Commit graph

72 commits

Author SHA1 Message Date
ickshonpe
e0a94abf1c
Replace the local text queues in the text systems with flags stored in a component (#8549)
# Objective

`text_system` and `measure_text_system` both keep local queues to keep
track of text node entities that need recomputations/remeasurement,
which scales very badly with large numbers of text entities (O(n^2)) and
makes the code quite difficult to understand.

Also `text_system` filters for `Changed<Text>`, this isn't something
that it should do. When a text node entity fails to be processed by
`measure_text_system` because a font can't be found, the text node will
still be added to `text_system`'s local queue for recomputation. `Text`
should only ever be queued by `text_system` when a text node's geometry
is modified or a new measure is added.

## Solution

Remove the local text queues and use a component `TextFlags` to schedule
remeasurements and recomputations.

## Changelog
* Created a component `TextFlags` with fields `remeasure` and
`recompute`, which can be used to schedule a text `remeasure` or
`recomputation` respectively and added it to `TextBundle`.
* Removed the local text queues from `measure_text_system` and
`text_system` and instead use the `TextFlags` component to schedule
remeasurements and recomputations.

## Migration Guide

The component `TextFlags` has been added to `TextBundle`.
2023-05-08 13:57:52 +00:00
ickshonpe
ba532e4a37
MeasureFunc improvements (#8402)
# Objective

fixes #8516

* Give `CalculatedSize` a more specific and intuitive name.

* `MeasureFunc`s should only be updated when their `CalculatedSize` is
modified by the systems managing their content.

For example, suppose that you have a UI displaying an image using an
`ImageNode`. When the window is resized, the node's `MeasureFunc` will
be updated even though the dimensions of the texture contained by the
node are unchanged.

* Fix the `CalculatedSize` API so that it no longer requires the extra
boxing and the `dyn_clone` method.


## Solution

* Rename `CalculatedSize` to `ContentSize`

* Only update `MeasureFunc`s on `CalculatedSize` changes.

* Remove the `dyn_clone` method from `Measure` and move the `Measure`
from the `ContentSize` component rather than cloning it.

* Change the measure_func field of `ContentSize` to type
`Option<taffy::node::MeasureFunc>`. Add a `set` method that wraps the
given measure appropriately.

---

## Changelog

* Renamed `CalculatedSize` to `ContentSize`.
* Replaced `upsert_leaf` with a function `update_measure` that only
updates the node's `MeasureFunc`.
* `MeasureFunc`s are only updated when the `ContentSize` changes and not
when the layout changes.
* Scale factor is no longer applied to the size values passed to the
`MeasureFunc`.
* Remove the `ContentSize` scaling in `text_system`.
* The `dyn_clone` method has been removed from the `Measure` trait.
* `Measure`s are moved from the `ContentSize` component instead of
cloning them.
* Added `set` method to `ContentSize` that replaces the `new` function.

## Migration Guide

* `CalculatedSize` has been renamed to `ContentSize`.
* The `upsert_leaf` function has been removed from `UiSurface` and
replaced with `update_measure` which updates the `MeasureFunc` without
node insertion.
* The `dyn_clone` method has been removed from the `Measure` trait.
* The new function of `CalculatedSize` has been replaced with the method
`set`.
2023-05-01 15:40:53 +00:00
ickshonpe
4580a91171
measure_text_system text query fix (#8466)
# Objective

The first query of `measure_text_system`'s `text_queries` `ParamSet`
queries for all changed `Text` meaning that non-UI `Text` entities could
be added to its queue.

## Solution

Add a `With<Node>` query filter.

---

## Changelog
changes:
* Added a `With<Node>` query filter to first query of
`measure_text_system`'s `text_queries` `ParamSet` to ensure that only UI
node entities are added to its local queue.
* Fixed comment (text is not computed on changes to style).
2023-04-22 21:30:38 +00:00
Nico Burns
919919c998
Fix text measurement algorithm (#8425)
# Objective

Followup to #7779 which tweaks the actual text measurement algorithm to
be more robust.

Before:

<img width="822" alt="Screenshot 2023-04-17 at 18 12 05"
src="https://user-images.githubusercontent.com/1007307/232566858-3d3f0fd5-f3d4-400a-8371-3c2a3f541e56.png">

After:

<img width="810" alt="Screenshot 2023-04-17 at 18 41 40"
src="https://user-images.githubusercontent.com/1007307/232566919-4254cbfa-1cc3-4ea7-91ed-8ca1b759bacf.png">

(note extra space taken up in header in before example)

## Solution

- Text layout of horizontal text (currently the only kind of text we
support) is now based solely on the layout constraints in the horizontal
axis. It ignores constraints in the vertical axis and computes vertical
size based on wrapping subject to the horizontal axis constraints.
- I've also added a paragraph to the `grid` example for testing / demo
purposes.
2023-04-17 19:59:42 +00:00
ickshonpe
ffc62c1a81
text_system split (#7779)
# Objective

`text_system` runs before the UI layout is calculated and the size of
the text node is determined, so it cannot correctly shape the text to
fit the layout, and has no way of determining if the text needs to be
wrapped.

The function `text_constraint` attempts to determine the size of the
node from the local size constraints in the `Style` component. It can't
be made to work, you have to compute the whole layout to get the correct
size. A simple example of where this fails completely is a text node set
to stretch to fill the empty space adjacent to a node with size
constraints set to `Val::Percent(50.)`. The text node will take up half
the space, even though its size constraints are `Val::Auto`

Also because the `text_system` queries for changes to the `Style`
component, when a style value is changed that doesn't affect the node's
geometry the text is recomputed unnecessarily.

Querying on changes to `Node` is not much better. The UI layout is
changed to fit the `CalculatedSize` of the text, so the size of the node
is changed and so the text and UI layout get recalculated multiple times
from a single change to a `Text`.

Also, the `MeasureFunc` doesn't work at all, it doesn't have enough
information to fit the text correctly and makes no attempt.
 
Fixes #7663,  #6717, #5834, #1490,

## Solution

Split the `text_system` into two functions:
* `measure_text_system` which calculates the size constraints for the
text node and runs before `UiSystem::Flex`
* `text_system` which runs after `UiSystem::Flex` and generates the
actual text.
* Fix the `MeasureFunc` calculations.
---

Text wrapping in main:
<img width="961" alt="Capturemain"
src="https://user-images.githubusercontent.com/27962798/220425740-4fe4bf46-24fb-4685-a1cf-bc01e139e72d.PNG">

With this PR:
<img width="961" alt="captured_wrap"
src="https://user-images.githubusercontent.com/27962798/220425807-949996b0-f127-4637-9f33-56a6da944fb0.PNG">

## Changelog

* Removed the previous fields from `CalculatedSize`. `CalculatedSize`
now contains a boxed `Measure`.
 * Added `measurement` module to `bevy_ui`.
* Added the method `create_text_measure` to `TextPipeline`.
* Added a new system `measure_text_system` that runs before
`UiSystem::Flex` that creates a `MeasureFunc` for the text.
* Rescheduled  `text_system` to run after `UiSystem::Flex`.
* Added a trait `Measure`. A `Measure` is used to compute the size of a
UI node when the size of that node is based on its content.
* Added `ImageMeasure` and `TextMeasure` which implement `Measure`.
* Added a new component `UiImageSize` which is used by
`update_image_calculated_size_system` to track image size changes.
* Added a `UiImageSize` component to `ImageBundle`.

## Migration Guide

`ImageBundle` has a new component `UiImageSize` which contains the size
of the image bundle's texture and is updated automatically by
`update_image_calculated_size_system`

---------

Co-authored-by: François <mockersf@gmail.com>
2023-04-17 15:23:21 +00:00
Mikkel Rasmussen
1575481429
Changed spelling linebreak_behaviour to linebreak_behavior (#8285)
# Objective

In the
[`Text`](3442a13d2c/crates/bevy_text/src/text.rs (L18))
struct the field is named: `linebreak_behaviour`, the British spelling
of _behavior_.
**Update**, also found: 
- `FileDragAndDrop::HoveredFileCancelled` 
- `TouchPhase::Cancelled`
- `Touches.just_cancelled`

The majority of all spelling is in the US but when you have a lot of
contributors across the world, sometimes
spelling differences can pop up in APIs such as in this case. 

For consistency, I think it would be worth a while to ensure that the
API is persistent.

Some examples:
`from_reflect.rs` has `DefaultBehavior`
TextStyle has `color` and uses the `Color` struct.
In `bevy_input/src/Touch.rs` `TouchPhase::Cancelled` and _canceled_ are
used interchangeably in the documentation

I've found that there is also the same type of discrepancies in the
documentation, though this is a low priority but is worth checking.
**Update**: I've now checked the documentation (See #8291)

## Solution

I've only renamed the inconsistencies that have breaking changes and
documentation pertaining to them. The rest of the documentation will be
changed via #8291.

Do note that the winit API is written with UK spelling, thus this may be
a cause for confusion:
`winit::event::TouchPhase::Cancelled => TouchPhase::Canceled`
`winit::event::WindowEvent::HoveredFileCancelled` -> Related to
`FileDragAndDrop::HoveredFileCanceled`

But I'm hoping to maybe outline other spelling inconsistencies in the
API, and maybe an addition to the contribution guide.

---

## Changelog

- `Text` field `linebreak_behaviour` has been renamed to
`linebreak_behavior`.
- Event `FileDragAndDrop::HoveredFileCancelled` has been renamed to
`HoveredFileCanceled`
- Function `Touches.just_cancelled` has been renamed to
`Touches.just_canceled`
- Event `TouchPhase::Cancelled` has been renamed to
`TouchPhase::Canceled`

## Migration Guide

Update where `linebreak_behaviour` is used to `linebreak_behavior`
Updated the event `FileDragAndDrop::HoveredFileCancelled` where used to
`HoveredFileCanceled`
Update `Touches.just_cancelled` where used as `Touches.just_canceled`
The event `TouchPhase::Cancelled` is now called `TouchPhase::Canceled`
2023-04-05 21:25:53 +00:00
ickshonpe
87dda354dd
Remove Val::Undefined (#7485) 2023-03-13 15:17:00 +00:00
ickshonpe
e950b1e09b Changes in the size of a text node should trigger recomputation of its text (#7674)
# Objective

The text contained by a text node is only recomputed when its `Style` or `Text` components change, or when the scale factor changes. Not when the geometry of the text node is modified.

Make it so that any change in text node size triggers a text recomputation.

## Solution

Change `text_system` so that it queries for text nodes with changed `Node` components and recomputes their text. 

---

Most users won't notice any difference but it should fix some confusing edge cases in more complicated and interactive layouts.

## Changelog

* Added `Changed<Node>` to the change detection query of `text_system`. This ensures that any change in the size of a text node will cause any text it contains to be recomputed.
2023-02-14 14:46:28 +00:00
ickshonpe
5a71831b31 The size field of CalculatedSize should not be a Size (#7641)
# Objective

The `size` field of `CalculatedSize` shouldn't be a `Size` as it only ever stores (unscaled) pixel values. By default its fields are `Val::Auto` but these are converted to `0`s before being sent to Taffy.

## Solution

Change the `size` field of `CalculatedSize` to a Vec2.

## Changelog

* Changed the `size` field of `CalculatedSize` to a Vec2.
* Removed the `Val` <-> `f32`  conversion code for  `CalculatedSize`.

## Migration Guide

* The size field of `CalculatedSize` has been changed to a `Vec2`.
2023-02-13 18:20:29 +00:00
DanielJin21
2e53f3b775 Don't ignore UI scale for text (#7510)
# Objective

Fixes #7476. UI scale was being incorrectly ignored when a primary window exists.

## Solution

Always take into account UI scale, regardless of whether a primary window exists.

Tested locally on @forbjok 's minimal repro project https://github.com/forbjok/bevy_ui_repro with this patch, and the issue is fixed on my machine.
2023-02-05 18:15:22 +00:00
ickshonpe
a441939ba5 Remove QueuedText (#7414)
## Objective

Remove `QueuedText`.

`QueuedText` isn't useful. It's exposed in the `bevy_ui` public interface but can't be used for anything because its `entities` field is private.

## Solution

Remove the `QueuedText` struct and use a `Local<Vec<Entity>` in its place.

## Changelog

* Removed `QueuedText`
2023-01-31 18:42:22 +00:00
Molot2032
cef56a0d47 Allow users of Text/TextBundle to choose from glyph_brush_layout's BuiltInLineBreaker options. (#7283)
# Objective
Currently, Text always uses the default linebreaking behaviour in glyph_brush_layout `BuiltInLineBreaker::Unicode` which breaks lines at word boundaries. However, glyph_brush_layout also supports breaking lines at any character by setting the linebreaker to `BuiltInLineBreaker::AnyChar`. Having text wrap character-by-character instead of at word boundaries is desirable in some cases - consider that consoles/terminals usually wrap this way.

As a side note, the default Unicode linebreaker does not seem to handle emergency cases, where there is no word boundary on a line to break at. In that case, the text runs out of bounds. Issue #1867 shows an example of this.

## Solution
Basically just copies how TextAlignment is exposed, but for a new enum TextLineBreakBehaviour.
This PR exposes glyph_brush_layout's two simple linebreaking options (Unicode, AnyChar) to users of Text via the enum TextLineBreakBehaviour (which just translates those 2 aforementioned options), plus a method 'with_linebreak_behaviour' on Text and TextBundle. 

## Changelog

Added `Text::with_linebreak_behaviour`
Added `TextBundle::with_linebreak_behaviour` 
`TextPipeline::queue_text` and `GlyphBrush::compute_glyphs` now need a TextLineBreakBehaviour argument, in order to pass through the new field.
Modified the `text2d` example to show both linebreaking behaviours. 


## Example
Here's what the modified example looks like
![image](https://user-images.githubusercontent.com/117271367/213589184-b1a54bf3-116c-4721-8cb6-1cb69edb3070.png)
2023-01-21 00:17:11 +00:00
Aceeri
ddfafab971 Windows as Entities (#5589)
# Objective

Fix https://github.com/bevyengine/bevy/issues/4530

- Make it easier to open/close/modify windows by setting them up as `Entity`s with a `Window` component.
- Make multiple windows very simple to set up. (just add a `Window` component to an entity and it should open)

## Solution

- Move all properties of window descriptor to ~components~ a component.
- Replace `WindowId` with `Entity`.
- ~Use change detection for components to update backend rather than events/commands. (The `CursorMoved`/`WindowResized`/... events are kept for user convenience.~
  Check each field individually to see what we need to update, events are still kept for user convenience.

---

## Changelog

- `WindowDescriptor` renamed to `Window`.
    - Width/height consolidated into a `WindowResolution` component.
    - Requesting maximization/minimization is done on the [`Window::state`] field.
- `WindowId` is now `Entity`.

## Migration Guide

- Replace `WindowDescriptor` with `Window`.
    - Change `width` and `height` fields in a `WindowResolution`, either by doing
      ```rust
      WindowResolution::new(width, height) // Explicitly
      // or using From<_> for tuples for convenience
      (1920., 1080.).into()
      ```
- Replace any `WindowCommand` code to just modify the `Window`'s fields directly  and creating/closing windows is now by spawning/despawning an entity with a `Window` component like so:
  ```rust
  let window = commands.spawn(Window { ... }).id(); // open window
  commands.entity(window).despawn(); // close window
  ```

## Unresolved
- ~How do we tell when a window is minimized by a user?~
  ~Currently using the `Resize(0, 0)` as an indicator of minimization.~
  No longer attempting to tell given how finnicky this was across platforms, now the user can only request that a window be maximized/minimized.
  
 ## Future work
 - Move `exit_on_close` functionality out from windowing and into app(?)
 - https://github.com/bevyengine/bevy/issues/5621
 - https://github.com/bevyengine/bevy/issues/7099
 - https://github.com/bevyengine/bevy/issues/7098


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-01-19 00:38:28 +00:00
Jay Pavlina
e621acd7f2 Remove TextError::ExceedMaxTextAtlases(usize) variant (#6796)
# Objective

Fixes #6756

## Solution

Removes the variant wherever it's used

Co-authored-by: Jay Pavlina <jay@enjin.io>
2022-12-05 23:23:16 +00:00
Rob Parrett
d1528dfbf8 Warn instead of erroring when max_font_atlases is exceeded (#6673)
# Objective

Fixes #6642

In a way that doesn't create any breaking changes, as a possible way to fix the above in a patch release.

## Solution

Don't actually remove font atlases when `max_font_atlases` is exceeded. Add a warning instead.

Keep `TextError::ExceedMaxTextAtlases` and `TextSettings` as-is so we don't break anything.

This is a bit of a cop-out, but the problems revealed by #6642 seem very challenging to fix properly.

Maybe follow up later with something more like https://github.com/rparrett/bevy/commits/remove-max-font-atlases later, if this is the direction we want to go.

## Note

See previous attempt at a "simple fix" that only solved some of the issues: #6666
2022-11-25 23:49:25 +00:00
Jakob Hellermann
e71c4d2802 fix nightly clippy warnings (#6395)
# Objective

- fix new clippy lints before they get stable and break CI

## Solution

- run `clippy --fix` to auto-fix machine-applicable lints
- silence `clippy::should_implement_trait` for `fn HandleId::default<T: Asset>`

## Changes
- always prefer `format!("{inline}")` over `format!("{}", not_inline)`
- prefer `Box::default` (or `Box::<T>::default` if necessary) over `Box::new(T::default())`
2022-10-28 21:03:01 +00:00
JoJoJet
456971381c Resolve most remaining execution-order ambiguities (#6341)
# Objective

Bevy's internal plugins have lots of execution-order ambiguities, which makes the ambiguity detection tool very noisy for our users.

## Solution

Silence every last ambiguity that can currently be resolved.
Each time an ambiguity is silenced, it is accompanied by a comment describing why it is correct. This description should be based on the public API of the respective systems. Thus, I have added documentation to some systems describing how they use some resources.

# Future work

Some ambiguities remain, due to issues out of scope for this PR. 

* The ambiguity checker does not respect `Without<>` filters, leading to false positives.
* Ambiguities between `bevy_ui` and `bevy_animation` cannot be resolved, since neither crate knows that the other exists. We will need a general solution to this problem.
2022-10-27 12:56:03 +00:00
targrub
c18b1a839b Prepare for upcoming rustlang by fixing upcoming clippy warnings (#6376)
# Objective

- Proactive changing of code to comply with warnings generated by beta of rustlang version of cargo clippy.

## Solution

- Code changed as recommended by `rustup update`, `rustup default beta`, `cargo run -p ci -- clippy`.
- Tested using `beta` and `stable`.  No clippy warnings in either after changes made.

---

## Changelog

- Warnings fixed were: `clippy::explicit-auto-deref` (present in 11 files), `clippy::needless-borrow` (present in 2 files), and `clippy::only-used-in-recursion` (only 1 file).
2022-10-26 19:15:15 +00:00
Michel van der Hulst
0981789ec7 Fixes incorrect glyph positioning for text2d (#6273)
# Objective
Fixes #6272

## Solution
Revert to old way of positioning text for Text2D rendered text.


Co-authored-by: Michel van der Hulst <hulstmichel@gmail.com>
2022-10-18 13:28:34 +00:00
xtr3m3nerd
b6efe0f318 Limit FontAtlasSets (#5708)
# Objective

Fixes #5636
Summary: The FontAtlasSet caches generated font textures per font size. Since font size can be any arbitrary floating point number it is possible for the user to generate thousands of font texture inadvertently by changing the font size over time. This results in a memory leak as these generated font textures fill the available memory. 

## Solution

We limit the number of possible font sizes that we will cache and throw an error if the user attempts to generate more. This error encourages the user to use alternative, less performance intensive methods to accomplish the same goal. If the user requires more font sizes and the alternative solutions wont work there is now a TextSettings Resource that the user can set to configure this limit. 

---

## Changelog

The number of cached font sizes per font is now limited with a default limit of 100 font sizes per font. This limit is configurable via the new TextSettings struct.
2022-09-19 16:12:12 +00:00
Al M
bd68ba1c3c make TextLayoutInfo a Component (#4460)
# Objective

Make `TextLayoutInfo` more accessible as a component, rather than internal to `TextPipeline`. I am working on a plugin that manipulates these and there is no (mutable) access to them right now.

## Solution

This changes `TextPipeline::queue_text` to return `TextLayoutInfo`'s rather than storing them in a map internally. `text2d_system` and `text_system` now take the returned `TextLayoutInfo` and store it as a component of the entity. I considered adding an accessor to `TextPipeline` (e.g. `get_glyphs_mut`) but this seems like it might be a little faster, and also has the added benefit of cleaning itself up when entities are removed. Right now nothing is ever removed from the glyphs map.

## Changelog

Removed `DefaultTextPipeline`. `TextPipeline` no longer has a generic key type. `TextPipeline::queue_text` returns `TextLayoutInfo` directly.

## Migration Guide

This might break a third-party crate? I could restore the orginal TextPipeline API as a wrapper around what's in this PR.
2022-09-06 20:03:40 +00:00
Andreas Weibye
4fadd26168 Add UI scaling (#5814)
# Objective

- Allow users to change the scaling of the UI
- Adopted from #2808

## Solution

- This is an accessibility feature for fixed-size UI elements, allowing the developer to expose a range of UI scales for the player to set a scale that works for their needs.

> - The user can modify the UiScale struct to change the scaling at runtime. This multiplies the Px values by the scale given, while not touching any others.
> - The example showcases how this even allows for fluid transitions

> Here's how the example looks like:

https://user-images.githubusercontent.com/1631166/132979069-044161a9-8e85-45ab-9e93-fcf8e3852c2b.mp4

---

## Changelog

- Added a `UiScale` which can be used to scale all of UI


Co-authored-by: Andreas Weibye <13300393+Weibye@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-29 23:35:53 +00:00
KDecay
bf085ee1d2 Remove Size and UiRect generics (#5404)
# Objective

- Migrate changes from #3503.

## Solution

- Change `Size<T>` and `UiRect<T>` to `Size` and `UiRect` using `Val`.
- Implement `Sub`, `SubAssign`, `Mul`, `MulAssign`, `Div` and `DivAssign` for `Val`.
- Update tests for `Size`.

---

## Changelog

### Changed

- The generic `T` of `Size` and `UiRect` got removed and instead they both now always use `Val`.

## Migration Guide

- The generic `T` of `Size` and `UiRect` got removed and instead they both now always use `Val`. If you used a `Size<f32>` consider replacing it with a `Vec2` which is way more powerful.


Co-authored-by: KDecay <KDecayMusic@protonmail.com>
2022-08-01 16:27:16 +00:00
Félix Lescaudey de Maneville
f000c2b951 Clippy improvements (#4665)
# Objective

Follow up to my previous MR #3718 to add new clippy warnings to bevy:

- [x] [~~option_if_let_else~~](https://rust-lang.github.io/rust-clippy/master/#option_if_let_else) (reverted)
- [x] [redundant_else](https://rust-lang.github.io/rust-clippy/master/#redundant_else)
- [x] [match_same_arms](https://rust-lang.github.io/rust-clippy/master/#match_same_arms)
- [x] [semicolon_if_nothing_returned](https://rust-lang.github.io/rust-clippy/master/#semicolon_if_nothing_returned)
- [x] [explicit_iter_loop](https://rust-lang.github.io/rust-clippy/master/#explicit_iter_loop)
- [x] [map_flatten](https://rust-lang.github.io/rust-clippy/master/#map_flatten)

There is one commit per clippy warning, and the matching flags are added to the CI execution.

To test the CI execution you may run `cargo run -p ci -- clippy` at the root.

I choose the add the flags in the `ci` tool crate to avoid having them in every `lib.rs` but I guess it could become an issue with suprise warnings coming up after a commit/push


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-05-31 01:38:07 +00:00
KDecay
7a7f097485 Move Size to bevy_ui (#4285)
# Objective

- Related #4276.
- Part of the splitting process of #3503.

## Solution

- Move `Size` to `bevy_ui`.

## Reasons

- `Size` is only needed in `bevy_ui` (because it needs to use `Val` instead of `f32`), but it's also used as a worse `Vec2`  replacement in other areas.
- `Vec2` is more powerful than `Size` so it should be used whenever possible.
- Discussion in #3503.

## Changelog

### Changed

- The `Size` type got moved from `bevy_math` to `bevy_ui`.

## Migration Guide

- The `Size` type got moved from `bevy::math` to `bevy::ui`. To migrate you just have to import `bevy::ui::Size` instead of `bevy::math::Math` or use the `bevy::prelude` instead.

Co-authored-by: KDecay <KDecayMusic@protonmail.com>
2022-04-25 13:54:46 +00:00
bilsen
63fee2572b ParamSet for conflicting SystemParam:s (#2765)
# Objective
Add a system parameter `ParamSet` to be used as container for conflicting parameters.

## Solution
Added two methods to the SystemParamState trait, which gives the access used by the parameter. Did the implementation. Added some convenience methods to FilteredAccessSet. Changed `get_conflicts` to return every conflicting component instead of breaking on the first conflicting `FilteredAccess`.


Co-authored-by: bilsen <40690317+bilsen@users.noreply.github.com>
2022-03-29 23:39:38 +00:00
Aevyrie
b3aff9a7b1 Add docs and common helper functions to Windows (#4107)
# Objective

- Improve documentation.
- Provide helper functions for common uses of `Windows` relating to getting the primary `Window`.
- Reduce repeated `Window` code.

# Solution

- Adds infallible `primary()` and `primary_mut()` functions with standard error text. This replaces the commonly used `get_primary().unwrap()` seen throughout bevy which has inconsistent or nonexistent error messages.
- Adds `scale_factor(WindowId)` to replace repeated code blocks throughout.

# Considerations

- The added functions can panic if the primary window does not exist.
    - It is very uncommon for the primary window to not exist, as seen by the regular use of `get_primary().unwrap()`. Most users will have a single window and will need to reference the primary window in their code multiple times.
    - The panic provides a consistent error message to make this class of error easy to spot from the panic text.
    - This follows the established standard of short names for infallible-but-unlikely-to-panic functions in bevy.
- Removes line noise for common usage of `Windows`.
2022-03-08 00:46:04 +00:00
Rose Peck
e30d600dbf Update docstrings for text_system and text2d_system (#3732)
# Objective

- Fixes #3562 

## Solution

- The outdated reference to `TextGlyphs` has been removed, and replaced with a more accurate docstring.

## What was `TextGlyphs`?
This is the real question of this Issue and PR. This is particulary interesting because not only is `TextGlyphs` not a type in bevy, but it _never was_. Indeed, this type never existed on main. Where did it come from?

`TextGlyphs` was originally a tuple struct wrapping a `Vec<PositionedGlyph>`. It was first introduced back in commit ec390aec4e in #765. At the time, position information was being stored on the text entities directly. However, after design review, [it was decided](https://github.com/bevyengine/bevy/pull/765#issuecomment-725047186) to instead store the glyphs in a `HashMap` owned by the `TextPipeline`. When this was done, the original type was not only removed, but abstracted behind a few layers of the `TextPipeline` API. Obviously, the original docstring wasn't updated accordingly.

Later, as part of #1122, the incorrect docstring was swept up when copy/pasting `text_system` for `text2d`. (Although I don't blame @CleanCut for this; it took me like 3 hours to track all this down to find the original context.)
2022-01-20 19:32:16 +00:00
Troels Jessen
32f7997c56 Partially document bevy_ui (#3526)
# Objective

Updated the docs for bevy_ui as requested by #3492 

## Solution

I have documented the parts I understand. anchors.rs is not in use and should be removed, thus I haven't documented that, and some of the more renderer-heavy code is beyond me and needs input from either cart or someone familiar with bevy rendering

Co-authored-by: Troels Jessen <kairyuka@gmail.com>
2022-01-07 22:20:34 +00:00
Michael Dorst
251514017f Fix doc_markdown lints in bevy_ui (#3484)
#3457 adds the `doc_markdown` clippy lint, which checks doc comments to make sure code identifiers are escaped with backticks. This causes a lot of lint errors, so this is one of a number of PR's that will fix those lint errors one crate at a time.

This PR fixes lints in the `bevy_ui` crate.
2022-01-05 22:30:14 +00:00
Carter Anderson
ffecb05a0a Replace old renderer with new renderer (#3312)
This makes the [New Bevy Renderer](#2535) the default (and only) renderer. The new renderer isn't _quite_ ready for the final release yet, but I want as many people as possible to start testing it so we can identify bugs and address feedback prior to release.

The examples are all ported over and operational with a few exceptions:

* I removed a good portion of the examples in the `shader` folder. We still have some work to do in order to make these examples possible / ergonomic / worthwhile: #3120 and "high level shader material plugins" are the big ones. This is a temporary measure.
* Temporarily removed the multiple_windows example: doing this properly in the new renderer will require the upcoming "render targets" changes. Same goes for the render_to_texture example.
* Removed z_sort_debug: entity visibility sort info is no longer available in app logic. we could do this on the "render app" side, but i dont consider it a priority.
2021-12-14 03:58:23 +00:00
Carter Anderson
9d453530fa System Param Lifetime Split (#2605)
# Objective

Enable using exact World lifetimes during read-only access . This is motivated by the new renderer's need to allow read-only world-only queries to outlive the query itself (but still be constrained by the world lifetime).

For example:
115b170d1f/pipelined/bevy_pbr2/src/render/mod.rs (L774)

## Solution

Split out SystemParam state and world lifetimes and pipe those lifetimes up to read-only Query ops (and add into_inner for Res). According to every safety test I've run so far (except one), this is safe (see the temporary safety test commit). Note that changing the mutable variants to the new lifetimes would allow aliased mutable pointers (try doing that to see how it affects the temporary safety tests).

The new state lifetime on SystemParam does make `#[derive(SystemParam)]` more cumbersome (the current impl requires PhantomData if you don't use both lifetimes). We can make this better by detecting whether or not a lifetime is used in the derive and adjusting accordingly, but that should probably be done in its own pr.  

## Why is this a draft?

The new lifetimes break QuerySet safety in one very specific case (see the query_set system in system_safety_test). We need to solve this before we can use the lifetimes given.

This is due to the fact that QuerySet is just a wrapper over Query, which now relies on world lifetimes instead of `&self` lifetimes to prevent aliasing (but in systems, each Query has its own implied lifetime, not a centralized world lifetime).  I believe the fix is to rewrite QuerySet to have its own World lifetime (and own the internal reference). This will complicate the impl a bit, but I think it is doable. I'm curious if anyone else has better ideas.

Personally, I think these new lifetimes need to happen. We've gotta have a way to directly tie read-only World queries to the World lifetime. The new renderer is the first place this has come up, but I doubt it will be the last. Worst case scenario we can come up with a second `WorldLifetimeQuery<Q, F = ()>` parameter to enable these read-only scenarios, but I'd rather not add another type to the type zoo.
2021-08-15 20:51:53 +00:00
Jonas Matser
d1f40148fd Allows a number of clippy lints and fixes 2 (#1999)
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-05-14 20:37:32 +00:00
Denis Laprise
7d0e98f34c Implement rotation for Text2d (#2084)
Fixes https://github.com/bevyengine/bevy/issues/2080

![CleanShot 2021-05-02 at 22 50 09](https://user-images.githubusercontent.com/11653/116844876-373ca780-ab99-11eb-8f61-8d93d929bff0.gif)


Co-authored-by: Nathan Stocks <cleancut@github.com>
Co-authored-by: Denis Laprise <nside@users.noreply.github.com>
2021-05-06 03:55:55 +00:00
Carter Anderson
94c4184068 Text responds to scale factor changes (#1769)
Fixes #1768

If the scale factor changes, queue up all text to be drawn instead of just changed text.
2021-03-27 03:03:47 +00:00
Aaron Winter
b65ec82d46 Frustum Culling (for Sprites) (#1492)
This PR adds two systems to the sprite module that culls Sprites and AtlasSprites that are not within the camera's view.
This is achieved by removing / adding a new  `Viewable` Component dynamically.

Some of the render queries now use a `With<Viewable>` filter to only process the sprites that are actually on screen, which improves performance drastically for scene swith a large amount of sprites off-screen.

https://streamable.com/vvzh2u

This scene shows a map with a 320x320 tiles, with a grid size of 64p.
This is exactly 102400 Sprites in the entire scene.

Without this PR, this scene runs with 1 to 4 FPS.

With this PR..
.. at 720p, there are around 600 visible sprites and runs at ~215 FPS
.. at 1440p there are around 2000 visible sprites and runs at ~135 FPS

The Systems this PR adds take around 1.2ms (with 100K+ sprites in the scene)

Note:
This is only implemented for Sprites and AtlasTextureSprites.
There is no culling for 3D in this PR.

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-03-24 21:29:53 +00:00
Carter Anderson
b17f8a4bce format comments (#1612)
Uses the new unstable comment formatting features added to rustfmt.toml.
2021-03-11 00:27:30 +00:00
Carter Anderson
be1c317d4e Resolve (most) internal system ambiguities (#1606)
* Adds labels and orderings to systems that need them (uses the new many-to-many labels for InputSystem)
* Removes the Event, PreEvent, Scene, and Ui stages in favor of First, PreUpdate, and PostUpdate (there is more collapsing potential, such as the Asset stages and _maybe_ removing First, but those have more nuance so they should be handled separately)
* Ambiguity detection now prints component conflicts
* Removed broken change filters from flex calculation (which implicitly relied on the z-update system always modifying translation.z). This will require more work to make it behave as expected so i just removed it (and it was already doing this work every frame).
2021-03-10 22:37:02 +00:00
Carter Anderson
3a2a68852c Bevy ECS V2 (#1525)
# Bevy ECS V2

This is a rewrite of Bevy ECS (basically everything but the new executor/schedule, which are already awesome). The overall goal was to improve the performance and versatility of Bevy ECS. Here is a quick bulleted list of changes before we dive into the details:

* Complete World rewrite
* Multiple component storage types:
    * Tables: fast cache friendly iteration, slower add/removes (previously called Archetypes)
    * Sparse Sets: fast add/remove, slower iteration
* Stateful Queries (caches query results for faster iteration. fragmented iteration is _fast_ now)
* Stateful System Params (caches expensive operations. inspired by @DJMcNab's work in #1364)
* Configurable System Params (users can set configuration when they construct their systems. once again inspired by @DJMcNab's work)
* Archetypes are now "just metadata", component storage is separate
* Archetype Graph (for faster archetype changes)
* Component Metadata
    * Configure component storage type
    * Retrieve information about component size/type/name/layout/send-ness/etc
    * Components are uniquely identified by a densely packed ComponentId
    * TypeIds are now totally optional (which should make implementing scripting easier)
* Super fast "for_each" query iterators
* Merged Resources into World. Resources are now just a special type of component
* EntityRef/EntityMut builder apis (more efficient and more ergonomic)
* Fast bitset-backed `Access<T>` replaces old hashmap-based approach everywhere
* Query conflicts are determined by component access instead of archetype component access (to avoid random failures at runtime)
    * With/Without are still taken into account for conflicts, so this should still be comfy to use
* Much simpler `IntoSystem` impl
* Significantly reduced the amount of hashing throughout the ecs in favor of Sparse Sets (indexed by densely packed ArchetypeId, ComponentId, BundleId, and TableId)
* Safety Improvements
    * Entity reservation uses a normal world reference instead of unsafe transmute
    * QuerySets no longer transmute lifetimes
    * Made traits "unsafe" where relevant
    * More thorough safety docs
* WorldCell
    * Exposes safe mutable access to multiple resources at a time in a World 
* Replaced "catch all" `System::update_archetypes(world: &World)` with `System::new_archetype(archetype: &Archetype)`
* Simpler Bundle implementation
* Replaced slow "remove_bundle_one_by_one" used as fallback for Commands::remove_bundle with fast "remove_bundle_intersection"
* Removed `Mut<T>` query impl. it is better to only support one way: `&mut T` 
* Removed with() from `Flags<T>` in favor of `Option<Flags<T>>`, which allows querying for flags to be "filtered" by default 
* Components now have is_send property (currently only resources support non-send)
* More granular module organization
* New `RemovedComponents<T>` SystemParam that replaces `query.removed::<T>()`
* `world.resource_scope()` for mutable access to resources and world at the same time
* WorldQuery and QueryFilter traits unified. FilterFetch trait added to enable "short circuit" filtering. Auto impled for cases that don't need it
* Significantly slimmed down SystemState in favor of individual SystemParam state
* System Commands changed from `commands: &mut Commands` back to `mut commands: Commands` (to allow Commands to have a World reference)

Fixes #1320

## `World` Rewrite

This is a from-scratch rewrite of `World` that fills the niche that `hecs` used to. Yes, this means Bevy ECS is no longer a "fork" of hecs. We're going out our own!

(the only shared code between the projects is the entity id allocator, which is already basically ideal)

A huge shout out to @SanderMertens (author of [flecs](https://github.com/SanderMertens/flecs)) for sharing some great ideas with me (specifically hybrid ecs storage and archetype graphs). He also helped advise on a number of implementation details.

## Component Storage (The Problem)

Two ECS storage paradigms have gained a lot of traction over the years:

* **Archetypal ECS**: 
    * Stores components in "tables" with static schemas. Each "column" stores components of a given type. Each "row" is an entity.
    * Each "archetype" has its own table. Adding/removing an entity's component changes the archetype.
    * Enables super-fast Query iteration due to its cache-friendly data layout
    * Comes at the cost of more expensive add/remove operations for an Entity's components, because all components need to be copied to the new archetype's "table"
* **Sparse Set ECS**:
    * Stores components of the same type in densely packed arrays, which are sparsely indexed by densely packed unsigned integers (Entity ids)
    * Query iteration is slower than Archetypal ECS because each entity's component could be at any position in the sparse set. This "random access" pattern isn't cache friendly. Additionally, there is an extra layer of indirection because you must first map the entity id to an index in the component array.
    * Adding/removing components is a cheap, constant time operation 

Bevy ECS V1, hecs, legion, flec, and Unity DOTS are all "archetypal ecs-es". I personally think "archetypal" storage is a good default for game engines. An entity's archetype doesn't need to change frequently in general, and it creates "fast by default" query iteration (which is a much more common operation). It is also "self optimizing". Users don't need to think about optimizing component layouts for iteration performance. It "just works" without any extra boilerplate.

Shipyard and EnTT are "sparse set ecs-es". They employ "packing" as a way to work around the "suboptimal by default" iteration performance for specific sets of components. This helps, but I didn't think this was a good choice for a general purpose engine like Bevy because:

1. "packs" conflict with each other. If bevy decides to internally pack the Transform and GlobalTransform components, users are then blocked if they want to pack some custom component with Transform.
2. users need to take manual action to optimize

Developers selecting an ECS framework are stuck with a hard choice. Select an "archetypal" framework with "fast iteration everywhere" but without the ability to cheaply add/remove components, or select a "sparse set" framework to cheaply add/remove components but with slower iteration performance.

## Hybrid Component Storage (The Solution)

In Bevy ECS V2, we get to have our cake and eat it too. It now has _both_ of the component storage types above (and more can be added later if needed):

* **Tables** (aka "archetypal" storage)
    * The default storage. If you don't configure anything, this is what you get
    * Fast iteration by default
    * Slower add/remove operations
* **Sparse Sets**
    * Opt-in
    * Slower iteration
    * Faster add/remove operations

These storage types complement each other perfectly. By default Query iteration is fast. If developers know that they want to add/remove a component at high frequencies, they can set the storage to "sparse set":

```rust
world.register_component(
    ComponentDescriptor:🆕:<MyComponent>(StorageType::SparseSet)
).unwrap();
```

## Archetypes

Archetypes are now "just metadata" ... they no longer store components directly. They do store:

* The `ComponentId`s of each of the Archetype's components (and that component's storage type)
    * Archetypes are uniquely defined by their component layouts
    * For example: entities with "table" components `[A, B, C]` _and_ "sparse set" components `[D, E]` will always be in the same archetype.
* The `TableId` associated with the archetype
    * For now each archetype has exactly one table (which can have no components),
    * There is a 1->Many relationship from Tables->Archetypes. A given table could have any number of archetype components stored in it:
        * Ex: an entity with "table storage" components `[A, B, C]` and "sparse set" components `[D, E]` will share the same `[A, B, C]` table as an entity with `[A, B, C]` table component and `[F]` sparse set components.
        * This 1->Many relationship is how we preserve fast "cache friendly" iteration performance when possible (more on this later)
* A list of entities that are in the archetype and the row id of the table they are in
* ArchetypeComponentIds
    * unique densely packed identifiers for (ArchetypeId, ComponentId) pairs
    * used by the schedule executor for cheap system access control
* "Archetype Graph Edges" (see the next section)  

## The "Archetype Graph"

Archetype changes in Bevy (and a number of other archetypal ecs-es) have historically been expensive to compute. First, you need to allocate a new vector of the entity's current component ids, add or remove components based on the operation performed, sort it (to ensure it is order-independent), then hash it to find the archetype (if it exists). And thats all before we get to the _already_ expensive full copy of all components to the new table storage.

The solution is to build a "graph" of archetypes to cache these results. @SanderMertens first exposed me to the idea (and he got it from @gjroelofs, who came up with it). They propose adding directed edges between archetypes for add/remove component operations. If `ComponentId`s are densely packed, you can use sparse sets to cheaply jump between archetypes.

Bevy takes this one step further by using add/remove `Bundle` edges instead of `Component` edges. Bevy encourages the use of `Bundles` to group add/remove operations. This is largely for "clearer game logic" reasons, but it also helps cut down on the number of archetype changes required. `Bundles` now also have densely-packed `BundleId`s. This allows us to use a _single_ edge for each bundle operation (rather than needing to traverse N edges ... one for each component). Single component operations are also bundles, so this is strictly an improvement over a "component only" graph.

As a result, an operation that used to be _heavy_ (both for allocations and compute) is now two dirt-cheap array lookups and zero allocations.

## Stateful Queries

World queries are now stateful. This allows us to:

1. Cache archetype (and table) matches
    * This resolves another issue with (naive) archetypal ECS: query performance getting worse as the number of archetypes goes up (and fragmentation occurs).
2. Cache Fetch and Filter state
    * The expensive parts of fetch/filter operations (such as hashing the TypeId to find the ComponentId) now only happen once when the Query is first constructed
3. Incrementally build up state
    * When new archetypes are added, we only process the new archetypes (no need to rebuild state for old archetypes)

As a result, the direct `World` query api now looks like this:

```rust
let mut query = world.query::<(&A, &mut B)>();
for (a, mut b) in query.iter_mut(&mut world) {
}
```

Requiring `World` to generate stateful queries (rather than letting the `QueryState` type be constructed separately) allows us to ensure that _all_ queries are properly initialized (and the relevant world state, such as ComponentIds). This enables QueryState to remove branches from its operations that check for initialization status (and also enables query.iter() to take an immutable world reference because it doesn't need to initialize anything in world).

However in systems, this is a non-breaking change. State management is done internally by the relevant SystemParam.

## Stateful SystemParams

Like Queries, `SystemParams` now also cache state. For example, `Query` system params store the "stateful query" state mentioned above. Commands store their internal `CommandQueue`. This means you can now safely use as many separate `Commands` parameters in your system as you want. `Local<T>` system params store their `T` value in their state (instead of in Resources). 

SystemParam state also enabled a significant slim-down of SystemState. It is much nicer to look at now.

Per-SystemParam state naturally insulates us from an "aliased mut" class of errors we have hit in the past (ex: using multiple `Commands` system params).

(credit goes to @DJMcNab for the initial idea and draft pr here #1364)

## Configurable SystemParams

@DJMcNab also had the great idea to make SystemParams configurable. This allows users to provide some initial configuration / values for system parameters (when possible). Most SystemParams have no config (the config type is `()`), but the `Local<T>` param now supports user-provided parameters:

```rust

fn foo(value: Local<usize>) {    
}

app.add_system(foo.system().config(|c| c.0 = Some(10)));
```

## Uber Fast "for_each" Query Iterators

Developers now have the choice to use a fast "for_each" iterator, which yields ~1.5-3x iteration speed improvements for "fragmented iteration", and minor ~1.2x iteration speed improvements for unfragmented iteration. 

```rust
fn system(query: Query<(&A, &mut B)>) {
    // you now have the option to do this for a speed boost
    query.for_each_mut(|(a, mut b)| {
    });

    // however normal iterators are still available
    for (a, mut b) in query.iter_mut() {
    }
}
```

I think in most cases we should continue to encourage "normal" iterators as they are more flexible and more "rust idiomatic". But when that extra "oomf" is needed, it makes sense to use `for_each`.

We should also consider using `for_each` for internal bevy systems to give our users a nice speed boost (but that should be a separate pr).

## Component Metadata

`World` now has a `Components` collection, which is accessible via `world.components()`. This stores mappings from `ComponentId` to `ComponentInfo`, as well as `TypeId` to `ComponentId` mappings (where relevant). `ComponentInfo` stores information about the component, such as ComponentId, TypeId, memory layout, send-ness (currently limited to resources), and storage type.

## Significantly Cheaper `Access<T>`

We used to use `TypeAccess<TypeId>` to manage read/write component/archetype-component access. This was expensive because TypeIds must be hashed and compared individually. The parallel executor got around this by "condensing" type ids into bitset-backed access types. This worked, but it had to be re-generated from the `TypeAccess<TypeId>`sources every time archetypes changed.

This pr removes TypeAccess in favor of faster bitset access everywhere. We can do this thanks to the move to densely packed `ComponentId`s and `ArchetypeComponentId`s.

## Merged Resources into World

Resources had a lot of redundant functionality with Components. They stored typed data, they had access control, they had unique ids, they were queryable via SystemParams, etc. In fact the _only_ major difference between them was that they were unique (and didn't correlate to an entity).

Separate resources also had the downside of requiring a separate set of access controls, which meant the parallel executor needed to compare more bitsets per system and manage more state.

I initially got the "separate resources" idea from `legion`. I think that design was motivated by the fact that it made the direct world query/resource lifetime interactions more manageable. It certainly made our lives easier when using Resources alongside hecs/bevy_ecs. However we already have a construct for safely and ergonomically managing in-world lifetimes: systems (which use `Access<T>` internally).

This pr merges Resources into World:

```rust
world.insert_resource(1);
world.insert_resource(2.0);
let a = world.get_resource::<i32>().unwrap();
let mut b = world.get_resource_mut::<f64>().unwrap();
*b = 3.0;
```

Resources are now just a special kind of component. They have their own ComponentIds (and their own resource TypeId->ComponentId scope, so they don't conflict wit components of the same type). They are stored in a special "resource archetype", which stores components inside the archetype using a new `unique_components` sparse set (note that this sparse set could later be used to implement Tags). This allows us to keep the code size small by reusing existing datastructures (namely Column, Archetype, ComponentFlags, and ComponentInfo). This allows us the executor to use a single `Access<ArchetypeComponentId>` per system. It should also make scripting language integration easier.

_But_ this merge did create problems for people directly interacting with `World`. What if you need mutable access to multiple resources at the same time? `world.get_resource_mut()` borrows World mutably!

## WorldCell

WorldCell applies the `Access<ArchetypeComponentId>` concept to direct world access:

```rust
let world_cell = world.cell();
let a = world_cell.get_resource_mut::<i32>().unwrap();
let b = world_cell.get_resource_mut::<f64>().unwrap();
```

This adds cheap runtime checks (a sparse set lookup of `ArchetypeComponentId` and a counter) to ensure that world accesses do not conflict with each other. Each operation returns a `WorldBorrow<'w, T>` or `WorldBorrowMut<'w, T>` wrapper type, which will release the relevant ArchetypeComponentId resources when dropped.

World caches the access sparse set (and only one cell can exist at a time), so `world.cell()` is a cheap operation. 

WorldCell does _not_ use atomic operations. It is non-send, does a mutable borrow of world to prevent other accesses, and uses a simple `Rc<RefCell<ArchetypeComponentAccess>>` wrapper in each WorldBorrow pointer. 

The api is currently limited to resource access, but it can and should be extended to queries / entity component access.

## Resource Scopes

WorldCell does not yet support component queries, and even when it does there are sometimes legitimate reasons to want a mutable world ref _and_ a mutable resource ref (ex: bevy_render and bevy_scene both need this). In these cases we could always drop down to the unsafe `world.get_resource_unchecked_mut()`, but that is not ideal!

Instead developers can use a "resource scope"

```rust
world.resource_scope(|world: &mut World, a: &mut A| {
})
```

This temporarily removes the `A` resource from `World`, provides mutable pointers to both, and re-adds A to World when finished. Thanks to the move to ComponentIds/sparse sets, this is a cheap operation.

If multiple resources are required, scopes can be nested. We could also consider adding a "resource tuple" to the api if this pattern becomes common and the boilerplate gets nasty.

## Query Conflicts Use ComponentId Instead of ArchetypeComponentId

For safety reasons, systems cannot contain queries that conflict with each other without wrapping them in a QuerySet. On bevy `main`, we use ArchetypeComponentIds to determine conflicts. This is nice because it can take into account filters:

```rust
// these queries will never conflict due to their filters
fn filter_system(a: Query<&mut A, With<B>>, b: Query<&mut B, Without<B>>) {
}
```

But it also has a significant downside:
```rust
// these queries will not conflict _until_ an entity with A, B, and C is spawned
fn maybe_conflicts_system(a: Query<(&mut A, &C)>, b: Query<(&mut A, &B)>) {
}
```

The system above will panic at runtime if an entity with A, B, and C is spawned. This makes it hard to trust that your game logic will run without crashing.

In this pr, I switched to using `ComponentId` instead. This _is_ more constraining. `maybe_conflicts_system` will now always fail, but it will do it consistently at startup. Naively, it would also _disallow_ `filter_system`, which would be a significant downgrade in usability. Bevy has a number of internal systems that rely on disjoint queries and I expect it to be a common pattern in userspace.

To resolve this, I added a new `FilteredAccess<T>` type, which wraps `Access<T>` and adds with/without filters. If two `FilteredAccess` have with/without values that prove they are disjoint, they will no longer conflict.

## EntityRef / EntityMut

World entity operations on `main` require that the user passes in an `entity` id to each operation:

```rust
let entity = world.spawn((A, )); // create a new entity with A
world.get::<A>(entity);
world.insert(entity, (B, C));
world.insert_one(entity, D);
```

This means that each operation needs to look up the entity location / verify its validity. The initial spawn operation also requires a Bundle as input. This can be awkward when no components are required (or one component is required).

These operations have been replaced by `EntityRef` and `EntityMut`, which are "builder-style" wrappers around world that provide read and read/write operations on a single, pre-validated entity:

```rust
// spawn now takes no inputs and returns an EntityMut
let entity = world.spawn()
    .insert(A) // insert a single component into the entity
    .insert_bundle((B, C)) // insert a bundle of components into the entity
    .id() // id returns the Entity id

// Returns EntityMut (or panics if the entity does not exist)
world.entity_mut(entity)
    .insert(D)
    .insert_bundle(SomeBundle::default());
{
    // returns EntityRef (or panics if the entity does not exist)
    let d = world.entity(entity)
        .get::<D>() // gets the D component
        .unwrap();
    // world.get still exists for ergonomics
    let d = world.get::<D>(entity).unwrap();
}

// These variants return Options if you want to check existence instead of panicing 
world.get_entity_mut(entity)
    .unwrap()
    .insert(E);

if let Some(entity_ref) = world.get_entity(entity) {
    let d = entity_ref.get::<D>().unwrap();
}
```

This _does not_ affect the current Commands api or terminology. I think that should be a separate conversation as that is a much larger breaking change.

## Safety Improvements

* Entity reservation in Commands uses a normal world borrow instead of an unsafe transmute
* QuerySets no longer transmutes lifetimes
* Made traits "unsafe" when implementing a trait incorrectly could cause unsafety
* More thorough safety docs

## RemovedComponents SystemParam

The old approach to querying removed components: `query.removed:<T>()` was confusing because it had no connection to the query itself. I replaced it with the following, which is both clearer and allows us to cache the ComponentId mapping in the SystemParamState:

```rust
fn system(removed: RemovedComponents<T>) {
    for entity in removed.iter() {
    }
} 
```

## Simpler Bundle implementation

Bundles are no longer responsible for sorting (or deduping) TypeInfo. They are just a simple ordered list of component types / data. This makes the implementation smaller and opens the door to an easy "nested bundle" implementation in the future (which i might even add in this pr). Duplicate detection is now done once per bundle type by World the first time a bundle is used.

## Unified WorldQuery and QueryFilter types

(don't worry they are still separate type _parameters_ in Queries .. this is a non-breaking change)

WorldQuery and QueryFilter were already basically identical apis. With the addition of `FetchState` and more storage-specific fetch methods, the overlap was even clearer (and the redundancy more painful).

QueryFilters are now just `F: WorldQuery where F::Fetch: FilterFetch`. FilterFetch requires `Fetch<Item = bool>` and adds new "short circuit" variants of fetch methods. This enables a filter tuple like `(With<A>, Without<B>, Changed<C>)` to stop evaluating the filter after the first mismatch is encountered. FilterFetch is automatically implemented for `Fetch` implementations that return bool.

This forces fetch implementations that return things like `(bool, bool, bool)` (such as the filter above) to manually implement FilterFetch and decide whether or not to short-circuit.

## More Granular Modules

World no longer globs all of the internal modules together. It now exports `core`, `system`, and `schedule` separately. I'm also considering exporting `core` submodules directly as that is still pretty "glob-ey" and unorganized (feedback welcome here).

## Remaining Draft Work (to be done in this pr)

* ~~panic on conflicting WorldQuery fetches (&A, &mut A)~~
    * ~~bevy `main` and hecs both currently allow this, but we should protect against it if possible~~
* ~~batch_iter / par_iter (currently stubbed out)~~
* ~~ChangedRes~~
    * ~~I skipped this while we sort out #1313. This pr should be adapted to account for whatever we land on there~~.
* ~~The `Archetypes` and `Tables` collections use hashes of sorted lists of component ids to uniquely identify each archetype/table. This hash is then used as the key in a HashMap to look up the relevant ArchetypeId or TableId. (which doesn't handle hash collisions properly)~~
* ~~It is currently unsafe to generate a Query from "World A", then use it on "World B" (despite the api claiming it is safe). We should probably close this gap. This could be done by adding a randomly generated WorldId to each world, then storing that id in each Query. They could then be compared to each other on each `query.do_thing(&world)` operation. This _does_ add an extra branch to each query operation, so I'm open to other suggestions if people have them.~~
* ~~Nested Bundles (if i find time)~~

## Potential Future Work

* Expand WorldCell to support queries.
* Consider not allocating in the empty archetype on `world.spawn()`
    * ex: return something like EntityMutUninit, which turns into EntityMut after an `insert` or `insert_bundle` op
    * this actually regressed performance last time i tried it, but in theory it should be faster
* Optimize SparseSet::insert (see `PERF` comment on insert)
* Replace SparseArray `Option<T>` with T::MAX to cut down on branching
    * would enable cheaper get_unchecked() operations
* upstream fixedbitset optimizations
    * fixedbitset could be allocation free for small block counts (store blocks in a SmallVec)
    * fixedbitset could have a const constructor 
* Consider implementing Tags (archetype-specific by-value data that affects archetype identity) 
    * ex: ArchetypeA could have `[A, B, C]` table components and `[D(1)]` "tag" component. ArchetypeB could have `[A, B, C]` table components and a `[D(2)]` tag component. The archetypes are different, despite both having D tags because the value inside D is different.
    * this could potentially build on top of the `archetype.unique_components` added in this pr for resource storage.
* Consider reverting `all_tuples` proc macro in favor of the old `macro_rules` implementation
    * all_tuples is more flexible and produces cleaner documentation (the macro_rules version produces weird type parameter orders due to parser constraints)
    * but unfortunately all_tuples also appears to make Rust Analyzer sad/slow when working inside of `bevy_ecs` (does not affect user code)
* Consider "resource queries" and/or "mixed resource and entity component queries" as an alternative to WorldCell
    * this is basically just "systems" so maybe it's not worth it
* Add more world ops
    * `world.clear()`
    * `world.reserve<T: Bundle>(count: usize)`
 * Try using the old archetype allocation strategy (allocate new memory on resize and copy everything over). I expect this to improve batch insertion performance at the cost of unbatched performance. But thats just a guess. I'm not an allocation perf pro :)
 * Adapt Commands apis for consistency with new World apis 

## Benchmarks

key:

* `bevy_old`: bevy `main` branch
* `bevy`: this branch
* `_foreach`: uses an optimized for_each iterator
* ` _sparse`: uses sparse set storage (if unspecified assume table storage)
* `_system`: runs inside a system (if unspecified assume test happens via direct world ops)

### Simple Insert (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109245573-9c3ce100-7795-11eb-9003-bfd41cd5c51f.png)

### Simpler Iter (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109245795-ffc70e80-7795-11eb-92fb-3ffad09aabf7.png)

### Fragment Iter (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109245849-0fdeee00-7796-11eb-8d25-eb6b7a682c48.png)

### Sparse Fragmented Iter

Iterate a query that matches 5 entities from a single matching archetype, but there are 100 unmatching archetypes

![image](https://user-images.githubusercontent.com/2694663/109245916-2b49f900-7796-11eb-9a8f-ed89c203f940.png)
 
### Schedule (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109246428-1fab0200-7797-11eb-8841-1b2161e90fa4.png)

### Add Remove Component (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109246492-39e4e000-7797-11eb-8985-2706bd0495ab.png)


### Add Remove Component Big

Same as the test above, but each entity has 5 "large" matrix components and 1 "large" matrix component is added and removed

![image](https://user-images.githubusercontent.com/2694663/109246517-449f7500-7797-11eb-835e-28b6790daeaa.png)


### Get Component

Looks up a single component value a large number of times

![image](https://user-images.githubusercontent.com/2694663/109246129-87ad1880-7796-11eb-9fcb-c38012aa7c70.png)
2021-03-05 07:54:35 +00:00
Zhixing Zhang
81809c71ce
Update to wgpu-rs 0.7 (#542)
Update to wgpu-rs 0.7
2021-01-31 20:06:42 -08:00
tigregalis
40b5bbd028
Rich text (#1245)
Rich text support (different fonts / styles within the same text section)
2021-01-24 17:07:43 -08:00
Nathan Jeffords
6531fcdfd2
HIDPI Text (#1132)
HIDPI Text 
* add more operator overloads to `bevy::math::Size`
* render UI text at physical resolution
2020-12-30 16:40:50 -06:00
Nathan Stocks
f574c2c547
Render text in 2D scenes (#1122)
Render text in 2D scenes
2020-12-27 13:19:03 -06:00
Carter Anderson
7ab0eeece0
Break out Visible component from Draw (#1034)
Break out Visible component from Draw
2020-12-09 13:38:48 -08:00
Carter Anderson
7699f8b6db
optimize asset gpu data transfer (#987) 2020-12-03 12:39:29 -08:00
Joshua J. Bouw
9f4c8b1b9a
Fix errors and panics to typical Rust conventions (#968)
Fix errors and panics to typical Rust conventions
2020-12-02 11:31:16 -08:00
marius851000
eb587b2f10
do not spend time drawing text with is_visible = false (#893)
do not draw text with is_visible = false
2020-11-22 11:57:52 -08:00
Olivier Pinon
465c3d4f7b
Use glyph_brush_layout and add text alignment support (#765)
Use glyph_brush_layout and add text alignment support

Co-authored-by: Olivier Pinon <op@impero.com>
Co-authored-by: tigregalis <anak.harimau@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2020-11-12 16:21:48 -08:00
Carter Anderson
e769974d6a
query filters (#834) 2020-11-10 20:48:34 -08:00
Carter Anderson
44b3e24e32
fix mesh allocation bug and public mesh api improvements (#768) 2020-11-02 13:15:07 -08:00