mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-10 15:14:43 +00:00
e1000: Allow direct access to the E1000 SPI EEPROM device
As a part of the manufacturing process for some of our custom hardware, we are programming the EEPROMs attached to our Intel 82571EB controllers from software using U-Boot and Linux. This code provides several conditionally-compiled features to assist in our manufacturing process: CONFIG_CMD_E1000: This is a basic "e1000" command which allows querying the controller and (if other config options are set) performing EEPROM programming. In particular, with CONFIG_E1000_SPI this allows you to display a hex-dump of the EEPROM, copy to/from main memory, and verify/update the software checksum. CONFIG_E1000_SPI_GENERIC: Build a generic SPI driver providing the standard U-Boot SPI driver interface. This allows commands such as "sspi" to access the bus attached to the E1000 controller. Additionally, some E1000 chipsets can support user data in a reserved space in the E1000 EEPROM which could be used for U-Boot environment storage. CONFIG_E1000_SPI: The core SPI access code used by the above interfaces. For example, the following commands allow you to program the EEPROM from a USB device (assumes CONFIG_E1000_SPI and CONFIG_CMD_E1000 are enabled): usb start fatload usb 0 $loadaddr 82571EB_No_Mgmt_Discrete-LOM.bin e1000 0 spi program $loadaddr 0 1024 e1000 0 spi checksum update Please keep in mind that the Intel-provided .eep files are organized as 16-bit words. When converting them to binary form for programming you must byteswap each 16-bit word so that it is in little-endian form. This means that when reading and writing words to the SPI EEPROM, the bit ordering for each word looks like this on the wire: Time >>> ------------------------------------------------------------------ ... [7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8], ... ------------------------------------------------------------------ (MSB is 15, LSB is 0). Signed-off-by: Kyle Moffett <Kyle.D.Moffett@boeing.com> Cc: Ben Warren <biggerbadderben@gmail.com>
This commit is contained in:
parent
2326a94db1
commit
ce5207e191
5 changed files with 671 additions and 2 deletions
15
README
15
README
|
@ -957,7 +957,20 @@ The following options need to be configured:
|
|||
|
||||
- NETWORK Support (PCI):
|
||||
CONFIG_E1000
|
||||
Support for Intel 8254x gigabit chips.
|
||||
Support for Intel 8254x/8257x gigabit chips.
|
||||
|
||||
CONFIG_E1000_SPI
|
||||
Utility code for direct access to the SPI bus on Intel 8257x.
|
||||
This does not do anything useful unless you set at least one
|
||||
of CONFIG_CMD_E1000 or CONFIG_E1000_SPI_GENERIC.
|
||||
|
||||
CONFIG_E1000_SPI_GENERIC
|
||||
Allow generic access to the SPI bus on the Intel 8257x, for
|
||||
example with the "sspi" command.
|
||||
|
||||
CONFIG_CMD_E1000
|
||||
Management command for E1000 devices. When used on devices
|
||||
with SPI support you can reprogram the EEPROM from U-Boot.
|
||||
|
||||
CONFIG_E1000_FALLBACK_MAC
|
||||
default MAC for empty EEPROM after production.
|
||||
|
|
|
@ -37,6 +37,7 @@ COBJS-$(CONFIG_DESIGNWARE_ETH) += designware.o
|
|||
COBJS-$(CONFIG_DRIVER_DM9000) += dm9000x.o
|
||||
COBJS-$(CONFIG_DNET) += dnet.o
|
||||
COBJS-$(CONFIG_E1000) += e1000.o
|
||||
COBJS-$(CONFIG_E1000_SPI) += e1000_spi.o
|
||||
COBJS-$(CONFIG_EEPRO100) += eepro100.o
|
||||
COBJS-$(CONFIG_ENC28J60) += enc28j60.o
|
||||
COBJS-$(CONFIG_EP93XX) += ep93xx_eth.o
|
||||
|
|
|
@ -5155,6 +5155,9 @@ void e1000_get_bus_type(struct e1000_hw *hw)
|
|||
}
|
||||
}
|
||||
|
||||
/* A list of all registered e1000 devices */
|
||||
static LIST_HEAD(e1000_hw_list);
|
||||
|
||||
/**************************************************************************
|
||||
PROBE - Look for an adapter, this routine's visible to the outside
|
||||
You should omit the last argument struct pci_device * for a non-PCI NIC
|
||||
|
@ -5234,8 +5237,9 @@ e1000_initialize(bd_t * bis)
|
|||
if (e1000_check_phy_reset_block(hw))
|
||||
E1000_ERR(nic, "PHY Reset is blocked!\n");
|
||||
|
||||
/* Basic init was OK, reset the hardware */
|
||||
/* Basic init was OK, reset the hardware and allow SPI access */
|
||||
e1000_reset_hw(hw);
|
||||
list_add_tail(&hw->list_node, &e1000_hw_list);
|
||||
|
||||
/* Validate the EEPROM and get chipset information */
|
||||
#if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
|
||||
|
@ -5263,3 +5267,63 @@ e1000_initialize(bd_t * bis)
|
|||
|
||||
return i;
|
||||
}
|
||||
|
||||
struct e1000_hw *e1000_find_card(unsigned int cardnum)
|
||||
{
|
||||
struct e1000_hw *hw;
|
||||
|
||||
list_for_each_entry(hw, &e1000_hw_list, list_node)
|
||||
if (hw->cardnum == cardnum)
|
||||
return hw;
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_CMD_E1000
|
||||
static int do_e1000(cmd_tbl_t *cmdtp, int flag,
|
||||
int argc, char * const argv[])
|
||||
{
|
||||
struct e1000_hw *hw;
|
||||
|
||||
if (argc < 3) {
|
||||
cmd_usage(cmdtp);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Make sure we can find the requested e1000 card */
|
||||
hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
|
||||
if (!hw) {
|
||||
printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (!strcmp(argv[2], "print-mac-address")) {
|
||||
unsigned char *mac = hw->nic->enetaddr;
|
||||
printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
|
||||
mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_E1000_SPI
|
||||
/* Handle the "SPI" subcommand */
|
||||
if (!strcmp(argv[2], "spi"))
|
||||
return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
|
||||
#endif
|
||||
|
||||
cmd_usage(cmdtp);
|
||||
return 1;
|
||||
}
|
||||
|
||||
U_BOOT_CMD(
|
||||
e1000, 7, 0, do_e1000,
|
||||
"Intel e1000 controller management",
|
||||
/* */"<card#> print-mac-address\n"
|
||||
#ifdef CONFIG_E1000_SPI
|
||||
"e1000 <card#> spi show [<offset> [<length>]]\n"
|
||||
"e1000 <card#> spi dump <addr> <offset> <length>\n"
|
||||
"e1000 <card#> spi program <addr> <offset> <length>\n"
|
||||
"e1000 <card#> spi checksum [update]\n"
|
||||
#endif
|
||||
" - Manage the Intel E1000 PCI device"
|
||||
);
|
||||
#endif /* not CONFIG_CMD_E1000 */
|
||||
|
|
|
@ -35,12 +35,17 @@
|
|||
#define _E1000_HW_H_
|
||||
|
||||
#include <common.h>
|
||||
#include <linux/list.h>
|
||||
#include <malloc.h>
|
||||
#include <net.h>
|
||||
#include <netdev.h>
|
||||
#include <asm/io.h>
|
||||
#include <pci.h>
|
||||
|
||||
#ifdef CONFIG_E1000_SPI
|
||||
#include <spi.h>
|
||||
#endif
|
||||
|
||||
#define E1000_ERR(NIC, fmt, args...) \
|
||||
printf("e1000: %s: ERROR: " fmt, (NIC)->name ,##args)
|
||||
|
||||
|
@ -72,12 +77,18 @@ struct e1000_hw;
|
|||
struct e1000_hw_stats;
|
||||
|
||||
/* Internal E1000 helper functions */
|
||||
struct e1000_hw *e1000_find_card(unsigned int cardnum);
|
||||
int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
|
||||
void e1000_standby_eeprom(struct e1000_hw *hw);
|
||||
void e1000_release_eeprom(struct e1000_hw *hw);
|
||||
void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
|
||||
void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
|
||||
|
||||
#ifdef CONFIG_E1000_SPI
|
||||
int do_e1000_spi(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
|
||||
int argc, char * const argv[]);
|
||||
#endif
|
||||
|
||||
typedef enum {
|
||||
FALSE = 0,
|
||||
TRUE = 1
|
||||
|
@ -1068,7 +1079,11 @@ typedef enum {
|
|||
|
||||
/* Structure containing variables used by the shared code (e1000_hw.c) */
|
||||
struct e1000_hw {
|
||||
struct list_head list_node;
|
||||
struct eth_device *nic;
|
||||
#ifdef CONFIG_E1000_SPI
|
||||
struct spi_slave spi;
|
||||
#endif
|
||||
unsigned int cardnum;
|
||||
|
||||
pci_dev_t pdev;
|
||||
|
|
576
drivers/net/e1000_spi.c
Normal file
576
drivers/net/e1000_spi.c
Normal file
|
@ -0,0 +1,576 @@
|
|||
#include "e1000.h"
|
||||
|
||||
/*-----------------------------------------------------------------------
|
||||
* SPI transfer
|
||||
*
|
||||
* This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks
|
||||
* "bitlen" bits in the SPI MISO port. That's just the way SPI works.
|
||||
*
|
||||
* The source of the outgoing bits is the "dout" parameter and the
|
||||
* destination of the input bits is the "din" parameter. Note that "dout"
|
||||
* and "din" can point to the same memory location, in which case the
|
||||
* input data overwrites the output data (since both are buffered by
|
||||
* temporary variables, this is OK).
|
||||
*
|
||||
* This may be interrupted with Ctrl-C if "intr" is true, otherwise it will
|
||||
* never return an error.
|
||||
*/
|
||||
static int e1000_spi_xfer(struct e1000_hw *hw, unsigned int bitlen,
|
||||
const void *dout_mem, void *din_mem, boolean_t intr)
|
||||
{
|
||||
const uint8_t *dout = dout_mem;
|
||||
uint8_t *din = din_mem;
|
||||
|
||||
uint8_t mask = 0;
|
||||
uint32_t eecd;
|
||||
unsigned long i;
|
||||
|
||||
/* Pre-read the control register */
|
||||
eecd = E1000_READ_REG(hw, EECD);
|
||||
|
||||
/* Iterate over each bit */
|
||||
for (i = 0, mask = 0x80; i < bitlen; i++, mask = (mask >> 1)?:0x80) {
|
||||
/* Check for interrupt */
|
||||
if (intr && ctrlc())
|
||||
return -1;
|
||||
|
||||
/* Determine the output bit */
|
||||
if (dout && dout[i >> 3] & mask)
|
||||
eecd |= E1000_EECD_DI;
|
||||
else
|
||||
eecd &= ~E1000_EECD_DI;
|
||||
|
||||
/* Write the output bit and wait 50us */
|
||||
E1000_WRITE_REG(hw, EECD, eecd);
|
||||
E1000_WRITE_FLUSH(hw);
|
||||
udelay(50);
|
||||
|
||||
/* Poke the clock (waits 50us) */
|
||||
e1000_raise_ee_clk(hw, &eecd);
|
||||
|
||||
/* Now read the input bit */
|
||||
eecd = E1000_READ_REG(hw, EECD);
|
||||
if (din) {
|
||||
if (eecd & E1000_EECD_DO)
|
||||
din[i >> 3] |= mask;
|
||||
else
|
||||
din[i >> 3] &= ~mask;
|
||||
}
|
||||
|
||||
/* Poke the clock again (waits 50us) */
|
||||
e1000_lower_ee_clk(hw, &eecd);
|
||||
}
|
||||
|
||||
/* Now clear any remaining bits of the input */
|
||||
if (din && (i & 7))
|
||||
din[i >> 3] &= ~((mask << 1) - 1);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_E1000_SPI_GENERIC
|
||||
static inline struct e1000_hw *e1000_hw_from_spi(struct spi_slave *spi)
|
||||
{
|
||||
return container_of(spi, struct e1000_hw, spi);
|
||||
}
|
||||
|
||||
/* Not sure why all of these are necessary */
|
||||
void spi_init_r(void) { /* Nothing to do */ }
|
||||
void spi_init_f(void) { /* Nothing to do */ }
|
||||
void spi_init(void) { /* Nothing to do */ }
|
||||
|
||||
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
|
||||
unsigned int max_hz, unsigned int mode)
|
||||
{
|
||||
/* Find the right PCI device */
|
||||
struct e1000_hw *hw = e1000_find_card(bus);
|
||||
if (!hw) {
|
||||
printf("ERROR: No such e1000 device: e1000#%u\n", bus);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Make sure it has an SPI chip */
|
||||
if (hw->eeprom.type != e1000_eeprom_spi) {
|
||||
E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Argument sanity checks */
|
||||
if (cs != 0) {
|
||||
E1000_ERR(hw->nic, "No such SPI chip: %u\n", cs);
|
||||
return NULL;
|
||||
}
|
||||
if (mode != SPI_MODE_0) {
|
||||
E1000_ERR(hw->nic, "Only SPI MODE-0 is supported!\n");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* TODO: Use max_hz somehow */
|
||||
E1000_DBG(hw->nic, "EEPROM SPI access requested\n");
|
||||
return &hw->spi;
|
||||
}
|
||||
|
||||
void spi_free_slave(struct spi_slave *spi)
|
||||
{
|
||||
struct e1000_hw *hw = e1000_hw_from_spi(spi);
|
||||
E1000_DBG(hw->nic, "EEPROM SPI access released\n");
|
||||
}
|
||||
|
||||
int spi_claim_bus(struct spi_slave *spi)
|
||||
{
|
||||
struct e1000_hw *hw = e1000_hw_from_spi(spi);
|
||||
|
||||
if (e1000_acquire_eeprom(hw)) {
|
||||
E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void spi_release_bus(struct spi_slave *spi)
|
||||
{
|
||||
struct e1000_hw *hw = e1000_hw_from_spi(spi);
|
||||
e1000_release_eeprom(hw);
|
||||
}
|
||||
|
||||
/* Skinny wrapper around e1000_spi_xfer */
|
||||
int spi_xfer(struct spi_slave *spi, unsigned int bitlen,
|
||||
const void *dout_mem, void *din_mem, unsigned long flags)
|
||||
{
|
||||
struct e1000_hw *hw = e1000_hw_from_spi(spi);
|
||||
int ret;
|
||||
|
||||
if (flags & SPI_XFER_BEGIN)
|
||||
e1000_standby_eeprom(hw);
|
||||
|
||||
ret = e1000_spi_xfer(hw, bitlen, dout_mem, din_mem, TRUE);
|
||||
|
||||
if (flags & SPI_XFER_END)
|
||||
e1000_standby_eeprom(hw);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
#endif /* not CONFIG_E1000_SPI_GENERIC */
|
||||
|
||||
#ifdef CONFIG_CMD_E1000
|
||||
|
||||
/* The EEPROM opcodes */
|
||||
#define SPI_EEPROM_ENABLE_WR 0x06
|
||||
#define SPI_EEPROM_DISABLE_WR 0x04
|
||||
#define SPI_EEPROM_WRITE_STATUS 0x01
|
||||
#define SPI_EEPROM_READ_STATUS 0x05
|
||||
#define SPI_EEPROM_WRITE_PAGE 0x02
|
||||
#define SPI_EEPROM_READ_PAGE 0x03
|
||||
|
||||
/* The EEPROM status bits */
|
||||
#define SPI_EEPROM_STATUS_BUSY 0x01
|
||||
#define SPI_EEPROM_STATUS_WREN 0x02
|
||||
|
||||
static int e1000_spi_eeprom_enable_wr(struct e1000_hw *hw, boolean_t intr)
|
||||
{
|
||||
u8 op[] = { SPI_EEPROM_ENABLE_WR };
|
||||
e1000_standby_eeprom(hw);
|
||||
return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
|
||||
}
|
||||
|
||||
/*
|
||||
* These have been tested to perform correctly, but they are not used by any
|
||||
* of the EEPROM commands at this time.
|
||||
*/
|
||||
#if 0
|
||||
static int e1000_spi_eeprom_disable_wr(struct e1000_hw *hw, boolean_t intr)
|
||||
{
|
||||
u8 op[] = { SPI_EEPROM_DISABLE_WR };
|
||||
e1000_standby_eeprom(hw);
|
||||
return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
|
||||
}
|
||||
|
||||
static int e1000_spi_eeprom_write_status(struct e1000_hw *hw,
|
||||
u8 status, boolean_t intr)
|
||||
{
|
||||
u8 op[] = { SPI_EEPROM_WRITE_STATUS, status };
|
||||
e1000_standby_eeprom(hw);
|
||||
return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
|
||||
}
|
||||
#endif
|
||||
|
||||
static int e1000_spi_eeprom_read_status(struct e1000_hw *hw, boolean_t intr)
|
||||
{
|
||||
u8 op[] = { SPI_EEPROM_READ_STATUS, 0 };
|
||||
e1000_standby_eeprom(hw);
|
||||
if (e1000_spi_xfer(hw, 8*sizeof(op), op, op, intr))
|
||||
return -1;
|
||||
return op[1];
|
||||
}
|
||||
|
||||
static int e1000_spi_eeprom_write_page(struct e1000_hw *hw,
|
||||
const void *data, u16 off, u16 len, boolean_t intr)
|
||||
{
|
||||
u8 op[] = {
|
||||
SPI_EEPROM_WRITE_PAGE,
|
||||
(off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff
|
||||
};
|
||||
|
||||
e1000_standby_eeprom(hw);
|
||||
|
||||
if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr))
|
||||
return -1;
|
||||
if (e1000_spi_xfer(hw, len << 3, data, NULL, intr))
|
||||
return -1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int e1000_spi_eeprom_read_page(struct e1000_hw *hw,
|
||||
void *data, u16 off, u16 len, boolean_t intr)
|
||||
{
|
||||
u8 op[] = {
|
||||
SPI_EEPROM_READ_PAGE,
|
||||
(off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff
|
||||
};
|
||||
|
||||
e1000_standby_eeprom(hw);
|
||||
|
||||
if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr))
|
||||
return -1;
|
||||
if (e1000_spi_xfer(hw, len << 3, NULL, data, intr))
|
||||
return -1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int e1000_spi_eeprom_poll_ready(struct e1000_hw *hw, boolean_t intr)
|
||||
{
|
||||
int status;
|
||||
while ((status = e1000_spi_eeprom_read_status(hw, intr)) >= 0) {
|
||||
if (!(status & SPI_EEPROM_STATUS_BUSY))
|
||||
return 0;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
static int e1000_spi_eeprom_dump(struct e1000_hw *hw,
|
||||
void *data, u16 off, unsigned int len, boolean_t intr)
|
||||
{
|
||||
/* Interruptibly wait for the EEPROM to be ready */
|
||||
if (e1000_spi_eeprom_poll_ready(hw, intr))
|
||||
return -1;
|
||||
|
||||
/* Dump each page in sequence */
|
||||
while (len) {
|
||||
/* Calculate the data bytes on this page */
|
||||
u16 pg_off = off & (hw->eeprom.page_size - 1);
|
||||
u16 pg_len = hw->eeprom.page_size - pg_off;
|
||||
if (pg_len > len)
|
||||
pg_len = len;
|
||||
|
||||
/* Now dump the page */
|
||||
if (e1000_spi_eeprom_read_page(hw, data, off, pg_len, intr))
|
||||
return -1;
|
||||
|
||||
/* Otherwise go on to the next page */
|
||||
len -= pg_len;
|
||||
off += pg_len;
|
||||
data += pg_len;
|
||||
}
|
||||
|
||||
/* We're done! */
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int e1000_spi_eeprom_program(struct e1000_hw *hw,
|
||||
const void *data, u16 off, u16 len, boolean_t intr)
|
||||
{
|
||||
/* Program each page in sequence */
|
||||
while (len) {
|
||||
/* Calculate the data bytes on this page */
|
||||
u16 pg_off = off & (hw->eeprom.page_size - 1);
|
||||
u16 pg_len = hw->eeprom.page_size - pg_off;
|
||||
if (pg_len > len)
|
||||
pg_len = len;
|
||||
|
||||
/* Interruptibly wait for the EEPROM to be ready */
|
||||
if (e1000_spi_eeprom_poll_ready(hw, intr))
|
||||
return -1;
|
||||
|
||||
/* Enable write access */
|
||||
if (e1000_spi_eeprom_enable_wr(hw, intr))
|
||||
return -1;
|
||||
|
||||
/* Now program the page */
|
||||
if (e1000_spi_eeprom_write_page(hw, data, off, pg_len, intr))
|
||||
return -1;
|
||||
|
||||
/* Otherwise go on to the next page */
|
||||
len -= pg_len;
|
||||
off += pg_len;
|
||||
data += pg_len;
|
||||
}
|
||||
|
||||
/* Wait for the last write to complete */
|
||||
if (e1000_spi_eeprom_poll_ready(hw, intr))
|
||||
return -1;
|
||||
|
||||
/* We're done! */
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int do_e1000_spi_show(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
|
||||
int argc, char * const argv[])
|
||||
{
|
||||
unsigned int length = 0;
|
||||
u16 i, offset = 0;
|
||||
u8 *buffer;
|
||||
int err;
|
||||
|
||||
if (argc > 2) {
|
||||
cmd_usage(cmdtp);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Parse the offset and length */
|
||||
if (argc >= 1)
|
||||
offset = simple_strtoul(argv[0], NULL, 0);
|
||||
if (argc == 2)
|
||||
length = simple_strtoul(argv[1], NULL, 0);
|
||||
else if (offset < (hw->eeprom.word_size << 1))
|
||||
length = (hw->eeprom.word_size << 1) - offset;
|
||||
|
||||
/* Extra sanity checks */
|
||||
if (!length) {
|
||||
E1000_ERR(hw->nic, "Requested zero-sized dump!\n");
|
||||
return 1;
|
||||
}
|
||||
if ((0x10000 < length) || (0x10000 - length < offset)) {
|
||||
E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Allocate a buffer to hold stuff */
|
||||
buffer = malloc(length);
|
||||
if (!buffer) {
|
||||
E1000_ERR(hw->nic, "Out of Memory!\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Acquire the EEPROM and perform the dump */
|
||||
if (e1000_acquire_eeprom(hw)) {
|
||||
E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
|
||||
free(buffer);
|
||||
return 1;
|
||||
}
|
||||
err = e1000_spi_eeprom_dump(hw, buffer, offset, length, TRUE);
|
||||
e1000_release_eeprom(hw);
|
||||
if (err) {
|
||||
E1000_ERR(hw->nic, "Interrupted!\n");
|
||||
free(buffer);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Now hexdump the result */
|
||||
printf("%s: ===== Intel e1000 EEPROM (0x%04hX - 0x%04hX) =====",
|
||||
hw->nic->name, offset, offset + length - 1);
|
||||
for (i = 0; i < length; i++) {
|
||||
if ((i & 0xF) == 0)
|
||||
printf("\n%s: %04hX: ", hw->nic->name, offset + i);
|
||||
else if ((i & 0xF) == 0x8)
|
||||
printf(" ");
|
||||
printf(" %02hx", buffer[i]);
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
/* Success! */
|
||||
free(buffer);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int do_e1000_spi_dump(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
|
||||
int argc, char * const argv[])
|
||||
{
|
||||
unsigned int length;
|
||||
u16 offset;
|
||||
void *dest;
|
||||
|
||||
if (argc != 3) {
|
||||
cmd_usage(cmdtp);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Parse the arguments */
|
||||
dest = (void *)simple_strtoul(argv[0], NULL, 16);
|
||||
offset = simple_strtoul(argv[1], NULL, 0);
|
||||
length = simple_strtoul(argv[2], NULL, 0);
|
||||
|
||||
/* Extra sanity checks */
|
||||
if (!length) {
|
||||
E1000_ERR(hw->nic, "Requested zero-sized dump!\n");
|
||||
return 1;
|
||||
}
|
||||
if ((0x10000 < length) || (0x10000 - length < offset)) {
|
||||
E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Acquire the EEPROM */
|
||||
if (e1000_acquire_eeprom(hw)) {
|
||||
E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Perform the programming operation */
|
||||
if (e1000_spi_eeprom_dump(hw, dest, offset, length, TRUE) < 0) {
|
||||
E1000_ERR(hw->nic, "Interrupted!\n");
|
||||
e1000_release_eeprom(hw);
|
||||
return 1;
|
||||
}
|
||||
|
||||
e1000_release_eeprom(hw);
|
||||
printf("%s: ===== EEPROM DUMP COMPLETE =====\n", hw->nic->name);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int do_e1000_spi_program(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
|
||||
int argc, char * const argv[])
|
||||
{
|
||||
unsigned int length;
|
||||
const void *source;
|
||||
u16 offset;
|
||||
|
||||
if (argc != 3) {
|
||||
cmd_usage(cmdtp);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Parse the arguments */
|
||||
source = (const void *)simple_strtoul(argv[0], NULL, 16);
|
||||
offset = simple_strtoul(argv[1], NULL, 0);
|
||||
length = simple_strtoul(argv[2], NULL, 0);
|
||||
|
||||
/* Acquire the EEPROM */
|
||||
if (e1000_acquire_eeprom(hw)) {
|
||||
E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Perform the programming operation */
|
||||
if (e1000_spi_eeprom_program(hw, source, offset, length, TRUE) < 0) {
|
||||
E1000_ERR(hw->nic, "Interrupted!\n");
|
||||
e1000_release_eeprom(hw);
|
||||
return 1;
|
||||
}
|
||||
|
||||
e1000_release_eeprom(hw);
|
||||
printf("%s: ===== EEPROM PROGRAMMED =====\n", hw->nic->name);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int do_e1000_spi_checksum(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
|
||||
int argc, char * const argv[])
|
||||
{
|
||||
uint16_t i, length, checksum, checksum_reg;
|
||||
uint16_t *buffer;
|
||||
boolean_t upd;
|
||||
|
||||
if (argc == 0)
|
||||
upd = 0;
|
||||
else if ((argc == 1) && !strcmp(argv[0], "update"))
|
||||
upd = 1;
|
||||
else {
|
||||
cmd_usage(cmdtp);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Allocate a temporary buffer */
|
||||
length = sizeof(uint16_t) * (EEPROM_CHECKSUM_REG + 1);
|
||||
buffer = malloc(length);
|
||||
if (!buffer) {
|
||||
E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Acquire the EEPROM */
|
||||
if (e1000_acquire_eeprom(hw)) {
|
||||
E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Read the EEPROM */
|
||||
if (e1000_spi_eeprom_dump(hw, buffer, 0, length, TRUE) < 0) {
|
||||
E1000_ERR(hw->nic, "Interrupted!\n");
|
||||
e1000_release_eeprom(hw);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Compute the checksum and read the expected value */
|
||||
for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
|
||||
checksum += le16_to_cpu(buffer[i]);
|
||||
checksum = ((uint16_t)EEPROM_SUM) - checksum;
|
||||
checksum_reg = le16_to_cpu(buffer[i]);
|
||||
|
||||
/* Verify it! */
|
||||
if (checksum_reg == checksum) {
|
||||
printf("%s: INFO: EEPROM checksum is correct! (0x%04hx)\n",
|
||||
hw->nic->name, checksum);
|
||||
e1000_release_eeprom(hw);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Hrm, verification failed, print an error */
|
||||
E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
|
||||
E1000_ERR(hw->nic, " ...register was 0x%04hx, calculated 0x%04hx\n",
|
||||
checksum_reg, checksum);
|
||||
|
||||
/* If they didn't ask us to update it, just return an error */
|
||||
if (!upd) {
|
||||
e1000_release_eeprom(hw);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Ok, correct it! */
|
||||
printf("%s: Reprogramming the EEPROM checksum...\n", hw->nic->name);
|
||||
buffer[i] = cpu_to_le16(checksum);
|
||||
if (e1000_spi_eeprom_program(hw, &buffer[i], i * sizeof(uint16_t),
|
||||
sizeof(uint16_t), TRUE)) {
|
||||
E1000_ERR(hw->nic, "Interrupted!\n");
|
||||
e1000_release_eeprom(hw);
|
||||
return 1;
|
||||
}
|
||||
|
||||
e1000_release_eeprom(hw);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int do_e1000_spi(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
|
||||
int argc, char * const argv[])
|
||||
{
|
||||
if (argc < 1) {
|
||||
cmd_usage(cmdtp);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Make sure it has an SPI chip */
|
||||
if (hw->eeprom.type != e1000_eeprom_spi) {
|
||||
E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Check the eeprom sub-sub-command arguments */
|
||||
if (!strcmp(argv[0], "show"))
|
||||
return do_e1000_spi_show(cmdtp, hw, argc - 1, argv + 1);
|
||||
|
||||
if (!strcmp(argv[0], "dump"))
|
||||
return do_e1000_spi_dump(cmdtp, hw, argc - 1, argv + 1);
|
||||
|
||||
if (!strcmp(argv[0], "program"))
|
||||
return do_e1000_spi_program(cmdtp, hw, argc - 1, argv + 1);
|
||||
|
||||
if (!strcmp(argv[0], "checksum"))
|
||||
return do_e1000_spi_checksum(cmdtp, hw, argc - 1, argv + 1);
|
||||
|
||||
cmd_usage(cmdtp);
|
||||
return 1;
|
||||
}
|
||||
|
||||
#endif /* not CONFIG_CMD_E1000 */
|
Loading…
Reference in a new issue