# Objective
fix occasional crash from commands.insert when quickly spawning and
despawning skinned/morphed meshes
## Solution
use `try_insert` instead of `insert`. if the entity is deleted we don't
mind failing to add the `NoAutomaticBatching` marker.
# Objective
Fix missing `TextBundle` (and many others) which are present in the main
crate as default features but optional in the sub-crate. See:
- https://docs.rs/bevy/0.13.0/bevy/ui/node_bundles/index.html
- https://docs.rs/bevy_ui/0.13.0/bevy_ui/node_bundles/index.html
~~There are probably other instances in other crates that I could track
down, but maybe "all-features = true" should be used by default in all
sub-crates? Not sure.~~ (There were many.) I only noticed this because
rust-analyzer's "open docs" features takes me to the sub-crate, not the
main one.
## Solution
Add "all-features = true" to docs.rs metadata for crates that use
features.
## Changelog
### Changed
- Unified features documented on docs.rs between main crate and
sub-crates
# Objective
Make bevy_utils less of a compilation bottleneck. Tackle #11478.
## Solution
* Move all of the directly reexported dependencies and move them to
where they're actually used.
* Remove the UUID utilities that have gone unused since `TypePath` took
over for `TypeUuid`.
* There was also a extraneous bytemuck dependency on `bevy_core` that
has not been used for a long time (since `encase` became the primary way
to prepare GPU buffers).
* Remove the `all_tuples` macro reexport from bevy_ecs since it's
accessible from `bevy_utils`.
---
## Changelog
Removed: Many of the reexports from bevy_utils (petgraph, uuid, nonmax,
smallvec, and thiserror).
Removed: bevy_core's reexports of bytemuck.
## Migration Guide
bevy_utils' reexports of petgraph, uuid, nonmax, smallvec, and thiserror
have been removed.
bevy_core' reexports of bytemuck's types has been removed.
Add them as dependencies in your own crate instead.
# Objective
- Fix slightly wrong logic from #11442
- Directional lights should not have a near clip plane
## Solution
- Push near clip out to infinity, so that the frustum normal is still
available if its needed for whatever reason in shader
- also opportunistically nabs a typo
# Objective
Fix#12304. Remove unnecessary type registrations thanks to #4154.
## Solution
Conservatively remove type registrations. Keeping the top level
components, resources, and events, but dropping everything else that is
a type of a member of those types.
# Objective
- Describe the objective or issue this PR addresses.
Improve docs around emissive colors --
I couldn't figure out how to increase the emissive strength of
materials, asking on discord @alice-i-cecile told me that color channel
values can go above `1.0` in the case of the `emissive` field. I would
have never figured this out on my own, because [the docs for
emissive](https://docs.rs/bevy/latest/bevy/prelude/struct.StandardMaterial.html#structfield.emissive)
don't mention this possibility, and indeed if you follow the link in the
`emissive` doc [to the `Color`
type](https://docs.rs/bevy/latest/bevy/render/color/enum.Color.html#variants),
you are told that values should be in `[0.0, 1.0]`.
## Solution
- Describe the solution used to achieve the objective above.
Just added a note on the possibility of large color channel values with
example.
Although we cached hashes of `MeshVertexBufferLayout`, we were paying
the cost of `PartialEq` on `InnerMeshVertexBufferLayout` for every
entity, every frame. This patch changes that logic to place
`MeshVertexBufferLayout`s in `Arc`s so that they can be compared and
hashed by pointer. This results in a 28% speedup in the
`queue_material_meshes` phase of `many_cubes`, with frustum culling
disabled.
Additionally, this patch contains two minor changes:
1. This commit flattens the specialized mesh pipeline cache to one level
of hash tables instead of two. This saves a hash lookup.
2. The example `many_cubes` has been given a `--no-frustum-culling`
flag, to aid in benchmarking.
See the Tracy profile:
<img width="1064" alt="Screenshot 2024-02-29 144406"
src="https://github.com/bevyengine/bevy/assets/157897/18632f1d-1fdd-4ac7-90ed-2d10306b2a1e">
## Migration guide
* Duplicate `MeshVertexBufferLayout`s are now combined into a single
object, `MeshVertexBufferLayoutRef`, which contains an
atomically-reference-counted pointer to the layout. Code that was using
`MeshVertexBufferLayout` may need to be updated to use
`MeshVertexBufferLayoutRef` instead.
# Objective
- As part of the migration process we need to a) see the end effect of
the migration on user ergonomics b) check for serious perf regressions
c) actually migrate the code
- To accomplish this, I'm going to attempt to migrate all of the
remaining user-facing usages of `LegacyColor` in one PR, being careful
to keep a clean commit history.
- Fixes#12056.
## Solution
I've chosen to use the polymorphic `Color` type as our standard
user-facing API.
- [x] Migrate `bevy_gizmos`.
- [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs
- [x] Migrate sprites
- [x] Migrate UI
- [x] Migrate `ColorMaterial`
- [x] Migrate `MaterialMesh2D`
- [x] Migrate fog
- [x] Migrate lights
- [x] Migrate StandardMaterial
- [x] Migrate wireframes
- [x] Migrate clear color
- [x] Migrate text
- [x] Migrate gltf loader
- [x] Register color types for reflection
- [x] Remove `LegacyColor`
- [x] Make sure CI passes
Incidental improvements to ease migration:
- added `Color::srgba_u8`, `Color::srgba_from_array` and friends
- added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the
`Alpha` trait
- add and immediately deprecate (lol) `Color::rgb` and friends in favor
of more explicit and consistent `Color::srgb`
- standardized on white and black for most example text colors
- added vector field traits to `LinearRgba`: ~~`Add`, `Sub`,
`AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications
and divisions do not scale alpha. `Add` and `Sub` have been cut from
this PR.
- added `LinearRgba` and `Srgba` `RED/GREEN/BLUE`
- added `LinearRgba_to_f32_array` and `LinearRgba::to_u32`
## Migration Guide
Bevy's color types have changed! Wherever you used a
`bevy::render::Color`, a `bevy::color::Color` is used instead.
These are quite similar! Both are enums storing a color in a specific
color space (or to be more precise, using a specific color model).
However, each of the different color models now has its own type.
TODO...
- `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`,
`Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`,
`Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`.
- `Color::set_a` and `Color::a` is now `Color::set_alpha` and
`Color::alpha`. These are part of the `Alpha` trait in `bevy_color`.
- `Color::is_fully_transparent` is now part of the `Alpha` trait in
`bevy_color`
- `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for
`g`, `b` `h`, `s` and `l` have been removed due to causing silent
relatively expensive conversions. Convert your `Color` into the desired
color space, perform your operations there, and then convert it back
into a polymorphic `Color` enum.
- `Color::hex` is now `Srgba::hex`. Call `.into` or construct a
`Color::Srgba` variant manually to convert it.
- `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`,
`ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now
store a `LinearRgba`, rather than a polymorphic `Color`
- `Color::rgb_linear` and `Color::rgba_linear` are now
`Color::linear_rgb` and `Color::linear_rgba`
- The various CSS color constants are no longer stored directly on
`Color`. Instead, they're defined in the `Srgba` color space, and
accessed via `bevy::color::palettes::css`. Call `.into()` on them to
convert them into a `Color` for quick debugging use, and consider using
the much prettier `tailwind` palette for prototyping.
- The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with
the standard naming.
- Vector field arithmetic operations on `Color` (add, subtract, multiply
and divide by a f32) have been removed. Instead, convert your colors
into `LinearRgba` space, and perform your operations explicitly there.
This is particularly relevant when working with emissive or HDR colors,
whose color channel values are routinely outside of the ordinary 0 to 1
range.
- `Color::as_linear_rgba_f32` has been removed. Call
`LinearRgba::to_f32_array` instead, converting if needed.
- `Color::as_linear_rgba_u32` has been removed. Call
`LinearRgba::to_u32` instead, converting if needed.
- Several other color conversion methods to transform LCH or HSL colors
into float arrays or `Vec` types have been removed. Please reimplement
these externally or open a PR to re-add them if you found them
particularly useful.
- Various methods on `Color` such as `rgb` or `hsl` to convert the color
into a specific color space have been removed. Convert into
`LinearRgba`, then to the color space of your choice.
- Various implicitly-converting color value methods on `Color` such as
`r`, `g`, `b` or `h` have been removed. Please convert it into the color
space of your choice, then check these properties.
- `Color` no longer implements `AsBindGroup`. Store a `LinearRgba`
internally instead to avoid conversion costs.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
- Partially addresses https://github.com/bevyengine/bevy/issues/11470
(I'd like to add Spatiotemporal Blue Noise in the future, but that's a
bit more controversial).
- Fix cluster_debug_visualization which has not compiled for a while
---
## Changelog
- Added random white noise shader functions to `bevy_pbr::utils`
## Migration Guide
- The `bevy_pbr::utils::random1D` shader function has been replaced by
the similar `bevy_pbr::utils::rand_f`.
# Objective
- followup to https://github.com/bevyengine/bevy/pull/11671
- I forgot to change the alpha masked phases.
## Solution
- Change the sorting for alpha mask phases to sort by pipeline+mesh
instead of distance, for much better batching for alpha masked
materials.
I also fixed some docs that I missed in the previous PR.
---
## Changelog
- Alpha masked materials are now sorted by pipeline and mesh.
# Objective
- Fixes#12081
## Solution
Passing the `Affine2` as a neatly packed `mat3x2` breaks WebGL with
`drawElementsInstanced: Buffer for uniform block is smaller than
UNIFORM_BLOCK_DATA_SIZE.`
I fixed this by using a `mat3x3` instead.
Alternative solutions that come to mind:
- Pass in a `mat3x2` on non-webgl targets and a `mat3x3` otherwise. I
guess I could use `#ifdef SIXTEEN_BYTE_ALIGNMENT` for this, but it
doesn't seem quite right? This would be more efficient, but decrease
code quality.
- Do something about `UNIFORM_BLOCK_DATA_SIZE`. I don't know how, so I'd
need some guidance here.
@superdump let me know if you'd like me to implement other variants.
Otherwise, I vote for merging this as a quick fix for `main` and then
improving the packing in subsequent PRs :)
## Additional notes
Ideally we should merge this before @JMS55 rebases #10164 so that they
don't have to rebase everything a second time.
# Objective
#7348 added `bevy_utils::Parallel` and replaced the usage of the
`ThreadLocal<Cell<Vec<...>>>` in `check_visibility`, but we were also
using it in `extract_meshes`.
## Solution
Refactor the system to use `Parallel` instead.
# Objective
The physical width and height (pixels) of an image is always integers,
but for `GpuImage` bevy currently stores them as `Vec2` (`f32`).
Switching to `UVec2` makes this more consistent with the [underlying
texture data](https://docs.rs/wgpu/latest/wgpu/struct.Extent3d.html).
I'm not sure if this is worth the change in the surface level API. If
not, feel free to close this PR.
## Solution
- Replace uses of `Vec2` with `UVec2` when referring to texture
dimensions.
- Use integer types for the texture atlas dimensions and sections.
[`Sprite::rect`](a81a2d1da3/crates/bevy_sprite/src/sprite.rs (L29))
remains unchanged, so manually specifying a sub-pixel region of an image
is still possible.
---
## Changelog
- `GpuImage` now stores its size as `UVec2` instead of `Vec2`.
- Texture atlases store their size and sections as `UVec2` and `URect`
respectively.
- `UiImageSize` stores its size as `UVec2`.
## Migration Guide
- Change floating point types (`Vec2`, `Rect`) to their respective
unsigned integer versions (`UVec2`, `URect`) when using `GpuImage`,
`TextureAtlasLayout`, `TextureAtlasBuilder`,
`DynamicAtlasTextureBuilder` or `FontAtlas`.
# Objective
- Add the new `-Zcheck-cfg` checks to catch more warnings
- Fixes#12091
## Solution
- Create a new `cfg-check` to the CI that runs `cargo check -Zcheck-cfg
--workspace` using cargo nightly (and fails if there are warnings)
- Fix all warnings generated by the new check
---
## Changelog
- Remove all redundant imports
- Fix cfg wasm32 targets
- Add 3 dead code exceptions (should StandardColor be unused?)
- Convert ios_simulator to a feature (I'm not sure if this is the right
way to do it, but the check complained before)
## Migration Guide
No breaking changes
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
The migration process for `bevy_color` (#12013) will be fairly involved:
there will be hundreds of affected files, and a large number of APIs.
## Solution
To allow us to proceed granularly, we're going to keep both
`bevy_color::Color` (new) and `bevy_render::Color` (old) around until
the migration is complete.
However, simply doing this directly is confusing! They're both called
`Color`, making it very hard to tell when a portion of the code has been
ported.
As discussed in #12056, by renaming the old `Color` type, we can make it
easier to gradually migrate over, one API at a time.
## Migration Guide
THIS MIGRATION GUIDE INTENTIONALLY LEFT BLANK.
This change should not be shipped to end users: delete this section in
the final migration guide!
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
# Objective
- Some properties of public types are private but sometimes it's useful
to be able to set those
## Solution
- Make more stuff pub
---
## Changelog
- `MaterialBindGroupId` internal id is now pub and added a new()
constructor
- `ExtractedPointLight` and `ExtractedDirectionalLight` properties are
now all pub
---------
Co-authored-by: James Liu <contact@jamessliu.com>
This PR closes#11978
# Objective
Fix rendering on iOS Simulators.
iOS Simulator doesn't support the capability CUBE_ARRAY_TEXTURES, since
0.13 this started to make iOS Simulator not render anything with the
following message being outputted:
```
2024-02-19T14:59:34.896266Z ERROR bevy_render::render_resource::pipeline_cache: failed to create shader module: Validation Error
Caused by:
In Device::create_shader_module
Shader validation error:
Type [40] '' is invalid
Capability Capabilities(CUBE_ARRAY_TEXTURES) is required
```
## Solution
- Split up NO_ARRAY_TEXTURES_SUPPORT into both NO_ARRAY_TEXTURES_SUPPORT
and NO_CUBE_ARRAY_TEXTURES_SUPPORT and correctly apply
NO_ARRAY_TEXTURES_SUPPORT for iOS Simulator using the cfg flag
introduced in #10178.
---
## Changelog
### Fixed
- Rendering on iOS Simulator due to missing CUBE_ARRAY_TEXTURES support.
---------
Co-authored-by: Sam Pettersson <sam.pettersson@geoguessr.com>
# Objective
- Globals are supposed to be available in vertex shader but that was
mistakenly removed in 0.13
## Solution
- Configure the visibility of the globals correctly
Fixes https://github.com/bevyengine/bevy/issues/12015
Fixes#12016.
Bump version after release
This PR has been auto-generated
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François <mockersf@gmail.com>
# Objective
- Closes#11985
## Solution
- alpha.rs has been moved from bevy_pbr into bevy_render; bevy_pbr and
bevy_gltf now access `AlphaMode` through bevy_render.
---
## Migration Guide
In the present implementation, external consumers of `AlphaMode` will
have to access it through bevy_render rather than through bevy_pbr,
changing their import from `bevy_pbr::AlphaMode` to
`bevy_render::alpha::AlphaMode` (or the corresponding glob import from
`bevy_pbr::prelude::*` to `bevy_render::prelude::*`).
## Uncertainties
Some remaining things from this that I am uncertain about:
- Here, the `app.register_type<AlphaMode>()` call has been moved from
`PbrPlugin` to `RenderPlugin`; I'm not sure if this is quite right, and
I was unable to find any direct relationship between `PbrPlugin` and
`RenderPlugin`.
- `AlphaMode` was placed in the prelude of bevy_render. I'm not certain
that this is actually appropriate.
- bevy_pbr does not re-export `AlphaMode`, which makes this a breaking
change for external consumers.
Any of these things could be easily changed; I'm just not confident that
I necessarily adopted the right approach in these (known) ways since
this codebase and ecosystem is quite new to me.
Adopted #8266, so copy-pasting the description from there:
# Objective
Support the KHR_texture_transform extension for the glTF loader.
- Fixes#6335
- Fixes#11869
- Implements part of #11350
- Implements the GLTF part of #399
## Solution
As is, this only supports a single transform. Looking at Godot's source,
they support one transform with an optional second one for detail, AO,
and emission. glTF specifies one per texture. The public domain
materials I looked at seem to share the same transform. So maybe having
just one is acceptable for now. I tried to include a warning if multiple
different transforms exist for the same material.
Note the gltf crate doesn't expose the texture transform for the normal
and occlusion textures, which it should, so I just ignored those for
now. (note by @janhohenheim: this is still the case)
Via `cargo run --release --example scene_viewer
~/src/clone/glTF-Sample-Models/2.0/TextureTransformTest/glTF/TextureTransformTest.gltf`:
![texture_transform](https://user-images.githubusercontent.com/283864/228938298-aa2ef524-555b-411d-9637-fd0dac226fb0.png)
## Changelog
Support for the
[KHR_texture_transform](https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_texture_transform)
extension added. Texture UVs that were scaled, rotated, or offset in a
GLTF are now properly handled.
---------
Co-authored-by: Al McElrath <hello@yrns.org>
Co-authored-by: Kanabenki <lucien.menassol@gmail.com>
# Objective
- Save 16 bytes per MeshUniform in uniform/storage buffers.
## Solution
- Reorder members of MeshUniform to capitalise on alignment and size
rules for tighter data packing. Before the size of a MeshUniform was 160
bytes, and after it is 144 bytes, saving 16 bytes of unused padding for
alignment.
---
## Changelog
- Reduced the size of MeshUniform by 16 bytes.
# Objective
Fixes#11908
## Solution
- Remove the `naga_oil` dependency from `bevy_pbr`.
- We were doing a little dance to disable `glsl` support on not-wasm, so
incorporate that dance into `bevy_render`'s `Cargo.toml`.
They cause the number of texture bindings to overflow on those
platforms. Ultimately, we shouldn't unconditionally disable them, but
this fixes a crash blocking 0.13.
Closes#11885.
I did this during the prepass, but I neglected to do it during the
shadow map pass, causing a panic when directional lights with shadows
were enabled with lightmapped meshes present. This patch fixes the
issue.
Closes#11898.
# Objective
#10644 introduced nice "statically typed" labels that replace the old
strings. I would like to propose some changes to the names introduced:
* `SubGraph2d` -> `Core2d` and `SubGraph3d` -> `Core3d`. The names of
these graphs have been / should continue to be the "core 2d" graph not
the "sub graph 2d" graph. The crate is called `bevy_core_pipeline`, the
modules are still `core_2d` and `core_3d`, etc.
* `Labels2d` and `Labels3d`, at the very least, should not be plural to
follow naming conventions. A Label enum is not a "collection of labels",
it is a _specific_ Label. However I think `Label2d` and `Label3d` is
significantly less clear than `Node2d` and `Node3d`, so I propose those
changes here. I've done the same for `LabelsPbr` -> `NodePbr` and
`LabelsUi` -> `NodeUi`
Additionally, #10644 accidentally made one of the Camera2dBundle
constructors use the 3D graph instead of the 2D graph. I've fixed that
here.
---
## Changelog
* Renamed `SubGraph2d` -> `Core2d`, `SubGraph3d` -> `Core3d`, `Labels2d`
-> `Node2d`, `Labels3d` -> `Node3d`, `LabelsUi` -> `NodeUi`, `LabelsPbr`
-> `NodePbr`
# Objective
Provide a public replacement for `Into<MeshUniform>` trait impl which
was removed by #10231.
I made use of this in the `bevy_mod_outline` crate and will have to
duplicate this function if it's not accessible.
## Solution
Change the MeshUniform::new() method to be public.
# Objective
After adding configurable exposure, we set the default ev100 value to
`7` (indoor). This brought us out of sync with Blender's configuration
and defaults. This PR changes the default to `9.7` (bright indoor or
very overcast outdoors), as I calibrated in #11577. This feels like a
very reasonable default.
The other changes generally center around tweaking Bevy's lighting
defaults and examples to play nicely with this number, alongside a few
other tweaks and improvements.
Note that for artistic reasons I have reverted some examples, which
changed to directional lights in #11581, back to point lights.
Fixes#11577
---
## Changelog
- Changed `Exposure::ev100` from `7` to `9.7` to better match Blender
- Renamed `ExposureSettings` to `Exposure`
- `Camera3dBundle` now includes `Exposure` for discoverability
- Bumped `FULL_DAYLIGHT ` and `DIRECT_SUNLIGHT` to represent the
middle-to-top of those ranges instead of near the bottom
- Added new `AMBIENT_DAYLIGHT` constant and set that as the new
`DirectionalLight` default illuminance.
- `PointLight` and `SpotLight` now have a default `intensity` of
1,000,000 lumens. This makes them actually useful in the context of the
new "semi-outdoor" exposure and puts them in the "cinema lighting"
category instead of the "common household light" category. They are also
reasonably close to the Blender default.
- `AmbientLight` default has been bumped from `20` to `80`.
## Migration Guide
- The increased `Exposure::ev100` means that all existing 3D lighting
will need to be adjusted to match (DirectionalLights, PointLights,
SpotLights, EnvironmentMapLights, etc). Or alternatively, you can adjust
the `Exposure::ev100` on your cameras to work nicely with your current
lighting values. If you are currently relying on default intensity
values, you might need to change the intensity to achieve the same
effect. Note that in Bevy 0.12, point/spot lights had a different hard
coded ev100 value than directional lights. In Bevy 0.13, they use the
same ev100, so if you have both in your scene, the _scale_ between these
light types has changed and you will likely need to adjust one or both
of them.
# Objective
Fix https://github.com/bevyengine/bevy/issues/11577.
## Solution
Fix the examples, add a few constants to make setting light values
easier, and change the default lighting settings to be more realistic.
(Now designed for an overcast day instead of an indoor environment)
---
I did not include any example-related changes in here.
## Changelogs (not including breaking changes)
### bevy_pbr
- Added `light_consts` module (included in prelude), which contains
common lux and lumen values for lights.
- Added `AmbientLight::NONE` constant, which is an ambient light with a
brightness of 0.
- Added non-EV100 variants for `ExposureSettings`'s EV100 constants,
which allow easier construction of an `ExposureSettings` from a EV100
constant.
## Breaking changes
### bevy_pbr
The several default lighting values were changed:
- `PointLight`'s default `intensity` is now `2000.0`
- `SpotLight`'s default `intensity` is now `2000.0`
- `DirectionalLight`'s default `illuminance` is now
`light_consts::lux::OVERCAST_DAY` (`1000.`)
- `AmbientLight`'s default `brightness` is now `20.0`
# Objective
`RenderMeshInstance::material_bind_group_id` is only set from
`queue_material_meshes::<M>`. this field is used (only) for determining
batch groups, so some items may be batched incorrectly if they have
never been in the camera's view or if they don't use the Material
abstraction.
in particular, shadow views render more meshes than the main camera, and
currently batch some meshes where the object has never entered the
camera view together. this is quite hard to trigger, but should occur in
a scene with out-of-view alpha-mask materials (so that the material
instance actually affects the shadow) in the path of a light.
this is also a footgun for custom pipelines: failing to set the
material_bind_group_id will result in all meshes being batched together
and all using the closest/furthest material to the camera (depending on
sort order).
## Solution
- queue_shadows now sets the material_bind_group_id correctly
- `MeshPipeline` doesn't attempt to batch meshes if the
material_bind_group_id has not been set. custom pipelines still need to
set this field to take advantage of batching, but will at least render
correctly if it is not set
# Objective
- Fixes#11782.
## Solution
- Remove the run condition for `apply_global_wireframe_material`, since
it prevent detecting when meshes are added or the `NoWireframe` marker
component is removed from an entity. Alternatively this could be done by
using a run condition like "added `Handle<Mesh>` or removed
`NoWireframe` or `WireframeConfig` changed" but this seems less clear to
me than directly letting the queries on
`apply_global_wireframe_material` do the filtering.
# Objective
Reduce the size of `bevy_utils`
(https://github.com/bevyengine/bevy/issues/11478)
## Solution
Move `EntityHash` related types into `bevy_ecs`. This also allows us
access to `Entity`, which means we no longer need `EntityHashMap`'s
first generic argument.
---
## Changelog
- Moved `bevy::utils::{EntityHash, EntityHasher, EntityHashMap,
EntityHashSet}` into `bevy::ecs::entity::hash` .
- Removed `EntityHashMap`'s first generic argument. It is now hardcoded
to always be `Entity`.
## Migration Guide
- Uses of `bevy::utils::{EntityHash, EntityHasher, EntityHashMap,
EntityHashSet}` now have to be imported from `bevy::ecs::entity::hash`.
- Uses of `EntityHashMap` no longer have to specify the first generic
parameter. It is now hardcoded to always be `Entity`.
This fixes a `FIXME` in `extract_meshes` and results in a performance
improvement.
As a result of this change, meshes in the render world might not be
attached to entities anymore. Therefore, the `entity` parameter to
`RenderCommand::render()` is now wrapped in an `Option`. Most
applications that use the render app's ECS can simply unwrap the
`Option`.
Note that for now sprites, gizmos, and UI elements still use the render
world as usual.
## Migration guide
* For efficiency reasons, some meshes in the render world may not have
corresponding `Entity` IDs anymore. As a result, the `entity` parameter
to `RenderCommand::render()` is now wrapped in an `Option`. Custom
rendering code may need to be updated to handle the case in which no
`Entity` exists for an object that is to be rendered.
# Objective
- Encoding many GPU commands (such as in a renderpass with many draws,
such as the main opaque pass) onto a `wgpu::CommandEncoder` is very
expensive, and takes a long time.
- To improve performance, we want to perform the command encoding for
these heavy passes in parallel.
## Solution
- `RenderContext` can now queue up "command buffer generation tasks"
which are closures that will generate a command buffer when called.
- When finalizing the render context to produce the final list of
command buffers, these tasks are run in parallel on the
`ComputeTaskPool` to produce their corresponding command buffers.
- The general idea is that the node graph will run in serial, but in a
node, instead of doing rendering work, you can add tasks to do render
work in parallel with other node's tasks that get ran at the end of the
graph execution.
## Nodes Parallelized
- `MainOpaquePass3dNode`
- `PrepassNode`
- `DeferredGBufferPrepassNode`
- `ShadowPassNode` (One task per view)
## Future Work
- For large number of draws calls, might be worth further subdividing
passes into 2+ tasks.
- Extend this to UI, 2d, transparent, and transmissive nodes?
- Needs testing - small command buffers are inefficient - it may be
worth reverting to the serial command encoder usage for render phases
with few items.
- All "serial" (traditional) rendering work must finish before parallel
rendering tasks (the new stuff) can start to run.
- There is still only one submission to the graphics queue at the end of
the graph execution. There is still no ability to submit work earlier.
## Performance Improvement
Thanks to @Elabajaba for testing on Bistro.
![image](https://github.com/bevyengine/bevy/assets/47158642/be50dafa-85eb-4da5-a5cd-c0a044f1e76f)
TLDR: Without shadow mapping, this PR has no impact. _With_ shadow
mapping, this PR gives **~40 more fps** than main.
---
## Changelog
- `MainOpaquePass3dNode`, `PrepassNode`, `DeferredGBufferPrepassNode`,
and each shadow map within `ShadowPassNode` are now encoded in parallel,
giving _greatly_ increased CPU performance, mainly when shadow mapping
is enabled.
- Does not work on WASM or AMD+Windows+Vulkan.
- Added `RenderContext::add_command_buffer_generation_task()`.
- `RenderContext::new()` now takes adapter info
- Some render graph and Node related types and methods now have
additional lifetime constraints.
## Migration Guide
`RenderContext::new()` now takes adapter info
- Some render graph and Node related types and methods now have
additional lifetime constraints.
---------
Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
Co-authored-by: François <mockersf@gmail.com>
Don't try to create a uniform buffer for light probes if there are no
views.
Fixes the panic on examples that have no views, such as
`touch_input_events`.
# Objective
Bevy could benefit from *irradiance volumes*, also known as *voxel
global illumination* or simply as light probes (though this term is not
preferred, as multiple techniques can be called light probes).
Irradiance volumes are a form of baked global illumination; they work by
sampling the light at the centers of each voxel within a cuboid. At
runtime, the voxels surrounding the fragment center are sampled and
interpolated to produce indirect diffuse illumination.
## Solution
This is divided into two sections. The first is copied and pasted from
the irradiance volume module documentation and describes the technique.
The second part consists of notes on the implementation.
### Overview
An *irradiance volume* is a cuboid voxel region consisting of
regularly-spaced precomputed samples of diffuse indirect light. They're
ideal if you have a dynamic object such as a character that can move
about
static non-moving geometry such as a level in a game, and you want that
dynamic object to be affected by the light bouncing off that static
geometry.
To use irradiance volumes, you need to precompute, or *bake*, the
indirect
light in your scene. Bevy doesn't currently come with a way to do this.
Fortunately, [Blender] provides a [baking tool] as part of the Eevee
renderer, and its irradiance volumes are compatible with those used by
Bevy.
The [`bevy-baked-gi`] project provides a tool, `export-blender-gi`, that
can
extract the baked irradiance volumes from the Blender `.blend` file and
package them up into a `.ktx2` texture for use by the engine. See the
documentation in the `bevy-baked-gi` project for more details as to this
workflow.
Like all light probes in Bevy, irradiance volumes are 1×1×1 cubes that
can
be arbitrarily scaled, rotated, and positioned in a scene with the
[`bevy_transform::components::Transform`] component. The 3D voxel grid
will
be stretched to fill the interior of the cube, and the illumination from
the
irradiance volume will apply to all fragments within that bounding
region.
Bevy's irradiance volumes are based on Valve's [*ambient cubes*] as used
in
*Half-Life 2* ([Mitchell 2006], slide 27). These encode a single color
of
light from the six 3D cardinal directions and blend the sides together
according to the surface normal.
The primary reason for choosing ambient cubes is to match Blender, so
that
its Eevee renderer can be used for baking. However, they also have some
advantages over the common second-order spherical harmonics approach:
ambient cubes don't suffer from ringing artifacts, they are smaller (6
colors for ambient cubes as opposed to 9 for spherical harmonics), and
evaluation is faster. A smaller basis allows for a denser grid of voxels
with the same storage requirements.
If you wish to use a tool other than `export-blender-gi` to produce the
irradiance volumes, you'll need to pack the irradiance volumes in the
following format. The irradiance volume of resolution *(Rx, Ry, Rz)* is
expected to be a 3D texture of dimensions *(Rx, 2Ry, 3Rz)*. The
unnormalized
texture coordinate *(s, t, p)* of the voxel at coordinate *(x, y, z)*
with
side *S* ∈ *{-X, +X, -Y, +Y, -Z, +Z}* is as follows:
```text
s = x
t = y + ⎰ 0 if S ∈ {-X, -Y, -Z}
⎱ Ry if S ∈ {+X, +Y, +Z}
⎧ 0 if S ∈ {-X, +X}
p = z + ⎨ Rz if S ∈ {-Y, +Y}
⎩ 2Rz if S ∈ {-Z, +Z}
```
Visually, in a left-handed coordinate system with Y up, viewed from the
right, the 3D texture looks like a stacked series of voxel grids, one
for
each cube side, in this order:
| **+X** | **+Y** | **+Z** |
| ------ | ------ | ------ |
| **-X** | **-Y** | **-Z** |
A terminology note: Other engines may refer to irradiance volumes as
*voxel
global illumination*, *VXGI*, or simply as *light probes*. Sometimes
*light
probe* refers to what Bevy calls a reflection probe. In Bevy, *light
probe*
is a generic term that encompasses all cuboid bounding regions that
capture
indirect illumination, whether based on voxels or not.
Note that, if binding arrays aren't supported (e.g. on WebGPU or WebGL
2),
then only the closest irradiance volume to the view will be taken into
account during rendering.
[*ambient cubes*]:
https://advances.realtimerendering.com/s2006/Mitchell-ShadingInValvesSourceEngine.pdf
[Mitchell 2006]:
https://advances.realtimerendering.com/s2006/Mitchell-ShadingInValvesSourceEngine.pdf
[Blender]: http://blender.org/
[baking tool]:
https://docs.blender.org/manual/en/latest/render/eevee/render_settings/indirect_lighting.html
[`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi
### Implementation notes
This patch generalizes light probes so as to reuse as much code as
possible between irradiance volumes and the existing reflection probes.
This approach was chosen because both techniques share numerous
similarities:
1. Both irradiance volumes and reflection probes are cuboid bounding
regions.
2. Both are responsible for providing baked indirect light.
3. Both techniques involve presenting a variable number of textures to
the shader from which indirect light is sampled. (In the current
implementation, this uses binding arrays.)
4. Both irradiance volumes and reflection probes require gathering and
sorting probes by distance on CPU.
5. Both techniques require the GPU to search through a list of bounding
regions.
6. Both will eventually want to have falloff so that we can smoothly
blend as objects enter and exit the probes' influence ranges. (This is
not implemented yet to keep this patch relatively small and reviewable.)
To do this, we generalize most of the methods in the reflection probes
patch #11366 to be generic over a trait, `LightProbeComponent`. This
trait is implemented by both `EnvironmentMapLight` (for reflection
probes) and `IrradianceVolume` (for irradiance volumes). Using a trait
will allow us to add more types of light probes in the future. In
particular, I highly suspect we will want real-time reflection planes
for mirrors in the future, which can be easily slotted into this
framework.
## Changelog
> This section is optional. If this was a trivial fix, or has no
externally-visible impact, you can delete this section.
### Added
* A new `IrradianceVolume` asset type is available for baked voxelized
light probes. You can bake the global illumination using Blender or
another tool of your choice and use it in Bevy to apply indirect
illumination to dynamic objects.
# Objective
During my exploratory work on the remote editor, I found a couple of
types that were either not registered, or that were missing
`ReflectDefault`.
## Solution
- Added registration and `ReflectDefault` where applicable
- (Drive by fix) Moved `Option<f32>` registration to `bevy_core` instead
of `bevy_ui`, along with similar types.
---
## Changelog
- Fixed: Registered `FogSettings`, `FogFalloff`,
`ParallaxMappingMethod`, `OpaqueRendererMethod` structs for reflection
- Fixed: Registered `ReflectDefault` trait for `ColorGrading` and
`CascadeShadowConfig` structs
# Objective
Bevy does ridiculous amount of drawcalls, and our batching isn't very
effective because we sort by distance and only batch if we get multiple
of the same object in a row. This can give us slightly better GPU
performance when not using the depth prepass (due to less overdraw), but
ends up being massively CPU bottlenecked due to doing thousands of
unnecessary drawcalls.
## Solution
Change the sort functions to sort by pipeline key then by mesh id for
large performance gains in more realistic scenes than our stress tests.
Pipelines changed:
- Opaque3d
- Opaque3dDeferred
- Opaque3dPrepass
![image](https://github.com/bevyengine/bevy/assets/177631/8c355256-ad86-4b47-81a0-f3906797fe7e)
---
## Changelog
- Opaque3d drawing order is now sorted by pipeline and mesh, rather than
by distance. This trades off a bit of GPU time in exchange for massively
better batching in scenes that aren't only drawing huge amounts of a
single object.
# Objective
- Some places manually use a `bool` /`AtomicBool` to warn once.
## Solution
- Use the `warn_once` macro which internally creates an `AtomicBool`.
Downside: in some case the warning state would have been reset after
recreating the struct carrying the warn state, whereas now it will
always warn only once per program run (For example, if all
`MeshPipeline`s are dropped or the `World` is recreated for
`Local<bool>`/ a `bool` resource, which shouldn't happen over the course
of a standard `App` run).
---
## Changelog
### Removed
- `FontAtlasWarning` has been removed, but the corresponding warning is
still emitted.
# Objective
- Pipeline compilation is slow and blocks the frame
- Closes https://github.com/bevyengine/bevy/issues/8224
## Solution
- Compile pipelines in a Task on the AsyncComputeTaskPool
---
## Changelog
- Render/compute pipeline compilation is now done asynchronously over
multiple frames when the multi-threaded feature is enabled and on
non-wasm and non-macOS platforms
- Added `CachedPipelineState::Creating`
- Added `PipelineCache::block_on_render_pipeline()`
- Added `bevy_utils::futures::check_ready`
- Added `bevy_render/multi-threaded` cargo feature
## Migration Guide
- Match on the new `Creating` variant for exhaustive matches of
`CachedPipelineState`
# Objective
Currently the `missing_docs` lint is allowed-by-default and enabled at
crate level when their documentations is complete (see #3492).
This PR proposes to inverse this logic by making `missing_docs`
warn-by-default and mark crates with imcomplete docs allowed.
## Solution
Makes `missing_docs` warn at workspace level and allowed at crate level
when the docs is imcomplete.
# Objective
- Address #10338
## Solution
- When implementing specular and diffuse transmission, I inadvertently
introduced a performance regression. On high-end hardware it is barely
noticeable, but **for lower-end hardware it can be pretty brutal**. If I
understand it correctly, this is likely due to use of masking by the GPU
to implement control flow, which means that you still pay the price for
the branches you don't take;
- To avoid that, this PR introduces new shader defs (controlled via
`StandardMaterialKey`) that conditionally include the transmission
logic, that way the shader code for both types of transmission isn't
even sent to the GPU if you're not using them;
- This PR also renames ~~`STANDARDMATERIAL_NORMAL_MAP`~~ to
`STANDARD_MATERIAL_NORMAL_MAP` for consistency with the naming
convention used elsewhere in the codebase. (Drive-by fix)
---
## Changelog
- Added new shader defs, set when using transmission in the
`StandardMaterial`:
- `STANDARD_MATERIAL_SPECULAR_TRANSMISSION`;
- `STANDARD_MATERIAL_DIFFUSE_TRANSMISSION`;
- `STANDARD_MATERIAL_SPECULAR_OR_DIFFUSE_TRANSMISSION`.
- Fixed performance regression caused by the introduction of
transmission, by gating transmission shader logic behind the newly
introduced shader defs;
- Renamed ~~`STANDARDMATERIAL_NORMAL_MAP`~~ to
`STANDARD_MATERIAL_NORMAL_MAP` for consistency;
## Migration Guide
- If you were using `#ifdef STANDARDMATERIAL_NORMAL_MAP` on your shader
code, make sure to update the name to `STANDARD_MATERIAL_NORMAL_MAP`;
(with an underscore between `STANDARD` and `MATERIAL`)
# Objective
The whole `Cow<'static, str>` naming for nodes and subgraphs in
`RenderGraph` is a mess.
## Solution
Replaces hardcoded and potentially overlapping strings for nodes and
subgraphs inside `RenderGraph` with bevy's labelsystem.
---
## Changelog
* Two new labels: `RenderLabel` and `RenderSubGraph`.
* Replaced all uses for hardcoded strings with those labels
* Moved `Taa` label from its own mod to all the other `Labels3d`
* `add_render_graph_edges` now needs a tuple of labels
* Moved `ScreenSpaceAmbientOcclusion` label from its own mod with the
`ShadowPass` label to `LabelsPbr`
* Removed `NodeId`
* Renamed `Edges.id()` to `Edges.label()`
* Removed `NodeLabel`
* Changed examples according to the new label system
* Introduced new `RenderLabel`s: `Labels2d`, `Labels3d`, `LabelsPbr`,
`LabelsUi`
* Introduced new `RenderSubGraph`s: `SubGraph2d`, `SubGraph3d`,
`SubGraphUi`
* Removed `Reflect` and `Default` derive from `CameraRenderGraph`
component struct
* Improved some error messages
## Migration Guide
For Nodes and SubGraphs, instead of using hardcoded strings, you now
pass labels, which can be derived with structs and enums.
```rs
// old
#[derive(Default)]
struct MyRenderNode;
impl MyRenderNode {
pub const NAME: &'static str = "my_render_node"
}
render_app
.add_render_graph_node::<ViewNodeRunner<MyRenderNode>>(
core_3d::graph::NAME,
MyRenderNode::NAME,
)
.add_render_graph_edges(
core_3d::graph::NAME,
&[
core_3d::graph::node::TONEMAPPING,
MyRenderNode::NAME,
core_3d::graph::node::END_MAIN_PASS_POST_PROCESSING,
],
);
// new
use bevy::core_pipeline::core_3d::graph::{Labels3d, SubGraph3d};
#[derive(Debug, Hash, PartialEq, Eq, Clone, RenderLabel)]
pub struct MyRenderLabel;
#[derive(Default)]
struct MyRenderNode;
render_app
.add_render_graph_node::<ViewNodeRunner<MyRenderNode>>(
SubGraph3d,
MyRenderLabel,
)
.add_render_graph_edges(
SubGraph3d,
(
Labels3d::Tonemapping,
MyRenderLabel,
Labels3d::EndMainPassPostProcessing,
),
);
```
### SubGraphs
#### in `bevy_core_pipeline::core_2d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `NAME` | `SubGraph2d` |
#### in `bevy_core_pipeline::core_3d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `NAME` | `SubGraph3d` |
#### in `bevy_ui::render`
| old string-based path | new label |
|-----------------------|-----------|
| `draw_ui_graph::NAME` | `graph::SubGraphUi` |
### Nodes
#### in `bevy_core_pipeline::core_2d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `node::MSAA_WRITEBACK` | `Labels2d::MsaaWriteback` |
| `node::MAIN_PASS` | `Labels2d::MainPass` |
| `node::BLOOM` | `Labels2d::Bloom` |
| `node::TONEMAPPING` | `Labels2d::Tonemapping` |
| `node::FXAA` | `Labels2d::Fxaa` |
| `node::UPSCALING` | `Labels2d::Upscaling` |
| `node::CONTRAST_ADAPTIVE_SHARPENING` |
`Labels2d::ConstrastAdaptiveSharpening` |
| `node::END_MAIN_PASS_POST_PROCESSING` |
`Labels2d::EndMainPassPostProcessing` |
#### in `bevy_core_pipeline::core_3d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `node::MSAA_WRITEBACK` | `Labels3d::MsaaWriteback` |
| `node::PREPASS` | `Labels3d::Prepass` |
| `node::DEFERRED_PREPASS` | `Labels3d::DeferredPrepass` |
| `node::COPY_DEFERRED_LIGHTING_ID` | `Labels3d::CopyDeferredLightingId`
|
| `node::END_PREPASSES` | `Labels3d::EndPrepasses` |
| `node::START_MAIN_PASS` | `Labels3d::StartMainPass` |
| `node::MAIN_OPAQUE_PASS` | `Labels3d::MainOpaquePass` |
| `node::MAIN_TRANSMISSIVE_PASS` | `Labels3d::MainTransmissivePass` |
| `node::MAIN_TRANSPARENT_PASS` | `Labels3d::MainTransparentPass` |
| `node::END_MAIN_PASS` | `Labels3d::EndMainPass` |
| `node::BLOOM` | `Labels3d::Bloom` |
| `node::TONEMAPPING` | `Labels3d::Tonemapping` |
| `node::FXAA` | `Labels3d::Fxaa` |
| `node::UPSCALING` | `Labels3d::Upscaling` |
| `node::CONTRAST_ADAPTIVE_SHARPENING` |
`Labels3d::ContrastAdaptiveSharpening` |
| `node::END_MAIN_PASS_POST_PROCESSING` |
`Labels3d::EndMainPassPostProcessing` |
#### in `bevy_core_pipeline`
| old string-based path | new label |
|-----------------------|-----------|
| `taa::draw_3d_graph::node::TAA` | `Labels3d::Taa` |
#### in `bevy_pbr`
| old string-based path | new label |
|-----------------------|-----------|
| `draw_3d_graph::node::SHADOW_PASS` | `LabelsPbr::ShadowPass` |
| `ssao::draw_3d_graph::node::SCREEN_SPACE_AMBIENT_OCCLUSION` |
`LabelsPbr::ScreenSpaceAmbientOcclusion` |
| `deferred::DEFFERED_LIGHTING_PASS` | `LabelsPbr::DeferredLightingPass`
|
#### in `bevy_render`
| old string-based path | new label |
|-----------------------|-----------|
| `main_graph::node::CAMERA_DRIVER` | `graph::CameraDriverLabel` |
#### in `bevy_ui::render`
| old string-based path | new label |
|-----------------------|-----------|
| `draw_ui_graph::node::UI_PASS` | `graph::LabelsUi::UiPass` |
---
## Future work
* Make `NodeSlot`s also use types. Ideally, we have an enum with unit
variants where every variant resembles one slot. Then to make sure you
are using the right slot enum and make rust-analyzer play nicely with
it, we should make an associated type in the `Node` trait. With today's
system, we can introduce 3rd party slots to a node, and i wasnt sure if
this was used, so I didn't do this in this PR.
## Unresolved Questions
When looking at the `post_processing` example, we have a struct for the
label and a struct for the node, this seems like boilerplate and on
discord, @IceSentry (sowy for the ping)
[asked](https://discord.com/channels/691052431525675048/743663924229963868/1175197016947699742)
if a node could automatically introduce a label (or i completely
misunderstood that). The problem with that is, that nodes like
`EmptyNode` exist multiple times *inside the same* (sub)graph, so there
we need extern labels to distinguish between those. Hopefully we can
find a way to reduce boilerplate and still have everything unique. For
EmptyNode, we could maybe make a macro which implements an "empty node"
for a type, but for nodes which contain code and need to be present
multiple times, this could get nasty...