u-boot/common/board_f.c

964 lines
22 KiB
C
Raw Normal View History

/*
* Copyright (c) 2011 The Chromium OS Authors.
* (C) Copyright 2002-2006
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* (C) Copyright 2002
* Sysgo Real-Time Solutions, GmbH <www.elinos.com>
* Marius Groeger <mgroeger@sysgo.de>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <console.h>
#include <environment.h>
#include <dm.h>
#include <fdtdec.h>
#include <fs.h>
#include <i2c.h>
#include <initcall.h>
#include <init_helpers.h>
#include <malloc.h>
#include <mapmem.h>
#include <os.h>
#include <post.h>
#include <relocate.h>
#include <spi.h>
#include <status_led.h>
#include <timer.h>
#include <trace.h>
#include <video.h>
#include <watchdog.h>
#ifdef CONFIG_MACH_TYPE
#include <asm/mach-types.h>
#endif
#if defined(CONFIG_MP) && defined(CONFIG_PPC)
#include <asm/mp.h>
#endif
#include <asm/io.h>
#include <asm/sections.h>
#include <dm/root.h>
#include <linux/errno.h>
/*
* Pointer to initial global data area
*
* Here we initialize it if needed.
*/
#ifdef XTRN_DECLARE_GLOBAL_DATA_PTR
#undef XTRN_DECLARE_GLOBAL_DATA_PTR
#define XTRN_DECLARE_GLOBAL_DATA_PTR /* empty = allocate here */
DECLARE_GLOBAL_DATA_PTR = (gd_t *)(CONFIG_SYS_INIT_GD_ADDR);
#else
DECLARE_GLOBAL_DATA_PTR;
#endif
/*
* TODO(sjg@chromium.org): IMO this code should be
* refactored to a single function, something like:
*
* void led_set_state(enum led_colour_t colour, int on);
*/
/************************************************************************
* Coloured LED functionality
************************************************************************
* May be supplied by boards if desired
*/
__weak void coloured_LED_init(void) {}
__weak void red_led_on(void) {}
__weak void red_led_off(void) {}
__weak void green_led_on(void) {}
__weak void green_led_off(void) {}
__weak void yellow_led_on(void) {}
__weak void yellow_led_off(void) {}
__weak void blue_led_on(void) {}
__weak void blue_led_off(void) {}
/*
* Why is gd allocated a register? Prior to reloc it might be better to
* just pass it around to each function in this file?
*
* After reloc one could argue that it is hardly used and doesn't need
* to be in a register. Or if it is it should perhaps hold pointers to all
* global data for all modules, so that post-reloc we can avoid the massive
* literal pool we get on ARM. Or perhaps just encourage each module to use
* a structure...
*/
#if defined(CONFIG_WATCHDOG) || defined(CONFIG_HW_WATCHDOG)
static int init_func_watchdog_init(void)
{
# if defined(CONFIG_HW_WATCHDOG) && \
(defined(CONFIG_M68K) || defined(CONFIG_MICROBLAZE) || \
defined(CONFIG_SH) || defined(CONFIG_AT91SAM9_WATCHDOG) || \
defined(CONFIG_DESIGNWARE_WATCHDOG) || \
defined(CONFIG_IMX_WATCHDOG))
hw_watchdog_init();
puts(" Watchdog enabled\n");
# endif
WATCHDOG_RESET();
return 0;
}
int init_func_watchdog_reset(void)
{
WATCHDOG_RESET();
return 0;
}
#endif /* CONFIG_WATCHDOG */
__weak void board_add_ram_info(int use_default)
{
/* please define platform specific board_add_ram_info() */
}
static int init_baud_rate(void)
{
gd->baudrate = env_get_ulong("baudrate", 10, CONFIG_BAUDRATE);
return 0;
}
static int display_text_info(void)
{
#if !defined(CONFIG_SANDBOX) && !defined(CONFIG_EFI_APP)
ulong bss_start, bss_end, text_base;
bss_start = (ulong)&__bss_start;
bss_end = (ulong)&__bss_end;
#ifdef CONFIG_SYS_TEXT_BASE
text_base = CONFIG_SYS_TEXT_BASE;
#else
text_base = CONFIG_SYS_MONITOR_BASE;
#endif
debug("U-Boot code: %08lX -> %08lX BSS: -> %08lX\n",
text_base, bss_start, bss_end);
#endif
return 0;
}
static int announce_dram_init(void)
{
puts("DRAM: ");
return 0;
}
static int show_dram_config(void)
{
unsigned long long size;
#ifdef CONFIG_NR_DRAM_BANKS
int i;
debug("\nRAM Configuration:\n");
for (i = size = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
size += gd->bd->bi_dram[i].size;
debug("Bank #%d: %llx ", i,
(unsigned long long)(gd->bd->bi_dram[i].start));
#ifdef DEBUG
print_size(gd->bd->bi_dram[i].size, "\n");
#endif
}
debug("\nDRAM: ");
#else
size = gd->ram_size;
#endif
print_size(size, "");
board_add_ram_info(0);
putc('\n');
return 0;
}
__weak int dram_init_banksize(void)
{
#if defined(CONFIG_NR_DRAM_BANKS) && defined(CONFIG_SYS_SDRAM_BASE)
gd->bd->bi_dram[0].start = CONFIG_SYS_SDRAM_BASE;
gd->bd->bi_dram[0].size = get_effective_memsize();
#endif
return 0;
}
#if defined(CONFIG_SYS_I2C)
static int init_func_i2c(void)
{
puts("I2C: ");
#ifdef CONFIG_SYS_I2C
i2c_init_all();
#else
i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
#endif
puts("ready\n");
return 0;
}
#endif
#if defined(CONFIG_VID)
__weak int init_func_vid(void)
{
return 0;
}
#endif
#if defined(CONFIG_HARD_SPI)
static int init_func_spi(void)
{
puts("SPI: ");
spi_init();
puts("ready\n");
return 0;
}
#endif
static int setup_mon_len(void)
{
#if defined(__ARM__) || defined(__MICROBLAZE__)
gd->mon_len = (ulong)&__bss_end - (ulong)_start;
#elif defined(CONFIG_SANDBOX) || defined(CONFIG_EFI_APP)
gd->mon_len = (ulong)&_end - (ulong)_init;
#elif defined(CONFIG_NIOS2) || defined(CONFIG_XTENSA)
gd->mon_len = CONFIG_SYS_MONITOR_LEN;
#elif defined(CONFIG_NDS32) || defined(CONFIG_SH) || defined(CONFIG_RISCV)
gd->mon_len = (ulong)(&__bss_end) - (ulong)(&_start);
#elif defined(CONFIG_SYS_MONITOR_BASE)
/* TODO: use (ulong)&__bss_end - (ulong)&__text_start; ? */
gd->mon_len = (ulong)&__bss_end - CONFIG_SYS_MONITOR_BASE;
#endif
return 0;
}
__weak int arch_cpu_init(void)
{
return 0;
}
__weak int mach_cpu_init(void)
{
return 0;
}
/* Get the top of usable RAM */
__weak ulong board_get_usable_ram_top(ulong total_size)
{
#ifdef CONFIG_SYS_SDRAM_BASE
/*
* Detect whether we have so much RAM that it goes past the end of our
* 32-bit address space. If so, clip the usable RAM so it doesn't.
*/
if (gd->ram_top < CONFIG_SYS_SDRAM_BASE)
/*
* Will wrap back to top of 32-bit space when reservations
* are made.
*/
return 0;
#endif
return gd->ram_top;
}
static int setup_dest_addr(void)
{
debug("Monitor len: %08lX\n", gd->mon_len);
/*
* Ram is setup, size stored in gd !!
*/
debug("Ram size: %08lX\n", (ulong)gd->ram_size);
#if defined(CONFIG_SYS_MEM_TOP_HIDE)
/*
* Subtract specified amount of memory to hide so that it won't
* get "touched" at all by U-Boot. By fixing up gd->ram_size
* the Linux kernel should now get passed the now "corrected"
* memory size and won't touch it either. This should work
* for arch/ppc and arch/powerpc. Only Linux board ports in
* arch/powerpc with bootwrapper support, that recalculate the
* memory size from the SDRAM controller setup will have to
* get fixed.
*/
gd->ram_size -= CONFIG_SYS_MEM_TOP_HIDE;
#endif
#ifdef CONFIG_SYS_SDRAM_BASE
gd->ram_top = CONFIG_SYS_SDRAM_BASE;
#endif
gd->ram_top += get_effective_memsize();
gd->ram_top = board_get_usable_ram_top(gd->mon_len);
gd->relocaddr = gd->ram_top;
debug("Ram top: %08lX\n", (ulong)gd->ram_top);
#if defined(CONFIG_MP) && (defined(CONFIG_MPC86xx) || defined(CONFIG_E500))
/*
* We need to make sure the location we intend to put secondary core
* boot code is reserved and not used by any part of u-boot
*/
if (gd->relocaddr > determine_mp_bootpg(NULL)) {
gd->relocaddr = determine_mp_bootpg(NULL);
debug("Reserving MP boot page to %08lx\n", gd->relocaddr);
}
#endif
return 0;
}
#ifdef CONFIG_PRAM
/* reserve protected RAM */
static int reserve_pram(void)
{
ulong reg;
reg = env_get_ulong("pram", 10, CONFIG_PRAM);
gd->relocaddr -= (reg << 10); /* size is in kB */
debug("Reserving %ldk for protected RAM at %08lx\n", reg,
gd->relocaddr);
return 0;
}
#endif /* CONFIG_PRAM */
/* Round memory pointer down to next 4 kB limit */
static int reserve_round_4k(void)
{
gd->relocaddr &= ~(4096 - 1);
return 0;
}
#ifdef CONFIG_ARM
__weak int reserve_mmu(void)
{
#if !(defined(CONFIG_SYS_ICACHE_OFF) && defined(CONFIG_SYS_DCACHE_OFF))
/* reserve TLB table */
gd->arch.tlb_size = PGTABLE_SIZE;
gd->relocaddr -= gd->arch.tlb_size;
/* round down to next 64 kB limit */
gd->relocaddr &= ~(0x10000 - 1);
gd->arch.tlb_addr = gd->relocaddr;
debug("TLB table from %08lx to %08lx\n", gd->arch.tlb_addr,
gd->arch.tlb_addr + gd->arch.tlb_size);
#ifdef CONFIG_SYS_MEM_RESERVE_SECURE
/*
* Record allocated tlb_addr in case gd->tlb_addr to be overwritten
* with location within secure ram.
*/
gd->arch.tlb_allocated = gd->arch.tlb_addr;
#endif
#endif
return 0;
}
#endif
static int reserve_video(void)
{
#ifdef CONFIG_DM_VIDEO
ulong addr;
int ret;
addr = gd->relocaddr;
ret = video_reserve(&addr);
if (ret)
return ret;
gd->relocaddr = addr;
#elif defined(CONFIG_LCD)
# ifdef CONFIG_FB_ADDR
gd->fb_base = CONFIG_FB_ADDR;
# else
/* reserve memory for LCD display (always full pages) */
gd->relocaddr = lcd_setmem(gd->relocaddr);
gd->fb_base = gd->relocaddr;
# endif /* CONFIG_FB_ADDR */
#elif defined(CONFIG_VIDEO) && \
(!defined(CONFIG_PPC)) && \
!defined(CONFIG_ARM) && !defined(CONFIG_X86) && \
!defined(CONFIG_M68K)
/* reserve memory for video display (always full pages) */
gd->relocaddr = video_setmem(gd->relocaddr);
gd->fb_base = gd->relocaddr;
#endif
return 0;
}
static int reserve_trace(void)
{
#ifdef CONFIG_TRACE
gd->relocaddr -= CONFIG_TRACE_BUFFER_SIZE;
gd->trace_buff = map_sysmem(gd->relocaddr, CONFIG_TRACE_BUFFER_SIZE);
debug("Reserving %dk for trace data at: %08lx\n",
CONFIG_TRACE_BUFFER_SIZE >> 10, gd->relocaddr);
#endif
return 0;
}
static int reserve_uboot(void)
{
/*
* reserve memory for U-Boot code, data & bss
* round down to next 4 kB limit
*/
gd->relocaddr -= gd->mon_len;
gd->relocaddr &= ~(4096 - 1);
MIPS: Stop building position independent code U-Boot has up until now built with -fpic for the MIPS architecture, producing position independent code which uses indirection through a global offset table, making relocation fairly straightforward as it simply involves patching up GOT entries. Using -fpic does however have some downsides. The biggest of these is that generated code is bloated in various ways. For example, function calls are indirected through the GOT & the t9 register: 8f998064 lw t9,-32668(gp) 0320f809 jalr t9 Without -fpic the call is simply: 0f803f01 jal be00fc04 <puts> This is more compact & faster (due to the lack of the load & the dependency the jump has on its result). It is also easier to read & debug because the disassembly shows what function is being called, rather than just an offset from gp which would then have to be looked up in the ELF to discover the target function. Another disadvantage of -fpic is that each function begins with a sequence to calculate the value of the gp register, for example: 3c1c0004 lui gp,0x4 279c3384 addiu gp,gp,13188 0399e021 addu gp,gp,t9 Without using -fpic this sequence no longer appears at the start of each function, reducing code size considerably. This patch switches U-Boot from building with -fpic to building with -fno-pic, in order to gain the benefits described above. The cost of this is an extra step during the build process to extract relocation data from the ELF & write it into a new .rel section in a compact format, plus the added complexity of dealing with multiple types of relocation rather than the single type that applied to the GOT. The benefit is smaller, cleaner, more debuggable code. The relocate_code() function is reimplemented in C to handle the new relocation scheme, which also makes it easier to read & debug. Taking maltael_defconfig as an example the size of u-boot.bin built using the Codescape MIPS 2016.05-06 toolchain (gcc 4.9.2, binutils 2.24.90) shrinks from 254KiB to 224KiB. Signed-off-by: Paul Burton <paul.burton@imgtec.com> Cc: Daniel Schwierzeck <daniel.schwierzeck@gmail.com> Cc: u-boot@lists.denx.de Reviewed-by: Daniel Schwierzeck <daniel.schwierzeck@gmail.com> Tested-by: Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
2017-06-19 18:53:47 +00:00
#if defined(CONFIG_E500) || defined(CONFIG_MIPS)
/* round down to next 64 kB limit so that IVPR stays aligned */
gd->relocaddr &= ~(65536 - 1);
#endif
debug("Reserving %ldk for U-Boot at: %08lx\n", gd->mon_len >> 10,
gd->relocaddr);
gd->start_addr_sp = gd->relocaddr;
return 0;
}
/* reserve memory for malloc() area */
static int reserve_malloc(void)
{
gd->start_addr_sp = gd->start_addr_sp - TOTAL_MALLOC_LEN;
debug("Reserving %dk for malloc() at: %08lx\n",
TOTAL_MALLOC_LEN >> 10, gd->start_addr_sp);
return 0;
}
/* (permanently) allocate a Board Info struct */
static int reserve_board(void)
{
if (!gd->bd) {
gd->start_addr_sp -= sizeof(bd_t);
gd->bd = (bd_t *)map_sysmem(gd->start_addr_sp, sizeof(bd_t));
memset(gd->bd, '\0', sizeof(bd_t));
debug("Reserving %zu Bytes for Board Info at: %08lx\n",
sizeof(bd_t), gd->start_addr_sp);
}
return 0;
}
static int setup_machine(void)
{
#ifdef CONFIG_MACH_TYPE
gd->bd->bi_arch_number = CONFIG_MACH_TYPE; /* board id for Linux */
#endif
return 0;
}
static int reserve_global_data(void)
{
gd->start_addr_sp -= sizeof(gd_t);
gd->new_gd = (gd_t *)map_sysmem(gd->start_addr_sp, sizeof(gd_t));
debug("Reserving %zu Bytes for Global Data at: %08lx\n",
sizeof(gd_t), gd->start_addr_sp);
return 0;
}
static int reserve_fdt(void)
{
#ifndef CONFIG_OF_EMBED
/*
* If the device tree is sitting immediately above our image then we
* must relocate it. If it is embedded in the data section, then it
* will be relocated with other data.
*/
if (gd->fdt_blob) {
gd->fdt_size = ALIGN(fdt_totalsize(gd->fdt_blob) + 0x1000, 32);
gd->start_addr_sp -= gd->fdt_size;
gd->new_fdt = map_sysmem(gd->start_addr_sp, gd->fdt_size);
debug("Reserving %lu Bytes for FDT at: %08lx\n",
gd->fdt_size, gd->start_addr_sp);
}
#endif
return 0;
}
static int reserve_bootstage(void)
{
#ifdef CONFIG_BOOTSTAGE
int size = bootstage_get_size();
gd->start_addr_sp -= size;
gd->new_bootstage = map_sysmem(gd->start_addr_sp, size);
debug("Reserving %#x Bytes for bootstage at: %08lx\n", size,
gd->start_addr_sp);
#endif
return 0;
}
int arch_reserve_stacks(void)
{
return 0;
}
static int reserve_stacks(void)
{
/* make stack pointer 16-byte aligned */
gd->start_addr_sp -= 16;
gd->start_addr_sp &= ~0xf;
/*
* let the architecture-specific code tailor gd->start_addr_sp and
* gd->irq_sp
*/
return arch_reserve_stacks();
}
static int display_new_sp(void)
{
debug("New Stack Pointer is: %08lx\n", gd->start_addr_sp);
return 0;
}
#if defined(CONFIG_M68K) || defined(CONFIG_MIPS) || defined(CONFIG_PPC) || \
defined(CONFIG_SH)
static int setup_board_part1(void)
{
bd_t *bd = gd->bd;
/*
* Save local variables to board info struct
*/
bd->bi_memstart = CONFIG_SYS_SDRAM_BASE; /* start of memory */
bd->bi_memsize = gd->ram_size; /* size in bytes */
#ifdef CONFIG_SYS_SRAM_BASE
bd->bi_sramstart = CONFIG_SYS_SRAM_BASE; /* start of SRAM */
bd->bi_sramsize = CONFIG_SYS_SRAM_SIZE; /* size of SRAM */
#endif
#if defined(CONFIG_E500) || defined(CONFIG_MPC86xx)
bd->bi_immr_base = CONFIG_SYS_IMMR; /* base of IMMR register */
#endif
#if defined(CONFIG_M68K)
bd->bi_mbar_base = CONFIG_SYS_MBAR; /* base of internal registers */
#endif
#if defined(CONFIG_MPC83xx)
bd->bi_immrbar = CONFIG_SYS_IMMR;
#endif
return 0;
}
#endif
#if defined(CONFIG_PPC) || defined(CONFIG_M68K)
static int setup_board_part2(void)
{
bd_t *bd = gd->bd;
bd->bi_intfreq = gd->cpu_clk; /* Internal Freq, in Hz */
bd->bi_busfreq = gd->bus_clk; /* Bus Freq, in Hz */
#if defined(CONFIG_CPM2)
bd->bi_cpmfreq = gd->arch.cpm_clk;
bd->bi_brgfreq = gd->arch.brg_clk;
bd->bi_sccfreq = gd->arch.scc_clk;
bd->bi_vco = gd->arch.vco_out;
#endif /* CONFIG_CPM2 */
#if defined(CONFIG_M68K) && defined(CONFIG_PCI)
bd->bi_pcifreq = gd->pci_clk;
#endif
#if defined(CONFIG_EXTRA_CLOCK)
bd->bi_inpfreq = gd->arch.inp_clk; /* input Freq in Hz */
bd->bi_vcofreq = gd->arch.vco_clk; /* vco Freq in Hz */
bd->bi_flbfreq = gd->arch.flb_clk; /* flexbus Freq in Hz */
#endif
return 0;
}
#endif
#ifdef CONFIG_POST
static int init_post(void)
{
post_bootmode_init();
post_run(NULL, POST_ROM | post_bootmode_get(0));
return 0;
}
#endif
static int reloc_fdt(void)
{
#ifndef CONFIG_OF_EMBED
if (gd->flags & GD_FLG_SKIP_RELOC)
return 0;
if (gd->new_fdt) {
memcpy(gd->new_fdt, gd->fdt_blob, gd->fdt_size);
gd->fdt_blob = gd->new_fdt;
}
#endif
return 0;
}
static int reloc_bootstage(void)
{
#ifdef CONFIG_BOOTSTAGE
if (gd->flags & GD_FLG_SKIP_RELOC)
return 0;
if (gd->new_bootstage) {
int size = bootstage_get_size();
debug("Copying bootstage from %p to %p, size %x\n",
gd->bootstage, gd->new_bootstage, size);
memcpy(gd->new_bootstage, gd->bootstage, size);
gd->bootstage = gd->new_bootstage;
}
#endif
return 0;
}
static int setup_reloc(void)
{
if (gd->flags & GD_FLG_SKIP_RELOC) {
debug("Skipping relocation due to flag\n");
return 0;
}
#ifdef CONFIG_SYS_TEXT_BASE
#ifdef ARM
gd->reloc_off = gd->relocaddr - (unsigned long)__image_copy_start;
#elif defined(CONFIG_M68K)
/*
* On all ColdFire arch cpu, monitor code starts always
* just after the default vector table location, so at 0x400
*/
gd->reloc_off = gd->relocaddr - (CONFIG_SYS_TEXT_BASE + 0x400);
#else
gd->reloc_off = gd->relocaddr - CONFIG_SYS_TEXT_BASE;
#endif
#endif
memcpy(gd->new_gd, (char *)gd, sizeof(gd_t));
debug("Relocation Offset is: %08lx\n", gd->reloc_off);
debug("Relocating to %08lx, new gd at %08lx, sp at %08lx\n",
gd->relocaddr, (ulong)map_to_sysmem(gd->new_gd),
gd->start_addr_sp);
return 0;
}
#ifdef CONFIG_OF_BOARD_FIXUP
static int fix_fdt(void)
{
return board_fix_fdt((void *)gd->fdt_blob);
}
#endif
/* ARM calls relocate_code from its crt0.S */
#if !defined(CONFIG_ARM) && !defined(CONFIG_SANDBOX) && \
!CONFIG_IS_ENABLED(X86_64)
static int jump_to_copy(void)
{
if (gd->flags & GD_FLG_SKIP_RELOC)
return 0;
/*
* x86 is special, but in a nice way. It uses a trampoline which
* enables the dcache if possible.
*
* For now, other archs use relocate_code(), which is implemented
* similarly for all archs. When we do generic relocation, hopefully
* we can make all archs enable the dcache prior to relocation.
*/
#if defined(CONFIG_X86) || defined(CONFIG_ARC)
/*
* SDRAM and console are now initialised. The final stack can now
* be setup in SDRAM. Code execution will continue in Flash, but
* with the stack in SDRAM and Global Data in temporary memory
* (CPU cache)
*/
arch_setup_gd(gd->new_gd);
board_init_f_r_trampoline(gd->start_addr_sp);
#else
relocate_code(gd->start_addr_sp, gd->new_gd, gd->relocaddr);
#endif
return 0;
}
#endif
/* Record the board_init_f() bootstage (after arch_cpu_init()) */
static int initf_bootstage(void)
{
bool from_spl = IS_ENABLED(CONFIG_SPL_BOOTSTAGE) &&
IS_ENABLED(CONFIG_BOOTSTAGE_STASH);
int ret;
ret = bootstage_init(!from_spl);
if (ret)
return ret;
if (from_spl) {
const void *stash = map_sysmem(CONFIG_BOOTSTAGE_STASH_ADDR,
CONFIG_BOOTSTAGE_STASH_SIZE);
ret = bootstage_unstash(stash, CONFIG_BOOTSTAGE_STASH_SIZE);
if (ret && ret != -ENOENT) {
debug("Failed to unstash bootstage: err=%d\n", ret);
return ret;
}
}
bootstage_mark_name(BOOTSTAGE_ID_START_UBOOT_F, "board_init_f");
return 0;
}
static int initf_console_record(void)
{
#if defined(CONFIG_CONSOLE_RECORD) && CONFIG_VAL(SYS_MALLOC_F_LEN)
return console_record_init();
#else
return 0;
#endif
}
static int initf_dm(void)
{
#if defined(CONFIG_DM) && CONFIG_VAL(SYS_MALLOC_F_LEN)
int ret;
bootstage_start(BOOTSTATE_ID_ACCUM_DM_F, "dm_f");
ret = dm_init_and_scan(true);
bootstage_accum(BOOTSTATE_ID_ACCUM_DM_F);
if (ret)
return ret;
#endif
#ifdef CONFIG_TIMER_EARLY
ret = dm_timer_init();
if (ret)
return ret;
#endif
return 0;
}
/* Architecture-specific memory reservation */
__weak int reserve_arch(void)
{
return 0;
}
__weak int arch_cpu_init_dm(void)
{
return 0;
}
static const init_fnc_t init_sequence_f[] = {
setup_mon_len,
#ifdef CONFIG_OF_CONTROL
fdtdec_setup,
#endif
#ifdef CONFIG_TRACE
trace_early_init,
#endif
initf_malloc,
log_init,
initf_bootstage, /* uses its own timer, so does not need DM */
initf_console_record,
#if defined(CONFIG_HAVE_FSP)
arch_fsp_init,
#endif
arch_cpu_init, /* basic arch cpu dependent setup */
mach_cpu_init, /* SoC/machine dependent CPU setup */
initf_dm,
arch_cpu_init_dm,
#if defined(CONFIG_BOARD_EARLY_INIT_F)
board_early_init_f,
#endif
#if defined(CONFIG_PPC) || defined(CONFIG_SYS_FSL_CLK) || defined(CONFIG_M68K)
/* get CPU and bus clocks according to the environment variable */
get_clocks, /* get CPU and bus clocks (etc.) */
#endif
#if !defined(CONFIG_M68K)
timer_init, /* initialize timer */
#endif
#if defined(CONFIG_BOARD_POSTCLK_INIT)
board_postclk_init,
#endif
env_init, /* initialize environment */
init_baud_rate, /* initialze baudrate settings */
serial_init, /* serial communications setup */
console_init_f, /* stage 1 init of console */
display_options, /* say that we are here */
display_text_info, /* show debugging info if required */
#if defined(CONFIG_PPC) || defined(CONFIG_SH) || defined(CONFIG_X86)
checkcpu,
#endif
#if defined(CONFIG_DISPLAY_CPUINFO)
print_cpuinfo, /* display cpu info (and speed) */
#endif
#if defined(CONFIG_DTB_RESELECT)
embedded_dtb_select,
#endif
#if defined(CONFIG_DISPLAY_BOARDINFO)
show_board_info,
#endif
INIT_FUNC_WATCHDOG_INIT
#if defined(CONFIG_MISC_INIT_F)
misc_init_f,
#endif
INIT_FUNC_WATCHDOG_RESET
#if defined(CONFIG_SYS_I2C)
init_func_i2c,
#endif
#if defined(CONFIG_VID) && !defined(CONFIG_SPL)
init_func_vid,
#endif
#if defined(CONFIG_HARD_SPI)
init_func_spi,
#endif
announce_dram_init,
dram_init, /* configure available RAM banks */
#ifdef CONFIG_POST
post_init_f,
#endif
INIT_FUNC_WATCHDOG_RESET
#if defined(CONFIG_SYS_DRAM_TEST)
testdram,
#endif /* CONFIG_SYS_DRAM_TEST */
INIT_FUNC_WATCHDOG_RESET
#ifdef CONFIG_POST
init_post,
#endif
INIT_FUNC_WATCHDOG_RESET
/*
* Now that we have DRAM mapped and working, we can
* relocate the code and continue running from DRAM.
*
* Reserve memory at end of RAM for (top down in that order):
* - area that won't get touched by U-Boot and Linux (optional)
* - kernel log buffer
* - protected RAM
* - LCD framebuffer
* - monitor code
* - board info struct
*/
setup_dest_addr,
#ifdef CONFIG_PRAM
reserve_pram,
#endif
reserve_round_4k,
#ifdef CONFIG_ARM
reserve_mmu,
#endif
reserve_video,
reserve_trace,
reserve_uboot,
reserve_malloc,
reserve_board,
setup_machine,
reserve_global_data,
reserve_fdt,
reserve_bootstage,
reserve_arch,
reserve_stacks,
dram_init_banksize,
show_dram_config,
#if defined(CONFIG_M68K) || defined(CONFIG_MIPS) || defined(CONFIG_PPC) || \
defined(CONFIG_SH)
setup_board_part1,
#endif
#if defined(CONFIG_PPC) || defined(CONFIG_M68K)
INIT_FUNC_WATCHDOG_RESET
setup_board_part2,
#endif
display_new_sp,
#ifdef CONFIG_OF_BOARD_FIXUP
fix_fdt,
#endif
INIT_FUNC_WATCHDOG_RESET
reloc_fdt,
reloc_bootstage,
setup_reloc,
#if defined(CONFIG_X86) || defined(CONFIG_ARC)
copy_uboot_to_ram,
do_elf_reloc_fixups,
clear_bss,
#endif
#if defined(CONFIG_XTENSA)
clear_bss,
#endif
#if !defined(CONFIG_ARM) && !defined(CONFIG_SANDBOX) && \
!CONFIG_IS_ENABLED(X86_64)
jump_to_copy,
#endif
NULL,
};
void board_init_f(ulong boot_flags)
{
gd->flags = boot_flags;
gd->have_console = 0;
if (initcall_run_list(init_sequence_f))
hang();
#if !defined(CONFIG_ARM) && !defined(CONFIG_SANDBOX) && \
!defined(CONFIG_EFI_APP) && !CONFIG_IS_ENABLED(X86_64)
/* NOTREACHED - jump_to_copy() does not return */
hang();
#endif
}
#if defined(CONFIG_X86) || defined(CONFIG_ARC)
/*
* For now this code is only used on x86.
*
* init_sequence_f_r is the list of init functions which are run when
* U-Boot is executing from Flash with a semi-limited 'C' environment.
* The following limitations must be considered when implementing an
* '_f_r' function:
* - 'static' variables are read-only
* - Global Data (gd->xxx) is read/write
*
* The '_f_r' sequence must, as a minimum, copy U-Boot to RAM (if
* supported). It _should_, if possible, copy global data to RAM and
* initialise the CPU caches (to speed up the relocation process)
*
* NOTE: At present only x86 uses this route, but it is intended that
* all archs will move to this when generic relocation is implemented.
*/
static const init_fnc_t init_sequence_f_r[] = {
#if !CONFIG_IS_ENABLED(X86_64)
init_cache_f_r,
#endif
NULL,
};
void board_init_f_r(void)
{
if (initcall_run_list(init_sequence_f_r))
hang();
/*
* The pre-relocation drivers may be using memory that has now gone
* away. Mark serial as unavailable - this will fall back to the debug
* UART if available.
*
* Do the same with log drivers since the memory may not be available.
*/
gd->flags &= ~(GD_FLG_SERIAL_READY | GD_FLG_LOG_READY);
#ifdef CONFIG_TIMER
gd->timer = NULL;
#endif
/*
* U-Boot has been copied into SDRAM, the BSS has been cleared etc.
* Transfer execution from Flash to RAM by calculating the address
* of the in-RAM copy of board_init_r() and calling it
*/
(board_init_r + gd->reloc_off)((gd_t *)gd, gd->relocaddr);
/* NOTREACHED - board_init_r() does not return */
hang();
}
#endif /* CONFIG_X86 */