u-boot/drivers/net/sh_eth.c

660 lines
16 KiB
C
Raw Normal View History

/*
* sh_eth.c - Driver for Renesas ethernet controler.
*
* Copyright (C) 2008, 2011 Renesas Solutions Corp.
* Copyright (c) 2008, 2011 Nobuhiro Iwamatsu
* Copyright (c) 2007 Carlos Munoz <carlos@kenati.com>
* Copyright (C) 2013 Renesas Electronics Corporation
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <config.h>
#include <common.h>
#include <malloc.h>
#include <net.h>
#include <netdev.h>
#include <miiphy.h>
#include <asm/errno.h>
#include <asm/io.h>
#include "sh_eth.h"
#ifndef CONFIG_SH_ETHER_USE_PORT
# error "Please define CONFIG_SH_ETHER_USE_PORT"
#endif
#ifndef CONFIG_SH_ETHER_PHY_ADDR
# error "Please define CONFIG_SH_ETHER_PHY_ADDR"
#endif
#if defined(CONFIG_SH_ETHER_CACHE_WRITEBACK) && !defined(CONFIG_SYS_DCACHE_OFF)
#define flush_cache_wback(addr, len) \
flush_dcache_range((u32)addr, (u32)(addr + len - 1))
#else
#define flush_cache_wback(...)
#endif
#if defined(CONFIG_SH_ETHER_CACHE_INVALIDATE) && defined(CONFIG_ARM)
#define invalidate_cache(addr, len) \
{ \
u32 line_size = CONFIG_SH_ETHER_ALIGNE_SIZE; \
u32 start, end; \
\
start = (u32)addr; \
end = start + len; \
start &= ~(line_size - 1); \
end = ((end + line_size - 1) & ~(line_size - 1)); \
\
invalidate_dcache_range(start, end); \
}
#else
#define invalidate_cache(...)
#endif
#define TIMEOUT_CNT 1000
int sh_eth_send(struct eth_device *dev, void *packet, int len)
{
struct sh_eth_dev *eth = dev->priv;
int port = eth->port, ret = 0, timeout;
struct sh_eth_info *port_info = &eth->port_info[port];
if (!packet || len > 0xffff) {
printf(SHETHER_NAME ": %s: Invalid argument\n", __func__);
ret = -EINVAL;
goto err;
}
/* packet must be a 4 byte boundary */
if ((int)packet & 3) {
printf(SHETHER_NAME ": %s: packet not 4 byte alligned\n"
, __func__);
ret = -EFAULT;
goto err;
}
/* Update tx descriptor */
flush_cache_wback(packet, len);
port_info->tx_desc_cur->td2 = ADDR_TO_PHY(packet);
port_info->tx_desc_cur->td1 = len << 16;
/* Must preserve the end of descriptor list indication */
if (port_info->tx_desc_cur->td0 & TD_TDLE)
port_info->tx_desc_cur->td0 = TD_TACT | TD_TFP | TD_TDLE;
else
port_info->tx_desc_cur->td0 = TD_TACT | TD_TFP;
/* Restart the transmitter if disabled */
if (!(sh_eth_read(eth, EDTRR) & EDTRR_TRNS))
sh_eth_write(eth, EDTRR_TRNS, EDTRR);
/* Wait until packet is transmitted */
timeout = TIMEOUT_CNT;
do {
invalidate_cache(port_info->tx_desc_cur,
sizeof(struct tx_desc_s));
udelay(100);
} while (port_info->tx_desc_cur->td0 & TD_TACT && timeout--);
if (timeout < 0) {
printf(SHETHER_NAME ": transmit timeout\n");
ret = -ETIMEDOUT;
goto err;
}
port_info->tx_desc_cur++;
if (port_info->tx_desc_cur >= port_info->tx_desc_base + NUM_TX_DESC)
port_info->tx_desc_cur = port_info->tx_desc_base;
err:
return ret;
}
int sh_eth_recv(struct eth_device *dev)
{
struct sh_eth_dev *eth = dev->priv;
int port = eth->port, len = 0;
struct sh_eth_info *port_info = &eth->port_info[port];
uchar *packet;
/* Check if the rx descriptor is ready */
invalidate_cache(port_info->rx_desc_cur, sizeof(struct rx_desc_s));
if (!(port_info->rx_desc_cur->rd0 & RD_RACT)) {
/* Check for errors */
if (!(port_info->rx_desc_cur->rd0 & RD_RFE)) {
len = port_info->rx_desc_cur->rd1 & 0xffff;
packet = (uchar *)
ADDR_TO_P2(port_info->rx_desc_cur->rd2);
invalidate_cache(packet, len);
NetReceive(packet, len);
}
/* Make current descriptor available again */
if (port_info->rx_desc_cur->rd0 & RD_RDLE)
port_info->rx_desc_cur->rd0 = RD_RACT | RD_RDLE;
else
port_info->rx_desc_cur->rd0 = RD_RACT;
/* Point to the next descriptor */
port_info->rx_desc_cur++;
if (port_info->rx_desc_cur >=
port_info->rx_desc_base + NUM_RX_DESC)
port_info->rx_desc_cur = port_info->rx_desc_base;
}
/* Restart the receiver if disabled */
if (!(sh_eth_read(eth, EDRRR) & EDRRR_R))
sh_eth_write(eth, EDRRR_R, EDRRR);
return len;
}
static int sh_eth_reset(struct sh_eth_dev *eth)
{
#if defined(SH_ETH_TYPE_GETHER) || defined(SH_ETH_TYPE_RZ)
int ret = 0, i;
/* Start e-dmac transmitter and receiver */
sh_eth_write(eth, EDSR_ENALL, EDSR);
/* Perform a software reset and wait for it to complete */
sh_eth_write(eth, EDMR_SRST, EDMR);
for (i = 0; i < TIMEOUT_CNT; i++) {
if (!(sh_eth_read(eth, EDMR) & EDMR_SRST))
break;
udelay(1000);
}
if (i == TIMEOUT_CNT) {
printf(SHETHER_NAME ": Software reset timeout\n");
ret = -EIO;
}
return ret;
#else
sh_eth_write(eth, sh_eth_read(eth, EDMR) | EDMR_SRST, EDMR);
udelay(3000);
sh_eth_write(eth, sh_eth_read(eth, EDMR) & ~EDMR_SRST, EDMR);
return 0;
#endif
}
static int sh_eth_tx_desc_init(struct sh_eth_dev *eth)
{
int port = eth->port, i, ret = 0;
u32 tmp_addr;
struct sh_eth_info *port_info = &eth->port_info[port];
struct tx_desc_s *cur_tx_desc;
/*
* Allocate tx descriptors. They must be TX_DESC_SIZE bytes aligned
*/
port_info->tx_desc_malloc = malloc(NUM_TX_DESC *
sizeof(struct tx_desc_s) +
TX_DESC_SIZE - 1);
if (!port_info->tx_desc_malloc) {
printf(SHETHER_NAME ": malloc failed\n");
ret = -ENOMEM;
goto err;
}
tmp_addr = (u32) (((int)port_info->tx_desc_malloc + TX_DESC_SIZE - 1) &
~(TX_DESC_SIZE - 1));
flush_cache_wback(tmp_addr, NUM_TX_DESC * sizeof(struct tx_desc_s));
/* Make sure we use a P2 address (non-cacheable) */
port_info->tx_desc_base = (struct tx_desc_s *)ADDR_TO_P2(tmp_addr);
port_info->tx_desc_cur = port_info->tx_desc_base;
/* Initialize all descriptors */
for (cur_tx_desc = port_info->tx_desc_base, i = 0; i < NUM_TX_DESC;
cur_tx_desc++, i++) {
cur_tx_desc->td0 = 0x00;
cur_tx_desc->td1 = 0x00;
cur_tx_desc->td2 = 0x00;
}
/* Mark the end of the descriptors */
cur_tx_desc--;
cur_tx_desc->td0 |= TD_TDLE;
/* Point the controller to the tx descriptor list. Must use physical
addresses */
sh_eth_write(eth, ADDR_TO_PHY(port_info->tx_desc_base), TDLAR);
#if defined(SH_ETH_TYPE_GETHER) || defined(SH_ETH_TYPE_RZ)
sh_eth_write(eth, ADDR_TO_PHY(port_info->tx_desc_base), TDFAR);
sh_eth_write(eth, ADDR_TO_PHY(cur_tx_desc), TDFXR);
sh_eth_write(eth, 0x01, TDFFR);/* Last discriptor bit */
#endif
err:
return ret;
}
static int sh_eth_rx_desc_init(struct sh_eth_dev *eth)
{
int port = eth->port, i , ret = 0;
struct sh_eth_info *port_info = &eth->port_info[port];
struct rx_desc_s *cur_rx_desc;
u32 tmp_addr;
u8 *rx_buf;
/*
* Allocate rx descriptors. They must be RX_DESC_SIZE bytes aligned
*/
port_info->rx_desc_malloc = malloc(NUM_RX_DESC *
sizeof(struct rx_desc_s) +
RX_DESC_SIZE - 1);
if (!port_info->rx_desc_malloc) {
printf(SHETHER_NAME ": malloc failed\n");
ret = -ENOMEM;
goto err;
}
tmp_addr = (u32) (((int)port_info->rx_desc_malloc + RX_DESC_SIZE - 1) &
~(RX_DESC_SIZE - 1));
flush_cache_wback(tmp_addr, NUM_RX_DESC * sizeof(struct rx_desc_s));
/* Make sure we use a P2 address (non-cacheable) */
port_info->rx_desc_base = (struct rx_desc_s *)ADDR_TO_P2(tmp_addr);
port_info->rx_desc_cur = port_info->rx_desc_base;
/*
* Allocate rx data buffers. They must be 32 bytes aligned and in
* P2 area
*/
port_info->rx_buf_malloc = malloc(
NUM_RX_DESC * MAX_BUF_SIZE + RX_BUF_ALIGNE_SIZE - 1);
if (!port_info->rx_buf_malloc) {
printf(SHETHER_NAME ": malloc failed\n");
ret = -ENOMEM;
goto err_buf_malloc;
}
tmp_addr = (u32)(((int)port_info->rx_buf_malloc
+ (RX_BUF_ALIGNE_SIZE - 1)) &
~(RX_BUF_ALIGNE_SIZE - 1));
port_info->rx_buf_base = (u8 *)ADDR_TO_P2(tmp_addr);
/* Initialize all descriptors */
for (cur_rx_desc = port_info->rx_desc_base,
rx_buf = port_info->rx_buf_base, i = 0;
i < NUM_RX_DESC; cur_rx_desc++, rx_buf += MAX_BUF_SIZE, i++) {
cur_rx_desc->rd0 = RD_RACT;
cur_rx_desc->rd1 = MAX_BUF_SIZE << 16;
cur_rx_desc->rd2 = (u32) ADDR_TO_PHY(rx_buf);
}
/* Mark the end of the descriptors */
cur_rx_desc--;
cur_rx_desc->rd0 |= RD_RDLE;
/* Point the controller to the rx descriptor list */
sh_eth_write(eth, ADDR_TO_PHY(port_info->rx_desc_base), RDLAR);
#if defined(SH_ETH_TYPE_GETHER) || defined(SH_ETH_TYPE_RZ)
sh_eth_write(eth, ADDR_TO_PHY(port_info->rx_desc_base), RDFAR);
sh_eth_write(eth, ADDR_TO_PHY(cur_rx_desc), RDFXR);
sh_eth_write(eth, RDFFR_RDLF, RDFFR);
#endif
return ret;
err_buf_malloc:
free(port_info->rx_desc_malloc);
port_info->rx_desc_malloc = NULL;
err:
return ret;
}
static void sh_eth_tx_desc_free(struct sh_eth_dev *eth)
{
int port = eth->port;
struct sh_eth_info *port_info = &eth->port_info[port];
if (port_info->tx_desc_malloc) {
free(port_info->tx_desc_malloc);
port_info->tx_desc_malloc = NULL;
}
}
static void sh_eth_rx_desc_free(struct sh_eth_dev *eth)
{
int port = eth->port;
struct sh_eth_info *port_info = &eth->port_info[port];
if (port_info->rx_desc_malloc) {
free(port_info->rx_desc_malloc);
port_info->rx_desc_malloc = NULL;
}
if (port_info->rx_buf_malloc) {
free(port_info->rx_buf_malloc);
port_info->rx_buf_malloc = NULL;
}
}
static int sh_eth_desc_init(struct sh_eth_dev *eth)
{
int ret = 0;
ret = sh_eth_tx_desc_init(eth);
if (ret)
goto err_tx_init;
ret = sh_eth_rx_desc_init(eth);
if (ret)
goto err_rx_init;
return ret;
err_rx_init:
sh_eth_tx_desc_free(eth);
err_tx_init:
return ret;
}
static int sh_eth_phy_config(struct sh_eth_dev *eth)
{
int port = eth->port, ret = 0;
struct sh_eth_info *port_info = &eth->port_info[port];
struct eth_device *dev = port_info->dev;
struct phy_device *phydev;
phydev = phy_connect(
miiphy_get_dev_by_name(dev->name),
port_info->phy_addr, dev, CONFIG_SH_ETHER_PHY_MODE);
port_info->phydev = phydev;
phy_config(phydev);
return ret;
}
static int sh_eth_config(struct sh_eth_dev *eth, bd_t *bd)
{
int port = eth->port, ret = 0;
u32 val;
struct sh_eth_info *port_info = &eth->port_info[port];
struct eth_device *dev = port_info->dev;
struct phy_device *phy;
/* Configure e-dmac registers */
sh_eth_write(eth, (sh_eth_read(eth, EDMR) & ~EMDR_DESC_R) |
(EMDR_DESC | EDMR_EL), EDMR);
sh_eth_write(eth, 0, EESIPR);
sh_eth_write(eth, 0, TRSCER);
sh_eth_write(eth, 0, TFTR);
sh_eth_write(eth, (FIFO_SIZE_T | FIFO_SIZE_R), FDR);
sh_eth_write(eth, RMCR_RST, RMCR);
#if defined(SH_ETH_TYPE_GETHER) || defined(SH_ETH_TYPE_RZ)
sh_eth_write(eth, 0, RPADIR);
#endif
sh_eth_write(eth, (FIFO_F_D_RFF | FIFO_F_D_RFD), FCFTR);
/* Configure e-mac registers */
sh_eth_write(eth, 0, ECSIPR);
/* Set Mac address */
val = dev->enetaddr[0] << 24 | dev->enetaddr[1] << 16 |
dev->enetaddr[2] << 8 | dev->enetaddr[3];
sh_eth_write(eth, val, MAHR);
val = dev->enetaddr[4] << 8 | dev->enetaddr[5];
sh_eth_write(eth, val, MALR);
sh_eth_write(eth, RFLR_RFL_MIN, RFLR);
#if defined(SH_ETH_TYPE_GETHER)
sh_eth_write(eth, 0, PIPR);
#endif
#if defined(SH_ETH_TYPE_GETHER) || defined(SH_ETH_TYPE_RZ)
sh_eth_write(eth, APR_AP, APR);
sh_eth_write(eth, MPR_MP, MPR);
sh_eth_write(eth, TPAUSER_TPAUSE, TPAUSER);
#endif
#if defined(CONFIG_CPU_SH7734) || defined(CONFIG_R8A7740)
sh_eth_write(eth, CONFIG_SH_ETHER_SH7734_MII, RMII_MII);
#elif defined(CONFIG_R8A7790) || defined(CONFIG_R8A7791) || \
defined(CONFIG_R8A7794)
sh_eth_write(eth, sh_eth_read(eth, RMIIMR) | 0x1, RMIIMR);
#endif
/* Configure phy */
ret = sh_eth_phy_config(eth);
if (ret) {
printf(SHETHER_NAME ": phy config timeout\n");
goto err_phy_cfg;
}
phy = port_info->phydev;
ret = phy_startup(phy);
if (ret) {
printf(SHETHER_NAME ": phy startup failure\n");
return ret;
}
val = 0;
/* Set the transfer speed */
if (phy->speed == 100) {
printf(SHETHER_NAME ": 100Base/");
#if defined(SH_ETH_TYPE_GETHER)
sh_eth_write(eth, GECMR_100B, GECMR);
#elif defined(CONFIG_CPU_SH7757) || defined(CONFIG_CPU_SH7752)
sh_eth_write(eth, 1, RTRATE);
#elif defined(CONFIG_CPU_SH7724) || defined(CONFIG_R8A7790) || \
defined(CONFIG_R8A7791) || defined(CONFIG_R8A7794)
val = ECMR_RTM;
#endif
} else if (phy->speed == 10) {
printf(SHETHER_NAME ": 10Base/");
#if defined(SH_ETH_TYPE_GETHER)
sh_eth_write(eth, GECMR_10B, GECMR);
#elif defined(CONFIG_CPU_SH7757) || defined(CONFIG_CPU_SH7752)
sh_eth_write(eth, 0, RTRATE);
#endif
}
#if defined(SH_ETH_TYPE_GETHER)
else if (phy->speed == 1000) {
printf(SHETHER_NAME ": 1000Base/");
sh_eth_write(eth, GECMR_1000B, GECMR);
}
#endif
/* Check if full duplex mode is supported by the phy */
if (phy->duplex) {
printf("Full\n");
sh_eth_write(eth, val | (ECMR_CHG_DM|ECMR_RE|ECMR_TE|ECMR_DM),
ECMR);
} else {
printf("Half\n");
sh_eth_write(eth, val | (ECMR_CHG_DM|ECMR_RE|ECMR_TE), ECMR);
}
return ret;
err_phy_cfg:
return ret;
}
static void sh_eth_start(struct sh_eth_dev *eth)
{
/*
* Enable the e-dmac receiver only. The transmitter will be enabled when
* we have something to transmit
*/
sh_eth_write(eth, EDRRR_R, EDRRR);
}
static void sh_eth_stop(struct sh_eth_dev *eth)
{
sh_eth_write(eth, ~EDRRR_R, EDRRR);
}
int sh_eth_init(struct eth_device *dev, bd_t *bd)
{
int ret = 0;
struct sh_eth_dev *eth = dev->priv;
ret = sh_eth_reset(eth);
if (ret)
goto err;
ret = sh_eth_desc_init(eth);
if (ret)
goto err;
ret = sh_eth_config(eth, bd);
if (ret)
goto err_config;
sh_eth_start(eth);
return ret;
err_config:
sh_eth_tx_desc_free(eth);
sh_eth_rx_desc_free(eth);
err:
return ret;
}
void sh_eth_halt(struct eth_device *dev)
{
struct sh_eth_dev *eth = dev->priv;
sh_eth_stop(eth);
}
int sh_eth_initialize(bd_t *bd)
{
int ret = 0;
struct sh_eth_dev *eth = NULL;
struct eth_device *dev = NULL;
eth = (struct sh_eth_dev *)malloc(sizeof(struct sh_eth_dev));
if (!eth) {
printf(SHETHER_NAME ": %s: malloc failed\n", __func__);
ret = -ENOMEM;
goto err;
}
dev = (struct eth_device *)malloc(sizeof(struct eth_device));
if (!dev) {
printf(SHETHER_NAME ": %s: malloc failed\n", __func__);
ret = -ENOMEM;
goto err;
}
memset(dev, 0, sizeof(struct eth_device));
memset(eth, 0, sizeof(struct sh_eth_dev));
eth->port = CONFIG_SH_ETHER_USE_PORT;
eth->port_info[eth->port].phy_addr = CONFIG_SH_ETHER_PHY_ADDR;
dev->priv = (void *)eth;
dev->iobase = 0;
dev->init = sh_eth_init;
dev->halt = sh_eth_halt;
dev->send = sh_eth_send;
dev->recv = sh_eth_recv;
eth->port_info[eth->port].dev = dev;
sprintf(dev->name, SHETHER_NAME);
/* Register Device to EtherNet subsystem */
eth_register(dev);
bb_miiphy_buses[0].priv = eth;
miiphy_register(dev->name, bb_miiphy_read, bb_miiphy_write);
if (!eth_getenv_enetaddr("ethaddr", dev->enetaddr))
puts("Please set MAC address\n");
return ret;
err:
if (dev)
free(dev);
if (eth)
free(eth);
printf(SHETHER_NAME ": Failed\n");
return ret;
}
/******* for bb_miiphy *******/
static int sh_eth_bb_init(struct bb_miiphy_bus *bus)
{
return 0;
}
static int sh_eth_bb_mdio_active(struct bb_miiphy_bus *bus)
{
struct sh_eth_dev *eth = bus->priv;
sh_eth_write(eth, sh_eth_read(eth, PIR) | PIR_MMD, PIR);
return 0;
}
static int sh_eth_bb_mdio_tristate(struct bb_miiphy_bus *bus)
{
struct sh_eth_dev *eth = bus->priv;
sh_eth_write(eth, sh_eth_read(eth, PIR) & ~PIR_MMD, PIR);
return 0;
}
static int sh_eth_bb_set_mdio(struct bb_miiphy_bus *bus, int v)
{
struct sh_eth_dev *eth = bus->priv;
if (v)
sh_eth_write(eth, sh_eth_read(eth, PIR) | PIR_MDO, PIR);
else
sh_eth_write(eth, sh_eth_read(eth, PIR) & ~PIR_MDO, PIR);
return 0;
}
static int sh_eth_bb_get_mdio(struct bb_miiphy_bus *bus, int *v)
{
struct sh_eth_dev *eth = bus->priv;
*v = (sh_eth_read(eth, PIR) & PIR_MDI) >> 3;
return 0;
}
static int sh_eth_bb_set_mdc(struct bb_miiphy_bus *bus, int v)
{
struct sh_eth_dev *eth = bus->priv;
if (v)
sh_eth_write(eth, sh_eth_read(eth, PIR) | PIR_MDC, PIR);
else
sh_eth_write(eth, sh_eth_read(eth, PIR) & ~PIR_MDC, PIR);
return 0;
}
static int sh_eth_bb_delay(struct bb_miiphy_bus *bus)
{
udelay(10);
return 0;
}
struct bb_miiphy_bus bb_miiphy_buses[] = {
{
.name = "sh_eth",
.init = sh_eth_bb_init,
.mdio_active = sh_eth_bb_mdio_active,
.mdio_tristate = sh_eth_bb_mdio_tristate,
.set_mdio = sh_eth_bb_set_mdio,
.get_mdio = sh_eth_bb_get_mdio,
.set_mdc = sh_eth_bb_set_mdc,
.delay = sh_eth_bb_delay,
}
};
int bb_miiphy_buses_num = ARRAY_SIZE(bb_miiphy_buses);