Gpu readback (#15419)

# Objective

Adds a new `Readback` component to request for readback of a
`Handle<Image>` or `Handle<ShaderStorageBuffer>` to the CPU in a future
frame.

## Solution

We track the `Readback` component and allocate a target buffer to write
the gpu resource into and map it back asynchronously, which then fires a
trigger on the entity in the main world. This proccess is asynchronous,
and generally takes a few frames.

## Showcase

```rust
let mut buffer = ShaderStorageBuffer::from(vec![0u32; 16]);
buffer.buffer_description.usage |= BufferUsages::COPY_SRC;
let buffer = buffers.add(buffer);

commands
    .spawn(Readback::buffer(buffer.clone()))
    .observe(|trigger: Trigger<ReadbackComplete>| {
        info!("Buffer data from previous frame {:?}", trigger.event());
    });
```

---------

Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
This commit is contained in:
charlotte 2024-09-30 10:28:55 -07:00 committed by GitHub
parent dd92a7705d
commit 40c26f80aa
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 485 additions and 221 deletions

View file

@ -3,10 +3,13 @@
// This is the data that lives in the gpu only buffer
@group(0) @binding(0) var<storage, read_write> data: array<u32>;
@group(0) @binding(1) var texture: texture_storage_2d<r32uint, write>;
@compute @workgroup_size(1)
fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
// We use the global_id to index the array to make sure we don't
// access data used in another workgroup
data[global_id.x] += 1u;
// Write the same data to the texture
textureStore(texture, vec2<i32>(i32(global_id.x), 0), vec4<u32>(data[global_id.x], 0, 0, 0));
}

View file

@ -0,0 +1,370 @@
use crate::{
extract_component::ExtractComponentPlugin,
prelude::Image,
render_asset::RenderAssets,
render_resource::{Buffer, BufferUsages, Extent3d, ImageDataLayout, Texture, TextureFormat},
renderer::{render_system, RenderDevice},
storage::{GpuShaderStorageBuffer, ShaderStorageBuffer},
texture::{GpuImage, TextureFormatPixelInfo},
ExtractSchedule, MainWorld, Render, RenderApp, RenderSet,
};
use async_channel::{Receiver, Sender};
use bevy_app::{App, Plugin};
use bevy_asset::Handle;
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::schedule::IntoSystemConfigs;
use bevy_ecs::{
change_detection::ResMut,
entity::Entity,
event::Event,
prelude::{Component, Resource, World},
system::{Query, Res},
};
use bevy_reflect::Reflect;
use bevy_render_macros::ExtractComponent;
use bevy_utils::{default, tracing::warn, HashMap};
use encase::internal::ReadFrom;
use encase::private::Reader;
use encase::ShaderType;
use wgpu::{CommandEncoder, COPY_BYTES_PER_ROW_ALIGNMENT};
/// A plugin that enables reading back gpu buffers and textures to the cpu.
pub struct GpuReadbackPlugin {
/// Describes the number of frames a buffer can be unused before it is removed from the pool in
/// order to avoid unnecessary reallocations.
max_unused_frames: usize,
}
impl Default for GpuReadbackPlugin {
fn default() -> Self {
Self {
max_unused_frames: 10,
}
}
}
impl Plugin for GpuReadbackPlugin {
fn build(&self, app: &mut App) {
app.add_plugins(ExtractComponentPlugin::<Readback>::default());
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.init_resource::<GpuReadbackBufferPool>()
.init_resource::<GpuReadbacks>()
.insert_resource(GpuReadbackMaxUnusedFrames(self.max_unused_frames))
.add_systems(ExtractSchedule, sync_readbacks.ambiguous_with_all())
.add_systems(
Render,
(
prepare_buffers.in_set(RenderSet::PrepareResources),
map_buffers.after(render_system).in_set(RenderSet::Render),
),
);
}
}
}
/// A component that registers the wrapped handle for gpu readback, either a texture or a buffer.
///
/// Data is read asynchronously and will be triggered on the entity via the [`ReadbackComplete`] event
/// when complete. If this component is not removed, the readback will be attempted every frame
#[derive(Component, ExtractComponent, Clone, Debug)]
pub enum Readback {
Texture(Handle<Image>),
Buffer(Handle<ShaderStorageBuffer>),
}
impl Readback {
/// Create a readback component for a texture using the given handle.
pub fn texture(image: Handle<Image>) -> Self {
Self::Texture(image)
}
/// Create a readback component for a buffer using the given handle.
pub fn buffer(buffer: Handle<ShaderStorageBuffer>) -> Self {
Self::Buffer(buffer)
}
}
/// An event that is triggered when a gpu readback is complete.
///
/// The event contains the data as a `Vec<u8>`, which can be interpreted as the raw bytes of the
/// requested buffer or texture.
#[derive(Event, Deref, DerefMut, Reflect, Debug)]
#[reflect(Debug)]
pub struct ReadbackComplete(pub Vec<u8>);
impl ReadbackComplete {
/// Convert the raw bytes of the event to a shader type.
pub fn to_shader_type<T: ShaderType + ReadFrom + Default>(&self) -> T {
let mut val = T::default();
let mut reader = Reader::new::<T>(&self.0, 0).expect("Failed to create Reader");
T::read_from(&mut val, &mut reader);
val
}
}
#[derive(Resource)]
struct GpuReadbackMaxUnusedFrames(usize);
struct GpuReadbackBuffer {
buffer: Buffer,
taken: bool,
frames_unused: usize,
}
#[derive(Resource, Default)]
struct GpuReadbackBufferPool {
// Map of buffer size to list of buffers, with a flag for whether the buffer is taken and how
// many frames it has been unused for.
// TODO: We could ideally write all readback data to one big buffer per frame, the assumption
// here is that very few entities well actually be read back at once, and their size is
// unlikely to change.
buffers: HashMap<u64, Vec<GpuReadbackBuffer>>,
}
impl GpuReadbackBufferPool {
fn get(&mut self, render_device: &RenderDevice, size: u64) -> Buffer {
let buffers = self.buffers.entry(size).or_default();
// find an untaken buffer for this size
if let Some(buf) = buffers.iter_mut().find(|x| !x.taken) {
buf.taken = true;
buf.frames_unused = 0;
return buf.buffer.clone();
}
let buffer = render_device.create_buffer(&wgpu::BufferDescriptor {
label: Some("Readback Buffer"),
size,
usage: BufferUsages::COPY_DST | BufferUsages::MAP_READ,
mapped_at_creation: false,
});
buffers.push(GpuReadbackBuffer {
buffer: buffer.clone(),
taken: true,
frames_unused: 0,
});
buffer
}
// Returns the buffer to the pool so it can be used in a future frame
fn return_buffer(&mut self, buffer: &Buffer) {
let size = buffer.size();
let buffers = self
.buffers
.get_mut(&size)
.expect("Returned buffer of untracked size");
if let Some(buf) = buffers.iter_mut().find(|x| x.buffer.id() == buffer.id()) {
buf.taken = false;
} else {
warn!("Returned buffer that was not allocated");
}
}
fn update(&mut self, max_unused_frames: usize) {
for (_, buffers) in &mut self.buffers {
// Tick all the buffers
for buf in &mut *buffers {
if !buf.taken {
buf.frames_unused += 1;
}
}
// Remove buffers that haven't been used for MAX_UNUSED_FRAMES
buffers.retain(|x| x.frames_unused < max_unused_frames);
}
// Remove empty buffer sizes
self.buffers.retain(|_, buffers| !buffers.is_empty());
}
}
enum ReadbackSource {
Texture {
texture: Texture,
layout: ImageDataLayout,
size: Extent3d,
},
Buffer {
src_start: u64,
dst_start: u64,
buffer: Buffer,
},
}
#[derive(Resource, Default)]
struct GpuReadbacks {
requested: Vec<GpuReadback>,
mapped: Vec<GpuReadback>,
}
struct GpuReadback {
pub entity: Entity,
pub src: ReadbackSource,
pub buffer: Buffer,
pub rx: Receiver<(Entity, Buffer, Vec<u8>)>,
pub tx: Sender<(Entity, Buffer, Vec<u8>)>,
}
fn sync_readbacks(
mut main_world: ResMut<MainWorld>,
mut buffer_pool: ResMut<GpuReadbackBufferPool>,
mut readbacks: ResMut<GpuReadbacks>,
max_unused_frames: Res<GpuReadbackMaxUnusedFrames>,
) {
readbacks.mapped.retain(|readback| {
if let Ok((entity, buffer, result)) = readback.rx.try_recv() {
main_world.trigger_targets(ReadbackComplete(result), entity);
buffer_pool.return_buffer(&buffer);
false
} else {
true
}
});
buffer_pool.update(max_unused_frames.0);
}
fn prepare_buffers(
render_device: Res<RenderDevice>,
mut readbacks: ResMut<GpuReadbacks>,
mut buffer_pool: ResMut<GpuReadbackBufferPool>,
gpu_images: Res<RenderAssets<GpuImage>>,
ssbos: Res<RenderAssets<GpuShaderStorageBuffer>>,
handles: Query<(Entity, &Readback)>,
) {
for (entity, readback) in handles.iter() {
match readback {
Readback::Texture(image) => {
if let Some(gpu_image) = gpu_images.get(image) {
let size = Extent3d {
width: gpu_image.size.x,
height: gpu_image.size.y,
..default()
};
let layout = layout_data(size.width, size.height, gpu_image.texture_format);
let buffer = buffer_pool.get(
&render_device,
get_aligned_size(
size.width,
size.height,
gpu_image.texture_format.pixel_size() as u32,
) as u64,
);
let (tx, rx) = async_channel::bounded(1);
readbacks.requested.push(GpuReadback {
entity,
src: ReadbackSource::Texture {
texture: gpu_image.texture.clone(),
layout,
size,
},
buffer,
rx,
tx,
});
}
}
Readback::Buffer(buffer) => {
if let Some(ssbo) = ssbos.get(buffer) {
let size = ssbo.buffer.size();
let buffer = buffer_pool.get(&render_device, size);
let (tx, rx) = async_channel::bounded(1);
readbacks.requested.push(GpuReadback {
entity,
src: ReadbackSource::Buffer {
src_start: 0,
dst_start: 0,
buffer: ssbo.buffer.clone(),
},
buffer,
rx,
tx,
});
}
}
}
}
}
pub(crate) fn submit_readback_commands(world: &World, command_encoder: &mut CommandEncoder) {
let readbacks = world.resource::<GpuReadbacks>();
for readback in &readbacks.requested {
match &readback.src {
ReadbackSource::Texture {
texture,
layout,
size,
} => {
command_encoder.copy_texture_to_buffer(
texture.as_image_copy(),
wgpu::ImageCopyBuffer {
buffer: &readback.buffer,
layout: *layout,
},
*size,
);
}
ReadbackSource::Buffer {
src_start,
dst_start,
buffer,
} => {
command_encoder.copy_buffer_to_buffer(
buffer,
*src_start,
&readback.buffer,
*dst_start,
buffer.size(),
);
}
}
}
}
/// Move requested readbacks to mapped readbacks after commands have been submitted in render system
fn map_buffers(mut readbacks: ResMut<GpuReadbacks>) {
let requested = readbacks.requested.drain(..).collect::<Vec<GpuReadback>>();
for readback in requested {
let slice = readback.buffer.slice(..);
let entity = readback.entity;
let buffer = readback.buffer.clone();
let tx = readback.tx.clone();
slice.map_async(wgpu::MapMode::Read, move |res| {
res.expect("Failed to map buffer");
let buffer_slice = buffer.slice(..);
let data = buffer_slice.get_mapped_range();
let result = Vec::from(&*data);
drop(data);
buffer.unmap();
if let Err(e) = tx.try_send((entity, buffer, result)) {
warn!("Failed to send readback result: {:?}", e);
}
});
readbacks.mapped.push(readback);
}
}
// Utils
pub(crate) fn align_byte_size(value: u32) -> u32 {
value + (COPY_BYTES_PER_ROW_ALIGNMENT - (value % COPY_BYTES_PER_ROW_ALIGNMENT))
}
pub(crate) fn get_aligned_size(width: u32, height: u32, pixel_size: u32) -> u32 {
height * align_byte_size(width * pixel_size)
}
pub(crate) fn layout_data(width: u32, height: u32, format: TextureFormat) -> ImageDataLayout {
ImageDataLayout {
bytes_per_row: if height > 1 {
// 1 = 1 row
Some(get_aligned_size(width, 1, format.pixel_size() as u32))
} else {
None
},
rows_per_image: None,
..Default::default()
}
}

View file

@ -25,6 +25,7 @@ mod extract_param;
pub mod extract_resource;
pub mod globals;
pub mod gpu_component_array_buffer;
pub mod gpu_readback;
pub mod mesh;
#[cfg(not(target_arch = "wasm32"))]
pub mod pipelined_rendering;
@ -73,6 +74,7 @@ use globals::GlobalsPlugin;
use render_asset::RenderAssetBytesPerFrame;
use renderer::{RenderAdapter, RenderAdapterInfo, RenderDevice, RenderQueue};
use crate::gpu_readback::GpuReadbackPlugin;
use crate::{
camera::CameraPlugin,
mesh::{morph::MorphPlugin, MeshPlugin, RenderMesh},
@ -363,6 +365,7 @@ impl Plugin for RenderPlugin {
MorphPlugin,
BatchingPlugin,
StoragePlugin,
GpuReadbackPlugin::default(),
));
app.init_resource::<RenderAssetBytesPerFrame>()

View file

@ -46,6 +46,7 @@ pub fn render_system(world: &mut World, state: &mut SystemState<Query<Entity, Wi
world,
|encoder| {
crate::view::screenshot::submit_screenshot_commands(world, encoder);
crate::gpu_readback::submit_readback_commands(world, encoder);
},
);

View file

@ -1,6 +1,7 @@
use super::ExtractedWindows;
use crate::{
camera::{ManualTextureViewHandle, ManualTextureViews, NormalizedRenderTarget, RenderTarget},
gpu_readback,
prelude::{Image, Shader},
render_asset::{RenderAssetUsages, RenderAssets},
render_resource::{
@ -38,9 +39,7 @@ use std::{
Mutex,
},
};
use wgpu::{
CommandEncoder, Extent3d, ImageDataLayout, TextureFormat, COPY_BYTES_PER_ROW_ALIGNMENT,
};
use wgpu::{CommandEncoder, Extent3d, TextureFormat};
#[derive(Event, Deref, DerefMut, Reflect, Debug)]
#[reflect(Debug)]
@ -376,7 +375,8 @@ fn prepare_screenshot_state(
let texture_view = texture.create_view(&Default::default());
let buffer = render_device.create_buffer(&wgpu::BufferDescriptor {
label: Some("screenshot-transfer-buffer"),
size: get_aligned_size(size.width, size.height, format.pixel_size() as u32) as u64,
size: gpu_readback::get_aligned_size(size.width, size.height, format.pixel_size() as u32)
as u64,
usage: BufferUsages::MAP_READ | BufferUsages::COPY_DST,
mapped_at_creation: false,
});
@ -445,27 +445,6 @@ impl Plugin for ScreenshotPlugin {
}
}
pub(crate) fn align_byte_size(value: u32) -> u32 {
value + (COPY_BYTES_PER_ROW_ALIGNMENT - (value % COPY_BYTES_PER_ROW_ALIGNMENT))
}
pub(crate) fn get_aligned_size(width: u32, height: u32, pixel_size: u32) -> u32 {
height * align_byte_size(width * pixel_size)
}
pub(crate) fn layout_data(width: u32, height: u32, format: TextureFormat) -> ImageDataLayout {
ImageDataLayout {
bytes_per_row: if height > 1 {
// 1 = 1 row
Some(get_aligned_size(width, 1, format.pixel_size() as u32))
} else {
None
},
rows_per_image: None,
..Default::default()
}
}
#[derive(Resource)]
pub struct ScreenshotToScreenPipeline {
pub bind_group_layout: BindGroupLayout,
@ -619,7 +598,7 @@ fn render_screenshot(
prepared_state.texture.as_image_copy(),
wgpu::ImageCopyBuffer {
buffer: &prepared_state.buffer,
layout: layout_data(width, height, texture_format),
layout: gpu_readback::layout_data(width, height, texture_format),
},
Extent3d {
width,
@ -687,7 +666,8 @@ pub(crate) fn collect_screenshots(world: &mut World) {
// Our buffer has been padded because we needed to align to a multiple of 256.
// We remove this padding here
let initial_row_bytes = width as usize * pixel_size;
let buffered_row_bytes = align_byte_size(width * pixel_size as u32) as usize;
let buffered_row_bytes =
gpu_readback::align_byte_size(width * pixel_size as u32) as usize;
let mut take_offset = buffered_row_bytes;
let mut place_offset = initial_row_bytes;

View file

@ -1,22 +1,24 @@
//! A very simple compute shader that updates a gpu buffer.
//! That buffer is then copied to the cpu and sent to the main world.
//!
//! This example is not meant to teach compute shaders.
//! It is only meant to explain how to read a gpu buffer on the cpu and then use it in the main world.
//!
//! The code is based on this wgpu example:
//! <https://github.com/gfx-rs/wgpu/blob/fb305b85f692f3fbbd9509b648dfbc97072f7465/examples/src/repeated_compute/mod.rs>
//! Simple example demonstrating the use of the [`Readback`] component to read back data from the GPU
//! using both a storage buffer and texture.
use bevy::{
prelude::*,
render::{
render_graph::{self, RenderGraph, RenderLabel},
render_resource::{binding_types::storage_buffer, *},
renderer::{RenderContext, RenderDevice, RenderQueue},
extract_resource::{ExtractResource, ExtractResourcePlugin},
gpu_readback::{Readback, ReadbackComplete},
render_asset::{RenderAssetUsages, RenderAssets},
render_graph,
render_graph::{RenderGraph, RenderLabel},
render_resource::{
binding_types::{storage_buffer, texture_storage_2d},
*,
},
renderer::{RenderContext, RenderDevice},
storage::{GpuShaderStorageBuffer, ShaderStorageBuffer},
texture::GpuImage,
Render, RenderApp, RenderSet,
},
};
use crossbeam_channel::{Receiver, Sender};
/// This example uses a shader source file from the assets subdirectory
const SHADER_ASSET_PATH: &str = "shaders/gpu_readback.wgsl";
@ -24,66 +26,33 @@ const SHADER_ASSET_PATH: &str = "shaders/gpu_readback.wgsl";
// The length of the buffer sent to the gpu
const BUFFER_LEN: usize = 16;
// To communicate between the main world and the render world we need a channel.
// Since the main world and render world run in parallel, there will always be a frame of latency
// between the data sent from the render world and the data received in the main world
//
// frame n => render world sends data through the channel at the end of the frame
// frame n + 1 => main world receives the data
/// This will receive asynchronously any data sent from the render world
#[derive(Resource, Deref)]
struct MainWorldReceiver(Receiver<Vec<u32>>);
/// This will send asynchronously any data to the main world
#[derive(Resource, Deref)]
struct RenderWorldSender(Sender<Vec<u32>>);
fn main() {
App::new()
.add_plugins((
DefaultPlugins,
GpuReadbackPlugin,
ExtractResourcePlugin::<ReadbackBuffer>::default(),
ExtractResourcePlugin::<ReadbackImage>::default(),
))
.insert_resource(ClearColor(Color::BLACK))
.add_plugins((DefaultPlugins, GpuReadbackPlugin))
.add_systems(Update, receive)
.add_systems(Startup, setup)
.run();
}
/// This system will poll the channel and try to get the data sent from the render world
fn receive(receiver: Res<MainWorldReceiver>) {
// We don't want to block the main world on this,
// so we use try_recv which attempts to receive without blocking
if let Ok(data) = receiver.try_recv() {
println!("Received data from render world: {data:?}");
}
}
// We need a plugin to organize all the systems and render node required for this example
struct GpuReadbackPlugin;
impl Plugin for GpuReadbackPlugin {
fn build(&self, _app: &mut App) {}
// The render device is only accessible inside finish().
// So we need to initialize render resources here.
fn finish(&self, app: &mut App) {
let (s, r) = crossbeam_channel::unbounded();
app.insert_resource(MainWorldReceiver(r));
let render_app = app.sub_app_mut(RenderApp);
render_app
.insert_resource(RenderWorldSender(s))
.init_resource::<ComputePipeline>()
.init_resource::<Buffers>()
.add_systems(
Render,
(
prepare_bind_group
.in_set(RenderSet::PrepareBindGroups)
// We don't need to recreate the bind group every frame
.run_if(not(resource_exists::<GpuBufferBindGroup>)),
// We need to run it after the render graph is done
// because this needs to happen after submit()
map_and_read_buffer.after(RenderSet::Render),
),
);
render_app.init_resource::<ComputePipeline>().add_systems(
Render,
prepare_bind_group
.in_set(RenderSet::PrepareBindGroups)
// We don't need to recreate the bind group every frame
.run_if(not(resource_exists::<GpuBufferBindGroup>)),
);
// Add the compute node as a top level node to the render graph
// This means it will only execute once per frame
@ -94,51 +63,68 @@ impl Plugin for GpuReadbackPlugin {
}
}
/// Holds the buffers that will be used to communicate between the cpu and gpu
#[derive(Resource)]
struct Buffers {
/// The buffer that will be used by the compute shader
///
/// In this example, we want to write a `Vec<u32>` to a `Buffer`. `BufferVec` is a wrapper around a `Buffer`
/// that will make sure the data is correctly aligned for the gpu and will simplify uploading the data to the gpu.
gpu_buffer: BufferVec<u32>,
/// The buffer that will be read on the cpu.
/// The `gpu_buffer` will be copied to this buffer every frame
cpu_buffer: Buffer,
}
#[derive(Resource, ExtractResource, Clone)]
struct ReadbackBuffer(Handle<ShaderStorageBuffer>);
impl FromWorld for Buffers {
fn from_world(world: &mut World) -> Self {
let render_device = world.resource::<RenderDevice>();
let render_queue = world.resource::<RenderQueue>();
#[derive(Resource, ExtractResource, Clone)]
struct ReadbackImage(Handle<Image>);
// Create the buffer that will be accessed by the gpu
let mut gpu_buffer = BufferVec::new(BufferUsages::STORAGE | BufferUsages::COPY_SRC);
for _ in 0..BUFFER_LEN {
// Init the buffer with zeroes
gpu_buffer.push(0);
}
// Write the buffer so the data is accessible on the gpu
gpu_buffer.write_buffer(render_device, render_queue);
fn setup(
mut commands: Commands,
mut images: ResMut<Assets<Image>>,
mut buffers: ResMut<Assets<ShaderStorageBuffer>>,
) {
// Create a storage buffer with some data
let buffer = vec![0u32; BUFFER_LEN];
let mut buffer = ShaderStorageBuffer::from(buffer);
// We need to enable the COPY_SRC usage so we can copy the buffer to the cpu
buffer.buffer_description.usage |= BufferUsages::COPY_SRC;
let buffer = buffers.add(buffer);
// For portability reasons, WebGPU draws a distinction between memory that is
// accessible by the CPU and memory that is accessible by the GPU. Only
// buffers accessible by the CPU can be mapped and accessed by the CPU and
// only buffers visible to the GPU can be used in shaders. In order to get
// data from the GPU, we need to use `CommandEncoder::copy_buffer_to_buffer` to
// copy the buffer modified by the GPU into a mappable, CPU-accessible buffer
let cpu_buffer = render_device.create_buffer(&BufferDescriptor {
label: Some("readback_buffer"),
size: (BUFFER_LEN * size_of::<u32>()) as u64,
usage: BufferUsages::MAP_READ | BufferUsages::COPY_DST,
mapped_at_creation: false,
});
// Create a storage texture with some data
let size = Extent3d {
width: BUFFER_LEN as u32,
height: 1,
..default()
};
let mut image = Image::new_fill(
size,
TextureDimension::D2,
&[0, 0, 0, 0],
TextureFormat::R32Uint,
RenderAssetUsages::RENDER_WORLD,
);
// We also need to enable the COPY_SRC, as well as STORAGE_BINDING so we can use it in the
// compute shader
image.texture_descriptor.usage |= TextureUsages::COPY_SRC | TextureUsages::STORAGE_BINDING;
let image = images.add(image);
Self {
gpu_buffer,
cpu_buffer,
}
}
// Spawn the readback components. For each frame, the data will be read back from the GPU
// asynchronously and trigger the `ReadbackComplete` event on this entity. Despawn the entity
// to stop reading back the data.
commands.spawn(Readback::buffer(buffer.clone())).observe(
|trigger: Trigger<ReadbackComplete>| {
// This matches the type which was used to create the `ShaderStorageBuffer` above,
// and is a convenient way to interpret the data.
let data: Vec<u32> = trigger.event().to_shader_type();
info!("Buffer {:?}", data);
},
);
// This is just a simple way to pass the buffer handle to the render app for our compute node
commands.insert_resource(ReadbackBuffer(buffer));
// Textures can also be read back from the GPU. Pay careful attention to the format of the
// texture, as it will affect how the data is interpreted.
commands.spawn(Readback::texture(image.clone())).observe(
|trigger: Trigger<ReadbackComplete>| {
// You probably want to interpret the data as a color rather than a `ShaderType`,
// but in this case we know the data is a single channel storage texture, so we can
// interpret it as a `Vec<u32>`
let data: Vec<u32> = trigger.event().to_shader_type();
info!("Image {:?}", data);
},
);
commands.insert_resource(ReadbackImage(image));
}
#[derive(Resource)]
@ -148,18 +134,20 @@ fn prepare_bind_group(
mut commands: Commands,
pipeline: Res<ComputePipeline>,
render_device: Res<RenderDevice>,
buffers: Res<Buffers>,
buffer: Res<ReadbackBuffer>,
image: Res<ReadbackImage>,
buffers: Res<RenderAssets<GpuShaderStorageBuffer>>,
images: Res<RenderAssets<GpuImage>>,
) {
let buffer = buffers.get(&buffer.0).unwrap();
let image = images.get(&image.0).unwrap();
let bind_group = render_device.create_bind_group(
None,
&pipeline.layout,
&BindGroupEntries::single(
buffers
.gpu_buffer
.binding()
// We already did it when creating the buffer so this should never happen
.expect("Buffer should have already been uploaded to the gpu"),
),
&BindGroupEntries::sequential((
buffer.buffer.as_entire_buffer_binding(),
image.texture_view.into_binding(),
)),
);
commands.insert_resource(GpuBufferBindGroup(bind_group));
}
@ -175,9 +163,12 @@ impl FromWorld for ComputePipeline {
let render_device = world.resource::<RenderDevice>();
let layout = render_device.create_bind_group_layout(
None,
&BindGroupLayoutEntries::single(
&BindGroupLayoutEntries::sequential(
ShaderStages::COMPUTE,
storage_buffer::<Vec<u32>>(false),
(
storage_buffer::<Vec<u32>>(false),
texture_storage_2d(TextureFormat::R32Uint, StorageTextureAccess::WriteOnly),
),
),
);
let shader = world.load_asset(SHADER_ASSET_PATH);
@ -194,76 +185,6 @@ impl FromWorld for ComputePipeline {
}
}
fn map_and_read_buffer(
render_device: Res<RenderDevice>,
buffers: Res<Buffers>,
sender: Res<RenderWorldSender>,
) {
// Finally time to get our data back from the gpu.
// First we get a buffer slice which represents a chunk of the buffer (which we
// can't access yet).
// We want the whole thing so use unbounded range.
let buffer_slice = buffers.cpu_buffer.slice(..);
// Now things get complicated. WebGPU, for safety reasons, only allows either the GPU
// or CPU to access a buffer's contents at a time. We need to "map" the buffer which means
// flipping ownership of the buffer over to the CPU and making access legal. We do this
// with `BufferSlice::map_async`.
//
// The problem is that map_async is not an async function so we can't await it. What
// we need to do instead is pass in a closure that will be executed when the slice is
// either mapped or the mapping has failed.
//
// The problem with this is that we don't have a reliable way to wait in the main
// code for the buffer to be mapped and even worse, calling get_mapped_range or
// get_mapped_range_mut prematurely will cause a panic, not return an error.
//
// Using channels solves this as awaiting the receiving of a message from
// the passed closure will force the outside code to wait. It also doesn't hurt
// if the closure finishes before the outside code catches up as the message is
// buffered and receiving will just pick that up.
//
// It may also be worth noting that although on native, the usage of asynchronous
// channels is wholly unnecessary, for the sake of portability to Wasm
// we'll use async channels that work on both native and Wasm.
let (s, r) = crossbeam_channel::unbounded::<()>();
// Maps the buffer so it can be read on the cpu
buffer_slice.map_async(MapMode::Read, move |r| match r {
// This will execute once the gpu is ready, so after the call to poll()
Ok(_) => s.send(()).expect("Failed to send map update"),
Err(err) => panic!("Failed to map buffer {err}"),
});
// In order for the mapping to be completed, one of three things must happen.
// One of those can be calling `Device::poll`. This isn't necessary on the web as devices
// are polled automatically but natively, we need to make sure this happens manually.
// `Maintain::Wait` will cause the thread to wait on native but not on WebGpu.
// This blocks until the gpu is done executing everything
render_device.poll(Maintain::wait()).panic_on_timeout();
// This blocks until the buffer is mapped
r.recv().expect("Failed to receive the map_async message");
{
let buffer_view = buffer_slice.get_mapped_range();
let data = buffer_view
.chunks(size_of::<u32>())
.map(|chunk| u32::from_ne_bytes(chunk.try_into().expect("should be a u32")))
.collect::<Vec<u32>>();
sender
.send(data)
.expect("Failed to send data to main world");
}
// We need to make sure all `BufferView`'s are dropped before we do what we're about
// to do.
// Unmap so that we can copy to the staging buffer in the next iteration.
buffers.cpu_buffer.unmap();
}
/// Label to identify the node in the render graph
#[derive(Debug, Hash, PartialEq, Eq, Clone, RenderLabel)]
struct ComputeNodeLabel;
@ -295,20 +216,6 @@ impl render_graph::Node for ComputeNode {
pass.set_pipeline(init_pipeline);
pass.dispatch_workgroups(BUFFER_LEN as u32, 1, 1);
}
// Copy the gpu accessible buffer to the cpu accessible buffer
let buffers = world.resource::<Buffers>();
render_context.command_encoder().copy_buffer_to_buffer(
buffers
.gpu_buffer
.buffer()
.expect("Buffer should have already been uploaded to the gpu"),
0,
&buffers.cpu_buffer,
0,
(BUFFER_LEN * size_of::<u32>()) as u64,
);
Ok(())
}
}