://github.com/bevyengine/bevy/assets/12173779/ec50c9ef-4c7f-4ab8-a457-d086ce5b3425) --- ## Changelog - The `BackgroundColor` component now renders a solid-color background behind `UiImage` instead of tinting its color. - Removed `BackgroundColor` from `ImageBundle`, `AtlasImageBundle`, and `ButtonBundle`. - Added `UiImage::color`. - Expanded `RenderUiSystem` variants. - Renamed `bevy_ui::extract_text_uinodes` to `extract_uinodes_text` for consistency. ## Migration Guide - `BackgroundColor` no longer tints the color of UI images. Use `UiImage::color` for that instead. - For solid color buttons, replace `ButtonBundle { background_color: my_color.into(), ... }` with `ButtonBundle { image: UiImage::default().with_color(my_color), ... }`, and update button interaction systems to use `UiImage::color` instead of `BackgroundColor` as well. - `bevy_ui::RenderUiSystem::ExtractNode` has been split into `ExtractBackgrounds`, `ExtractImages`, `ExtractBorders`, and `ExtractText`. - `bevy_ui::extract_uinodes` has been split into `bevy_ui::extract_uinode_background_colors` and `bevy_ui::extract_uinode_images`. - `bevy_ui::extract_text_uinodes` has been renamed to `extract_uinode_text`. |
||
Alice Cecile
|
599e5e4e76
|
Migrate from LegacyColor to bevy_color::Color (#12163)
# Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au> |
||
Alex
|
a7be8a2655
|
Prefer UVec2 when working with texture dimensions (#11698)
# Objective
The physical width and height (pixels) of an image is always integers,
but for `GpuImage` bevy currently stores them as `Vec2` (`f32`).
Switching to `UVec2` makes this more consistent with the [underlying
texture data](https://docs.rs/wgpu/latest/wgpu/struct.Extent3d.html).
I'm not sure if this is worth the change in the surface level API. If
not, feel free to close this PR.
## Solution
- Replace uses of `Vec2` with `UVec2` when referring to texture
dimensions.
- Use integer types for the texture atlas dimensions and sections.
[`Sprite::rect`](
|
||
eri
|
5f8f3b532c
|
Check cfg during CI and fix feature typos (#12103)
# Objective - Add the new `-Zcheck-cfg` checks to catch more warnings - Fixes #12091 ## Solution - Create a new `cfg-check` to the CI that runs `cargo check -Zcheck-cfg --workspace` using cargo nightly (and fails if there are warnings) - Fix all warnings generated by the new check --- ## Changelog - Remove all redundant imports - Fix cfg wasm32 targets - Add 3 dead code exceptions (should StandardColor be unused?) - Convert ios_simulator to a feature (I'm not sure if this is the right way to do it, but the check complained before) ## Migration Guide No breaking changes --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
Alice Cecile
|
de004da8d5
|
Rename bevy_render::Color to LegacyColor (#12069)
# Objective The migration process for `bevy_color` (#12013) will be fairly involved: there will be hundreds of affected files, and a large number of APIs. ## Solution To allow us to proceed granularly, we're going to keep both `bevy_color::Color` (new) and `bevy_render::Color` (old) around until the migration is complete. However, simply doing this directly is confusing! They're both called `Color`, making it very hard to tell when a portion of the code has been ported. As discussed in #12056, by renaming the old `Color` type, we can make it easier to gradually migrate over, one API at a time. ## Migration Guide THIS MIGRATION GUIDE INTENTIONALLY LEFT BLANK. This change should not be shipped to end users: delete this section in the final migration guide! --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> |
||
Carter Anderson
|
f83de49b7a
|
Rename Core Render Graph Labels (#11882)
# Objective #10644 introduced nice "statically typed" labels that replace the old strings. I would like to propose some changes to the names introduced: * `SubGraph2d` -> `Core2d` and `SubGraph3d` -> `Core3d`. The names of these graphs have been / should continue to be the "core 2d" graph not the "sub graph 2d" graph. The crate is called `bevy_core_pipeline`, the modules are still `core_2d` and `core_3d`, etc. * `Labels2d` and `Labels3d`, at the very least, should not be plural to follow naming conventions. A Label enum is not a "collection of labels", it is a _specific_ Label. However I think `Label2d` and `Label3d` is significantly less clear than `Node2d` and `Node3d`, so I propose those changes here. I've done the same for `LabelsPbr` -> `NodePbr` and `LabelsUi` -> `NodeUi` Additionally, #10644 accidentally made one of the Camera2dBundle constructors use the 3D graph instead of the 2D graph. I've fixed that here. --- ## Changelog * Renamed `SubGraph2d` -> `Core2d`, `SubGraph3d` -> `Core3d`, `Labels2d` -> `Node2d`, `Labels3d` -> `Node3d`, `LabelsUi` -> `NodeUi`, `LabelsPbr` -> `NodePbr` |
||
Doonv
|
1c67e020f7
|
Move EntityHash related types into bevy_ecs (#11498)
# Objective Reduce the size of `bevy_utils` (https://github.com/bevyengine/bevy/issues/11478) ## Solution Move `EntityHash` related types into `bevy_ecs`. This also allows us access to `Entity`, which means we no longer need `EntityHashMap`'s first generic argument. --- ## Changelog - Moved `bevy::utils::{EntityHash, EntityHasher, EntityHashMap, EntityHashSet}` into `bevy::ecs::entity::hash` . - Removed `EntityHashMap`'s first generic argument. It is now hardcoded to always be `Entity`. ## Migration Guide - Uses of `bevy::utils::{EntityHash, EntityHasher, EntityHashMap, EntityHashSet}` now have to be imported from `bevy::ecs::entity::hash`. - Uses of `EntityHashMap` no longer have to specify the first generic parameter. It is now hardcoded to always be `Entity`. |
||
Félix Lescaudey de Maneville
|
ab16f5ed6a
|
UI Texture 9 slice (#11600)
> Follow up to #10588 > Closes #11749 (Supersedes #11756) Enable Texture slicing for the following UI nodes: - `ImageBundle` - `ButtonBundle` <img width="739" alt="Screenshot 2024-01-29 at 13 57 43" src="https://github.com/bevyengine/bevy/assets/26703856/37675681-74eb-4689-ab42-024310cf3134"> I also added a collection of `fantazy-ui-borders` from [Kenney's](www.kenney.nl) assets, with the appropriate license (CC). If it's a problem I can use the same textures as the `sprite_slice` example # Work done Added the `ImageScaleMode` component to the targetted bundles, most of the logic is directly reused from `bevy_sprite`. The only additional internal component is the UI specific `ComputedSlices`, which does the same thing as its spritee equivalent but adapted to UI code. Again the slicing is not compatible with `TextureAtlas`, it's something I need to tackle more deeply in the future # Fixes * [x] I noticed that `TextureSlicer::compute_slices` could infinitely loop if the border was larger that the image half extents, now an error is triggered and the texture will fallback to being stretched * [x] I noticed that when using small textures with very small *tiling* options we could generate hundred of thousands of slices. Now I set a minimum size of 1 pixel per slice, which is already ridiculously small, and a warning will be sent at runtime when slice count goes above 1000 * [x] Sprite slicing with `flip_x` or `flip_y` would give incorrect results, correct flipping is now supported to both sprites and ui image nodes thanks to @odecay observation # GPU Alternative I create a separate branch attempting to implementing 9 slicing and tiling directly through the `ui.wgsl` fragment shader. It works but requires sending more data to the GPU: - slice border - tiling factors And more importantly, the actual quad *scale* which is hard to put in the shader with the current code, so that would be for a later iteration |
||
Lixou
|
16d28ccb91
|
RenderGraph Labelization (#10644)
# Objective The whole `Cow<'static, str>` naming for nodes and subgraphs in `RenderGraph` is a mess. ## Solution Replaces hardcoded and potentially overlapping strings for nodes and subgraphs inside `RenderGraph` with bevy's labelsystem. --- ## Changelog * Two new labels: `RenderLabel` and `RenderSubGraph`. * Replaced all uses for hardcoded strings with those labels * Moved `Taa` label from its own mod to all the other `Labels3d` * `add_render_graph_edges` now needs a tuple of labels * Moved `ScreenSpaceAmbientOcclusion` label from its own mod with the `ShadowPass` label to `LabelsPbr` * Removed `NodeId` * Renamed `Edges.id()` to `Edges.label()` * Removed `NodeLabel` * Changed examples according to the new label system * Introduced new `RenderLabel`s: `Labels2d`, `Labels3d`, `LabelsPbr`, `LabelsUi` * Introduced new `RenderSubGraph`s: `SubGraph2d`, `SubGraph3d`, `SubGraphUi` * Removed `Reflect` and `Default` derive from `CameraRenderGraph` component struct * Improved some error messages ## Migration Guide For Nodes and SubGraphs, instead of using hardcoded strings, you now pass labels, which can be derived with structs and enums. ```rs // old #[derive(Default)] struct MyRenderNode; impl MyRenderNode { pub const NAME: &'static str = "my_render_node" } render_app .add_render_graph_node::<ViewNodeRunner<MyRenderNode>>( core_3d::graph::NAME, MyRenderNode::NAME, ) .add_render_graph_edges( core_3d::graph::NAME, &[ core_3d::graph::node::TONEMAPPING, MyRenderNode::NAME, core_3d::graph::node::END_MAIN_PASS_POST_PROCESSING, ], ); // new use bevy::core_pipeline::core_3d::graph::{Labels3d, SubGraph3d}; #[derive(Debug, Hash, PartialEq, Eq, Clone, RenderLabel)] pub struct MyRenderLabel; #[derive(Default)] struct MyRenderNode; render_app .add_render_graph_node::<ViewNodeRunner<MyRenderNode>>( SubGraph3d, MyRenderLabel, ) .add_render_graph_edges( SubGraph3d, ( Labels3d::Tonemapping, MyRenderLabel, Labels3d::EndMainPassPostProcessing, ), ); ``` ### SubGraphs #### in `bevy_core_pipeline::core_2d::graph` | old string-based path | new label | |-----------------------|-----------| | `NAME` | `SubGraph2d` | #### in `bevy_core_pipeline::core_3d::graph` | old string-based path | new label | |-----------------------|-----------| | `NAME` | `SubGraph3d` | #### in `bevy_ui::render` | old string-based path | new label | |-----------------------|-----------| | `draw_ui_graph::NAME` | `graph::SubGraphUi` | ### Nodes #### in `bevy_core_pipeline::core_2d::graph` | old string-based path | new label | |-----------------------|-----------| | `node::MSAA_WRITEBACK` | `Labels2d::MsaaWriteback` | | `node::MAIN_PASS` | `Labels2d::MainPass` | | `node::BLOOM` | `Labels2d::Bloom` | | `node::TONEMAPPING` | `Labels2d::Tonemapping` | | `node::FXAA` | `Labels2d::Fxaa` | | `node::UPSCALING` | `Labels2d::Upscaling` | | `node::CONTRAST_ADAPTIVE_SHARPENING` | `Labels2d::ConstrastAdaptiveSharpening` | | `node::END_MAIN_PASS_POST_PROCESSING` | `Labels2d::EndMainPassPostProcessing` | #### in `bevy_core_pipeline::core_3d::graph` | old string-based path | new label | |-----------------------|-----------| | `node::MSAA_WRITEBACK` | `Labels3d::MsaaWriteback` | | `node::PREPASS` | `Labels3d::Prepass` | | `node::DEFERRED_PREPASS` | `Labels3d::DeferredPrepass` | | `node::COPY_DEFERRED_LIGHTING_ID` | `Labels3d::CopyDeferredLightingId` | | `node::END_PREPASSES` | `Labels3d::EndPrepasses` | | `node::START_MAIN_PASS` | `Labels3d::StartMainPass` | | `node::MAIN_OPAQUE_PASS` | `Labels3d::MainOpaquePass` | | `node::MAIN_TRANSMISSIVE_PASS` | `Labels3d::MainTransmissivePass` | | `node::MAIN_TRANSPARENT_PASS` | `Labels3d::MainTransparentPass` | | `node::END_MAIN_PASS` | `Labels3d::EndMainPass` | | `node::BLOOM` | `Labels3d::Bloom` | | `node::TONEMAPPING` | `Labels3d::Tonemapping` | | `node::FXAA` | `Labels3d::Fxaa` | | `node::UPSCALING` | `Labels3d::Upscaling` | | `node::CONTRAST_ADAPTIVE_SHARPENING` | `Labels3d::ContrastAdaptiveSharpening` | | `node::END_MAIN_PASS_POST_PROCESSING` | `Labels3d::EndMainPassPostProcessing` | #### in `bevy_core_pipeline` | old string-based path | new label | |-----------------------|-----------| | `taa::draw_3d_graph::node::TAA` | `Labels3d::Taa` | #### in `bevy_pbr` | old string-based path | new label | |-----------------------|-----------| | `draw_3d_graph::node::SHADOW_PASS` | `LabelsPbr::ShadowPass` | | `ssao::draw_3d_graph::node::SCREEN_SPACE_AMBIENT_OCCLUSION` | `LabelsPbr::ScreenSpaceAmbientOcclusion` | | `deferred::DEFFERED_LIGHTING_PASS` | `LabelsPbr::DeferredLightingPass` | #### in `bevy_render` | old string-based path | new label | |-----------------------|-----------| | `main_graph::node::CAMERA_DRIVER` | `graph::CameraDriverLabel` | #### in `bevy_ui::render` | old string-based path | new label | |-----------------------|-----------| | `draw_ui_graph::node::UI_PASS` | `graph::LabelsUi::UiPass` | --- ## Future work * Make `NodeSlot`s also use types. Ideally, we have an enum with unit variants where every variant resembles one slot. Then to make sure you are using the right slot enum and make rust-analyzer play nicely with it, we should make an associated type in the `Node` trait. With today's system, we can introduce 3rd party slots to a node, and i wasnt sure if this was used, so I didn't do this in this PR. ## Unresolved Questions When looking at the `post_processing` example, we have a struct for the label and a struct for the node, this seems like boilerplate and on discord, @IceSentry (sowy for the ping) [asked](https://discord.com/channels/691052431525675048/743663924229963868/1175197016947699742) if a node could automatically introduce a label (or i completely misunderstood that). The problem with that is, that nodes like `EmptyNode` exist multiple times *inside the same* (sub)graph, so there we need extern labels to distinguish between those. Hopefully we can find a way to reduce boilerplate and still have everything unique. For EmptyNode, we could maybe make a macro which implements an "empty node" for a type, but for nodes which contain code and need to be present multiple times, this could get nasty... |
||
BD103
|
069a8776f5
|
Feature-gate all references to bevy_text in bevy_ui (#11391)
# Objective - `bevy_ui` fails to compile without `bevy_text` being enabled. - Fixes #11363. ## Solution - Add `#[cfg(feature = "bevy_text")]` to all items that require it. I think this change is honestly a bit ugly, but I can't see any other way around it. I considered making `bevy_text` required, but we agreed [on Discord](https://discord.com/channels/691052431525675048/743663673393938453/1196868117486379148) that there were some use cases for `bevy_ui` without `bevy_text`. If you have any ideas that decreases the amount of `#[cfg(...)]`s and `#[allow(...)]`s, that would be greatly appreciated. This was tested by running the following commands: ```shell $ cargo clippy -p bevy_ui $ cargo clippy -p bevy_ui -F bevy_text $ cargo run -p ci ``` --- ## Changelog - Fixed `bevy_ui` not compiling without `bevy_text`. |
||
François
|
95b92307b4
|
UI and unloaded assets: don't filter out nodes with an unloaded image (#11205)
# Objective - after #10520, UI can't display images or text with a background color ## Solution - don't filter out UI nodes with an unloaded image |
||
Félix Lescaudey de Maneville
|
135c7240f1
|
Texture Atlas rework (#5103)
# Objective > Old MR: #5072 > ~~Associated UI MR: #5070~~ > Adresses #1618 Unify sprite management ## Solution - Remove the `Handle<Image>` field in `TextureAtlas` which is the main cause for all the boilerplate - Remove the redundant `TextureAtlasSprite` component - Renamed `TextureAtlas` asset to `TextureAtlasLayout` ([suggestion](https://github.com/bevyengine/bevy/pull/5103#discussion_r917281844)) - Add a `TextureAtlas` component, containing the atlas layout handle and the section index The difference between this solution and #5072 is that instead of the `enum` approach is that we can more easily manipulate texture sheets without any breaking changes for classic `SpriteBundle`s (@mockersf [comment](https://github.com/bevyengine/bevy/pull/5072#issuecomment-1165836139)) Also, this approach is more *data oriented* extracting the `Handle<Image>` and avoiding complex texture atlas manipulations to retrieve the texture in both applicative and engine code. With this method, the only difference between a `SpriteBundle` and a `SpriteSheetBundle` is an **additional** component storing the atlas handle and the index. ~~This solution can be applied to `bevy_ui` as well (see #5070).~~ EDIT: I also applied this solution to Bevy UI ## Changelog - (**BREAKING**) Removed `TextureAtlasSprite` - (**BREAKING**) Renamed `TextureAtlas` to `TextureAtlasLayout` - (**BREAKING**) `SpriteSheetBundle`: - Uses a `Sprite` instead of a `TextureAtlasSprite` component - Has a `texture` field containing a `Handle<Image>` like the `SpriteBundle` - Has a new `TextureAtlas` component instead of a `Handle<TextureAtlasLayout>` - (**BREAKING**) `DynamicTextureAtlasBuilder::add_texture` takes an additional `&Handle<Image>` parameter - (**BREAKING**) `TextureAtlasLayout::from_grid` no longer takes a `Handle<Image>` parameter - (**BREAKING**) `TextureAtlasBuilder::finish` now returns a `Result<(TextureAtlasLayout, Handle<Image>), _>` - `bevy_text`: - `GlyphAtlasInfo` stores the texture `Handle<Image>` - `FontAtlas` stores the texture `Handle<Image>` - `bevy_ui`: - (**BREAKING**) Removed `UiAtlasImage` , the atlas bundle is now identical to the `ImageBundle` with an additional `TextureAtlas` ## Migration Guide * Sprites ```diff fn my_system( mut images: ResMut<Assets<Image>>, - mut atlases: ResMut<Assets<TextureAtlas>>, + mut atlases: ResMut<Assets<TextureAtlasLayout>>, asset_server: Res<AssetServer> ) { let texture_handle: asset_server.load("my_texture.png"); - let layout = TextureAtlas::from_grid(texture_handle, Vec2::new(25.0, 25.0), 5, 5, None, None); + let layout = TextureAtlasLayout::from_grid(Vec2::new(25.0, 25.0), 5, 5, None, None); let layout_handle = atlases.add(layout); commands.spawn(SpriteSheetBundle { - sprite: TextureAtlasSprite::new(0), - texture_atlas: atlas_handle, + atlas: TextureAtlas { + layout: layout_handle, + index: 0 + }, + texture: texture_handle, ..Default::default() }); } ``` * UI ```diff fn my_system( mut images: ResMut<Assets<Image>>, - mut atlases: ResMut<Assets<TextureAtlas>>, + mut atlases: ResMut<Assets<TextureAtlasLayout>>, asset_server: Res<AssetServer> ) { let texture_handle: asset_server.load("my_texture.png"); - let layout = TextureAtlas::from_grid(texture_handle, Vec2::new(25.0, 25.0), 5, 5, None, None); + let layout = TextureAtlasLayout::from_grid(Vec2::new(25.0, 25.0), 5, 5, None, None); let layout_handle = atlases.add(layout); commands.spawn(AtlasImageBundle { - texture_atlas_image: UiTextureAtlasImage { - index: 0, - flip_x: false, - flip_y: false, - }, - texture_atlas: atlas_handle, + atlas: TextureAtlas { + layout: layout_handle, + index: 0 + }, + image: UiImage { + texture: texture_handle, + flip_x: false, + flip_y: false, + }, ..Default::default() }); } ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: François <mockersf@gmail.com> Co-authored-by: IceSentry <IceSentry@users.noreply.github.com> |
||
Roman Salnikov
|
eb9db21113
|
Camera-driven UI (#10559)
# Objective Add support for presenting each UI tree on a specific window and viewport, while making as few breaking changes as possible. This PR is meant to resolve the following issues at once, since they're all related. - Fixes #5622 - Fixes #5570 - Fixes #5621 Adopted #5892 , but started over since the current codebase diverged significantly from the original PR branch. Also, I made a decision to propagate component to children instead of recursively iterating over nodes in search for the root. ## Solution Add a new optional component that can be inserted to UI root nodes and propagate to children to specify which camera it should render onto. This is then used to get the render target and the viewport for that UI tree. Since this component is optional, the default behavior should be to render onto the single camera (if only one exist) and warn of ambiguity if multiple cameras exist. This reduces the complexity for users with just one camera, while giving control in contexts where it matters. ## Changelog - Adds `TargetCamera(Entity)` component to specify which camera should a node tree be rendered into. If only one camera exists, this component is optional. - Adds an example of rendering UI to a texture and using it as a material in a 3D world. - Fixes recalculation of physical viewport size when target scale factor changes. This can happen when the window is moved between displays with different DPI. - Changes examples to demonstrate assigning UI to different viewports and windows and make interactions in an offset viewport testable. - Removes `UiCameraConfig`. UI visibility now can be controlled via combination of explicit `TargetCamera` and `Visibility` on the root nodes. --------- Co-authored-by: davier <bricedavier@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> |
||
ickshonpe
|
03404c48ca
|
UI text rotation and scaling fix (#11326)
# Objective UI node text is drawn in the wrong position after rotation or scaling. ![294723406-d031a3e6-a4f9-48b4-a66a-ee963100a8b9](https://github.com/bevyengine/bevy/assets/27962798/2755e2e3-6a03-4ee8-8676-bdcaa72ec678) ## Solution In `extract_text_uinodes` to set the text's offset create a translation matrix and multiply it by the UI node's transform. Previously the offset was just added directly to the translation of the Node's `GlobalTransform`, which meant no scaling or rotation would be applied to the offset. <img width="961" alt="296440025-537ec11c-1ea1-469c-8eec-2ad4ae012095" src="https://github.com/bevyengine/bevy/assets/27962798/eae1a1d2-1369-47ad-8963-3862d03ec0bf"> <img width="961" alt="296440156-dd04029d-8112-4fa5-89a2-56d7acab66df" src="https://github.com/bevyengine/bevy/assets/27962798/90b1b6db-13f4-4745-9f14-7c1661baad50"> Fixes #11241 |
||
Jakob Hellermann
|
a657478675
|
resolve all internal ambiguities (#10411)
- ignore all ambiguities that are not a problem - remove `.before(Assets::<Image>::track_assets),` that points into a different schedule (-> should this be caught?) - add some explicit orderings: - run `poll_receivers` and `update_accessibility_nodes` after `window_closed` in `bevy_winit::accessibility` - run `bevy_ui::accessibility::calc_bounds` after `CameraUpdateSystem` - run ` bevy_text::update_text2d_layout` and `bevy_ui::text_system` after `font_atlas_set::remove_dropped_font_atlas_sets` - add `app.ignore_ambiguity(a, b)` function for cases where you want to ignore an ambiguity between two independent plugins `A` and `B` - add `IgnoreAmbiguitiesPlugin` in `DefaultPlugins` that allows cross-crate ambiguities like `bevy_animation`/`bevy_ui` - Fixes https://github.com/bevyengine/bevy/issues/9511 ## Before **Render** ![render_schedule_Render dot](https://github.com/bevyengine/bevy/assets/22177966/1c677968-7873-40cc-848c-91fca4c8e383) **PostUpdate** ![schedule_PostUpdate dot](https://github.com/bevyengine/bevy/assets/22177966/8fc61304-08d4-4533-8110-c04113a7367a) ## After **Render** ![render_schedule_Render dot](https://github.com/bevyengine/bevy/assets/22177966/462f3b28-cef7-4833-8619-1f5175983485) **PostUpdate** ![schedule_PostUpdate dot](https://github.com/bevyengine/bevy/assets/22177966/8cfb3d83-7842-4a84-9082-46177e1a6c70) --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: François <mockersf@gmail.com> |
||
JMS55
|
44424391fe
|
Unload render assets from RAM (#10520)
# Objective - No point in keeping Meshes/Images in RAM once they're going to be sent to the GPU, and kept in VRAM. This saves a _significant_ amount of memory (several GBs) on scenes like bistro. - References - https://github.com/bevyengine/bevy/pull/1782 - https://github.com/bevyengine/bevy/pull/8624 ## Solution - Augment RenderAsset with the capability to unload the underlying asset after extracting to the render world. - Mesh/Image now have a cpu_persistent_access field. If this field is RenderAssetPersistencePolicy::Unload, the asset will be unloaded from Assets<T>. - A new AssetEvent is sent upon dropping the last strong handle for the asset, which signals to the RenderAsset to remove the GPU version of the asset. --- ## Changelog - Added `AssetEvent::NoLongerUsed` and `AssetEvent::is_no_longer_used()`. This event is sent when the last strong handle of an asset is dropped. - Rewrote the API for `RenderAsset` to allow for unloading the asset data from the CPU. - Added `RenderAssetPersistencePolicy`. - Added `Mesh::cpu_persistent_access` for memory savings when the asset is not needed except for on the GPU. - Added `Image::cpu_persistent_access` for memory savings when the asset is not needed except for on the GPU. - Added `ImageLoaderSettings::cpu_persistent_access`. - Added `ExrTextureLoaderSettings`. - Added `HdrTextureLoaderSettings`. ## Migration Guide - Asset loaders (GLTF, etc) now load meshes and textures without `cpu_persistent_access`. These assets will be removed from `Assets<Mesh>` and `Assets<Image>` once `RenderAssets<Mesh>` and `RenderAssets<Image>` contain the GPU versions of these assets, in order to reduce memory usage. If you require access to the asset data from the CPU in future frames after the GLTF asset has been loaded, modify all dependent `Mesh` and `Image` assets and set `cpu_persistent_access` to `RenderAssetPersistencePolicy::Keep`. - `Mesh` now requires a new `cpu_persistent_access` field. Set it to `RenderAssetPersistencePolicy::Keep` to mimic the previous behavior. - `Image` now requires a new `cpu_persistent_access` field. Set it to `RenderAssetPersistencePolicy::Keep` to mimic the previous behavior. - `MorphTargetImage::new()` now requires a new `cpu_persistent_access` parameter. Set it to `RenderAssetPersistencePolicy::Keep` to mimic the previous behavior. - `DynamicTextureAtlasBuilder::add_texture()` now requires that the `TextureAtlas` you pass has an `Image` with `cpu_persistent_access: RenderAssetPersistencePolicy::Keep`. Ensure you construct the image properly for the texture atlas. - The `RenderAsset` trait has significantly changed, and requires adapting your existing implementations. - The trait now requires `Clone`. - The `ExtractedAsset` associated type has been removed (the type itself is now extracted). - The signature of `prepare_asset()` is slightly different - A new `persistence_policy()` method is now required (return RenderAssetPersistencePolicy::Unload to match the previous behavior). - Match on the new `NoLongerUsed` variant for exhaustive matches of `AssetEvent`. |
||
Tygyh
|
696af48416
|
Remove unnecessary parentheses (#10990)
# Objective - Increase readability. ## Solution - Remove unnecessary parentheses. |
||
Tygyh
|
720d6dab82
|
Change Window scale factor to f32 (adopted) (#10897)
# Objective - Finish the work done in #8942 . ## Solution - Rebase the changes made in #8942 and fix the issues stopping it from being merged earlier --------- Co-authored-by: Thomas <1234328+thmsgntz@users.noreply.github.com> |
||
ickshonpe
|
4a46f273a1
|
Clip outlines by the node's own clipping rect, not the parent's. (#10922)
# Objective A nodes outline should be clipped using its own clipping rect, not its parents. fixes #10921 ## Solution Clip outlines by the node's own clipping rect, not the parent's. If you compare the `overflow` ui example in main with this PR, you'll see that the outlines that appear when you hover above the images are now clipped along with the images. --- ## Changelog * Outlines are now clipped using the node's own clipping rect, not the parent's. |
||
Kanabenki
|
0e9f6e92ea
|
Add clippy::manual_let_else at warn level to lints (#10684)
# Objective Related to #10612. Enable the [`clippy::manual_let_else`](https://rust-lang.github.io/rust-clippy/master/#manual_let_else) lint as a warning. The `let else` form seems more idiomatic to me than a `match`/`if else` that either match a pattern or diverge, and from the clippy doc, the lint doesn't seem to have any possible false positive. ## Solution Add the lint as warning in `Cargo.toml`, refactor places where the lint triggers. |
||
ickshonpe
|
0b0ef583b6
|
Improved Text Rendering (#10537)
# Objective The quality of Bevy's text rendering can vary wildly depending on the font, font size, pixel alignment and scale factor. But this situation can be improved dramatically with some small adjustments. ## Solution * Text node positions are rounded to the nearest physical pixel before rendering. * Each glyph texture has a 1-pixel wide transparent border added along its edges. This means font atlases will use more memory because of the extra pixel of padding for each glyph but it's more than worth it I think (although glyph size is increased by 2 pixels on both axes, the net increase is 1 pixel as the font texture atlas's padding has been removed). ## Results Screenshots are from the 'ui' example with a scale factor of 1.5. Things can get much uglier with the right font and worst scale factor<sup>tm</sup>. ### before <img width="300" alt="list-bad-text" src="https://github.com/bevyengine/bevy/assets/27962798/482b384d-8743-4bae-9a65-468ff1b4c301"> ### after <img width="300" alt="good_list_text" src="https://github.com/bevyengine/bevy/assets/27962798/34323b0a-f714-47ba-9728-a59804987bc8"> --- ## Changelog * Font texture atlases are no longer padded. * Each glyph texture has a 1-pixel wide padding added along its edges. * Text node positions are rounded to the nearest physical pixel before rendering. |
||
Torstein Grindvik
|
74c97332a6
|
Ignore inactive cameras (#10543)
# Objective Currently, if a large amount of inactive cameras are spawned, they will immensely slow down performance. This can be reproduced by adding ```rust let default_image = images.add(default()); for _ in 0..10000 { commands.spawn(Camera3dBundle { camera: Camera { is_active: false, target: RenderTarget::Image(default_image.clone()), ..default() }, ..default() }); } ``` to for example `3d_shapes`. Using `tracy`, it's clear that preparing view bind groups for all cameras is still happening. Also, visibility checks on the extracted views from inactive cameras also take place. ## Performance gains The following `tracy` comparisons show the effect of skipping this unneeded work. Yellow is Bevy main, red is with the fix. ### Visibility checks ![bevy-visibility-check-savings](https://github.com/bevyengine/bevy/assets/52322338/154a20ce-bd70-487e-a85c-8b993950ea2b) ### Bind group preparation ![bevy-mesh2d-savings](https://github.com/bevyengine/bevy/assets/52322338/a48d8d9a-8c37-4c34-9698-b1b1bf01f070) ## Solution - Check if the cameras are inactive in the appropriate places, and if so skip them ## Changelog ### Changed - Do not extract views from inactive cameras or check visiblity from their extracted views Signed-off-by: Torstein Grindvik <torstein.grindvik@muybridge.com> Co-authored-by: Torstein Grindvik <torstein.grindvik@muybridge.com> |
||
Markus Ort
|
fd232ad360
|
Add UI Materials (#9506)
# Objective - Add Ui Materials so that UI can render more complex and animated widgets. - Fixes #5607 ## Solution - Create a UiMaterial trait for specifying a Shader Asset and Bind Group Layout/Data. - Create a pipeline for rendering these Materials inside the Ui layout/tree. - Create a MaterialNodeBundle for simple spawning. ## Changelog - Created a `UiMaterial` trait for specifying a Shader asset and Bind Group. - Created a `UiMaterialPipeline` for rendering said Materials. - Added Example [`ui_material` ](https://github.com/MarkusTheOrt/bevy/blob/ui_material/examples/ui/ui_material.rs) for example usage. - Created [`UiVertexOutput`](https://github.com/MarkusTheOrt/bevy/blob/ui_material/crates/bevy_ui/src/render/ui_vertex_output.wgsl) export as VertexData for shaders. - Created [`material_ui`](https://github.com/MarkusTheOrt/bevy/blob/ui_material/crates/bevy_ui/src/render/ui_material.wgsl) shader as default for both Vertex and Fragment shaders. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> Co-authored-by: François <mockersf@gmail.com> |
||
ickshonpe
|
d70b4a3170
|
UI batching Fix (#9610)
# Objective Reimplement #8793 on top of the recent rendering changes. ## Solution The batch creation logic is quite convoluted, but I tested it on enough examples to convince myself that it works. The initial value of `batch_image_handle` is changed from `HandleId::Id(Uuid::nil(), u64::MAX)` to `DEFAULT_IMAGE_HANDLE.id()`, which allowed me to make the if-block simpler I think. The default image from `DEFAULT_IMAGE_HANDLE` is always inserted into `UiImageBindGroups` even if it's not used. I tried to add a check so that it would be only inserted when there is only one batch using the default image but this crashed. --- ## Changelog `prepare_uinodes` * Changed the initial value of `batch_image_handle` to `DEFAULT_IMAGE_HANDLE.id()`. * The default image is added to the UI image bind groups before assembling the batches. * A new `UiBatch` isn't created when the next `ExtractedUiNode`s image is set to `DEFAULT_IMAGE_HANDLE` (unless it is the first item in the UI phase items list). |
||
ickshonpe
|
563d6e36bb
|
Add stack index to Node (#9853)
# Objective If we add the stack index to `Node` then we don't need to walk the `UiStack` repeatedly during extraction. ## Solution Add a field `stack_index` to `Node`. Update it in `ui_stack_system`. Iterate queries directly in the UI's extraction systems. ### Benchmarks ``` cargo run --profile stress-test --features trace_tracy --example many_buttons -- --no-text --no-borders ``` frames (yellow this PR, red main): <img width="447" alt="frames-per-second" src="https://github.com/bevyengine/bevy/assets/27962798/385c0ccf-c257-42a2-b736-117542d56eff"> `ui_stack_system`: <img width="585" alt="ui-stack-system" src="https://github.com/bevyengine/bevy/assets/27962798/2916cc44-2887-4c3b-a144-13250d84f7d5"> extract schedule: <img width="469" alt="extract-schedule" src="https://github.com/bevyengine/bevy/assets/27962798/858d4ab4-d99f-48e8-b153-1c92f51e0743"> --- ## Changelog * Added the field `stack_index` to `Node`. * `ui_stack_system` updates `Node::stack_index` after a new `UiStack` is generated. * The UI's extraction functions iterate a query directly rather than walking the `UiStack` and doing lookups. |
||
TimJentzsch
|
d67fbd5e90
|
Add helper function to determine if color is transparent (#10310)
# Objective - We need to check multiple times if a color is fully transparent, e.g. for performance optimizations. - Make code more readable. - Reduce code duplication, to simplify making changes if needed (e.g. if we need to take floating point weirdness into account later on). ## Solution - Introduce a new `Color::is_fully_transparent` helper function to determine if the alpha of a color is 0. - Use the helper function in our UI rendering code. --- ## Changelog - Added `Color::is_fully_transparent` helper function. --------- Co-authored-by: François <mockersf@gmail.com> |
||
robtfm
|
6f2a5cb862
|
Bind group entries (#9694)
# Objective Simplify bind group creation code. alternative to (and based on) #9476 ## Solution - Add a `BindGroupEntries` struct that can transparently be used where `&[BindGroupEntry<'b>]` is required in BindGroupDescriptors. Allows constructing the descriptor's entries as: ```rust render_device.create_bind_group( "my_bind_group", &my_layout, &BindGroupEntries::with_indexes(( (2, &my_sampler), (3, my_uniform), )), ); ``` instead of ```rust render_device.create_bind_group( "my_bind_group", &my_layout, &[ BindGroupEntry { binding: 2, resource: BindingResource::Sampler(&my_sampler), }, BindGroupEntry { binding: 3, resource: my_uniform, }, ], ); ``` or ```rust render_device.create_bind_group( "my_bind_group", &my_layout, &BindGroupEntries::sequential((&my_sampler, my_uniform)), ); ``` instead of ```rust render_device.create_bind_group( "my_bind_group", &my_layout, &[ BindGroupEntry { binding: 0, resource: BindingResource::Sampler(&my_sampler), }, BindGroupEntry { binding: 1, resource: my_uniform, }, ], ); ``` the structs has no user facing macros, is tuple-type-based so stack allocated, and has no noticeable impact on compile time. - Also adds a `DynamicBindGroupEntries` struct with a similar api that uses a `Vec` under the hood and allows extending the entries. - Modifies `RenderDevice::create_bind_group` to take separate arguments `label`, `layout` and `entries` instead of a `BindGroupDescriptor` struct. The struct can't be stored due to the internal references, and with only 3 members arguably does not add enough context to justify itself. - Modify the codebase to use the new api and the `BindGroupEntries` / `DynamicBindGroupEntries` structs where appropriate (whenever the entries slice contains more than 1 member). ## Migration Guide - Calls to `RenderDevice::create_bind_group({BindGroupDescriptor { label, layout, entries })` must be amended to `RenderDevice::create_bind_group(label, layout, entries)`. - If `label`s have been specified as `"bind_group_name".into()`, they need to change to just `"bind_group_name"`. `Some("bind_group_name")` and `None` will still work, but `Some("bind_group_name")` can optionally be simplified to just `"bind_group_name"`. --------- Co-authored-by: IceSentry <IceSentry@users.noreply.github.com> |
||
Rob Parrett
|
26ecfcff43
|
Fix UI borders (#10078)
# Objective Fixes #10069 ## Solution Extracted UI nodes were previously stored in a `SparseSet` and had a predictable iteration order. UI borders and outlines relied on this. Now they are stored in a HashMap and that is no longer true. This adds `entity.index()` to the sort key for `TransparentUi` so that the iteration order is predictable and the "border entities" that get spawned during extraction are guaranteed to get drawn after their respective container nodes again. I **think** that everything still works for overlapping ui nodes etc, because the z value / primary sort is still controlled by the "ui stack." Text above is just my current understanding. A rendering expert should check this out. I will do some more testing when I can. |
||
ickshonpe
|
2e887b856f
|
UI node outlines (#9931)
# Objective Add support for drawing outlines outside the borders of UI nodes. ## Solution Add a new `Outline` component with `width`, `offset` and `color` fields. Added `outline_width` and `outline_offset` fields to `Node`. This is set after layout recomputation by the `resolve_outlines_system`. Properties of outlines: * Unlike borders, outlines have to be the same width on each edge. * Outlines do not occupy any space in the layout. * The `Outline` component won't be added to any of the UI node bundles, it needs to be inserted separately. * Outlines are drawn outside the node's border, so they are clipped using the clipping rect of their entity's parent UI node (if it exists). * `Val::Percent` outline widths are resolved based on the width of the outlined UI node. * The offset of the `Outline` adds space between an outline and the edge of its node. I was leaning towards adding an `outline` field to `Style` but a separate component seems more efficient for queries and change detection. The `Outline` component isn't added to bundles for the same reason. --- ## Examples * This image is from the `borders` example from the Bevy UI examples but modified to include outlines. The UI nodes are the dark red rectangles, the bright red rectangles are borders and the white lines offset from each node are the outlines. The yellow rectangles are separate nodes contained with the dark red nodes: <img width="406" alt="outlines" src="https://github.com/bevyengine/bevy/assets/27962798/4e6f315a-019f-42a4-94ee-cca8e684d64a"> * This is from the same example but using a branch that implements border-radius. Here the the outlines are in orange and there is no offset applied. I broke the borders implementation somehow during the merge, which is why some of the borders from the first screenshot are missing 😅. The outlines work nicely though (as long as you can forgive the lack of anti-aliasing): ![image](https://github.com/bevyengine/bevy/assets/27962798/d15560b6-6cd6-42e5-907b-56ccf2ad5e02) --- ## Notes As I explained above, I don't think the `Outline` component should be added to UI node bundles. We can have helper functions though, perhaps something as simple as: ```rust impl NodeBundle { pub fn with_outline(self, outline: Outline) -> (Self, Outline) { (self, outline) } } ``` I didn't include anything like this as I wanted to keep the PR's scope as narrow as possible. Maybe `with_outline` should be in a trait that we implement for each UI node bundle. --- ## Changelog Added support for outlines to Bevy UI. * The `Outline` component adds an outline to a UI node. * The `outline_width` field added to `Node` holds the resolved width of the outline, which is set by the `resolve_outlines_system` after layout recomputation. * Outlines are drawn by the system `extract_uinode_outlines`. |
||
Robert Swain
|
b6ead2be95
|
Use EntityHashMap<Entity, T> for render world entity storage for better performance (#9903)
# Objective - Improve rendering performance, particularly by avoiding the large system commands costs of using the ECS in the way that the render world does. ## Solution - Define `EntityHasher` that calculates a hash from the `Entity.to_bits()` by `i | (i.wrapping_mul(0x517cc1b727220a95) << 32)`. `0x517cc1b727220a95` is something like `u64::MAX / N` for N that gives a value close to π and that works well for hashing. Thanks for @SkiFire13 for the suggestion and to @nicopap for alternative suggestions and discussion. This approach comes from `rustc-hash` (a.k.a. `FxHasher`) with some tweaks for the case of hashing an `Entity`. `FxHasher` and `SeaHasher` were also tested but were significantly slower. - Define `EntityHashMap` type that uses the `EntityHashser` - Use `EntityHashMap<Entity, T>` for render world entity storage, including: - `RenderMaterialInstances` - contains the `AssetId<M>` of the material associated with the entity. Also for 2D. - `RenderMeshInstances` - contains mesh transforms, flags and properties about mesh entities. Also for 2D. - `SkinIndices` and `MorphIndices` - contains the skin and morph index for an entity, respectively - `ExtractedSprites` - `ExtractedUiNodes` ## Benchmarks All benchmarks have been conducted on an M1 Max connected to AC power. The tests are run for 1500 frames. The 1000th frame is captured for comparison to check for visual regressions. There were none. ### 2D Meshes `bevymark --benchmark --waves 160 --per-wave 1000 --mode mesh2d` #### `--ordered-z` This test spawns the 2D meshes with z incrementing back to front, which is the ideal arrangement allocation order as it matches the sorted render order which means lookups have a high cache hit rate. <img width="1112" alt="Screenshot 2023-09-27 at 07 50 45" src="https://github.com/bevyengine/bevy/assets/302146/e140bc98-7091-4a3b-8ae1-ab75d16d2ccb"> -39.1% median frame time. #### Random This test spawns the 2D meshes with random z. This not only makes the batching and transparent 2D pass lookups get a lot of cache misses, it also currently means that the meshes are almost certain to not be batchable. <img width="1108" alt="Screenshot 2023-09-27 at 07 51 28" src="https://github.com/bevyengine/bevy/assets/302146/29c2e813-645a-43ce-982a-55df4bf7d8c4"> -7.2% median frame time. ### 3D Meshes `many_cubes --benchmark` <img width="1112" alt="Screenshot 2023-09-27 at 07 51 57" src="https://github.com/bevyengine/bevy/assets/302146/1a729673-3254-4e2a-9072-55e27c69f0fc"> -7.7% median frame time. ### Sprites **NOTE: On `main` sprites are using `SparseSet<Entity, T>`!** `bevymark --benchmark --waves 160 --per-wave 1000 --mode sprite` #### `--ordered-z` This test spawns the sprites with z incrementing back to front, which is the ideal arrangement allocation order as it matches the sorted render order which means lookups have a high cache hit rate. <img width="1116" alt="Screenshot 2023-09-27 at 07 52 31" src="https://github.com/bevyengine/bevy/assets/302146/bc8eab90-e375-4d31-b5cd-f55f6f59ab67"> +13.0% median frame time. #### Random This test spawns the sprites with random z. This makes the batching and transparent 2D pass lookups get a lot of cache misses. <img width="1109" alt="Screenshot 2023-09-27 at 07 53 01" src="https://github.com/bevyengine/bevy/assets/302146/22073f5d-99a7-49b0-9584-d3ac3eac3033"> +0.6% median frame time. ### UI **NOTE: On `main` UI is using `SparseSet<Entity, T>`!** `many_buttons` <img width="1111" alt="Screenshot 2023-09-27 at 07 53 26" src="https://github.com/bevyengine/bevy/assets/302146/66afd56d-cbe4-49e7-8b64-2f28f6043d85"> +15.1% median frame time. ## Alternatives - Cart originally suggested trying out `SparseSet<Entity, T>` and indeed that is slightly faster under ideal conditions. However, `PassHashMap<Entity, T>` has better worst case performance when data is randomly distributed, rather than in sorted render order, and does not have the worst case memory usage that `SparseSet`'s dense `Vec<usize>` that maps from the `Entity` index to sparse index into `Vec<T>`. This dense `Vec` has to be as large as the largest Entity index used with the `SparseSet`. - I also tested `PassHashMap<u32, T>`, intending to use `Entity.index()` as the key, but this proved to sometimes be slower and mostly no different. - The only outstanding approach that has not been implemented and tested is to _not_ clear the render world of its entities each frame. That has its own problems, though they could perhaps be solved. - Performance-wise, if the entities and their component data were not cleared, then they would incur table moves on spawn, and should not thereafter, rather just their component data would be overwritten. Ideally we would have a neat way of either updating data in-place via `&mut T` queries, or inserting components if not present. This would likely be quite cumbersome to have to remember to do everywhere, but perhaps it only needs to be done in the more performance-sensitive systems. - The main problem to solve however is that we want to both maintain a mapping between main world entities and render world entities, be able to run the render app and world in parallel with the main app and world for pipelined rendering, and at the same time be able to spawn entities in the render world in such a way that those Entity ids do not collide with those spawned in the main world. This is potentially quite solvable, but could well be a lot of ECS work to do it in a way that makes sense. --- ## Changelog - Changed: Component data for entities to be drawn are no longer stored on entities in the render world. Instead, data is stored in a `EntityHashMap<Entity, T>` in various resources. This brings significant performance benefits due to the way the render app clears entities every frame. Resources of most interest are `RenderMeshInstances` and `RenderMaterialInstances`, and their 2D counterparts. ## Migration Guide Previously the render app extracted mesh entities and their component data from the main world and stored them as entities and components in the render world. Now they are extracted into essentially `EntityHashMap<Entity, T>` where `T` are structs containing an appropriate group of data. This means that while extract set systems will continue to run extract queries against the main world they will store their data in hash maps. Also, systems in later sets will either need to look up entities in the available resources such as `RenderMeshInstances`, or maintain their own `EntityHashMap<Entity, T>` for their own data. Before: ```rust fn queue_custom( material_meshes: Query<(Entity, &MeshTransforms, &Handle<Mesh>), With<InstanceMaterialData>>, ) { ... for (entity, mesh_transforms, mesh_handle) in &material_meshes { ... } } ``` After: ```rust fn queue_custom( render_mesh_instances: Res<RenderMeshInstances>, instance_entities: Query<Entity, With<InstanceMaterialData>>, ) { ... for entity in &instance_entities { let Some(mesh_instance) = render_mesh_instances.get(&entity) else { continue; }; // The mesh handle in `AssetId<Mesh>` form, and the `MeshTransforms` can now // be found in `mesh_instance` which is a `RenderMeshInstance` ... } } ``` --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> |
||
Robert Swain
|
5c884c5a15
|
Automatic batching/instancing of draw commands (#9685)
# Objective - Implement the foundations of automatic batching/instancing of draw commands as the next step from #89 - NOTE: More performance improvements will come when more data is managed and bound in ways that do not require rebinding such as mesh, material, and texture data. ## Solution - The core idea for batching of draw commands is to check whether any of the information that has to be passed when encoding a draw command changes between two things that are being drawn according to the sorted render phase order. These should be things like the pipeline, bind groups and their dynamic offsets, index/vertex buffers, and so on. - The following assumptions have been made: - Only entities with prepared assets (pipelines, materials, meshes) are queued to phases - View bindings are constant across a phase for a given draw function as phases are per-view - `batch_and_prepare_render_phase` is the only system that performs this batching and has sole responsibility for preparing the per-object data. As such the mesh binding and dynamic offsets are assumed to only vary as a result of the `batch_and_prepare_render_phase` system, e.g. due to having to split data across separate uniform bindings within the same buffer due to the maximum uniform buffer binding size. - Implement `GpuArrayBuffer` for `Mesh2dUniform` to store Mesh2dUniform in arrays in GPU buffers rather than each one being at a dynamic offset in a uniform buffer. This is the same optimisation that was made for 3D not long ago. - Change batch size for a range in `PhaseItem`, adding API for getting or mutating the range. This is more flexible than a size as the length of the range can be used in place of the size, but the start and end can be otherwise whatever is needed. - Add an optional mesh bind group dynamic offset to `PhaseItem`. This avoids having to do a massive table move just to insert `GpuArrayBufferIndex` components. ## Benchmarks All tests have been run on an M1 Max on AC power. `bevymark` and `many_cubes` were modified to use 1920x1080 with a scale factor of 1. I run a script that runs a separate Tracy capture process, and then runs the bevy example with `--features bevy_ci_testing,trace_tracy` and `CI_TESTING_CONFIG=../benchmark.ron` with the contents of `../benchmark.ron`: ```rust ( exit_after: Some(1500) ) ``` ...in order to run each test for 1500 frames. The recent changes to `many_cubes` and `bevymark` added reproducible random number generation so that with the same settings, the same rng will occur. They also added benchmark modes that use a fixed delta time for animations. Combined this means that the same frames should be rendered both on main and on the branch. The graphs compare main (yellow) to this PR (red). ### 3D Mesh `many_cubes --benchmark` <img width="1411" alt="Screenshot 2023-09-03 at 23 42 10" src="https://github.com/bevyengine/bevy/assets/302146/2088716a-c918-486c-8129-090b26fd2bc4"> The mesh and material are the same for all instances. This is basically the best case for the initial batching implementation as it results in 1 draw for the ~11.7k visible meshes. It gives a ~30% reduction in median frame time. The 1000th frame is identical using the flip tool: ![flip many_cubes-main-mesh3d many_cubes-batching-mesh3d 67ppd ldr](https://github.com/bevyengine/bevy/assets/302146/2511f37a-6df8-481a-932f-706ca4de7643) ``` Mean: 0.000000 Weighted median: 0.000000 1st weighted quartile: 0.000000 3rd weighted quartile: 0.000000 Min: 0.000000 Max: 0.000000 Evaluation time: 0.4615 seconds ``` ### 3D Mesh `many_cubes --benchmark --material-texture-count 10` <img width="1404" alt="Screenshot 2023-09-03 at 23 45 18" src="https://github.com/bevyengine/bevy/assets/302146/5ee9c447-5bd2-45c6-9706-ac5ff8916daf"> This run uses 10 different materials by varying their textures. The materials are randomly selected, and there is no sorting by material bind group for opaque 3D so any batching is 'random'. The PR produces a ~5% reduction in median frame time. If we were to sort the opaque phase by the material bind group, then this should be a lot faster. This produces about 10.5k draws for the 11.7k visible entities. This makes sense as randomly selecting from 10 materials gives a chance that two adjacent entities randomly select the same material and can be batched. The 1000th frame is identical in flip: ![flip many_cubes-main-mesh3d-mtc10 many_cubes-batching-mesh3d-mtc10 67ppd ldr](https://github.com/bevyengine/bevy/assets/302146/2b3a8614-9466-4ed8-b50c-d4aa71615dbb) ``` Mean: 0.000000 Weighted median: 0.000000 1st weighted quartile: 0.000000 3rd weighted quartile: 0.000000 Min: 0.000000 Max: 0.000000 Evaluation time: 0.4537 seconds ``` ### 3D Mesh `many_cubes --benchmark --vary-per-instance` <img width="1394" alt="Screenshot 2023-09-03 at 23 48 44" src="https://github.com/bevyengine/bevy/assets/302146/f02a816b-a444-4c18-a96a-63b5436f3b7f"> This run varies the material data per instance by randomly-generating its colour. This is the worst case for batching and that it performs about the same as `main` is a good thing as it demonstrates that the batching has minimal overhead when dealing with ~11k visible mesh entities. The 1000th frame is identical according to flip: ![flip many_cubes-main-mesh3d-vpi many_cubes-batching-mesh3d-vpi 67ppd ldr](https://github.com/bevyengine/bevy/assets/302146/ac5f5c14-9bda-4d1a-8219-7577d4aac68c) ``` Mean: 0.000000 Weighted median: 0.000000 1st weighted quartile: 0.000000 3rd weighted quartile: 0.000000 Min: 0.000000 Max: 0.000000 Evaluation time: 0.4568 seconds ``` ### 2D Mesh `bevymark --benchmark --waves 160 --per-wave 1000 --mode mesh2d` <img width="1412" alt="Screenshot 2023-09-03 at 23 59 56" src="https://github.com/bevyengine/bevy/assets/302146/cb02ae07-237b-4646-ae9f-fda4dafcbad4"> This spawns 160 waves of 1000 quad meshes that are shaded with ColorMaterial. Each wave has a different material so 160 waves currently should result in 160 batches. This results in a 50% reduction in median frame time. Capturing a screenshot of the 1000th frame main vs PR gives: ![flip bevymark-main-mesh2d bevymark-batching-mesh2d 67ppd ldr](https://github.com/bevyengine/bevy/assets/302146/80102728-1217-4059-87af-14d05044df40) ``` Mean: 0.001222 Weighted median: 0.750432 1st weighted quartile: 0.453494 3rd weighted quartile: 0.969758 Min: 0.000000 Max: 0.990296 Evaluation time: 0.4255 seconds ``` So they seem to produce the same results. I also double-checked the number of draws. `main` does 160000 draws, and the PR does 160, as expected. ### 2D Mesh `bevymark --benchmark --waves 160 --per-wave 1000 --mode mesh2d --material-texture-count 10` <img width="1392" alt="Screenshot 2023-09-04 at 00 09 22" src="https://github.com/bevyengine/bevy/assets/302146/4358da2e-ce32-4134-82df-3ab74c40849c"> This generates 10 textures and generates materials for each of those and then selects one material per wave. The median frame time is reduced by 50%. Similar to the plain run above, this produces 160 draws on the PR and 160000 on `main` and the 1000th frame is identical (ignoring the fps counter text overlay). ![flip bevymark-main-mesh2d-mtc10 bevymark-batching-mesh2d-mtc10 67ppd ldr](https://github.com/bevyengine/bevy/assets/302146/ebed2822-dce7-426a-858b-b77dc45b986f) ``` Mean: 0.002877 Weighted median: 0.964980 1st weighted quartile: 0.668871 3rd weighted quartile: 0.982749 Min: 0.000000 Max: 0.992377 Evaluation time: 0.4301 seconds ``` ### 2D Mesh `bevymark --benchmark --waves 160 --per-wave 1000 --mode mesh2d --vary-per-instance` <img width="1396" alt="Screenshot 2023-09-04 at 00 13 53" src="https://github.com/bevyengine/bevy/assets/302146/b2198b18-3439-47ad-919a-cdabe190facb"> This creates unique materials per instance by randomly-generating the material's colour. This is the worst case for 2D batching. Somehow, this PR manages a 7% reduction in median frame time. Both main and this PR issue 160000 draws. The 1000th frame is the same: ![flip bevymark-main-mesh2d-vpi bevymark-batching-mesh2d-vpi 67ppd ldr](https://github.com/bevyengine/bevy/assets/302146/a2ec471c-f576-4a36-a23b-b24b22578b97) ``` Mean: 0.001214 Weighted median: 0.937499 1st weighted quartile: 0.635467 3rd weighted quartile: 0.979085 Min: 0.000000 Max: 0.988971 Evaluation time: 0.4462 seconds ``` ### 2D Sprite `bevymark --benchmark --waves 160 --per-wave 1000 --mode sprite` <img width="1396" alt="Screenshot 2023-09-04 at 12 21 12" src="https://github.com/bevyengine/bevy/assets/302146/8b31e915-d6be-4cac-abf5-c6a4da9c3d43"> This just spawns 160 waves of 1000 sprites. There should be and is no notable difference between main and the PR. ### 2D Sprite `bevymark --benchmark --waves 160 --per-wave 1000 --mode sprite --material-texture-count 10` <img width="1389" alt="Screenshot 2023-09-04 at 12 36 08" src="https://github.com/bevyengine/bevy/assets/302146/45fe8d6d-c901-4062-a349-3693dd044413"> This spawns the sprites selecting a texture at random per instance from the 10 generated textures. This has no significant change vs main and shouldn't. ### 2D Sprite `bevymark --benchmark --waves 160 --per-wave 1000 --mode sprite --vary-per-instance` <img width="1401" alt="Screenshot 2023-09-04 at 12 29 52" src="https://github.com/bevyengine/bevy/assets/302146/762c5c60-352e-471f-8dbe-bbf10e24ebd6"> This sets the sprite colour as being unique per instance. This can still all be drawn using one batch. There should be no difference but the PR produces median frame times that are 4% higher. Investigation showed no clear sources of cost, rather a mix of give and take that should not happen. It seems like noise in the results. ### Summary | Benchmark | % change in median frame time | | ------------- | ------------- | | many_cubes | 🟩 -30% | | many_cubes 10 materials | 🟩 -5% | | many_cubes unique materials | 🟩 ~0% | | bevymark mesh2d | 🟩 -50% | | bevymark mesh2d 10 materials | 🟩 -50% | | bevymark mesh2d unique materials | 🟩 -7% | | bevymark sprite | 🟥 2% | | bevymark sprite 10 materials | 🟥 0.6% | | bevymark sprite unique materials | 🟥 4.1% | --- ## Changelog - Added: 2D and 3D mesh entities that share the same mesh and material (same textures, same data) are now batched into the same draw command for better performance. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Nicola Papale <nico@nicopap.ch> |
||
Carter Anderson
|
5eb292dc10
|
Bevy Asset V2 (#8624)
# Bevy Asset V2 Proposal ## Why Does Bevy Need A New Asset System? Asset pipelines are a central part of the gamedev process. Bevy's current asset system is missing a number of features that make it non-viable for many classes of gamedev. After plenty of discussions and [a long community feedback period](https://github.com/bevyengine/bevy/discussions/3972), we've identified a number missing features: * **Asset Preprocessing**: it should be possible to "preprocess" / "compile" / "crunch" assets at "development time" rather than when the game starts up. This enables offloading expensive work from deployed apps, faster asset loading, less runtime memory usage, etc. * **Per-Asset Loader Settings**: Individual assets cannot define their own loaders that override the defaults. Additionally, they cannot provide per-asset settings to their loaders. This is a huge limitation, as many asset types don't provide all information necessary for Bevy _inside_ the asset. For example, a raw PNG image says nothing about how it should be sampled (ex: linear vs nearest). * **Asset `.meta` files**: assets should have configuration files stored adjacent to the asset in question, which allows the user to configure asset-type-specific settings. These settings should be accessible during the pre-processing phase. Modifying a `.meta` file should trigger a re-processing / re-load of the asset. It should be possible to configure asset loaders from the meta file. * **Processed Asset Hot Reloading**: Changes to processed assets (or their dependencies) should result in re-processing them and re-loading the results in live Bevy Apps. * **Asset Dependency Tracking**: The current bevy_asset has no good way to wait for asset dependencies to load. It punts this as an exercise for consumers of the loader apis, which is unreasonable and error prone. There should be easy, ergonomic ways to wait for assets to load and block some logic on an asset's entire dependency tree loading. * **Runtime Asset Loading**: it should be (optionally) possible to load arbitrary assets dynamically at runtime. This necessitates being able to deploy and run the asset server alongside Bevy Apps on _all platforms_. For example, we should be able to invoke the shader compiler at runtime, stream scenes from sources like the internet, etc. To keep deployed binaries (and startup times) small, the runtime asset server configuration should be configurable with different settings compared to the "pre processor asset server". * **Multiple Backends**: It should be possible to load assets from arbitrary sources (filesystems, the internet, remote asset serves, etc). * **Asset Packing**: It should be possible to deploy assets in compressed "packs", which makes it easier and more efficient to distribute assets with Bevy Apps. * **Asset Handoff**: It should be possible to hold a "live" asset handle, which correlates to runtime data, without actually holding the asset in memory. Ex: it must be possible to hold a reference to a GPU mesh generated from a "mesh asset" without keeping the mesh data in CPU memory * **Per-Platform Processed Assets**: Different platforms and app distributions have different capabilities and requirements. Some platforms need lower asset resolutions or different asset formats to operate within the hardware constraints of the platform. It should be possible to define per-platform asset processing profiles. And it should be possible to deploy only the assets required for a given platform. These features have architectural implications that are significant enough to require a full rewrite. The current Bevy Asset implementation got us this far, but it can take us no farther. This PR defines a brand new asset system that implements most of these features, while laying the foundations for the remaining features to be built. ## Bevy Asset V2 Here is a quick overview of the features introduced in this PR. * **Asset Preprocessing**: Preprocess assets at development time into more efficient (and configurable) representations * **Dependency Aware**: Dependencies required to process an asset are tracked. If an asset's processed dependency changes, it will be reprocessed * **Hot Reprocessing/Reloading**: detect changes to asset source files, reprocess them if they have changed, and then hot-reload them in Bevy Apps. * **Only Process Changes**: Assets are only re-processed when their source file (or meta file) has changed. This uses hashing and timestamps to avoid processing assets that haven't changed. * **Transactional and Reliable**: Uses write-ahead logging (a technique commonly used by databases) to recover from crashes / forced-exits. Whenever possible it avoids full-reprocessing / only uncompleted transactions will be reprocessed. When the processor is running in parallel with a Bevy App, processor asset writes block Bevy App asset reads. Reading metadata + asset bytes is guaranteed to be transactional / correctly paired. * **Portable / Run anywhere / Database-free**: The processor does not rely on an in-memory database (although it uses some database techniques for reliability). This is important because pretty much all in-memory databases have unsupported platforms or build complications. * **Configure Processor Defaults Per File Type**: You can say "use this processor for all files of this type". * **Custom Processors**: The `Processor` trait is flexible and unopinionated. It can be implemented by downstream plugins. * **LoadAndSave Processors**: Most asset processing scenarios can be expressed as "run AssetLoader A, save the results using AssetSaver X, and then load the result using AssetLoader B". For example, load this png image using `PngImageLoader`, which produces an `Image` asset and then save it using `CompressedImageSaver` (which also produces an `Image` asset, but in a compressed format), which takes an `Image` asset as input. This means if you have an `AssetLoader` for an asset, you are already half way there! It also means that you can share AssetSavers across multiple loaders. Because `CompressedImageSaver` accepts Bevy's generic Image asset as input, it means you can also use it with some future `JpegImageLoader`. * **Loader and Saver Settings**: Asset Loaders and Savers can now define their own settings types, which are passed in as input when an asset is loaded / saved. Each asset can define its own settings. * **Asset `.meta` files**: configure asset loaders, their settings, enable/disable processing, and configure processor settings * **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex: if an asset contains a `Handle<Image>`) are tracked by the asset server. An event is emitted when an asset and all of its dependencies have been loaded * **Unprocessed Asset Loading**: Assets do not require preprocessing. They can be loaded directly. A processed asset is just a "normal" asset with some extra metadata. Asset Loaders don't need to know or care about whether or not an asset was processed. * **Async Asset IO**: Asset readers/writers use async non-blocking interfaces. Note that because Rust doesn't yet support async traits, there is a bit of manual Boxing / Future boilerplate. This will hopefully be removed in the near future when Rust gets async traits. * **Pluggable Asset Readers and Writers**: Arbitrary asset source readers/writers are supported, both by the processor and the asset server. * **Better Asset Handles** * **Single Arc Tree**: Asset Handles now use a single arc tree that represents the lifetime of the asset. This makes their implementation simpler, more efficient, and allows us to cheaply attach metadata to handles. Ex: the AssetPath of a handle is now directly accessible on the handle itself! * **Const Typed Handles**: typed handles can be constructed in a const context. No more weird "const untyped converted to typed at runtime" patterns! * **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed `Handle<T>` is now much smaller in memory and `AssetId<T>` is even smaller. * **Weak Handle Usage Reduction**: In general Handles are now considered to be "strong". Bevy features that previously used "weak `Handle<T>`" have been ported to `AssetId<T>`, which makes it statically clear that the features do not hold strong handles (while retaining strong type information). Currently Handle::Weak still exists, but it is very possible that we can remove that entirely. * **Efficient / Dense Asset Ids**: Assets now have efficient dense runtime asset ids, which means we can avoid expensive hash lookups. Assets are stored in Vecs instead of HashMaps. There are now typed and untyped ids, which means we no longer need to store dynamic type information in the ID for typed handles. "AssetPathId" (which was a nightmare from a performance and correctness standpoint) has been entirely removed in favor of dense ids (which are retrieved for a path on load) * **Direct Asset Loading, with Dependency Tracking**: Assets that are defined at runtime can still have their dependencies tracked by the Asset Server (ex: if you create a material at runtime, you can still wait for its textures to load). This is accomplished via the (currently optional) "asset dependency visitor" trait. This system can also be used to define a set of assets to load, then wait for those assets to load. * **Async folder loading**: Folder loading also uses this system and immediately returns a handle to the LoadedFolder asset, which means folder loading no longer blocks on directory traversals. * **Improved Loader Interface**: Loaders now have a specific "top level asset type", which makes returning the top-level asset simpler and statically typed. * **Basic Image Settings and Processing**: Image assets can now be processed into the gpu-friendly Basic Universal format. The ImageLoader now has a setting to define what format the image should be loaded as. Note that this is just a minimal MVP ... plenty of additional work to do here. To demo this, enable the `basis-universal` feature and turn on asset processing. * **Simpler Audio Play / AudioSink API**: Asset handle providers are cloneable, which means the Audio resource can mint its own handles. This means you can now do `let sink_handle = audio.play(music)` instead of `let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that this might still be replaced by https://github.com/bevyengine/bevy/pull/8424. **Removed Handle Casting From Engine Features**: Ex: FontAtlases no longer use casting between handle types ## Using The New Asset System ### Normal Unprocessed Asset Loading By default the `AssetPlugin` does not use processing. It behaves pretty much the same way as the old system. If you are defining a custom asset, first derive `Asset`: ```rust #[derive(Asset)] struct Thing { value: String, } ``` Initialize the asset: ```rust app.init_asset:<Thing>() ``` Implement a new `AssetLoader` for it: ```rust #[derive(Default)] struct ThingLoader; #[derive(Serialize, Deserialize, Default)] pub struct ThingSettings { some_setting: bool, } impl AssetLoader for ThingLoader { type Asset = Thing; type Settings = ThingSettings; fn load<'a>( &'a self, reader: &'a mut Reader, settings: &'a ThingSettings, load_context: &'a mut LoadContext, ) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> { Box::pin(async move { let mut bytes = Vec::new(); reader.read_to_end(&mut bytes).await?; // convert bytes to value somehow Ok(Thing { value }) }) } fn extensions(&self) -> &[&str] { &["thing"] } } ``` Note that this interface will get much cleaner once Rust gets support for async traits. `Reader` is an async futures_io::AsyncRead. You can stream bytes as they come in or read them all into a `Vec<u8>`, depending on the context. You can use `let handle = load_context.load(path)` to kick off a dependency load, retrieve a handle, and register the dependency for the asset. Then just register the loader in your Bevy app: ```rust app.init_asset_loader::<ThingLoader>() ``` Now just add your `Thing` asset files into the `assets` folder and load them like this: ```rust fn system(asset_server: Res<AssetServer>) { let handle = Handle<Thing> = asset_server.load("cool.thing"); } ``` You can check load states directly via the asset server: ```rust if asset_server.load_state(&handle) == LoadState::Loaded { } ``` You can also listen for events: ```rust fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) { for event in events.iter() { if event.is_loaded_with_dependencies(&handle) { } } } ``` Note the new `AssetEvent::LoadedWithDependencies`, which only fires when the asset is loaded _and_ all dependencies (and their dependencies) have loaded. Unlike the old asset system, for a given asset path all `Handle<T>` values point to the same underlying Arc. This means Handles can cheaply hold more asset information, such as the AssetPath: ```rust // prints the AssetPath of the handle info!("{:?}", handle.path()) ``` ### Processed Assets Asset processing can be enabled via the `AssetPlugin`. When developing Bevy Apps with processed assets, do this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev())) ``` This runs the `AssetProcessor` in the background with hot-reloading. It reads assets from the `assets` folder, processes them, and writes them to the `.imported_assets` folder. Asset loads in the Bevy App will wait for a processed version of the asset to become available. If an asset in the `assets` folder changes, it will be reprocessed and hot-reloaded in the Bevy App. When deploying processed Bevy apps, do this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::processed())) ``` This does not run the `AssetProcessor` in the background. It behaves like `AssetPlugin::unprocessed()`, but reads assets from `.imported_assets`. When the `AssetProcessor` is running, it will populate sibling `.meta` files for assets in the `assets` folder. Meta files for assets that do not have a processor configured look like this: ```rust ( meta_format_version: "1.0", asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: FromExtension, ), ), ) ``` This is metadata for an image asset. For example, if you have `assets/my_sprite.png`, this could be the metadata stored at `assets/my_sprite.png.meta`. Meta files are totally optional. If no metadata exists, the default settings will be used. In short, this file says "load this asset with the ImageLoader and use the file extension to determine the image type". This type of meta file is supported in all AssetPlugin modes. If in `Unprocessed` mode, the asset (with the meta settings) will be loaded directly. If in `ProcessedDev` mode, the asset file will be copied directly to the `.imported_assets` folder. The meta will also be copied directly to the `.imported_assets` folder, but with one addition: ```rust ( meta_format_version: "1.0", processed_info: Some(( hash: 12415480888597742505, full_hash: 14344495437905856884, process_dependencies: [], )), asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: FromExtension, ), ), ) ``` `processed_info` contains `hash` (a direct hash of the asset and meta bytes), `full_hash` (a hash of `hash` and the hashes of all `process_dependencies`), and `process_dependencies` (the `path` and `full_hash` of every process_dependency). A "process dependency" is an asset dependency that is _directly_ used when processing the asset. Images do not have process dependencies, so this is empty. When the processor is enabled, you can use the `Process` metadata config: ```rust ( meta_format_version: "1.0", asset: Process( processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>", settings: ( loader_settings: ( format: FromExtension, ), saver_settings: ( generate_mipmaps: true, ), ), ), ) ``` This configures the asset to use the `LoadAndSave` processor, which runs an AssetLoader and feeds the result into an AssetSaver (which saves the given Asset and defines a loader to load it with). (for terseness LoadAndSave will likely get a shorter/friendlier type name when [Stable Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common processor type, but arbitrary processors are supported. `CompressedImageSaver` saves an `Image` in the Basis Universal format and configures the ImageLoader to load it as basis universal. The `AssetProcessor` will read this meta, run it through the LoadAndSave processor, and write the basis-universal version of the image to `.imported_assets`. The final metadata will look like this: ```rust ( meta_format_version: "1.0", processed_info: Some(( hash: 905599590923828066, full_hash: 9948823010183819117, process_dependencies: [], )), asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: Format(Basis), ), ), ) ``` To try basis-universal processing out in Bevy examples, (for example `sprite.rs`), change `add_plugins(DefaultPlugins)` to `add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run with the `basis-universal` feature enabled: `cargo run --features=basis-universal --example sprite`. To create a custom processor, there are two main paths: 1. Use the `LoadAndSave` processor with an existing `AssetLoader`. Implement the `AssetSaver` trait, register the processor using `asset_processor.register_processor::<LoadAndSave<ImageLoader, CompressedImageSaver>>(image_saver.into())`. 2. Implement the `Process` trait directly and register it using: `asset_processor.register_processor(thing_processor)`. You can configure default processors for file extensions like this: ```rust asset_processor.set_default_processor::<ThingProcessor>("thing") ``` There is one more metadata type to be aware of: ```rust ( meta_format_version: "1.0", asset: Ignore, ) ``` This will ignore the asset during processing / prevent it from being written to `.imported_assets`. The AssetProcessor stores a transaction log at `.imported_assets/log` and uses it to gracefully recover from unexpected stops. This means you can force-quit the processor (and Bevy Apps running the processor in parallel) at arbitrary times! `.imported_assets` is "local state". It should _not_ be checked into source control. It should also be considered "read only". In practice, you _can_ modify processed assets and processed metadata if you really need to test something. But those modifications will not be represented in the hashes of the assets, so the processed state will be "out of sync" with the source assets. The processor _will not_ fix this for you. Either revert the change after you have tested it, or delete the processed files so they can be re-populated. ## Open Questions There are a number of open questions to be discussed. We should decide if they need to be addressed in this PR and if so, how we will address them: ### Implied Dependencies vs Dependency Enumeration There are currently two ways to populate asset dependencies: * **Implied via AssetLoaders**: if an AssetLoader loads an asset (and retrieves a handle), a dependency is added to the list. * **Explicit via the optional Asset::visit_dependencies**: if `server.load_asset(my_asset)` is called, it will call `my_asset.visit_dependencies`, which will grab dependencies that have been manually defined for the asset via the Asset trait impl (which can be derived). This means that defining explicit dependencies is optional for "loaded assets". And the list of dependencies is always accurate because loaders can only produce Handles if they register dependencies. If an asset was loaded with an AssetLoader, it only uses the implied dependencies. If an asset was created at runtime and added with `asset_server.load_asset(MyAsset)`, it will use `Asset::visit_dependencies`. However this can create a behavior mismatch between loaded assets and equivalent "created at runtime" assets if `Assets::visit_dependencies` doesn't exactly match the dependencies produced by the AssetLoader. This behavior mismatch can be resolved by completely removing "implied loader dependencies" and requiring `Asset::visit_dependencies` to supply dependency data. But this creates two problems: * It makes defining loaded assets harder and more error prone: Devs must remember to manually annotate asset dependencies with `#[dependency]` when deriving `Asset`. For more complicated assets (such as scenes), the derive likely wouldn't be sufficient and a manual `visit_dependencies` impl would be required. * Removes the ability to immediately kick off dependency loads: When AssetLoaders retrieve a Handle, they also immediately kick off an asset load for the handle, which means it can start loading in parallel _before_ the asset finishes loading. For large assets, this could be significant. (although this could be mitigated for processed assets if we store dependencies in the processed meta file and load them ahead of time) ### Eager ProcessorDev Asset Loading I made a controversial call in the interest of fast startup times ("time to first pixel") for the "processor dev mode configuration". When initializing the AssetProcessor, current processed versions of unchanged assets are yielded immediately, even if their dependencies haven't been checked yet for reprocessing. This means that non-current-state-of-filesystem-but-previously-valid assets might be returned to the App first, then hot-reloaded if/when their dependencies change and the asset is reprocessed. Is this behavior desirable? There is largely one alternative: do not yield an asset from the processor to the app until all of its dependencies have been checked for changes. In some common cases (load dependency has not changed since last run) this will increase startup time. The main question is "by how much" and is that slower startup time worth it in the interest of only yielding assets that are true to the current state of the filesystem. Should this be configurable? I'm starting to think we should only yield an asset after its (historical) dependencies have been checked for changes + processed as necessary, but I'm curious what you all think. ### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs? In this implementation AssetPaths are the only canonical asset identifier (just like the previous Bevy Asset system and Godot). Moving assets will result in re-scans (and currently reprocessing, although reprocessing can easily be avoided with some changes). Asset renames/moves will break code and assets that rely on specific paths, unless those paths are fixed up. Do we want / need "stable asset uuids"? Introducing them is very possible: 1. Generate a UUID and include it in .meta files 2. Support UUID in AssetPath 3. Generate "asset indices" which are loaded on startup and map UUIDs to paths. 4 (maybe). Consider only supporting UUIDs for processed assets so we can generate quick-to-load indices instead of scanning meta files. The main "pro" is that assets referencing UUIDs don't need to be migrated when a path changes. The main "con" is that UUIDs cannot be "lazily resolved" like paths. They need a full view of all assets to answer the question "does this UUID exist". Which means UUIDs require the AssetProcessor to fully finish startup scans before saying an asset doesnt exist. And they essentially require asset pre-processing to use in apps, because scanning all asset metadata files at runtime to resolve a UUID is not viable for medium-to-large apps. It really requires a pre-generated UUID index, which must be loaded before querying for assets. I personally think this should be investigated in a separate PR. Paths aren't going anywhere ... _everyone_ uses filesystems (and filesystem-like apis) to manage their asset source files. I consider them permanent canonical asset information. Additionally, they behave well for both processed and unprocessed asset modes. Given that Bevy is supporting both, this feels like the right canonical ID to start with. UUIDS (and maybe even other indexed-identifier types) can be added later as necessary. ### Folder / File Naming Conventions All asset processing config currently lives in the `.imported_assets` folder. The processor transaction log is in `.imported_assets/log`. Processed assets are added to `.imported_assets/Default`, which will make migrating to processed asset profiles (ex: a `.imported_assets/Mobile` profile) a non-breaking change. It also allows us to create top-level files like `.imported_assets/log` without it being interpreted as an asset. Meta files currently have a `.meta` suffix. Do we like these names and conventions? ### Should the `AssetPlugin::processed_dev` configuration enable `watch_for_changes` automatically? Currently it does (which I think makes sense), but it does make it the only configuration that enables watch_for_changes by default. ### Discuss on_loaded High Level Interface: This PR includes a very rough "proof of concept" `on_loaded` system adapter that uses the `LoadedWithDependencies` event in combination with `asset_server.load_asset` dependency tracking to support this pattern ```rust fn main() { App::new() .init_asset::<MyAssets>() .add_systems(Update, on_loaded(create_array_texture)) .run(); } #[derive(Asset, Clone)] struct MyAssets { #[dependency] picture_of_my_cat: Handle<Image>, #[dependency] picture_of_my_other_cat: Handle<Image>, } impl FromWorld for ArrayTexture { fn from_world(world: &mut World) -> Self { picture_of_my_cat: server.load("meow.png"), picture_of_my_other_cat: server.load("meeeeeeeow.png"), } } fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) { commands.spawn(SpriteBundle { texture: my_assets.picture_of_my_cat.clone(), ..default() }); commands.spawn(SpriteBundle { texture: my_assets.picture_of_my_other_cat.clone(), ..default() }); } ``` The implementation is _very_ rough. And it is currently unsafe because `bevy_ecs` doesn't expose some internals to do this safely from inside `bevy_asset`. There are plenty of unanswered questions like: * "do we add a Loadable" derive? (effectively automate the FromWorld implementation above) * Should `MyAssets` even be an Asset? (largely implemented this way because it elegantly builds on `server.load_asset(MyAsset { .. })` dependency tracking). We should think hard about what our ideal API looks like (and if this is a pattern we want to support). Not necessarily something we need to solve in this PR. The current `on_loaded` impl should probably be removed from this PR before merging. ## Clarifying Questions ### What about Assets as Entities? This Bevy Asset V2 proposal implementation initially stored Assets as ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used `Entity` as the asset id and Asset values were just ECS components. There are plenty of compelling reasons to do this: 1. Easier to inline assets in Bevy Scenes (as they are "just" normal entities + components) 2. More flexible queries: use the power of the ECS to filter assets (ex: `Query<Mesh, With<Tree>>`). 3. Extensible. Users can add arbitrary component data to assets. 4. Things like "component visualization tools" work out of the box to visualize asset data. However Assets as Entities has a ton of caveats right now: * We need to be able to allocate entity ids without a direct World reference (aka rework id allocator in Entities ... i worked around this in my prototypes by just pre allocating big chunks of entities) * We want asset change events in addition to ECS change tracking ... how do we populate them when mutations can come from anywhere? Do we use Changed queries? This would require iterating over the change data for all assets every frame. Is this acceptable or should we implement a new "event based" component change detection option? * Reconciling manually created assets with asset-system managed assets has some nuance (ex: are they "loaded" / do they also have that component metadata?) * "how do we handle "static" / default entity handles" (ties in to the Entity Indices discussion: https://github.com/bevyengine/bevy/discussions/8319). This is necessary for things like "built in" assets and default handles in things like SpriteBundle. * Storing asset information as a component makes it easy to "invalidate" asset state by removing the component (or forcing modifications). Ideally we have ways to lock this down (some combination of Rust type privacy and ECS validation) In practice, how we store and identify assets is a reasonably superficial change (porting off of Assets as Entities and implementing dedicated storage + ids took less than a day). So once we sort out the remaining challenges the flip should be straightforward. Additionally, I do still have "Assets as Entities" in my commit history, so we can reuse that work. I personally think "assets as entities" is a good endgame, but it also doesn't provide _significant_ value at the moment and it certainly isn't ready yet with the current state of things. ### Why not Distill? [Distill](https://github.com/amethyst/distill) is a high quality fully featured asset system built in Rust. It is very natural to ask "why not just use Distill?". It is also worth calling out that for awhile, [we planned on adopting Distill / I signed off on it](https://github.com/bevyengine/bevy/issues/708). However I think Bevy has a number of constraints that make Distill adoption suboptimal: * **Architectural Simplicity:** * Distill's processor requires an in-memory database (lmdb) and RPC networked API (using Cap'n Proto). Each of these introduces API complexity that increases maintenance burden and "code grokability". Ignoring tests, documentation, and examples, Distill has 24,237 lines of Rust code (including generated code for RPC + database interactions). If you ignore generated code, it has 11,499 lines. * Bevy builds the AssetProcessor and AssetServer using pluggable AssetReader/AssetWriter Rust traits with simple io interfaces. They do not necessitate databases or RPC interfaces (although Readers/Writers could use them if that is desired). Bevy Asset V2 (at the time of writing this PR) is 5,384 lines of Rust code (ignoring tests, documentation, and examples). Grain of salt: Distill does have more features currently (ex: Asset Packing, GUIDS, remote-out-of-process asset processor). I do plan to implement these features in Bevy Asset V2 and I personally highly doubt they will meaningfully close the 6115 lines-of-code gap. * This complexity gap (which while illustrated by lines of code, is much bigger than just that) is noteworthy to me. Bevy should be hackable and there are pillars of Distill that are very hard to understand and extend. This is a matter of opinion (and Bevy Asset V2 also has complicated areas), but I think Bevy Asset V2 is much more approachable for the average developer. * Necessary disclaimer: counting lines of code is an extremely rough complexity metric. Read the code and form your own opinions. * **Optional Asset Processing:** Not all Bevy Apps (or Bevy App developers) need / want asset preprocessing. Processing increases the complexity of the development environment by introducing things like meta files, imported asset storage, running processors in the background, waiting for processing to finish, etc. Distill _requires_ preprocessing to work. With Bevy Asset V2 processing is fully opt-in. The AssetServer isn't directly aware of asset processors at all. AssetLoaders only care about converting bytes to runtime Assets ... they don't know or care if the bytes were pre-processed or not. Processing is "elegantly" (forgive my self-congratulatory phrasing) layered on top and builds on the existing Asset system primitives. * **Direct Filesystem Access to Processed Asset State:** Distill stores processed assets in a database. This makes debugging / inspecting the processed outputs harder (either requires special tooling to query the database or they need to be "deployed" to be inspected). Bevy Asset V2, on the other hand, stores processed assets in the filesystem (by default ... this is configurable). This makes interacting with the processed state more natural. Note that both Godot and Unity's new asset system store processed assets in the filesystem. * **Portability**: Because Distill's processor uses lmdb and RPC networking, it cannot be run on certain platforms (ex: lmdb is a non-rust dependency that cannot run on the web, some platforms don't support running network servers). Bevy should be able to process assets everywhere (ex: run the Bevy Editor on the web, compile + process shaders on mobile, etc). Distill does partially mitigate this problem by supporting "streaming" assets via the RPC protocol, but this is not a full solve from my perspective. And Bevy Asset V2 can (in theory) also stream assets (without requiring RPC, although this isn't implemented yet) Note that I _do_ still think Distill would be a solid asset system for Bevy. But I think the approach in this PR is a better solve for Bevy's specific "asset system requirements". ### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the point? "True async file io" has limited / spotty platform support. async-fs (and the rust async ecosystem generally ... ex Tokio) currently use async wrappers over std::fs that offload blocking requests to separate threads. This may feel unsatisfying, but it _does_ still provide value because it prevents our task pools from blocking on file system operations (which would prevent progress when there are many tasks to do, but all threads in a pool are currently blocking on file system ops). Additionally, using async APIs for our AssetReaders and AssetWriters also provides value because we can later add support for "true async file io" for platforms that support it. _And_ we can implement other "true async io" asset backends (such as networked asset io). ## Draft TODO - [x] Fill in missing filesystem event APIs: file removed event (which is expressed as dangling RenameFrom events in some cases), file/folder renamed event - [x] Assets without loaders are not moved to the processed folder. This breaks things like referenced `.bin` files for GLTFs. This should be configurable per-non-asset-type. - [x] Initial implementation of Reflect and FromReflect for Handle. The "deserialization" parity bar is low here as this only worked with static UUIDs in the old impl ... this is a non-trivial problem. Either we add a Handle::AssetPath variant that gets "upgraded" to a strong handle on scene load or we use a separate AssetRef type for Bevy scenes (which is converted to a runtime Handle on load). This deserves its own discussion in a different pr. - [x] Populate read_asset_bytes hash when run by the processor (a bit of a special case .. when run by the processor the processed meta will contain the hash so we don't need to compute it on the spot, but we don't want/need to read the meta when run by the main AssetServer) - [x] Delay hot reloading: currently filesystem events are handled immediately, which creates timing issues in some cases. For example hot reloading images can sometimes break because the image isn't finished writing. We should add a delay, likely similar to the [implementation in this PR](https://github.com/bevyengine/bevy/pull/8503). - [x] Port old platform-specific AssetIo implementations to the new AssetReader interface (currently missing Android and web) - [x] Resolve on_loaded unsafety (either by removing the API entirely or removing the unsafe) - [x] Runtime loader setting overrides - [x] Remove remaining unwraps that should be error-handled. There are number of TODOs here - [x] Pretty AssetPath Display impl - [x] Document more APIs - [x] Resolve spurious "reloading because it has changed" events (to repro run load_gltf with `processed_dev()`) - [x] load_dependency hot reloading currently only works for processed assets. If processing is disabled, load_dependency changes are not hot reloaded. - [x] Replace AssetInfo dependency load/fail counters with `loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from (potentially) breaking counters. Storing this will also enable "dependency reloaded" events (see [Next Steps](#next-steps)) - [x] Re-add filesystem watcher cargo feature gate (currently it is not optional) - [ ] Migration Guide - [ ] Changelog ## Followup TODO - [ ] Replace "eager unchanged processed asset loading" behavior with "don't returned unchanged processed asset until dependencies have been checked". - [ ] Add true `Ignore` AssetAction that does not copy the asset to the imported_assets folder. - [ ] Finish "live asset unloading" (ex: free up CPU asset memory after uploading an image to the GPU), rethink RenderAssets, and port renderer features. The `Assets` collection uses `Option<T>` for asset storage to support its removal. (1) the Option might not actually be necessary ... might be able to just remove from the collection entirely (2) need to finalize removal apis - [ ] Try replacing the "channel based" asset id recycling with something a bit more efficient (ex: we might be able to use raw atomic ints with some cleverness) - [ ] Consider adding UUIDs to processed assets (scoped just to helping identify moved assets ... not exposed to load queries ... see [Next Steps](#next-steps)) - [ ] Store "last modified" source asset and meta timestamps in processed meta files to enable skipping expensive hashing when the file wasn't changed - [ ] Fix "slow loop" handle drop fix - [ ] Migrate to TypeName - [x] Handle "loader preregistration". See #9429 ## Next Steps * **Configurable per-type defaults for AssetMeta**: It should be possible to add configuration like "all png image meta should default to using nearest sampling" (currently this hard-coded per-loader/processor Settings::default() impls). Also see the "Folder Meta" bullet point. * **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical asset ids" discussion in [Open Questions](#open-questions) and the relevant bullet point in [Draft TODO](#draft-todo). Even without canonical ids, folder renames could avoid reprocessing in some cases. * **Multiple Asset Sources**: Expand AssetPath to support "asset source names" and support multiple AssetReaders in the asset server (ex: `webserver://some_path/image.png` backed by an Http webserver AssetReader). The "default" asset reader would use normal `some_path/image.png` paths. Ideally this works in combination with multiple AssetWatchers for hot-reloading * **Stable Type Names**: this pr removes the TypeUuid requirement from assets in favor of `std::any::type_name`. This makes defining assets easier (no need to generate a new uuid / use weird proc macro syntax). It also makes reading meta files easier (because things have "friendly names"). We also use type names for components in scene files. If they are good enough for components, they are good enough for assets. And consistency across Bevy pillars is desirable. However, `std::any::type_name` is not guaranteed to be stable (although in practice it is). We've developed a [stable type path](https://github.com/bevyengine/bevy/pull/7184) to resolve this, which should be adopted when it is ready. * **Command Line Interface**: It should be possible to run the asset processor in a separate process from the command line. This will also require building a network-server-backed AssetReader to communicate between the app and the processor. We've been planning to build a "bevy cli" for awhile. This seems like a good excuse to build it. * **Asset Packing**: This is largely an additive feature, so it made sense to me to punt this until we've laid the foundations in this PR. * **Per-Platform Processed Assets**: It should be possible to generate assets for multiple platforms by supporting multiple "processor profiles" per asset (ex: compress with format X on PC and Y on iOS). I think there should probably be arbitrary "profiles" (which can be separate from actual platforms), which are then assigned to a given platform when generating the final asset distribution for that platform. Ex: maybe devs want a "Mobile" profile that is shared between iOS and Android. Or a "LowEnd" profile shared between web and mobile. * **Versioning and Migrations**: Assets, Loaders, Savers, and Processors need to have versions to determine if their schema is valid. If an asset / loader version is incompatible with the current version expected at runtime, the processor should be able to migrate them. I think we should try using Bevy Reflect for this, as it would allow us to load the old version as a dynamic Reflect type without actually having the old Rust type. It would also allow us to define "patches" to migrate between versions (Bevy Reflect devs are currently working on patching). The `.meta` file already has its own format version. Migrating that to new versions should also be possible. * **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write type) currently used by AssetPath can still result in String clones that aren't actually necessary (cloning an Owned Cow clones the contents). Bevy's asset system requires cloning AssetPaths in a number of places, which result in actual clones of the internal Strings. This is not efficient. AssetPath internals should be reworked to exhibit truer cow-like-behavior that reduces String clones to the absolute minimum. * **Consider processor-less processing**: In theory the AssetServer could run processors "inline" even if the background AssetProcessor is disabled. If we decide this is actually desirable, we could add this. But I don't think its a priority in the short or medium term. * **Pre-emptive dependency loading**: We could encode dependencies in processed meta files, which could then be used by the Asset Server to kick of dependency loads as early as possible (prior to starting the actual asset load). Is this desirable? How much time would this save in practice? * **Optimize Processor With UntypedAssetIds**: The processor exclusively uses AssetPath to identify assets currently. It might be possible to swap these out for UntypedAssetIds in some places, which are smaller / cheaper to hash and compare. * **One to Many Asset Processing**: An asset source file that produces many assets currently must be processed into a single "processed" asset source. If labeled assets can be written separately they can each have their own configured savers _and_ they could be loaded more granularly. Definitely worth exploring! * **Automatically Track "Runtime-only" Asset Dependencies**: Right now, tracking "created at runtime" asset dependencies requires adding them via `asset_server.load_asset(StandardMaterial::default())`. I think with some cleverness we could also do this for `materials.add(StandardMaterial::default())`, making tracking work "everywhere". There are challenges here relating to change detection / ensuring the server is made aware of dependency changes. This could be expensive in some cases. * **"Dependency Changed" events**: Some assets have runtime artifacts that need to be re-generated when one of their dependencies change (ex: regenerate a material's bind group when a Texture needs to change). We are generating the dependency graph so we can definitely produce these events. Buuuuut generating these events will have a cost / they could be high frequency for some assets, so we might want this to be opt-in for specific cases. * **Investigate Storing More Information In Handles**: Handles can now store arbitrary information, which makes it cheaper and easier to access. How much should we move into them? Canonical asset load states (via atomics)? (`handle.is_loaded()` would be very cool). Should we store the entire asset and remove the `Assets<T>` collection? (`Arc<RwLock<Option<Image>>>`?) * **Support processing and loading files without extensions**: This is a pretty arbitrary restriction and could be supported with very minimal changes. * **Folder Meta**: It would be nice if we could define per folder processor configuration defaults (likely in a `.meta` or `.folder_meta` file). Things like "default to linear filtering for all Images in this folder". * **Replace async_broadcast with event-listener?** This might be approximately drop-in for some uses and it feels more light weight * **Support Running the AssetProcessor on the Web**: Most of the hard work is done here, but there are some easy straggling TODOs (make the transaction log an interface instead of a direct file writer so we can write a web storage backend, implement an AssetReader/AssetWriter that reads/writes to something like LocalStorage). * **Consider identifying and preventing circular dependencies**: This is especially important for "processor dependencies", as processing will silently never finish in these cases. * **Built-in/Inlined Asset Hot Reloading**: This PR regresses "built-in/inlined" asset hot reloading (previously provided by the DebugAssetServer). I'm intentionally punting this because I think it can be cleanly implemented with "multiple asset sources" by registering a "debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset paths) in combination with an AssetWatcher for that asset source and support for "manually loading pats with asset bytes instead of AssetReaders". The old DebugAssetServer was quite nasty and I'd love to avoid that hackery going forward. * **Investigate ways to remove double-parsing meta files**: Parsing meta files currently involves parsing once with "minimal" versions of the meta file to extract the type name of the loader/processor config, then parsing again to parse the "full" meta. This is suboptimal. We should be able to define custom deserializers that (1) assume the loader/processor type name comes first (2) dynamically looks up the loader/processor registrations to deserialize settings in-line (similar to components in the bevy scene format). Another alternative: deserialize as dynamic Reflect objects and then convert. * **More runtime loading configuration**: Support using the Handle type as a hint to select an asset loader (instead of relying on AssetPath extensions) * **More high level Processor trait implementations**: For example, it might be worth adding support for arbitrary chains of "asset transforms" that modify an in-memory asset representation between loading and saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by a `flip_normals` transform, then save the mesh to an efficient compressed format). * **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO item](#draft-todo) for context) * **Explore High Level Load Interfaces**: See [this discussion](#discuss-on_loaded-high-level-interface) for one prototype. * **Asset Streaming**: It would be great if we could stream Assets (ex: stream a long video file piece by piece) * **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than they need to be because they have a Uuid enum variant. If we implement an "id exchanging" system that trades Uuids for "efficient runtime ids", we can cut down on the size of AssetIds, making them more efficient. This has some open design questions, such as how to spawn entities with "default" handle values (as these wouldn't have access to the exchange api in the current system). * **Asset Path Fixup Tooling**: Assets that inline asset paths inside them will break when an asset moves. The asset system provides the functionality to detect when paths break. We should build a framework that enables formats to define "path migrations". This is especially important for scene files. For editor-generated files, we should also consider using UUIDs (see other bullet point) to avoid the need to migrate in these cases. --------- Co-authored-by: BeastLe9enD <beastle9end@outlook.de> Co-authored-by: Mike <mike.hsu@gmail.com> Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com> |
||
Joseph
|
02b520b4e8
|
Split ComputedVisibility into two components to allow for accurate change detection and speed up visibility propagation (#9497)
# Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> |
||
James O'Brien
|
4f1d9a6315
|
Reorder render sets, refactor bevy_sprite to take advantage (#9236)
This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> |
||
st0rmbtw
|
b6a9d8eba7
|
Change UiScale to a tuple struct (#9444)
# Objective Inconvenient initialization of `UiScale` ## Solution Change `UiScale` to a tuple struct ## Migration Guide Replace initialization of `UiScale` like ```UiScale { scale: 1.0 }``` with ```UiScale(1.0)``` |
||
ickshonpe
|
da59de956f
|
Remove the With<Parent> query filter from bevy_ui::render::extract_uinode_borders (#9285)
# Objective Remove the `With<Parent>` query filter from the `parent_node_query` parameter of the `bevy_ui::render::extract_uinode_borders` function. This is a bug, the query is only used to retrieve the size of the current node's parent. We don't care if that parent node has a `Parent` or not. --------- Co-authored-by: François <mockersf@gmail.com> |
||
Elabajaba
|
774fb56a67
|
Revert "Fix UI corruption for AMD gpus with Vulkan (#9169)" (#9237)
# Objective Fixes https://github.com/bevyengine/bevy/issues/9234 re-breaks: The issues that were linked in #9169 ## Solution Revert the PR that broke tonemapping/postprocessing/etc. Any passes that are post msaa resolve need to use the main textures, not the msaa texture. ## Changelog Idk what to put here since it's a revert. |
||
ickshonpe
|
a879f98d3b
|
UI extraction order fix (#9099)
# Objective Fixes #9097 ## Solution Reorder the `ExtractSchedule` so that the `extract_text_uinodes` and `extract_uinode_borders` systems are run after `extract_atlas_uinodes`. ## Changelog `bevy_ui::render`: * Added the `ExtractAtlasNode` variant to `RenderUiSystem`. * Changed `ExtractSchedule` so that `extract_uinode_borders` and `extract_text_uinodes` run after `extract_atlas_uinodes`. |
||
ickshonpe
|
6f8089d35c
|
Fix UI corruption for AMD gpus with Vulkan (#9169)
# Objective Fixes #8894 Fixes #7944 ## Solution The UI pipeline's `MultisampleState::count` is set to 1 whereas the `MultisampleState::count` for the camera's ViewTarget is taken from the `Msaa` resource, and corruption occurs when these two values are different. This PR solves the problem by setting `MultisampleState::count` for the UI pipeline to the value from the Msaa resource too. I don't know much about Bevy's rendering internals or graphics hardware, so maybe there is a better solution than this. UI MSAA was probably disabled for a good reason (performance?). ## Changelog * Enabled multisampling for the UI pipeline. |
||
Ame
|
7154b59438
|
Return URect instead of (UVec2, UVec2) in Camera::physical_viewport_rect (#9085)
# Objective Continue #7867 now that we have URect #7984 - Return `URect` instead of `(UVec2, UVec2)` in `Camera::physical_viewport_rect` - Add `URect` and `IRect` to prelude ## Changelog - Changed `Camera::physical_viewport_rect` return type from `(UVec2, UVec2)` to `URect` - `URect` and `IRect` were added to prelude ## Migration Guide Before: ```rust fn view_physical_camera_rect(camera_query: Query<&Camera>) { let camera = camera_query.single(); let Some((min, max)) = camera.physical_viewport_rect() else { return }; dbg!(min, max); } ``` After: ```rust fn view_physical_camera_rect(camera_query: Query<&Camera>) { let camera = camera_query.single(); let Some(URect { min, max }) = camera.physical_viewport_rect() else { return }; dbg!(min, max); } ``` |
||
ickshonpe
|
0df3d7f586
|
Drain ExtractedUiNodes in prepare_uinodes (#9142)
# Objective `ExtractedUiNodes` is cleared by the `extract_uinodes` function during the extraction schedule. Because the Bevy UI renderer uses a painters algorithm, this makes it impossible for users to create a custom extraction function that adds items for a node to be drawn behind the rectangle added by `extract_uniodes`. ## Solution Drain `ExtractedUiNodes` in `prepare_ui_nodes` instead, after the extraction schedule has finished. |
||
ClayenKitten
|
ffc572728f
|
Fix typos throughout the project (#9090)
# Objective
Fix typos throughout the project.
## Solution
[`typos`](https://github.com/crate-ci/typos) project was used for
scanning, but no automatic corrections were applied. I checked
everything by hand before fixing.
Most of the changes are documentation/comments corrections. Also, there
are few trivial changes to code (variable name, pub(crate) function name
and a few error/panic messages).
## Unsolved
`bevy_reflect_derive` has
[typo](
|
||
ickshonpe
|
9655acebb6
|
Divide by UiScale when converting UI coordinates from physical to logical (#8720)
# Objective After the UI layout is computed when the coordinates are converted back from physical coordinates to logical coordinates the `UiScale` is ignored. This results in a confusing situation where we have two different systems of logical coordinates. Example: ```rust use bevy::prelude::*; fn main() { App::new() .add_plugins(DefaultPlugins) .add_systems(Startup, setup) .add_systems(Update, update) .run(); } fn setup(mut commands: Commands, mut ui_scale: ResMut<UiScale>) { ui_scale.scale = 4.; commands.spawn(Camera2dBundle::default()); commands.spawn(NodeBundle { style: Style { align_items: AlignItems::Center, justify_content: JustifyContent::Center, width: Val::Percent(100.), ..Default::default() }, ..Default::default() }) .with_children(|builder| { builder.spawn(NodeBundle { style: Style { width: Val::Px(100.), height: Val::Px(100.), ..Default::default() }, background_color: Color::MAROON.into(), ..Default::default() }).with_children(|builder| { builder.spawn(TextBundle::from_section("", TextStyle::default()); }); }); } fn update( mut text_query: Query<(&mut Text, &Parent)>, node_query: Query<Ref<Node>>, ) { for (mut text, parent) in text_query.iter_mut() { let node = node_query.get(parent.get()).unwrap(); if node.is_changed() { text.sections[0].value = format!("size: {}", node.size()); } } } ``` result: ![Bevy App 30_05_2023 16_54_32](https://github.com/bevyengine/bevy/assets/27962798/a5ecbf31-0a12-4669-87df-b0c32f058732) We asked for a 100x100 UI node but the Node's size is multiplied by the value of `UiScale` to give a logical size of 400x400. ## Solution Divide the output physical coordinates by `UiScale` in `ui_layout_system` and multiply the logical viewport size by `UiScale` when creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. --- ## Changelog * The UI layout's physical coordinates are divided by both the window scale factor and `UiScale` when converting them back to logical coordinates. The logical size of Ui nodes now matches the values given to their size constraints. * Multiply the logical viewport size by `UiScale` before creating the projection matrix for the UI's `ExtractedView` in `extract_default_ui_camera_view`. * In `ui_focus_system` the cursor position returned from `Window` is divided by `UiScale`. * Added a scale factor parameter to `Node::physical_size` and `Node::physical_rect`. * The example `viewport_debug` now uses a `UiScale` of 2. to ensure that viewport coordinates are working correctly with a non-unit `UiScale`. ## Migration Guide Physical UI coordinates are now divided by both the `UiScale` and the window's scale factor to compute the logical sizes and positions of UI nodes. This ensures that UI Node size and position values, held by the `Node` and `GlobalTransform` components, conform to the same logical coordinate system as the style constraints from which they are derived, irrespective of the current `scale_factor` and `UiScale`. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
ickshonpe
|
048e00fc32
|
Remove unnecessary clone_weak (#9053)
# Objective In `extract_uinodes` it's not neccessary to clone the `DEFAULT_IMAGE_HANDLE.typed()` handle. |
||
ickshonpe
|
c39e02cefb
|
Improved UI render batching (#8793)
# Objective `prepare_uinodes` creates a new `UiBatch` whenever the texture changes, when most often it's just queuing untextured quads. Instead of switching textures, we can reduce the number of batches generated significantly by adding a condition to the fragment shader so that it only multiplies by the `textureSample` value when drawing a textured quad. # Solution Add a `mode` field to `UiVertex`. In `prepare_uinodes` set `mode` to 0 if the quad is textured or 1 if untextured. Add a condition to the fragment shader that only multiplies by the `color` value from `textureSample` if `mode` is set to 1. --- ## Changelog * Added a `mode` field to `UiVertex`, and added an extra `u32` vertex attribute to the shader and vertex buffer layout. * In `prepare_uinodes` mode is set to 0 for the vertices of textured quads, and 1 if untextured. * Added a condition to the fragment shader in `ui.wgsl` that only multiplies by the `color` value from `textureSample` if the mode is equal to 0. |
||
ickshonpe
|
e529d8c1b1
|
Remove "bevy_text" feature attributes on imports used by non-text systems (#8907)
# Objective The "bevy_text" feature attributes for the `PrimaryWindow`, `Window` and `TextureAtlas` imports in `bevy_ui::render` are used by non-text systems (`extract_uinode_borders` and `extract_atlas_uinodes`) and need to be removed. |
||
mwbryant
|
8b5bf42c28
|
UI texture atlas support (#8822)
# Objective This adds support for using texture atlas sprites in UI. From discussions today in the ui-dev discord it seems this is a much wanted feature. This was previously attempted in #5070 by @ManevilleF however that was blocked #5103. This work can be easily modified to support #5103 changes after that merges. ## Solution I created a new UI bundle that reuses the existing texture atlas infrastructure. I create a new atlas image component to prevent it from being drawn by the existing non-UI systems and to remove unused parameters. In extract I added new system to calculate the required values for the texture atlas image, this extracts into the same resource as the existing UI Image and Text components. This should have minimal performance impact because if texture atlas is not present then the exact same code path is followed. Also there should be no unintended behavior changes because without the new components the existing systems write the extract same resulting data. I also added an example showing the sprite working and a system to advance the animation on space bar presses. Naming is hard and I would accept any feedback on the bundle name! --- ## Changelog > Added TextureAtlasImageBundle --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> |
||
ickshonpe
|
f7aa83a247
|
Ui Node Borders (#7795)
# Objective Implement borders for UI nodes. Relevant discussion: #7785 Related: #5924, #3991 <img width="283" alt="borders" src="https://user-images.githubusercontent.com/27962798/220968899-7661d5ec-6f5b-4b0f-af29-bf9af02259b5.PNG"> ## Solution Add an extraction function to draw the borders. --- Can only do one colour rectangular borders due to the limitations of the Bevy UI renderer. Maybe it can be combined with #3991 eventually to add curved border support. ## Changelog * Added a component `BorderColor`. * Added the `extract_uinode_borders` system to the UI Render App. * Added the UI example `borders` --------- Co-authored-by: Nico Burns <nico@nicoburns.com> |
||
François
|
71842c5ac9
|
Webgpu support (#8336)
# Objective - Support WebGPU - alternative to #5027 that doesn't need any async / await - fixes #8315 - Surprise fix #7318 ## Solution ### For async renderer initialisation - Update the plugin lifecycle: - app builds the plugin - calls `plugin.build` - registers the plugin - app starts the event loop - event loop waits for `ready` of all registered plugins in the same order - returns `true` by default - then call all `finish` then all `cleanup` in the same order as registered - then execute the schedule In the case of the renderer, to avoid anything async: - building the renderer plugin creates a detached task that will send back the initialised renderer through a mutex in a resource - `ready` will wait for the renderer to be present in the resource - `finish` will take that renderer and place it in the expected resources by other plugins - other plugins (that expect the renderer to be available) `finish` are called and they are able to set up their pipelines - `cleanup` is called, only custom one is still for pipeline rendering ### For WebGPU support - update the `build-wasm-example` script to support passing `--api webgpu` that will build the example with WebGPU support - feature for webgl2 was always enabled when building for wasm. it's now in the default feature list and enabled on all platforms, so check for this feature must also check that the target_arch is `wasm32` --- ## Migration Guide - `Plugin::setup` has been renamed `Plugin::cleanup` - `Plugin::finish` has been added, and plugins adding pipelines should do it in this function instead of `Plugin::build` ```rust // Before impl Plugin for MyPlugin { fn build(&self, app: &mut App) { app.insert_resource::<MyResource> .add_systems(Update, my_system); let render_app = match app.get_sub_app_mut(RenderApp) { Ok(render_app) => render_app, Err(_) => return, }; render_app .init_resource::<RenderResourceNeedingDevice>() .init_resource::<OtherRenderResource>(); } } // After impl Plugin for MyPlugin { fn build(&self, app: &mut App) { app.insert_resource::<MyResource> .add_systems(Update, my_system); let render_app = match app.get_sub_app_mut(RenderApp) { Ok(render_app) => render_app, Err(_) => return, }; render_app .init_resource::<OtherRenderResource>(); } fn finish(&self, app: &mut App) { let render_app = match app.get_sub_app_mut(RenderApp) { Ok(render_app) => render_app, Err(_) => return, }; render_app .init_resource::<RenderResourceNeedingDevice>(); } } ``` |
||
ickshonpe
|
43d7184b35
|
Fix the UV calculations for clipped and flipped ImageNodes (#8195)
# Objective Instead of flipping the entire image, `prepare_ui_nodes` only flips the unclipped area. <img width="652" alt="overflow_flipped_bug" src="https://user-images.githubusercontent.com/27962798/227587867-1467c6ae-8693-45c3-87cb-793cc5b433e4.png"> ## Solution Whenever flip_x or flip_y is set swap the image rect coordinates and invert the clipping coords along the flipped axes before the UVs are calculated. <img width="656" alt="overflow_fixed" src="https://user-images.githubusercontent.com/27962798/227588839-e0dde3b9-dc26-4652-a129-2faab2d07281.PNG"> -- ## Changelog * Modified `prepare_uinodes` so that the UVs for clipped and flipped image nodes are calculated correctly. |
||
ickshonpe
|
1a7f046c4d
|
Fix size of clipped text glyphs. (#8197)
# Objective Text glyphs that were clipped were not sized correctly because the transform extracted from the `extract_text_uinodes` had a scaling on it that wasn't accounted for. fixes #8167 ## Solution Remove the scaling from the transform and multiply the size of the glyphs by the inverse of the scale factor. |
||
James O'Brien
|
ae31361949
|
Split opaque and transparent phases (#8090)
# Objective Fixes #8089. ## Solution Splits the MainPass3dNode into 2 nodes, one for the opaque + alpha passes and one for the transparent pass. --- ## Changelog - Split MainPass3dNode into MainOpaquePass3dNode and MainTransparentPass3dNode - Combine opaque and alpha phases in MainOpaquePass3dNode into one pass - Create `START_MAIN_PASS` and `END_MAIN_PASS` empty nodes as labels - Main pass becomes `START_MAIN_PASS -> MAIN_OPAQUE_PASS -> MAIN_TRANSPARENT_PASS -> END_MAIN_PASS` ## Migration Guide Nodes that previously added edges involving `MAIN_PASS` should now add edges to or from `START_MAIN_PASS` or `END_MAIN_PASS` respectively. |
||
IceSentry
|
2c21d423fd
|
Make render graph slots optional for most cases (#8109)
# Objective - Currently, the render graph slots are only used to pass the view_entity around. This introduces significant boilerplate for very little value. Instead of using slots for this, make the view_entity part of the `RenderGraphContext`. This also means we won't need to have `IN_VIEW` on every node and and we'll be able to use the default impl of `Node::input()`. ## Solution - Add `view_entity: Option<Entity>` to the `RenderGraphContext` - Update all nodes to use this instead of entity slot input --- ## Changelog - Add optional `view_entity` to `RenderGraphContext` ## Migration Guide You can now get the view_entity directly from the `RenderGraphContext`. When implementing the Node: ```rust // 0.10 struct FooNode; impl FooNode { const IN_VIEW: &'static str = "view"; } impl Node for FooNode { fn input(&self) -> Vec<SlotInfo> { vec![SlotInfo::new(Self::IN_VIEW, SlotType::Entity)] } fn run( &self, graph: &mut RenderGraphContext, // ... ) -> Result<(), NodeRunError> { let view_entity = graph.get_input_entity(Self::IN_VIEW)?; // ... Ok(()) } } // 0.11 struct FooNode; impl Node for FooNode { fn run( &self, graph: &mut RenderGraphContext, // ... ) -> Result<(), NodeRunError> { let view_entity = graph.view_entity(); // ... Ok(()) } } ``` When adding the node to the graph, you don't need to specify a slot_edge for the view_entity. ```rust // 0.10 let mut graph = RenderGraph::default(); graph.add_node(FooNode::NAME, node); let input_node_id = draw_2d_graph.set_input(vec![SlotInfo::new( graph::input::VIEW_ENTITY, SlotType::Entity, )]); graph.add_slot_edge( input_node_id, graph::input::VIEW_ENTITY, FooNode::NAME, FooNode::IN_VIEW, ); // add_node_edge ... // 0.11 let mut graph = RenderGraph::default(); graph.add_node(FooNode::NAME, node); // add_node_edge ... ``` ## Notes This PR paired with #8007 will help reduce a lot of annoying boilerplate with the render nodes. Depending on which one gets merged first. It will require a bit of clean up work to make both compatible. I tagged this as a breaking change, because using the old system to get the view_entity will break things because it's not a node input slot anymore. ## Notes for reviewers A lot of the diffs are just removing the slots in every nodes and graph creation. The important part is mostly in the graph_runner/CameraDriverNode. |
||
Carter Anderson
|
aefe1f0739
|
Schedule-First: the new and improved add_systems (#8079)
Co-authored-by: Mike <mike.hsu@gmail.com> |
||
ickshonpe
|
52b91ac15b
|
Skip the UV calculations for untextured UI nodes (#7809) | ||
ickshonpe
|
e77eb003ec
|
Perform text scaling calculations per text, not per glyph (#7819) | ||
JoJoJet
|
fd1af7c8b8
|
Replace multiple calls to add_system with add_systems (#8001)
|
||
JoJoJet
|
b8263b55fb |
Support system.in_schedule() and system.on_startup() (#7790)
# Objective Support the following syntax for adding systems: ```rust App::new() .add_system(setup.on_startup()) .add_systems(( show_menu.in_schedule(OnEnter(GameState::Paused)), menu_ssytem.in_set(OnUpdate(GameState::Paused)), hide_menu.in_schedule(OnExit(GameState::Paused)), )) ``` ## Solution Add the traits `IntoSystemAppConfig{s}`, which provide the extension methods necessary for configuring which schedule a system belongs to. These extension methods return `IntoSystemAppConfig{s}`, which `App::add_system{s}` uses to choose which schedule to add systems to. --- ## Changelog + Added the extension methods `in_schedule(label)` and `on_startup()` for configuring the schedule a system belongs to. ## Future Work * Replace all uses of `add_startup_system` in the engine. * Deprecate this method |
||
François
|
1bd7306a3a |
make bevy_text optional again (#7801)
# Objective - `bevy_text` used to be "optional". the feature could be disabled, which meant that the systems were not added but `bevy_text` was still compiled because of a hard dependency in `bevy_ui` - Running something without `bevy_text` enabled and with `bevy_ui` enabled now crashes: ``` thread 'main' panicked at 'called `Option::unwrap()` on a `None` value', /bevy/crates/bevy_ecs/src/schedule/schedule.rs:1147:34 ``` - This is because `bevy_ui` declares some of its systems in ambiguity sets with systems from `bevy_text`, which were not added if `bevy_text` is disabled ## Solution - Make `bevy_text` completely optional ## Migration Guide - feature `bevy_text` now completely removes `bevy_text` from the dependencies when not enabled. Enable feature `bevy_text` if you use Bevy to render text |
||
Griffin
|
912fb58869 |
Initial tonemapping options (#7594)
# Objective Splits tone mapping from https://github.com/bevyengine/bevy/pull/6677 into a separate PR. Address https://github.com/bevyengine/bevy/issues/2264. Adds tone mapping options: - None: Bypasses tonemapping for instances where users want colors output to match those set. - Reinhard - Reinhard Luminance: Bevy's exiting tonemapping - [ACES](https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl) (Fitted version, based on the same implementation that Godot 4 uses) see https://github.com/bevyengine/bevy/issues/2264 - [AgX](https://github.com/sobotka/AgX) - SomewhatBoringDisplayTransform - TonyMcMapface - Blender Filmic This PR also adds support for EXR images so they can be used to compare tonemapping options with reference images. ## Migration Guide - Tonemapping is now an enum with NONE and the various tonemappers. - The DebandDither is now a separate component. Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com> |
||
Alice Cecile
|
206c7ce219 |
Migrate engine to Schedule v3 (#7267)
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR. # Objective - Followup #6587. - Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45 ## Solution - [x] Remove old scheduling module - [x] Migrate new methods to no longer use extension methods - [x] Fix compiler errors - [x] Fix benchmarks - [x] Fix examples - [x] Fix docs - [x] Fix tests ## Changelog ### Added - a large number of methods on `App` to work with schedules ergonomically - the `CoreSchedule` enum - `App::add_extract_system` via the `RenderingAppExtension` trait extension method - the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms` ### Removed - stages, and all code that mentions stages - states have been dramatically simplified, and no longer use a stack - `RunCriteriaLabel` - `AsSystemLabel` trait - `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition) - systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world - `RunCriteriaLabel` - `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear. ### Changed - `System::default_labels` is now `System::default_system_sets`. - `App::add_default_labels` is now `App::add_default_sets` - `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet` - `App::add_system_set` was renamed to `App::add_systems` - The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum - `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)` - `SystemLabel` trait was replaced by `SystemSet` - `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>` - The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq` - Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria. - Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. - `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`. - `bevy_pbr::add_clusters` is no longer an exclusive system - the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling` - `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread. ## Migration Guide - Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)` - Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed. - The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved. - Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior. - Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you. - For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with - `add_system(my_system.in_set(CoreSet::PostUpdate)` - When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages - Run criteria have been renamed to run conditions. These can now be combined with each other and with states. - Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow. - For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label. - Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default. - Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually. - Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior. - the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity - `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl. - Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings. - `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds. - `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool. - States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set` ## TODO - [x] remove dead methods on App and World - [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule` - [x] avoid adding the default system set at inappropriate times - [x] remove any accidental cycles in the default plugins schedule - [x] migrate benchmarks - [x] expose explicit labels for the built-in command flush points - [x] migrate engine code - [x] remove all mentions of stages from the docs - [x] verify docs for States - [x] fix uses of exclusive systems that use .end / .at_start / .before_commands - [x] migrate RenderStage and AssetStage - [x] migrate examples - [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub) - [x] ensure that on_enter schedules are run at least once before the main app - [x] re-enable opt-in to execution order ambiguities - [x] revert change to `update_bounds` to ensure it runs in `PostUpdate` - [x] test all examples - [x] unbreak directional lights - [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples) - [x] game menu example shows loading screen and menu simultaneously - [x] display settings menu is a blank screen - [x] `without_winit` example panics - [x] ensure all tests pass - [x] SubApp doc test fails - [x] runs_spawn_local tasks fails - [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120) ## Points of Difficulty and Controversy **Reviewers, please give feedback on these and look closely** 1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup. 2. The outer schedule controls which schedule is run when `App::update` is called. 3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes. 4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset. 5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order 6. Implemetnation strategy for fixed timesteps 7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks. 8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements. ## Future Work (ideally before 0.10) - Rename schedule_v3 module to schedule or scheduling - Add a derive macro to states, and likely a `EnumIter` trait of some form - Figure out what exactly to do with the "systems added should basically work by default" problem - Improve ergonomics for working with fixed timesteps and states - Polish FixedTime API to match Time - Rebase and merge #7415 - Resolve all internal ambiguities (blocked on better tools, especially #7442) - Add "base sets" to replace the removed default sets. |
||
ickshonpe
|
f3b8ff6549 |
Rename the background_color of 'ExtractedUiNode to color` (#7452)
# Problem The field is called `background_color` but it is also used to hold the colors of text glyphs and images. It's mildly confusing and longer to type than just `color`. ## Solution Rename `background_color` to `color`. ## Changelog * Renamed the `background_color` field of `ExtractedUiNode` to `color`. ## Migration Guide * The `background_color` field of `ExtractedUiNode` is now named `color`. |
||
Daniel Chia
|
c3a46822e1 |
Cascaded shadow maps. (#7064)
Co-authored-by: Robert Swain <robert.swain@gmail.com> # Objective Implements cascaded shadow maps for directional lights, which produces better quality shadows without needing excessively large shadow maps. Fixes #3629 Before ![image](https://user-images.githubusercontent.com/1222141/210061203-bbd965a4-8d11-4cec-9a88-67fc59d0819f.png) After ![image](https://user-images.githubusercontent.com/1222141/210061334-2ff15334-e6d7-4a31-9314-f34a7805cac6.png) ## Solution Rather than rendering a single shadow map for directional light, the view frustum is divided into a series of cascades, each of which gets its own shadow map. The correct cascade is then sampled for shadow determination. --- ## Changelog Directional lights now use cascaded shadow maps for improved shadow quality. ## Migration Guide You no longer have to manually specify a `shadow_projection` for a directional light, and these settings should be removed. If customization of how cascaded shadow maps work is desired, modify the `CascadeShadowConfig` component instead. |
||
James Liu
|
7a176ae0a8 |
Optimize color computation in prepare_uinodes (#7311)
# Objective Speed up `prepare_uinodes`. The color `[f32; 4]` is being computed separately for every vertex in the UI, even though the color is the same for all 6 verticies. ## Solution Avoid recomputing the color and cache it for all 6 verticies. ## Performance On `many_buttons`, this shaved off 33% of the time in `prepare_uinodes` (7.67ms -> 5.09ms) on my local machine. ![image](https://user-images.githubusercontent.com/3137680/213862448-236ac6e4-040a-4c86-a801-b947d99cc581.png) |
||
ickshonpe
|
cab065bad4 |
remove the image loaded check for nodes without images in extract_uinodes (#7280)
## Problem `extract_uinodes` checks if an image is loaded for nodes without images ## Solution Move the image loading skip check so that it is only performed for nodes with a `UiImage` component. |
||
Aceeri
|
ddfafab971 |
Windows as Entities (#5589)
# Objective Fix https://github.com/bevyengine/bevy/issues/4530 - Make it easier to open/close/modify windows by setting them up as `Entity`s with a `Window` component. - Make multiple windows very simple to set up. (just add a `Window` component to an entity and it should open) ## Solution - Move all properties of window descriptor to ~components~ a component. - Replace `WindowId` with `Entity`. - ~Use change detection for components to update backend rather than events/commands. (The `CursorMoved`/`WindowResized`/... events are kept for user convenience.~ Check each field individually to see what we need to update, events are still kept for user convenience. --- ## Changelog - `WindowDescriptor` renamed to `Window`. - Width/height consolidated into a `WindowResolution` component. - Requesting maximization/minimization is done on the [`Window::state`] field. - `WindowId` is now `Entity`. ## Migration Guide - Replace `WindowDescriptor` with `Window`. - Change `width` and `height` fields in a `WindowResolution`, either by doing ```rust WindowResolution::new(width, height) // Explicitly // or using From<_> for tuples for convenience (1920., 1080.).into() ``` - Replace any `WindowCommand` code to just modify the `Window`'s fields directly and creating/closing windows is now by spawning/despawning an entity with a `Window` component like so: ```rust let window = commands.spawn(Window { ... }).id(); // open window commands.entity(window).despawn(); // close window ``` ## Unresolved - ~How do we tell when a window is minimized by a user?~ ~Currently using the `Resize(0, 0)` as an indicator of minimization.~ No longer attempting to tell given how finnicky this was across platforms, now the user can only request that a window be maximized/minimized. ## Future work - Move `exit_on_close` functionality out from windowing and into app(?) - https://github.com/bevyengine/bevy/issues/5621 - https://github.com/bevyengine/bevy/issues/7099 - https://github.com/bevyengine/bevy/issues/7098 Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Daniel Chia
|
517deda215 |
Make PipelineCache internally mutable. (#7205)
# Objective - Allow rendering queue systems to use a `Res<PipelineCache>` even for queueing up new rendering pipelines. This is part of unblocking parallel execution queue systems. ## Solution - Make `PipelineCache` internally mutable w.r.t to queueing new pipelines. Pipelines are no longer immediately updated into the cache state, but rather queued into a Vec. The Vec of pending new pipelines is then later processed at the same time we actually create the queued pipelines on the GPU device. --- ## Changelog `PipelineCache` no longer requires mutable access in order to queue render / compute pipelines. ## Migration Guide * Most usages of `resource_mut::<PipelineCache>` and `ResMut<PipelineCache>` can be changed to `resource::<PipelineCache>` and `Res<PipelineCache>` as long as they don't use any methods requiring mutability - the only public method requiring it is `process_queue`. |
||
François
|
9be47e3328 |
Fix overflow scaling for images (#7142)
# Objective - Fixes #4057 - Do not multiply position by scale factor |
||
IceSentry
|
f119d9df8e |
Add DrawFunctionsInternals::id() (#6745)
# Objective - Every usage of `DrawFunctionsInternals::get_id()` was followed by a `.unwrap()`. which just adds boilerplate. ## Solution - Introduce a fallible version of `DrawFunctionsInternals::get_id()` and use it where possible. - I also took the opportunity to improve the error message a little in the case where it fails. --- ## Changelog - Added `DrawFunctionsInternals::id()` |
||
Torstein Grindvik
|
daa57fe489 |
Add try_* to add_slot_edge, add_node_edge (#6720)
# Objective `add_node_edge` and `add_slot_edge` are fallible methods, but are always used with `.unwrap()`. `input_node` is often unwrapped as well. This points to having an infallible behaviour as default, with an alternative fallible variant if needed. Improves readability and ergonomics. ## Solution - Change `add_node_edge` and `add_slot_edge` to panic on error. - Change `input_node` to panic on `None`. - Add `try_add_node_edge` and `try_add_slot_edge` in case fallible methods are needed. - Add `get_input_node` to still be able to get an `Option`. --- ## Changelog ### Added - `try_add_node_edge` - `try_add_slot_edge` - `get_input_node` ### Changed - `add_node_edge` is now infallible (panics on error) - `add_slot_edge` is now infallible (panics on error) - `input_node` now panics on `None` ## Migration Guide Remove `.unwrap()` from `add_node_edge` and `add_slot_edge`. For cases where the error was handled, use `try_add_node_edge` and `try_add_slot_edge` instead. Remove `.unwrap()` from `input_node`. For cases where the option was handled, use `get_input_node` instead. Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com> |
||
ickshonpe
|
5f1261110f |
Flip UI image (#6292)
# Objective Fixes #3225, Allow for flippable UI Images ## Solution Add flip_x and flip_y fields to UiImage, and swap the UV coordinates accordingly in ui_prepare_nodes. ## Changelog * Changes UiImage to a struct with texture, flip_x, and flip_y fields. * Adds flip_x and flip_y fields to ExtractedUiNode. * Changes extract_uinodes to extract the flip_x and flip_y values from UiImage. * Changes prepare_uinodes to swap the UV coordinates as required. * Changes UiImage derefs to texture field accesses. |
||
Brian Merchant
|
66f495c44e |
Cleaning up NodeBundle, and some slight UI module re-organization (#6473)
# Objective
`NodeBundle` contains an `image` field, which can be misleading, because if you do supply an image there, nothing will be shown to screen. You need to use an `ImageBundle` instead.
## Solution
* `image` (`UiImage`) field is removed from `NodeBundle`,
* extraction stage queries now make an optional query for `UiImage`, if one is not found, use the image handle that is used as a default by `UiImage`:
|
||
targrub
|
96c9c60f80 |
Use cbrt() instead of powf(1./3.) (#6481)
# Objective - Use cube root library function instead of handrolling. ## Solution - Instead of `powf(1./3.)` use `cbrt()`. |
||
Carter Anderson
|
c019a60b39 |
Add "end of main pass post processing" render graph node (#6468)
# Objective Bevy UI (and third party plugins) currently have no good way to position themselves after all post processing effects. They currently use the tonemapping node, but this is not adequate if there is anything after tonemapping (such as FXAA). ## Solution Add a logical `END_MAIN_PASS_POST_PROCESSING` RenderGraph node that main pass post processing effects position themselves before, and things like UIs can position themselves after. |
||
Carter Anderson
|
e6a0164587 |
Specialize UI pipeline on "hdr-ness" (#6459)
# Objective The UI pass in HDR breaks currently because the color attachment format does not match the HDR ViewTarget. ## Solution Specialize the UI pipeline on "hdr-ness" and select the appropriate format (like we do in the other built in pipelines). |
||
Gabriel Bourgeois
|
4b5a33d970 |
Add z-index support with a predictable UI stack (#5877)
# Objective Add consistent UI rendering and interaction where deep nodes inside two different hierarchies will never render on top of one-another by default and offer an escape hatch (z-index) for nodes to change their depth. ## The problem with current implementation The current implementation of UI rendering is broken in that regard, mainly because [it sets the Z value of the `Transform` component based on a "global Z" space](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/update.rs#L43) shared by all nodes in the UI. This doesn't account for the fact that each node's final `GlobalTransform` value will be relative to its parent. This effectively makes the depth unpredictable when two deep trees are rendered on top of one-another. At the moment, it's also up to each part of the UI code to sort all of the UI nodes. The solution that's offered here does the full sorting of UI node entities once and offers the result through a resource so that all systems can use it. ## Solution ### New ZIndex component This adds a new optional `ZIndex` enum component for nodes which offers two mechanism: - `ZIndex::Local(i32)`: Overrides the depth of the node relative to its siblings. - `ZIndex::Global(i32)`: Overrides the depth of the node relative to the UI root. This basically allows any node in the tree to "escape" the parent and be ordered relative to the entire UI. Note that in the current implementation, omitting `ZIndex` on a node has the same result as adding `ZIndex::Local(0)`. Additionally, the "global" stacking context is essentially a way to add your node to the root stacking context, so using `ZIndex::Local(n)` on a root node (one without parent) will share that space with all nodes using `Index::Global(n)`. ### New UiStack resource This adds a new `UiStack` resource which is calculated from both hierarchy and `ZIndex` during UI update and contains a vector of all node entities in the UI, ordered by depth (from farthest from camera to closest). This is exposed publicly by the bevy_ui crate with the hope that it can be used for consistent ordering and to reduce the amount of sorting that needs to be done by UI systems (i.e. instead of sorting everything by `global_transform.z` in every system, this array can be iterated over). ### New z_index example This also adds a new z_index example that showcases the new `ZIndex` component. It's also a good general demo of the new UI stack system, because making this kind of UI was very broken with the old system (e.g. nodes would render on top of each other, not respecting hierarchy or insert order at all). ![image](https://user-images.githubusercontent.com/1060971/189015985-8ea8f989-0e9d-4601-a7e0-4a27a43a53f9.png) --- ## Changelog - Added the `ZIndex` component to bevy_ui. - Added the `UiStack` resource to bevy_ui, and added implementation in a new `stack.rs` module. - Removed the previous Z updating system from bevy_ui, because it was replaced with the above. - Changed bevy_ui rendering to use UiStack instead of z ordering. - Changed bevy_ui focus/interaction system to use UiStack instead of z ordering. - Added a new z_index example. ## ZIndex demo Here's a demo I wrote to test these features https://user-images.githubusercontent.com/1060971/188329295-d7beebd6-9aee-43ab-821e-d437df5dbe8a.mp4 Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
JoJoJet
|
336049da68 |
Remove outdated uses of single-tuple bundles (#6406)
# Objective Bevy still has many instances of using single-tuples `(T,)` to create a bundle. Due to #2975, this is no longer necessary. ## Solution Search for regex `\(.+\s*,\)`. This should have found every instance. |
||
Jakob Hellermann
|
e71c4d2802 |
fix nightly clippy warnings (#6395)
# Objective - fix new clippy lints before they get stable and break CI ## Solution - run `clippy --fix` to auto-fix machine-applicable lints - silence `clippy::should_implement_trait` for `fn HandleId::default<T: Asset>` ## Changes - always prefer `format!("{inline}")` over `format!("{}", not_inline)` - prefer `Box::default` (or `Box::<T>::default` if necessary) over `Box::new(T::default())` |
||
Jakob Hellermann
|
838b318863 |
separate tonemapping and upscaling passes (#3425)
Attempt to make features like bloom https://github.com/bevyengine/bevy/pull/2876 easier to implement. **This PR:** - Moves the tonemapping from `pbr.wgsl` into a separate pass - also add a separate upscaling pass after the tonemapping which writes to the swap chain (enables resolution-independant rendering and post-processing after tonemapping) - adds a `hdr` bool to the camera which controls whether the pbr and sprite shaders render into a `Rgba16Float` texture **Open questions:** - ~should the 2d graph work the same as the 3d one?~ it is the same now - ~The current solution is a bit inflexible because while you can add a post processing pass that writes to e.g. the `hdr_texture`, you can't write to a separate `user_postprocess_texture` while reading the `hdr_texture` and tell the tone mapping pass to read from the `user_postprocess_texture` instead. If the tonemapping and upscaling render graph nodes were to take in a `TextureView` instead of the view entity this would almost work, but the bind groups for their respective input textures are already created in the `Queue` render stage in the hardcoded order.~ solved by creating bind groups in render node **New render graph:** ![render_graph](https://user-images.githubusercontent.com/22177966/147767249-57dd4229-cfab-4ec5-9bf3-dc76dccf8e8b.png) <details> <summary>Before</summary> ![render_graph_old](https://user-images.githubusercontent.com/22177966/147284579-c895fdbd-4028-41cf-914c-e1ffef60e44e.png) </details> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
François
|
a3ca184128 |
Fix clipping in UI (#6351)
# Objective - Clipping (visible in the UI example with text scrolling) is funky - Fixes #6287 ## Solution - Fix UV calculation: - correct order for values (issue introduced in #6000) - add the `y` values instead of subtracting them now that vertical order is reversed - take scale factor into account (bug already present before reversing the order) - While around clipping, I changed clip to only mutate when changed No more funkiness! 😞 <img width="696" alt="Screenshot 2022-10-23 at 22 44 18" src="https://user-images.githubusercontent.com/8672791/197417721-30ad4150-5264-427f-ac82-e5265c1fb3a9.png"> |
||
Sergi-Ferrez
|
05c7babba2 |
Clarify bevy::ui::Node field and documentation (#5995)
# Objective Fixes #5820 ## Solution Change field name and documentation from `bevy::ui::Node` struct --- ## Changelog `bevy::ui::Node` `size` field has renamed to `calculated_size` ## Migration Guide All references to the old `size` name has been changed, to access `bevy::ui::Node` `size` field use `calculated_size` |
||
Michel van der Hulst
|
6ce7ce208e |
Change UI coordinate system to have origin at top left corner (#6000)
# Objective Fixes #5572 ## Solution Approach is to invert the Y-axis of the UI Camera by changing the UI projection matrix to render the UI upside down. After that I'm trying to fix all issues, that pop up: - interaction expected the "old" position - images and text were displayed upside-down - baseline of text was based on the top of the glyph instead of bottom ... probably a lot more. --- Result when running examples: <details> <summary>Button example</summary> main branch: ![button main](https://user-images.githubusercontent.com/4232644/190856087-61dd1d98-42b5-4238-bd97-149744ddfeba.png) this pr: ![button pr](https://user-images.githubusercontent.com/4232644/190856097-3f4bc97a-ed15-4e97-b7f1-2b2dd6bb8b14.png) </details> <details> <summary>Text example</summary> m ![text main](https://user-images.githubusercontent.com/4232644/192142831-4cf19aa1-f49a-485e-af7b-374d6f5c396c.png) ain branch: this pr: ![text pr fixed](https://user-images.githubusercontent.com/4232644/192142829-c433db3b-32e1-4ee8-b493-0b4a4d9c8e70.png) </details> <details> <summary>Text debug example</summary> main branch: ![text_debug main](https://user-images.githubusercontent.com/4232644/192142822-940aefa6-e502-410b-8da4-5570f77b5df2.png) this pr: ![text_debug pr fixed](https://user-images.githubusercontent.com/4232644/194547010-8c968f5c-5a71-4ffc-871d-790c06d48016.png) </details> <details> <summary>Transparency UI example</summary> main branch: ![transparency_ui main](https://user-images.githubusercontent.com/4232644/190856172-328c60fe-3622-4598-97d5-2f1595db13b3.png) this pr: ![transperency_ui pr](https://user-images.githubusercontent.com/4232644/190856179-a2dafb99-41ea-45a9-9dd6-400fa3ef24b9.png) </details> <details> <summary>UI example</summary> **ui example** main branch: ![ui main](https://user-images.githubusercontent.com/4232644/192142812-e20ba31a-6841-46d9-a785-4198cf22dc99.png) this pr: ![ui pr fixed](https://user-images.githubusercontent.com/4232644/192142788-cc0b74e0-7710-4faa-b5a2-60270a5da77c.png) </details> ## Changelog UI coordinate system and cursor position was changed from bottom left origin, y+ up to top left origin, y+ down. ## Migration Guide All flex layout should be inverted (ColumnReverse => Column, FlexStart => FlexEnd, WrapReverse => Wrap) System where dealing with cursor position should be changed to account for cursor position being based on the top left instead of bottom left |
||
Alice Cecile
|
481eec2c92 |
Rename UiColor to BackgroundColor (#6087)
# Objective Fixes #6078. The `UiColor` component is unhelpfully named: it is unclear, ambiguous with border color and ## Solution Rename the `UiColor` component (and associated fields) to `BackgroundColor` / `background_colorl`. ## Migration Guide `UiColor` has been renamed to `BackgroundColor`. This change affects `NodeBundle`, `ButtonBundle` and `ImageBundle`. In addition, the corresponding field on `ExtractedUiNode` has been renamed to `background_color` for consistency. |
||
Carter Anderson
|
01aedc8431 |
Spawn now takes a Bundle (#6054)
# Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ``` |
||
Carter Anderson
|
cd15f0f5be |
Accept Bundles for insert and remove. Deprecate insert/remove_bundle (#6039)
# Objective Take advantage of the "impl Bundle for Component" changes in #2975 / add the follow up changes discussed there. ## Solution - Change `insert` and `remove` to accept a Bundle instead of a Component (for both Commands and World) - Deprecate `insert_bundle`, `remove_bundle`, and `remove_bundle_intersection` - Add `remove_intersection` --- ## Changelog - Change `insert` and `remove` now accept a Bundle instead of a Component (for both Commands and World) - `insert_bundle` and `remove_bundle` are deprecated ## Migration Guide Replace `insert_bundle` with `insert`: ```rust // Old (0.8) commands.spawn().insert_bundle(SomeBundle::default()); // New (0.9) commands.spawn().insert(SomeBundle::default()); ``` Replace `remove_bundle` with `remove`: ```rust // Old (0.8) commands.entity(some_entity).remove_bundle::<SomeBundle>(); // New (0.9) commands.entity(some_entity).remove::<SomeBundle>(); ``` Replace `remove_bundle_intersection` with `remove_intersection`: ```rust // Old (0.8) world.entity_mut(some_entity).remove_bundle_intersection::<SomeBundle>(); // New (0.9) world.entity_mut(some_entity).remove_intersection::<SomeBundle>(); ``` Consider consolidating as many operations as possible to improve ergonomics and cut down on archetype moves: ```rust // Old (0.8) commands.spawn() .insert_bundle(SomeBundle::default()) .insert(SomeComponent); // New (0.9) - Option 1 commands.spawn().insert(( SomeBundle::default(), SomeComponent, )) // New (0.9) - Option 2 commands.spawn_bundle(( SomeBundle::default(), SomeComponent, )) ``` ## Next Steps Consider changing `spawn` to accept a bundle and deprecate `spawn_bundle`. |
||
ira
|
2b80a3f279 |
Implement IntoIterator for &Extract<P> (#6025)
# Objective Implement `IntoIterator` for `&Extract<P>` if the system parameter it wraps implements `IntoIterator`. Enables the use of `IntoIterator` with an extracted query. Co-authored-by: devil-ira <justthecooldude@gmail.com> |