# Objective
- First step towards #15558
## Solution
- Rename `get_vertex_buffer_data` to `create_packed_vertex_buffer_data`
to make it clear that it is not "free" and actually allocates
- Compute length analytically for preallocation instead of creating the
buffer to get its length and immediately discard it
- Use existing vertex attribute size calculation method to reduce code
duplication
- Fix a bug where mesh index data was being replaced by unnecessarily
newly created mesh vertex data in some cases
- Overall reduces mesh copies by two. We still have plenty to go, but
these were the easy ones.
## Testing
- I ran 3d_scene, lighting, and many_cubes, they look fine.
- Benchmarks would be nice, but this is very obviously a win in perf and
correctness.
---
## Migration Guide
- `Mesh::create_packed_vertex_buffer_data` has been renamed
`Mesh::create_packed_vertex_buffer_data` to reflect the fact that it
copies data and allocates.
## Showcase
- look mom, less copies
# Objective
- This PR fixes#12488
## Solution
- This PR adds a new property to `Camera` that emulates the
functionality of the
[setViewOffset()](https://threejs.org/docs/#api/en/cameras/PerspectiveCamera.setViewOffset)
API in three.js.
- When set, the perspective and orthographic projections will restrict
the visible area of the camera to a part of the view frustum defined by
`offset` and `size`.
## Testing
- In the new `camera_sub_view` example, a fixed, moving and control sub
view is created for both perspective and orthographic projection
- Run the example with `cargo run --example camera_sub_view`
- The code can be tested by adding a `SubCameraView` to a camera
---
## Showcase
![image](https://github.com/user-attachments/assets/75ac45fc-d75d-4664-8ef6-ff7865297c25)
- Left Half: Perspective Projection
- Right Half: Orthographic Projection
- Small boxes in order:
- Sub view of the left half of the full image
- Sub view moving from the top left to the bottom right of the full
image
- Sub view of the full image (acting as a control)
- Large box: No sub view
<details>
<summary>Shortened camera setup of `camera_sub_view` example</summary>
```rust
// Main perspective Camera
commands.spawn(Camera3dBundle {
transform,
..default()
});
// Perspective camera left half
commands.spawn(Camera3dBundle {
camera: Camera {
sub_camera_view: Some(SubCameraView {
// Set the sub view camera to the left half of the full image
full_size: uvec2(500, 500),
offset: ivec2(0, 0),
size: uvec2(250, 500),
}),
order: 1,
..default()
},
transform,
..default()
});
// Perspective camera moving
commands.spawn((
Camera3dBundle {
camera: Camera {
sub_camera_view: Some(SubCameraView {
// Set the sub view camera to a fifth of the full view and
// move it in another system
full_size: uvec2(500, 500),
offset: ivec2(0, 0),
size: uvec2(100, 100),
}),
order: 2,
..default()
},
transform,
..default()
},
MovingCameraMarker,
));
// Perspective camera control
commands.spawn(Camera3dBundle {
camera: Camera {
sub_camera_view: Some(SubCameraView {
// Set the sub view to the full image, to ensure that it matches
// the projection without sub view
full_size: uvec2(450, 450),
offset: ivec2(0, 0),
size: uvec2(450, 450),
}),
order: 3,
..default()
},
transform,
..default()
});
// Main orthographic camera
commands.spawn(Camera3dBundle {
projection: OrthographicProjection {
...
}
.into(),
camera: Camera {
order: 4,
..default()
},
transform,
..default()
});
// Orthographic camera left half
commands.spawn(Camera3dBundle {
projection: OrthographicProjection {
...
}
.into(),
camera: Camera {
sub_camera_view: Some(SubCameraView {
// Set the sub view camera to the left half of the full image
full_size: uvec2(500, 500),
offset: ivec2(0, 0),
size: uvec2(250, 500),
}),
order: 5,
..default()
},
transform,
..default()
});
// Orthographic camera moving
commands.spawn((
Camera3dBundle {
projection: OrthographicProjection {
...
}
.into(),
camera: Camera {
sub_camera_view: Some(SubCameraView {
// Set the sub view camera to a fifth of the full view and
// move it in another system
full_size: uvec2(500, 500),
offset: ivec2(0, 0),
size: uvec2(100, 100),
}),
order: 6,
..default()
},
transform,
..default()
},
MovingCameraMarker,
));
// Orthographic camera control
commands.spawn(Camera3dBundle {
projection: OrthographicProjection {
...
}
.into(),
camera: Camera {
sub_camera_view: Some(SubCameraView {
// Set the sub view to the full image, to ensure that it matches
// the projection without sub view
full_size: uvec2(450, 450),
offset: ivec2(0, 0),
size: uvec2(450, 450),
}),
order: 7,
..default()
},
transform,
..default()
});
```
</details>
# Objective
Fixes#15541
A bunch of lifetimes were added during the Assets V2 rework, but after
moving to async traits in #12550 they can be elided. That PR mentions
that this might be the case, but apparently it wasn't followed up on at
the time.
~~I ended up grepping for `<'a` and finding a similar case in
`bevy_reflect` which I also fixed.~~ (edit: that one was needed
apparently)
Note that elided lifetimes are unstable in `impl Trait`. If that gets
stabilized then we can elide even more.
## Solution
Remove the extra lifetimes.
## Testing
Everything still compiles. If I have messed something up there is a
small risk that some user code stops compiling, but all the examples
still work at least.
---
## Migration Guide
The traits `AssetLoader`, `AssetSaver` and `Process` traits from
`bevy_asset` now use elided lifetimes. If you implement these then
remove the named lifetime.
- Adopted from #14449
- Still fixes#12144.
## Migration Guide
The retained render world is a complex change: migrating might take one
of a few different forms depending on the patterns you're using.
For every example, we specify in which world the code is run. Most of
the changes affect render world code, so for the average Bevy user who's
using Bevy's high-level rendering APIs, these changes are unlikely to
affect your code.
### Spawning entities in the render world
Previously, if you spawned an entity with `world.spawn(...)`,
`commands.spawn(...)` or some other method in the rendering world, it
would be despawned at the end of each frame. In 0.15, this is no longer
the case and so your old code could leak entities. This can be mitigated
by either re-architecting your code to no longer continuously spawn
entities (like you're used to in the main world), or by adding the
`bevy_render::world_sync::TemporaryRenderEntity` component to the entity
you're spawning. Entities tagged with `TemporaryRenderEntity` will be
removed at the end of each frame (like before).
### Extract components with `ExtractComponentPlugin`
```
// main world
app.add_plugins(ExtractComponentPlugin::<ComponentToExtract>::default());
```
`ExtractComponentPlugin` has been changed to only work with synced
entities. Entities are automatically synced if `ComponentToExtract` is
added to them. However, entities are not "unsynced" if any given
`ComponentToExtract` is removed, because an entity may have multiple
components to extract. This would cause the other components to no
longer get extracted because the entity is not synced.
So be careful when only removing extracted components from entities in
the render world, because it might leave an entity behind in the render
world. The solution here is to avoid only removing extracted components
and instead despawn the entire entity.
### Manual extraction using `Extract<Query<(Entity, ...)>>`
```rust
// in render world, inspired by bevy_pbr/src/cluster/mod.rs
pub fn extract_clusters(
mut commands: Commands,
views: Extract<Query<(Entity, &Clusters, &Camera)>>,
) {
for (entity, clusters, camera) in &views {
// some code
commands.get_or_spawn(entity).insert(...);
}
}
```
One of the primary consequences of the retained rendering world is that
there's no longer a one-to-one mapping from entity IDs in the main world
to entity IDs in the render world. Unlike in Bevy 0.14, Entity 42 in the
main world doesn't necessarily map to entity 42 in the render world.
Previous code which called `get_or_spawn(main_world_entity)` in the
render world (`Extract<Query<(Entity, ...)>>` returns main world
entities). Instead, you should use `&RenderEntity` and
`render_entity.id()` to get the correct entity in the render world. Note
that this entity does need to be synced first in order to have a
`RenderEntity`.
When performing manual abstraction, this won't happen automatically
(like with `ExtractComponentPlugin`) so add a `SyncToRenderWorld` marker
component to the entities you want to extract.
This results in the following code:
```rust
// in render world, inspired by bevy_pbr/src/cluster/mod.rs
pub fn extract_clusters(
mut commands: Commands,
views: Extract<Query<(&RenderEntity, &Clusters, &Camera)>>,
) {
for (render_entity, clusters, camera) in &views {
// some code
commands.get_or_spawn(render_entity.id()).insert(...);
}
}
// in main world, when spawning
world.spawn(Clusters::default(), Camera::default(), SyncToRenderWorld)
```
### Looking up `Entity` ids in the render world
As previously stated, there's now no correspondence between main world
and render world `Entity` identifiers.
Querying for `Entity` in the render world will return the `Entity` id in
the render world: query for `MainEntity` (and use its `id()` method) to
get the corresponding entity in the main world.
This is also a good way to tell the difference between synced and
unsynced entities in the render world, because unsynced entities won't
have a `MainEntity` component.
---------
Co-authored-by: re0312 <re0312@outlook.com>
Co-authored-by: re0312 <45868716+re0312@users.noreply.github.com>
Co-authored-by: Periwink <charlesbour@gmail.com>
Co-authored-by: Anselmo Sampietro <ans.samp@gmail.com>
Co-authored-by: Emerson Coskey <56370779+ecoskey@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Christian Hughes <9044780+ItsDoot@users.noreply.github.com>
# Objective
* Remove all uses of render_resource_wrapper.
* Make it easier to share a `wgpu::Device` between Bevy and application
code.
## Solution
Removed the `render_resource_wrapper` macro.
To improve the `RenderCreation:: Manual ` API, `ErasedRenderDevice` was
replaced by `Arc`. Unfortunately I had to introduce one more usage of
`WgpuWrapper` which seems like an unwanted constraint on the caller.
## Testing
- Did you test these changes? If so, how?
- Ran `cargo test`.
- Ran a few examples.
- Used `RenderCreation::Manual` in my own project
- Exercised `RenderCreation::Automatic` through examples
- Are there any parts that need more testing?
- No
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Run examples
- Use `RenderCreation::Manual` in their own project
# Objective
- Provide a generic and _reflectable_ way to iterate over contained
entities
## Solution
Adds two new traits:
* `VisitEntities`: Reflectable iteration, accepts a closure rather than
producing an iterator. Implemented by default for `IntoIterator`
implementing types. A proc macro is also provided.
* A `Mut` variant of the above. Its derive macro uses the same field
attribute to avoid repetition.
## Testing
Added a test for `VisitEntities` that also transitively tests its derive
macro as well as the default `MapEntities` impl.
# Objective
Adds a new `Readback` component to request for readback of a
`Handle<Image>` or `Handle<ShaderStorageBuffer>` to the CPU in a future
frame.
## Solution
We track the `Readback` component and allocate a target buffer to write
the gpu resource into and map it back asynchronously, which then fires a
trigger on the entity in the main world. This proccess is asynchronous,
and generally takes a few frames.
## Showcase
```rust
let mut buffer = ShaderStorageBuffer::from(vec![0u32; 16]);
buffer.buffer_description.usage |= BufferUsages::COPY_SRC;
let buffer = buffers.add(buffer);
commands
.spawn(Readback::buffer(buffer.clone()))
.observe(|trigger: Trigger<ReadbackComplete>| {
info!("Buffer data from previous frame {:?}", trigger.event());
});
```
---------
Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
# Objective
- Fixes#15077
## Solution
- Clears `ViewTargetAttachments` resource every frame before
`create_surfaces` system instead, which was previously done after
`extract_windows`.
## Testing
- Confirmed that examples no longer panic on window resizing with DX12
backend.
- `screenshot` example keeps working after this change.
# Objective
- We use a feature introduced in async-channel 2.3.0, `force_send`
- Existing project fail to compile as they have a lock file on the 2.2.X
## Solution
- Bump async-channel
# Objective
- Fixes#15490 introduced in #15094.
## Solution
- Use non-panicking `try_insert`
## Testing
- Closing window with `CursorIcon` no longer crashes after this change
(confirmed with `window_settings` example)
# Objective
The next step in the migration to required components: Deprecate
`VisibilityBundle` and make `Visibility` require `InheritedVisibility`
and `ViewVisibility`, as per the [chosen
proposal](https://hackmd.io/@bevy/required_components/%2FcO7JPSAQR5G0J_j5wNwtOQ).
## Solution
Deprecate `VisibilityBundle` and make `Visibility` require
`InheritedVisibility` and `ViewVisibility`.
I chose not to deprecate `SpatialBundle` yet, as doing so would mean
that we need to manually add `Visibility` to a bunch of places. It will
be nicer once meshes, sprites, lights, fog, and cameras have been
migrated, since they will require `Transform` and `Visibility` and
therefore not need manually added defaults for them.
---
## Migration Guide
Replace all insertions of `VisibilityBundle` with the `Visibility`
component. The other components required by it will now be inserted
automatically.
# Objective
- Fixes#6370
- Closes#6581
## Solution
- Added the following lints to the workspace:
- `std_instead_of_core`
- `std_instead_of_alloc`
- `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.
## Testing
- Ran CI locally
## Migration Guide
The MSRV is now 1.81. Please update to this version or higher.
## Notes
- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
Make it easier to debug why an entity doesn't match a query.
## Solution
List the entities components in `QueryEntityError::QueryDoesNotMatch`'s
message, e.g. `The query does not match the entity 0v1, which has
components foo::Bar, foo::Baz`.
This covers most cases as expected components are typically known and
filtering for change detection is rare when assessing a query by entity
id.
## Testing
Added a test confirming the new message matches the entity's components.
## Migration Guide
- `QueryEntityError` now has a lifetime. Convert it to a custom error if
you need to store it.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: poopy <gonesbird@gmail.com>
# Objective
I'm building a game where i generate a set of meshes where the transform
is identity, and in each mesh the vertices are offset to where the model
is. When adding visibility ranges to the models i noticed that they only
switched when the distance to the origin changed over the threshold and
all at the same time.
## Solution
I believe that each mesh gets a Aabb generated for use with visibility
testing. So we can use that aabb to calculate a more representative
distance to the mesh.
The code to transform the aabb is taken from the visibility sysyem.
## Testing
I tested the changes locally in my project.
Would you like me to write an example or a test somewhere?
Is there any other code that uses the visibility range, that i should
also update?
# Objective
Updating ``glam`` to 0.29, ``encase`` to 0.10.
## Solution
Update the necessary ``Cargo.toml`` files.
## Testing
Ran ``cargo run -p ci`` on Windows; no issues came up.
---------
Co-authored-by: aecsocket <aecsocket@tutanota.com>
# Objective
Currently, the term "value" in the context of reflection is a bit
overloaded.
For one, it can be used synonymously with "data" or "variable". An
example sentence would be "this function takes a reflected value".
However, it is also used to refer to reflected types which are
`ReflectKind::Value`. These types are usually either primitives, opaque
types, or types that don't fall into any other `ReflectKind` (or perhaps
could, but don't due to some limitation/difficulty). An example sentence
would be "this function takes a reflected value type".
This makes it difficult to write good documentation or other learning
material without causing some amount of confusion to readers. Ideally,
we'd be able to move away from the `ReflectKind::Value` usage and come
up with a better term.
## Solution
This PR replaces the terminology of "value" with "opaque" across
`bevy_reflect`. This includes in documentation, type names, variant
names, and macros.
The term "opaque" was chosen because that's essentially how the type is
treated within the reflection API. In other words, its internal
structure is hidden. All we can do is work with the type itself.
### Primitives
While primitives are not technically opaque types, I think it's still
clearer to refer to them as "opaque" rather than keep the confusing
"value" terminology.
We could consider adding another concept for primitives (e.g.
`ReflectKind::Primitive`), but I'm not sure that provides a lot of
benefit right now. In most circumstances, they'll be treated just like
an opaque type. They would also likely use the same macro (or two copies
of the same macro but with different names).
## Testing
You can test locally by running:
```
cargo test --package bevy_reflect --all-features
```
---
## Migration Guide
The reflection concept of "value type" has been replaced with a clearer
"opaque type". The following renames have been made to account for this:
- `ReflectKind::Value` → `ReflectKind::Opaque`
- `ReflectRef::Value` → `ReflectRef::Opaque`
- `ReflectMut::Value` → `ReflectMut::Opaque`
- `ReflectOwned::Value` → `ReflectOwned::Opaque`
- `TypeInfo::Value` → `TypeInfo::Opaque`
- `ValueInfo` → `OpaqueInfo`
- `impl_reflect_value!` → `impl_reflect_opaque!`
- `impl_from_reflect_value!` → `impl_from_reflect_opaque!`
Additionally, declaring your own opaque types no longer uses
`#[reflect_value]`. This attribute has been replaced by
`#[reflect(opaque)]`:
```rust
// BEFORE
#[derive(Reflect)]
#[reflect_value(Default)]
struct MyOpaqueType(u32);
// AFTER
#[derive(Reflect)]
#[reflect(opaque)]
#[reflect(Default)]
struct MyOpaqueType(u32);
```
Note that the order in which `#[reflect(opaque)]` appears does not
matter.
# Objective
The goal of this PR is to introduce `SystemParam` validation in order to
reduce runtime panics.
Fixes#15265
## Solution
`SystemParam` now has a new method `validate_param(...) -> bool`, which
takes immutable variants of `get_param` arguments. The returned value
indicates whether the parameter can be acquired from the world. If
parameters cannot be acquired for a system, it won't be executed,
similarly to run conditions. This reduces panics when using params like
`Res`, `ResMut`, etc. as well as allows for new, ergonomic params like
#15264 or #15302.
Param validation happens at the level of executors. All validation
happens directly before executing a system, in case of normal systems
they are skipped, in case of conditions they return false.
Warning about system skipping is primitive and subject to change in
subsequent PRs.
## Testing
Two executor tests check that all executors:
- skip systems which have invalid parameters:
- piped systems get skipped together,
- dependent systems still run correctly,
- skip systems with invalid run conditions:
- system conditions have invalid parameters,
- system set conditions have invalid parameters.
**Note:** This is an adoption of @Shfty 's adoption (#8131) of #3996!
All I've done is updated the branch and run the docs CI.
> **Note:** This is an adoption of #3996, originally authored by
@molikto
>
> # Objective
> Allow use of `wgpu::Features::SPIRV_SHADER_PASSTHROUGH` and the
corresponding `wgpu::Device::create_shader_module_spirv` for SPIR-V
shader assets.
>
> This enables use-cases where naga is not sufficient to load a given
(valid) SPIR-V module, i.e. cases where naga lacks support for a given
SPIR-V feature employed by a third-party codegen backend like
`rust-gpu`.
>
> ## Solution
> * Reimplemented the changes from [Spirv shader
bypass #3996](https://github.com/bevyengine/bevy/pull/3996), on account
of the original branch having been deleted.
> * Documented the new `spirv_shader_passthrough` feature flag with the
appropriate platform support context from [wgpu's
documentation](https://docs.rs/wgpu/latest/wgpu/struct.Features.html#associatedconstant.SPIRV_SHADER_PASSTHROUGH).
>
> ## Changelog
> * Adds a `spirv_shader_passthrough` feature flag to the following
crates:
>
> * `bevy`
> * `bevy_internal`
> * `bevy_render`
> * Extends `RenderDevice::create_shader_module` with a conditional call
to `wgpu::Device::create_shader_module_spirv` if
`spirv_shader_passthrough` is enabled and
`wgpu::Features::SPIRV_SHADER_PASSTHROUGH` is present for the current
platform.
> * Documents the relevant `wgpu` platform support in
`docs/cargo_features.md`
---------
Co-authored-by: Josh Palmer <1253239+Shfty@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
> Rust 1.81 released the #[expect(...)] attribute, which works like
#[allow(...)] but throws a warning if the lint isn't raised. This is
preferred to #[allow(...)] because it tells us when it can be removed.
- Adopts the parts of #15118 that are complete, and updates the branch
so it can be merged.
- There were a few conflicts, let me know if I misjudged any of 'em.
Alice's
[recommendation](https://github.com/bevyengine/bevy/issues/15059#issuecomment-2349263900)
seems well-taken, let's do this crate by crate now that @BD103 has done
the lion's share of this!
(Relates to, but doesn't yet completely finish #15059.)
Crates this _doesn't_ cover:
- bevy_input
- bevy_gilrs
- bevy_window
- bevy_winit
- bevy_state
- bevy_render
- bevy_picking
- bevy_core_pipeline
- bevy_sprite
- bevy_text
- bevy_pbr
- bevy_ui
- bevy_gltf
- bevy_gizmos
- bevy_dev_tools
- bevy_internal
- bevy_dylib
---------
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
Co-authored-by: Ben Frankel <ben.frankel7@gmail.com>
Co-authored-by: Antony <antony.m.3012@gmail.com>
Enabled `check-private-items` in `clippy.toml` and then fixed the
resulting errors. Most of these were simply misformatted and of the
remaining:
- ~Added `#[allow(clippy::missing_safety_doc)]` to~ Removed unsafe from
a pair of functions in `bevy_utils/futures` which are only unsafe so
that they can be passed to a function which requires `unsafe fn`
- Removed `unsafe` from `UnsafeWorldCell::observers` as from what I can
tell it is always safe like `components`, `bundles` etc. (this should be
checked)
- Added safety docs to:
- `Bundles::get_storage_unchecked`: Based on the function that writes to
`dynamic_component_storages`
- `Bundles::get_storages_unchecked`: Based on the function that writes
to `dynamic_bundle_storages`
- `QueryIterationCursor::init_empty`: Duplicated from `init`
- `QueryIterationCursor::peek_last`: Thanks Giooschi (also added
internal unsafe blocks)
- `tests::drop_ptr`: Moved safety comment out to the doc string
This lint would also apply to `missing_errors_doc`, `missing_panics_doc`
and `unnecessary_safety_doc` if we chose to enable any of those at some
point, although there is an open
[issue](https://github.com/rust-lang/rust-clippy/issues/13074) to
separate these options.
# Objective
- Fixes#15236
## Solution
- Use bevy_math::ops instead of std floating point operations.
## Testing
- Did you test these changes? If so, how?
Unit tests and `cargo run -p ci -- test`
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
Execute `cargo run -p ci -- test` on Windows.
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
Windows
## Migration Guide
- Not a breaking change
- Projects should use bevy math where applicable
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: IQuick 143 <IQuick143cz@gmail.com>
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
# Objective
- Makes naming between add_child and add_children more consistent
- Fixes#15101
## Solution
renamed push_children to add_children
## Testing
- Did you test these changes? If so, how?
Ran tests + grep search for any instance of `push_child`
- Are there any parts that need more testing?
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
ran tests on WSL2
---
## Migration Guide
> This section is optional. If there are no breaking changes, you can
delete this section.
- If this PR is a breaking change (relative to the last release of
Bevy), describe how a user might need to migrate their code to support
these changes
rename any use of `push_children()` to the updated `add_children()`
# Objective
Fixes#14540
## Solution
- Clean slab layouts from stale `SlabId`s when freeing meshes
- Technically performance requirements of freeing now increase based on
the number of existing meshes, but maybe it doesn't matter too much in
practice
- This was the case before this PR too, but it's technically possible to
free and allocate 2^32 times and overflow with `SlabId`s and cause
incorrect behavior. It looks like new meshes would then override old
ones.
## Testing
- Tested in `loading_screen` example and tapping keyboard 1 and 2.
# Objective
Fixes https://github.com/bevyengine/bevy/issues/13225
## Solution
Invalidate `TrackedRenderPass` internal state upon accessing internal
`wgpu::RenderPass`.
## Testing
- Tested by calling `set_bind_group` on `RenderPass` returned by
`TrackedRenderPass::wgpu_pass` and checking if in later `set_bind_group`
calls on `TrackedRenderPass` correct bind group is restored.
# Objective
Hello! I am adopting #11022 to resolve conflicts with `main`. tldr: this
removes `scale` in favour of `scaling_mode`. Please see the original PR
for explanation/discussion.
Also relates to #2580.
## Migration Guide
Replace all uses of `scale` with `scaling_mode`, keeping in mind that
`scale` is (was) a multiplier. For example, replace
```rust
scale: 2.0,
scaling_mode: ScalingMode::FixedHorizontal(4.0),
```
with
```rust
scaling_mode: ScalingMode::FixedHorizontal(8.0),
```
---------
Co-authored-by: Stepan Koltsov <stepan.koltsov@gmail.com>
# Objective
I noticed some issues in `screenshot` example:
1. Cursor icon won't return from `SystemCursorIcon::Progress` to default
icon, even though screen shot saving is done.
2. Panics when exiting window: ``called `Result::unwrap()` on an `Err`
value:
NoEntities("bevy_ecs::query::state::QueryState<bevy_ecs::entity::Entity,
bevy_ecs::query::filter::With<bevy_window:🪟:Window>>")``
## Solution
1. Caused by cursor updating system not responding to [`CursorIcon`
component
removal](5cfcbf47ed/examples/window/screenshot.rs (L38)).
I believe it should, so change it to react to
`RemovedComponents<CursorIcon>`. (a suggestion)
2. Use `get_single` for window.
## Testing
- run screenshot example
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Hello,
I'd like to contribute to this project by adding some useful constants
and improving the documentation for the AspectRatio struct. Here's a
summary of the changes I've made:
1. Added new constants for common aspect ratios:
- SIXTEEN_NINE (16:9)
- FOUR_THREE (4:3)
- ULTRAWIDE (21:9)
2. Enhanced the overall documentation:
- Improved module-level documentation with an overview and use cases
- Expanded explanation of the AspectRatio struct with examples
- Added detailed descriptions and examples for all methods (both
existing and new)
- Included explanations for the newly introduced constant values
- Added clarifications for From trait implementations
These changes aim to make the AspectRatio API more user-friendly and
easier to understand. The new constants provide convenient access to
commonly used aspect ratios, which I believe will be helpful in many
scenarios.
---------
Co-authored-by: Gonçalo Rica Pais da Silva <bluefinger@gmail.com>
Co-authored-by: Lixou <82600264+DasLixou@users.noreply.github.com>
# Objective
- Fixes#15060
## Solution
- Added `IdentityAssetTransformer<A>` which is an `AssetTransformer`
which infallibly returns the input `Asset` unmodified.
- Replaced `LoadAndSave` and `LoadAndSaveSettings` with type definitions
linking back to `LoadTransformAndSave` and
`LoadTransformAndSaveSettings` respectively.
- Marked `LoadAndSave` and `LoadAndSaveSettings` as depreciated with a
migration guide included, hinting to the user to use the underlying type
instead.
## Testing
- Ran CI locally
---
## Migration Guide
- Replace `LoadAndSave<L, S>` with `LoadTransformAndSave<L,
IdentityAssetTransformer<<L as AssetLoader>::Asset>, S>`
- Replace `LoadAndSaveSettings<L, S>` with
`LoadTransformAndSaveSettings<L, (), S>`
Adopted PR from dmlary, all credit to them!
https://github.com/bevyengine/bevy/pull/9915
Original description:
# Objective
The default value for `near` in `OrthographicProjection` should be
different for 2d & 3d.
For 2d using `near = -1000` allows bevy users to build up scenes using
background `z = 0`, and foreground elements `z > 0` similar to css.
However in 3d `near = -1000` results in objects behind the camera being
rendered. Using `near = 0` works for 3d, but forces 2d users to assign
`z <= 0` for rendered elements, putting the background at some arbitrary
negative value.
There is no common value for `near` that doesn't result in a footgun or
usability issue for either 2d or 3d, so they should have separate
values.
There was discussion about other options in the discord
[0](https://discord.com/channels/691052431525675048/1154114310042292325),
but splitting `default()` into `default_2d()` and `default_3d()` seemed
like the lowest cost approach.
Related/past work https://github.com/bevyengine/bevy/issues/9138,
https://github.com/bevyengine/bevy/pull/9214,
https://github.com/bevyengine/bevy/pull/9310,
https://github.com/bevyengine/bevy/pull/9537 (thanks to @Selene-Amanita
for the list)
## Solution
This commit splits `OrthographicProjection::default` into `default_2d`
and `default_3d`.
## Migration Guide
- In initialization of `OrthographicProjection`, change `..default()` to
`..OrthographicProjection::default_2d()` or
`..OrthographicProjection::default_3d()`
Example:
```diff
--- a/examples/3d/orthographic.rs
+++ b/examples/3d/orthographic.rs
@@ -20,7 +20,7 @@ fn setup(
projection: OrthographicProjection {
scale: 3.0,
scaling_mode: ScalingMode::FixedVertical(2.0),
- ..default()
+ ..OrthographicProjection::default_3d()
}
.into(),
transform: Transform::from_xyz(5.0, 5.0, 5.0).looking_at(Vec3::ZERO, Vec3::Y),
```
---------
Co-authored-by: David M. Lary <dmlary@gmail.com>
Co-authored-by: Jan Hohenheim <jan@hohenheim.ch>
Kind of confused why this wasn't breaking for me pre-`0.15-dev` since
nothing obvious seems to have changed in `wgpu` upstream, but this fixes
it and ensures that we return the correct sample type re: the actual
device.
Adds some methods to assist in building `ShaderStorageBuffer` without
using `bytemuck`. We keep the `&[u8]` constructors since this is still
modeled as a thin wrapper around the buffer descriptor, but should make
it easier to interact with at the cost of an extra allocation in the
`ShaderType` path for the buffer writer.
Follow up from #14663
# Objective
`EntityHash` and related types were moved from `bevy_utils` to
`bevy_ecs` in #11498, but seemed to have been accidentally reintroduced
a week later in #11707.
## Solution
Remove the old leftover code.
---
## Migration Guide
- Uses of `bevy::utils::{EntityHash, EntityHasher, EntityHashMap,
EntityHashSet}` now have to be imported from `bevy::ecs::entity`.
# Objective
- Crate-level prelude modules, such as `bevy_ecs::prelude`, are plagued
with inconsistency! Let's fix it!
## Solution
Format all preludes based on the following rules:
1. All preludes should have brief documentation in the format of:
> The _name_ prelude.
>
> This includes the most common types in this crate, re-exported for
your convenience.
2. All documentation should be outer, not inner. (`///` instead of
`//!`.)
3. No prelude modules should be annotated with `#[doc(hidden)]`. (Items
within them may, though I'm not sure why this was done.)
## Testing
- I manually searched for the term `mod prelude` and updated all
occurrences by hand. 🫠
---------
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
- `CursorIcon` had derived `Reflect`, but it wasn't registered
## Solution
- Use `register_type` on it
- I also moved the cursor code to it's own plugin because there was
starting to be too much cursor code outside the cursor file.
## Testing
- window_settings example still works with the custom cursor
# Objective
As discussed in https://github.com/bevyengine/bevy/issues/7386, system
order ambiguities within `DefaultPlugins` are a source of bugs in the
engine and badly pollute diagnostic output for users.
We should eliminate them!
This PR is an alternative to #15027: with all external ambiguities
silenced, this should be much less prone to merge conflicts and the test
output should be much easier for authors to understand.
Note that system order ambiguities are still permitted in the
`RenderApp`: these need a bit of thought in terms of how to test them,
and will be fairly involved to fix. While these aren't *good*, they'll
generally only cause graphical bugs, not logic ones.
## Solution
All remaining system order ambiguities have been resolved.
Review this PR commit-by-commit to see how each of these problems were
fixed.
## Testing
`cargo run --example ambiguity_detection` passes with no panics or
logging!
# Objective
- Fixes https://github.com/bevyengine/bevy/issues/14593.
## Solution
- Add `ViewportConversionError` and return it from viewport conversion
methods on Camera.
## Testing
- I successfully compiled and ran all changed examples.
## Migration Guide
The following methods on `Camera` now return a `Result` instead of an
`Option` so that they can provide more information about failures:
- `world_to_viewport`
- `world_to_viewport_with_depth`
- `viewport_to_world`
- `viewport_to_world_2d`
Call `.ok()` on the `Result` to turn it back into an `Option`, or handle
the `Result` directly.
---------
Co-authored-by: Lixou <82600264+DasLixou@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
Adds a new `Handle<Storage>` asset type that can be used as a render
asset, particularly for use with `AsBindGroup`.
Closes: #13658
# Objective
Allow users to create storage buffers in the main world without having
to access the `RenderDevice`. While this resource is technically
available, it's bad form to use in the main world and requires mixing
rendering details with main world code. Additionally, this makes storage
buffers easier to use with `AsBindGroup`, particularly in the following
scenarios:
- Sharing the same buffers between a compute stage and material shader.
We already have examples of this for storage textures (see game of life
example) and these changes allow a similar pattern to be used with
storage buffers.
- Preventing repeated gpu upload (see the previous easier to use `Vec`
`AsBindGroup` option).
- Allow initializing custom materials using `Default`. Previously, the
lack of a `Default` implement for the raw `wgpu::Buffer` type made
implementing a `AsBindGroup + Default` bound difficult in the presence
of buffers.
## Solution
Adds a new `Handle<Storage>` asset type that is prepared into a
`GpuStorageBuffer` render asset. This asset can either be initialized
with a `Vec<u8>` of properly aligned data or with a size hint. Users can
modify the underlying `wgpu::BufferDescriptor` to provide additional
usage flags.
## Migration Guide
The `AsBindGroup` `storage` attribute has been modified to reference the
new `Handle<Storage>` asset instead. Usages of Vec` should be converted
into assets instead.
---------
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
Fixes#14993 (maybe). Adds a system ordering constraint that was missed
in the refactor in #14833. The theory here is that the single threaded
forces a topology that causes the prepare system to run before
`prepare_windows` in a way that causes issues. For whatever reason, this
appears to be unlikely when multi-threading is enabled.
# Objective
- Fixes#14974
## Solution
- Replace all* instances of `NonZero*` with `NonZero<*>`
## Testing
- CI passed locally.
---
## Notes
Within the `bevy_reflect` implementations for `std` types,
`impl_reflect_value!()` will continue to use the type aliases instead,
as it inappropriately parses the concrete type parameter as a generic
argument. If the `ZeroablePrimitive` trait was stable, or the macro
could be modified to accept a finite list of types, then we could fully
migrate.
# Objective
- Fixes#14841
## Solution
- Compute BufferSlice size manually and use it for comparison in
`TrackedRenderPass`
## Testing
- Gizmo example does not crash with #14721 (without system ordering),
and `slice` computes correct size there
---
## Migration Guide
- `TrackedRenderPass::set_vertex_buffer` function has been modified to
update vertex buffers when the same buffer with the same offset is
provided, but its size has changed. Some existing code may rely on the
previous behavior, which did not update the vertex buffer in this
scenario.
---------
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
The Android example on Adreno 642L currently crashes on startup.
Previous PRs #14176 and #13323 have adressed this specific crash
occurring on some Adreno GPUs, that fix works as it should but isn't
applied when to the GPU name contains a suffix like in the case of
`642L`.
## Solution
- Amending the logic to filter out any parts of the GPU name not
containing digits thus enabling the fix on `642L`.
## Testing
- Ran the Android example on a Nothing Phone 1. Before this change it
crashed, after it works as intended.
---------
Co-authored-by: Sam Pettersson <sam.pettersson@geoguessr.com>
# Objective
Fixes#14883
## Solution
Pretty simple update to `EntityCommands` methods to consume `self` and
return it rather than taking `&mut self`. The things probably worth
noting:
* I added `#[allow(clippy::should_implement_trait)]` to the `add` method
because it causes a linting conflict with `std::ops::Add`.
* `despawn` and `log_components` now return `Self`. I'm not sure if
that's exactly the desired behavior so I'm happy to adjust if that seems
wrong.
## Testing
Tested with `cargo run -p ci`. I think that should be sufficient to call
things good.
## Migration Guide
The most likely migration needed is changing code from this:
```
let mut entity = commands.get_or_spawn(entity);
if depth_prepass {
entity.insert(DepthPrepass);
}
if normal_prepass {
entity.insert(NormalPrepass);
}
if motion_vector_prepass {
entity.insert(MotionVectorPrepass);
}
if deferred_prepass {
entity.insert(DeferredPrepass);
}
```
to this:
```
let mut entity = commands.get_or_spawn(entity);
if depth_prepass {
entity = entity.insert(DepthPrepass);
}
if normal_prepass {
entity = entity.insert(NormalPrepass);
}
if motion_vector_prepass {
entity = entity.insert(MotionVectorPrepass);
}
if deferred_prepass {
entity.insert(DeferredPrepass);
}
```
as can be seen in several of the example code updates here. There will
probably also be instances where mutable `EntityCommands` vars no longer
need to be mutable.
# Objective
- Faster meshlet rasterization path for small triangles
- Avoid having to allocate and write out a triangle buffer
- Refactor gpu_scene.rs
## Solution
- Replace the 32bit visbuffer texture with a 64bit visbuffer buffer,
where the left 32 bits encode depth, and the right 32 bits encode the
existing cluster + triangle IDs. Can't use 64bit textures, wgpu/naga
doesn't support atomic ops on textures yet.
- Instead of writing out a buffer of packed cluster + triangle IDs (per
triangle) to raster, the culling pass now writes out a buffer of just
cluster IDs (per cluster, so less memory allocated, cheaper to write
out).
- Clusters for software raster are allocated from the left side
- Clusters for hardware raster are allocated in the same buffer, from
the right side
- The buffer size is fixed at MeshletPlugin build time, and should be
set to a reasonable value for your scene (no warning on overflow, and no
good way to determine what value you need outside of renderdoc - I plan
to fix this in a future PR adding a meshlet stats overlay)
- Currently I don't have a heuristic for software vs hardware raster
selection for each cluster. The existing code is just a placeholder. I
need to profile on a release scene and come up with a heuristic,
probably in a future PR.
- The culling shader is getting pretty hard to follow at this point, but
I don't want to spend time improving it as the entire shader/pass is
getting rewritten/replaced in the near future.
- Software raster is a compute workgroup per-cluster. Each workgroup
loads and transforms the <=64 vertices of the cluster, and then
rasterizes the <=64 triangles of the cluster.
- Two variants are implemented: Scanline for clusters with any larger
triangles (still smaller than hardware is good at), and brute-force for
very very tiny triangles
- Once the shader determines that a pixel should be filled in, it does
an atomicMax() on the visbuffer to store the results, copying how Nanite
works
- On devices with a low max workgroups per dispatch limit, an extra
compute pass is inserted before software raster to convert from a 1d to
2d dispatch (I don't think 3d would ever be necessary).
- I haven't implemented the top-left rule or subpixel precision yet, I'm
leaving that for a future PR since I get usable results without it for
now
- Resources used:
https://kristoffer-dyrkorn.github.io/triangle-rasterizer and chapters
6-8 of
https://fgiesen.wordpress.com/2013/02/17/optimizing-sw-occlusion-culling-index
- Hardware raster now spawns 64*3 vertex invocations per meshlet,
instead of the actual meshlet vertex count. Extra invocations just
early-exit.
- While this is slower than the existing system, hardware draws should
be rare now that software raster is usable, and it saves a ton of memory
using the unified cluster ID buffer. This would be fixed if wgpu had
support for mesh shaders.
- Instead of writing to a color+depth attachment, the hardware raster
pass also does the same atomic visbuffer writes that software raster
uses.
- We have to bind a dummy render target anyways, as wgpu doesn't
currently support render passes without any attachments
- Material IDs are no longer written out during the main rasterization
passes.
- If we had async compute queues, we could overlap the software and
hardware raster passes.
- New material and depth resolve passes run at the end of the visbuffer
node, and write out view depth and material ID depth textures
### Misc changes
- Fixed cluster culling importing, but never actually using the previous
view uniforms when doing occlusion culling
- Fixed incorrectly adding the LOD error twice when building the meshlet
mesh
- Splitup gpu_scene module into meshlet_mesh_manager, instance_manager,
and resource_manager
- resource_manager is still too complex and inefficient (extract and
prepare are way too expensive). I plan on improving this in a future PR,
but for now ResourceManager is mostly a 1:1 port of the leftover
MeshletGpuScene bits.
- Material draw passes have been renamed to the more accurate material
shade pass, as well as some other misc renaming (in the future, these
will be compute shaders even, and not actual draw calls)
---
## Migration Guide
- TBD (ask me at the end of the release for meshlet changes as a whole)
---------
Co-authored-by: vero <email@atlasdostal.com>
# Objective
When using instancing, 2 `VertexBufferLayout`s are needed, one for
per-vertex and one for per-instance data. Shader locations of all
attributes must not overlap, so one of the layouts needs to start its
locations at an offset. However,
`VertexBufferLayout::from_vertex_formats` will always start locations at
0, requiring manual adjustment, which is currently pretty verbose.
## Solution
Add `VertexBufferLayout::offset_locations`, which adds an offset to all
attribute locations.
Code using this method looks like this:
```rust
VertexState {
shader: BACKBUFFER_SHADER_HANDLE.typed(),
shader_defs: Vec::new(),
entry_point: "vertex".into(),
buffers: vec![
VertexBufferLayout::from_vertex_formats(
VertexStepMode::Vertex,
[VertexFormat::Float32x2],
),
VertexBufferLayout::from_vertex_formats(
VertexStepMode::Instance,
[VertexFormat::Float32x2, VertexFormat::Float32x3],
)
.offset_locations(1),
],
}
```
Alternative solutions include:
- Pass the starting location to `from_vertex_formats` – this is a bit
simpler than my solution here, but most calls don't need an offset, so
they'd always pass 0 there.
- Do nothing and make the user hand-write this.
---
## Changelog
- Add `VertexBufferLayout::offset_locations` to simplify buffer layout
construction when using instancing.
---------
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Adding more features to `AsBindGroup` proc macro means making the trait
arguments uglier. Downstream implementors of the trait without the proc
macro might want to do different things than our default arguments.
## Solution
Make `AsBindGroup` take an associated `Param` type.
## Migration Guide
`AsBindGroup` now allows the user to specify a `SystemParam` to be used
for creating bind groups.
# Objective
- Remove the `wgpu_trace` feature while still making it easy/possible to
record wgpu traces for debugging.
- Close#14725.
- Get a taste of the bevy codebase. :P
## Solution
This PR performs the above objective by removing the `wgpu_trace`
feature from all `Cargo.toml` files.
However, wgpu traces are still useful for debugging - but to record
them, you need to pass in a directory path to store the traces in. To
avoid forcing users into manually creating the renderer,
`bevy_render::settings::WgpuSettings` now has a `trace_path` field, so
that all of Bevy's automatic initialization can happen while still
allowing for tracing.
## Testing
- Did you test these changes? If so, how?
- I have tested these changes, but only via running `cargo run -p ci`. I
am hoping the Github Actions workflows will catch anything I missed.
- Are there any parts that need more testing?
- I do not believe so.
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- If you want to test these changes, I have updated the debugging guide
(`docs/debugging.md`) section on WGPU Tracing.
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
- I ran the above command on a Windows 10 64-bit (x64) machine, using
the `stable-x86_64-pc-windows-msvc` toolchain. I do not have anything
set up for other platforms or targets (though I can't imagine this needs
testing on other platforms).
---
## Migration Guide
1. The `bevy/wgpu_trace`, `bevy_render/wgpu_trace`, and
`bevy_internal/wgpu_trace` features no longer exist. Remove them from
your `Cargo.toml`, CI, tooling, and what-not.
2. Follow the instructions in the updated `docs/debugging.md` file in
the repository, under the WGPU Tracing section.
Because of the changes made, you can now generate traces to any path,
rather than the hardcoded `%WorkspaceRoot%/wgpu_trace` (where
`%WorkspaceRoot%` is... the root of your crate's workspace) folder.
(If WGPU hasn't restored tracing functionality...) Do note that WGPU has
not yet restored tracing functionality. However, once it does, the above
should be sufficient to generate new traces.
---------
Co-authored-by: TrialDragon <31419708+TrialDragon@users.noreply.github.com>
# Objective
Rewrite screenshotting to be able to accept any `RenderTarget`.
Closes#12478
## Solution
Previously, screenshotting relied on setting a variety of state on the
requested window. When extracted, the window's `swap_chain_texture_view`
property would be swapped out with a texture_view created that frame for
the screenshot pipeline to write back to the cpu.
Besides being tightly coupled to window in a way that prevented
screenshotting other render targets, this approach had the drawback of
relying on the implicit state of `swap_chain_texture_view` being
returned from a `NormalizedRenderTarget` when view targets were
prepared. Because property is set every frame for windows, that wasn't a
problem, but poses a problem for render target images. Namely, to do the
equivalent trick, we'd have to replace the `GpuImage`'s texture view,
and somehow restore it later.
As such, this PR creates a new `prepare_view_textures` system which runs
before `prepare_view_targets` that allows a new `prepare_screenshots`
system to be sandwiched between and overwrite the render targets texture
view if a screenshot has been requested that frame for the given target.
Additionally, screenshotting itself has been changed to use a component
+ observer pattern. We now spawn a `Screenshot` component into the
world, whose lifetime is tracked with a series of marker components.
When the screenshot is read back to the CPU, we send the image over a
channel back to the main world where an observer fires on the screenshot
entity before being despawned the next frame. This allows the user to
access resources in their save callback that might be useful (e.g.
uploading the screenshot over the network, etc.).
## Testing
![image](https://github.com/user-attachments/assets/48f19aed-d9e1-4058-bb17-82b37f992b7b)
TODO:
- [x] Web
- [ ] Manual texture view
---
## Showcase
render to texture example:
<img
src="https://github.com/user-attachments/assets/612ac47b-8a24-4287-a745-3051837963b0"
width=200/>
web saving still works:
<img
src="https://github.com/user-attachments/assets/e2a15b17-1ff5-4006-ab2a-e5cc74888b9c"
width=200/>
## Migration Guide
`ScreenshotManager` has been removed. To take a screenshot, spawn a
`Screenshot` entity with the specified render target and provide an
observer targeting the `ScreenshotCaptured` event. See the
`window/screenshot` example to see an example.
---------
Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com>
# Objective
There is a tiny seam at the top of the annulus caused by normal
floating-point error in calculating the coordinates. When generating the
last pair of triangles, given `n == i` then `(TAU / n) * i` does not
equal `TAU` exactly.
Fixes https://github.com/komadori/bevy_mod_outline/issues/42
## Solution
This can be fixed by changing the calculation so that `(TAU / n) * (i %
n) == 0.0`, which is equivalent for trigonometric purposes.
## Testing
Added the unit test
`bevy_render::mesh::primitives::dim2::tests::test_annulus`.
Fixes#14825
Edit: After feedback, these are the updated methods:
- `toggle_inherited_visible(&mut self)`
- Toggles between `Visibility::Inherited` and `Visibility::Visible`. If
the value is `Visibility::Hidden`, it remains unaffected.
- `toggle_inherited_hidden(&mut self)`
- Toggles between `Visibility::Inherited` and `Visibility::Hidden`. If
the value is `Visibility::Visible`, it remains unaffected.
- `toggle_visible_hidden(&mut self)`
- Toggles between `Visibility::Visible` and `Visibility::Hidden`. If the
value is `Visibility::Inherited`, it remains unaffected.
---------
Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
# Objective
`RenderLayers` was marketed as being unlimited in the Bevy 0.14 release
notes, but the most obvious constructor doesn't actually support
unlimited layers.
We should explicitly document this.
## Solution
Add some docs mentioning the limit and pointing the user to `with` or
`from_layers` if they need an arbitrary number of layers.
# Objective
Fixes#14782
## Solution
Enable the lint and fix all upcoming hints (`--fix`). Also tried to
figure out the false-positive (see review comment). Maybe split this PR
up into multiple parts where only the last one enables the lint, so some
can already be merged resulting in less many files touched / less
potential for merge conflicts?
Currently, there are some cases where it might be easier to read the
code with the qualifier, so perhaps remove the import of it and adapt
its cases? In the current stage it's just a plain adoption of the
suggestions in order to have a base to discuss.
## Testing
`cargo clippy` and `cargo run -p ci` are happy.
# Objective
currently if we use an image with the wrong sampler type in a material,
wgpu panics with an invalid texture format. turn this into a warning and
fail more gracefully.
## Solution
the expected sampler type is specified in the AsBindGroup derive, so we
can just check the image sampler is what it should be.
i am not totally sure about the mapping of image sampler type to
#[sampler(type)], i assumed:
```
"filtering" => [ TextureSampleType::Float { filterable: true } ],
"non_filtering" => [
TextureSampleType::Float { filterable: false },
TextureSampleType::Sint,
TextureSampleType::Uint,
],
"comparison" => [ TextureSampleType::Depth ],
```
This reverts commit e37bf18e2b, added in
#14784.
# Objective
The PR was fine, but the work was very poorly motivated and the
resulting API is not actually very nice. The actual user need is likely
better addressed by #14825.
## Solution
Revert the offending PR.
# Objective
Fixes#14521.
## Solution
Added to methods to the VIsibility.
```rs
is_visible() -> Result<bool, String>
```
and
```rs
visbility_from_bool(bool) -> Visibility
```
## Testing
Ran
* `cargo run -p ci -- lints`
* `cargo run -p ci -- test`
* `cargo run -p ci -- compile`
it seems to be working.
However I got few error messages :`ERROR bevy_log: could not set global
logger and tracing subscriber as they are already set. Consider
disabling LogPlugin` in `cargo run -p ci -- test`, even though all test
passed. I'm not sure if that's expected behaviour
Ps. I'm new to contributing, please correct me if anything is wrong
# Objective
`MeshVertexAttributeId` is currently a wrapper type around a `usize`.
Application developers are exposed to the `usize` whenever they need to
define a new custom vertex attribute, which requires them to generate a
random `usize` ID to avoid clashes with any other custom vertex
attributes in the same application. As the range of a `usize` is
platform dependent, developers on 64-bit machines may inadvertently
generate random values which will fail to compile for a 32-bit target.
The use of a `usize` here encourages non-portable behaviour and should
be replaced with a fixed width type.
## Solution
In this PR I have changed the ID type from `usize` to `u64`, but equally
a `u32` could be used at the risk of breaking some extant non-portable
programs and increasing the chance of an ID collision.
# Objective
- Add "Available on crate feature <image format> only." for docs of
image format related types/functions
- Add warning "WARN bevy_render::texture::image: feature "<image
format>" is not enabled" on load attempt
- Fixes#13468 .
## Solution
- Added #[cfg(feature = "<image format>")] for types and warn!("feature
\"<image format>\" is not enabled"); for ImageFormat enum conversions
## Testing
ran reproducing example from issue #13468 and saw in logs
`WARN bevy_render::texture::image: feature "exr" is not enabled`
generated docs with command `RUSTDOCFLAGS="-Zunstable-options
--cfg=docsrs" cargo +nightly doc --workspace --all-features --no-deps
--document-private-items --open` and saw
![image](https://github.com/bevyengine/bevy/assets/17225606/820262bb-b4e6-4a5e-a306-bddbe9c40852)
that docs contain `Available on crate feature <image format> only.`
marks
![image](https://github.com/bevyengine/bevy/assets/17225606/57463440-a2ea-435f-a2c2-50d34f7f55a9)
## Migration Guide
Image format related entities are feature gated, if there are
compilation errors about unknown names there are some of features in
list (`exr`, `hdr`, `basis-universal`, `png`, `dds`, `tga`, `jpeg`,
`bmp`, `ktx2`, `webp` and `pnm`) should be added.
# Objective
`World::clear_entities` is ambiguous with all of the other systems in
`RenderSet::Cleanup` because it access `&mut World`.
## Solution
I've added another system set variant, and made sure that this runs
after everything else.
## Testing
The `ambiguity_detection` example
## Migration Guide
`World::clear_entities` is now part of `RenderSet::PostCleanup` rather
than `RenderSet::Cleanup`. Your cleanup systems should likely stay in
`RenderSet::Cleanup`.
## Additional context
Spotted when working on #7386: this was responsible for a large number
of ambiguities.
This should be removed if / when #14449 is merged: there's no need to
call `clear_entities` at all if the rendering world is retained!
# Objective
- Fixes#14697
## Solution
This PR modifies the existing `all_tuples!` macro to optionally accept a
`#[doc(fake_variadic)]` attribute in its input. If the attribute is
present, each invocation of the impl macro gets the correct attributes
(i.e. the first impl receives `#[doc(fake_variadic)]` while the other
impls are hidden using `#[doc(hidden)]`.
Impls for the empty tuple (unit type) are left untouched (that's what
the [standard
library](https://doc.rust-lang.org/std/cmp/trait.PartialEq.html#impl-PartialEq-for-())
and
[serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-())
do).
To work around https://github.com/rust-lang/cargo/issues/8811 and to get
impls on re-exports to correctly show up as variadic, `--cfg docsrs_dep`
is passed when building the docs for the toplevel `bevy` crate.
`#[doc(fake_variadic)]` only works on tuples and fn pointers, so impls
for structs like `AnyOf<(T1, T2, ..., Tn)>` are unchanged.
## Testing
I built the docs locally using `RUSTDOCFLAGS='--cfg docsrs'
RUSTFLAGS='--cfg docsrs_dep' cargo +nightly doc --no-deps --workspace`
and checked the documentation page of a trait both in its original crate
and the re-exported version in `bevy`.
The description should correctly mention for how many tuple items the
trait is implemented.
I added `rustc-args` for docs.rs to the `bevy` crate, I hope there
aren't any other notable crates that re-export `#[doc(fake_variadic)]`
traits.
---
## Showcase
`bevy_ecs::query::QueryData`:
<img width="1015" alt="Screenshot 2024-08-12 at 16 41 28"
src="https://github.com/user-attachments/assets/d40136ed-6731-475f-91a0-9df255cd24e3">
`bevy::ecs::query::QueryData` (re-export):
<img width="1005" alt="Screenshot 2024-08-12 at 16 42 57"
src="https://github.com/user-attachments/assets/71d44cf0-0ab0-48b0-9a51-5ce332594e12">
## Original Description
<details>
Resolves#14697
Submitting as a draft for now, very WIP.
Unfortunately, the docs don't show the variadics nicely when looking at
reexported items.
For example:
`bevy_ecs::bundle::Bundle` correctly shows the variadic impl:
![image](https://github.com/user-attachments/assets/90bf8af1-1d1f-4714-9143-cdd3d0199998)
while `bevy::ecs::bundle::Bundle` (the reexport) shows all the impls
(not good):
![image](https://github.com/user-attachments/assets/439c428e-f712-465b-bec2-481f7bf5870b)
Built using `RUSTDOCFLAGS='--cfg docsrs' cargo +nightly doc --workspace
--no-deps` (`--no-deps` because of wgpu-core).
Maybe I missed something or this is a limitation in the *totally not
private* `#[doc(fake_variadic)]` thingy. In any case I desperately need
some sleep now :))
</details>
Upgrading to WGPU 22.
Needs `naga_oil` to upgrade first, I've got a fork that compiles but
fails tests, so until that's fixed and the crate is officially
updated/released this will be blocked.
---------
Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
# Objective
Fixes#14365
## Migration Guide
- When using the iterator returned by `Mesh::attributes` or
`Mesh::attributes_mut` the first value of the tuple is not the
`MeshVertexAttribute` instead of `MeshVertexAttributeId`. To access the
`MeshVertexAttributeId` use the `MeshVertexAttribute.id` field.
Signed-off-by: Sarthak Singh <sarthak.singh99@gmail.com>
# Objective
- Add custom images as cursors
- Fixes#9557
## Solution
- Change cursor type to accommodate both native and image cursors
- I don't really like this solution because I couldn't use
`Handle<Image>` directly. I would need to import `bevy_assets` and that
causes a circular dependency. Alternatively we could use winit's
`CustomCursor` smart pointers, but that seems hard because the event
loop is needed to create those and is not easily accessable for users.
So now I need to copy around rgba buffers which is sad.
- I use a cache because especially on the web creating cursor images is
really slow
- Sorry to #14196 for yoinking, I just wanted to make a quick solution
for myself and thought that I should probably share it too.
Update:
- Now uses `Handle<Image>`, reads rgba data in `bevy_render` and uses
resources to send the data to `bevy_winit`, where the final cursors are
created.
## Testing
- Added example which works fine at least on Linux Wayland (winit side
has been tested with all platforms).
- I haven't tested if the url cursor works.
## Migration Guide
- `CursorIcon` is no longer a field in `Window`, but a separate
component can be inserted to a window entity. It has been changed to an
enum that can hold custom images in addition to system icons.
- `Cursor` is renamed to `CursorOptions` and `cursor` field of `Window`
is renamed to `cursor_options`
- `CursorIcon` is renamed to `SystemCursorIcon`
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Jan Hohenheim <jan@hohenheim.ch>
Basically it's https://github.com/bevyengine/bevy/pull/13792 with the
bumped versions of `encase` and `hexasphere`.
---------
Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Implements #14547
## Solution
Add a function `invert_winding` for `Mesh` that inverts the winding for
`LineList`, `LineStrip`, `TriangleList` and `TriangleStrip`.
## Testing
Tests added
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Alix Bott <bott.alix@gmail.com>
# Objective
I want to get the visual depth (after view proj matrix stuff) of the
object beneath my cursor.
Even when having a write-back of the depth texture, you would still need
to convert the NDC depth to a logical value.
## Solution
This is done on shader-side by [this
function](e6261b0f5f/crates/bevy_pbr/src/render/view_transformations.wgsl (L151)),
which I ported over to the cpu-side.
I also added `world_to_viewport_with_depth` to get a `Vec3` instead of
`Vec2`.
---
If anyone knows a smarter solution to get the visual depth instead of
going `screen -> viewport ray -> screen`, please let me know :>
# Objective
- Fix#14295
## Solution
- Early out when `GFBD::get_index_and_compare_data` returns None.
## Testing
- Tested on a selection of examples including `many_foxes` and
`3d_shapes`.
- Resolved the original issue in `bevy_vector_shapes`.
# Objective
- Fix issue #2611
## Solution
- Add `--generate-link-to-definition` to all the `rustdoc-args` arrays
in the `Cargo.toml`s (for docs.rs)
- Add `--generate-link-to-definition` to the `RUSTDOCFLAGS` environment
variable in the docs workflow (for dev-docs.bevyengine.org)
- Document all the workspace crates in the docs workflow (needed because
otherwise only the source code of the `bevy` package will be included,
making the argument useless)
- I think this also fixes#3662, since it fixes the bug on
dev-docs.bevyengine.org, while on docs.rs it has been fixed for a while
on their side.
---
## Changelog
- The source code viewer on docs.rs now includes links to the
definitions.
# Objective
- `bevy_render` depends on `image 0.25` but uses `image::ImageReader`
which was added only in `image 0.25.2`
- users that have `image 0.25` in their `Cargo.lock` and update to the
latest `bevy_render` may thus get a compilation due to this (at least I
did)
## Solution
- Properly set the correct minimum version of `image` that `bevy_render`
depends on.
# Objective
Fix a memory leak in `TextureCache` caused by the internal HashMap never
having unused entries cleared.
This isn't a giant memory leak, given the unused entries are simply
empty vectors. Though, if someone goes and resizes a window a bunch, it
can lead to hundreds/thousands of TextureDescriptor keys adding up in
the hashmap – which isn't ideal.
## Solution
- Only retain hashmap entries that still have textures.
- I also added an `is_empty()` method to `TextureCache`, which is useful
for 3rd-party higher-level caches that might have individual caches by
view entity or texture type, for example.
## Testing
- Verified the examples still work (this is a trivial change)
# Objective
- Made `ViewUniform` fields public so that 3rd-parties can create this
uniform. This is useful for custom pipelines that use custom views (e.g.
views buffered by a particular amount, for example).
# Objective
- It's possible to have errors in a draw command, but these errors are
ignored
## Solution
- Return a result with the error
## Changelog
Renamed `RenderCommandResult::Failure` to `RenderCommandResult::Skip`
Added a `reason` string parameter to `RenderCommandResult::Failure`
## Migration Guide
If you were using `RenderCommandResult::Failure` to just ignore an error
and retry later, use `RenderCommandResult::Skip` instead.
This wasn't intentional, but this PR should also help with
https://github.com/bevyengine/bevy/issues/12660 since we can turn a few
unwraps into error messages now.
---------
Co-authored-by: Charlotte McElwain <charlotte.c.mcelwain@gmail.com>
Currently `TextureFormat::Astc` can't be programmatically constructed
without importing wgpu in addition to bevy.
# Objective
Allow programmatic construction of `TextureFormat::Astc` with no
additional imports required.
## Solution
Exported the two component enums `AstcBlock` and `AstcChannel` used in
`TextureFormat::Astc` construction.
## Testing
I did not test this, the change seemed pretty safe. :)
# Objective
- The `RenderTarget` type wasn't being registered, and the `target`
field of `Camera` was marked as ignored, so it wasn't inspectable by
editors.
## Solution
- Remove `#[reflect(ignore)]` from the field
- I've also reordered the `Default` impl of `RenderTarget` because it
looked like it belonged to a different type
Switches `Msaa` from being a globally configured resource to a per
camera view component.
Closes#7194
# Objective
Allow individual views to describe their own MSAA settings. For example,
when rendering to different windows or to different parts of the same
view.
## Solution
Make `Msaa` a component that is required on all camera bundles.
## Testing
Ran a variety of examples to ensure that nothing broke.
TODO:
- [ ] Make sure android still works per previous comment in
`extract_windows`.
---
## Migration Guide
`Msaa` is no longer configured as a global resource, and should be
specified on each spawned camera if a non-default setting is desired.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
- The current default viewport crashes bevy due to a wgpu validation
error, this PR fixes that
- Fixes https://github.com/bevyengine/bevy/issues/14355
## Solution
- `Viewport::default()` now returns a 1x1 viewport
## Testing
- I modified the `3d_viewport_to_world` example to use
`Viewport::default()`, and it works as expected (only the top-left pixel
is rendered)
# Objective
- `CameraRenderGraph` is not inspectable via reflection, but should be
(the name of the configured render graph should be visible in editors,
etc.)
## Solution
- Derive and reflect `Debug` for `CameraRenderGraph`
This commit uses the [`offset-allocator`] crate to combine vertex and
index arrays from different meshes into single buffers. Since the
primary source of `wgpu` overhead is from validation and synchronization
when switching buffers, this significantly improves Bevy's rendering
performance on many scenes.
This patch is a more flexible version of #13218, which also used slabs.
Unlike #13218, which used slabs of a fixed size, this commit implements
slabs that start small and can grow. In addition to reducing memory
usage, supporting slab growth reduces the number of vertex and index
buffer switches that need to happen during rendering, leading to
improved performance. To prevent pathological fragmentation behavior,
slabs are capped to a maximum size, and mesh arrays that are too large
get their own dedicated slabs.
As an additional improvement over #13218, this commit allows the
application to customize all allocator heuristics. The
`MeshAllocatorSettings` resource contains values that adjust the minimum
and maximum slab sizes, the cutoff point at which meshes get their own
dedicated slabs, and the rate at which slabs grow. Hopefully-sensible
defaults have been chosen for each value.
Unfortunately, WebGL 2 doesn't support the *base vertex* feature, which
is necessary to pack vertex arrays from different meshes into the same
buffer. `wgpu` represents this restriction as the downlevel flag
`BASE_VERTEX`. This patch detects that bit and ensures that all vertex
buffers get dedicated slabs on that platform. Even on WebGL 2, though,
we can combine all *index* arrays into single buffers to reduce buffer
changes, and we do so.
The following measurements are on Bistro:
Overall frame time improves from 8.74 ms to 5.53 ms (1.58x speedup):
![Screenshot 2024-07-09
163521](https://github.com/bevyengine/bevy/assets/157897/5d83c824-c0ee-434c-bbaf-218ff7212c48)
Render system time improves from 6.57 ms to 3.54 ms (1.86x speedup):
![Screenshot 2024-07-09
163559](https://github.com/bevyengine/bevy/assets/157897/d94e2273-c3a0-496a-9f88-20d394129610)
Opaque pass time improves from 4.64 ms to 2.33 ms (1.99x speedup):
![Screenshot 2024-07-09
163536](https://github.com/bevyengine/bevy/assets/157897/e4ef6e48-d60e-44ae-9a71-b9a731c99d9a)
## Migration Guide
### Changed
* Vertex and index buffers for meshes may now be packed alongside other
buffers, for performance.
* `GpuMesh` has been renamed to `RenderMesh`, to reflect the fact that
it no longer directly stores handles to GPU objects.
* Because meshes no longer have their own vertex and index buffers, the
responsibility for the buffers has moved from `GpuMesh` (now called
`RenderMesh`) to the `MeshAllocator` resource. To access the vertex data
for a mesh, use `MeshAllocator::mesh_vertex_slice`. To access the index
data for a mesh, use `MeshAllocator::mesh_index_slice`.
[`offset-allocator`]: https://github.com/pcwalton/offset-allocator
# Objective
The docs on SpatialBundle's pub const constructors mention that one is
"visible" when it's actually inherited, which afaik means it's
conditional on its parent's visibility.
I feel it's more correct like this.
_Also I'm seeing how making a PR from github.dev works hopefully nothing
weird happens_
# Objective
- Fixes overflow when calling `RenderLayers::iter_layers` on layers of
the form `k * 64 - 1`
- Causes a panic in debug mode, and an infinite iterator in release mode
## Solution
- Use `u64::checked_shr` instead of `>>=`
## Testing
- Added a test case for this: `render_layer_iter_no_overflow`
# Objective
- Bevy currently has lot of invalid intra-doc links, let's fix them!
- Also make CI test them, to avoid future regressions.
- Helps with #1983 (but doesn't fix it, as there could still be explicit
links to docs.rs that are broken)
## Solution
- Make `cargo r -p ci -- doc-check` check fail on warnings (could also
be changed to just some specific lints)
- Manually fix all the warnings (note that in some cases it was unclear
to me what the fix should have been, I'll try to highlight them in a
self-review)
Bump version after release
This PR has been auto-generated
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François Mockers <mockersf@gmail.com>
# Objective
Fix#14146
## Solution
Expansion of #13323 , excluded Adreno 730 and earlier.
## Testing
Tested on android device(Adreno 730) that used to crash
# Objective
Allow random sampling from the surfaces of triangle meshes.
## Solution
This has two parts.
Firstly, rendering meshes can now yield their collections of triangles
through a method `Mesh::triangles`. This has signature
```rust
pub fn triangles(&self) -> Result<Vec<Triangle3d>, MeshTrianglesError> { //... }
```
and fails in a variety of cases — the most obvious of these is that the
mesh must have either the `TriangleList` or `TriangleStrip` topology,
and the others correspond to malformed vertex or triangle-index data.
With that in hand, we have the second piece, which is
`UniformMeshSampler`, which is a `Vec3`-valued
[distribution](https://docs.rs/rand/latest/rand/distributions/trait.Distribution.html)
that samples uniformly from collections of triangles. It caches the
triangles' distribution of areas so that after its initial setup,
sampling is allocation-free. It is constructed via
`UniformMeshSampler::try_new`, which looks like this:
```rust
pub fn try_new<T: Into<Vec<Triangle3d>>>(triangles: T) -> Result<Self, ZeroAreaMeshError> { //... }
```
It fails if the collection of triangles has zero area.
The sum of these parts means that you can sample random points from a
mesh as follows:
```rust
let triangles = my_mesh.triangles().unwrap();
let mut rng = StdRng::seed_from_u64(8765309);
let distribution = UniformMeshSampler::try_new(triangles).unwrap();
// 10000 random points from the surface of my_mesh:
let sample_points: Vec<Vec3> = distribution.sample_iter(&mut rng).take(10000).collect();
```
## Testing
Tested by instantiating meshes and sampling as demonstrated above.
---
## Changelog
- Added `Mesh::triangles` method to get a collection of triangles from a
mesh.
- Added `UniformMeshSampler` to `bevy_math::sampling`. This is a
distribution which allows random sampling over collections of triangles
(such as those provided through meshes).
---
## Discussion
### Design decisions
The main thing here was making sure to have a good separation between
the parts of this in `bevy_render` and in `bevy_math`. Getting the
triangles from a mesh seems like a reasonable step after adding
`Triangle3d` to `bevy_math`, so I decided to make all of the random
sampling operate at that level, with the fallible conversion to
triangles doing most of the work.
Notably, the sampler could be called something else that reflects that
its input is a collection of triangles, but if/when we add other kinds
of meshes to `bevy_math` (e.g. half-edge meshes), the fact that
`try_new` takes an `impl Into<Vec<Triangle3d>>` means that those meshes
just need to satisfy that trait bound in order to work immediately with
this sampling functionality. In that case, the result would just be
something like this:
```rust
let dist = UniformMeshSampler::try_new(mesh).unwrap();
```
I think this highlights that most of the friction is really just from
extracting data from `Mesh`.
It's maybe worth mentioning also that "collection of triangles"
(`Vec<Triangle3d>`) sits downstream of any other kind of triangle mesh,
since the topology connecting the triangles has been effectively erased,
which makes an `Into<Vec<Triangle3d>>` trait bound seem all the more
natural to me.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
The `AssetReader` trait allows customizing the behavior of fetching
bytes for an `AssetPath`, and expects implementors to return `dyn
AsyncRead + AsyncSeek`. This gives implementors of `AssetLoader` great
flexibility to tightly integrate their asset loading behavior with the
asynchronous task system.
However, almost all implementors of `AssetLoader` don't use the async
functionality at all, and just call `AsyncReadExt::read_to_end(&mut
Vec<u8>)`. This is incredibly inefficient, as this method repeatedly
calls `poll_read` on the trait object, filling the vector 32 bytes at a
time. At my work we have assets that are hundreds of megabytes which
makes this a meaningful overhead.
## Solution
Turn the `Reader` type alias into an actual trait, with a provided
method `read_to_end`. This provided method should be more efficient than
the existing extension method, as the compiler will know the underlying
type of `Reader` when generating this function, which removes the
repeated dynamic dispatches and allows the compiler to make further
optimizations after inlining. Individual implementors are able to
override the provided implementation -- for simple asset readers that
just copy bytes from one buffer to another, this allows removing a large
amount of overhead from the provided implementation.
Now that `Reader` is an actual trait, I also improved the ergonomics for
implementing `AssetReader`. Currently, implementors are expected to box
their reader and return it as a trait object, which adds unnecessary
boilerplate to implementations. This PR changes that trait method to
return a pseudo trait alias, which allows implementors to return `impl
Reader` instead of `Box<dyn Reader>`. Now, the boilerplate for boxing
occurs in `ErasedAssetReader`.
## Testing
I made identical changes to my company's fork of bevy. Our app, which
makes heavy use of `read_to_end` for asset loading, still worked
properly after this. I am not aware if we have a more systematic way of
testing asset loading for correctness.
---
## Migration Guide
The trait method `bevy_asset::io::AssetReader::read` (and `read_meta`)
now return an opaque type instead of a boxed trait object. Implementors
of these methods should change the type signatures appropriately
```rust
impl AssetReader for MyReader {
// Before
async fn read<'a>(&'a self, path: &'a Path) -> Result<Box<Reader<'a>>, AssetReaderError> {
let reader = // construct a reader
Box::new(reader) as Box<Reader<'a>>
}
// After
async fn read<'a>(&'a self, path: &'a Path) -> Result<impl Reader + 'a, AssetReaderError> {
// create a reader
}
}
```
`bevy::asset::io::Reader` is now a trait, rather than a type alias for a
trait object. Implementors of `AssetLoader::load` will need to adjust
the method signature accordingly
```rust
impl AssetLoader for MyLoader {
async fn load<'a>(
&'a self,
// Before:
reader: &'a mut bevy::asset::io::Reader,
// After:
reader: &'a mut dyn bevy::asset::io::Reader,
_: &'a Self::Settings,
load_context: &'a mut LoadContext<'_>,
) -> Result<Self::Asset, Self::Error> {
}
```
Additionally, implementors of `AssetReader` that return a type
implementing `futures_io::AsyncRead` and `AsyncSeek` might need to
explicitly implement `bevy::asset::io::Reader` for that type.
```rust
impl bevy::asset::io::Reader for MyAsyncReadAndSeek {}
```
# Objective
It's not always obvious what the default value for `RenderLayers`
represents. It is documented, but since it's an implementation of a
trait method the documentation may or may not be shown depending on the
IDE.
## Solution
Add documentation to the `none` method that explicitly calls out the
difference.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
The `BuildChildren` and `BuildWorldChildren` traits are mostly
identical, so I decided to try and merge them. I'm not sure of the
history, maybe they were added before GATs existed.
## Solution
- Add an associated type to `BuildChildren` which reflects the prior
differences between the `BuildChildren` and `BuildWorldChildren` traits.
- Add `ChildBuild` trait that is the bounds for
`BuildChildren::Builder`, with impls for `ChildBuilder` and
`WorldChildBuilder`.
- Remove `BuildWorldChildren` trait and replace it with an impl of
`BuildChildren` for `EntityWorldMut`.
## Testing
I ran several of the examples that use entity hierarchies, mainly UI.
---
## Changelog
n/a
## Migration Guide
n/a
# Objective
Allow combining render layers with a more-ergonomic syntax than
`RenderLayers::from_iter(a.iter().chain(b.iter()))`.
## Solution
Add the `or` operation (and corresponding `const` method) to allow
computing the union of a set of render layers. While we're here, also
added `and` and `xor` operations. Someone might find them useful
## Testing
Added a simple unit test.
As reported in #14004, many third-party plugins, such as Hanabi, enqueue
entities that don't have meshes into render phases. However, the
introduction of indirect mode added a dependency on mesh-specific data,
breaking this workflow. This is because GPU preprocessing requires that
the render phases manage indirect draw parameters, which don't apply to
objects that aren't meshes. The existing code skips over binned entities
that don't have indirect draw parameters, which causes the rendering to
be skipped for such objects.
To support this workflow, this commit adds a new field,
`non_mesh_items`, to `BinnedRenderPhase`. This field contains a simple
list of (bin key, entity) pairs. After drawing batchable and unbatchable
objects, the non-mesh items are drawn one after another. Bevy itself
doesn't enqueue any items into this list; it exists solely for the
application and/or plugins to use.
Additionally, this commit switches the asset ID in the standard bin keys
to be an untyped asset ID rather than that of a mesh. This allows more
flexibility, allowing bins to be keyed off any type of asset.
This patch adds a new example, `custom_phase_item`, which simultaneously
serves to demonstrate how to use this new feature and to act as a
regression test so this doesn't break again.
Fixes#14004.
## Changelog
### Added
* `BinnedRenderPhase` now contains a `non_mesh_items` field for plugins
to add custom items to.
# Objective
Numerous people have been confused that Bevy runs slowly, when the
reason is that the `llvmpipe` software rendered is being used.
## Solution
Printing a warning could reduce the confusion.
# Objective
- Fixes#13728
## Solution
- add a new feature `smaa_luts`. if enables, it also enables `ktx2` and
`zstd`. if not, it doesn't load the files but use placeholders instead
- adds all the resources needed in the same places that system that uses
them are added.
# Objective
In Bevy 0.13, `BackgroundColor` simply tinted the image of any
`UiImage`. This was confusing: in every other case (e.g. Text), this
added a solid square behind the element. #11165 changed this, but
removed `BackgroundColor` from `ImageBundle` to avoid confusion, since
the semantic meaning had changed.
However, this resulted in a serious UX downgrade / inconsistency, as
this behavior was no longer part of the bundle (unlike for `TextBundle`
or `NodeBundle`), leaving users with a relatively frustrating upgrade
path.
Additionally, adding both `BackgroundColor` and `UiImage` resulted in a
bizarre effect, where the background color was seemingly ignored as it
was covered by a solid white placeholder image.
Fixes#13969.
## Solution
Per @viridia's design:
> - if you don't specify a background color, it's transparent.
> - if you don't specify an image color, it's white (because it's a
multiplier).
> - if you don't specify an image, no image is drawn.
> - if you specify both a background color and an image color, they are
independent.
> - the background color is drawn behind the image (in whatever pixels
are transparent)
As laid out by @benfrankel, this involves:
1. Changing the default `UiImage` to use a transparent texture but a
pure white tint.
2. Adding `UiImage::solid_color` to quickly set placeholder images.
3. Changing the default `BorderColor` and `BackgroundColor` to
transparent.
4. Removing the default overrides for these values in the other assorted
UI bundles.
5. Adding `BackgroundColor` back to `ImageBundle` and `ButtonBundle`.
6. Adding a 1x1 `Image::transparent`, which can be accessed from
`Assets<Image>` via the `TRANSPARENT_IMAGE_HANDLE` constant.
Huge thanks to everyone who helped out with the design in the linked
issue and [the Discord
thread](https://discord.com/channels/691052431525675048/1255209923890118697/1255209999278280844):
this was very much a joint design.
@cart helped me figure out how to set the UiImage's default texture to a
transparent 1x1 image, which is a much nicer fix.
## Testing
I've checked the examples modified by this PR, and the `ui` example as
well just to be sure.
## Migration Guide
- `BackgroundColor` no longer tints the color of images in `ImageBundle`
or `ButtonBundle`. Set `UiImage::color` to tint images instead.
- The default texture for `UiImage` is now a transparent white square.
Use `UiImage::solid_color` to quickly draw debug images.
- The default value for `BackgroundColor` and `BorderColor` is now
transparent. Set the color to white manually to return to previous
behavior.