u-boot/drivers/net/e1000.c

5732 lines
165 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/**************************************************************************
Intel Pro 1000 for ppcboot/das-u-boot
Drivers are port from Intel's Linux driver e1000-4.3.15
and from Etherboot pro 1000 driver by mrakes at vivato dot net
tested on both gig copper and gig fiber boards
***************************************************************************/
/*******************************************************************************
Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
Contact Information:
Linux NICS <linux.nics@intel.com>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
/*
* Copyright (C) Archway Digital Solutions.
*
* written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
* 2/9/2002
*
* Copyright (C) Linux Networx.
* Massive upgrade to work with the new intel gigabit NICs.
* <ebiederman at lnxi dot com>
*
* Copyright 2011 Freescale Semiconductor, Inc.
*/
#include <common.h>
#include <command.h>
#include <cpu_func.h>
#include <dm.h>
#include <errno.h>
#include <log.h>
#include <malloc.h>
#include <memalign.h>
#include <net.h>
#include <pci.h>
#include <linux/delay.h>
#include "e1000.h"
#include <asm/cache.h>
#define TOUT_LOOP 100000
#define E1000_DEFAULT_PCI_PBA 0x00000030
#define E1000_DEFAULT_PCIE_PBA 0x000a0026
/* NIC specific static variables go here */
/* Intel i210 needs the DMA descriptor rings aligned to 128b */
#define E1000_BUFFER_ALIGN 128
/*
* TODO(sjg@chromium.org): Even with driver model we share these buffers.
* Concurrent receiving on multiple active Ethernet devices will not work.
* Normally U-Boot does not support this anyway. To fix it in this driver,
* move these buffers and the tx/rx pointers to struct e1000_hw.
*/
DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
static int tx_tail;
static int rx_tail, rx_last;
static int num_cards; /* Number of E1000 devices seen so far */
static struct pci_device_id e1000_supported[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) },
/* E1000 PCIe card */
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) },
{}
};
/* Function forward declarations */
static int e1000_setup_link(struct e1000_hw *hw);
static int e1000_setup_fiber_link(struct e1000_hw *hw);
static int e1000_setup_copper_link(struct e1000_hw *hw);
static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
static void e1000_config_collision_dist(struct e1000_hw *hw);
static int e1000_config_mac_to_phy(struct e1000_hw *hw);
static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
static int e1000_check_for_link(struct e1000_hw *hw);
static int e1000_wait_autoneg(struct e1000_hw *hw);
static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
uint16_t * duplex);
static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
uint16_t * phy_data);
static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
uint16_t phy_data);
static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
static int e1000_phy_reset(struct e1000_hw *hw);
static int e1000_detect_gig_phy(struct e1000_hw *hw);
static void e1000_set_media_type(struct e1000_hw *hw);
static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
#ifndef CONFIG_E1000_NO_NVM
static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
uint16_t words,
uint16_t *data);
/******************************************************************************
* Raises the EEPROM's clock input.
*
* hw - Struct containing variables accessed by shared code
* eecd - EECD's current value
*****************************************************************************/
void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
{
/* Raise the clock input to the EEPROM (by setting the SK bit), and then
* wait 50 microseconds.
*/
*eecd = *eecd | E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, *eecd);
E1000_WRITE_FLUSH(hw);
udelay(50);
}
/******************************************************************************
* Lowers the EEPROM's clock input.
*
* hw - Struct containing variables accessed by shared code
* eecd - EECD's current value
*****************************************************************************/
void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
{
/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
* wait 50 microseconds.
*/
*eecd = *eecd & ~E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, *eecd);
E1000_WRITE_FLUSH(hw);
udelay(50);
}
/******************************************************************************
* Shift data bits out to the EEPROM.
*
* hw - Struct containing variables accessed by shared code
* data - data to send to the EEPROM
* count - number of bits to shift out
*****************************************************************************/
static void
e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
{
uint32_t eecd;
uint32_t mask;
/* We need to shift "count" bits out to the EEPROM. So, value in the
* "data" parameter will be shifted out to the EEPROM one bit at a time.
* In order to do this, "data" must be broken down into bits.
*/
mask = 0x01 << (count - 1);
eecd = E1000_READ_REG(hw, EECD);
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
do {
/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
* and then raising and then lowering the clock (the SK bit controls
* the clock input to the EEPROM). A "0" is shifted out to the EEPROM
* by setting "DI" to "0" and then raising and then lowering the clock.
*/
eecd &= ~E1000_EECD_DI;
if (data & mask)
eecd |= E1000_EECD_DI;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(50);
e1000_raise_ee_clk(hw, &eecd);
e1000_lower_ee_clk(hw, &eecd);
mask = mask >> 1;
} while (mask);
/* We leave the "DI" bit set to "0" when we leave this routine. */
eecd &= ~E1000_EECD_DI;
E1000_WRITE_REG(hw, EECD, eecd);
}
/******************************************************************************
* Shift data bits in from the EEPROM
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static uint16_t
e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
{
uint32_t eecd;
uint32_t i;
uint16_t data;
/* In order to read a register from the EEPROM, we need to shift 'count'
* bits in from the EEPROM. Bits are "shifted in" by raising the clock
* input to the EEPROM (setting the SK bit), and then reading the
* value of the "DO" bit. During this "shifting in" process the
* "DI" bit should always be clear.
*/
eecd = E1000_READ_REG(hw, EECD);
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
data = 0;
for (i = 0; i < count; i++) {
data = data << 1;
e1000_raise_ee_clk(hw, &eecd);
eecd = E1000_READ_REG(hw, EECD);
eecd &= ~(E1000_EECD_DI);
if (eecd & E1000_EECD_DO)
data |= 1;
e1000_lower_ee_clk(hw, &eecd);
}
return data;
}
/******************************************************************************
* Returns EEPROM to a "standby" state
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
void e1000_standby_eeprom(struct e1000_hw *hw)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t eecd;
eecd = E1000_READ_REG(hw, EECD);
if (eeprom->type == e1000_eeprom_microwire) {
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
/* Clock high */
eecd |= E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
/* Select EEPROM */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
/* Clock low */
eecd &= ~E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
} else if (eeprom->type == e1000_eeprom_spi) {
/* Toggle CS to flush commands */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
eecd &= ~E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
}
}
/***************************************************************************
* Description: Determines if the onboard NVM is FLASH or EEPROM.
*
* hw - Struct containing variables accessed by shared code
****************************************************************************/
static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
{
uint32_t eecd = 0;
DEBUGFUNC();
if (hw->mac_type == e1000_ich8lan)
return false;
if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
eecd = E1000_READ_REG(hw, EECD);
/* Isolate bits 15 & 16 */
eecd = ((eecd >> 15) & 0x03);
/* If both bits are set, device is Flash type */
if (eecd == 0x03)
return false;
}
return true;
}
/******************************************************************************
* Prepares EEPROM for access
*
* hw - Struct containing variables accessed by shared code
*
* Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
* function should be called before issuing a command to the EEPROM.
*****************************************************************************/
int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t eecd, i = 0;
DEBUGFUNC();
if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
return -E1000_ERR_SWFW_SYNC;
eecd = E1000_READ_REG(hw, EECD);
if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
/* Request EEPROM Access */
if (hw->mac_type > e1000_82544) {
eecd |= E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
eecd = E1000_READ_REG(hw, EECD);
while ((!(eecd & E1000_EECD_GNT)) &&
(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
i++;
udelay(5);
eecd = E1000_READ_REG(hw, EECD);
}
if (!(eecd & E1000_EECD_GNT)) {
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
DEBUGOUT("Could not acquire EEPROM grant\n");
return -E1000_ERR_EEPROM;
}
}
}
/* Setup EEPROM for Read/Write */
if (eeprom->type == e1000_eeprom_microwire) {
/* Clear SK and DI */
eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
E1000_WRITE_REG(hw, EECD, eecd);
/* Set CS */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd);
} else if (eeprom->type == e1000_eeprom_spi) {
/* Clear SK and CS */
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
E1000_WRITE_REG(hw, EECD, eecd);
udelay(1);
}
return E1000_SUCCESS;
}
/******************************************************************************
* Sets up eeprom variables in the hw struct. Must be called after mac_type
* is configured. Additionally, if this is ICH8, the flash controller GbE
* registers must be mapped, or this will crash.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t eecd;
int32_t ret_val = E1000_SUCCESS;
uint16_t eeprom_size;
if (hw->mac_type == e1000_igb)
eecd = E1000_READ_REG(hw, I210_EECD);
else
eecd = E1000_READ_REG(hw, EECD);
DEBUGFUNC();
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
case e1000_82544:
eeprom->type = e1000_eeprom_microwire;
eeprom->word_size = 64;
eeprom->opcode_bits = 3;
eeprom->address_bits = 6;
eeprom->delay_usec = 50;
eeprom->use_eerd = false;
eeprom->use_eewr = false;
break;
case e1000_82540:
case e1000_82545:
case e1000_82545_rev_3:
case e1000_82546:
case e1000_82546_rev_3:
eeprom->type = e1000_eeprom_microwire;
eeprom->opcode_bits = 3;
eeprom->delay_usec = 50;
if (eecd & E1000_EECD_SIZE) {
eeprom->word_size = 256;
eeprom->address_bits = 8;
} else {
eeprom->word_size = 64;
eeprom->address_bits = 6;
}
eeprom->use_eerd = false;
eeprom->use_eewr = false;
break;
case e1000_82541:
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
if (eecd & E1000_EECD_TYPE) {
eeprom->type = e1000_eeprom_spi;
eeprom->opcode_bits = 8;
eeprom->delay_usec = 1;
if (eecd & E1000_EECD_ADDR_BITS) {
eeprom->page_size = 32;
eeprom->address_bits = 16;
} else {
eeprom->page_size = 8;
eeprom->address_bits = 8;
}
} else {
eeprom->type = e1000_eeprom_microwire;
eeprom->opcode_bits = 3;
eeprom->delay_usec = 50;
if (eecd & E1000_EECD_ADDR_BITS) {
eeprom->word_size = 256;
eeprom->address_bits = 8;
} else {
eeprom->word_size = 64;
eeprom->address_bits = 6;
}
}
eeprom->use_eerd = false;
eeprom->use_eewr = false;
break;
case e1000_82571:
case e1000_82572:
eeprom->type = e1000_eeprom_spi;
eeprom->opcode_bits = 8;
eeprom->delay_usec = 1;
if (eecd & E1000_EECD_ADDR_BITS) {
eeprom->page_size = 32;
eeprom->address_bits = 16;
} else {
eeprom->page_size = 8;
eeprom->address_bits = 8;
}
eeprom->use_eerd = false;
eeprom->use_eewr = false;
break;
case e1000_82573:
case e1000_82574:
eeprom->type = e1000_eeprom_spi;
eeprom->opcode_bits = 8;
eeprom->delay_usec = 1;
if (eecd & E1000_EECD_ADDR_BITS) {
eeprom->page_size = 32;
eeprom->address_bits = 16;
} else {
eeprom->page_size = 8;
eeprom->address_bits = 8;
}
if (e1000_is_onboard_nvm_eeprom(hw) == false) {
eeprom->use_eerd = true;
eeprom->use_eewr = true;
eeprom->type = e1000_eeprom_flash;
eeprom->word_size = 2048;
/* Ensure that the Autonomous FLASH update bit is cleared due to
* Flash update issue on parts which use a FLASH for NVM. */
eecd &= ~E1000_EECD_AUPDEN;
E1000_WRITE_REG(hw, EECD, eecd);
}
break;
case e1000_80003es2lan:
eeprom->type = e1000_eeprom_spi;
eeprom->opcode_bits = 8;
eeprom->delay_usec = 1;
if (eecd & E1000_EECD_ADDR_BITS) {
eeprom->page_size = 32;
eeprom->address_bits = 16;
} else {
eeprom->page_size = 8;
eeprom->address_bits = 8;
}
eeprom->use_eerd = true;
eeprom->use_eewr = false;
break;
case e1000_igb:
/* i210 has 4k of iNVM mapped as EEPROM */
eeprom->type = e1000_eeprom_invm;
eeprom->opcode_bits = 8;
eeprom->delay_usec = 1;
eeprom->page_size = 32;
eeprom->address_bits = 16;
eeprom->use_eerd = true;
eeprom->use_eewr = false;
break;
default:
break;
}
if (eeprom->type == e1000_eeprom_spi ||
eeprom->type == e1000_eeprom_invm) {
/* eeprom_size will be an enum [0..8] that maps
* to eeprom sizes 128B to
* 32KB (incremented by powers of 2).
*/
if (hw->mac_type <= e1000_82547_rev_2) {
/* Set to default value for initial eeprom read. */
eeprom->word_size = 64;
ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
&eeprom_size);
if (ret_val)
return ret_val;
eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
>> EEPROM_SIZE_SHIFT;
/* 256B eeprom size was not supported in earlier
* hardware, so we bump eeprom_size up one to
* ensure that "1" (which maps to 256B) is never
* the result used in the shifting logic below. */
if (eeprom_size)
eeprom_size++;
} else {
eeprom_size = (uint16_t)((eecd &
E1000_EECD_SIZE_EX_MASK) >>
E1000_EECD_SIZE_EX_SHIFT);
}
eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
}
return ret_val;
}
/******************************************************************************
* Polls the status bit (bit 1) of the EERD to determine when the read is done.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static int32_t
e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
{
uint32_t attempts = 100000;
uint32_t i, reg = 0;
int32_t done = E1000_ERR_EEPROM;
for (i = 0; i < attempts; i++) {
if (eerd == E1000_EEPROM_POLL_READ) {
if (hw->mac_type == e1000_igb)
reg = E1000_READ_REG(hw, I210_EERD);
else
reg = E1000_READ_REG(hw, EERD);
} else {
if (hw->mac_type == e1000_igb)
reg = E1000_READ_REG(hw, I210_EEWR);
else
reg = E1000_READ_REG(hw, EEWR);
}
if (reg & E1000_EEPROM_RW_REG_DONE) {
done = E1000_SUCCESS;
break;
}
udelay(5);
}
return done;
}
/******************************************************************************
* Reads a 16 bit word from the EEPROM using the EERD register.
*
* hw - Struct containing variables accessed by shared code
* offset - offset of word in the EEPROM to read
* data - word read from the EEPROM
* words - number of words to read
*****************************************************************************/
static int32_t
e1000_read_eeprom_eerd(struct e1000_hw *hw,
uint16_t offset,
uint16_t words,
uint16_t *data)
{
uint32_t i, eerd = 0;
int32_t error = 0;
for (i = 0; i < words; i++) {
eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
E1000_EEPROM_RW_REG_START;
if (hw->mac_type == e1000_igb)
E1000_WRITE_REG(hw, I210_EERD, eerd);
else
E1000_WRITE_REG(hw, EERD, eerd);
error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
if (error)
break;
if (hw->mac_type == e1000_igb) {
data[i] = (E1000_READ_REG(hw, I210_EERD) >>
E1000_EEPROM_RW_REG_DATA);
} else {
data[i] = (E1000_READ_REG(hw, EERD) >>
E1000_EEPROM_RW_REG_DATA);
}
}
return error;
}
void e1000_release_eeprom(struct e1000_hw *hw)
{
uint32_t eecd;
DEBUGFUNC();
eecd = E1000_READ_REG(hw, EECD);
if (hw->eeprom.type == e1000_eeprom_spi) {
eecd |= E1000_EECD_CS; /* Pull CS high */
eecd &= ~E1000_EECD_SK; /* Lower SCK */
E1000_WRITE_REG(hw, EECD, eecd);
udelay(hw->eeprom.delay_usec);
} else if (hw->eeprom.type == e1000_eeprom_microwire) {
/* cleanup eeprom */
/* CS on Microwire is active-high */
eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
E1000_WRITE_REG(hw, EECD, eecd);
/* Rising edge of clock */
eecd |= E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(hw->eeprom.delay_usec);
/* Falling edge of clock */
eecd &= ~E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(hw->eeprom.delay_usec);
}
/* Stop requesting EEPROM access */
if (hw->mac_type > e1000_82544) {
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
}
e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
}
/******************************************************************************
* Reads a 16 bit word from the EEPROM.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static int32_t
e1000_spi_eeprom_ready(struct e1000_hw *hw)
{
uint16_t retry_count = 0;
uint8_t spi_stat_reg;
DEBUGFUNC();
/* Read "Status Register" repeatedly until the LSB is cleared. The
* EEPROM will signal that the command has been completed by clearing
* bit 0 of the internal status register. If it's not cleared within
* 5 milliseconds, then error out.
*/
retry_count = 0;
do {
e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
hw->eeprom.opcode_bits);
spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
break;
udelay(5);
retry_count += 5;
e1000_standby_eeprom(hw);
} while (retry_count < EEPROM_MAX_RETRY_SPI);
/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
* only 0-5mSec on 5V devices)
*/
if (retry_count >= EEPROM_MAX_RETRY_SPI) {
DEBUGOUT("SPI EEPROM Status error\n");
return -E1000_ERR_EEPROM;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Reads a 16 bit word from the EEPROM.
*
* hw - Struct containing variables accessed by shared code
* offset - offset of word in the EEPROM to read
* data - word read from the EEPROM
*****************************************************************************/
static int32_t
e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
uint16_t words, uint16_t *data)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t i = 0;
DEBUGFUNC();
/* If eeprom is not yet detected, do so now */
if (eeprom->word_size == 0)
e1000_init_eeprom_params(hw);
/* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if ((offset >= eeprom->word_size) ||
(words > eeprom->word_size - offset) ||
(words == 0)) {
DEBUGOUT("\"words\" parameter out of bounds."
"Words = %d, size = %d\n", offset, eeprom->word_size);
return -E1000_ERR_EEPROM;
}
/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
* directly. In this case, we need to acquire the EEPROM so that
* FW or other port software does not interrupt.
*/
if (e1000_is_onboard_nvm_eeprom(hw) == true &&
hw->eeprom.use_eerd == false) {
/* Prepare the EEPROM for bit-bang reading */
if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
return -E1000_ERR_EEPROM;
}
/* Eerd register EEPROM access requires no eeprom aquire/release */
if (eeprom->use_eerd == true)
return e1000_read_eeprom_eerd(hw, offset, words, data);
/* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
* acquired the EEPROM at this point, so any returns should relase it */
if (eeprom->type == e1000_eeprom_spi) {
uint16_t word_in;
uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
if (e1000_spi_eeprom_ready(hw)) {
e1000_release_eeprom(hw);
return -E1000_ERR_EEPROM;
}
e1000_standby_eeprom(hw);
/* Some SPI eeproms use the 8th address bit embedded in
* the opcode */
if ((eeprom->address_bits == 8) && (offset >= 128))
read_opcode |= EEPROM_A8_OPCODE_SPI;
/* Send the READ command (opcode + addr) */
e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
eeprom->address_bits);
/* Read the data. The address of the eeprom internally
* increments with each byte (spi) being read, saving on the
* overhead of eeprom setup and tear-down. The address
* counter will roll over if reading beyond the size of
* the eeprom, thus allowing the entire memory to be read
* starting from any offset. */
for (i = 0; i < words; i++) {
word_in = e1000_shift_in_ee_bits(hw, 16);
data[i] = (word_in >> 8) | (word_in << 8);
}
} else if (eeprom->type == e1000_eeprom_microwire) {
for (i = 0; i < words; i++) {
/* Send the READ command (opcode + addr) */
e1000_shift_out_ee_bits(hw,
EEPROM_READ_OPCODE_MICROWIRE,
eeprom->opcode_bits);
e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
eeprom->address_bits);
/* Read the data. For microwire, each word requires
* the overhead of eeprom setup and tear-down. */
data[i] = e1000_shift_in_ee_bits(hw, 16);
e1000_standby_eeprom(hw);
}
}
/* End this read operation */
e1000_release_eeprom(hw);
return E1000_SUCCESS;
}
/******************************************************************************
* e1000_write_eeprom_srwr - Write to Shadow Ram using EEWR
* @hw: pointer to the HW structure
* @offset: offset within the Shadow Ram to be written to
* @words: number of words to write
* @data: 16 bit word(s) to be written to the Shadow Ram
*
* Writes data to Shadow Ram at offset using EEWR register.
*
* If e1000_update_eeprom_checksum_i210 is not called after this function, the
* Shadow Ram will most likely contain an invalid checksum.
*****************************************************************************/
static int32_t e1000_write_eeprom_srwr(struct e1000_hw *hw, uint16_t offset,
uint16_t words, uint16_t *data)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t i, k, eewr = 0;
uint32_t attempts = 100000;
int32_t ret_val = 0;
/* A check for invalid values: offset too large, too many words,
* too many words for the offset, and not enough words.
*/
if ((offset >= eeprom->word_size) ||
(words > (eeprom->word_size - offset)) || (words == 0)) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
ret_val = -E1000_ERR_EEPROM;
goto out;
}
for (i = 0; i < words; i++) {
eewr = ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT)
| (data[i] << E1000_EEPROM_RW_REG_DATA) |
E1000_EEPROM_RW_REG_START;
E1000_WRITE_REG(hw, I210_EEWR, eewr);
for (k = 0; k < attempts; k++) {
if (E1000_EEPROM_RW_REG_DONE &
E1000_READ_REG(hw, I210_EEWR)) {
ret_val = 0;
break;
}
udelay(5);
}
if (ret_val) {
DEBUGOUT("Shadow RAM write EEWR timed out\n");
break;
}
}
out:
return ret_val;
}
/******************************************************************************
* e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
* @hw: pointer to the HW structure
*
*****************************************************************************/
static int32_t e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
{
int32_t ret_val = -E1000_ERR_EEPROM;
uint32_t i, reg;
for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
reg = E1000_READ_REG(hw, EECD);
if (reg & E1000_EECD_FLUDONE_I210) {
ret_val = 0;
break;
}
udelay(5);
}
return ret_val;
}
/******************************************************************************
* e1000_update_flash_i210 - Commit EEPROM to the flash
* @hw: pointer to the HW structure
*
*****************************************************************************/
static int32_t e1000_update_flash_i210(struct e1000_hw *hw)
{
int32_t ret_val = 0;
uint32_t flup;
ret_val = e1000_pool_flash_update_done_i210(hw);
if (ret_val == -E1000_ERR_EEPROM) {
DEBUGOUT("Flash update time out\n");
goto out;
}
flup = E1000_READ_REG(hw, EECD) | E1000_EECD_FLUPD_I210;
E1000_WRITE_REG(hw, EECD, flup);
ret_val = e1000_pool_flash_update_done_i210(hw);
if (ret_val)
DEBUGOUT("Flash update time out\n");
else
DEBUGOUT("Flash update complete\n");
out:
return ret_val;
}
/******************************************************************************
* e1000_update_eeprom_checksum_i210 - Update EEPROM checksum
* @hw: pointer to the HW structure
*
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
* up to the checksum. Then calculates the EEPROM checksum and writes the
* value to the EEPROM. Next commit EEPROM data onto the Flash.
*****************************************************************************/
static int32_t e1000_update_eeprom_checksum_i210(struct e1000_hw *hw)
{
int32_t ret_val = 0;
uint16_t checksum = 0;
uint16_t i, nvm_data;
/* Read the first word from the EEPROM. If this times out or fails, do
* not continue or we could be in for a very long wait while every
* EEPROM read fails
*/
ret_val = e1000_read_eeprom_eerd(hw, 0, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("EEPROM read failed\n");
goto out;
}
if (!(e1000_get_hw_eeprom_semaphore(hw))) {
/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
* because we do not want to take the synchronization
* semaphores twice here.
*/
for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
ret_val = e1000_read_eeprom_eerd(hw, i, 1, &nvm_data);
if (ret_val) {
e1000_put_hw_eeprom_semaphore(hw);
DEBUGOUT("EEPROM Read Error while updating checksum.\n");
goto out;
}
checksum += nvm_data;
}
checksum = (uint16_t)EEPROM_SUM - checksum;
ret_val = e1000_write_eeprom_srwr(hw, EEPROM_CHECKSUM_REG, 1,
&checksum);
if (ret_val) {
e1000_put_hw_eeprom_semaphore(hw);
DEBUGOUT("EEPROM Write Error while updating checksum.\n");
goto out;
}
e1000_put_hw_eeprom_semaphore(hw);
ret_val = e1000_update_flash_i210(hw);
} else {
ret_val = -E1000_ERR_SWFW_SYNC;
}
out:
return ret_val;
}
/******************************************************************************
* Verifies that the EEPROM has a valid checksum
*
* hw - Struct containing variables accessed by shared code
*
* Reads the first 64 16 bit words of the EEPROM and sums the values read.
* If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
* valid.
*****************************************************************************/
static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
{
uint16_t i, checksum, checksum_reg, *buf;
DEBUGFUNC();
/* Allocate a temporary buffer */
buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
if (!buf) {
E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
return -E1000_ERR_EEPROM;
}
/* Read the EEPROM */
if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
E1000_ERR(hw, "Unable to read EEPROM!\n");
return -E1000_ERR_EEPROM;
}
/* Compute the checksum */
checksum = 0;
for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
checksum += buf[i];
checksum = ((uint16_t)EEPROM_SUM) - checksum;
checksum_reg = buf[i];
/* Verify it! */
if (checksum == checksum_reg)
return 0;
/* Hrm, verification failed, print an error */
E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
E1000_ERR(hw, " ...register was 0x%04hx, calculated 0x%04hx\n",
checksum_reg, checksum);
return -E1000_ERR_EEPROM;
}
#endif /* CONFIG_E1000_NO_NVM */
/*****************************************************************************
* Set PHY to class A mode
* Assumes the following operations will follow to enable the new class mode.
* 1. Do a PHY soft reset
* 2. Restart auto-negotiation or force link.
*
* hw - Struct containing variables accessed by shared code
****************************************************************************/
static int32_t
e1000_set_phy_mode(struct e1000_hw *hw)
{
#ifndef CONFIG_E1000_NO_NVM
int32_t ret_val;
uint16_t eeprom_data;
DEBUGFUNC();
if ((hw->mac_type == e1000_82545_rev_3) &&
(hw->media_type == e1000_media_type_copper)) {
ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
1, &eeprom_data);
if (ret_val)
return ret_val;
if ((eeprom_data != EEPROM_RESERVED_WORD) &&
(eeprom_data & EEPROM_PHY_CLASS_A)) {
ret_val = e1000_write_phy_reg(hw,
M88E1000_PHY_PAGE_SELECT, 0x000B);
if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw,
M88E1000_PHY_GEN_CONTROL, 0x8104);
if (ret_val)
return ret_val;
hw->phy_reset_disable = false;
}
}
#endif
return E1000_SUCCESS;
}
#ifndef CONFIG_E1000_NO_NVM
/***************************************************************************
*
* Obtaining software semaphore bit (SMBI) before resetting PHY.
*
* hw: Struct containing variables accessed by shared code
*
* returns: - E1000_ERR_RESET if fail to obtain semaphore.
* E1000_SUCCESS at any other case.
*
***************************************************************************/
static int32_t
e1000_get_software_semaphore(struct e1000_hw *hw)
{
int32_t timeout = hw->eeprom.word_size + 1;
uint32_t swsm;
DEBUGFUNC();
if (hw->mac_type != e1000_80003es2lan && hw->mac_type != e1000_igb)
return E1000_SUCCESS;
while (timeout) {
swsm = E1000_READ_REG(hw, SWSM);
/* If SMBI bit cleared, it is now set and we hold
* the semaphore */
if (!(swsm & E1000_SWSM_SMBI))
break;
mdelay(1);
timeout--;
}
if (!timeout) {
DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
return -E1000_ERR_RESET;
}
return E1000_SUCCESS;
}
#endif
/***************************************************************************
* This function clears HW semaphore bits.
*
* hw: Struct containing variables accessed by shared code
*
* returns: - None.
*
***************************************************************************/
static void
e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
{
#ifndef CONFIG_E1000_NO_NVM
uint32_t swsm;
DEBUGFUNC();
if (!hw->eeprom_semaphore_present)
return;
swsm = E1000_READ_REG(hw, SWSM);
if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
/* Release both semaphores. */
swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
} else
swsm &= ~(E1000_SWSM_SWESMBI);
E1000_WRITE_REG(hw, SWSM, swsm);
#endif
}
/***************************************************************************
*
* Using the combination of SMBI and SWESMBI semaphore bits when resetting
* adapter or Eeprom access.
*
* hw: Struct containing variables accessed by shared code
*
* returns: - E1000_ERR_EEPROM if fail to access EEPROM.
* E1000_SUCCESS at any other case.
*
***************************************************************************/
static int32_t
e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
{
#ifndef CONFIG_E1000_NO_NVM
int32_t timeout;
uint32_t swsm;
DEBUGFUNC();
if (!hw->eeprom_semaphore_present)
return E1000_SUCCESS;
if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
/* Get the SW semaphore. */
if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
return -E1000_ERR_EEPROM;
}
/* Get the FW semaphore. */
timeout = hw->eeprom.word_size + 1;
while (timeout) {
swsm = E1000_READ_REG(hw, SWSM);
swsm |= E1000_SWSM_SWESMBI;
E1000_WRITE_REG(hw, SWSM, swsm);
/* if we managed to set the bit we got the semaphore. */
swsm = E1000_READ_REG(hw, SWSM);
if (swsm & E1000_SWSM_SWESMBI)
break;
udelay(50);
timeout--;
}
if (!timeout) {
/* Release semaphores */
e1000_put_hw_eeprom_semaphore(hw);
DEBUGOUT("Driver can't access the Eeprom - "
"SWESMBI bit is set.\n");
return -E1000_ERR_EEPROM;
}
#endif
return E1000_SUCCESS;
}
/* Take ownership of the PHY */
static int32_t
e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
{
uint32_t swfw_sync = 0;
uint32_t swmask = mask;
uint32_t fwmask = mask << 16;
int32_t timeout = 200;
DEBUGFUNC();
while (timeout) {
if (e1000_get_hw_eeprom_semaphore(hw))
return -E1000_ERR_SWFW_SYNC;
swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
if (!(swfw_sync & (fwmask | swmask)))
break;
/* firmware currently using resource (fwmask) */
/* or other software thread currently using resource (swmask) */
e1000_put_hw_eeprom_semaphore(hw);
mdelay(5);
timeout--;
}
if (!timeout) {
DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
return -E1000_ERR_SWFW_SYNC;
}
swfw_sync |= swmask;
E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
e1000_put_hw_eeprom_semaphore(hw);
return E1000_SUCCESS;
}
static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
{
uint32_t swfw_sync = 0;
DEBUGFUNC();
while (e1000_get_hw_eeprom_semaphore(hw))
; /* Empty */
swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
swfw_sync &= ~mask;
E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
e1000_put_hw_eeprom_semaphore(hw);
}
static bool e1000_is_second_port(struct e1000_hw *hw)
{
switch (hw->mac_type) {
case e1000_80003es2lan:
case e1000_82546:
case e1000_82571:
if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
return true;
/* Fallthrough */
default:
return false;
}
}
#ifndef CONFIG_E1000_NO_NVM
/******************************************************************************
* Reads the adapter's MAC address from the EEPROM
*
* hw - Struct containing variables accessed by shared code
* enetaddr - buffering where the MAC address will be stored
*****************************************************************************/
static int e1000_read_mac_addr_from_eeprom(struct e1000_hw *hw,
unsigned char enetaddr[6])
{
uint16_t offset;
uint16_t eeprom_data;
int i;
for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
offset = i >> 1;
if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
enetaddr[i] = eeprom_data & 0xff;
enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
}
return 0;
}
/******************************************************************************
* Reads the adapter's MAC address from the RAL/RAH registers
*
* hw - Struct containing variables accessed by shared code
* enetaddr - buffering where the MAC address will be stored
*****************************************************************************/
static int e1000_read_mac_addr_from_regs(struct e1000_hw *hw,
unsigned char enetaddr[6])
{
uint16_t offset, tmp;
uint32_t reg_data = 0;
int i;
if (hw->mac_type != e1000_igb)
return -E1000_ERR_MAC_TYPE;
for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
offset = i >> 1;
if (offset == 0)
reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
else if (offset == 1)
reg_data >>= 16;
else if (offset == 2)
reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
tmp = reg_data & 0xffff;
enetaddr[i] = tmp & 0xff;
enetaddr[i + 1] = (tmp >> 8) & 0xff;
}
return 0;
}
/******************************************************************************
* Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
* second function of dual function devices
*
* hw - Struct containing variables accessed by shared code
* enetaddr - buffering where the MAC address will be stored
*****************************************************************************/
static int e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6])
{
int ret_val;
if (hw->mac_type == e1000_igb) {
/* i210 preloads MAC address into RAL/RAH registers */
ret_val = e1000_read_mac_addr_from_regs(hw, enetaddr);
} else {
ret_val = e1000_read_mac_addr_from_eeprom(hw, enetaddr);
}
if (ret_val)
return ret_val;
/* Invert the last bit if this is the second device */
if (e1000_is_second_port(hw))
enetaddr[5] ^= 1;
return 0;
}
#endif
/******************************************************************************
* Initializes receive address filters.
*
* hw - Struct containing variables accessed by shared code
*
* Places the MAC address in receive address register 0 and clears the rest
* of the receive addresss registers. Clears the multicast table. Assumes
* the receiver is in reset when the routine is called.
*****************************************************************************/
static void
e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6])
{
uint32_t i;
uint32_t addr_low;
uint32_t addr_high;
DEBUGFUNC();
/* Setup the receive address. */
DEBUGOUT("Programming MAC Address into RAR[0]\n");
addr_low = (enetaddr[0] |
(enetaddr[1] << 8) |
(enetaddr[2] << 16) | (enetaddr[3] << 24));
addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV);
E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
/* Zero out the other 15 receive addresses. */
DEBUGOUT("Clearing RAR[1-15]\n");
for (i = 1; i < E1000_RAR_ENTRIES; i++) {
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
}
}
/******************************************************************************
* Clears the VLAN filer table
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static void
e1000_clear_vfta(struct e1000_hw *hw)
{
uint32_t offset;
for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
}
/******************************************************************************
* Set the mac type member in the hw struct.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
int32_t
e1000_set_mac_type(struct e1000_hw *hw)
{
DEBUGFUNC();
switch (hw->device_id) {
case E1000_DEV_ID_82542:
switch (hw->revision_id) {
case E1000_82542_2_0_REV_ID:
hw->mac_type = e1000_82542_rev2_0;
break;
case E1000_82542_2_1_REV_ID:
hw->mac_type = e1000_82542_rev2_1;
break;
default:
/* Invalid 82542 revision ID */
return -E1000_ERR_MAC_TYPE;
}
break;
case E1000_DEV_ID_82543GC_FIBER:
case E1000_DEV_ID_82543GC_COPPER:
hw->mac_type = e1000_82543;
break;
case E1000_DEV_ID_82544EI_COPPER:
case E1000_DEV_ID_82544EI_FIBER:
case E1000_DEV_ID_82544GC_COPPER:
case E1000_DEV_ID_82544GC_LOM:
hw->mac_type = e1000_82544;
break;
case E1000_DEV_ID_82540EM:
case E1000_DEV_ID_82540EM_LOM:
case E1000_DEV_ID_82540EP:
case E1000_DEV_ID_82540EP_LOM:
case E1000_DEV_ID_82540EP_LP:
hw->mac_type = e1000_82540;
break;
case E1000_DEV_ID_82545EM_COPPER:
case E1000_DEV_ID_82545EM_FIBER:
hw->mac_type = e1000_82545;
break;
case E1000_DEV_ID_82545GM_COPPER:
case E1000_DEV_ID_82545GM_FIBER:
case E1000_DEV_ID_82545GM_SERDES:
hw->mac_type = e1000_82545_rev_3;
break;
case E1000_DEV_ID_82546EB_COPPER:
case E1000_DEV_ID_82546EB_FIBER:
case E1000_DEV_ID_82546EB_QUAD_COPPER:
hw->mac_type = e1000_82546;
break;
case E1000_DEV_ID_82546GB_COPPER:
case E1000_DEV_ID_82546GB_FIBER:
case E1000_DEV_ID_82546GB_SERDES:
case E1000_DEV_ID_82546GB_PCIE:
case E1000_DEV_ID_82546GB_QUAD_COPPER:
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
hw->mac_type = e1000_82546_rev_3;
break;
case E1000_DEV_ID_82541EI:
case E1000_DEV_ID_82541EI_MOBILE:
case E1000_DEV_ID_82541ER_LOM:
hw->mac_type = e1000_82541;
break;
case E1000_DEV_ID_82541ER:
case E1000_DEV_ID_82541GI:
case E1000_DEV_ID_82541GI_LF:
case E1000_DEV_ID_82541GI_MOBILE:
hw->mac_type = e1000_82541_rev_2;
break;
case E1000_DEV_ID_82547EI:
case E1000_DEV_ID_82547EI_MOBILE:
hw->mac_type = e1000_82547;
break;
case E1000_DEV_ID_82547GI:
hw->mac_type = e1000_82547_rev_2;
break;
case E1000_DEV_ID_82571EB_COPPER:
case E1000_DEV_ID_82571EB_FIBER:
case E1000_DEV_ID_82571EB_SERDES:
case E1000_DEV_ID_82571EB_SERDES_DUAL:
case E1000_DEV_ID_82571EB_SERDES_QUAD:
case E1000_DEV_ID_82571EB_QUAD_COPPER:
case E1000_DEV_ID_82571PT_QUAD_COPPER:
case E1000_DEV_ID_82571EB_QUAD_FIBER:
case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
hw->mac_type = e1000_82571;
break;
case E1000_DEV_ID_82572EI_COPPER:
case E1000_DEV_ID_82572EI_FIBER:
case E1000_DEV_ID_82572EI_SERDES:
case E1000_DEV_ID_82572EI:
hw->mac_type = e1000_82572;
break;
case E1000_DEV_ID_82573E:
case E1000_DEV_ID_82573E_IAMT:
case E1000_DEV_ID_82573L:
hw->mac_type = e1000_82573;
break;
case E1000_DEV_ID_82574L:
hw->mac_type = e1000_82574;
break;
case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
hw->mac_type = e1000_80003es2lan;
break;
case E1000_DEV_ID_ICH8_IGP_M_AMT:
case E1000_DEV_ID_ICH8_IGP_AMT:
case E1000_DEV_ID_ICH8_IGP_C:
case E1000_DEV_ID_ICH8_IFE:
case E1000_DEV_ID_ICH8_IFE_GT:
case E1000_DEV_ID_ICH8_IFE_G:
case E1000_DEV_ID_ICH8_IGP_M:
hw->mac_type = e1000_ich8lan;
break;
case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
case PCI_DEVICE_ID_INTEL_I210_COPPER:
case PCI_DEVICE_ID_INTEL_I211_COPPER:
case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
case PCI_DEVICE_ID_INTEL_I210_SERDES:
case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
hw->mac_type = e1000_igb;
break;
default:
/* Should never have loaded on this device */
return -E1000_ERR_MAC_TYPE;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Reset the transmit and receive units; mask and clear all interrupts.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
void
e1000_reset_hw(struct e1000_hw *hw)
{
uint32_t ctrl;
uint32_t ctrl_ext;
uint32_t manc;
uint32_t pba = 0;
uint32_t reg;
DEBUGFUNC();
/* get the correct pba value for both PCI and PCIe*/
if (hw->mac_type < e1000_82571)
pba = E1000_DEFAULT_PCI_PBA;
else
pba = E1000_DEFAULT_PCIE_PBA;
/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
if (hw->mac_type == e1000_82542_rev2_0) {
DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
dm_pci_write_config16(hw->pdev, PCI_COMMAND,
hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
}
/* Clear interrupt mask to stop board from generating interrupts */
DEBUGOUT("Masking off all interrupts\n");
if (hw->mac_type == e1000_igb)
E1000_WRITE_REG(hw, I210_IAM, 0);
E1000_WRITE_REG(hw, IMC, 0xffffffff);
/* Disable the Transmit and Receive units. Then delay to allow
* any pending transactions to complete before we hit the MAC with
* the global reset.
*/
E1000_WRITE_REG(hw, RCTL, 0);
E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
E1000_WRITE_FLUSH(hw);
if (hw->mac_type == e1000_igb) {
E1000_WRITE_REG(hw, RXPBS, I210_RXPBSIZE_DEFAULT);
E1000_WRITE_REG(hw, TXPBS, I210_TXPBSIZE_DEFAULT);
}
/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
hw->tbi_compatibility_on = false;
/* Delay to allow any outstanding PCI transactions to complete before
* resetting the device
*/
mdelay(10);
/* Issue a global reset to the MAC. This will reset the chip's
* transmit, receive, DMA, and link units. It will not effect
* the current PCI configuration. The global reset bit is self-
* clearing, and should clear within a microsecond.
*/
DEBUGOUT("Issuing a global reset to MAC\n");
ctrl = E1000_READ_REG(hw, CTRL);
E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
/* Force a reload from the EEPROM if necessary */
if (hw->mac_type == e1000_igb) {
mdelay(20);
reg = E1000_READ_REG(hw, STATUS);
if (reg & E1000_STATUS_PF_RST_DONE)
DEBUGOUT("PF OK\n");
reg = E1000_READ_REG(hw, I210_EECD);
if (reg & E1000_EECD_AUTO_RD)
DEBUGOUT("EEC OK\n");
} else if (hw->mac_type < e1000_82540) {
/* Wait for reset to complete */
udelay(10);
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_EE_RST;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
/* Wait for EEPROM reload */
mdelay(2);
} else {
/* Wait for EEPROM reload (it happens automatically) */
mdelay(4);
/* Dissable HW ARPs on ASF enabled adapters */
manc = E1000_READ_REG(hw, MANC);
manc &= ~(E1000_MANC_ARP_EN);
E1000_WRITE_REG(hw, MANC, manc);
}
/* Clear interrupt mask to stop board from generating interrupts */
DEBUGOUT("Masking off all interrupts\n");
if (hw->mac_type == e1000_igb)
E1000_WRITE_REG(hw, I210_IAM, 0);
E1000_WRITE_REG(hw, IMC, 0xffffffff);
/* Clear any pending interrupt events. */
E1000_READ_REG(hw, ICR);
/* If MWI was previously enabled, reenable it. */
if (hw->mac_type == e1000_82542_rev2_0) {
dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
}
if (hw->mac_type != e1000_igb)
E1000_WRITE_REG(hw, PBA, pba);
}
/******************************************************************************
*
* Initialize a number of hardware-dependent bits
*
* hw: Struct containing variables accessed by shared code
*
* This function contains hardware limitation workarounds for PCI-E adapters
*
*****************************************************************************/
static void
e1000_initialize_hardware_bits(struct e1000_hw *hw)
{
if ((hw->mac_type >= e1000_82571) &&
(!hw->initialize_hw_bits_disable)) {
/* Settings common to all PCI-express silicon */
uint32_t reg_ctrl, reg_ctrl_ext;
uint32_t reg_tarc0, reg_tarc1;
uint32_t reg_tctl;
uint32_t reg_txdctl, reg_txdctl1;
/* link autonegotiation/sync workarounds */
reg_tarc0 = E1000_READ_REG(hw, TARC0);
reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
/* Enable not-done TX descriptor counting */
reg_txdctl = E1000_READ_REG(hw, TXDCTL);
reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
switch (hw->mac_type) {
case e1000_igb: /* IGB is cool */
return;
case e1000_82571:
case e1000_82572:
/* Clear PHY TX compatible mode bits */
reg_tarc1 = E1000_READ_REG(hw, TARC1);
reg_tarc1 &= ~((1 << 30)|(1 << 29));
/* link autonegotiation/sync workarounds */
reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
/* TX ring control fixes */
reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
/* Multiple read bit is reversed polarity */
reg_tctl = E1000_READ_REG(hw, TCTL);
if (reg_tctl & E1000_TCTL_MULR)
reg_tarc1 &= ~(1 << 28);
else
reg_tarc1 |= (1 << 28);
E1000_WRITE_REG(hw, TARC1, reg_tarc1);
break;
case e1000_82573:
case e1000_82574:
reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
reg_ctrl_ext &= ~(1 << 23);
reg_ctrl_ext |= (1 << 22);
/* TX byte count fix */
reg_ctrl = E1000_READ_REG(hw, CTRL);
reg_ctrl &= ~(1 << 29);
E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
E1000_WRITE_REG(hw, CTRL, reg_ctrl);
break;
case e1000_80003es2lan:
/* improve small packet performace for fiber/serdes */
if ((hw->media_type == e1000_media_type_fiber)
|| (hw->media_type ==
e1000_media_type_internal_serdes)) {
reg_tarc0 &= ~(1 << 20);
}
/* Multiple read bit is reversed polarity */
reg_tctl = E1000_READ_REG(hw, TCTL);
reg_tarc1 = E1000_READ_REG(hw, TARC1);
if (reg_tctl & E1000_TCTL_MULR)
reg_tarc1 &= ~(1 << 28);
else
reg_tarc1 |= (1 << 28);
E1000_WRITE_REG(hw, TARC1, reg_tarc1);
break;
case e1000_ich8lan:
/* Reduce concurrent DMA requests to 3 from 4 */
if ((hw->revision_id < 3) ||
((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
reg_tarc0 |= ((1 << 29)|(1 << 28));
reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
reg_ctrl_ext |= (1 << 22);
E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
/* workaround TX hang with TSO=on */
reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
/* Multiple read bit is reversed polarity */
reg_tctl = E1000_READ_REG(hw, TCTL);
reg_tarc1 = E1000_READ_REG(hw, TARC1);
if (reg_tctl & E1000_TCTL_MULR)
reg_tarc1 &= ~(1 << 28);
else
reg_tarc1 |= (1 << 28);
/* workaround TX hang with TSO=on */
reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
E1000_WRITE_REG(hw, TARC1, reg_tarc1);
break;
default:
break;
}
E1000_WRITE_REG(hw, TARC0, reg_tarc0);
}
}
/******************************************************************************
* Performs basic configuration of the adapter.
*
* hw - Struct containing variables accessed by shared code
*
* Assumes that the controller has previously been reset and is in a
* post-reset uninitialized state. Initializes the receive address registers,
* multicast table, and VLAN filter table. Calls routines to setup link
* configuration and flow control settings. Clears all on-chip counters. Leaves
* the transmit and receive units disabled and uninitialized.
*****************************************************************************/
static int
e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6])
{
uint32_t ctrl;
uint32_t i;
int32_t ret_val;
uint16_t pcix_cmd_word;
uint16_t pcix_stat_hi_word;
uint16_t cmd_mmrbc;
uint16_t stat_mmrbc;
uint32_t mta_size;
uint32_t reg_data;
uint32_t ctrl_ext;
DEBUGFUNC();
/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
if ((hw->mac_type == e1000_ich8lan) &&
((hw->revision_id < 3) ||
((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
reg_data = E1000_READ_REG(hw, STATUS);
reg_data &= ~0x80000000;
E1000_WRITE_REG(hw, STATUS, reg_data);
}
/* Do not need initialize Identification LED */
/* Set the media type and TBI compatibility */
e1000_set_media_type(hw);
/* Must be called after e1000_set_media_type
* because media_type is used */
e1000_initialize_hardware_bits(hw);
/* Disabling VLAN filtering. */
DEBUGOUT("Initializing the IEEE VLAN\n");
/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
if (hw->mac_type != e1000_ich8lan) {
if (hw->mac_type < e1000_82545_rev_3)
E1000_WRITE_REG(hw, VET, 0);
e1000_clear_vfta(hw);
}
/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
if (hw->mac_type == e1000_82542_rev2_0) {
DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
dm_pci_write_config16(hw->pdev, PCI_COMMAND,
hw->
pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
E1000_WRITE_FLUSH(hw);
mdelay(5);
}
/* Setup the receive address. This involves initializing all of the Receive
* Address Registers (RARs 0 - 15).
*/
e1000_init_rx_addrs(hw, enetaddr);
/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
if (hw->mac_type == e1000_82542_rev2_0) {
E1000_WRITE_REG(hw, RCTL, 0);
E1000_WRITE_FLUSH(hw);
mdelay(1);
dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
}
/* Zero out the Multicast HASH table */
DEBUGOUT("Zeroing the MTA\n");
mta_size = E1000_MC_TBL_SIZE;
if (hw->mac_type == e1000_ich8lan)
mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
for (i = 0; i < mta_size; i++) {
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
/* use write flush to prevent Memory Write Block (MWB) from
* occuring when accessing our register space */
E1000_WRITE_FLUSH(hw);
}
switch (hw->mac_type) {
case e1000_82545_rev_3:
case e1000_82546_rev_3:
case e1000_igb:
break;
default:
/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
if (hw->bus_type == e1000_bus_type_pcix) {
dm_pci_read_config16(hw->pdev, PCIX_COMMAND_REGISTER,
&pcix_cmd_word);
dm_pci_read_config16(hw->pdev, PCIX_STATUS_REGISTER_HI,
&pcix_stat_hi_word);
cmd_mmrbc =
(pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
PCIX_COMMAND_MMRBC_SHIFT;
stat_mmrbc =
(pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
PCIX_STATUS_HI_MMRBC_SHIFT;
if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
if (cmd_mmrbc > stat_mmrbc) {
pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
dm_pci_write_config16(hw->pdev, PCIX_COMMAND_REGISTER,
pcix_cmd_word);
}
}
break;
}
/* More time needed for PHY to initialize */
if (hw->mac_type == e1000_ich8lan)
mdelay(15);
if (hw->mac_type == e1000_igb)
mdelay(15);
/* Call a subroutine to configure the link and setup flow control. */
ret_val = e1000_setup_link(hw);
/* Set the transmit descriptor write-back policy */
if (hw->mac_type > e1000_82544) {
ctrl = E1000_READ_REG(hw, TXDCTL);
ctrl =
(ctrl & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB;
E1000_WRITE_REG(hw, TXDCTL, ctrl);
}
/* Set the receive descriptor write back policy */
if (hw->mac_type >= e1000_82571) {
ctrl = E1000_READ_REG(hw, RXDCTL);
ctrl =
(ctrl & ~E1000_RXDCTL_WTHRESH) |
E1000_RXDCTL_FULL_RX_DESC_WB;
E1000_WRITE_REG(hw, RXDCTL, ctrl);
}
switch (hw->mac_type) {
default:
break;
case e1000_80003es2lan:
/* Enable retransmit on late collisions */
reg_data = E1000_READ_REG(hw, TCTL);
reg_data |= E1000_TCTL_RTLC;
E1000_WRITE_REG(hw, TCTL, reg_data);
/* Configure Gigabit Carry Extend Padding */
reg_data = E1000_READ_REG(hw, TCTL_EXT);
reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
/* Configure Transmit Inter-Packet Gap */
reg_data = E1000_READ_REG(hw, TIPG);
reg_data &= ~E1000_TIPG_IPGT_MASK;
reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
E1000_WRITE_REG(hw, TIPG, reg_data);
reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
reg_data &= ~0x00100000;
E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
/* Fall through */
case e1000_82571:
case e1000_82572:
case e1000_ich8lan:
ctrl = E1000_READ_REG(hw, TXDCTL1);
ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
| E1000_TXDCTL_FULL_TX_DESC_WB;
E1000_WRITE_REG(hw, TXDCTL1, ctrl);
break;
case e1000_82573:
case e1000_82574:
reg_data = E1000_READ_REG(hw, GCR);
reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
E1000_WRITE_REG(hw, GCR, reg_data);
case e1000_igb:
break;
}
if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
/* Relaxed ordering must be disabled to avoid a parity
* error crash in a PCI slot. */
ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
}
return ret_val;
}
/******************************************************************************
* Configures flow control and link settings.
*
* hw - Struct containing variables accessed by shared code
*
* Determines which flow control settings to use. Calls the apropriate media-
* specific link configuration function. Configures the flow control settings.
* Assuming the adapter has a valid link partner, a valid link should be
* established. Assumes the hardware has previously been reset and the
* transmitter and receiver are not enabled.
*****************************************************************************/
static int
e1000_setup_link(struct e1000_hw *hw)
{
int32_t ret_val;
#ifndef CONFIG_E1000_NO_NVM
uint32_t ctrl_ext;
uint16_t eeprom_data;
#endif
DEBUGFUNC();
/* In the case of the phy reset being blocked, we already have a link.
* We do not have to set it up again. */
if (e1000_check_phy_reset_block(hw))
return E1000_SUCCESS;
#ifndef CONFIG_E1000_NO_NVM
/* Read and store word 0x0F of the EEPROM. This word contains bits
* that determine the hardware's default PAUSE (flow control) mode,
* a bit that determines whether the HW defaults to enabling or
* disabling auto-negotiation, and the direction of the
* SW defined pins. If there is no SW over-ride of the flow
* control setting, then the variable hw->fc will
* be initialized based on a value in the EEPROM.
*/
if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
&eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
#endif
if (hw->fc == e1000_fc_default) {
switch (hw->mac_type) {
case e1000_ich8lan:
case e1000_82573:
case e1000_82574:
case e1000_igb:
hw->fc = e1000_fc_full;
break;
default:
#ifndef CONFIG_E1000_NO_NVM
ret_val = e1000_read_eeprom(hw,
EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
if (ret_val) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
hw->fc = e1000_fc_none;
else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
EEPROM_WORD0F_ASM_DIR)
hw->fc = e1000_fc_tx_pause;
else
#endif
hw->fc = e1000_fc_full;
break;
}
}
/* We want to save off the original Flow Control configuration just
* in case we get disconnected and then reconnected into a different
* hub or switch with different Flow Control capabilities.
*/
if (hw->mac_type == e1000_82542_rev2_0)
hw->fc &= (~e1000_fc_tx_pause);
if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
hw->fc &= (~e1000_fc_rx_pause);
hw->original_fc = hw->fc;
DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
#ifndef CONFIG_E1000_NO_NVM
/* Take the 4 bits from EEPROM word 0x0F that determine the initial
* polarity value for the SW controlled pins, and setup the
* Extended Device Control reg with that info.
* This is needed because one of the SW controlled pins is used for
* signal detection. So this should be done before e1000_setup_pcs_link()
* or e1000_phy_setup() is called.
*/
if (hw->mac_type == e1000_82543) {
ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
SWDPIO__EXT_SHIFT);
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
}
#endif
/* Call the necessary subroutine to configure the link. */
ret_val = (hw->media_type == e1000_media_type_fiber) ?
e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw);
if (ret_val < 0) {
return ret_val;
}
/* Initialize the flow control address, type, and PAUSE timer
* registers to their default values. This is done even if flow
* control is disabled, because it does not hurt anything to
* initialize these registers.
*/
DEBUGOUT("Initializing the Flow Control address, type"
"and timer regs\n");
/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
if (hw->mac_type != e1000_ich8lan) {
E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
}
E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
/* Set the flow control receive threshold registers. Normally,
* these registers will be set to a default threshold that may be
* adjusted later by the driver's runtime code. However, if the
* ability to transmit pause frames in not enabled, then these
* registers will be set to 0.
*/
if (!(hw->fc & e1000_fc_tx_pause)) {
E1000_WRITE_REG(hw, FCRTL, 0);
E1000_WRITE_REG(hw, FCRTH, 0);
} else {
/* We need to set up the Receive Threshold high and low water marks
* as well as (optionally) enabling the transmission of XON frames.
*/
if (hw->fc_send_xon) {
E1000_WRITE_REG(hw, FCRTL,
(hw->fc_low_water | E1000_FCRTL_XONE));
E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
} else {
E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
}
}
return ret_val;
}
/******************************************************************************
* Sets up link for a fiber based adapter
*
* hw - Struct containing variables accessed by shared code
*
* Manipulates Physical Coding Sublayer functions in order to configure
* link. Assumes the hardware has been previously reset and the transmitter
* and receiver are not enabled.
*****************************************************************************/
static int
e1000_setup_fiber_link(struct e1000_hw *hw)
{
uint32_t ctrl;
uint32_t status;
uint32_t txcw = 0;
uint32_t i;
uint32_t signal;
int32_t ret_val;
DEBUGFUNC();
/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
* set when the optics detect a signal. On older adapters, it will be
* cleared when there is a signal
*/
ctrl = E1000_READ_REG(hw, CTRL);
if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
signal = E1000_CTRL_SWDPIN1;
else
signal = 0;
printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal,
ctrl);
/* Take the link out of reset */
ctrl &= ~(E1000_CTRL_LRST);
e1000_config_collision_dist(hw);
/* Check for a software override of the flow control settings, and setup
* the device accordingly. If auto-negotiation is enabled, then software
* will have to set the "PAUSE" bits to the correct value in the Tranmsit
* Config Word Register (TXCW) and re-start auto-negotiation. However, if
* auto-negotiation is disabled, then software will have to manually
* configure the two flow control enable bits in the CTRL register.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames, but
* not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames but we do
* not support receiving pause frames).
* 3: Both Rx and TX flow control (symmetric) are enabled.
*/
switch (hw->fc) {
case e1000_fc_none:
/* Flow control is completely disabled by a software over-ride. */
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
break;
case e1000_fc_rx_pause:
/* RX Flow control is enabled and TX Flow control is disabled by a
* software over-ride. Since there really isn't a way to advertise
* that we are capable of RX Pause ONLY, we will advertise that we
* support both symmetric and asymmetric RX PAUSE. Later, we will
* disable the adapter's ability to send PAUSE frames.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break;
case e1000_fc_tx_pause:
/* TX Flow control is enabled, and RX Flow control is disabled, by a
* software over-ride.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
break;
case e1000_fc_full:
/* Flow control (both RX and TX) is enabled by a software over-ride. */
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
break;
}
/* Since auto-negotiation is enabled, take the link out of reset (the link
* will be in reset, because we previously reset the chip). This will
* restart auto-negotiation. If auto-neogtiation is successful then the
* link-up status bit will be set and the flow control enable bits (RFCE
* and TFCE) will be set according to their negotiated value.
*/
DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
E1000_WRITE_REG(hw, TXCW, txcw);
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
hw->txcw = txcw;
mdelay(1);
/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
* indication in the Device Status Register. Time-out if a link isn't
* seen in 500 milliseconds seconds (Auto-negotiation should complete in
* less than 500 milliseconds even if the other end is doing it in SW).
*/
if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
DEBUGOUT("Looking for Link\n");
for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
mdelay(10);
status = E1000_READ_REG(hw, STATUS);
if (status & E1000_STATUS_LU)
break;
}
if (i == (LINK_UP_TIMEOUT / 10)) {
/* AutoNeg failed to achieve a link, so we'll call
* e1000_check_for_link. This routine will force the link up if we
* detect a signal. This will allow us to communicate with
* non-autonegotiating link partners.
*/
DEBUGOUT("Never got a valid link from auto-neg!!!\n");
hw->autoneg_failed = 1;
ret_val = e1000_check_for_link(hw);
if (ret_val < 0) {
DEBUGOUT("Error while checking for link\n");
return ret_val;
}
hw->autoneg_failed = 0;
} else {
hw->autoneg_failed = 0;
DEBUGOUT("Valid Link Found\n");
}
} else {
DEBUGOUT("No Signal Detected\n");
return -E1000_ERR_NOLINK;
}
return 0;
}
/******************************************************************************
* Make sure we have a valid PHY and change PHY mode before link setup.
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_copper_link_preconfig(struct e1000_hw *hw)
{
uint32_t ctrl;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
ctrl = E1000_READ_REG(hw, CTRL);
/* With 82543, we need to force speed and duplex on the MAC equal to what
* the PHY speed and duplex configuration is. In addition, we need to
* perform a hardware reset on the PHY to take it out of reset.
*/
if (hw->mac_type > e1000_82543) {
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
E1000_WRITE_REG(hw, CTRL, ctrl);
} else {
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
| E1000_CTRL_SLU);
E1000_WRITE_REG(hw, CTRL, ctrl);
ret_val = e1000_phy_hw_reset(hw);
if (ret_val)
return ret_val;
}
/* Make sure we have a valid PHY */
ret_val = e1000_detect_gig_phy(hw);
if (ret_val) {
DEBUGOUT("Error, did not detect valid phy.\n");
return ret_val;
}
DEBUGOUT("Phy ID = %x\n", hw->phy_id);
/* Set PHY to class A mode (if necessary) */
ret_val = e1000_set_phy_mode(hw);
if (ret_val)
return ret_val;
if ((hw->mac_type == e1000_82545_rev_3) ||
(hw->mac_type == e1000_82546_rev_3)) {
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
&phy_data);
phy_data |= 0x00000008;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
phy_data);
}
if (hw->mac_type <= e1000_82543 ||
hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
hw->mac_type == e1000_82541_rev_2
|| hw->mac_type == e1000_82547_rev_2)
hw->phy_reset_disable = false;
return E1000_SUCCESS;
}
/*****************************************************************************
*
* This function sets the lplu state according to the active flag. When
* activating lplu this function also disables smart speed and vise versa.
* lplu will not be activated unless the device autonegotiation advertisment
* meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
* hw: Struct containing variables accessed by shared code
* active - true to enable lplu false to disable lplu.
*
* returns: - E1000_ERR_PHY if fail to read/write the PHY
* E1000_SUCCESS at any other case.
*
****************************************************************************/
static int32_t
e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
{
uint32_t phy_ctrl = 0;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
&& hw->phy_type != e1000_phy_igp_3)
return E1000_SUCCESS;
/* During driver activity LPLU should not be used or it will attain link
* from the lowest speeds starting from 10Mbps. The capability is used
* for Dx transitions and states */
if (hw->mac_type == e1000_82541_rev_2
|| hw->mac_type == e1000_82547_rev_2) {
ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
&phy_data);
if (ret_val)
return ret_val;
} else if (hw->mac_type == e1000_ich8lan) {
/* MAC writes into PHY register based on the state transition
* and start auto-negotiation. SW driver can overwrite the
* settings in CSR PHY power control E1000_PHY_CTRL register. */
phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
} else {
ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
&phy_data);
if (ret_val)
return ret_val;
}
if (!active) {
if (hw->mac_type == e1000_82541_rev_2 ||
hw->mac_type == e1000_82547_rev_2) {
phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
phy_data);
if (ret_val)
return ret_val;
} else {
if (hw->mac_type == e1000_ich8lan) {
phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
} else {
phy_data &= ~IGP02E1000_PM_D3_LPLU;
ret_val = e1000_write_phy_reg(hw,
IGP02E1000_PHY_POWER_MGMT, phy_data);
if (ret_val)
return ret_val;
}
}
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
* Dx states where the power conservation is most important. During
* driver activity we should enable SmartSpeed, so performance is
* maintained. */
if (hw->smart_speed == e1000_smart_speed_on) {
ret_val = e1000_read_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, &phy_data);
if (ret_val)
return ret_val;
phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, phy_data);
if (ret_val)
return ret_val;
} else if (hw->smart_speed == e1000_smart_speed_off) {
ret_val = e1000_read_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, phy_data);
if (ret_val)
return ret_val;
}
} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
|| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
if (hw->mac_type == e1000_82541_rev_2 ||
hw->mac_type == e1000_82547_rev_2) {
phy_data |= IGP01E1000_GMII_FLEX_SPD;
ret_val = e1000_write_phy_reg(hw,
IGP01E1000_GMII_FIFO, phy_data);
if (ret_val)
return ret_val;
} else {
if (hw->mac_type == e1000_ich8lan) {
phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
} else {
phy_data |= IGP02E1000_PM_D3_LPLU;
ret_val = e1000_write_phy_reg(hw,
IGP02E1000_PHY_POWER_MGMT, phy_data);
if (ret_val)
return ret_val;
}
}
/* When LPLU is enabled we should disable SmartSpeed */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/*****************************************************************************
*
* This function sets the lplu d0 state according to the active flag. When
* activating lplu this function also disables smart speed and vise versa.
* lplu will not be activated unless the device autonegotiation advertisment
* meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
* hw: Struct containing variables accessed by shared code
* active - true to enable lplu false to disable lplu.
*
* returns: - E1000_ERR_PHY if fail to read/write the PHY
* E1000_SUCCESS at any other case.
*
****************************************************************************/
static int32_t
e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
{
uint32_t phy_ctrl = 0;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
if (hw->mac_type <= e1000_82547_rev_2)
return E1000_SUCCESS;
if (hw->mac_type == e1000_ich8lan) {
phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
} else if (hw->mac_type == e1000_igb) {
phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
} else {
ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
&phy_data);
if (ret_val)
return ret_val;
}
if (!active) {
if (hw->mac_type == e1000_ich8lan) {
phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
} else if (hw->mac_type == e1000_igb) {
phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
} else {
phy_data &= ~IGP02E1000_PM_D0_LPLU;
ret_val = e1000_write_phy_reg(hw,
IGP02E1000_PHY_POWER_MGMT, phy_data);
if (ret_val)
return ret_val;
}
if (hw->mac_type == e1000_igb)
return E1000_SUCCESS;
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
* Dx states where the power conservation is most important. During
* driver activity we should enable SmartSpeed, so performance is
* maintained. */
if (hw->smart_speed == e1000_smart_speed_on) {
ret_val = e1000_read_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, &phy_data);
if (ret_val)
return ret_val;
phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, phy_data);
if (ret_val)
return ret_val;
} else if (hw->smart_speed == e1000_smart_speed_off) {
ret_val = e1000_read_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, phy_data);
if (ret_val)
return ret_val;
}
} else {
if (hw->mac_type == e1000_ich8lan) {
phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
} else if (hw->mac_type == e1000_igb) {
phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
} else {
phy_data |= IGP02E1000_PM_D0_LPLU;
ret_val = e1000_write_phy_reg(hw,
IGP02E1000_PHY_POWER_MGMT, phy_data);
if (ret_val)
return ret_val;
}
if (hw->mac_type == e1000_igb)
return E1000_SUCCESS;
/* When LPLU is enabled we should disable SmartSpeed */
ret_val = e1000_read_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, phy_data);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/********************************************************************
* Copper link setup for e1000_phy_igp series.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t
e1000_copper_link_igp_setup(struct e1000_hw *hw)
{
uint32_t led_ctrl;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
if (hw->phy_reset_disable)
return E1000_SUCCESS;
ret_val = e1000_phy_reset(hw);
if (ret_val) {
DEBUGOUT("Error Resetting the PHY\n");
return ret_val;
}
/* Wait 15ms for MAC to configure PHY from eeprom settings */
mdelay(15);
if (hw->mac_type != e1000_ich8lan) {
/* Configure activity LED after PHY reset */
led_ctrl = E1000_READ_REG(hw, LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK;
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
}
/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
if (hw->phy_type == e1000_phy_igp) {
/* disable lplu d3 during driver init */
ret_val = e1000_set_d3_lplu_state(hw, false);
if (ret_val) {
DEBUGOUT("Error Disabling LPLU D3\n");
return ret_val;
}
}
/* disable lplu d0 during driver init */
ret_val = e1000_set_d0_lplu_state(hw, false);
if (ret_val) {
DEBUGOUT("Error Disabling LPLU D0\n");
return ret_val;
}
/* Configure mdi-mdix settings */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
if (ret_val)
return ret_val;
if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
hw->dsp_config_state = e1000_dsp_config_disabled;
/* Force MDI for earlier revs of the IGP PHY */
phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
| IGP01E1000_PSCR_FORCE_MDI_MDIX);
hw->mdix = 1;
} else {
hw->dsp_config_state = e1000_dsp_config_enabled;
phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
switch (hw->mdix) {
case 1:
phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
break;
case 2:
phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
break;
case 0:
default:
phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
break;
}
}
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
if (ret_val)
return ret_val;
/* set auto-master slave resolution settings */
if (hw->autoneg) {
e1000_ms_type phy_ms_setting = hw->master_slave;
if (hw->ffe_config_state == e1000_ffe_config_active)
hw->ffe_config_state = e1000_ffe_config_enabled;
if (hw->dsp_config_state == e1000_dsp_config_activated)
hw->dsp_config_state = e1000_dsp_config_enabled;
/* when autonegotiation advertisment is only 1000Mbps then we
* should disable SmartSpeed and enable Auto MasterSlave
* resolution as hardware default. */
if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
/* Disable SmartSpeed */
ret_val = e1000_read_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, phy_data);
if (ret_val)
return ret_val;
/* Set auto Master/Slave resolution process */
ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
&phy_data);
if (ret_val)
return ret_val;
phy_data &= ~CR_1000T_MS_ENABLE;
ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
phy_data);
if (ret_val)
return ret_val;
}
ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
if (ret_val)
return ret_val;
/* load defaults for future use */
hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
((phy_data & CR_1000T_MS_VALUE) ?
e1000_ms_force_master :
e1000_ms_force_slave) :
e1000_ms_auto;
switch (phy_ms_setting) {
case e1000_ms_force_master:
phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
break;
case e1000_ms_force_slave:
phy_data |= CR_1000T_MS_ENABLE;
phy_data &= ~(CR_1000T_MS_VALUE);
break;
case e1000_ms_auto:
phy_data &= ~CR_1000T_MS_ENABLE;
default:
break;
}
ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/*****************************************************************************
* This function checks the mode of the firmware.
*
* returns - true when the mode is IAMT or false.
****************************************************************************/
bool
e1000_check_mng_mode(struct e1000_hw *hw)
{
uint32_t fwsm;
DEBUGFUNC();
fwsm = E1000_READ_REG(hw, FWSM);
if (hw->mac_type == e1000_ich8lan) {
if ((fwsm & E1000_FWSM_MODE_MASK) ==
(E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
return true;
} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
(E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
return true;
return false;
}
static int32_t
e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
{
uint16_t swfw = E1000_SWFW_PHY0_SM;
uint32_t reg_val;
DEBUGFUNC();
if (e1000_is_second_port(hw))
swfw = E1000_SWFW_PHY1_SM;
if (e1000_swfw_sync_acquire(hw, swfw))
return -E1000_ERR_SWFW_SYNC;
reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
& E1000_KUMCTRLSTA_OFFSET) | data;
E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
udelay(2);
return E1000_SUCCESS;
}
static int32_t
e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
{
uint16_t swfw = E1000_SWFW_PHY0_SM;
uint32_t reg_val;
DEBUGFUNC();
if (e1000_is_second_port(hw))
swfw = E1000_SWFW_PHY1_SM;
if (e1000_swfw_sync_acquire(hw, swfw)) {
debug("%s[%i]\n", __func__, __LINE__);
return -E1000_ERR_SWFW_SYNC;
}
/* Write register address */
reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
udelay(2);
/* Read the data returned */
reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
*data = (uint16_t)reg_val;
return E1000_SUCCESS;
}
/********************************************************************
* Copper link setup for e1000_phy_gg82563 series.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t
e1000_copper_link_ggp_setup(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t phy_data;
uint32_t reg_data;
DEBUGFUNC();
if (!hw->phy_reset_disable) {
/* Enable CRS on TX for half-duplex operation. */
ret_val = e1000_read_phy_reg(hw,
GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
/* Use 25MHz for both link down and 1000BASE-T for Tx clock */
phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
ret_val = e1000_write_phy_reg(hw,
GG82563_PHY_MAC_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
/* Options:
* MDI/MDI-X = 0 (default)
* 0 - Auto for all speeds
* 1 - MDI mode
* 2 - MDI-X mode
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
*/
ret_val = e1000_read_phy_reg(hw,
GG82563_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
switch (hw->mdix) {
case 1:
phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
break;
case 2:
phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
break;
case 0:
default:
phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
break;
}
/* Options:
* disable_polarity_correction = 0 (default)
* Automatic Correction for Reversed Cable Polarity
* 0 - Disabled
* 1 - Enabled
*/
phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
ret_val = e1000_write_phy_reg(hw,
GG82563_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
/* SW Reset the PHY so all changes take effect */
ret_val = e1000_phy_reset(hw);
if (ret_val) {
DEBUGOUT("Error Resetting the PHY\n");
return ret_val;
}
} /* phy_reset_disable */
if (hw->mac_type == e1000_80003es2lan) {
/* Bypass RX and TX FIFO's */
ret_val = e1000_write_kmrn_reg(hw,
E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw,
GG82563_PHY_SPEC_CTRL_2, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
ret_val = e1000_write_phy_reg(hw,
GG82563_PHY_SPEC_CTRL_2, phy_data);
if (ret_val)
return ret_val;
reg_data = E1000_READ_REG(hw, CTRL_EXT);
reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
ret_val = e1000_read_phy_reg(hw,
GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
if (ret_val)
return ret_val;
/* Do not init these registers when the HW is in IAMT mode, since the
* firmware will have already initialized them. We only initialize
* them if the HW is not in IAMT mode.
*/
if (e1000_check_mng_mode(hw) == false) {
/* Enable Electrical Idle on the PHY */
phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
ret_val = e1000_write_phy_reg(hw,
GG82563_PHY_PWR_MGMT_CTRL, phy_data);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw,
GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
ret_val = e1000_write_phy_reg(hw,
GG82563_PHY_KMRN_MODE_CTRL, phy_data);
if (ret_val)
return ret_val;
}
/* Workaround: Disable padding in Kumeran interface in the MAC
* and in the PHY to avoid CRC errors.
*/
ret_val = e1000_read_phy_reg(hw,
GG82563_PHY_INBAND_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= GG82563_ICR_DIS_PADDING;
ret_val = e1000_write_phy_reg(hw,
GG82563_PHY_INBAND_CTRL, phy_data);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/********************************************************************
* Copper link setup for e1000_phy_m88 series.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t
e1000_copper_link_mgp_setup(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
if (hw->phy_reset_disable)
return E1000_SUCCESS;
/* Enable CRS on TX. This must be set for half-duplex operation. */
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
/* Options:
* MDI/MDI-X = 0 (default)
* 0 - Auto for all speeds
* 1 - MDI mode
* 2 - MDI-X mode
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
*/
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
switch (hw->mdix) {
case 1:
phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
break;
case 2:
phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
break;
case 3:
phy_data |= M88E1000_PSCR_AUTO_X_1000T;
break;
case 0:
default:
phy_data |= M88E1000_PSCR_AUTO_X_MODE;
break;
}
/* Options:
* disable_polarity_correction = 0 (default)
* Automatic Correction for Reversed Cable Polarity
* 0 - Disabled
* 1 - Enabled
*/
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
if (hw->phy_revision < M88E1011_I_REV_4) {
/* Force TX_CLK in the Extended PHY Specific Control Register
* to 25MHz clock.
*/
ret_val = e1000_read_phy_reg(hw,
M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= M88E1000_EPSCR_TX_CLK_25;
if ((hw->phy_revision == E1000_REVISION_2) &&
(hw->phy_id == M88E1111_I_PHY_ID)) {
/* Vidalia Phy, set the downshift counter to 5x */
phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
ret_val = e1000_write_phy_reg(hw,
M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
} else {
/* Configure Master and Slave downshift values */
phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
ret_val = e1000_write_phy_reg(hw,
M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
}
}
/* SW Reset the PHY so all changes take effect */
ret_val = e1000_phy_reset(hw);
if (ret_val) {
DEBUGOUT("Error Resetting the PHY\n");
return ret_val;
}
return E1000_SUCCESS;
}
/********************************************************************
* Setup auto-negotiation and flow control advertisements,
* and then perform auto-negotiation.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t
e1000_copper_link_autoneg(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
/* Perform some bounds checking on the hw->autoneg_advertised
* parameter. If this variable is zero, then set it to the default.
*/
hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
/* If autoneg_advertised is zero, we assume it was not defaulted
* by the calling code so we set to advertise full capability.
*/
if (hw->autoneg_advertised == 0)
hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
/* IFE phy only supports 10/100 */
if (hw->phy_type == e1000_phy_ife)
hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
ret_val = e1000_phy_setup_autoneg(hw);
if (ret_val) {
DEBUGOUT("Error Setting up Auto-Negotiation\n");
return ret_val;
}
DEBUGOUT("Restarting Auto-Neg\n");
/* Restart auto-negotiation by setting the Auto Neg Enable bit and
* the Auto Neg Restart bit in the PHY control register.
*/
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
if (ret_val)
return ret_val;
/* Does the user want to wait for Auto-Neg to complete here, or
* check at a later time (for example, callback routine).
*/
/* If we do not wait for autonegtation to complete I
* do not see a valid link status.
* wait_autoneg_complete = 1 .
*/
if (hw->wait_autoneg_complete) {
ret_val = e1000_wait_autoneg(hw);
if (ret_val) {
DEBUGOUT("Error while waiting for autoneg"
"to complete\n");
return ret_val;
}
}
hw->get_link_status = true;
return E1000_SUCCESS;
}
/******************************************************************************
* Config the MAC and the PHY after link is up.
* 1) Set up the MAC to the current PHY speed/duplex
* if we are on 82543. If we
* are on newer silicon, we only need to configure
* collision distance in the Transmit Control Register.
* 2) Set up flow control on the MAC to that established with
* the link partner.
* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_copper_link_postconfig(struct e1000_hw *hw)
{
int32_t ret_val;
DEBUGFUNC();
if (hw->mac_type >= e1000_82544) {
e1000_config_collision_dist(hw);
} else {
ret_val = e1000_config_mac_to_phy(hw);
if (ret_val) {
DEBUGOUT("Error configuring MAC to PHY settings\n");
return ret_val;
}
}
ret_val = e1000_config_fc_after_link_up(hw);
if (ret_val) {
DEBUGOUT("Error Configuring Flow Control\n");
return ret_val;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Detects which PHY is present and setup the speed and duplex
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int
e1000_setup_copper_link(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t i;
uint16_t phy_data;
uint16_t reg_data;
DEBUGFUNC();
switch (hw->mac_type) {
case e1000_80003es2lan:
case e1000_ich8lan:
/* Set the mac to wait the maximum time between each
* iteration and increase the max iterations when
* polling the phy; this fixes erroneous timeouts at 10Mbps. */
ret_val = e1000_write_kmrn_reg(hw,
GG82563_REG(0x34, 4), 0xFFFF);
if (ret_val)
return ret_val;
ret_val = e1000_read_kmrn_reg(hw,
GG82563_REG(0x34, 9), &reg_data);
if (ret_val)
return ret_val;
reg_data |= 0x3F;
ret_val = e1000_write_kmrn_reg(hw,
GG82563_REG(0x34, 9), reg_data);
if (ret_val)
return ret_val;
default:
break;
}
/* Check if it is a valid PHY and set PHY mode if necessary. */
ret_val = e1000_copper_link_preconfig(hw);
if (ret_val)
return ret_val;
switch (hw->mac_type) {
case e1000_80003es2lan:
/* Kumeran registers are written-only */
reg_data =
E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
ret_val = e1000_write_kmrn_reg(hw,
E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
if (ret_val)
return ret_val;
break;
default:
break;
}
if (hw->phy_type == e1000_phy_igp ||
hw->phy_type == e1000_phy_igp_3 ||
hw->phy_type == e1000_phy_igp_2) {
ret_val = e1000_copper_link_igp_setup(hw);
if (ret_val)
return ret_val;
} else if (hw->phy_type == e1000_phy_m88 ||
hw->phy_type == e1000_phy_igb) {
ret_val = e1000_copper_link_mgp_setup(hw);
if (ret_val)
return ret_val;
} else if (hw->phy_type == e1000_phy_gg82563) {
ret_val = e1000_copper_link_ggp_setup(hw);
if (ret_val)
return ret_val;
}
/* always auto */
/* Setup autoneg and flow control advertisement
* and perform autonegotiation */
ret_val = e1000_copper_link_autoneg(hw);
if (ret_val)
return ret_val;
/* Check link status. Wait up to 100 microseconds for link to become
* valid.
*/
for (i = 0; i < 10; i++) {
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if (ret_val)
return ret_val;
if (phy_data & MII_SR_LINK_STATUS) {
/* Config the MAC and PHY after link is up */
ret_val = e1000_copper_link_postconfig(hw);
if (ret_val)
return ret_val;
DEBUGOUT("Valid link established!!!\n");
return E1000_SUCCESS;
}
udelay(10);
}
DEBUGOUT("Unable to establish link!!!\n");
return E1000_SUCCESS;
}
/******************************************************************************
* Configures PHY autoneg and flow control advertisement settings
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
int32_t
e1000_phy_setup_autoneg(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t mii_autoneg_adv_reg;
uint16_t mii_1000t_ctrl_reg;
DEBUGFUNC();
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
if (hw->phy_type != e1000_phy_ife) {
/* Read the MII 1000Base-T Control Register (Address 9). */
ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
&mii_1000t_ctrl_reg);
if (ret_val)
return ret_val;
} else
mii_1000t_ctrl_reg = 0;
/* Need to parse both autoneg_advertised and fc and set up
* the appropriate PHY registers. First we will parse for
* autoneg_advertised software override. Since we can advertise
* a plethora of combinations, we need to check each bit
* individually.
*/
/* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T Control Register (Address 9).
*/
mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
/* Do we want to advertise 10 Mb Half Duplex? */
if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
DEBUGOUT("Advertise 10mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
}
/* Do we want to advertise 10 Mb Full Duplex? */
if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
DEBUGOUT("Advertise 10mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
}
/* Do we want to advertise 100 Mb Half Duplex? */
if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
DEBUGOUT("Advertise 100mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
}
/* Do we want to advertise 100 Mb Full Duplex? */
if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
DEBUGOUT("Advertise 100mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
}
/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
DEBUGOUT
("Advertise 1000mb Half duplex requested, request denied!\n");
}
/* Do we want to advertise 1000 Mb Full Duplex? */
if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
DEBUGOUT("Advertise 1000mb Full duplex\n");
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
}
/* Check for a software override of the flow control settings, and
* setup the PHY advertisement registers accordingly. If
* auto-negotiation is enabled, then software will have to set the
* "PAUSE" bits to the correct value in the Auto-Negotiation
* Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* but we do not support receiving pause frames).
* 3: Both Rx and TX flow control (symmetric) are enabled.
* other: No software override. The flow control configuration
* in the EEPROM is used.
*/
switch (hw->fc) {
case e1000_fc_none: /* 0 */
/* Flow control (RX & TX) is completely disabled by a
* software over-ride.
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_rx_pause: /* 1 */
/* RX Flow control is enabled, and TX Flow control is
* disabled, by a software over-ride.
*/
/* Since there really isn't a way to advertise that we are
* capable of RX Pause ONLY, we will advertise that we
* support both symmetric and asymmetric RX PAUSE. Later
* (in e1000_config_fc_after_link_up) we will disable the
*hw's ability to send PAUSE frames.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_tx_pause: /* 2 */
/* TX Flow control is enabled, and RX Flow control is
* disabled, by a software over-ride.
*/
mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
break;
case e1000_fc_full: /* 3 */
/* Flow control (both RX and TX) is enabled by a software
* over-ride.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
}
ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
if (hw->phy_type != e1000_phy_ife) {
ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
mii_1000t_ctrl_reg);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Sets the collision distance in the Transmit Control register
*
* hw - Struct containing variables accessed by shared code
*
* Link should have been established previously. Reads the speed and duplex
* information from the Device Status register.
******************************************************************************/
static void
e1000_config_collision_dist(struct e1000_hw *hw)
{
uint32_t tctl, coll_dist;
DEBUGFUNC();
if (hw->mac_type < e1000_82543)
coll_dist = E1000_COLLISION_DISTANCE_82542;
else
coll_dist = E1000_COLLISION_DISTANCE;
tctl = E1000_READ_REG(hw, TCTL);
tctl &= ~E1000_TCTL_COLD;
tctl |= coll_dist << E1000_COLD_SHIFT;
E1000_WRITE_REG(hw, TCTL, tctl);
E1000_WRITE_FLUSH(hw);
}
/******************************************************************************
* Sets MAC speed and duplex settings to reflect the those in the PHY
*
* hw - Struct containing variables accessed by shared code
* mii_reg - data to write to the MII control register
*
* The contents of the PHY register containing the needed information need to
* be passed in.
******************************************************************************/
static int
e1000_config_mac_to_phy(struct e1000_hw *hw)
{
uint32_t ctrl;
uint16_t phy_data;
DEBUGFUNC();
/* Read the Device Control Register and set the bits to Force Speed
* and Duplex.
*/
ctrl = E1000_READ_REG(hw, CTRL);
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ctrl &= ~(E1000_CTRL_ILOS);
ctrl |= (E1000_CTRL_SPD_SEL);
/* Set up duplex in the Device Control and Transmit Control
* registers depending on negotiated values.
*/
if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (phy_data & M88E1000_PSSR_DPLX)
ctrl |= E1000_CTRL_FD;
else
ctrl &= ~E1000_CTRL_FD;
e1000_config_collision_dist(hw);
/* Set up speed in the Device Control register depending on
* negotiated values.
*/
if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
ctrl |= E1000_CTRL_SPD_1000;
else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
ctrl |= E1000_CTRL_SPD_100;
/* Write the configured values back to the Device Control Reg. */
E1000_WRITE_REG(hw, CTRL, ctrl);
return 0;
}
/******************************************************************************
* Forces the MAC's flow control settings.
*
* hw - Struct containing variables accessed by shared code
*
* Sets the TFCE and RFCE bits in the device control register to reflect
* the adapter settings. TFCE and RFCE need to be explicitly set by
* software when a Copper PHY is used because autonegotiation is managed
* by the PHY rather than the MAC. Software must also configure these
* bits when link is forced on a fiber connection.
*****************************************************************************/
static int
e1000_force_mac_fc(struct e1000_hw *hw)
{
uint32_t ctrl;
DEBUGFUNC();
/* Get the current configuration of the Device Control Register */
ctrl = E1000_READ_REG(hw, CTRL);
/* Because we didn't get link via the internal auto-negotiation
* mechanism (we either forced link or we got link via PHY
* auto-neg), we have to manually enable/disable transmit an
* receive flow control.
*
* The "Case" statement below enables/disable flow control
* according to the "hw->fc" parameter.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause
* frames but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* frames but we do not receive pause frames).
* 3: Both Rx and TX flow control (symmetric) is enabled.
* other: No other values should be possible at this point.
*/
switch (hw->fc) {
case e1000_fc_none:
ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
break;
case e1000_fc_rx_pause:
ctrl &= (~E1000_CTRL_TFCE);
ctrl |= E1000_CTRL_RFCE;
break;
case e1000_fc_tx_pause:
ctrl &= (~E1000_CTRL_RFCE);
ctrl |= E1000_CTRL_TFCE;
break;
case e1000_fc_full:
ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
}
/* Disable TX Flow Control for 82542 (rev 2.0) */
if (hw->mac_type == e1000_82542_rev2_0)
ctrl &= (~E1000_CTRL_TFCE);
E1000_WRITE_REG(hw, CTRL, ctrl);
return 0;
}
/******************************************************************************
* Configures flow control settings after link is established
*
* hw - Struct containing variables accessed by shared code
*
* Should be called immediately after a valid link has been established.
* Forces MAC flow control settings if link was forced. When in MII/GMII mode
* and autonegotiation is enabled, the MAC flow control settings will be set
* based on the flow control negotiated by the PHY. In TBI mode, the TFCE
* and RFCE bits will be automaticaly set to the negotiated flow control mode.
*****************************************************************************/
static int32_t
e1000_config_fc_after_link_up(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t mii_status_reg;
uint16_t mii_nway_adv_reg;
uint16_t mii_nway_lp_ability_reg;
uint16_t speed;
uint16_t duplex;
DEBUGFUNC();
/* Check for the case where we have fiber media and auto-neg failed
* so we had to force link. In this case, we need to force the
* configuration of the MAC to match the "fc" parameter.
*/
if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
|| ((hw->media_type == e1000_media_type_internal_serdes)
&& (hw->autoneg_failed))
|| ((hw->media_type == e1000_media_type_copper)
&& (!hw->autoneg))) {
ret_val = e1000_force_mac_fc(hw);
if (ret_val < 0) {
DEBUGOUT("Error forcing flow control settings\n");
return ret_val;
}
}
/* Check for the case where we have copper media and auto-neg is
* enabled. In this case, we need to check and see if Auto-Neg
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
if (hw->media_type == e1000_media_type_copper) {
/* Read the MII Status Register and check to see if AutoNeg
* has completed. We read this twice because this reg has
* some "sticky" (latched) bits.
*/
if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
/* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement Register
* (Address 4) and the Auto_Negotiation Base Page Ability
* Register (Address 5) to determine how flow control was
* negotiated.
*/
if (e1000_read_phy_reg
(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (e1000_read_phy_reg
(hw, PHY_LP_ABILITY,
&mii_nway_lp_ability_reg) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
/* Two bits in the Auto Negotiation Advertisement Register
* (Address 4) and two bits in the Auto Negotiation Base
* Page Ability Register (Address 5) determine flow control
* for both the PHY and the link partner. The following
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
* 1999, describes these PAUSE resolution bits and how flow
* control is determined based upon these settings.
* NOTE: DC = Don't Care
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
*-------|---------|-------|---------|--------------------
* 0 | 0 | DC | DC | e1000_fc_none
* 0 | 1 | 0 | DC | e1000_fc_none
* 0 | 1 | 1 | 0 | e1000_fc_none
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
* 1 | 0 | 0 | DC | e1000_fc_none
* 1 | DC | 1 | DC | e1000_fc_full
* 1 | 1 | 0 | 0 | e1000_fc_none
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*
*/
/* Are both PAUSE bits set to 1? If so, this implies
* Symmetric Flow Control is enabled at both ends. The
* ASM_DIR bits are irrelevant per the spec.
*
* For Symmetric Flow Control:
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | DC | 1 | DC | e1000_fc_full
*
*/
if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
/* Now we need to check if the user selected RX ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise RX
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
if (hw->original_fc == e1000_fc_full) {
hw->fc = e1000_fc_full;
DEBUGOUT("Flow Control = FULL.\r\n");
} else {
hw->fc = e1000_fc_rx_pause;
DEBUGOUT
("Flow Control = RX PAUSE frames only.\r\n");
}
}
/* For receiving PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
*
*/
else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
{
hw->fc = e1000_fc_tx_pause;
DEBUGOUT
("Flow Control = TX PAUSE frames only.\r\n");
}
/* For transmitting PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*
*/
else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
!(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
{
hw->fc = e1000_fc_rx_pause;
DEBUGOUT
("Flow Control = RX PAUSE frames only.\r\n");
}
/* Per the IEEE spec, at this point flow control should be
* disabled. However, we want to consider that we could
* be connected to a legacy switch that doesn't advertise
* desired flow control, but can be forced on the link
* partner. So if we advertised no flow control, that is
* what we will resolve to. If we advertised some kind of
* receive capability (Rx Pause Only or Full Flow Control)
* and the link partner advertised none, we will configure
* ourselves to enable Rx Flow Control only. We can do
* this safely for two reasons: If the link partner really
* didn't want flow control enabled, and we enable Rx, no
* harm done since we won't be receiving any PAUSE frames
* anyway. If the intent on the link partner was to have
* flow control enabled, then by us enabling RX only, we
* can at least receive pause frames and process them.
* This is a good idea because in most cases, since we are
* predominantly a server NIC, more times than not we will
* be asked to delay transmission of packets than asking
* our link partner to pause transmission of frames.
*/
else if (hw->original_fc == e1000_fc_none ||
hw->original_fc == e1000_fc_tx_pause) {
hw->fc = e1000_fc_none;
DEBUGOUT("Flow Control = NONE.\r\n");
} else {
hw->fc = e1000_fc_rx_pause;
DEBUGOUT
("Flow Control = RX PAUSE frames only.\r\n");
}
/* Now we need to do one last check... If we auto-
* negotiated to HALF DUPLEX, flow control should not be
* enabled per IEEE 802.3 spec.
*/
e1000_get_speed_and_duplex(hw, &speed, &duplex);
if (duplex == HALF_DUPLEX)
hw->fc = e1000_fc_none;
/* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
ret_val = e1000_force_mac_fc(hw);
if (ret_val < 0) {
DEBUGOUT
("Error forcing flow control settings\n");
return ret_val;
}
} else {
DEBUGOUT
("Copper PHY and Auto Neg has not completed.\r\n");
}
}
return E1000_SUCCESS;
}
/******************************************************************************
* Checks to see if the link status of the hardware has changed.
*
* hw - Struct containing variables accessed by shared code
*
* Called by any function that needs to check the link status of the adapter.
*****************************************************************************/
static int
e1000_check_for_link(struct e1000_hw *hw)
{
uint32_t rxcw;
uint32_t ctrl;
uint32_t status;
uint32_t rctl;
uint32_t signal;
int32_t ret_val;
uint16_t phy_data;
uint16_t lp_capability;
DEBUGFUNC();
/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
* set when the optics detect a signal. On older adapters, it will be
* cleared when there is a signal
*/
ctrl = E1000_READ_REG(hw, CTRL);
if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
signal = E1000_CTRL_SWDPIN1;
else
signal = 0;
status = E1000_READ_REG(hw, STATUS);
rxcw = E1000_READ_REG(hw, RXCW);
DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
/* If we have a copper PHY then we only want to go out to the PHY
* registers to see if Auto-Neg has completed and/or if our link
* status has changed. The get_link_status flag will be set if we
* receive a Link Status Change interrupt or we have Rx Sequence
* Errors.
*/
if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
/* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
* Read the register twice since the link bit is sticky.
*/
if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (phy_data & MII_SR_LINK_STATUS) {
hw->get_link_status = false;
} else {
/* No link detected */
return -E1000_ERR_NOLINK;
}
/* We have a M88E1000 PHY and Auto-Neg is enabled. If we
* have Si on board that is 82544 or newer, Auto
* Speed Detection takes care of MAC speed/duplex
* configuration. So we only need to configure Collision
* Distance in the MAC. Otherwise, we need to force
* speed/duplex on the MAC to the current PHY speed/duplex
* settings.
*/
if (hw->mac_type >= e1000_82544)
e1000_config_collision_dist(hw);
else {
ret_val = e1000_config_mac_to_phy(hw);
if (ret_val < 0) {
DEBUGOUT
("Error configuring MAC to PHY settings\n");
return ret_val;
}
}
/* Configure Flow Control now that Auto-Neg has completed. First, we
* need to restore the desired flow control settings because we may
* have had to re-autoneg with a different link partner.
*/
ret_val = e1000_config_fc_after_link_up(hw);
if (ret_val < 0) {
DEBUGOUT("Error configuring flow control\n");
return ret_val;
}
/* At this point we know that we are on copper and we have
* auto-negotiated link. These are conditions for checking the link
* parter capability register. We use the link partner capability to
* determine if TBI Compatibility needs to be turned on or off. If
* the link partner advertises any speed in addition to Gigabit, then
* we assume that they are GMII-based, and TBI compatibility is not
* needed. If no other speeds are advertised, we assume the link
* partner is TBI-based, and we turn on TBI Compatibility.
*/
if (hw->tbi_compatibility_en) {
if (e1000_read_phy_reg
(hw, PHY_LP_ABILITY, &lp_capability) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
NWAY_LPAR_10T_FD_CAPS |
NWAY_LPAR_100TX_HD_CAPS |
NWAY_LPAR_100TX_FD_CAPS |
NWAY_LPAR_100T4_CAPS)) {
/* If our link partner advertises anything in addition to
* gigabit, we do not need to enable TBI compatibility.
*/
if (hw->tbi_compatibility_on) {
/* If we previously were in the mode, turn it off. */
rctl = E1000_READ_REG(hw, RCTL);
rctl &= ~E1000_RCTL_SBP;
E1000_WRITE_REG(hw, RCTL, rctl);
hw->tbi_compatibility_on = false;
}
} else {
/* If TBI compatibility is was previously off, turn it on. For
* compatibility with a TBI link partner, we will store bad
* packets. Some frames have an additional byte on the end and
* will look like CRC errors to to the hardware.
*/
if (!hw->tbi_compatibility_on) {
hw->tbi_compatibility_on = true;
rctl = E1000_READ_REG(hw, RCTL);
rctl |= E1000_RCTL_SBP;
E1000_WRITE_REG(hw, RCTL, rctl);
}
}
}
}
/* If we don't have link (auto-negotiation failed or link partner cannot
* auto-negotiate), the cable is plugged in (we have signal), and our
* link partner is not trying to auto-negotiate with us (we are receiving
* idles or data), we need to force link up. We also need to give
* auto-negotiation time to complete, in case the cable was just plugged
* in. The autoneg_failed flag does this.
*/
else if ((hw->media_type == e1000_media_type_fiber) &&
(!(status & E1000_STATUS_LU)) &&
((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
(!(rxcw & E1000_RXCW_C))) {
if (hw->autoneg_failed == 0) {
hw->autoneg_failed = 1;
return 0;
}
DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
/* Disable auto-negotiation in the TXCW register */
E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
/* Force link-up and also force full-duplex. */
ctrl = E1000_READ_REG(hw, CTRL);
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
E1000_WRITE_REG(hw, CTRL, ctrl);
/* Configure Flow Control after forcing link up. */
ret_val = e1000_config_fc_after_link_up(hw);
if (ret_val < 0) {
DEBUGOUT("Error configuring flow control\n");
return ret_val;
}
}
/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
* auto-negotiation in the TXCW register and disable forced link in the
* Device Control register in an attempt to auto-negotiate with our link
* partner.
*/
else if ((hw->media_type == e1000_media_type_fiber) &&
(ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
DEBUGOUT
("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
E1000_WRITE_REG(hw, TXCW, hw->txcw);
E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
}
return 0;
}
/******************************************************************************
* Configure the MAC-to-PHY interface for 10/100Mbps
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
{
int32_t ret_val = E1000_SUCCESS;
uint32_t tipg;
uint16_t reg_data;
DEBUGFUNC();
reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
ret_val = e1000_write_kmrn_reg(hw,
E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
if (ret_val)
return ret_val;
/* Configure Transmit Inter-Packet Gap */
tipg = E1000_READ_REG(hw, TIPG);
tipg &= ~E1000_TIPG_IPGT_MASK;
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
E1000_WRITE_REG(hw, TIPG, tipg);
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
if (ret_val)
return ret_val;
if (duplex == HALF_DUPLEX)
reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
else
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
return ret_val;
}
static int32_t
e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
{
int32_t ret_val = E1000_SUCCESS;
uint16_t reg_data;
uint32_t tipg;
DEBUGFUNC();
reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
ret_val = e1000_write_kmrn_reg(hw,
E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
if (ret_val)
return ret_val;
/* Configure Transmit Inter-Packet Gap */
tipg = E1000_READ_REG(hw, TIPG);
tipg &= ~E1000_TIPG_IPGT_MASK;
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
E1000_WRITE_REG(hw, TIPG, tipg);
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
if (ret_val)
return ret_val;
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
return ret_val;
}
/******************************************************************************
* Detects the current speed and duplex settings of the hardware.
*
* hw - Struct containing variables accessed by shared code
* speed - Speed of the connection
* duplex - Duplex setting of the connection
*****************************************************************************/
static int
e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
uint16_t *duplex)
{
uint32_t status;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
if (hw->mac_type >= e1000_82543) {
status = E1000_READ_REG(hw, STATUS);
if (status & E1000_STATUS_SPEED_1000) {
*speed = SPEED_1000;
DEBUGOUT("1000 Mbs, ");
} else if (status & E1000_STATUS_SPEED_100) {
*speed = SPEED_100;
DEBUGOUT("100 Mbs, ");
} else {
*speed = SPEED_10;
DEBUGOUT("10 Mbs, ");
}
if (status & E1000_STATUS_FD) {
*duplex = FULL_DUPLEX;
DEBUGOUT("Full Duplex\r\n");
} else {
*duplex = HALF_DUPLEX;
DEBUGOUT(" Half Duplex\r\n");
}
} else {
DEBUGOUT("1000 Mbs, Full Duplex\r\n");
*speed = SPEED_1000;
*duplex = FULL_DUPLEX;
}
/* IGP01 PHY may advertise full duplex operation after speed downgrade
* even if it is operating at half duplex. Here we set the duplex
* settings to match the duplex in the link partner's capabilities.
*/
if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
if (ret_val)
return ret_val;
if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
*duplex = HALF_DUPLEX;
else {
ret_val = e1000_read_phy_reg(hw,
PHY_LP_ABILITY, &phy_data);
if (ret_val)
return ret_val;
if ((*speed == SPEED_100 &&
!(phy_data & NWAY_LPAR_100TX_FD_CAPS))
|| (*speed == SPEED_10
&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
*duplex = HALF_DUPLEX;
}
}
if ((hw->mac_type == e1000_80003es2lan) &&
(hw->media_type == e1000_media_type_copper)) {
if (*speed == SPEED_1000)
ret_val = e1000_configure_kmrn_for_1000(hw);
else
ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Blocks until autoneg completes or times out (~4.5 seconds)
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int
e1000_wait_autoneg(struct e1000_hw *hw)
{
uint16_t i;
uint16_t phy_data;
DEBUGFUNC();
DEBUGOUT("Waiting for Auto-Neg to complete.\n");
/* We will wait for autoneg to complete or timeout to expire. */
for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Auto-Neg
* Complete bit to be set.
*/
if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (phy_data & MII_SR_AUTONEG_COMPLETE) {
DEBUGOUT("Auto-Neg complete.\n");
return 0;
}
mdelay(100);
}
DEBUGOUT("Auto-Neg timedout.\n");
return -E1000_ERR_TIMEOUT;
}
/******************************************************************************
* Raises the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void
e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
{
/* Raise the clock input to the Management Data Clock (by setting the MDC
* bit), and then delay 2 microseconds.
*/
E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
E1000_WRITE_FLUSH(hw);
udelay(2);
}
/******************************************************************************
* Lowers the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void
e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
{
/* Lower the clock input to the Management Data Clock (by clearing the MDC
* bit), and then delay 2 microseconds.
*/
E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
E1000_WRITE_FLUSH(hw);
udelay(2);
}
/******************************************************************************
* Shifts data bits out to the PHY
*
* hw - Struct containing variables accessed by shared code
* data - Data to send out to the PHY
* count - Number of bits to shift out
*
* Bits are shifted out in MSB to LSB order.
******************************************************************************/
static void
e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
{
uint32_t ctrl;
uint32_t mask;
/* We need to shift "count" number of bits out to the PHY. So, the value
* in the "data" parameter will be shifted out to the PHY one bit at a
* time. In order to do this, "data" must be broken down into bits.
*/
mask = 0x01;
mask <<= (count - 1);
ctrl = E1000_READ_REG(hw, CTRL);
/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
while (mask) {
/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
* then raising and lowering the Management Data Clock. A "0" is
* shifted out to the PHY by setting the MDIO bit to "0" and then
* raising and lowering the clock.
*/
if (data & mask)
ctrl |= E1000_CTRL_MDIO;
else
ctrl &= ~E1000_CTRL_MDIO;
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
udelay(2);
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
mask = mask >> 1;
}
}
/******************************************************************************
* Shifts data bits in from the PHY
*
* hw - Struct containing variables accessed by shared code
*
* Bits are shifted in in MSB to LSB order.
******************************************************************************/
static uint16_t
e1000_shift_in_mdi_bits(struct e1000_hw *hw)
{
uint32_t ctrl;
uint16_t data = 0;
uint8_t i;
/* In order to read a register from the PHY, we need to shift in a total
* of 18 bits from the PHY. The first two bit (turnaround) times are used
* to avoid contention on the MDIO pin when a read operation is performed.
* These two bits are ignored by us and thrown away. Bits are "shifted in"
* by raising the input to the Management Data Clock (setting the MDC bit),
* and then reading the value of the MDIO bit.
*/
ctrl = E1000_READ_REG(hw, CTRL);
/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
ctrl &= ~E1000_CTRL_MDIO_DIR;
ctrl &= ~E1000_CTRL_MDIO;
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
/* Raise and Lower the clock before reading in the data. This accounts for
* the turnaround bits. The first clock occurred when we clocked out the
* last bit of the Register Address.
*/
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
for (data = 0, i = 0; i < 16; i++) {
data = data << 1;
e1000_raise_mdi_clk(hw, &ctrl);
ctrl = E1000_READ_REG(hw, CTRL);
/* Check to see if we shifted in a "1". */
if (ctrl & E1000_CTRL_MDIO)
data |= 1;
e1000_lower_mdi_clk(hw, &ctrl);
}
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
return data;
}
/*****************************************************************************
* Reads the value from a PHY register
*
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
******************************************************************************/
static int
e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
{
uint32_t i;
uint32_t mdic = 0;
const uint32_t phy_addr = 1;
if (reg_addr > MAX_PHY_REG_ADDRESS) {
DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
return -E1000_ERR_PARAM;
}
if (hw->mac_type > e1000_82543) {
/* Set up Op-code, Phy Address, and register address in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
(phy_addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_READ));
E1000_WRITE_REG(hw, MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */
for (i = 0; i < 64; i++) {
udelay(10);
mdic = E1000_READ_REG(hw, MDIC);
if (mdic & E1000_MDIC_READY)
break;
}
if (!(mdic & E1000_MDIC_READY)) {
DEBUGOUT("MDI Read did not complete\n");
return -E1000_ERR_PHY;
}
if (mdic & E1000_MDIC_ERROR) {
DEBUGOUT("MDI Error\n");
return -E1000_ERR_PHY;
}
*phy_data = (uint16_t) mdic;
} else {
/* We must first send a preamble through the MDIO pin to signal the
* beginning of an MII instruction. This is done by sending 32
* consecutive "1" bits.
*/
e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
/* Now combine the next few fields that are required for a read
* operation. We use this method instead of calling the
* e1000_shift_out_mdi_bits routine five different times. The format of
* a MII read instruction consists of a shift out of 14 bits and is
* defined as follows:
* <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
* followed by a shift in of 18 bits. This first two bits shifted in
* are TurnAround bits used to avoid contention on the MDIO pin when a
* READ operation is performed. These two bits are thrown away
* followed by a shift in of 16 bits which contains the desired data.
*/
mdic = ((reg_addr) | (phy_addr << 5) |
(PHY_OP_READ << 10) | (PHY_SOF << 12));
e1000_shift_out_mdi_bits(hw, mdic, 14);
/* Now that we've shifted out the read command to the MII, we need to
* "shift in" the 16-bit value (18 total bits) of the requested PHY
* register address.
*/
*phy_data = e1000_shift_in_mdi_bits(hw);
}
return 0;
}
/******************************************************************************
* Writes a value to a PHY register
*
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
******************************************************************************/
static int
e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
{
uint32_t i;
uint32_t mdic = 0;
const uint32_t phy_addr = 1;
if (reg_addr > MAX_PHY_REG_ADDRESS) {
DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
return -E1000_ERR_PARAM;
}
if (hw->mac_type > e1000_82543) {
/* Set up Op-code, Phy Address, register address, and data intended
* for the PHY register in the MDI Control register. The MAC will take
* care of interfacing with the PHY to send the desired data.
*/
mdic = (((uint32_t) phy_data) |
(reg_addr << E1000_MDIC_REG_SHIFT) |
(phy_addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_WRITE));
E1000_WRITE_REG(hw, MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */
for (i = 0; i < 64; i++) {
udelay(10);
mdic = E1000_READ_REG(hw, MDIC);
if (mdic & E1000_MDIC_READY)
break;
}
if (!(mdic & E1000_MDIC_READY)) {
DEBUGOUT("MDI Write did not complete\n");
return -E1000_ERR_PHY;
}
} else {
/* We'll need to use the SW defined pins to shift the write command
* out to the PHY. We first send a preamble to the PHY to signal the
* beginning of the MII instruction. This is done by sending 32
* consecutive "1" bits.
*/
e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
/* Now combine the remaining required fields that will indicate a
* write operation. We use this method instead of calling the
* e1000_shift_out_mdi_bits routine for each field in the command. The
* format of a MII write instruction is as follows:
* <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
*/
mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
mdic <<= 16;
mdic |= (uint32_t) phy_data;
e1000_shift_out_mdi_bits(hw, mdic, 32);
}
return 0;
}
/******************************************************************************
* Checks if PHY reset is blocked due to SOL/IDER session, for example.
* Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
* the caller to figure out how to deal with it.
*
* hw - Struct containing variables accessed by shared code
*
* returns: - E1000_BLK_PHY_RESET
* E1000_SUCCESS
*
*****************************************************************************/
int32_t
e1000_check_phy_reset_block(struct e1000_hw *hw)
{
uint32_t manc = 0;
uint32_t fwsm = 0;
if (hw->mac_type == e1000_ich8lan) {
fwsm = E1000_READ_REG(hw, FWSM);
return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
: E1000_BLK_PHY_RESET;
}
if (hw->mac_type > e1000_82547_rev_2)
manc = E1000_READ_REG(hw, MANC);
return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
E1000_BLK_PHY_RESET : E1000_SUCCESS;
}
/***************************************************************************
* Checks if the PHY configuration is done
*
* hw: Struct containing variables accessed by shared code
*
* returns: - E1000_ERR_RESET if fail to reset MAC
* E1000_SUCCESS at any other case.
*
***************************************************************************/
static int32_t
e1000_get_phy_cfg_done(struct e1000_hw *hw)
{
int32_t timeout = PHY_CFG_TIMEOUT;
uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
DEBUGFUNC();
switch (hw->mac_type) {
default:
mdelay(10);
break;
case e1000_80003es2lan:
/* Separate *_CFG_DONE_* bit for each port */
if (e1000_is_second_port(hw))
cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
/* Fall Through */
case e1000_82571:
case e1000_82572:
case e1000_igb:
while (timeout) {
if (hw->mac_type == e1000_igb) {
if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
break;
} else {
if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
break;
}
mdelay(1);
timeout--;
}
if (!timeout) {
DEBUGOUT("MNG configuration cycle has not "
"completed.\n");
return -E1000_ERR_RESET;
}
break;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Returns the PHY to the power-on reset state
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
int32_t
e1000_phy_hw_reset(struct e1000_hw *hw)
{
uint16_t swfw = E1000_SWFW_PHY0_SM;
uint32_t ctrl, ctrl_ext;
uint32_t led_ctrl;
int32_t ret_val;
DEBUGFUNC();
/* In the case of the phy reset being blocked, it's not an error, we
* simply return success without performing the reset. */
ret_val = e1000_check_phy_reset_block(hw);
if (ret_val)
return E1000_SUCCESS;
DEBUGOUT("Resetting Phy...\n");
if (hw->mac_type > e1000_82543) {
if (e1000_is_second_port(hw))
swfw = E1000_SWFW_PHY1_SM;
if (e1000_swfw_sync_acquire(hw, swfw)) {
DEBUGOUT("Unable to acquire swfw sync\n");
return -E1000_ERR_SWFW_SYNC;
}
/* Read the device control register and assert the E1000_CTRL_PHY_RST
* bit. Then, take it out of reset.
*/
ctrl = E1000_READ_REG(hw, CTRL);
E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
E1000_WRITE_FLUSH(hw);
if (hw->mac_type < e1000_82571)
udelay(10);
else
udelay(100);
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
if (hw->mac_type >= e1000_82571)
mdelay(10);
} else {
/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
* bit to put the PHY into reset. Then, take it out of reset.
*/
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
mdelay(10);
ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
}
udelay(150);
if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
/* Configure activity LED after PHY reset */
led_ctrl = E1000_READ_REG(hw, LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK;
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
}
e1000_swfw_sync_release(hw, swfw);
/* Wait for FW to finish PHY configuration. */
ret_val = e1000_get_phy_cfg_done(hw);
if (ret_val != E1000_SUCCESS)
return ret_val;
return ret_val;
}
/******************************************************************************
* IGP phy init script - initializes the GbE PHY
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static void
e1000_phy_init_script(struct e1000_hw *hw)
{
uint32_t ret_val;
uint16_t phy_saved_data;
DEBUGFUNC();
if (hw->phy_init_script) {
mdelay(20);
/* Save off the current value of register 0x2F5B to be
* restored at the end of this routine. */
ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
/* Disabled the PHY transmitter */
e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
mdelay(20);
e1000_write_phy_reg(hw, 0x0000, 0x0140);
mdelay(5);
switch (hw->mac_type) {
case e1000_82541:
case e1000_82547:
e1000_write_phy_reg(hw, 0x1F95, 0x0001);
e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
e1000_write_phy_reg(hw, 0x1F79, 0x0018);
e1000_write_phy_reg(hw, 0x1F30, 0x1600);
e1000_write_phy_reg(hw, 0x1F31, 0x0014);
e1000_write_phy_reg(hw, 0x1F32, 0x161C);
e1000_write_phy_reg(hw, 0x1F94, 0x0003);
e1000_write_phy_reg(hw, 0x1F96, 0x003F);
e1000_write_phy_reg(hw, 0x2010, 0x0008);
break;
case e1000_82541_rev_2:
case e1000_82547_rev_2:
e1000_write_phy_reg(hw, 0x1F73, 0x0099);
break;
default:
break;
}
e1000_write_phy_reg(hw, 0x0000, 0x3300);
mdelay(20);
/* Now enable the transmitter */
if (!ret_val)
e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
if (hw->mac_type == e1000_82547) {
uint16_t fused, fine, coarse;
/* Move to analog registers page */
e1000_read_phy_reg(hw,
IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
e1000_read_phy_reg(hw,
IGP01E1000_ANALOG_FUSE_STATUS, &fused);
fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
coarse = fused
& IGP01E1000_ANALOG_FUSE_COARSE_MASK;
if (coarse >
IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
coarse -=
IGP01E1000_ANALOG_FUSE_COARSE_10;
fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
} else if (coarse
== IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
fused = (fused
& IGP01E1000_ANALOG_FUSE_POLY_MASK) |
(fine
& IGP01E1000_ANALOG_FUSE_FINE_MASK) |
(coarse
& IGP01E1000_ANALOG_FUSE_COARSE_MASK);
e1000_write_phy_reg(hw,
IGP01E1000_ANALOG_FUSE_CONTROL, fused);
e1000_write_phy_reg(hw,
IGP01E1000_ANALOG_FUSE_BYPASS,
IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
}
}
}
}
/******************************************************************************
* Resets the PHY
*
* hw - Struct containing variables accessed by shared code
*
* Sets bit 15 of the MII Control register
******************************************************************************/
int32_t
e1000_phy_reset(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
/* In the case of the phy reset being blocked, it's not an error, we
* simply return success without performing the reset. */
ret_val = e1000_check_phy_reset_block(hw);
if (ret_val)
return E1000_SUCCESS;
switch (hw->phy_type) {
case e1000_phy_igp:
case e1000_phy_igp_2:
case e1000_phy_igp_3:
case e1000_phy_ife:
case e1000_phy_igb:
ret_val = e1000_phy_hw_reset(hw);
if (ret_val)
return ret_val;
break;
default:
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= MII_CR_RESET;
ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
if (ret_val)
return ret_val;
udelay(1);
break;
}
if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
e1000_phy_init_script(hw);
return E1000_SUCCESS;
}
static int e1000_set_phy_type (struct e1000_hw *hw)
{
DEBUGFUNC ();
if (hw->mac_type == e1000_undefined)
return -E1000_ERR_PHY_TYPE;
switch (hw->phy_id) {
case M88E1000_E_PHY_ID:
case M88E1000_I_PHY_ID:
case M88E1011_I_PHY_ID:
case M88E1111_I_PHY_ID:
hw->phy_type = e1000_phy_m88;
break;
case IGP01E1000_I_PHY_ID:
if (hw->mac_type == e1000_82541 ||
hw->mac_type == e1000_82541_rev_2 ||
hw->mac_type == e1000_82547 ||
hw->mac_type == e1000_82547_rev_2) {
hw->phy_type = e1000_phy_igp;
break;
}
case IGP03E1000_E_PHY_ID:
hw->phy_type = e1000_phy_igp_3;
break;
case IFE_E_PHY_ID:
case IFE_PLUS_E_PHY_ID:
case IFE_C_E_PHY_ID:
hw->phy_type = e1000_phy_ife;
break;
case GG82563_E_PHY_ID:
if (hw->mac_type == e1000_80003es2lan) {
hw->phy_type = e1000_phy_gg82563;
break;
}
case BME1000_E_PHY_ID:
hw->phy_type = e1000_phy_bm;
break;
case I210_I_PHY_ID:
hw->phy_type = e1000_phy_igb;
break;
/* Fall Through */
default:
/* Should never have loaded on this device */
hw->phy_type = e1000_phy_undefined;
return -E1000_ERR_PHY_TYPE;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Probes the expected PHY address for known PHY IDs
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_detect_gig_phy(struct e1000_hw *hw)
{
int32_t phy_init_status, ret_val;
uint16_t phy_id_high, phy_id_low;
bool match = false;
DEBUGFUNC();
/* The 82571 firmware may still be configuring the PHY. In this
* case, we cannot access the PHY until the configuration is done. So
* we explicitly set the PHY values. */
if (hw->mac_type == e1000_82571 ||
hw->mac_type == e1000_82572) {
hw->phy_id = IGP01E1000_I_PHY_ID;
hw->phy_type = e1000_phy_igp_2;
return E1000_SUCCESS;
}
/* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
* work- around that forces PHY page 0 to be set or the reads fail.
* The rest of the code in this routine uses e1000_read_phy_reg to
* read the PHY ID. So for ESB-2 we need to have this set so our
* reads won't fail. If the attached PHY is not a e1000_phy_gg82563,
* the routines below will figure this out as well. */
if (hw->mac_type == e1000_80003es2lan)
hw->phy_type = e1000_phy_gg82563;
/* Read the PHY ID Registers to identify which PHY is onboard. */
ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
if (ret_val)
return ret_val;
hw->phy_id = (uint32_t) (phy_id_high << 16);
udelay(20);
ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
if (ret_val)
return ret_val;
hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
switch (hw->mac_type) {
case e1000_82543:
if (hw->phy_id == M88E1000_E_PHY_ID)
match = true;
break;
case e1000_82544:
if (hw->phy_id == M88E1000_I_PHY_ID)
match = true;
break;
case e1000_82540:
case e1000_82545:
case e1000_82545_rev_3:
case e1000_82546:
case e1000_82546_rev_3:
if (hw->phy_id == M88E1011_I_PHY_ID)
match = true;
break;
case e1000_82541:
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
if(hw->phy_id == IGP01E1000_I_PHY_ID)
match = true;
break;
case e1000_82573:
if (hw->phy_id == M88E1111_I_PHY_ID)
match = true;
break;
case e1000_82574:
if (hw->phy_id == BME1000_E_PHY_ID)
match = true;
break;
case e1000_80003es2lan:
if (hw->phy_id == GG82563_E_PHY_ID)
match = true;
break;
case e1000_ich8lan:
if (hw->phy_id == IGP03E1000_E_PHY_ID)
match = true;
if (hw->phy_id == IFE_E_PHY_ID)
match = true;
if (hw->phy_id == IFE_PLUS_E_PHY_ID)
match = true;
if (hw->phy_id == IFE_C_E_PHY_ID)
match = true;
break;
case e1000_igb:
if (hw->phy_id == I210_I_PHY_ID)
match = true;
break;
default:
DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
return -E1000_ERR_CONFIG;
}
phy_init_status = e1000_set_phy_type(hw);
if ((match) && (phy_init_status == E1000_SUCCESS)) {
DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
return 0;
}
DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
return -E1000_ERR_PHY;
}
/*****************************************************************************
* Set media type and TBI compatibility.
*
* hw - Struct containing variables accessed by shared code
* **************************************************************************/
void
e1000_set_media_type(struct e1000_hw *hw)
{
uint32_t status;
DEBUGFUNC();
if (hw->mac_type != e1000_82543) {
/* tbi_compatibility is only valid on 82543 */
hw->tbi_compatibility_en = false;
}
switch (hw->device_id) {
case E1000_DEV_ID_82545GM_SERDES:
case E1000_DEV_ID_82546GB_SERDES:
case E1000_DEV_ID_82571EB_SERDES:
case E1000_DEV_ID_82571EB_SERDES_DUAL:
case E1000_DEV_ID_82571EB_SERDES_QUAD:
case E1000_DEV_ID_82572EI_SERDES:
case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
hw->media_type = e1000_media_type_internal_serdes;
break;
default:
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
hw->media_type = e1000_media_type_fiber;
break;
case e1000_ich8lan:
case e1000_82573:
case e1000_82574:
case e1000_igb:
/* The STATUS_TBIMODE bit is reserved or reused
* for the this device.
*/
hw->media_type = e1000_media_type_copper;
break;
default:
status = E1000_READ_REG(hw, STATUS);
if (status & E1000_STATUS_TBIMODE) {
hw->media_type = e1000_media_type_fiber;
/* tbi_compatibility not valid on fiber */
hw->tbi_compatibility_en = false;
} else {
hw->media_type = e1000_media_type_copper;
}
break;
}
}
}
/**
* e1000_sw_init - Initialize general software structures (struct e1000_adapter)
*
* e1000_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
**/
static int
e1000_sw_init(struct e1000_hw *hw)
{
int result;
/* PCI config space info */
dm_pci_read_config16(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
dm_pci_read_config16(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
&hw->subsystem_vendor_id);
dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
dm_pci_read_config8(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
dm_pci_read_config16(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
/* identify the MAC */
result = e1000_set_mac_type(hw);
if (result) {
E1000_ERR(hw, "Unknown MAC Type\n");
return result;
}
switch (hw->mac_type) {
default:
break;
case e1000_82541:
case e1000_82547:
case e1000_82541_rev_2:
case e1000_82547_rev_2:
hw->phy_init_script = 1;
break;
}
/* flow control settings */
hw->fc_high_water = E1000_FC_HIGH_THRESH;
hw->fc_low_water = E1000_FC_LOW_THRESH;
hw->fc_pause_time = E1000_FC_PAUSE_TIME;
hw->fc_send_xon = 1;
/* Media type - copper or fiber */
hw->tbi_compatibility_en = true;
e1000_set_media_type(hw);
if (hw->mac_type >= e1000_82543) {
uint32_t status = E1000_READ_REG(hw, STATUS);
if (status & E1000_STATUS_TBIMODE) {
DEBUGOUT("fiber interface\n");
hw->media_type = e1000_media_type_fiber;
} else {
DEBUGOUT("copper interface\n");
hw->media_type = e1000_media_type_copper;
}
} else {
hw->media_type = e1000_media_type_fiber;
}
hw->wait_autoneg_complete = true;
if (hw->mac_type < e1000_82543)
hw->report_tx_early = 0;
else
hw->report_tx_early = 1;
return E1000_SUCCESS;
}
void
fill_rx(struct e1000_hw *hw)
{
struct e1000_rx_desc *rd;
unsigned long flush_start, flush_end;
rx_last = rx_tail;
rd = rx_base + rx_tail;
rx_tail = (rx_tail + 1) % 8;
memset(rd, 0, 16);
rd->buffer_addr = cpu_to_le64(virt_to_phys(packet));
/*
* Make sure there are no stale data in WB over this area, which
* might get written into the memory while the e1000 also writes
* into the same memory area.
*/
invalidate_dcache_range((unsigned long)packet,
(unsigned long)packet + 4096);
/* Dump the DMA descriptor into RAM. */
flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
flush_dcache_range(flush_start, flush_end);
E1000_WRITE_REG(hw, RDT, rx_tail);
}
/**
* e1000_configure_tx - Configure 8254x Transmit Unit after Reset
* @adapter: board private structure
*
* Configure the Tx unit of the MAC after a reset.
**/
static void
e1000_configure_tx(struct e1000_hw *hw)
{
unsigned long tctl;
unsigned long tipg, tarc;
uint32_t ipgr1, ipgr2;
E1000_WRITE_REG(hw, TDBAL, lower_32_bits(virt_to_phys(tx_base)));
E1000_WRITE_REG(hw, TDBAH, upper_32_bits(virt_to_phys(tx_base)));
E1000_WRITE_REG(hw, TDLEN, 128);
/* Setup the HW Tx Head and Tail descriptor pointers */
E1000_WRITE_REG(hw, TDH, 0);
E1000_WRITE_REG(hw, TDT, 0);
tx_tail = 0;
/* Set the default values for the Tx Inter Packet Gap timer */
if (hw->mac_type <= e1000_82547_rev_2 &&
(hw->media_type == e1000_media_type_fiber ||
hw->media_type == e1000_media_type_internal_serdes))
tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
else
tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
/* Set the default values for the Tx Inter Packet Gap timer */
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
tipg = DEFAULT_82542_TIPG_IPGT;
ipgr1 = DEFAULT_82542_TIPG_IPGR1;
ipgr2 = DEFAULT_82542_TIPG_IPGR2;
break;
case e1000_80003es2lan:
ipgr1 = DEFAULT_82543_TIPG_IPGR1;
ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
break;
default:
ipgr1 = DEFAULT_82543_TIPG_IPGR1;
ipgr2 = DEFAULT_82543_TIPG_IPGR2;
break;
}
tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
E1000_WRITE_REG(hw, TIPG, tipg);
/* Program the Transmit Control Register */
tctl = E1000_READ_REG(hw, TCTL);
tctl &= ~E1000_TCTL_CT;
tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
tarc = E1000_READ_REG(hw, TARC0);
/* set the speed mode bit, we'll clear it if we're not at
* gigabit link later */
/* git bit can be set to 1*/
} else if (hw->mac_type == e1000_80003es2lan) {
tarc = E1000_READ_REG(hw, TARC0);
tarc |= 1;
E1000_WRITE_REG(hw, TARC0, tarc);
tarc = E1000_READ_REG(hw, TARC1);
tarc |= 1;
E1000_WRITE_REG(hw, TARC1, tarc);
}
e1000_config_collision_dist(hw);
/* Setup Transmit Descriptor Settings for eop descriptor */
hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
/* Need to set up RS bit */
if (hw->mac_type < e1000_82543)
hw->txd_cmd |= E1000_TXD_CMD_RPS;
else
hw->txd_cmd |= E1000_TXD_CMD_RS;
if (hw->mac_type == e1000_igb) {
E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
reg_txdctl |= 1 << 25;
E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
mdelay(20);
}
E1000_WRITE_REG(hw, TCTL, tctl);
}
/**
* e1000_setup_rctl - configure the receive control register
* @adapter: Board private structure
**/
static void
e1000_setup_rctl(struct e1000_hw *hw)
{
uint32_t rctl;
rctl = E1000_READ_REG(hw, RCTL);
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF; /* |
(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
if (hw->tbi_compatibility_on == 1)
rctl |= E1000_RCTL_SBP;
else
rctl &= ~E1000_RCTL_SBP;
rctl &= ~(E1000_RCTL_SZ_4096);
rctl |= E1000_RCTL_SZ_2048;
rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
E1000_WRITE_REG(hw, RCTL, rctl);
}
/**
* e1000_configure_rx - Configure 8254x Receive Unit after Reset
* @adapter: board private structure
*
* Configure the Rx unit of the MAC after a reset.
**/
static void
e1000_configure_rx(struct e1000_hw *hw)
{
unsigned long rctl, ctrl_ext;
rx_tail = 0;
/* make sure receives are disabled while setting up the descriptors */
rctl = E1000_READ_REG(hw, RCTL);
E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
if (hw->mac_type >= e1000_82540) {
/* Set the interrupt throttling rate. Value is calculated
* as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
#define MAX_INTS_PER_SEC 8000
#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
}
if (hw->mac_type >= e1000_82571) {
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
/* Reset delay timers after every interrupt */
ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
}
/* Setup the Base and Length of the Rx Descriptor Ring */
E1000_WRITE_REG(hw, RDBAL, lower_32_bits(virt_to_phys(rx_base)));
E1000_WRITE_REG(hw, RDBAH, upper_32_bits(virt_to_phys(rx_base)));
E1000_WRITE_REG(hw, RDLEN, 128);
/* Setup the HW Rx Head and Tail Descriptor Pointers */
E1000_WRITE_REG(hw, RDH, 0);
E1000_WRITE_REG(hw, RDT, 0);
/* Enable Receives */
if (hw->mac_type == e1000_igb) {
uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
reg_rxdctl |= 1 << 25;
E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
mdelay(20);
}
E1000_WRITE_REG(hw, RCTL, rctl);
fill_rx(hw);
}
/**************************************************************************
POLL - Wait for a frame
***************************************************************************/
static int
_e1000_poll(struct e1000_hw *hw)
{
struct e1000_rx_desc *rd;
unsigned long inval_start, inval_end;
uint32_t len;
/* return true if there's an ethernet packet ready to read */
rd = rx_base + rx_last;
/* Re-load the descriptor from RAM. */
inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
invalidate_dcache_range(inval_start, inval_end);
if (!(rd->status & E1000_RXD_STAT_DD))
return 0;
/* DEBUGOUT("recv: packet len=%d\n", rd->length); */
/* Packet received, make sure the data are re-loaded from RAM. */
len = le16_to_cpu(rd->length);
invalidate_dcache_range((unsigned long)packet,
(unsigned long)packet +
roundup(len, ARCH_DMA_MINALIGN));
return len;
}
static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length)
{
void *nv_packet = (void *)txpacket;
struct e1000_tx_desc *txp;
int i = 0;
unsigned long flush_start, flush_end;
txp = tx_base + tx_tail;
tx_tail = (tx_tail + 1) % 8;
txp->buffer_addr = cpu_to_le64(virt_to_phys(nv_packet));
txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
txp->upper.data = 0;
/* Dump the packet into RAM so e1000 can pick them. */
flush_dcache_range((unsigned long)nv_packet,
(unsigned long)nv_packet +
roundup(length, ARCH_DMA_MINALIGN));
/* Dump the descriptor into RAM as well. */
flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
flush_dcache_range(flush_start, flush_end);
E1000_WRITE_REG(hw, TDT, tx_tail);
E1000_WRITE_FLUSH(hw);
while (1) {
invalidate_dcache_range(flush_start, flush_end);
if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
break;
if (i++ > TOUT_LOOP) {
DEBUGOUT("e1000: tx timeout\n");
return 0;
}
udelay(10); /* give the nic a chance to write to the register */
}
return 1;
}
static void
_e1000_disable(struct e1000_hw *hw)
{
/* Turn off the ethernet interface */
E1000_WRITE_REG(hw, RCTL, 0);
E1000_WRITE_REG(hw, TCTL, 0);
/* Clear the transmit ring */
E1000_WRITE_REG(hw, TDH, 0);
E1000_WRITE_REG(hw, TDT, 0);
/* Clear the receive ring */
E1000_WRITE_REG(hw, RDH, 0);
E1000_WRITE_REG(hw, RDT, 0);
mdelay(10);
}
/*reset function*/
static inline int
e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6])
{
e1000_reset_hw(hw);
if (hw->mac_type >= e1000_82544)
E1000_WRITE_REG(hw, WUC, 0);
return e1000_init_hw(hw, enetaddr);
}
static int
_e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6])
{
int ret_val = 0;
ret_val = e1000_reset(hw, enetaddr);
if (ret_val < 0) {
if ((ret_val == -E1000_ERR_NOLINK) ||
(ret_val == -E1000_ERR_TIMEOUT)) {
E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val);
} else {
E1000_ERR(hw, "Hardware Initialization Failed\n");
}
return ret_val;
}
e1000_configure_tx(hw);
e1000_setup_rctl(hw);
e1000_configure_rx(hw);
return 0;
}
/******************************************************************************
* Gets the current PCI bus type of hardware
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
void e1000_get_bus_type(struct e1000_hw *hw)
{
uint32_t status;
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
hw->bus_type = e1000_bus_type_pci;
break;
case e1000_82571:
case e1000_82572:
case e1000_82573:
case e1000_82574:
case e1000_80003es2lan:
case e1000_ich8lan:
case e1000_igb:
hw->bus_type = e1000_bus_type_pci_express;
break;
default:
status = E1000_READ_REG(hw, STATUS);
hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
e1000_bus_type_pcix : e1000_bus_type_pci;
break;
}
}
static int e1000_init_one(struct e1000_hw *hw, int cardnum,
struct udevice *devno, unsigned char enetaddr[6])
{
u32 val;
/* Assign the passed-in values */
hw->pdev = devno;
hw->cardnum = cardnum;
/* Print a debug message with the IO base address */
dm_pci_read_config32(devno, PCI_BASE_ADDRESS_0, &val);
E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0);
/* Try to enable I/O accesses and bus-mastering */
val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
dm_pci_write_config32(devno, PCI_COMMAND, val);
/* Make sure it worked */
dm_pci_read_config32(devno, PCI_COMMAND, &val);
if (!(val & PCI_COMMAND_MEMORY)) {
E1000_ERR(hw, "Can't enable I/O memory\n");
return -ENOSPC;
}
if (!(val & PCI_COMMAND_MASTER)) {
E1000_ERR(hw, "Can't enable bus-mastering\n");
return -EPERM;
}
/* Are these variables needed? */
hw->fc = e1000_fc_default;
hw->original_fc = e1000_fc_default;
hw->autoneg_failed = 0;
hw->autoneg = 1;
hw->get_link_status = true;
#ifndef CONFIG_E1000_NO_NVM
hw->eeprom_semaphore_present = true;
#endif
hw->hw_addr = dm_pci_map_bar(devno, PCI_BASE_ADDRESS_0, 0, 0,
PCI_REGION_TYPE, PCI_REGION_MEM);
hw->mac_type = e1000_undefined;
/* MAC and Phy settings */
if (e1000_sw_init(hw) < 0) {
E1000_ERR(hw, "Software init failed\n");
return -EIO;
}
if (e1000_check_phy_reset_block(hw))
E1000_ERR(hw, "PHY Reset is blocked!\n");
/* Basic init was OK, reset the hardware and allow SPI access */
e1000_reset_hw(hw);
#ifndef CONFIG_E1000_NO_NVM
/* Validate the EEPROM and get chipset information */
if (e1000_init_eeprom_params(hw)) {
E1000_ERR(hw, "EEPROM is invalid!\n");
return -EINVAL;
}
if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
e1000_validate_eeprom_checksum(hw))
return -ENXIO;
e1000_read_mac_addr(hw, enetaddr);
#endif
e1000_get_bus_type(hw);
#ifndef CONFIG_E1000_NO_NVM
printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n ",
enetaddr[0], enetaddr[1], enetaddr[2],
enetaddr[3], enetaddr[4], enetaddr[5]);
#else
memset(enetaddr, 0, 6);
printf("e1000: no NVM\n");
#endif
return 0;
}
/* Put the name of a device in a string */
static void e1000_name(char *str, int cardnum)
{
sprintf(str, "e1000#%u", cardnum);
}
static int e1000_write_hwaddr(struct udevice *dev)
{
#ifndef CONFIG_E1000_NO_NVM
unsigned char current_mac[6];
struct eth_pdata *plat = dev_get_plat(dev);
struct e1000_hw *hw = dev_get_priv(dev);
u8 *mac = plat->enetaddr;
uint16_t data[3];
int ret_val, i;
DEBUGOUT("%s: mac=%pM\n", __func__, mac);
if ((hw->eeprom.type == e1000_eeprom_invm) &&
!(E1000_READ_REG(hw, EECD) & E1000_EECD_FLASH_DETECTED_I210))
return -ENOSYS;
memset(current_mac, 0, 6);
/* Read from EEPROM, not from registers, to make sure
* the address is persistently configured
*/
ret_val = e1000_read_mac_addr_from_eeprom(hw, current_mac);
DEBUGOUT("%s: current mac=%pM\n", __func__, current_mac);
/* Only write to EEPROM if the given address is different or
* reading the current address failed
*/
if (!ret_val && memcmp(current_mac, mac, 6) == 0)
return 0;
for (i = 0; i < 3; ++i)
data[i] = mac[i * 2 + 1] << 8 | mac[i * 2];
ret_val = e1000_write_eeprom_srwr(hw, 0x0, 3, data);
if (!ret_val)
ret_val = e1000_update_eeprom_checksum_i210(hw);
return ret_val;
#else
return 0;
#endif
}
e1000: Allow direct access to the E1000 SPI EEPROM device As a part of the manufacturing process for some of our custom hardware, we are programming the EEPROMs attached to our Intel 82571EB controllers from software using U-Boot and Linux. This code provides several conditionally-compiled features to assist in our manufacturing process: CONFIG_CMD_E1000: This is a basic "e1000" command which allows querying the controller and (if other config options are set) performing EEPROM programming. In particular, with CONFIG_E1000_SPI this allows you to display a hex-dump of the EEPROM, copy to/from main memory, and verify/update the software checksum. CONFIG_E1000_SPI_GENERIC: Build a generic SPI driver providing the standard U-Boot SPI driver interface. This allows commands such as "sspi" to access the bus attached to the E1000 controller. Additionally, some E1000 chipsets can support user data in a reserved space in the E1000 EEPROM which could be used for U-Boot environment storage. CONFIG_E1000_SPI: The core SPI access code used by the above interfaces. For example, the following commands allow you to program the EEPROM from a USB device (assumes CONFIG_E1000_SPI and CONFIG_CMD_E1000 are enabled): usb start fatload usb 0 $loadaddr 82571EB_No_Mgmt_Discrete-LOM.bin e1000 0 spi program $loadaddr 0 1024 e1000 0 spi checksum update Please keep in mind that the Intel-provided .eep files are organized as 16-bit words. When converting them to binary form for programming you must byteswap each 16-bit word so that it is in little-endian form. This means that when reading and writing words to the SPI EEPROM, the bit ordering for each word looks like this on the wire: Time >>> ------------------------------------------------------------------ ... [7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8], ... ------------------------------------------------------------------ (MSB is 15, LSB is 0). Signed-off-by: Kyle Moffett <Kyle.D.Moffett@boeing.com> Cc: Ben Warren <biggerbadderben@gmail.com>
2011-10-18 11:05:29 +00:00
#ifdef CONFIG_CMD_E1000
static int do_e1000(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
e1000: Allow direct access to the E1000 SPI EEPROM device As a part of the manufacturing process for some of our custom hardware, we are programming the EEPROMs attached to our Intel 82571EB controllers from software using U-Boot and Linux. This code provides several conditionally-compiled features to assist in our manufacturing process: CONFIG_CMD_E1000: This is a basic "e1000" command which allows querying the controller and (if other config options are set) performing EEPROM programming. In particular, with CONFIG_E1000_SPI this allows you to display a hex-dump of the EEPROM, copy to/from main memory, and verify/update the software checksum. CONFIG_E1000_SPI_GENERIC: Build a generic SPI driver providing the standard U-Boot SPI driver interface. This allows commands such as "sspi" to access the bus attached to the E1000 controller. Additionally, some E1000 chipsets can support user data in a reserved space in the E1000 EEPROM which could be used for U-Boot environment storage. CONFIG_E1000_SPI: The core SPI access code used by the above interfaces. For example, the following commands allow you to program the EEPROM from a USB device (assumes CONFIG_E1000_SPI and CONFIG_CMD_E1000 are enabled): usb start fatload usb 0 $loadaddr 82571EB_No_Mgmt_Discrete-LOM.bin e1000 0 spi program $loadaddr 0 1024 e1000 0 spi checksum update Please keep in mind that the Intel-provided .eep files are organized as 16-bit words. When converting them to binary form for programming you must byteswap each 16-bit word so that it is in little-endian form. This means that when reading and writing words to the SPI EEPROM, the bit ordering for each word looks like this on the wire: Time >>> ------------------------------------------------------------------ ... [7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8], ... ------------------------------------------------------------------ (MSB is 15, LSB is 0). Signed-off-by: Kyle Moffett <Kyle.D.Moffett@boeing.com> Cc: Ben Warren <biggerbadderben@gmail.com>
2011-10-18 11:05:29 +00:00
{
unsigned char *mac = NULL;
struct eth_pdata *plat;
struct udevice *dev;
char name[30];
int ret;
#if defined(CONFIG_E1000_SPI)
e1000: Allow direct access to the E1000 SPI EEPROM device As a part of the manufacturing process for some of our custom hardware, we are programming the EEPROMs attached to our Intel 82571EB controllers from software using U-Boot and Linux. This code provides several conditionally-compiled features to assist in our manufacturing process: CONFIG_CMD_E1000: This is a basic "e1000" command which allows querying the controller and (if other config options are set) performing EEPROM programming. In particular, with CONFIG_E1000_SPI this allows you to display a hex-dump of the EEPROM, copy to/from main memory, and verify/update the software checksum. CONFIG_E1000_SPI_GENERIC: Build a generic SPI driver providing the standard U-Boot SPI driver interface. This allows commands such as "sspi" to access the bus attached to the E1000 controller. Additionally, some E1000 chipsets can support user data in a reserved space in the E1000 EEPROM which could be used for U-Boot environment storage. CONFIG_E1000_SPI: The core SPI access code used by the above interfaces. For example, the following commands allow you to program the EEPROM from a USB device (assumes CONFIG_E1000_SPI and CONFIG_CMD_E1000 are enabled): usb start fatload usb 0 $loadaddr 82571EB_No_Mgmt_Discrete-LOM.bin e1000 0 spi program $loadaddr 0 1024 e1000 0 spi checksum update Please keep in mind that the Intel-provided .eep files are organized as 16-bit words. When converting them to binary form for programming you must byteswap each 16-bit word so that it is in little-endian form. This means that when reading and writing words to the SPI EEPROM, the bit ordering for each word looks like this on the wire: Time >>> ------------------------------------------------------------------ ... [7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8], ... ------------------------------------------------------------------ (MSB is 15, LSB is 0). Signed-off-by: Kyle Moffett <Kyle.D.Moffett@boeing.com> Cc: Ben Warren <biggerbadderben@gmail.com>
2011-10-18 11:05:29 +00:00
struct e1000_hw *hw;
#endif
int cardnum;
e1000: Allow direct access to the E1000 SPI EEPROM device As a part of the manufacturing process for some of our custom hardware, we are programming the EEPROMs attached to our Intel 82571EB controllers from software using U-Boot and Linux. This code provides several conditionally-compiled features to assist in our manufacturing process: CONFIG_CMD_E1000: This is a basic "e1000" command which allows querying the controller and (if other config options are set) performing EEPROM programming. In particular, with CONFIG_E1000_SPI this allows you to display a hex-dump of the EEPROM, copy to/from main memory, and verify/update the software checksum. CONFIG_E1000_SPI_GENERIC: Build a generic SPI driver providing the standard U-Boot SPI driver interface. This allows commands such as "sspi" to access the bus attached to the E1000 controller. Additionally, some E1000 chipsets can support user data in a reserved space in the E1000 EEPROM which could be used for U-Boot environment storage. CONFIG_E1000_SPI: The core SPI access code used by the above interfaces. For example, the following commands allow you to program the EEPROM from a USB device (assumes CONFIG_E1000_SPI and CONFIG_CMD_E1000 are enabled): usb start fatload usb 0 $loadaddr 82571EB_No_Mgmt_Discrete-LOM.bin e1000 0 spi program $loadaddr 0 1024 e1000 0 spi checksum update Please keep in mind that the Intel-provided .eep files are organized as 16-bit words. When converting them to binary form for programming you must byteswap each 16-bit word so that it is in little-endian form. This means that when reading and writing words to the SPI EEPROM, the bit ordering for each word looks like this on the wire: Time >>> ------------------------------------------------------------------ ... [7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8], ... ------------------------------------------------------------------ (MSB is 15, LSB is 0). Signed-off-by: Kyle Moffett <Kyle.D.Moffett@boeing.com> Cc: Ben Warren <biggerbadderben@gmail.com>
2011-10-18 11:05:29 +00:00
if (argc < 3) {
cmd_usage(cmdtp);
return 1;
}
/* Make sure we can find the requested e1000 card */
cardnum = dectoul(argv[1], NULL);
e1000_name(name, cardnum);
ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev);
if (!ret) {
plat = dev_get_plat(dev);
mac = plat->enetaddr;
}
if (!mac) {
e1000: Allow direct access to the E1000 SPI EEPROM device As a part of the manufacturing process for some of our custom hardware, we are programming the EEPROMs attached to our Intel 82571EB controllers from software using U-Boot and Linux. This code provides several conditionally-compiled features to assist in our manufacturing process: CONFIG_CMD_E1000: This is a basic "e1000" command which allows querying the controller and (if other config options are set) performing EEPROM programming. In particular, with CONFIG_E1000_SPI this allows you to display a hex-dump of the EEPROM, copy to/from main memory, and verify/update the software checksum. CONFIG_E1000_SPI_GENERIC: Build a generic SPI driver providing the standard U-Boot SPI driver interface. This allows commands such as "sspi" to access the bus attached to the E1000 controller. Additionally, some E1000 chipsets can support user data in a reserved space in the E1000 EEPROM which could be used for U-Boot environment storage. CONFIG_E1000_SPI: The core SPI access code used by the above interfaces. For example, the following commands allow you to program the EEPROM from a USB device (assumes CONFIG_E1000_SPI and CONFIG_CMD_E1000 are enabled): usb start fatload usb 0 $loadaddr 82571EB_No_Mgmt_Discrete-LOM.bin e1000 0 spi program $loadaddr 0 1024 e1000 0 spi checksum update Please keep in mind that the Intel-provided .eep files are organized as 16-bit words. When converting them to binary form for programming you must byteswap each 16-bit word so that it is in little-endian form. This means that when reading and writing words to the SPI EEPROM, the bit ordering for each word looks like this on the wire: Time >>> ------------------------------------------------------------------ ... [7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8], ... ------------------------------------------------------------------ (MSB is 15, LSB is 0). Signed-off-by: Kyle Moffett <Kyle.D.Moffett@boeing.com> Cc: Ben Warren <biggerbadderben@gmail.com>
2011-10-18 11:05:29 +00:00
printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
return 1;
}
if (!strcmp(argv[2], "print-mac-address")) {
printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
return 0;
}
#ifdef CONFIG_E1000_SPI
hw = dev_get_priv(dev);
e1000: Allow direct access to the E1000 SPI EEPROM device As a part of the manufacturing process for some of our custom hardware, we are programming the EEPROMs attached to our Intel 82571EB controllers from software using U-Boot and Linux. This code provides several conditionally-compiled features to assist in our manufacturing process: CONFIG_CMD_E1000: This is a basic "e1000" command which allows querying the controller and (if other config options are set) performing EEPROM programming. In particular, with CONFIG_E1000_SPI this allows you to display a hex-dump of the EEPROM, copy to/from main memory, and verify/update the software checksum. CONFIG_E1000_SPI_GENERIC: Build a generic SPI driver providing the standard U-Boot SPI driver interface. This allows commands such as "sspi" to access the bus attached to the E1000 controller. Additionally, some E1000 chipsets can support user data in a reserved space in the E1000 EEPROM which could be used for U-Boot environment storage. CONFIG_E1000_SPI: The core SPI access code used by the above interfaces. For example, the following commands allow you to program the EEPROM from a USB device (assumes CONFIG_E1000_SPI and CONFIG_CMD_E1000 are enabled): usb start fatload usb 0 $loadaddr 82571EB_No_Mgmt_Discrete-LOM.bin e1000 0 spi program $loadaddr 0 1024 e1000 0 spi checksum update Please keep in mind that the Intel-provided .eep files are organized as 16-bit words. When converting them to binary form for programming you must byteswap each 16-bit word so that it is in little-endian form. This means that when reading and writing words to the SPI EEPROM, the bit ordering for each word looks like this on the wire: Time >>> ------------------------------------------------------------------ ... [7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8], ... ------------------------------------------------------------------ (MSB is 15, LSB is 0). Signed-off-by: Kyle Moffett <Kyle.D.Moffett@boeing.com> Cc: Ben Warren <biggerbadderben@gmail.com>
2011-10-18 11:05:29 +00:00
/* Handle the "SPI" subcommand */
if (!strcmp(argv[2], "spi"))
return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
#endif
cmd_usage(cmdtp);
return 1;
}
U_BOOT_CMD(
e1000, 7, 0, do_e1000,
"Intel e1000 controller management",
/* */"<card#> print-mac-address\n"
#ifdef CONFIG_E1000_SPI
"e1000 <card#> spi show [<offset> [<length>]]\n"
"e1000 <card#> spi dump <addr> <offset> <length>\n"
"e1000 <card#> spi program <addr> <offset> <length>\n"
"e1000 <card#> spi checksum [update]\n"
#endif
" - Manage the Intel E1000 PCI device"
);
#endif /* not CONFIG_CMD_E1000 */
static int e1000_eth_start(struct udevice *dev)
{
struct eth_pdata *plat = dev_get_plat(dev);
struct e1000_hw *hw = dev_get_priv(dev);
return _e1000_init(hw, plat->enetaddr);
}
static void e1000_eth_stop(struct udevice *dev)
{
struct e1000_hw *hw = dev_get_priv(dev);
_e1000_disable(hw);
}
static int e1000_eth_send(struct udevice *dev, void *packet, int length)
{
struct e1000_hw *hw = dev_get_priv(dev);
int ret;
ret = _e1000_transmit(hw, packet, length);
return ret ? 0 : -ETIMEDOUT;
}
static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct e1000_hw *hw = dev_get_priv(dev);
int len;
len = _e1000_poll(hw);
if (len)
*packetp = packet;
return len ? len : -EAGAIN;
}
static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length)
{
struct e1000_hw *hw = dev_get_priv(dev);
fill_rx(hw);
return 0;
}
static int e1000_eth_probe(struct udevice *dev)
{
struct eth_pdata *plat = dev_get_plat(dev);
struct e1000_hw *hw = dev_get_priv(dev);
int ret;
hw->name = dev->name;
ret = e1000_init_one(hw, trailing_strtol(dev->name),
dev, plat->enetaddr);
if (ret < 0) {
printf(pr_fmt("failed to initialize card: %d\n"), ret);
return ret;
}
return 0;
}
static int e1000_eth_bind(struct udevice *dev)
{
char name[20];
/*
* A simple way to number the devices. When device tree is used this
* is unnecessary, but when the device is just discovered on the PCI
* bus we need a name. We could instead have the uclass figure out
* which devices are different and number them.
*/
e1000_name(name, num_cards++);
return device_set_name(dev, name);
}
static const struct eth_ops e1000_eth_ops = {
.start = e1000_eth_start,
.send = e1000_eth_send,
.recv = e1000_eth_recv,
.stop = e1000_eth_stop,
.free_pkt = e1000_free_pkt,
.write_hwaddr = e1000_write_hwaddr,
};
U_BOOT_DRIVER(eth_e1000) = {
.name = "eth_e1000",
.id = UCLASS_ETH,
.bind = e1000_eth_bind,
.probe = e1000_eth_probe,
.ops = &e1000_eth_ops,
.priv_auto = sizeof(struct e1000_hw),
.plat_auto = sizeof(struct eth_pdata),
};
U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported);